WO2009090775A1 - Vacuum generation device - Google Patents
Vacuum generation device Download PDFInfo
- Publication number
- WO2009090775A1 WO2009090775A1 PCT/JP2008/066688 JP2008066688W WO2009090775A1 WO 2009090775 A1 WO2009090775 A1 WO 2009090775A1 JP 2008066688 W JP2008066688 W JP 2008066688W WO 2009090775 A1 WO2009090775 A1 WO 2009090775A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- vacuum
- compressed air
- nozzle
- supply
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/06—Gripping heads and other end effectors with vacuum or magnetic holding means
- B25J15/0616—Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B11/00—Work holders not covered by any preceding group in the subclass, e.g. magnetic work holders, vacuum work holders
- B25B11/005—Vacuum work holders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G47/00—Article or material-handling devices associated with conveyors; Methods employing such devices
- B65G47/74—Feeding, transfer, or discharging devices of particular kinds or types
- B65G47/90—Devices for picking-up and depositing articles or materials
- B65G47/91—Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers
- B65G47/911—Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers with air blasts producing partial vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H3/00—Separating articles from piles
- B65H3/08—Separating articles from piles using pneumatic force
- B65H3/0808—Suction grippers
- B65H3/0891—Generating or controlling the depression
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C1/00—Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
- B66C1/02—Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by suction means
- B66C1/0256—Operating and control devices
- B66C1/0268—Venturi effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2406/00—Means using fluid
- B65H2406/30—Suction means
- B65H2406/36—Means for producing, distributing or controlling suction
- B65H2406/366—Means for producing, distributing or controlling suction producing vacuum
- B65H2406/3661—Injectors
Definitions
- the present invention relates to a vacuum generator that supplies compressed air to an ejector and generates a negative pressure by a jet of compressed air.
- a vacuum generator that supplies compressed air from a nozzle to a diffuser and sucks outside air into a suction hole formed in the diffuser to generate negative pressure is also called an ejector vacuum pump or simply an ejector.
- a vacuum is generated using the viscosity of This type of vacuum generator has the advantage that it can be miniaturized because there is no moving part and no vacuum pump or vacuum tank is required.
- a vacuum generator is used to supply a negative pressure to a vacuum suction tool that sucks an electronic component or the like as a transported object, that is, a workpiece.
- a pneumatic operating device is used in a production line for manufacturing industrial products such as electronic parts, and piping for supplying compressed air to the pneumatic operating device is laid in the production line. Therefore, the ejector-type vacuum generator has an advantage that negative pressure can be supplied to the vacuum operating device using the compressed air supplied to the piping laid in the production line without laying the vacuum pump. is there. JP 2002-103263 A
- a vacuum generator having an ejector must always supply compressed air to the ejector nozzle in order to generate a vacuum. Therefore, in the vacuum generator used for sucking and transporting the workpiece, the compressed air is continuously supplied to the nozzle until the workpiece is transported after the workpiece is sucked.
- An object of the present invention is to reduce the amount of compressed air used for operating an ejector-type vacuum generator.
- the vacuum generator of the present invention is a vacuum generator that generates negative pressure air by a jet of compressed air, and has a nozzle that ejects compressed air and a suction hole that guides air sucked into the air ejected from the nozzle.
- An ejector provided in the apparatus main body with a formed diffuser, a supply port formed between a connection port to which a compressed air supply source is connected, and the nozzle; and the nozzle by opening the supply channel
- An air supply control solenoid valve for switching between an air supply state for supplying compressed air to the air supply stop state and an air supply stop state for shutting off the supply of compressed air to the nozzle by blocking the air supply flow path;
- a vacuum channel that is formed in the device main body and supplies a negative pressure to an adsorbing tool that vacuum-sucks a workpiece, and is provided in the device main body in communication with the air supply channel, and the air supply channel is used for the air supply control electromagnetic
- An air tank that accumulates compressed air under a state
- the vacuum generator of the present invention is characterized in that a throttle is provided between the connection port and the tank.
- the vacuum generator of the present invention has a flow rate sensor for detecting a flow rate of negative pressure air flowing through the vacuum flow path.
- the vacuum generator of the present invention opens and closes a vacuum break passage that connects the connection port and the vacuum passage, and supplies compressed air from the connection port to the vacuum passage to reduce the vacuum in the vacuum passage.
- a vacuum breaking electromagnetic valve that switches between a state of breaking and a state of stopping the supply of compressed air is provided.
- the vacuum generator of the present invention is characterized in that the air tank is formed inside the apparatus main body.
- the compressed air from the air tank is supplied to the ejector nozzle in the initial stage of workpiece adsorption by the suction tool, a large amount of air is supplied to the ejector in the initial stage of workpiece adsorption.
- the degree of vacuum of the suction tool in the initial stage of suction can be increased, and the workpiece can be reliably suctioned to the suction tool.
- the compressed air accumulated in the air tank is released, the compressed air from the compressed air supply source is supplied to the nozzle. After the work is sucked by the sucking tool, the work can be held even if the vacuum degree of the sucking tool is lowered from the initial stage of the sucking.
- the air tank is required at the initial stage of adsorption where the degree of vacuum of the compressed air supplied to the ejector needs to be increased. Even if the flow rate of the compressed air supplied from the compressed air supply source to the vacuum generator is reduced to the flow rate necessary for holding the workpiece by supplying a large amount of compressed air from It can be done reliably. As a result, the flow rate of the compressed air supplied to the vacuum generator can be reduced, and the amount of air consumed in the vacuum generator including the holding operation and the holding operation can be greatly reduced.
- the present invention Accordingly, since a large amount of air is supplied from the air tank to the ejector at the initial stage of workpiece adsorption, the workpiece can be reliably conveyed and conveyed.
- Whether or not the work has been adsorbed by the adsorbing tool can be reliably determined by detecting the flow rate of the air flowing in the vacuum flow path.
- the flow rate of the compressed air supplied to the ejector after completion of the adsorption can be adjusted by a throttle valve, and the flow rate corresponding to the vacuum pressure required in the vacuum generator can be set to an optimum value.
- FIG. 2 is a pneumatic circuit diagram of the vacuum generator shown in FIG. 1. It is a flow rate characteristic diagram which shows the relationship between the vacuum degree of the negative pressure air which flows through the inside of a vacuum flow path, and the suction flow rate when changing the pressure of the compressed air supplied to a vacuum generator.
- this vacuum generator has an apparatus body 10 made of a block material having a substantially square cross section.
- a support block 11 is attached to the apparatus main body 10 on the lower end face in FIG. 1, and the apparatus main body 10 is fixed to an installation location by the support block 11.
- the support block 11 has a long dimension in a direction perpendicular to the paper surface and is mounted so that a plurality of vacuum generators are stacked on the support block 11, a plurality of vacuum generators can be assembled on the support block 11.
- the apparatus main body 10 is formed with a cylindrical accommodation hole 12 that is open on one side surface and extends in the width direction, and an ejector 13 is attached to the accommodation hole 12.
- the ejector 13 includes a main ejector 13a and a sub ejector 13b.
- the main ejector 13 a has a nozzle 15 in which an inflow hole 14 is formed on the base end side, and a diffusion hole 16 is formed at the tip of the nozzle 15.
- the diffusion hole 16 has a tapered surface whose inner diameter increases toward the tip surface, and the compressed air supplied to the inflow hole 14 is ejected from the diffusion hole 16 while expanding.
- the main ejector 13 a has a diffuser 17 to which the nozzle 15 is assembled, and the nozzle 15 is fitted to the base end portion of the diffuser 17.
- An annular groove is formed at the base end portion of the diffuser 17, and a plurality of suction holes 18 communicating with the inside are formed in the annular groove.
- a diffuser channel 19 is formed coaxially with the central axis of the nozzle 15 inside the diffuser 17, and the air around the suction hole 18 is entrained by the viscosity of the compressed air ejected from the nozzle 15, so that the suction hole 18 has a negative pressure. It becomes.
- the air entrained from the suction hole 18 flows downstream of the diffuser channel 19 together with the compressed air ejected from the nozzle 15.
- the diffuser channel 19 has an upstream reduced diameter portion 19a, a downstream diffusion portion 19b, and an intermediate straight portion 19c therebetween.
- the secondary ejector 13b is formed by a cylindrical diffuser 22 in which a diffuser flow path 21 is formed, and the diffuser flow path 21 communicates with the diffuser flow path 19 of the main ejector 13a.
- the diffuser 22 is abutted against the downstream end face of the diffuser 17, and the downstream end of the diffuser 17 has a function of a nozzle for supplying a jet to the diffuser 22 of the sub ejector 13b.
- the diffuser flow path 21 has an upstream diameter-reduced portion 21a, a downstream diffusion portion 21b, and an intermediate straight portion 21c, and ambient air is present at the downstream end of the diffuser 17 of the main ejector 13a. Is formed.
- the ejector 13 has the main ejector 13a and the sub ejector 13b, and the plug 23 screwed to the opening of the accommodation hole 12 is abutted against the diffuser 22, and the ejector 13 is fixed to the apparatus main body 10 by the plug 23.
- An exhaust port 24 is formed in the upper end surface of the apparatus body 10 in FIG. 1, and the exhaust port 24 communicates with an outlet at the downstream end of the diffuser 22.
- the apparatus body 10 is provided with a silencer 25, a muffler 27 is incorporated in a silencer chamber 26 formed in the silencer 25, and an exhaust port 28 is formed in the silencer 25.
- An air supply control solenoid valve 31 is attached to the side surface of the apparatus body 10.
- a connection port 34 connected to the compressed air supply source 32 via a pipe 33 is formed in the apparatus main body 10, and this connection port 34 is connected to the air supply control electromagnetic valve 31 by an air supply passage 35 formed in the apparatus main body 10.
- the air supply port 36 communicates.
- the output port 37 of the air supply control electromagnetic valve 31 communicates with the inflow hole 14 of the ejector 13, and when a drive signal is supplied to the coil of the air supply control electromagnetic valve 31, the air supply port 36 and the output port 37. And the air supply passage 35 is opened. As a result, the compressed air flowing into the connection port 34 is supplied to the nozzle 15.
- a throttle valve 38 for adjusting the opening degree of the air supply passage 35 is provided in the apparatus main body 10, and the opening degree on the upstream side of the air supply passage 35 is adjusted by the valve body 38b by rotating the adjustment screw 38a. Is done.
- an air tank 40 is formed in the middle of the air supply passage 35, and the air supply port 36 of the air supply control electromagnetic valve 31 communicates with the connection port 34 via the air tank 40 and the throttle valve 38. . Therefore, under the state where the communication between the air supply port 36 and the output port 37 is blocked by the air supply control solenoid valve 31, the compressed air supplied from the compressed air supply source 32 via the connection port 34 is the air tank. 40 is accumulated.
- a vacuum channel 42 is formed in the apparatus main body 10 between each suction hole 18, 18 a of the ejector 13 and a joint 41 attached to the side surface of the apparatus main body 10.
- a vacuum pipe 44 provided with 43 is mounted.
- a filter housing hole 45 is formed in the apparatus main body 10 in the middle of the vacuum flow path 42, and the filter housing hole 45 opens on the side surface of the apparatus main body 10.
- a cylindrical filter element 46 is incorporated in the filter accommodation hole 45, and the filter element 46 is fixed by a plug 47 attached to the opening of the filter accommodation hole 45.
- the compressed air from the compressed air supply source 32 is supplied to the ejector 13.
- the compressed air is ejected from the nozzle 15 to the diffuser 17 and entrains the air around the suction hole 18 and flows into the diffuser flow path 21 of the diffuser 22 and entrains the air around the suction hole 18 a and passes through the muffler 27.
- the gas is discharged from the exhaust port 28 to the outside.
- the inside of the vacuum channel 42 is in a negative pressure state, that is, a vacuum state.
- the vacuum in the vacuum channel 42 is guided to the suction tool 43 by the vacuum pipe 44, and the workpiece W is sucked by the suction tool 43.
- work W is conveyed to a predetermined
- the suction tool 43 When the workpiece W is attracted by the suction tool 43, the suction tool 43 is brought into contact with the workpiece W or is supplied by supplying a drive signal to the coil of the air supply control electromagnetic valve 31 in a state of being brought close to the workpiece W.
- the air flow path 35 is opened.
- the compressed air accumulated in the air tank 40 is released to the ejector 13 via the air supply control electromagnetic valve 31.
- Of air is supplied.
- the degree of vacuum of the negative pressure air supplied to the suction tool 43 via the vacuum flow path 42 is increased, and the workpiece W is reliably sucked and held by the suction tool 43.
- the compressed air supplied from the compressed air supply source 32 is supplied to the ejector 13 through the throttle valve 38. Therefore, since the amount of compressed air supplied to the ejector 13 is lower than the initial stage of workpiece adsorption, the vacuum degree of the vacuum flow path 42 and the suction tool 43 is reduced. However, since the workpiece W is reliably attracted and held by the suction tool 43 in the initial stage of workpiece suction, the workpiece W does not fall from the suction tool 43 even if the degree of vacuum decreases during the conveyance process.
- the communication between the air supply port 36 and the output port 37 is interrupted. Thereby, the compressed air supplied from the compressed air supply source 32 is accumulated in the air tank 40. In this way, the flow rate of the compressed air flowing through the air supply passage 35 is adjusted by adjusting the opening of the throttle valve 38, and the compressed air supplied to the ejector 13 is adjusted to a flow rate that provides a required degree of vacuum in the transfer process after the workpiece is attracted.
- the compressed air in the air tank 40 is discharged to the ejector 13 at the initial stage of workpiece suction where the suction tool 43 needs to be set at a high degree of vacuum.
- the total flow rate of the compressed air can be reduced as compared with the case where the air tank 40 is not used.
- a vacuum breaking electromagnetic valve 51 is attached to the side surface of the apparatus main body 10 adjacent to the air supply control electromagnetic valve 31.
- the vacuum break solenoid valve 51 has an air supply port 53 that communicates with the connection port 34 via the branch flow path 52, and an output port 55 that communicates with the vacuum flow path 42 and the vacuum break flow path 54.
- a flow rate sensor 56 for detecting the air flow rate in the vacuum flow path 42 is provided in the support block 11.
- FIG. 3 is a flow characteristic diagram showing the relationship between the degree of vacuum of the negative pressure air flowing in the vacuum flow path and the suction flow rate when the pressure of the compressed air supplied to the vacuum generator is changed.
- FIG. 3 five types of compressed air of 0.1 MPa to 0.5 MPa are respectively supplied from the compressed air supply source 32 to the connection port 34, and negative pressure air that is generated by the ejector 13 and flows in the vacuum channel 42 for each of them.
- the relationship between the degree of vacuum and the suction flow rate is shown.
- the pressure of the compressed air supplied to the ejector 13 is changed, the ultimate vacuum is lowered when the pressure of the compressed air is lowered.
- the reduction rate of the negative pressure air flowing in the vacuum channel 42 is smaller than the pressure change of the degree of vacuum.
- the pressure of the compressed air supplied to the ejector 13 is reduced and the supply flow rate is reduced. Even so, the suction determination can be performed with higher accuracy than when the pressure in the vacuum flow path 42 is detected by the pressure sensor to determine the suction of the workpiece W.
- the pressure of the compressed air in the production line is reduced in order to reduce the flow rate of the compressed air supplied to the production line by determining whether or not the workpiece W is attracted to the suction tool 43 using the flow rate sensor 56 in this way. It is possible to reliably perform the suction determination of the workpiece W even if the resistance is lowered.
- the ejector 13 includes a main ejector 13a and a sub ejector 13b.
- the ejector 13 may have a structure including only the main ejector 13a.
- the air tank 40 may be disposed outside the apparatus main body 10.
- This vacuum generator is applied to supply a vacuum to an adsorber for adsorbing and transporting electronic components and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Jet Pumps And Other Pumps (AREA)
- Manipulator (AREA)
Abstract
A device body (10) has an ejector (13), and the ejector (13) has a nozzle (15) and a diffuser (17) in which a suction hole (18) is formed. A supply-air flow passage (35) is formed between the nozzle (15) and a connection port (34) to which a compressed-air supply source (32) is connected. The supply-air flow passage (35) is opened and closed by a supply-air control solenoid valve (31). A suction device (43) for vacuum-sucking a workpiece (W) is connected through a vacuum pipe (44) to a vacuum flow passage (42) communicating with the suction hole (18). An air tank (40) in which the compressed air supplied from the supply-air flow passage (35) is accumulated is formed in the device body (10). The compressed air from the air tank (40) is supplied to the nozzle (15) at the beginning of suction of the workpiece by the suction device (43).
Description
本発明は圧縮空気をエジェクタに供給し圧縮空気の噴流により負圧を発生させるようにした真空発生装置に関する。
The present invention relates to a vacuum generator that supplies compressed air to an ejector and generates a negative pressure by a jet of compressed air.
圧縮空気をノズルからディフューザに供給してディフューザに形成された吸引孔に外気を吸い込ませて負圧を発生させるようにした真空発生装置は、エジェクタ式真空ポンプまたは単にエジェクタとも言われており、空気の粘性を利用して真空を発生させる。このタイプの真空発生装置は、可動部がなく真空ポンプや真空タンクが不要であることから、小型化することができるという利点を有している。例えば、特許文献1に記載されるように、電子部品等を被搬送物つまりワークとしてこれを吸着する真空吸着具に負圧を供給するために真空発生装置が使用されている。電子部品等の工業製品を製造する生産ラインには空気圧作動機器が用いられており、空気圧作動機器に圧縮空気を供給するための配管が生産ラインに敷設されている。したがって、エジェクタ式の真空発生装置は、真空ポンプを敷設することなく、生産ラインに敷設された配管に供給される圧縮空気を利用して真空作動機器に負圧を供給することができるという利点がある。
特開2002-103263号公報
A vacuum generator that supplies compressed air from a nozzle to a diffuser and sucks outside air into a suction hole formed in the diffuser to generate negative pressure is also called an ejector vacuum pump or simply an ejector. A vacuum is generated using the viscosity of This type of vacuum generator has the advantage that it can be miniaturized because there is no moving part and no vacuum pump or vacuum tank is required. For example, as described in Patent Document 1, a vacuum generator is used to supply a negative pressure to a vacuum suction tool that sucks an electronic component or the like as a transported object, that is, a workpiece. A pneumatic operating device is used in a production line for manufacturing industrial products such as electronic parts, and piping for supplying compressed air to the pneumatic operating device is laid in the production line. Therefore, the ejector-type vacuum generator has an advantage that negative pressure can be supplied to the vacuum operating device using the compressed air supplied to the piping laid in the production line without laying the vacuum pump. is there.
JP 2002-103263 A
エジェクタを有する真空発生装置は、真空を発生させるため常にエジェクタのノズルに圧縮空気を供給し続ける必要がある。したがって、ワークを吸着して搬送するために使用される真空発生装置においては、ワークを吸着してからワークの搬送が終了するまでノズルに圧縮空気を供給し続けることになる。
A vacuum generator having an ejector must always supply compressed air to the ejector nozzle in order to generate a vacuum. Therefore, in the vacuum generator used for sucking and transporting the workpiece, the compressed air is continuously supplied to the nozzle until the workpiece is transported after the workpiece is sucked.
近年、工業製品を量産する生産ラインにおいては圧縮空気の消費量低減が求められており、生産ラインに供給される圧縮空気の供給圧を下げる取り組みが行われている。そのため、生産ラインに敷設されている配管からエジェクタに供給される圧縮空気の供給圧も低下することになる。エジェクタに供給される圧縮空気の圧力が、例えば0.5MPaから0.4MPaに低下されると、エジェクタにより所定の真空度を得るためにはエジェクタへの供給流量を高める必要があり、エジェクタ自体の空気消費量を低減させることはできなくなる。
In recent years, production lines for mass production of industrial products are required to reduce the consumption of compressed air, and efforts are being made to reduce the supply pressure of compressed air supplied to the production line. Therefore, the supply pressure of the compressed air supplied to the ejector from the piping laid on the production line is also reduced. When the pressure of the compressed air supplied to the ejector is reduced from 0.5 MPa to 0.4 MPa, for example, it is necessary to increase the supply flow rate to the ejector in order to obtain a predetermined degree of vacuum by the ejector. The amount cannot be reduced.
エジェクタの空気消費量を低減させるべく種々の研究がなされた。その結果、ワークを吸着して搬送するための真空発生装置においては、真空吸着具によりワークを吸着する吸着初期の段階では真空度を高める必要がある反面、吸着された状態を保持して搬送する際の真空度は吸着初期の段階よりも低くできるということが判明した。したがって、ワークを吸着させた後には供給空気量を吸着初期の段階より低下させてもワークの吸着搬送を行うことができるので、真空吸着装置による空気使用量を低減することができることになる。
Various studies have been made to reduce the air consumption of the ejector. As a result, in a vacuum generating device for sucking and transporting a workpiece, it is necessary to increase the degree of vacuum at the initial stage of sucking the workpiece with a vacuum suction tool, but it is transported while maintaining the sucked state. It was found that the degree of vacuum at that time could be lower than the initial stage of adsorption. Therefore, after the workpiece is adsorbed, the workpiece can be adsorbed and transported even if the supply air amount is lowered from the initial stage of adsorption, so that the amount of air used by the vacuum adsorption device can be reduced.
本発明の目的は、エジェクタ式の真空発生装置を作動させるための圧縮空気の使用量を低減することにある。
An object of the present invention is to reduce the amount of compressed air used for operating an ejector-type vacuum generator.
本発明の真空発生装置は、圧縮空気の噴流により負圧空気を発生させる真空発生装置であって、圧縮空気を噴出するノズルと当該ノズルから噴出した空気に吸引される空気を案内する吸引孔が形成されたディフューザとを備え装置本体に設けられるエジェクタと、圧縮空気供給源が接続される接続ポートと前記ノズルとの間に形成される給気流路と、前記給気流路を開放して前記ノズルに圧縮空気を供給する給気状態と前記給気流路を遮断して圧縮空気の前記ノズルに対する供給を停止させる給気停止状態とに切り換える給気制御用電磁弁と、前記吸引孔に連通して前記装置本体に形成され、ワークを真空吸着する吸着具に負圧を供給する真空流路と、前記給気流路に連通して前記装置本体に設けられ、前記給気流路が前記給気制御用電磁弁により遮断された状態のもとで圧縮空気を蓄積し、前記給気流路が前記給気制御用電磁弁により開放されたときに蓄積された圧縮空気を前記ノズルに供給するエアタンクとを有し、前記吸着具によるワーク吸着初期段階には前記ノズルに対して前記エアタンクからの圧縮空気を供給することを特徴とする。
The vacuum generator of the present invention is a vacuum generator that generates negative pressure air by a jet of compressed air, and has a nozzle that ejects compressed air and a suction hole that guides air sucked into the air ejected from the nozzle. An ejector provided in the apparatus main body with a formed diffuser, a supply port formed between a connection port to which a compressed air supply source is connected, and the nozzle; and the nozzle by opening the supply channel An air supply control solenoid valve for switching between an air supply state for supplying compressed air to the air supply stop state and an air supply stop state for shutting off the supply of compressed air to the nozzle by blocking the air supply flow path; A vacuum channel that is formed in the device main body and supplies a negative pressure to an adsorbing tool that vacuum-sucks a workpiece, and is provided in the device main body in communication with the air supply channel, and the air supply channel is used for the air supply control electromagnetic An air tank that accumulates compressed air under a state blocked by the air supply, and supplies the compressed air accumulated when the air supply passage is opened by the air supply control solenoid valve to the nozzle; Compressed air from the air tank is supplied to the nozzle at the initial stage of workpiece suction by the suction tool.
本発明の真空発生装置は前記接続ポートと前記タンクとの間に絞りを設けることを特徴とする。本発明の真空発生装置は前記真空流路を流れる負圧空気の流量を検出する流量センサを有することを特徴とする。本発明の真空発生装置は前記接続ポートと前記真空流路とを連通させる真空破壊流路を開閉し、前記接続ポートからの圧縮空気を前記真空流路に供給して前記真空流路の真空を破壊する状態と圧縮空気の供給を停止する状態とに切り換える真空破壊用電磁弁とを有することを特徴とする。本発明の真空発生装置は前記装置本体の内部に前記エアタンクを形成することを特徴とする。
The vacuum generator of the present invention is characterized in that a throttle is provided between the connection port and the tank. The vacuum generator of the present invention has a flow rate sensor for detecting a flow rate of negative pressure air flowing through the vacuum flow path. The vacuum generator of the present invention opens and closes a vacuum break passage that connects the connection port and the vacuum passage, and supplies compressed air from the connection port to the vacuum passage to reduce the vacuum in the vacuum passage. A vacuum breaking electromagnetic valve that switches between a state of breaking and a state of stopping the supply of compressed air is provided. The vacuum generator of the present invention is characterized in that the air tank is formed inside the apparatus main body.
本発明によれば、吸着具によるワーク吸着初期段階にはエアタンクからの圧縮空気がエジェクタのノズルに供給されるので、ワーク吸着初期段階に多量の空気がエジェクタに供給される。これにより、吸着初期段階の吸着具の真空度を高めることができ、確実にワークを吸着具に吸着させることができる。エアタンク内に蓄積された圧縮空気が放出された後には、圧縮空気供給源からの圧縮空気がノズルに供給される。ワークが吸着具に吸着された後には、吸着具の真空度は吸着初期段階より低下させてもワークを保持することができる。
According to the present invention, since the compressed air from the air tank is supplied to the ejector nozzle in the initial stage of workpiece adsorption by the suction tool, a large amount of air is supplied to the ejector in the initial stage of workpiece adsorption. Thereby, the degree of vacuum of the suction tool in the initial stage of suction can be increased, and the workpiece can be reliably suctioned to the suction tool. After the compressed air accumulated in the air tank is released, the compressed air from the compressed air supply source is supplied to the nozzle. After the work is sucked by the sucking tool, the work can be held even if the vacuum degree of the sucking tool is lowered from the initial stage of the sucking.
したがって、ワークの保持に必要な圧縮空気の流量を圧縮空気供給源から真空発生装置に供給するようにしても、エジェクタに供給される圧縮空気の真空度を高める必要がある吸着初期段階にはエアタンクからの多量の圧縮空気を供給することにより、圧縮空気供給源から真空発生装置に供給する圧縮空気の流量をワークの保持に必要な流量に低下させても、ワークの吸着動作と保持動作とを確実に行うことができる。これにより、真空発生装置に供給される圧縮空気の流量を低下させることが可能となり、吸着動作から保持動作を含めて真空発生装置において消費される空気量を大幅に低減することが可能となる。
Therefore, even if the flow rate of compressed air necessary for holding the workpiece is supplied from the compressed air supply source to the vacuum generator, the air tank is required at the initial stage of adsorption where the degree of vacuum of the compressed air supplied to the ejector needs to be increased. Even if the flow rate of the compressed air supplied from the compressed air supply source to the vacuum generator is reduced to the flow rate necessary for holding the workpiece by supplying a large amount of compressed air from It can be done reliably. As a result, the flow rate of the compressed air supplied to the vacuum generator can be reduced, and the amount of air consumed in the vacuum generator including the holding operation and the holding operation can be greatly reduced.
量産品の生産ラインに敷設される空気圧配管に供給される圧縮空気の圧力が空気使用量低減のために低下され、空気圧配管から真空発生装置に供給される空気圧が低下されても、本発明によればワークの吸着初期段階にはエアタンクから多量の空気がエジェクタに供給されるので、ワークの吸着搬送を確実に行うことができる。
Even if the pressure of the compressed air supplied to the pneumatic piping laid on the production line for mass-produced products is reduced to reduce the amount of air used and the air pressure supplied to the vacuum generator from the pneumatic piping is reduced, the present invention Accordingly, since a large amount of air is supplied from the air tank to the ejector at the initial stage of workpiece adsorption, the workpiece can be reliably conveyed and conveyed.
ワークが吸着具に吸着されたか否かは、真空流路内を流れる空気の流量を検出することにより確実に判定することができる。吸着完了後のエジェクタに供給される圧縮空気の流量は絞り弁により調整することができ、真空発生装置で必要とされる真空圧力に応じた流量を最適値に設定することができる。
Whether or not the work has been adsorbed by the adsorbing tool can be reliably determined by detecting the flow rate of the air flowing in the vacuum flow path. The flow rate of the compressed air supplied to the ejector after completion of the adsorption can be adjusted by a throttle valve, and the flow rate corresponding to the vacuum pressure required in the vacuum generator can be set to an optimum value.
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1に示されるように、この真空発生装置は断面ほぼ四角形のブロック材からなる装置本体10を有している。装置本体10には図1において下側の端面に支持ブロック11が取り付けられており、装置本体10は支持ブロック11により据え付け箇所に固定される。支持ブロック11を紙面に垂直な方向に長い寸法として、支持ブロック11に複数の真空発生装置を重ねるようにして装着すると、支持ブロック11に複数の真空発生装置を集合させることができる。
As shown in FIG. 1, this vacuum generator has an apparatus body 10 made of a block material having a substantially square cross section. A support block 11 is attached to the apparatus main body 10 on the lower end face in FIG. 1, and the apparatus main body 10 is fixed to an installation location by the support block 11. When the support block 11 has a long dimension in a direction perpendicular to the paper surface and is mounted so that a plurality of vacuum generators are stacked on the support block 11, a plurality of vacuum generators can be assembled on the support block 11.
装置本体10には一方の側面に開口させて幅方向に延びる円筒形状の収容孔12が形成されており、収容孔12にはエジェクタ13が装着されている。エジェクタ13は主エジェクタ13aと副エジェクタ13bとから構成されている。主エジェクタ13aは基端部側に流入孔14が形成されたノズル15を有し、ノズル15の先端部には拡散孔16が形成されている。拡散孔16は先端面に向けて内径が大きくなるテーパ面となっており、流入孔14に供給された圧縮空気は膨張しながら拡散孔16から噴出する。主エジェクタ13aはノズル15が組み付けられるディフューザ17を有しており、ディフューザ17の基端部にノズル15が嵌合される。
The apparatus main body 10 is formed with a cylindrical accommodation hole 12 that is open on one side surface and extends in the width direction, and an ejector 13 is attached to the accommodation hole 12. The ejector 13 includes a main ejector 13a and a sub ejector 13b. The main ejector 13 a has a nozzle 15 in which an inflow hole 14 is formed on the base end side, and a diffusion hole 16 is formed at the tip of the nozzle 15. The diffusion hole 16 has a tapered surface whose inner diameter increases toward the tip surface, and the compressed air supplied to the inflow hole 14 is ejected from the diffusion hole 16 while expanding. The main ejector 13 a has a diffuser 17 to which the nozzle 15 is assembled, and the nozzle 15 is fitted to the base end portion of the diffuser 17.
ディフューザ17の基端部には環状溝が形成され、環状溝には内部に連通する複数の吸引孔18が形成されている。ディフューザ17の内部にはノズル15の中心軸に同軸状にディフューザ流路19が形成され、ノズル15から噴出した圧縮空気の粘性により吸引孔18の周囲の空気が巻き込まれて吸引孔18は負圧となる。吸引孔18から巻き込まれた空気は、ノズル15から噴出した圧縮空気とともにディフューザ流路19の下流側に流れる。ディフューザ流路19は上流側の縮径部19aと下流側の拡散部19bとこれらの中間のストレート部19cとを有している。
An annular groove is formed at the base end portion of the diffuser 17, and a plurality of suction holes 18 communicating with the inside are formed in the annular groove. A diffuser channel 19 is formed coaxially with the central axis of the nozzle 15 inside the diffuser 17, and the air around the suction hole 18 is entrained by the viscosity of the compressed air ejected from the nozzle 15, so that the suction hole 18 has a negative pressure. It becomes. The air entrained from the suction hole 18 flows downstream of the diffuser channel 19 together with the compressed air ejected from the nozzle 15. The diffuser channel 19 has an upstream reduced diameter portion 19a, a downstream diffusion portion 19b, and an intermediate straight portion 19c therebetween.
副エジェクタ13bはディフューザ流路21が形成された円筒形状のディフューザ22により形成されており、ディフューザ流路21は主エジェクタ13aのディフューザ流路19に連通している。ディフューザ22はディフューザ17の下流側端面に突き当てられており、ディフューザ17の下流側端部は副エジェクタ13bのディフューザ22に対して噴流を供給するためのノズルの機能を有している。ディフューザ流路21は上流側の縮径部21aと下流側の拡散部21bとこれらの中間のストレート部21cとを有しており、主エジェクタ13aのディフューザ17の下流側端部には周囲の空気を巻き込む吸引孔18aが形成されている。
The secondary ejector 13b is formed by a cylindrical diffuser 22 in which a diffuser flow path 21 is formed, and the diffuser flow path 21 communicates with the diffuser flow path 19 of the main ejector 13a. The diffuser 22 is abutted against the downstream end face of the diffuser 17, and the downstream end of the diffuser 17 has a function of a nozzle for supplying a jet to the diffuser 22 of the sub ejector 13b. The diffuser flow path 21 has an upstream diameter-reduced portion 21a, a downstream diffusion portion 21b, and an intermediate straight portion 21c, and ambient air is present at the downstream end of the diffuser 17 of the main ejector 13a. Is formed.
このようにエジェクタ13は主エジェクタ13aと副エジェクタ13bとを有し、収容孔12の開口部にねじ止めされるプラグ23がディフューザ22に突き当てられ、エジェクタ13はプラグ23により装置本体10に固定されている。装置本体10の図1における上端面には排気口24が形成され、排気口24はディフューザ22の下流端の流出口に連通している。装置本体10には消音器25が設けられており、消音器25に形成された消音室26にはマフラ27が組み込まれ、消音器25には排気口28が形成されている。これにより、ディフューザ流路21を流れて排気口28から外部に排出される圧縮空気はマフラ27により消音されて外部に排出される。
Thus, the ejector 13 has the main ejector 13a and the sub ejector 13b, and the plug 23 screwed to the opening of the accommodation hole 12 is abutted against the diffuser 22, and the ejector 13 is fixed to the apparatus main body 10 by the plug 23. Has been. An exhaust port 24 is formed in the upper end surface of the apparatus body 10 in FIG. 1, and the exhaust port 24 communicates with an outlet at the downstream end of the diffuser 22. The apparatus body 10 is provided with a silencer 25, a muffler 27 is incorporated in a silencer chamber 26 formed in the silencer 25, and an exhaust port 28 is formed in the silencer 25. As a result, the compressed air that flows through the diffuser passage 21 and is discharged to the outside through the exhaust port 28 is silenced by the muffler 27 and is discharged to the outside.
装置本体10の側面には給気制御用電磁弁31が取り付けられている。圧縮空気供給源32に配管33を介して接続される接続ポート34が装置本体10に形成され、この接続ポート34は装置本体10に形成された給気流路35により給気制御用電磁弁31の給気ポート36に連通している。給気制御用電磁弁31の出力ポート37はエジェクタ13の流入孔14に連通しており、給気制御用電磁弁31のコイルに駆動信号が供給されると、給気ポート36と出力ポート37とが連通状態となって給気流路35が開放される。これにより、接続ポート34に流入した圧縮空気はノズル15に供給される。一方、給気制御用電磁弁31のコイルに対する駆動信号の供給が停止されると、給気ポート36と出力ポート37の連通が遮断されて給気流路35が遮断される。これにより、ノズル15に対する圧縮空気の供給が停止される。
An air supply control solenoid valve 31 is attached to the side surface of the apparatus body 10. A connection port 34 connected to the compressed air supply source 32 via a pipe 33 is formed in the apparatus main body 10, and this connection port 34 is connected to the air supply control electromagnetic valve 31 by an air supply passage 35 formed in the apparatus main body 10. The air supply port 36 communicates. The output port 37 of the air supply control electromagnetic valve 31 communicates with the inflow hole 14 of the ejector 13, and when a drive signal is supplied to the coil of the air supply control electromagnetic valve 31, the air supply port 36 and the output port 37. And the air supply passage 35 is opened. As a result, the compressed air flowing into the connection port 34 is supplied to the nozzle 15. On the other hand, when the supply of the drive signal to the coil of the air supply control electromagnetic valve 31 is stopped, the communication between the air supply port 36 and the output port 37 is cut off, and the air supply passage 35 is cut off. Thereby, the supply of compressed air to the nozzle 15 is stopped.
給気流路35の開度を調整するための絞り弁38が装置本体10には設けられており、調整ねじ38aを回転させることにより給気流路35の上流側の開度が弁体38bにより調整される。
A throttle valve 38 for adjusting the opening degree of the air supply passage 35 is provided in the apparatus main body 10, and the opening degree on the upstream side of the air supply passage 35 is adjusted by the valve body 38b by rotating the adjustment screw 38a. Is done.
装置本体10には給気流路35の途中にエアタンク40が形成されており、給気制御用電磁弁31の給気ポート36はエアタンク40および絞り弁38を介して接続ポート34に連通している。したがって、給気制御用電磁弁31により給気ポート36と出力ポート37との連通が遮断された状態のもとでは、接続ポート34を介して圧縮空気供給源32から供給される圧縮空気はエアタンク40内に蓄積される。
In the apparatus main body 10, an air tank 40 is formed in the middle of the air supply passage 35, and the air supply port 36 of the air supply control electromagnetic valve 31 communicates with the connection port 34 via the air tank 40 and the throttle valve 38. . Therefore, under the state where the communication between the air supply port 36 and the output port 37 is blocked by the air supply control solenoid valve 31, the compressed air supplied from the compressed air supply source 32 via the connection port 34 is the air tank. 40 is accumulated.
装置本体10にはエジェクタ13のそれぞれの吸引孔18,18aと装置本体10の側面に装着される継手41との間に位置させて真空流路42が形成されており、継手41には吸着具43が設けられた真空配管44が装着されるようになっている。装置本体10には真空流路42の途中に位置させてフィルタ収容孔45が形成されており、フィルタ収容孔45は装置本体10の側面に開口している。フィルタ収容孔45内には円筒形状のフィルタエレメント46が組み込まれており、フィルタエレメント46はフィルタ収容孔45の開口部に取り付けられるプラグ47により固定されている。
A vacuum channel 42 is formed in the apparatus main body 10 between each suction hole 18, 18 a of the ejector 13 and a joint 41 attached to the side surface of the apparatus main body 10. A vacuum pipe 44 provided with 43 is mounted. A filter housing hole 45 is formed in the apparatus main body 10 in the middle of the vacuum flow path 42, and the filter housing hole 45 opens on the side surface of the apparatus main body 10. A cylindrical filter element 46 is incorporated in the filter accommodation hole 45, and the filter element 46 is fixed by a plug 47 attached to the opening of the filter accommodation hole 45.
したがって、給気制御用電磁弁31のコイルに駆動信号を供給して給気ポート36と出力ポート37とを連通させると、圧縮空気供給源32からの圧縮空気がエジェクタ13に供給される。圧縮空気はノズル15からディフューザ17に噴出されて吸引孔18の周囲の空気を巻き込むとともにディフューザ22のディフューザ流路21内に流入して吸引孔18aの周囲の空気を巻き込んでマフラ27を通過して排気口28から外部に排出される。
Therefore, when a drive signal is supplied to the coil of the air supply control electromagnetic valve 31 to connect the air supply port 36 and the output port 37, the compressed air from the compressed air supply source 32 is supplied to the ejector 13. The compressed air is ejected from the nozzle 15 to the diffuser 17 and entrains the air around the suction hole 18 and flows into the diffuser flow path 21 of the diffuser 22 and entrains the air around the suction hole 18 a and passes through the muffler 27. The gas is discharged from the exhaust port 28 to the outside.
吸引孔18,18aの周囲の空気が粘性によりエジェクタ13内に吸引されることによって真空流路42内は負圧状態つまり真空状態となる。真空流路42内の真空は真空配管44により吸着具43に案内され、ワークWが吸着具43により吸着される。これにより、装置本体10または吸着具43を図示しない搬送装置によって搬送することによってワークWは所定の位置まで搬送されることになる。
When the air around the suction holes 18 and 18a is sucked into the ejector 13 by viscosity, the inside of the vacuum channel 42 is in a negative pressure state, that is, a vacuum state. The vacuum in the vacuum channel 42 is guided to the suction tool 43 by the vacuum pipe 44, and the workpiece W is sucked by the suction tool 43. Thereby, the workpiece | work W is conveyed to a predetermined | prescribed position by conveying the apparatus main body 10 or the suction tool 43 by the conveying apparatus which is not shown in figure.
吸着具43によってワークWを吸着させる際には、吸着具43をワークWに接触させるか、接近させた状態のもとで給気制御用電磁弁31のコイルに駆動信号を供給することにより給気流路35が開放される。給気流路35が開放されときのワーク吸着初期の段階においては、エアタンク40内に蓄積された圧縮空気が給気制御用電磁弁31を介してエジェクタ13に放出されるので、エジェクタ13には多量の空気が供給される。これにより、真空流路42を介して吸着具43に供給される負圧空気の真空度は高められ、ワークWは吸着具43により確実に吸着保持される。
When the workpiece W is attracted by the suction tool 43, the suction tool 43 is brought into contact with the workpiece W or is supplied by supplying a drive signal to the coil of the air supply control electromagnetic valve 31 in a state of being brought close to the workpiece W. The air flow path 35 is opened. In the initial stage of workpiece adsorption when the air supply passage 35 is opened, the compressed air accumulated in the air tank 40 is released to the ejector 13 via the air supply control electromagnetic valve 31. Of air is supplied. As a result, the degree of vacuum of the negative pressure air supplied to the suction tool 43 via the vacuum flow path 42 is increased, and the workpiece W is reliably sucked and held by the suction tool 43.
エアタンク40内に蓄積された圧縮空気がエジェクタ13に放出され尽くすと、圧縮空気供給源32から供給される圧縮空気が絞り弁38を介してエジェクタ13に供給される。したがって、エジェクタ13に供給される圧縮空気の量がワーク吸着初期段階よりも低下するので、真空流路42および吸着具43の真空度は低下することになる。しかし、ワーク吸着初期段階においてワークWが吸着具43に確実に吸着保持されているので、搬送過程において真空度が低下しても、ワークWが吸着具43から落下することはない。
When the compressed air accumulated in the air tank 40 is exhausted to the ejector 13, the compressed air supplied from the compressed air supply source 32 is supplied to the ejector 13 through the throttle valve 38. Therefore, since the amount of compressed air supplied to the ejector 13 is lower than the initial stage of workpiece adsorption, the vacuum degree of the vacuum flow path 42 and the suction tool 43 is reduced. However, since the workpiece W is reliably attracted and held by the suction tool 43 in the initial stage of workpiece suction, the workpiece W does not fall from the suction tool 43 even if the degree of vacuum decreases during the conveyance process.
ワークWの搬送が終了してワークWを吸着具43から落下させるために給気制御用電磁弁31のコイルに対する通電を停止すると、給気ポート36と出力ポート37との連通が遮断される。これにより、圧縮空気供給源32から供給される圧縮空気は、エアタンク40内に蓄積される。このように、給気流路35を流れる圧縮空気の流量を絞り弁38の開度調整によって調整し、ワーク吸着後の搬送過程において必要な真空度となる流量にエジェクタ13に供給される圧縮空気の流量を設定しても、吸着具43を高い真空度に設定する必要があるワーク吸着初期段階には、エアタンク40内の圧縮空気がエジェクタ13に放出されるので、吸着開始から吸着終了までに要する圧縮空気の全流量を、エアタンク40を用いない場合に比して低減させることができる。
If the energization of the coil of the air supply control electromagnetic valve 31 is stopped in order to drop the work W from the suction tool 43 after the conveyance of the work W is completed, the communication between the air supply port 36 and the output port 37 is interrupted. Thereby, the compressed air supplied from the compressed air supply source 32 is accumulated in the air tank 40. In this way, the flow rate of the compressed air flowing through the air supply passage 35 is adjusted by adjusting the opening of the throttle valve 38, and the compressed air supplied to the ejector 13 is adjusted to a flow rate that provides a required degree of vacuum in the transfer process after the workpiece is attracted. Even when the flow rate is set, the compressed air in the air tank 40 is discharged to the ejector 13 at the initial stage of workpiece suction where the suction tool 43 needs to be set at a high degree of vacuum. The total flow rate of the compressed air can be reduced as compared with the case where the air tank 40 is not used.
装置本体10の側面には給気制御用電磁弁31に隣接させて真空破壊用電磁弁51が取り付けられている。真空破壊用電磁弁51は接続ポート34に分岐流路52により連通する給気ポート53と、真空流路42に真空破壊流路54に連通する出力ポート55とを有している。真空破壊用電磁弁51のコイルに駆動信号を供給すると、内部に組み込まれた弁体により給気ポート53と出力ポート55とが連通状態に切り換えられ、圧縮空気が真空破壊用電磁弁51を介して真空流路42を介して吸着具43に供給される。一方、真空破壊用電磁弁51のコイルに対する駆動信号の供給を停止すると、給気ポート53と出力ポート55の連通が遮断されて吸着具43に対する圧縮空気の供給が停止される。したがって、吸着具43によりワークWの吸着搬送が終了した後に、吸着具43からワークWを外すときには、給気制御用電磁弁31のコイルに対する駆動信号の供給を停止してエジェクタ13に対する圧縮空気の供給を停止するとともに、真空破壊用電磁弁51のコイルに対して駆動信号を供給すると真空流路42に圧縮空気が供給されて吸着具43の真空が破壊される。これにより、ワークWを確実に吸着具43から取り外すことができる。
A vacuum breaking electromagnetic valve 51 is attached to the side surface of the apparatus main body 10 adjacent to the air supply control electromagnetic valve 31. The vacuum break solenoid valve 51 has an air supply port 53 that communicates with the connection port 34 via the branch flow path 52, and an output port 55 that communicates with the vacuum flow path 42 and the vacuum break flow path 54. When a drive signal is supplied to the coil of the vacuum breaking electromagnetic valve 51, the air supply port 53 and the output port 55 are switched to the communication state by the valve body incorporated therein, and the compressed air passes through the vacuum breaking electromagnetic valve 51. Then, the suction tool 43 is supplied via the vacuum channel 42. On the other hand, when the supply of the drive signal to the coil of the vacuum breaking electromagnetic valve 51 is stopped, the communication between the air supply port 53 and the output port 55 is cut off, and the supply of compressed air to the adsorber 43 is stopped. Therefore, when the work W is removed from the suction tool 43 after the suction tool 43 has finished sucking and transporting the work W, the supply of the drive signal to the coil of the air supply control electromagnetic valve 31 is stopped and the compressed air to the ejector 13 is stopped. When the supply is stopped and a drive signal is supplied to the coil of the vacuum breaking electromagnetic valve 51, the compressed air is supplied to the vacuum flow path 42 and the vacuum of the adsorber 43 is broken. Thereby, the workpiece | work W can be reliably removed from the suction tool 43. FIG.
ワークWが吸着具43に吸着したか否かを判定するために、真空流路42内の空気の流量を検出する流量センサ56が支持ブロック11に設けられている。
In order to determine whether or not the work W has been adsorbed to the adsorbing tool 43, a flow rate sensor 56 for detecting the air flow rate in the vacuum flow path 42 is provided in the support block 11.
図3は真空発生装置に供給される圧縮空気の圧力を変化させた場合における真空流路内を流れる負圧空気の真空度と吸い込み流量との関係を示す流量特性線図である。
FIG. 3 is a flow characteristic diagram showing the relationship between the degree of vacuum of the negative pressure air flowing in the vacuum flow path and the suction flow rate when the pressure of the compressed air supplied to the vacuum generator is changed.
図3においては、圧縮空気供給源32から接続ポート34にそれぞれ0.1MPa~0.5MPaの5種類の圧縮空気を供給して、それぞれについてエジェクタ13により生成されて真空流路42内を流れる負圧空気の真空度と吸込流量の関係が示されている。図3に示されるように、エジェクタ13に供給される圧縮空気の圧力を変化させた場合には、圧縮空気の圧力を低下させると到達真空度が低下する。しかし、真空流路42内を流れる負圧空気の低下率は、真空度の圧力変化に比して少なくなる。例えば、0.5MPaの圧縮空気を供給した場合と、0.3MPaの圧縮空気を供給した場合とを比較すると、0.3MPaの方が図3に示されるように流量特性の傾斜角度が小さくなることから負圧空気の低下率は圧力変化に比して小さくなることが分かる。
In FIG. 3, five types of compressed air of 0.1 MPa to 0.5 MPa are respectively supplied from the compressed air supply source 32 to the connection port 34, and negative pressure air that is generated by the ejector 13 and flows in the vacuum channel 42 for each of them. The relationship between the degree of vacuum and the suction flow rate is shown. As shown in FIG. 3, when the pressure of the compressed air supplied to the ejector 13 is changed, the ultimate vacuum is lowered when the pressure of the compressed air is lowered. However, the reduction rate of the negative pressure air flowing in the vacuum channel 42 is smaller than the pressure change of the degree of vacuum. For example, comparing the case where 0.5 MPa compressed air is supplied with the case where 0.3 MPa compressed air is supplied, 0.3 MPa is negative because the inclination angle of the flow rate characteristic becomes smaller as shown in FIG. It can be seen that the reduction rate of the compressed air is smaller than the pressure change.
したがって、流量センサ56によって真空流路42内の流量を検出してワークWが吸着具43に吸着したか否かを判定すると、エジェクタ13に供給される圧縮空気の圧力を低下させ供給流量を削減しても、圧力センサにより真空流路42内の圧力を検出してワークWの吸着を判定する場合よりも高精度で吸着判定を行うことができる。このように流量センサ56を用いて吸着具43にワークWが吸着したか否かを判定することにより、生産ラインに供給される圧縮空気の流量を低減するために、生産ラインの圧縮空気の圧力が低下されてもワークWの吸着判定を確実に行うことができる。
Therefore, when the flow rate in the vacuum flow path 42 is detected by the flow rate sensor 56 and it is determined whether or not the work W is adsorbed to the suction tool 43, the pressure of the compressed air supplied to the ejector 13 is reduced and the supply flow rate is reduced. Even so, the suction determination can be performed with higher accuracy than when the pressure in the vacuum flow path 42 is detected by the pressure sensor to determine the suction of the workpiece W. The pressure of the compressed air in the production line is reduced in order to reduce the flow rate of the compressed air supplied to the production line by determining whether or not the workpiece W is attracted to the suction tool 43 using the flow rate sensor 56 in this way. It is possible to reliably perform the suction determination of the workpiece W even if the resistance is lowered.
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。たとえば、エジェクタ13は主エジェクタ13aと副エジェクタ13bとを有しているが、エジェクタ13を主エジェクタ13aのみの構造としても良い。また、エアタンク40を装置本体10の外部に配置するようにしても良い。
The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the invention. For example, the ejector 13 includes a main ejector 13a and a sub ejector 13b. However, the ejector 13 may have a structure including only the main ejector 13a. Further, the air tank 40 may be disposed outside the apparatus main body 10.
この真空発生装置は、電子部品等を吸着して搬送するための吸着具に対して真空を供給するために適用される。
This vacuum generator is applied to supply a vacuum to an adsorber for adsorbing and transporting electronic components and the like.
Claims (5)
- 圧縮空気の噴流により負圧空気を発生させる真空発生装置であって、
圧縮空気を噴出するノズルと当該ノズルから噴出した空気に吸引される空気を案内する吸引孔が形成されたディフューザとを備え装置本体に設けられるエジェクタと、
圧縮空気供給源が接続される接続ポートと前記ノズルとの間に形成される給気流路と、
前記給気流路を開放して前記ノズルに圧縮空気を供給する給気状態と前記給気流路を遮断して圧縮空気の前記ノズルに対する供給を停止させる給気停止状態とに切り換える給気制御用電磁弁と、
前記吸引孔に連通して前記装置本体に形成され、ワークを真空吸着する吸着具に負圧を供給する真空流路と、
前記給気流路に連通して前記装置本体に設けられ、前記給気流路が前記給気制御用電磁弁により遮断された状態のもとで圧縮空気を蓄積し、前記給気流路が前記給気制御用電磁弁により開放されたときに蓄積された圧縮空気を前記ノズルに供給するエアタンクとを有し、
前記吸着具によるワーク吸着初期段階には前記ノズルに対して前記エアタンクからの圧縮空気を供給することを特徴とする真空発生装置。 A vacuum generator that generates negative pressure air by a jet of compressed air,
An ejector provided in the apparatus main body, including a nozzle that ejects compressed air and a diffuser in which a suction hole that guides air sucked into the air ejected from the nozzle is formed;
An air supply passage formed between a connection port to which a compressed air supply source is connected and the nozzle;
Supply air control electromagnetic that switches between an air supply state in which the air supply passage is opened and compressed air is supplied to the nozzle and a supply air stop state in which the supply air passage is shut off and supply of compressed air to the nozzle is stopped A valve,
A vacuum channel that is formed in the apparatus main body in communication with the suction hole and supplies a negative pressure to a suction tool that vacuum-sucks the workpiece;
Compressed air is accumulated under the condition that the air supply passage is provided in the apparatus body in communication with the air supply passage, and the air supply passage is blocked by the air supply control electromagnetic valve, and the air supply passage is provided with the air supply passage. An air tank that supplies the compressed air accumulated when opened by the control solenoid valve to the nozzle;
A vacuum generating apparatus, wherein compressed air from the air tank is supplied to the nozzle at an initial stage of workpiece adsorption by the adsorption tool. - 請求項1記載の真空発生装置において、前記接続ポートと前記タンクとの間に絞りを設けることを特徴とする真空発生装置。 2. The vacuum generator according to claim 1, wherein a throttle is provided between the connection port and the tank.
- 請求項1または2記載の真空発生装置において、前記真空流路を流れる負圧空気の流量を検出する流量センサを有することを特徴とする真空発生装置。 3. The vacuum generator according to claim 1, further comprising a flow rate sensor for detecting a flow rate of the negative pressure air flowing through the vacuum flow path.
- 請求項1~3のいずれか1項に記載の真空発生装置において、前記接続ポートと前記真空流路とを連通させる真空破壊流路を開閉し、前記接続ポートからの圧縮空気を前記真空流路に供給して前記真空流路の真空を破壊する状態と圧縮空気の供給を停止する状態とに切り換える真空破壊用電磁弁とを有することを特徴とする真空発生装置。 The vacuum generating device according to any one of claims 1 to 3, wherein a vacuum break passage for connecting the connection port and the vacuum passage is opened and closed, and compressed air from the connection port is supplied to the vacuum passage. And a vacuum breaking electromagnetic valve that switches between a state of breaking the vacuum of the vacuum flow path and a state of stopping the supply of compressed air.
- 請求項1~4のいずれか1項に記載の真空発生装置において、前記装置本体の内部に前記エアタンクを形成することを特徴とする真空発生装置。 The vacuum generator according to any one of claims 1 to 4, wherein the air tank is formed inside the apparatus main body.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008005178A JP2009166153A (en) | 2008-01-15 | 2008-01-15 | Vacuum generator |
JP2008-005178 | 2008-01-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009090775A1 true WO2009090775A1 (en) | 2009-07-23 |
Family
ID=40885181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/066688 WO2009090775A1 (en) | 2008-01-15 | 2008-09-17 | Vacuum generation device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009166153A (en) |
WO (1) | WO2009090775A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109681476A (en) * | 2019-02-28 | 2019-04-26 | 星宇电子(宁波)有限公司 | A kind of vacuum generating device |
CN114746227A (en) * | 2019-12-06 | 2022-07-12 | Smc 株式会社 | Vacuum adsorption cylinder assembly |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5493933B2 (en) * | 2010-02-03 | 2014-05-14 | 株式会社村田製作所 | Vacuum pressure control device and vacuum pressure control method |
JP5538004B2 (en) * | 2010-03-12 | 2014-07-02 | Ckd株式会社 | Pressure control device |
JP2012232823A (en) * | 2011-04-28 | 2012-11-29 | Yanmar Co Ltd | Fruit sorting system |
KR101606478B1 (en) * | 2014-03-04 | 2016-03-25 | 주식회사 엔디에스 | Vaccum generating unit |
KR101630577B1 (en) * | 2015-06-17 | 2016-06-15 | 이우승 | Air reducing on-off valve for vaccum ejector pump |
KR101929359B1 (en) * | 2016-12-08 | 2018-12-14 | 이순일 | Device for sucking folding paper and register comprising the same |
CN110864012B (en) * | 2019-10-29 | 2021-06-15 | 合肥工业大学 | Multilayer oil curtain partition device for realizing rapid flexible partition of vacuum pipeline |
KR102225162B1 (en) * | 2020-06-19 | 2021-03-09 | (주)브이텍 | Air-valve unit for vacuum system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0693999A (en) * | 1992-09-09 | 1994-04-05 | Tokyo Seimitsu Co Ltd | Negative pressure applying method and negative pressure applying device |
JPH10502491A (en) * | 1994-06-30 | 1998-03-03 | シーメンス アクチエンゲゼルシヤフト | Device for handling components, comprising at least one suction pipette |
JP2002257099A (en) * | 2001-02-27 | 2002-09-11 | Honda Motor Co Ltd | Vacuum producing device |
JP2003145377A (en) * | 2001-11-08 | 2003-05-20 | Disco Abrasive Syst Ltd | Workpiece holder |
JP2005262351A (en) * | 2004-03-17 | 2005-09-29 | Koganei Corp | Vacuum suction unit |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES533685A0 (en) * | 1983-08-16 | 1985-10-16 | Gerber Garment Technology Inc | A FLEXIBLE LAMINAR MATERIAL FOR CUTTING |
JP3704163B2 (en) * | 1991-09-09 | 2005-10-05 | Smc株式会社 | Vacuum supply unit |
JP3666034B2 (en) * | 1994-10-05 | 2005-06-29 | 株式会社ディスコ | Negative pressure generation means |
-
2008
- 2008-01-15 JP JP2008005178A patent/JP2009166153A/en active Pending
- 2008-09-17 WO PCT/JP2008/066688 patent/WO2009090775A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0693999A (en) * | 1992-09-09 | 1994-04-05 | Tokyo Seimitsu Co Ltd | Negative pressure applying method and negative pressure applying device |
JPH10502491A (en) * | 1994-06-30 | 1998-03-03 | シーメンス アクチエンゲゼルシヤフト | Device for handling components, comprising at least one suction pipette |
JP2002257099A (en) * | 2001-02-27 | 2002-09-11 | Honda Motor Co Ltd | Vacuum producing device |
JP2003145377A (en) * | 2001-11-08 | 2003-05-20 | Disco Abrasive Syst Ltd | Workpiece holder |
JP2005262351A (en) * | 2004-03-17 | 2005-09-29 | Koganei Corp | Vacuum suction unit |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109681476A (en) * | 2019-02-28 | 2019-04-26 | 星宇电子(宁波)有限公司 | A kind of vacuum generating device |
CN109681476B (en) * | 2019-02-28 | 2024-01-16 | 星宇电子(宁波)有限公司 | Vacuum generating device |
CN114746227A (en) * | 2019-12-06 | 2022-07-12 | Smc 株式会社 | Vacuum adsorption cylinder assembly |
CN114746227B (en) * | 2019-12-06 | 2023-12-19 | Smc 株式会社 | Vacuum adsorption cylinder assembly |
Also Published As
Publication number | Publication date |
---|---|
JP2009166153A (en) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009090775A1 (en) | Vacuum generation device | |
CN103459855B (en) | Discharger | |
US8043071B2 (en) | Vacuum generating unit | |
US6416295B1 (en) | Vacuum-generating unit | |
CN100519105C (en) | Vacuum suction unit | |
US6955526B2 (en) | Vacuum generator with flow switching means for varying suction capacity through a plurality of nozzles | |
JPWO2009005058A1 (en) | Suction sensor controller and suction conveyance device using the same | |
JP2008201588A (en) | Fluid or powder transport device | |
US20050118032A1 (en) | Vaccum-generating unit | |
WO2005005109A1 (en) | Switch valve device | |
KR101611518B1 (en) | Exhaust and load port having therof | |
KR101638454B1 (en) | Exhaust and load port having therof | |
KR20090131919A (en) | Conveying device | |
KR102225162B1 (en) | Air-valve unit for vacuum system | |
JP3548508B2 (en) | Vacuum breaking unit and vacuum generator for vacuum generator | |
JP2003004154A (en) | Vacuum control valve and pressure control method | |
KR101923668B1 (en) | The auto pressure controller | |
CN220121808U (en) | Wafer vacuum filtration system | |
JPH0868400A (en) | Negative pressure generating device | |
JP3934488B2 (en) | Vacuum generator | |
TW202319323A (en) | Positive/negative pressure switch circuit | |
JPH11309686A (en) | Vacuum production unit with cylinder | |
JP2002103263A (en) | Adsorption and conveyance device | |
KR200274349Y1 (en) | Solenoid valve apparatus for controlling amount of supply of air and inert gas | |
KR20190001117U (en) | Camera Module Vacuum Suction Device for Semiconductor Line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08870867 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/01/2011) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08870867 Country of ref document: EP Kind code of ref document: A1 |