WO2009070585A1 - Vertical manure converter and process including activated carbon in an organic mixture - Google Patents
Vertical manure converter and process including activated carbon in an organic mixture Download PDFInfo
- Publication number
- WO2009070585A1 WO2009070585A1 PCT/US2008/084690 US2008084690W WO2009070585A1 WO 2009070585 A1 WO2009070585 A1 WO 2009070585A1 US 2008084690 W US2008084690 W US 2008084690W WO 2009070585 A1 WO2009070585 A1 WO 2009070585A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- activated carbon
- chamber
- manure
- converter
- vertical
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 241
- 210000003608 fece Anatomy 0.000 title claims abstract description 98
- 239000010871 livestock manure Substances 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 77
- 230000008569 process Effects 0.000 title claims abstract description 60
- 239000000203 mixture Substances 0.000 title claims abstract description 45
- 239000011368 organic material Substances 0.000 claims abstract description 39
- 239000010815 organic waste Substances 0.000 claims abstract description 26
- 230000001939 inductive effect Effects 0.000 claims abstract description 4
- 230000001105 regulatory effect Effects 0.000 claims abstract description 4
- 238000009264 composting Methods 0.000 claims abstract description 3
- 238000002156 mixing Methods 0.000 claims description 17
- 230000001276 controlling effect Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000523 sample Substances 0.000 claims description 5
- 150000001721 carbon Chemical class 0.000 claims description 4
- 230000001965 increasing effect Effects 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 26
- 239000003337 fertilizer Substances 0.000 abstract description 25
- 238000010924 continuous production Methods 0.000 abstract description 6
- 239000008213 purified water Substances 0.000 abstract description 2
- 239000003570 air Substances 0.000 description 43
- 239000002351 wastewater Substances 0.000 description 33
- 241001465754 Metazoa Species 0.000 description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 239000004576 sand Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 238000012841 animal feeding operation Methods 0.000 description 8
- 239000002361 compost Substances 0.000 description 8
- 210000002700 urine Anatomy 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 235000015097 nutrients Nutrition 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000005273 aeration Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 241000287828 Gallus gallus Species 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000010006 flight Effects 0.000 description 3
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 3
- 235000019645 odor Nutrition 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000002459 sustained effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- -1 air Chemical compound 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 241000288147 Meleagris gallopavo Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000012840 feeding operation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/40—Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F3/00—Fertilisers from human or animal excrements, e.g. manure
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/16—Treatment of sludge; Devices therefor by de-watering, drying or thickening using drying or composting beds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/20—Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
Definitions
- This disclosure relates to converters and processes of making fertilizer 4nd treating waste by-products. More specifically, the processes include extracting concentrated fertilizer nutrients from animal manure, urine and wastewater and cleaning wastewater.
- a vertical manure converter takes organic wastes and uses heat to accelerate the composting process wherein a final product can be easily handled, transported and used as valuable fertilizer product.
- AFO Animal feeding operations
- AFOs must continually dispose of manure and wastewater, which is a difficult, costly and dangerous process due to the presence of methane gas. Wastewater disposition is especially difficult since wastewater nutrients generally exceed state and Federal clean water standards. Evaporation is too slow of a process for AFOs.
- U.S. Patents 6,982,068 and 7, 199,069 which are incorporated by reference, disclose a method for oxidizing organic compounds in a controlled manner within a bed of activated carbon.
- the bed of activated carbon is exposed to a source of molecular oxygen, such as air, and is controlled within a temperature range whereby the molecular oxygen is slowly oxidizing the activated carbon.
- the activated carbon may oxidize organic compounds present within the bed of activated carbon.
- the disclosure includes flowing a gas including a source of oxygen molecules through the activated carbon bed and heating the bed to an operating temperature range whereby the oxygen molecules are oxidizing the activated carbon.
- Activated carbon held within the temperature range of 150 degrees C (302 F) to 375 degrees C (707 F) and provided with a source of gaseous oxygen, such as air, can be utilized for useful purposes such as the controlled oxidation of oxidizable organic vapors, the controlled oxidation of oxidizable organic liquids, and regeneration of activated carbon containing adsorbed oxidizable organic compounds.
- an AFO is defined as an animal feeding operation which stables, confines or concentrates animals.
- AFOs affected by manure and wastewater disposition issues are primarily, but not limited to, the following agricultural activities:
- Manure is defined as animal excrement generated by the animal's intestinal system and includes bedding, compost and raw materials or other materials commingled with animal excrement or set aside for disposal.
- Urine is defined as liquid animal excrement generated by the animal's kidney system.
- Wastewater is defined as water contaminated by contact with manure, urine and other nutrients, such as during the AFO process.
- the process is applicable, and therefore expanded, to include any organic matter whether or not requiring waste disposal techniques. Summary
- the present disclosure provides converters and processes used to convert manure and wastewater to fertilizer and water that meets Federal and state clean water standards. Waste water is heated by various means resulting in concentrated fertilizer and steam or distilled water. Solid organic materials can be separated and allowed to compost or otherwise be processed.
- injecting compressed air into an activated carbon mixture with organic materials has numerous potential benefits to improve the process. Injecting compressed air improves airflow and may help ignite the mixture, help sustain the process, require less external heat, or allow the process to work at a temperature range of 300-450 degrees C.
- a vertical manure converter to accelerate processing of organic material using an activated carbon/organic material mixture includes a chamber with sections for controlling descent, such as by gravity with panels in the chamber, of the activated carbon/ organic material mixture. Air injectors along the chamber induce air into the chamber, such as compressed air in multiple locations and levels. The temperature can be regulating with controlled airflow into the chamber.
- a vertical manure converter can incorporate lifting activated carbon from the bottom of the unit, preferably a cylinder, to the top or otherwise reusing the activated carbon. Additional improvements may include: compressed air injector nozzles located throughout the unit; lifting of the activated carbon from the bottom to the top of the unit with an auger or pump; the activated carbon slinger at the top of the unit; the dispersal cones at the top and bottom of the unit; the various flights that slow descent of the activated carbon/manure mixture; the sloping screen to separate activated carbon from ash and sand; the sloping floor at the bottom of the unit to collect ash and sand; a computer system to control the amount of manure and air injected into the manure converter; and hot activated carbon can remain inside the system resulting in a significant increase in throughput of manure. These improvements allow for a continuous flow of organic materials, such as processing wet manure, on a sustained basis. These improvements make an activated carbon process more commercially viable. Brief Description of the Drawing
- Figure 1 is a flow chart for a boiling process for extracting fertilizer from manure and purifying wastewater
- Figure 2 is a flow chart for a direct flame burning process for extracting fertilizer from manure and purifying wastewater
- Figure 3 is a flow chart for an activated carbon process for extracting fertilizer from manure and purifying wastewater
- Figure 4 shows a schematic of a vertical cylinder manure converter
- Figure 5 is a detailed and partially cut away diagram of the complete system using activated carbon for extracting fertilizer from manure and purifying water.
- Figure 6 shows a perspective view of the vertical manure converter and the mixing reservoir.
- the disclosed processes allow for extraction of concentrated fertilizer nutrients from animal manure, urine and wastewater and cleaning wastewater to state and Federal clean water standards.
- the potential adverse presence of methane gas can be used as a source of heat.
- raw manure and/or other waste by-products are separated into organic material solids and wastewater by an organic material separator, such as a mechanical separator.
- Organic material can be stacked in a compost pile and allowed to compost at temperatures more than 160 degrees Fahrenheit or otherwise processed. Composted materials are available for animal bedding or returned to fields.
- the wastewater stream is directed over a heated, hooded or covered trough. As the wastewater moves through the trough, it is heated to its boiling point. Methane gas, from an anaerobic digester, can be used as a source of energy to produce heat. The methane gas is routed to a burrier under the trough where it is ignited to a temperature that boils the wastewater. As wastewater boils, water evaporates into steam which is collected inside the hood and allowed to runoff and be captured as distillated water. The residual wastewater becomes a concentrated slime material rich in nutrients for use as concentrated fertilizer.
- Methane gas from an anaerobic digester
- Direct flame burning process for extracting fertilizer from manure and purifying wastewater
- raw manure and/or other waste by-products are separated into organic material and wastewater by an organic material separator, such as a mechanical separator.
- Organic material can be stacked in a compost pile and allowed to compost at temperatures more than 160 degrees Fahrenheit or otherwise processed. Composted materials are available for animal bedding or returned to fields.
- the wastewater stream is pressurized and directed through a nozzle that converts the wastewater into a fine mist spray.
- the spray is directed through a direct flame, which incinerates the wastewater resulting in a fine ash fertilizer material, which can be collected in a bin located at the bottom of the incinerator.
- Methane gas from an anaerobic digester, can be used as a source of energy to produce the direct flame for the process.
- the methane gas is routed to a burner inside the incinerator.
- wastewater spray flows through the direct flame, water evaporates into steam, which is collected inside the incinerator and captured as distillated water.
- the bin containing the fertilizer ash is emptied into storage containers for future use.
- Organic material can be stacked in a compost pile and allowed to compost at temperatures more than 160 degrees Fahrenheit or otherwise processed. Composted materials are available for animal bedding or returned to fields.
- the wastewater stream and air are directed into a mixer containing activated carbon.
- the reaction of activated carbon, air and wastewater causes the contents of the mixer to heat to a temperature more than 800 degrees Fahrenheit. After reaching this temperature, the contents of the mixer are separated into ash fertilizer and steam.
- the steam can be used for heating and cleaning purposes.
- the ash is removed from the mixer and stored in containers.
- phosphorous precipitates on to the activated carbon material. When saturated, phosphorous is removed from active carbon during the active carbon cleaning process. The residual phosphorous is collected in containers and used as fertilizer.
- activated carbon can speed the process resulting in concentrated fertilizer and steam/distilled water. Injecting compressed air into an activated carbon/ organic material mixture
- VMC vertical manure converter
- injecting compressed air into an activated carbon mixture with organic materials may improve airflow, help ignite the mixture, help sustain the process, require less external heat, or allow the process to work at a temperature range of 300-450 degrees C.
- the operating temperature range was increased from 375 degrees C in the initial disclosure because higher temperatures of 375-450 degrees C were better suited to sustain a commercial process. This higher temperature exceeds the ignition point of activated carbon.
- a pipe or similar air injecting device 12 with spigots or nozzles can pump or inject compressed air onto or into the activated carbon mixture with organic materials.
- injected compressed air can also help to initially ignite the activated carbon mixture with organic materials.
- Compressed air could be blown on the coals and injected into the activated carbon mixture with organic materials to sustain the process.
- Compressed air can be ambient air, but it may include pure oxygen or variations of nitrogen and oxygen from “air.”
- Injecting compressed air, preferably computer controlled, onto or into the activated carbon mixture with organic materials can operate at a range of 300-450 degrees C, such as at 400 degrees C.
- Various temperature probes 14 throughout the vertical manure converter chamber 16 can relay temperature conditions within the vertical manure converter system 10 to a computer monitor or system 18.
- the computer monitor using a series of check valves 20, can increase or decrease the amount of airflow to the vertical manure converter system 10, such as into the chamber 16, to maintain proper operating temperatures.
- System operations at this relatively low temperature allow for less restrictive equipment and potential uses for waterless commodes, waste treatment, and agricultural uses. It is contemplated that a device twenty feet tall by four square feet could process 250,000 gallons of manure per day resulting in safe water and ash that could be used for fertilizer.
- the vertical manure converter system 10 generates heat that can be captured and used for hot water heat or as steam to drive electric generating equipment. Piping that is part of a closed loop water system can be circulated through the vertical manure converter system 10. Water in the pipes is heated and exits the vertical manure converter system 10 as steam where it is directed to be used either as a source of heat or to drive electrical generating equipment.
- a vertical manure converter 10 can incorporate lifting activated carbon from the bottom of the chamber 16, preferably a cylinder, to the top. Additional improvements preferably include: compressed air injector nozzles 12 located throughout the chamber 16; lifting of the activated carbon from the bottom to the top of the chamber 16 with an auger; the activated carbon slinger 24 at the top of the chamber 16; the dispersal cones 26 and 28 at the top and bottom of the chamber 16; the various flights 30 that slow descent of the activated carbon/manure mixture; the sloping screen 32 to separate activated carbon from ash and sand; the sloping floor 34 at the bottom of the unit to collect ash and sand; a computer system 18 to control the amount of manure and air injected into the chamber 16; and hot activated carbon remains preferably inside the vertical manure converter system 10 at all times resulting in a significant increase in throughput of manure. These improvements allow for a continuous flow of organic materials, such as processing wet manure, on a sustained basis. As depicted in Figure
- VCMC Vertical manure Converter
- Step 1 Manure is pumped to the top of the VCMC where it enters the chamber 16, such as a cylinder.
- Step 2 The manure free falls onto the stationary dispersal cone 26, which has rivulets to evenly disperse manure within the chamber 16.
- the stationary cone 26 also protects an auger pipe 36 area from direct contact with the manure stream.
- Step 3 Hot activated carbon is transported to the top of the chamber 16 by an auger 22 located in the center of the chamber 16.
- Step 4 The hot activated carbon is slung from the auger 22 (which may spin) at the top of the chamber 16 where the activated carbon comes into contact with the free falling manure.
- Step 5 The free falling manure/activated carbon mixture comes into contact with sections 30, like flights (such as angled steel partitions) whose purpose is to slow the descent of the falling manure/activated carbon mixture and provide a means to continually mix and aerate the manure/activated carbon.
- Step 6 Computer controlled compressed air is injected into the chamber 16 at selected points to provide adequate oxygen for the activated carbon to react with the manure.
- Step 7 Water vapor (steam) is removed from the VCMC at the top of the chamber 16 through a steam exhaust area 38. The steam may then used for heating the incoming manure stream or other purposes.
- Step 8 The manure/activated carbon mixture then settles in the chamber 16 where the final reaction of the manure with the activated carbon takes place.
- This bottom area 40 of the chamber 16 will approach temperatures of 400 degrees C, which completes the conversion of the manure to ash and water vapor.
- Step 9 At the bottom area 40 of the chamber 16, activated carbon, ash and sand flow over a gravity screen 32 (such as a sloping grate) that separates sand and ash from the activated carbon. Step 10. The activated carbon remains on top of the gravity screen 32 and flows into openings 42 in the auger support pipe 36.
- a gravity screen 32 such as a sloping grate
- Step 11 The auger 22 located inside the auger support pipe 36 transports the hot activated carbon to the top 44 of the chamber 16 to begin the process of mixing with entering manure.
- Step 12 Ash and sand fall from the separation screen 32 onto a sloped floor 34 inside the chamber 16.
- the sloped floor 34 gravity- feeds the ash and carbon to the discharge tube 46.
- Air pressure from inside the chamber 16 facilitates the feeding of ash and sand to the discharge tube 46.
- Step 13 Ash and sand recovered from the vertical manure converter 10 are separated using material separator 48, such as a mechanical separator.
- Heaters 50 such as propane burners, are located under the sloped flooring 34 of the chamber 16 and are used during the startup process to heat the activated carbon.
- Step 15 A mechanical means for drawing in and moving a substance 52, such as a pump or auger drive motor, is housed outside the chamber 16 for maintenance and to keep it away from the heat generated by the vertical manure converter system 10.
- Step 16 The chamber 16 can be shrouded in insulation 54, such as fireproof insulation jacket, in order to retain heat within the chamber 16.
- Step 17. Temperature probes 14 are located at critical locations within the chamber 16.
- Step 18 Temperatures will be monitored throughout the chamber 16 by a computer system 18.
- the computer system 18 will regulate temperatures within the chamber 16 by increasing or decreasing compressed air. Should temperatures exceed a critical value, the volume of compressed air at the nearest air fixture(s) 12 to the over-temperature area is reduced in order to lower temperatures. Additional compressed air volume can be injected into the chamber 16 to raise temperatures.
- Step 19 Various hatches 56 can be available in the unit to remove the auger assembly and for ease of cleaning and maintenance.
- Figure 5 shows a diagram of a complete vertical manure converter system 10 that uses activated carbon for extracting fertilizer from manure and purifying water with arrows showing flow.
- a separate mixing reservoir 58 can be a bin with a mixing pump 60 for mixing organic materials, such as manure, with activated or reactivated carbon.
- the manure/carbon mix is not necessarily made inside the chamber 16.
- a manure/carbon mix can be moved (i.e. via pump 52) from the mixing reservoir 58, such as through a conduit or pipe 62, to the top of the chamber 16.
- the manure carbon mixture is processed, such as via a controlled descent, through the chamber 16 of the vertical manure converter, which includes a dispersal cone 28 and a heater 50, such as four non-contact 100,000 BTU propane fired burners, toward the bottom 40 of the chamber 16.
- the chamber 16 of the vertical manure converter may also include multiple air injectors 12, such as injected compressed air, at various levels of the chamber 16, water lets 64 for steam toward the end of the air stream, a steam supply for a generator and an outlet 38 for an exhaust stream as shown on the top of the chamber 16.
- a converter/separator 48 separates sand/ash for collection by a sand/ash collector system 66 and allows raw recycled and reactivated carbon to enter the mixing reservoir 58 for subsequent use in a continuing process.
- exhaust stream from the chamber 16 may move forward into a container 68 with activated carbon 70, such as in a bed, to filter the exhaust stream.
- a container 68 with activated carbon 70 such as in a bed
- activated carbon 70 such as in a bed
- the exhaust stream can be released at the bottom of the activated carbon bed 70.
- An exhaust blower 72 may be mounted on top of the container 68 to help advance the exhaust stream into the activated carbon bed 70 to be filtered.
- a filtered exhaust port 74 above the container 68 (after the exhaust stream has passed through the activated carbon bed 70) further ensures clean final exhaust.
- the carbon collection unit associated with the container 68 can minimize adverse emissions.
- a vertical manure converter system 10 can accelerate processing of organic material using an activated carbon/organic material mixture.
- the chamber 16 and the mixing reservoir 58 are placed adjacent to each other with the converter/separator 48 above the mixing reservoir 59.
- the vertical manure converter system 10 includes a chamber 16 with internal sections 30 for controlling descent, such as by gravity with panels in the chamber, of the activated carbon/ organic material mixture.
- One or more dispersal cones 28 can disperse activated carbon/organic material mixture within the chamber 16.
- Air injectors 12 along the chamber 16 induce air into the chamber 16, such as compressed air in multiple locations and levels on the chamber 16.
- the aeration of the descending activated carbon/ organic waste helps maintain the proper heat in a continuing process.
- a computer system 18 can monitor and regulate descent, air flow and temperature. The temperature can be regulating with controlled airflow into the chamber 16.
- the computer system 16 and temperature probes 14 with relays to the computer system 16 can control the amount of air injected into the chamber 16 via the air injectors 12.
- an operating temperature is in a range of 300- 450 degrees C, more specifically 375-450 degrees C been useful for a sustainable continuous process.
- the mixing reservoir 58 can assist with reusing activated carbon for a continuous process. Recycled or reactivated carbon can be mixed with newly added organic material, which can be computer controlled.
- a heater 50 can be associated with the bottom area 40 of the chamber 16, which may be used at various stages of the process including start-up or continuing through a continuous process.
- the vertical cylinder converter system 10 and process are not limited to manure.
- They can be utilized for any organic material that requires accelerated decomposition, and they can also be used for re-generating spent activated carbon on a high volume basis.
- a method of treating organic waste may include mixing activated carbon into organic waste to form an activated carbon/organic waste mixture, which can be done internally in the chamber 16 per the vertical cylinder manure converter or partially externally with a mixing reservoir 58.
- the descent of the activated carbon/organic waste mixture in a vertical chamber 16 is controlled.
- the activated carbon/organic waste mixture can be dispersed for better aeration, such as by a top dispersal cone 26.
- Aeration of the activated carbon/ organic waste mixture in the vertical chamber 16 is ideal when the activated carbon/ organic waste is dispersed and aerated at several levels within the chamber 16.
- Reusing activated carbon can result in a continuous process of treating organic waste.
- Reusing activated carbon has several methods including internal with the auger 22 and with a mixing reservoir 58 as detailed above.
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Fertilizers (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2008329776A AU2008329776A1 (en) | 2007-11-26 | 2008-11-25 | Vertical manure converter and process including activated carbon in an organic mixture |
EP08855135A EP2212264A4 (en) | 2007-11-26 | 2008-11-25 | Vertical manure converter and process including activated carbon in an organic mixture |
CA2704502A CA2704502A1 (en) | 2007-11-26 | 2008-11-25 | Vertical manure converter and process including activated carbon in an organic mixture |
US12/740,604 US20100307210A1 (en) | 2007-11-26 | 2008-11-25 | Vertical Manure Converter and Process including Activated Carbon in an Organic Mixture |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99014307P | 2007-11-26 | 2007-11-26 | |
US60/990,143 | 2007-11-26 | ||
US4613108P | 2008-04-18 | 2008-04-18 | |
US61/046,131 | 2008-04-18 | ||
US4960408P | 2008-05-01 | 2008-05-01 | |
US61/049,604 | 2008-05-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009070585A1 true WO2009070585A1 (en) | 2009-06-04 |
Family
ID=40678954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/084690 WO2009070585A1 (en) | 2007-11-26 | 2008-11-25 | Vertical manure converter and process including activated carbon in an organic mixture |
Country Status (5)
Country | Link |
---|---|
US (1) | US20100307210A1 (en) |
EP (1) | EP2212264A4 (en) |
AU (1) | AU2008329776A1 (en) |
CA (1) | CA2704502A1 (en) |
WO (1) | WO2009070585A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9365009B2 (en) | 2013-02-12 | 2016-06-14 | Harvey Milling Co., Inc. | Plate press system and process |
CN104998889A (en) * | 2015-07-15 | 2015-10-28 | 倪文谦 | Garbage hot-pressing oil separator and garbage hot-pressing oil separating method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4122036A (en) * | 1976-05-12 | 1978-10-24 | Waterfront N.V. | Method of pyrolyzing sewage sludge to produce activated carbon |
US4202282A (en) * | 1971-08-23 | 1980-05-13 | Hobbs Jim F | Method of incineration |
US4346661A (en) * | 1980-03-20 | 1982-08-31 | Osaka Gas Kabushiki Kaisha | Furnace for treating industrial wastes |
US4579644A (en) * | 1981-06-08 | 1986-04-01 | Chevron Research Company | Temperature gradient in retort for pyrolysis of carbon containing solids |
US6982068B2 (en) | 2002-05-01 | 2006-01-03 | Mclaughlin Hugh Stanley | Method for destruction of organic compounds by co-oxidation with activated carbon |
US20060280669A1 (en) * | 2005-06-10 | 2006-12-14 | Jones Fred L | Waste conversion process |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB228812A (en) * | 1923-08-09 | 1925-02-09 | Naamlooze Vennootschap Algemee | Improvements in the manufacture of decolourising carbon |
US3950143A (en) * | 1972-07-14 | 1976-04-13 | The Kingsford Company | Process for producing solid industrial fuel |
FI802716A (en) * | 1980-08-28 | 1982-03-01 | Pekka Kariniemi | FOERFARANDE FOER FRAMSTAELLNING AV GOEDSEL |
JPS60171213A (en) * | 1984-12-24 | 1985-09-04 | Niigata Eng Co Ltd | Method for separating and removing ash mixed with activated carbon |
US5104490A (en) * | 1987-10-26 | 1992-04-14 | W.E.R.E. International Inc. Of Iowa | Apparatus for converting waste material to gaseous and char materials |
DE4117444C2 (en) * | 1991-05-28 | 1993-11-11 | Babcock Anlagen Gmbh | Process for treating residues from a waste incineration plant and waste incineration plant for carrying out the process |
DE19538710C2 (en) * | 1995-10-18 | 1998-07-09 | Sicowa Verfahrenstech | Use of empty pull ash from coal-fired plants |
-
2008
- 2008-11-25 AU AU2008329776A patent/AU2008329776A1/en not_active Abandoned
- 2008-11-25 EP EP08855135A patent/EP2212264A4/en not_active Withdrawn
- 2008-11-25 WO PCT/US2008/084690 patent/WO2009070585A1/en active Application Filing
- 2008-11-25 CA CA2704502A patent/CA2704502A1/en not_active Abandoned
- 2008-11-25 US US12/740,604 patent/US20100307210A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4202282A (en) * | 1971-08-23 | 1980-05-13 | Hobbs Jim F | Method of incineration |
US4122036A (en) * | 1976-05-12 | 1978-10-24 | Waterfront N.V. | Method of pyrolyzing sewage sludge to produce activated carbon |
US4346661A (en) * | 1980-03-20 | 1982-08-31 | Osaka Gas Kabushiki Kaisha | Furnace for treating industrial wastes |
US4579644A (en) * | 1981-06-08 | 1986-04-01 | Chevron Research Company | Temperature gradient in retort for pyrolysis of carbon containing solids |
US6982068B2 (en) | 2002-05-01 | 2006-01-03 | Mclaughlin Hugh Stanley | Method for destruction of organic compounds by co-oxidation with activated carbon |
US7199069B2 (en) | 2002-05-01 | 2007-04-03 | Mclaughlin Hugh Stanley | Method for destruction of organic compounds by co-oxidation with activated carbon |
US20060280669A1 (en) * | 2005-06-10 | 2006-12-14 | Jones Fred L | Waste conversion process |
Non-Patent Citations (1)
Title |
---|
See also references of EP2212264A4 |
Also Published As
Publication number | Publication date |
---|---|
US20100307210A1 (en) | 2010-12-09 |
EP2212264A4 (en) | 2010-12-29 |
CA2704502A1 (en) | 2009-06-04 |
EP2212264A1 (en) | 2010-08-04 |
AU2008329776A1 (en) | 2009-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7891114B2 (en) | Biomass converters and processes | |
CA2502638C (en) | Methods and systems for converting waste into energy | |
JP5480814B2 (en) | Carbonization apparatus and carbonization method | |
WO2016173000A1 (en) | Rural bulk organic waste pollutant source comprehensive treatment system and method | |
JP2006274201A (en) | Continuous reduced-pressure drying/carbonizing apparatus | |
CN107537842A (en) | The processing unit of organic waste | |
JP6431469B2 (en) | Method for producing oil or gas adsorbent and oil or gas adsorbent | |
JP2013154316A (en) | Fermentation treatment method of organic waste and apparatus that executes the method | |
US20130019493A1 (en) | Method of processing and drying waste in a cyclic continuous process | |
US20100307210A1 (en) | Vertical Manure Converter and Process including Activated Carbon in an Organic Mixture | |
KR100845131B1 (en) | Waste materials treating process and apparatus for batch type drying and vertical type carbonizing | |
JP2007075807A (en) | Continuous recycling device for organic matter and wastewater treatment apparatus | |
JP2004249230A (en) | Processing method of malodorous sludge and incineration apparatus of malodorous sludge | |
JP2009112998A (en) | Apparatus for fermentation treatment of organic waste | |
JP3592622B2 (en) | Method for producing carbonized fertilizer containing potassium component from organic waste | |
JP2002167209A (en) | Activated carbon manufacturing apparatus, its manufacturing method, and activated carbon manufacturing system | |
JP2004262729A (en) | Processing method and its processing system of wetting organic waste | |
JP3544646B2 (en) | Garbage recycling system | |
AU2021202520A1 (en) | Valuable materials from solid organic waste (vmw) | |
NL1033601C2 (en) | Method and device for the biological drying of waste. | |
JP3479628B2 (en) | Carbonization equipment | |
JP2002146360A (en) | Method for producing carbonized product from organic waste | |
KR100245417B1 (en) | Process device for food residue | |
JP2016155086A (en) | Recycling system | |
JP2023067053A (en) | Heat treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08855135 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008329776 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12740604 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2704502 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008855135 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2008329776 Country of ref document: AU Date of ref document: 20081125 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |