[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009007616A2 - Procédé d'imprégnation de fibres continues par une matrice polymérique composite renfermant un polymère fluoré greffé - Google Patents

Procédé d'imprégnation de fibres continues par une matrice polymérique composite renfermant un polymère fluoré greffé Download PDF

Info

Publication number
WO2009007616A2
WO2009007616A2 PCT/FR2008/051186 FR2008051186W WO2009007616A2 WO 2009007616 A2 WO2009007616 A2 WO 2009007616A2 FR 2008051186 W FR2008051186 W FR 2008051186W WO 2009007616 A2 WO2009007616 A2 WO 2009007616A2
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
nanotubes
polyamide
grafted
carbon
Prior art date
Application number
PCT/FR2008/051186
Other languages
English (en)
Other versions
WO2009007616A3 (fr
Inventor
Gilles Hochstetter
Michael Werth
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to JP2010514070A priority Critical patent/JP5254328B2/ja
Priority to BRPI0812984-3A priority patent/BRPI0812984B1/pt
Priority to AT08806114T priority patent/ATE554903T1/de
Priority to CN200880022311.0A priority patent/CN101687345B/zh
Priority to EP08806114A priority patent/EP2160275B1/fr
Priority to US12/666,678 priority patent/US8883898B2/en
Publication of WO2009007616A2 publication Critical patent/WO2009007616A2/fr
Publication of WO2009007616A3 publication Critical patent/WO2009007616A3/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/256Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers

Definitions

  • the present invention relates to a process for impregnating continuous fibers, comprising coating said fibers with a polymeric matrix comprising:
  • composite fibers have been used to manufacture, in particular, various aeronautical or automobile parts. These composite fibers, which are characterized by good thermomechanical and chemical resistances, consist of a reinforcing filament reinforcement intended to ensure the mechanical strength of the material, and of a matrix that bonds and encapsulates the reinforcing fibers, intended to distribute the forces
  • Methods of manufacturing composite parts from such coated fibers include various techniques such as, for example, contact molding, projection molding, autoclave draping or low pressure molding.
  • a technique for making hollow parts is that called filament winding, which consists in impregnating dry fibers with a resin and then winding them on a mandrel formed of reinforcements and of a shape adapted to the part to be manufactured. The piece obtained by winding is then cured by heating.
  • Coating compositions consisting of either polymeric matrices containing thermosetting polymers or polymeric matrices containing thermoplastic polymers of the polyethylene glycol (PEEK), polyphenylene sulfide (PPS) type are presently used in filament winding processes. or polyphenylsulfone (PPSU), for example.
  • PEEK polyethylene glycol
  • PPS polyphenylene sulfide
  • PPSU polyphenylsulfone
  • Thermoplastic materials have the advantage of being easier to thermoform and allow the realization of composite parts having a variety of shapes.
  • the use of these materials is however expensive because of their cost.
  • they pose problems of implementation because of the difficulty of melting them below 200 0 C, which also affects the economics of the process since they require a relatively high consolidation temperature of the composite requiring a contribution n 'important energy.
  • thermoplastic polymers semi-crystalline thermoplastic polymers having a glass transition temperature of less than 100 ° C. mixed with nanotubes, especially carbon nanotubes.
  • fluoropolymers have problems of compatibility with the continuous fibers to which they are supposed to adhere.
  • the interfaces between the fluoropolymer and the continuous fibers therefore lack cohesion, which leads to the appearance of weak spots on the macroscopic scale when the polymeric matrix is subjected to a stress.
  • the presence of carbon nanotubes in the polymeric matrix used as coating material for the continuous fibers adversely affects the tensile strength at ambient temperature of the coating material, in the case where the matrix comprises a fluorinated polymer.
  • the dispersion of the nanotubes in the fluoropolymer is not always satisfactory, which can lead to the formation of agglomerates detrimental to the desired properties for the composite.
  • a fluoropolymer grafted with at least one polar carboxylic function optionally mixed with a non-grafted fluoropolymer and / or with nanotubes, in particular carbon.
  • the present invention more specifically relates to a process for impregnating continuous fibers, comprising coating said fibers with a polymer matrix comprising: (a) at least one fluorinated polymer grafted with at least one polar carboxylic function and (b) optionally at least one non-grafted fluoropolymer.
  • the method according to the invention therefore relates to the impregnation of continuous fibers.
  • materials constituting said fibers include, without limitation:
  • stretched polymer fibers based in particular on: polyamide such as polyamide 6 (PA-6), polyamide 11 (PA-II), polyamide 12 (PA-12), polyamide 6.6
  • PA-6.10 or polyamide 6.12 (PA-6.12), polyamide block copolymer / polyether (Pebax 0 ), polypropylene or polypropylene high density polyethylene such as polyhydroxyalkanoates and polyesters marketed by DU PONT under the trade name Hytrel ';
  • glass fibers in particular of the E, R or S2 type
  • the coating composition used according to the present invention is a polymeric matrix containing in particular at least one fluoropolymer grafted with a polar carboxylic function (hereinafter referred to for simplicity as "grafted fluoropolymer").
  • This grafted fluorinated polymer is capable of being obtained by grafting at least one polar carboxylic monomer, bearing: for example at least one carboxylic acid or anhydride function on a fluorinated polymer.
  • this grafted fluoropolymer may be prepared according to a process comprising: (a) mixing, preferably in the molten state, for example by means of an extruder or a kneader, a polymer fluorinated with a polar monomer bearing a carboxylic acid or anhydride function, (b) the possible conversion of this mixture into granules, powder, film or plate, (c) the irradiation of this mixture, optionally in the absence of oxygen ( and for example in polyethylene bags) in a dose ranging from 1 to 15 Mrad of photon or electron irradiation, to carry out the grafting of the polar monomer on the fluoropolymer, and (d) optionally the removal of the residual polar monomer n unreacted with the fluoropolymer.
  • a preparation process of this type is described in particular in application EP-I 484 346.
  • fluoropolymers useful in the manufacture of the grafted fluoropolymer include, without limitation:
  • PVDF Polyvinylidene fluoride
  • HFP hexafluoropropylene
  • CFE chlorotrifluoroethylene
  • HFP hexafluoropropylene
  • VF3 trifluoroethylene
  • TFE tetrafluoroethylene
  • VF3 trifluoroethylene
  • copolymers of ethylene with fluoroethylene / propylene FEP
  • fluoroethylene / propylene FEP
  • TFE tetrafluoroethylene
  • PMVE perfluoromethylvinyl ether
  • CFE chlorotrifluoroethylene
  • HFP hexafluoropropylene
  • the fluoropolymer used for the manufacture of the grafted fluoropolymer is a homopolymer of VDF, also designated by PVDF.
  • unsaturated mono- and di-carboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms, such as acrylic, methacrylic, maleic, fumeric acids. itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1,2-dicarboxylic, 4-methyl-cyclohex-4-ene-1,2-dicarboxylic, bicyclo (2,2,1) hept-5-ene-2 , 3-dicarboxylic, x-methylbicyclo (2,2,1) hept-5-ene-2,3-dicarboxylic and undecylenic, as well as their anhydrides.
  • the grafted fluoropolymer is therefore capable of being obtained from at least one of these monomers.
  • this fluoropolymer is grafted with maleic anhydride.
  • the weight proportion of the fluoropolymer to the polar monomer used in the manufacture of the grafted fluoropolymer is usually 90:10 to 99.9: 0.1.
  • Such a grafted fluorinated polymer is especially available from Arkema under the trade name Kynar ADX 710, 711, 720 or 721.
  • the polymer matrix used according to the invention may contain, in addition to the grafted fluoropolymer mentioned above, at least one non-grafted fluorinated polymer, which may especially be chosen from the fluoropolymers mentioned above.
  • this polymer when it is present, is a VDF homopolymer (PVDF) or a VDF / HFP copolymer containing at least 50% by weight of VDF units.
  • PVDF VDF homopolymer
  • HFP HFP copolymer
  • the preferred non-grafted fluorinated polymers are those of grade suitable for injection or extrusion and preferably having a viscosity ranging from 100 to 2000 Pa. and more preferably from 300 to 1200 Pa.s, measured at 230 ° C. under a shear rate of 100 s -1 using a capillary rheometer.
  • PVDF are marketed by ⁇ RKEM ⁇ company under the trade names Kynar "J 710, 711 and 720 (injection grade) or Kynar ® 740, 760, 50HD and 400HD (extrusion grade).
  • copolymers VDF / HFP are marketed by ARKEMA under the trade names Kynar ® 2800 and 3120-50.
  • the weight ratio of the fluoropolymer grafted to the polymer matrix can range from 5 to 100% and is preferably between 10 and 50%.
  • the fluoropolymer and the grafted fluoropolymer may be mixed either in powder form or by compounding followed by granulation and grinding of the granules.
  • the polymeric matrix may contain at least one reinforcement, chosen in particular from: the nanotubes of at least one chemical element chosen from the elements of the columns IHa, IVa and Va of the periodic table; carbon black; glass fibers, boron, silica, aramid, stretched polymer (especially polyamide, polyolefin or polyester) and / or natural fibers such as Im, hemp and / or sisal; and their mixtures.
  • Nanotubes are preferred for use in the present invention. These nanotubes may be based on carbon, boron, phosphorus and / or nitrogen
  • CNTs Carbon nanotubes
  • the nanotubes that can be used according to the invention can be single-walled, double-walled or multi-walled.
  • the double-walled nanotubes can in particular be prepared as described by FLAHAUT et al in Chem.
  • the multi-walled nanotubes may themselves be prepared as described in WO 03/02456.
  • the nanotubes usually have a mean diameter ranging from 0.1 to 200 nm, preferably from 0.1 to 100 nm, more preferably from 0.4 to 50 nm and more preferably from 1 to 30 nm and advantageously from 0.1 to 10 ⁇ m in length.
  • Their length / diameter ratio is preferably greater than 10 and most often greater than 100.
  • Their specific surface area is for example between 100 and 300 m 2 / g and their apparent density may especially be between 0.05 and 0.5. g / cm 3 and more preferably between 0.1 and 0.2 g / cm 3 .
  • the multiwall nanotubes may for example comprise from 5 to 15 sheets and more preferably from 7 to 10 sheets.
  • crude carbon nanotubes is especially commercially available from Arkema under the trade name Graphistrength® ® C100.
  • nanotubes can be purified and / or oxidized and / or comminuted and / or functionalized before being used in the process according to the invention.
  • the grinding of the nanotubes may be carried out cold or hot and be carried out according to known techniques used in apparatus such as ball mills, hammers, grinders, knives, jet gasses or any other grinding capable of reducing the size of the entangled network of nanotubes. It is preferred that this grinding step is performed according to a gas jet grinding technique and in particular in an air jet mill.
  • the purification of the raw or milled nanotubes can be carried out by washing with a sulfuric acid solution, so as to rid them of any residual mineral and metallic impurities from their preparation process.
  • the weight ratio of nanotubes to sulfucic acid may in particular be between 1: 2 and 1: 3.
  • the purification operation may also be carried out at a temperature ranging from 90 to 120 ° C., for example for a period of 5 to 10 hours. This operation can advantageously be followed by steps of rinsing with water and drying the purified nanotubes.
  • the deflood of nanotubes is advantageously carried out by putting them in contact with a solution of sodium hypochlorite containing from 0.5 to 15% by weight of NaOCl and preferably from 1 to 10% by weight of NaOCl. for example in a weight ratio of nanotubes to sodium hypochlorite ranging from 1: 0.1 to 1: 1.
  • the oxidation is advantageously carried out at a temperature below 60 ° C. and preferably at room temperature, for a duration ranging from a few minutes to 24 hours. This oxidation operation may advantageously be followed by filtration steps and / or centrifugation, washing and drying of the oxide nanotubes.
  • the functionalization of the nanotubes can be carried out by grafting reactive units such as monomers on the surface of the nanotubes.
  • the material constituting the nanotubes is used as a radial polymerization initiator after having been subjected to a heat treatment of more than 90 ° C., in an anhydrous and oxygen-free medium, which is intended to eliminate the oxygen groups from its surface. It is thus possxiole to poxype ⁇ ser methacrylate ⁇ e methyl or ctu hydroxyethyl methacrylate on the surface of carbon nanotubes in order to facilitate in particular their dispersion in PVDF or polyamides.
  • Crude nanotubes that is to say nanotubes that are not oxidized, purified or functionalized and have undergone no other chemical treatment, are preferably used in the present invention.
  • the nanotubes may represent from 30 to 30% and preferably from 0.5 to 10%, and still more preferably from 1 to 5% by weight of the polymeric matrix.
  • the nanotubes be mixed with the grafted fluoropolymer and the ungrafted fluoropolymer possibly present by compounding by means of conventional devices such as twin-screw extruders or co-kneaders.
  • polymer granules (s) are typically melt blended with the nanotubes.
  • the nanotubes may be dispersed by any suitable means in the polymer (s) in solution in a solvent.
  • the dispersion can be improved, according to an advantageous embodiment of the present invention, by the use of particular dispersing systems or dispersing agents.
  • the process according to the invention may comprise a preliminary stage of dispersion of the nanotubes in the polymeric matrix by means of ultrasound or a rotor-stator system.
  • Such a rotor-stator system is in particular marketed by SILVERSON under the trade name Silverson L4RT.
  • Another type of rotor-stator system is marketed by the company
  • rotor-stator systems still consist of colloid mills, deflocculating turbines and high-shear mixers of the rotor-stator type, such as the apparatus marketed by the company IKA-WERKE or the company ADMIX.
  • the dispersing agents may in particular be chosen from plasticizers which may themselves be chosen from the group consisting of: alkyl esters of phosphates and of hydroxybenzoic acid (the alkyl group of which, preferably, is linear, contains from 1 to 20 carbon atoms) of lauric acid, azelaic acid or pelargonic acid, alkyl, especially dialkyl or alkylaryl, in particular alkylbenzyl, the linear or branched alkyl groups containing independently 1 to 12 carbon atoms, adipates, in particular diaikyies, sebacates, especially diaikyies and in particular dioctyie, especially in the case where the polymer matrix contains a fluoropolymer, benzoates of glycols or glycerol, ethers of dibe ⁇ zyl, chloroparaffins, propylene carbonate, sulfonamides, in particular in the case where the polymer matrix contains a polyamide, and in particular aryl sul
  • the dispersing agent may be a copolymer comprising at least one hydrophilic anionic monomer and at least one monomer including at least one aromatic ring, such as the copolymers described in document FR-2 766 106, the weight ratio of the In this case, the nanoparticidal agent preferably ranges from 0.6: 1 to 1.9: 1.
  • the dispersing agent may be a vinylpyrrolidone homo- or copolymer, the ratio by weight of the nanotubes to the dispersing agent preferably ranging from 0.1 to less than 2.
  • the dispersion of the nanotubes in the polymer matrix can be improved by putting them in contact with at least one compound A which can be chosen from among various polymers, monomers, plasticizers, emulsifiers, coupling agents and / or carboxylic acids, the two components (nanotubes and compound A) being mixed with the solid state or the mixture being in pulverulent form, optionally after removal of one or more solvents.
  • at least one compound A which can be chosen from among various polymers, monomers, plasticizers, emulsifiers, coupling agents and / or carboxylic acids, the two components (nanotubes and compound A) being mixed with the solid state or the mixture being in pulverulent form, optionally after removal of one or more solvents.
  • the polymer matrix used according to the invention may also contain at least one adjuvant chosen from plasticizers, anti-oxygen stabilizers, light stabilizers, colorants, anti-shock agents, antistatic agents, flame retardants, lubricants, and mixtures thereof.
  • the volume ratio of the continuous fibers to the polymeric matrix is greater than or equal to 50% and preferably greater than or equal to 60%.
  • the coating of the fibers by the polymer matrix can be done according to different techniques, depending in particular on the physical form of the matrix
  • the fibers may be used as such, in unidirectional son form, or after a weaving step, in the form of a fabric consisting of a bidirectional network of fibers.
  • the coating of the fibers is preferably carried out according to a fluidized bed impregnation process, in which the polymeric matrix is in powder form.
  • the coating of the fibers can be done by passing through an impregnating bath containing the polymeric matrix in the molten state. The polymer matrix then solidifies around the fibers to form a semi-finished product consisting of a pre-impregnated fiber ribbon that can then be wound or a ⁇ re-imrigated fiber fabric.
  • the manufacture of the finished part comprises a step of consolidating the polymeric matrix, which is for example melted locally to create zones for fixing the fibers together and to secure the fiber ribbons in the process of filamentary winding. .
  • a film from the polymer matrix in particular by means of an extrusion or calendering process, said film having for example a thickness of about 100 ⁇ m, and then to place it between two mats of fibers, the whole being then pressed hot to allow 1 impregnation of the fibers and the manufacture of the composite.
  • the composite fibers obtained as described above have an interest in various applications, due to their high modulus (typically greater than 50 GPa) and high resistance, resulting in a stress at break greater traction than 200 MPa at 23 0 vs.
  • the present invention more specifically relates to the use of the aforementioned composite fibers for the manufacture of nose, wings or rocket or aircraft cabins; off-shore flexible armor; automotive bodywork components, engine chassis or automobile support parts; or structural elements in the field of building or bridges and roadways.
  • a VDF homopolymer is mixed (Kynar ⁇ 710 supplied by Arkema) with a fluorinated polymer grafted with maleic anhydride (Kynar ® ADX 120 supplied by Arkema), in a weight proportion of the PVDF to the grafted fluoropolymer 75: 25.
  • Carbon nanotubes (CNTs) (ClOO Graphistrength ® supplied by Arkema) are then added to this mixture in a proportion of 2% by weight based on the weight of the polymer blend.
  • a composite matrix is then obtained which is used to coat a continuous carbon fiber in a fluidized bed before transferring the pre-impregnated fiber, via a guiding system, to a press adapted to the manufacture of a composite plate. stratified. Hot press

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

La présente invention concerne un procédé d'imprégnation de fibres continues, comprenant l'enrobage desdites fibres par une matrice polymérique comprenant : (a) au moins un polymère fluoré greffe par au moins une fonction polaire carboxylique et (b) éventuellement au moins un polymère fluoré non greffé. Elle concerne également les fibres composites susceptibles d'être obtenues selon ce procédé, ainsi que leurs utilisations.

Description

Procédé d' imprégnation de fibres continues par une matrice polymérique composite renfermant un polymère fluoré greffé
La présente invention concerne un procédé d'imprégnation de fibres continues, comprenant l'enrobage desdites fibres par une matrice polymérique comprenant :
(a) au moins un polymère fluoré greffé par au moins une fonction polaire carboxylique et (b) éventuellement au moins un polymère fluoré non greffé. Elle concerne également les fibres composites susceptibles d'être obtenues selon ce procédé, ainsi que leurs utilisations.
Les matériaux composites font l'objet de recherches intensives, dans la mesure où ils présentent de nombreux avantages fonctionnels (légèreté, résistance mécanique et chimique, liberté de formes) leur permettant de se substituer au métal dans des applications très diverses.
On a ainsi recours depuis quelques années à des fibres composites pour fabriquer, notamment, diverses pièces aéronautiques ou automobiles. Ces fibres composites qui se caractérisent par de bonnes résistances thermomécanique et chimique sont constituées d'un renfort filamentaire formant armature, destiné à assurer la tenue mécanique du matériau, et d'une matrice liant et enrobant les fibres renforts, destinée à répartir les efforts
(résistance à la flexion ou à la compression) , à conférer une protection chimique au matériau et à lui donner sa forme . Les procédés de fabrication de pièces composites à partir de ces fibres enrobées comprennent diverses techniques telles que, par exemple, le moulage au contact, le moulage par projection, le drapage autoclave ou le moulage basse pression.
Une technique pour réaliser des pièces creuses est celle dite de l'enroulement filamentaire, qui consiste à imprégner des fibres sèches d'une résine puis à les enrouler sur un mandrin formé d'armatures et de forme adaptée à la pièce à fabriquer. La pièce obtenue par enroulement est ensuite durcie par chauffage.
On utilise actuellement dans les procédés d'enroulement filamentaire des compositions d'enrobage constituées soit de matrices polymériques renfermant des polymères thermodurcissables, soit de matrices polymériques contenant des polymères thermoplastiques du type polyάthcrcthcr cctone (PEEK), poly (sulfure de phénylène) (PPS) ou polyphénylsulfone (PPSU) , par exemple .
Les matériaux thermopiastiques présentent l'avantage d'être plus faciles à thermoformer et dp permettre la réalisation des pièces composites ayant une diversité de formes. L'utilisation de ces matériaux est toutefois onéreuse du fait de leur coût. En outre, ils posent des problèmes de mise en oeuvre en raison de la difficulté a les faire fondre au-dessous de 2000C, ce qui affecte également l'économie du procédé puisqu'ils nécessitent une température de consolidation du composite relativement élevée nécessitant un apport n' énergie important . Or, il est apparu à la Demanderesse, après de nombreuses recherches, qu'il était possible de proposer un procédé d'enrobage de fibres continues plus économique que les procédés connus, tout en permettant l'obtention de fibres composites présentant des propriétés mécaniques, et en particulier une résistance au fluage à chaud, adaptées notamment aux applications aéronautiques et automobiles, en substituant aux polymères thermoplastiques précités des polymères thermoplastiques semi-cristallins ayant une température de transition vitreuse inférieure à 1000C mélangés à des nanotubes, notamment de carbone.
Cependant, il a été observé que les polymères fluorés présentent des problèmes de compatibilité avec les fibres continues auxquelles ils sont censés adhérer. Les interfaces entre le polymère fluoré et les fibres continues manquent par conséquent de cohésion, ce qui entraîne l'apparition de points faibles à l'échelle macroscopique lorsque la matrice polymérique est soumise à une sollicitation. Il a en outre été démontré que la présence des nanotubes de carbone dans la matrice polymérique utilisée comme matériau d'enrobage des fibres continues affectait négativement la résistance à la traction à température ambiante du matériau d'enrobage, dans le cas où la matrice comprenait un polymère fluoré. Enfin, la dispersion des nanotubes dans le polymère fluoré n'est pas toujours satisfaisante, ce qui peut conduire à la formation d'agglomérats préjudiciables aux propriétés recherchées pour le composite.
Ii subsiste par conséquent le besoin de disposer d'un procédé économique de fabrication de fibres composites cohésives et homogènes, présentant des propriétés mécaniques optimales pour une utilisation dans la fabrication de pièces pour l'aéronautique, l'aérospatiale ou l'automobile.
La Demanderesse a découvert que ce besoin pouvait être satisfait par l'utilisation comme matériau d'enrobage d'un polymère fluoré greffé par au moins une fonction polaire carboxylique, éventuellement mélangé à un polymère fluoré non greffé et/ou a des nanotubes, notamment de carbone.
La présente invention a plus précisément pour objet un procédé d'imprégnation de fibres continues, comprenant l'enrobage desdites fibres par une matrice polymérique comprenant : (a) au moins un polymère fluoré greffé par au moins une fonction polaire carboxylique et (b) éventuellement au moins un polymère fluoré non greffé.
Elle a également pour objet les fibres composites susceptibles d'être obtenues selon ce procédé.
En préambule, il est précisé que dans l'ensemble de cette description, l'expression "compris (e) entre" doit être interprétée comme incluant les bornes citées.
Le procédé selon 1 ' invention porte donc sur l'imprégnation de fibres continues.
Des exemples de matériaux constitutifs desdites fibres comprennent, sans limitation :
- les fibres de polymère étiré, à base notamment : de polyamide tel que le polyamide 6 (PA-6) , le polyamide 11 (PA-Il), le polyamide 12 (PA-12), le polyamide 6.6
(PA-6.6), le polyamide 4.6 (PA-4.6), le polyamide 6.10
(PA-6.10) ou le polyamide 6.12 (PA-6.12), de copolymère bloc polyamide/polyéther (Pebax0) , de polyéthylène haute densité de polypropylène ou de polyester tel que les polyhydroxyalcanoates et les polyesters commercialisés par DU PONT sous la dénomination commerciale Hytrel ' ;
- les fibres de carbone ;
- les fibres de verre, notamment de type E, R ou S2 ;
- les fibres d'aramide (Kevlar°) ;
- les fibres de bore ;
- les fibres de silice ;
- les fibres naturelles telles que le lin, le chanvre ou le sisal ; et
- leurs mélanges, tels que les mélanges de fibres de verre, carbone et aramide .
La composition d'enrobage mise en oeuvre selon la présente invention est une matrice polymérique renfermant notamment au moins un polymère fluoré greffé par une fonction polaire carboxylique (ci-après désigné pour plus de simplicité par « polymère fluoré greffé ») .
Ce polymère fluoré greffé est susceptible d'être obtenu par greffage d'au moins un monomère polaire carboxylique, portant: par exemple au moins une fonction acide ou anhydride carboxylique sur un polymère fluoré.
Plus précisément, ce polymère fluoré greffé peut être préparé selon un procéαé comprenant : (a) le mélange, de préférence à l'état fondu, par exemple au moyen d'une extrudeuse ou d'un malaxeur, d'un polymère fluoré avec un monomère polaire portant une fonction acide ou anhydride carboxylique, (b) la transformation éventuelle de ce mélange en granulés, poudre, film ou plaque, (c) l'irradiation de ce mélange, éventuellement en l'absence d'oxygène (et par exemple dans des sacs de polyéthylène) sous une dose allant de 1 à 15 Mrad d'irradiation photonique ou électronique, pour réaliser le greffage du monomère polaire sur le polymère fluoré, et (d) éventuellement l'élimination du monomère polaire résiduel n'ayant pas réagi avec le polymère fluoré. Un procédé de préparation de ce type est notamment décrit dans la demande EP-I 484 346.
Des exemples de polymères fluorés utilisables dans la fabrication du polymère fluoré greffé comprennent, sans limitation :
- Ic poly ( fluorure de vinylidène) (PVDF), de préférence sous forme α,
- les copolymères de fluorure de vinylidène avec par exemple 1 ' hexafluoropropylène (HFP), le chlorotrifluoroéthylène (CTFE), 1 'hexafluoropropylène (HFP), le trifluoroéthylène (VF3) et le tétrafluoroéthylène (TFE) ,
- les home- et copolymères de trifluoroéthylène (VF3),
- les copolymères fluoroéthylène / propylène (FEP) ,
- les copolymères d'éthyiène avec le fluoroéthylène/propylène (FEP) , le tétrafluoroéthylène (TFE), le perfluorométhylvinyl éther (PMVE), le chlorotrifluoroéthylène (CTFE) ou 1 ' hexafluoropropylène (HFP) , et
- leurs mélanges, certains de ces polymères étant notamment commercialisés par la société ARKEMA sous la dénomination Kynar J .
Selon une forme d'exécution préférée de l'invention, le polymère fluoré utilisé pour la fabrication du polymère fluoré greffé est un homopolymère de VDF, encore désigné par PVDF.
Comme monomères polaires portant une fonction carboxylique, on peut notamment citer les mono- et diacides carboxyliques insaturés ayant de 2 à 20 atomes de carbone, et en particulier de 4 à 10 atomes de carbone, tels que les acides acrylique, méthacrylique, maléique, fumαrique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène-l, 2-dicarboxylique, 4-méthyl-cyclohex—4-ène-l , 2-dicarboxylique, bicyclo (2 , 2 , 1 ) heρt-5-ène-2 , 3-dicarboxylique, x-méthyl bicyclo (2 , 2 , 1 ) hept-5-ène-2 , 3-di ca rboxy1 i que et undécylénique, ainsi que leurs anhydrides.
Le polymère fluoré greffé est donc susceptible d'être obtenu à partir de l'un au moins de ces monomères.
On préfère que ce polymère fluoré soit greffé par l'anhydride maléique.
La proportion en poids du polymère fluoré au monomère polaire utilisés dans la fabrication du polymère fluoré greffé va habituellement de 90:10 à 99,9:0,1.
Un tel polymère fluoré greffé est notamment disponible auprès de la société ARKEMA sous la dénomination commerciale Kynar ADX 710, 711, 720 ou 721. La matrice polymérique mise en oeuvre selon l'invention peut renfermer, outre le polymère fluoré greffé mentionné ci-dessus, au moins un polymère fluoré non greffé, qui peut notamment être choisi parmi les polymères fluorés cités précédemment.
Selon une forme d'exécution préférée de l'invention, ce polymère, lorsqu'il est présent, est un homopolymère de VDF (PVDF) ou un copolymère VDF/HFP renfermant de prêtérence au moins 50% en poids de motifs VDF.
Les polymères fluorés non greffés préférés sont ceux de grade convenant à l'injection ou à l'extrusion et ayant de préférence une viscosité allant de 100 à 2000 Pa . s et plus préférentiellement de 300 à 1200 Pa. s, mesurée à 2300C sous un gradient de cisaillement de 100 s""1 à l'aide d'un rhéomètre capillaire. Des exemples de PVDF sont commercialisés par la société ΛRKEMΛ sous les dénominations commerciales Kynar"J 710, 711 et 720 (de grade injection) ou Kynar® 740, 760, 50HD et 400HD (de grade extrusion) . Des exemples de copolymères VDF/HFP sont commercialisés par la société ARKEMA sous les dénominations commerciales Kynar® 2800 et 3120-50.
Le rapport en poids du polymère fluoré greffé à la matrice polymérique peut aller de 5 à 100% et est de préférence compris entre 10 et 50%.
Le polymère fluoré et le polymère fluoré greffé peuvent être mélangés soit à l'état de poudre, soit par compoundage suivi d'une granulation et d'un broyage des granulés . En plus du ou des polymères fluorés greffé (s) et éventuellement non greffé (s) décrits précédemment, la matrice polymérique peut renfermer au moins un renfort, choisi notamment parmi : les nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique ; le noir de carbone ; les fibres de verre, de bore, de silice, d'aramide, de polymère étiré (en particulier de polyamide, de polyoléfine ou de polyester) et/ou les fibres naturelles telles que le Im, le chanvre et/ou le sisal; et leurs mélanges.
Les nanotubes sont préférés pour une utilisation dans la présente invention. Ces nanotubes peuvent être à base de carbone, de bore, de phosphore et/ou d'azote
(borures, nitrures, carbures, phosphures) et par exemple constitué de nitrure de carbone, de nitrure de bore, de carbure de bore, de phosphure de bore, de nitrure de phosphore ou de boronitrure de carbone. Les nanotubes de carbone (ci-après, NTC) sont préférés pour une utilisation dans la présente invention.
Les nanotubes utilisables selon l'invention peuvent être du type monoparoi, à double paroi ou à parois multiples. Les nanotubes à double paroi peuvent notamment être préparés comme décrit par FLAHAUT et al dans Chem.
Corn. (2003), 1442. Les nanotubes à parois multiples peuvent de leur côté être préparés comme décrit dans le docament WO 03/02456.
Les nanotubes ont habituellement un diamètre moyen allant de 0,1 à 200 nm, de préférence de 0,1 à 100 nm, plus préférentiellement de 0,4 à 50 nm et, mieux, de 1 à 30 nm et avantageusement une longueur de 0,1 à 10 μm. Leur rapport longueur/diamètre est de préférence supérieur à 10 et le plus souvent supérieur à 100. Leur surface spécifique est par exemple comprise entre 100 et 300 m2 /g et leur densité apparente peut notamment être comprise entre 0,05 et 0,5 g/cm3 et plus préférentiellement entre 0,1 et 0,2 g/cm3. Les nanotubes multiparois peuvent par exemple comprendre de 5 à 15 feuillets et plus préférentiellement de 7 à 10 feuillets.
Un exemple de nanotubes de carbone bruts est notamment disponible dans le commerce auprès de la société ARKEMA sous la dénomination commerciale Graphistrength® C100.
Ces nanotubes peuvent être purifiés et/ou oxydés et/ou broyés et/ou fonctionnalisés, avant leur mise en oeuvre dans le procédé selon l'invention.
Le broyage des nanotubes peut être notdmnienL effectué à froid ou à chaud et être réalisé selon les techniques connues mises en oeuvre dans des appareils tels que broyeurs à boulets, à marteaux, à meules, à couteaux, à jet de gaz ou tout autre système de broyage susceptible de réduire la taille du réseau enchevêtré de nanotubes. On préfère que cette étape de broyage soit pratiquée selon une technique de broyage par jet de gaz et en particulier dans un broyeur à jet d'air.
La purification des nanotubes bruts ou broyés peut être réalisée par lavage à l'aide d'une solution d'acide suifurique, de manière à les débarrasser d'éventuelles impuretés minérales et métalliques résiduelles, provenant de leur procède de préparation. Le rapport pondéral des nanotαbes a l'acide sulfuπque peut notamment être compris entre 1 :2 et 1 :3. L'opération de purification peut par ailleurs être effectuée a une température allant de 90 a 1200C, par exemple pendant une durée de 5 a 10 heures . Cette opération peut avantageusement être suivie d'étapes de rinçage a l'eau et de séchage des nanotubes purifies .
L'υx>ddLiun defa nanotubes est avantageusement réalisée en mettant ceux-ci en contact avec une solution d' hypochlorxte de sodium renfermant de 0,5 a 15% en puids de NaOCl et de préférence de 1 a 10% en poids de NaOCl, par exemple dans un rapport pondéral des nanotubes a l' hypochlorite de sodium allant de 1:0,1 a 1:1. T 'oxydât ion est avantageusement réalisée a une température inférieure a 600C et de préférence a température ambiante, pendant une durée allant de quelques minutes a 24 heures. Cette opération d'oxydation peut avantageusement être suivie d'étapes de filtration et/ou centrifugation, lavage et séchage des nanotubes oxydes .
La fonctionnalisation des nanotubes peut être réalisée par greffage de motifs reactifs tels que des monomères vmylxques a la surface des nanotubes. Le matériau constitutif des nanotubes est utilise comrre initiateur de polymérisation rad±caiaire après avoir ete soumis a an traitement thermique a plαs de 9OG0C, en milieu anhydre et dépourvu d'oxygène, qui est destine a éliminer les groupes oxygènes de sa surface. Ii est ainsi possxiole de poxypeπser du methacrylate αe methyle ou ctu méthacrylate d'hydroxyéthyle à la surface de nanotubes de carbone en vue de faciliter notamment leur dispersion dans le PVDF ou les polyamides .
On utilise de préférence dans la présente invention des nanotubes bruts éventuellement broyés, c'est-à-dire des nanotubes qui ne sont ni oxydés ni purifiés ni fonctionnalisés et n'ont subi aucun autre traitement chimique .
Les nanotubes peuvent représenter de ϋ,b à 30% et de préférence de 0,5 à 10%, et encore plus préféreiiLiellemeriL de 1 à 5% du poids de la matrice polymérique .
Lorsqu'ils sont présents, on préfère que les nanotubes soient mélangés au polymère fluoré greffé et au polymère fluoré non greffé éventuellement présent par r.ompoundage à l'aide de dispositifs usuels tels que des extrudeuses bi-vis ou des co-malaxeurs . Dans ce procédé, des granulés de polymère (s) sont typiquement mélangés à l'état fondu avec les nanotubes.
En variante, les nanotubes peuvent être dispersés par tout moyen approprié dans le (s) polymère (s) se trouvant en solution dans un solvant. Dans ce cas, la dispersion peut être améliorée, selon une forme d'exécution avantageuse de la présente invention, par l'utilisation de systèmes de dispersion ou d'agents dispersants particuliers.
Ainsi, le procédé selon l'invention peut comprendre une étape préliminaire de dispersion des nanotubes dans la matrice polymérique au moyen d'ultrasons ou d'un système rotor-stator.
Un tel système rotor-stator est notamment commercialisé par la société SILVERSON sous la dénomination commerciale Silverson L4RT. Un autre type de système rotor-stator est commercialisé par la société
IKA-WERKE sous la dénomination commerciale Ultra-Turrax" .
D'autres systèmes rotor-stator encore sont constitués des moulins colloïdaux, des turbines défloculeuses et des mélangeurs à fort cisaillement de type rotor-stator, tels que les appareils commercialisés par la société IKA-WERKE ou par la société ADMIX.
Les agents dispersants peuvent être notamment choisis parmi les plastifiants qui peuvent être eux-mêmes choisis dans le groupe constitué : des alkylesters de phosphates, d'acide hydroxybenzoïque (dont le groupe alkyle, de préférence linédire, renferme de 1 à 20 atomes de carbone), d'acide laurique, d'acide azélaïque ou d'acide pélargonique, des phld.ld.Les, notamment de dialkyle ou d'alkyl- aryle, en particulier d' alkylbenzyle, les groupes αlkyles, linéaires ou ramifiés, renfermant indépendamment de 1 à 12 atomes de carbone, des adipates, notamment de diaikyies, des sébacates, notamment de diaikyies et en particulier de dioctyie, en particulier dans le cas où la matrice polymérique contient un fluoropolymère, des benzoates de glycols ou de giycérol, des éthers de dibeπzyle, des chloroparaffines , du carbonate de propylène, des suifonamides, en particulier dans le cas où la matrice polymérique contient un polyamide, et notamment des aryi sulfonamides dont le groupe aryle est éventuellement substitué par au moins un groupe aikyle contenant de 1 à 6 atomes de carbone, telles que les benzène sulfonamides et les toluène sulfonamides, qui peuvent être N-substituées ou N, N-disubstituées par au moins un groupe aikyle, de préférence linéaire, renfermant de 1 à 20 atomes de carbone, des glycols, et de leurs mélanges .
En variante, l'agent dispersant peut être un copolymère comprenant au moins un monomère hydrophile anionique et au moins un monomère incluant au moins un cycle aromatique, tels que les copolymères décrits dans le document FR-2 766 106, le rapport en poids de l'agent dibpeisdiiL aux nanotubes allant dans ce cas de préférence de 0,6:1 à 1,9:1.
Dans une autre forme d'exécution, l'agent dispersant peut être un homo- ou un copolymère de vinylpyrrolidone, le rapport en poids des nanotubes à l'agent dispersant allant dans ce cas de préférence de 0,1 à moins de 2.
Dans une autre forme d'exécution encore, la dispersion des nanotubes dans la matrice polymérique peut être améliorée en mettant ceux-ci en contact avec au moins un composé A qui peut être choisi parmi différents polymères, monomères, plastifiants, émuisionnants, agents de couplage et/eu acides carboxyliques, les deux composants (nanotubes et composé A) étant mélangés à l'état solide ou le mélange se présentant sous forme pulvérulente, éventuellement après élimination d'un ou plusieurs solvants.
La matrice polymérique utilisée selon l'invention peut par ailleurs contenir au moins un adjuvant choisi parmi les plastifiants, les stabilisants anti-oxygène, les stabilisants à la lumière, les colorants, les agents anti-choc, les agents antistatiques, les agents ignifugeants, les lubrifiants, et leurs mélanges.
De préférence, le rapport volumique des fibres continues à la matrice polymérique est supérieur ou égal à 50% et de préférence supérieur ou égal à 60%.
L'enrobage des fibres par la matrice polymérique peut se faire suivant différentes techniques, en fonction notamment de la forme physique de la matrice
(pulvérulente ou plus ou moins liquide) et des fibres. Les fibres peuvent être utilisées telles quelles, sous forme fils unidirectionnels, ou après une étape de tissage, sous forme de tissu constitué d'un réseau bidirectionnel de fibres. L'enrobage des fibres est de préférence réalisé suivant un procédé d'imprégnation en lit fluidisé, dans lequel la matrice polymérique se trouve a l'état de poudre. Dans une variante moins préférée, l'enrobage des fibres peut se faire par passage dans un bain d'imprégnation contenant la matrice polymérique à l'état fondu. La matrice polymérique se solidifie alors autour des fibres pour former un produit semi-fini constitué d'un ruban de fibres pré-imprégné susceptible d'être ensuite bobiné ou d'un tissu de fibres ρré-imρrégné . Ces semi-produits sont ensuite utilisés dans la fabrication de la pièce composite recherchée. Différents tissus de fibres pré-imprégnés, de composition identique ou différente, peuvent être empilés pour former une plaque ou un matériau stratifié, ou en variante soumis à un procédé de thermoformage. Les rubans de fibres peuvent être utilisés dans un procédé d'enroulement filamentaire permettant l'obtention de pièces creuses de forme quasi- illimitée. Dans ce dernier procédé, les fibres sont enroulées sur un mandrin ayant la forme de la pièce à fabriquer. Dans tous les cas, la fabrication de la pièce finie comprend une étape de consolidation de la matrice polymérique, qui est par exemple fondue localement pour créer des zones de fixation des fibres entre elles et solidariser les rubans de fibres dans le procédé d'enroulement fiiamentaire .
En variante encore, il est possible de préparer un film à partir de la matrice polymérique, notamment au moyen d'un procédé d'extrusion ou de calandrage, ledit film ayant par exemple une épaisseur d'environ 100 μm, puis de le placer entre deux mats de fibres, l'ensemble étant alors pressé à chaud pour permettre 1 ' imprégnation des fibres et la fabrication du composite.
Les fibres composites obtenues comme décrit précédemment trouvent un intérêt dans diverses applications, en raison de leur module élevé (typiquement supérieur à 50 GPa) et de leur grande résistance, se traduisant par une contrainte à la rupture en traction supérieure à 200 MPa à 230C. La présente invention a plus précisément pour objet l'utilisation des fibres composites précitées pour la fabrication de nez, d'ailes ou de carlingues de fusées ou d'avions ; d'armures de flexible off-shore ; d'éléments de carrosserie automobile, de châssis moteur ou de pièces support pour l'automobile ; ou encore d'éléments de charpentes dans le domaine du bâtiment ou des ponts et chaussées .
L' invention sera maintenant illustrée par les exemples non limitatifs suivants.
EXEMPLES
Exemple 1 : Procédé d' enroulement filamentaire utilisant des fibres de carbone
On mélange un homopolymère de VDF (Kynar^ 710 fourni par ARKEMA) avec un polymère fluoré greffé par l'anhydride maléique (Kynar® ADX 120 fourni par ARKEMA) , dans une proportion pondérale du PVDF au polymère fluoré greffé de 75 :25. Des nanotubes de carbone (NTC) (Graphistrength® ClOO fournis par ARKEMA) sont ensuite ajoutés à ce mélange en proportion de 2% en poids par rapport au poids du mélange de polymères .
On obtient alors une matrice composite que l'on utilise pour enrober, dans un lit fluidisé une fibre continue de carbone avant de transférer la fibre pré-imprégnée, via un système de guidage, vers une presse adaptée à la fabrication d'une plaque composite stratifiée. La mise sous presse à chaud
(température d'environ 180-1900C) des tissus pré-imprégnés permet la consolidation du composite.

Claims

REVENDICATIONS
1. Procédé d'imprégnation de fibres continues, comprenant l'enrobage desdites fibres par une matrice polymérique comprenant : (a) au moins un polymère fluoré greffé par au moins une fonction polaire carboxylique et (b) éventuellement au moins un polymère fluoré non greffé.
2. Procédé selon la revendication 1, caractérisé en ce que lesdites fibres continues sont choisies parmi :
- les fibres de polymère étiré, à base notamment : de polyamide tel que le polyamide 6 (PA-6) , le polyamide 11 (PA-Il), le polyamide 12 (PΛ-12), le polyamide 6.6 (PA-6.6), le polyamide 4.6 (PA-4.6), le polyamide 6.10 (PA-6.10) ou le polyamide 6.12 (PA-6.12), de polyéthylène haute densité de polypropylène ou de polyester ;
- les fibres de carbone ; - les fibres de verre, notamment de type E, R ou S2 ;
- les fibres d'aramide ;
- les fibres de bore ;
- les fibres de silice ; - les fibres naturelles telles que le lin, le chanvre ou le sisal ; et
- leurs mélanges .
3. Procédé selon la revendication i ou 2, caractérisé en ce que le polymère fluoré greffé est susceptible d'être obtenu par greffage d'au moins un monomère polaire carboxylique sur un polymère fluoré.
4. Procédé selon la revendication 3, caractérisé en ce que le polymère fluoré comprend :
- le poly (fluorure de vinylidène) (PVDF), de préférence sous forme α, - les copoiymères de fluorure de vinylidène avec par exemple 1 ' hexafluoropropylène (HFP), le chlorotrifluoroéthylène (CTFE), 1 ' hexafluoropropylène (HFP) , le trifiuoroéthylène (VF3) et le tetrafluoroéthylène (TFE) , - les homo- et copoiymères de trifiuoroéthylène (VF3) ,
- les copoiymères fluoroéthylène / propylène (FEP) ,
- les copoiymères d'éthylène avec le fluoroéthyiène/propylène (FEP) , le tétrafluoroéthylène (TFE) , le perfluorométhylvinyl éthen (PMVE) , le chlorotrifluoroéthylène (CTFE) ou 1 ' hexafluoropropylène (HFP) , et
- leurs mélanges.
5. Procédé selon la revendication 4, caractérisé en ce que le polymère fluoré est un homopolymère de VDF (PVDF) .
6. Procédé selon l'une quelconque des revendications 3 à 5, caractérisé en ce que le monomère polaire carboxylique est choisi parmi : les mono- et diacides carboxyliques insaturés ayant de 2 à 20 atomes de carbone, et en particulier de 4 à 10 atomes de carbone, tels que les acides acrylique, méthacrylique, maléique, fumarique, itaconique, citraconique, aiiylsuccinique, cyclohex-4-ène-l , 2-dicarboxylique, 4-méthyl-cyclohex-4- ène-1, 2-dicarboxylique, bicyclo (2, 2, 1 ) heρt-5-èπe-2, 3- dicarboxyiique, x-methyl bicycio (2, 2, 1) heρt-5-ène-2, 3- dicarboxylique et undécylénique, ainsi que leurs anhydrides .
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le polymère fluoré non greffé est choisi parmi les polymères fluorés définis dans la revendication 4.
8. Procédé selon la revendication / , caractérisé en ce que le polymère fluoré non greffé est un homopolymère de VDF (PVDF) ou un copυlymère VDF/HFP.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la matrice polymérique renferme en outre au moins un ronfort choisi parmi : les nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique ; le noir de carbone ; les fibres de verre, de bore, de silice, d'aramide, de polymère étiré et/ou les fibres naturelles telles que le lin, le chanvre et/ou le sisal et leurs mélanges.
10. Procédé selon la revendication 9, caractérisé en ce que le renfort comprend des nanotubes constitués de nitrure de carbone, de nitrure de bore, de carbure de bore, de phosphure de bore, de nitrure de phosphore ou de boronitrure de carbone.
11. Procédé selon la revendication 10, caractérisé en ce que les nanotubes sont des nanotubes de carbone.
12. Procédé selon la revendication 10 ou 11, caractérisé en ce que les nanotubes représentent de 0,5 à 30% et de préférence de 0,5 a 10% du poids de la matrice polymeπque .
13. Procède selon l'une quelconque des revendications 1 a 12, caractérise en ce que le rapport volumique des fibres continues a la matrice polymeπque est supérieur ou égal a 50% et de préférence supérieur ou égal a 60O.
14. Fibres composites susceptibles d'être obtenues suivant le procède selon l'une quelconque des revendications 1 a 13.
15. Utilisation des fibres composites selon la revendication 14 pour la fabiicatiun de nez, d'ailes ou de carlingues de fusées ou d'avions ; d'armures de flexxble off-shoro ; d'éléments de carrosserie automobile, de châssis moteur ou de pièces support pour
1 'automobile ; ou d'éléments de charpentes dans Io domaine du bâtiment ou des ponts et chaussées.
PCT/FR2008/051186 2007-06-27 2008-06-27 Procédé d'imprégnation de fibres continues par une matrice polymérique composite renfermant un polymère fluoré greffé WO2009007616A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010514070A JP5254328B2 (ja) 2007-06-27 2008-06-27 グラフト化フッ素ポリマーを含む複合ポリマーマトリクスを連続繊維に含浸させる方法
BRPI0812984-3A BRPI0812984B1 (pt) 2007-06-27 2008-06-27 Processo de impreganação de fibras contínuas por uma matriz polimérica compósita contendo um polímero enxertado fluorado
AT08806114T ATE554903T1 (de) 2007-06-27 2008-06-27 Verfahren zur imprägnierung durchgehender fasern mit einer verbundpolymermatrix mit einem gepfropften und fluorinierten polymer
CN200880022311.0A CN101687345B (zh) 2007-06-27 2008-06-27 以含有接枝的氟化聚合物的复合聚合物基质浸渍连续纤维的方法
EP08806114A EP2160275B1 (fr) 2007-06-27 2008-06-27 Procédé d'imprégnation de fibres continues par une matrice polymérique composite renfermant un polymère fluoré greffé
US12/666,678 US8883898B2 (en) 2007-06-27 2008-06-27 Method for impregnating continuous fibres with a composite polymer matrix containing a grafted fluorinated polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0704617A FR2918082B1 (fr) 2007-06-27 2007-06-27 Procede d'impregnation de fibres continues par une matrice polymerique composite renfermant un polymere fluore greffe.
FR0704617 2007-06-27

Publications (2)

Publication Number Publication Date
WO2009007616A2 true WO2009007616A2 (fr) 2009-01-15
WO2009007616A3 WO2009007616A3 (fr) 2009-07-23

Family

ID=39126137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051186 WO2009007616A2 (fr) 2007-06-27 2008-06-27 Procédé d'imprégnation de fibres continues par une matrice polymérique composite renfermant un polymère fluoré greffé

Country Status (9)

Country Link
US (1) US8883898B2 (fr)
EP (1) EP2160275B1 (fr)
JP (1) JP5254328B2 (fr)
KR (1) KR20100024960A (fr)
CN (1) CN101687345B (fr)
AT (1) ATE554903T1 (fr)
BR (1) BRPI0812984B1 (fr)
FR (1) FR2918082B1 (fr)
WO (1) WO2009007616A2 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011000394A1 (fr) * 2009-06-29 2011-01-06 Siemens Aktiengesellschaft Elément en forme de brin
CN102010554B (zh) * 2010-11-09 2012-12-05 杭州福膜新材料科技有限公司 一种聚偏氟乙烯薄膜专用料
CN102505479A (zh) * 2011-09-30 2012-06-20 东华大学 表面涂覆pvdf的聚酰胺改性纤维及其制备和应用
CN102717558B (zh) * 2012-07-04 2015-04-29 北京汽车研究总院有限公司 绿色车用天然纤维复合材料及其制备方法与应用
US20150240658A1 (en) * 2012-10-01 2015-08-27 United Technologies Corporation Carbon Nanotubes for Increasing Vibration Damping In Polymer Matrix Composite Containment Cases for Aircraft Engines
KR101381744B1 (ko) 2012-10-10 2014-04-07 동아대학교 산학협력단 전도성 및 축열성을 가지는 직물의 제조방법 및 이 방법에 의해 제조된 직물
CN102926197B (zh) * 2012-11-15 2014-05-07 杭州水处理技术研究开发中心有限公司 一种用于离子交换膜制备的支撑布制造方法
EP3004223B1 (fr) * 2013-06-04 2021-03-17 Solvay Specialty Polymers Italy S.p.A. Procédé de fabrication de composites de fluoropolymères
FR3011504B1 (fr) * 2013-10-04 2015-10-23 Arkema France Article textile en pvdf
CN103556467B (zh) * 2013-11-05 2016-06-29 北京麻世纪流行面料研发有限公司 一种麻面料及制作方法
FR3033573B1 (fr) * 2015-03-10 2018-03-23 Arkema France Composition et pre-impregne thermoplastiques, materiau composite a base dudit pre-impregne et utilisations dudit materiau composite
EP3377539B1 (fr) * 2015-11-19 2021-05-19 Arkema, Inc. Agent de liaison de fibres de fluoropolymère et articles produits à l'aide dudit agent
CN107413378A (zh) * 2016-05-23 2017-12-01 中国科学院上海硅酸盐研究所 一种共聚合改性的石墨相氮化碳可见光催化剂的制备方法
BR112019019919B1 (pt) 2017-05-10 2023-10-17 Daikin Industries, Ltd Folha, laminado, tubo, tubo ascensor, e linha de fluxo
JP7389015B2 (ja) * 2017-07-14 2023-11-29 アーケマ・インコーポレイテッド 高強度ポリフッ化ビニリデン系サイジング強化繊維
CN110891672A (zh) * 2017-07-14 2020-03-17 阿科玛股份有限公司 基于高强度聚偏二氟乙烯的增强配混物
EP3626764B1 (fr) * 2018-09-21 2021-02-24 Evonik Operations GmbH Composite à matrice thermoplastique
CN112030557A (zh) * 2020-08-04 2020-12-04 南通新帝克单丝科技股份有限公司 聚酰胺钓鱼线生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779854A (en) * 1971-06-18 1973-12-18 Pennwalt Corp Polyvinylidene fluoride laminate construction and method
EP0347826A2 (fr) * 1988-06-20 1989-12-27 E.I. Du Pont De Nemours And Company Articles composites de polymères fluorés renforcés par des filaments continus
WO2006045636A1 (fr) * 2004-10-19 2006-05-04 Arkema France Tube a base d'elastomere vulcanise et d'un fluoropolymere modifie

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252534A (ja) * 1989-03-27 1990-10-11 Sekisui Chem Co Ltd 繊維強化樹脂シートの製造方法
US5302418A (en) * 1992-04-17 1994-04-12 Hoechst Celanese Corp. Process for surface-modifying polypropylene or polyethylene
JP3656262B2 (ja) * 1994-12-07 2005-06-08 旭硝子株式会社 樹脂組成物およびその製造方法
JP2002030263A (ja) * 2000-07-18 2002-01-31 Atofina Japan Kk フッ素系接着性樹脂組成物
ATE513880T1 (de) * 2001-02-05 2011-07-15 Toray Industries Kohlefaserverstärkte harzzusammensetzung, formmasse und formkörper daraus
US7479516B2 (en) * 2003-05-22 2009-01-20 Zyvex Performance Materials, Llc Nanocomposites and methods thereto
FR2856404B1 (fr) * 2003-06-06 2008-08-08 Atofina Procede de greffage de polymere fluore et structures multicouches comprenant ce polymere greffe
EP1508927A3 (fr) * 2003-07-29 2008-12-24 Arkema France Structure comprenant un polymere fluore modifie et electrode a base de cette structure
US20050035334A1 (en) * 2003-08-01 2005-02-17 Alexander Korzhenko PTC compositions based on PVDF and their applications for self-regulated heating systems
DE602004013412D1 (de) * 2003-12-02 2008-06-12 Arkema France Verwendung einer Struktur auf Basis eines gepfropften Fluorpolymeren für die Aufbewahrung und den Transport von chemischen Produkten.
JP2006182886A (ja) * 2004-12-27 2006-07-13 Du Pont Mitsui Fluorochem Co Ltd 含フッ素樹脂積層体
US20060292360A1 (en) * 2005-06-28 2006-12-28 Xerox Corporation Fuser and fixing members and process for making the same
US8231013B2 (en) * 2006-12-05 2012-07-31 The Research Foundation Of State University Of New York Articles comprising a fibrous support
US7988860B2 (en) * 2007-03-15 2011-08-02 Donaldson Company Inc. Superabsorbent-containing web that can act as a filter, absorbent, reactive layer or fuel fuse
FR2918067B1 (fr) * 2007-06-27 2011-07-01 Arkema France Materiau composite comprenant des nanotubes disperses dans une matrice polymerique fluroree.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779854A (en) * 1971-06-18 1973-12-18 Pennwalt Corp Polyvinylidene fluoride laminate construction and method
EP0347826A2 (fr) * 1988-06-20 1989-12-27 E.I. Du Pont De Nemours And Company Articles composites de polymères fluorés renforcés par des filaments continus
WO2006045636A1 (fr) * 2004-10-19 2006-05-04 Arkema France Tube a base d'elastomere vulcanise et d'un fluoropolymere modifie

Also Published As

Publication number Publication date
US20110166278A1 (en) 2011-07-07
FR2918082A1 (fr) 2009-01-02
WO2009007616A3 (fr) 2009-07-23
US8883898B2 (en) 2014-11-11
EP2160275A2 (fr) 2010-03-10
CN101687345A (zh) 2010-03-31
KR20100024960A (ko) 2010-03-08
EP2160275B1 (fr) 2012-04-25
JP5254328B2 (ja) 2013-08-07
BRPI0812984A2 (pt) 2014-12-16
BRPI0812984B1 (pt) 2018-04-10
ATE554903T1 (de) 2012-05-15
FR2918082B1 (fr) 2011-07-01
JP2010531396A (ja) 2010-09-24
CN101687345B (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
EP2160275B1 (fr) Procédé d'imprégnation de fibres continues par une matrice polymérique composite renfermant un polymère fluoré greffé
WO2009007617A2 (fr) Procede d'impregnation de fibres continues par une matrice polymerique composite renfermant un polymere thermoplastique
EP2435608A1 (fr) Fibre conductrice multicouche et son procede d'obtention par co-extrusion
EP2864399B1 (fr) Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique
CA2760080C (fr) Substrat fibreux, procede de fabrication et utilisations d'un tel substrat fibreux
EP2370619B1 (fr) Fibre composite a base de pekk, son procede de fabrication et ses utilisations
EP2256236A1 (fr) Procédé de fabrication de fibres composites conductrices à haute teneur en nanotubes
EP2160444A1 (fr) Matériau composite comprenant des nanotubes dispersés dans une matrice polymérique fluorée
WO2010136720A1 (fr) Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation
FR3033574A1 (fr) Composition et pre-impregne thermoplastiques, materiau composite a base dudit pre-impregne et utilisations dudit materiau composite
EP3131955A1 (fr) Procédé pour matériau composite avec impregnation par polymere thermoplastique, issu d'un prepolymere et d'un allongeur de chaîne

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880022311.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08806114

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008806114

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20097027002

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12666678

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010514070

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 296/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0812984

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091228