[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008088493A2 - Compositions and uses for an alpha-amylase polypeptide of bacillus species 195 - Google Patents

Compositions and uses for an alpha-amylase polypeptide of bacillus species 195 Download PDF

Info

Publication number
WO2008088493A2
WO2008088493A2 PCT/US2007/024959 US2007024959W WO2008088493A2 WO 2008088493 A2 WO2008088493 A2 WO 2008088493A2 US 2007024959 W US2007024959 W US 2007024959W WO 2008088493 A2 WO2008088493 A2 WO 2008088493A2
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
detergent
amylase
polypeptide
detergent composition
Prior art date
Application number
PCT/US2007/024959
Other languages
French (fr)
Other versions
WO2008088493A3 (en
Inventor
Neelam S. Amin
Melodie Estabrook
Brian E. Jones
Marc Kolkman
Casper Vroemen
Walter Weyler
Original Assignee
Danisco Us, Inc., Genencor Division
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danisco Us, Inc., Genencor Division filed Critical Danisco Us, Inc., Genencor Division
Priority to MX2009005655A priority Critical patent/MX2009005655A/en
Priority to US12/519,879 priority patent/US8097444B2/en
Priority to CA002673527A priority patent/CA2673527A1/en
Priority to EP07867644A priority patent/EP2097519A2/en
Priority to JP2009542789A priority patent/JP2010512787A/en
Priority to CN2007800468791A priority patent/CN101563451B/en
Priority to BRPI0722093-6A2A priority patent/BRPI0722093A2/en
Publication of WO2008088493A2 publication Critical patent/WO2008088493A2/en
Publication of WO2008088493A3 publication Critical patent/WO2008088493A3/en
Priority to HK10103590.6A priority patent/HK1139174A1/en
Priority to US13/312,555 priority patent/US8470758B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2417Alpha-amylase (3.2.1.1.) from microbiological source
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Definitions

  • compositions and methods of using ⁇ -amylase enzymes obtained from Bacillus sp. 195 Disclosed herein are compositions and methods of using ⁇ -amylase enzymes obtained from Bacillus sp. 195.
  • Starch consists of a mixture of amylose (15-30% w/w) and amylopectin (70-85% w/w).
  • Amylose consists of linear chains of ⁇ - 1 ,4-linked glucose units having a molecular weight (MW) from about 60,000 to about 800,000.
  • MW molecular weight
  • Amylopectin is a branched polymer containing ⁇ -1,6 branch points every 24-30 glucose units; its MW may be as high as 100 million.
  • Sugars from starch in the form of concentrated dextrose syrups, are currently produced by an enzyme catalyzed process involving: (1) liquefaction (or viscosity reduction) of solid starch with an ⁇ -amylase into dextrins having an average degree of polymerization of about 7- 10, and (2) saccharif ⁇ cation of the resulting liquefied starch (i.e. starch hydro lysate) with amyloglucosidase (also called glucoamylase or GA).
  • amyloglucosidase also called glucoamylase or GA
  • the resulting syrup has a high glucose content.
  • Much of the glucose syrup that is commercially produced is subsequently enzymatically isomerized to a dextrose/fructose mixture known as isosyrup.
  • ⁇ -amylases hydrolyze starch, glycogen, and related polysaccharides by cleaving internal ⁇ -l,4-glucosidic bonds at random.
  • This enzyme has a number of important commercial applications in, for example the sugar, brewing, alcohol and textile industries, ⁇ - amylases are isolated from a wide variety of bacterial, fungal, plant and animal sources. Industrially, many important ⁇ -amylases are those isolated from Bacilli. For a number of years, ⁇ -amylase enzymes have been used for a variety of different purposes, including starch liquefaction, textile desizing, starch modification in the paper and pulp industry, and for brewing. These enzymes also can be used to remove starchy stains during dishwashing and laundry washing.
  • Bacillus ⁇ -amylase that has been sequenced is that from Bacillus sp. no. 195 (BAA). It consists of two domains: a catalytic domain similar to animal ⁇ -amylases and a domain that contains two starch binding motifs. See J. Sumitani et al., "New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 ⁇ -amylase contributes to starch binding and raw starch degrading," Biochem. J. 350: 477-484 (2000).
  • Amylases have been used in textile processing, laundry and cleaning compositions, desizing compositions, and in baking, starch liquefaction and processing. Thus, there is a continuing need to identify ⁇ -amylases that are easier to produce at reduced costs, improve cost margins, deliver plant capacity savings, and higher activity products.
  • an aspect is directed to an ⁇ -amylase from Bacillus sp. 195 that can be produced in an increased amount and at lower cost, as well addressing other needs in the industry. These variants can be used in a variety of compositions and processes that use ⁇ - amylases.
  • An object is to provide a nucleic acid, in one alternative an optimized nucleic acid depicted in FIG. 2 (SEQ ID NO: 2).
  • Another aspect provides for the ⁇ -amylase gene being operably linked to a nucleic acid sequence encoding a signal peptide of Bacillus licheniformis ⁇ - amylase or a truncated polypeptide thereof.
  • nucleic acid which encodes a truncated form of the polypeptide depicted in FIG. 4, wherein the truncation can occur at any residue after amino acid 491 ⁇ e.g., amino acid 492, 494, 504, 509, after any starch binding domain, and the like).
  • a further aspect provides for the full-length polypeptide of FIG. 4 or any carboxy- terminal truncated product after residue 491.
  • a further embodiment provides for a vector operably linked to the nucleic acid encoding the aforementioned polypeptides.
  • the isolated host cell can be a prokaryote or eukaryote.
  • the isolated host cell can be a bacterium (e.g., B. subtilis, B. licheniformis, B. lentus, B. brevis, B. stearothermophilus, B. alkalophilus, B. amyloliquefaciens, B. coagulans, B. circulans, B. lautus, B. thuringiensis, Streptomyces lividans, S. murium, or Escherichia col ⁇ ).
  • a detergent additive comprising a polypeptide described herein, wherein the detergent additive is optionally in the form of a non-dusting granulate, microgranulate, stabilized liquid, gel, or protected enzyme.
  • the polypeptide in the detergent additive can be a truncated polypeptide as described above.
  • the detergent additive can contain about 0.02 mg to about 200 mg of polypeptide per gram of the detergent additive.
  • the detergent additive can further comprise an enzyme selected from the group consisting of a protease, a lipase, a peroxidase, an oxidase, an amylolytic enzyme, a cellulase, a polyesterase, and any combination thereof.
  • a detergent composition comprising any of the described detergent additives.
  • a detergent composition can optionally comprise one or more of: a surfactant, a bleaching system or bleach, a detergent builder, a polymer, a stabilizing agent, a fabric conditioner, a foam booster, a suds suppressor, an anti-corrosion agent, a dye, a perfume, a soil suspending agent, a tarnish inhibitor, an optical brightener, or a bacteriocide.
  • a detergent composition can comprise or further comprise an additional enzyme, wherein the enzyme is a protease, a lipase, a peroxidase, an oxidase, an amylolytic enzyme, a cellulase, a polyesterase, or any combination thereof.
  • the enzyme is a protease, a lipase, a peroxidase, an oxidase, an amylolytic enzyme, a cellulase, a polyesterase, or any combination thereof.
  • Another aspect contemplates a manual or automatic dishwashing detergent composition comprising a polypeptide described herein.
  • Yet a further aspect contemplates a method of washing dishes comprising applying a manual or automatic dishwashing detergent described herein to a dish or dishes in need thereof.
  • the method of washing the dishes contemplates adding the dishwashing detergent in an amount such that the wash liquor contains a polypeptide described herein in the amount of about 0.01 ppm to about 4 ppm.
  • Another aspect contemplates a laundry detergent composition comprising a detergent additive described herein. Yet a further aspect contemplates a method of cleaning a textile comprising washing a soiled textile in solution with a detergent composition described herein. The method further contemplates having the polypeptide described herein in an amount in the solution of about 0.01 to about 2 ppm in the solution.
  • FIGS. IA-B Nucleotide coding sequence of Bacillus sp. 195 ⁇ -amylase (Accession No. AB006823). The nucleotide sequence encoding the amyl95 signal peptide is underlined. The STOP-codon is indicated in bold. SEQ ID NO: 1.
  • FIG. 2. Nucleotide coding sequence of Bacillus sp. 195 ⁇ -amylase after codon optimization. The nucleotide sequence encoding the mature amyl95 protein is preceded by a nucleotide sequence encoding the signal peptide of the B. licheniformis ⁇ -amylase (LAT) (SEQ ID NO: 2). The nucleotide sequence encoding the LAT signal peptide is underlined. The stop- codon is indicated in bold. Amino acid codon optimization was performed by GeneArt® (GeneArt GmbH, Germany).
  • FIG. 3 Polypeptide sequence of Amy 195 (SEQ ID NO: 3).
  • the signal sequence is residues 1-46 (underlined).
  • the mature Amy 195 begins at residue 47.
  • the codons encoding the bold, underlined residues were replaced with a stop codon to generate the genetically truncated forms.
  • Y511, K521 and V526, using the numbering of Figure 3 are the last amino acid residues of the genetically truncated forms.
  • FIG. 4 Amy 195 amino acid sequence depicted as a heterologous fusion protein with the LAT signal sequence (SEQ ID NO: 4).
  • the lower case letters in the carboxy terminus form starch binding domains belonging to family CBD-25.
  • the lower case letters (residues 1-29) at the amino terminus represent the amylase signal sequence obtained from B. licheniformis.
  • the capital letters depict the catalytic domain of the enzyme including subdomains A, B, and C, which are expected to span approximately residues 30 to 105 and 208 to 300 for subdomain A; approximately residues 106 to 207 for subdomain B; and approximately 301 to 492 for subdomain C.
  • Val492 is the last amino acid residue of the proteolytically truncated form (using the numbering in Figure 4. Note that subdomain A is discontinuous in the linear sequence of the polypeptide.
  • FIG. 5 Schematic of the linkage of the nucleic acid encoding the ⁇ -amylase of Bacillus sp. 195 to the nucleic acid encoding the LAT signal sequence and to the LAT terminator sequence in the pHPLT vector.
  • the pHPLT plasmid is known in the art (see, e.g., US Pat. No. 5,871,550, and 6,562,612, and US Pat. Publication 20060014265).
  • the pHPLT vector was introduced into, and the amyl95 gene expressed in, a nine protease deleted B. subtilis strain (see US20050202535A1).
  • FIG. 6. Depicts the results for performance assay for the Amy 195 enzyme, as a function of pH and protein concentration.
  • the fraction assayed is that indicated as e-pool on Fig. 10.
  • the assay was carried out in a 96-well plate assay.
  • One-quarter inch textile swatches soiled with colored rice starch (Testfabrics Inc., CS28 colored rice starch) were placed in each well.
  • Buffer: 25 mM HEPES pH 8.0 or 25 mM CAPS pH 10.3 was added to each well.
  • the plate was pre- incubated at 4O 0 C.
  • the reaction was started by the addition of Amy 195 enzyme to a final concentration of 0 ppm to 2 ppm.
  • the plate was incubated at 40 0 C for 10 minutes with shaking at 750 rpm in an Eppendorf Thermomix apparatus.
  • FIG. 7. Performance assay of all proteolytic fragments as shown in Fig. 10. The assay was carried out and plotted as described in Example 3 and the legend of FIG. 6 at pH 8. The data shows that all fractions perform equal to or better than OxAm (Genencor International, Inc.).
  • FIG. 8. SDS polyacrylamide gel was run and shows the expression of the genetically truncated Amyl 95 molecules. Truncations shown are C-terminally of residue 494, 504, and 509, using the numbering of Fig. 4. Expression cultures were carried out as described in Example 2 and concentration was estimated with OxAm used as the density standard.
  • FIG. 9 Application performance of genetically truncated Amy 195 amylase variants. Performance assays were conducted using culture supernatant without further purification.
  • FIG. 10 Analysis of fractions from a ⁇ -cyclodextrin column, which contained Amyl 95 proteolytic fragments. Fractions are indicated by “wl” ("wash 1" eluted from column with 25 mM bis-tris propane, pH 8.5, 2 mM CaCl 2 ); “w2" ("wash 2" was eluted with a further aliquot of the same buffer); and “e-pool” (fractions eluted with 50 mM ⁇ -cyclodextrin in the same buffer and loaded on the gel at three different concentrations).
  • the matrix for the ⁇ -cyclodextrin column was synthesized in-house by standard protocol from ⁇ -cyclodextrin (Sigma Aldrich Cat. No. c4767) and epoxy-activated-Sepharose- ⁇ B (GE Healthcare, NJ. Cat. No. 17-0480-01).
  • the application deals with compositions comprising Bacillus sp. no. 195 ⁇ -amylase and methods of use. Also disclosed are variations on how to produce ⁇ -amylase and heterologous forms by modifying the polypeptide sequence of the mature ⁇ -amylase.
  • Laundry and dish soils vary greatly in composition and therefore also in their ability to be removed. Relatively few amylases in the market place can be used for both laundry and dish applications.
  • the ⁇ -amylase obtained from Bacillus sp. 195 does not show high identity with any of bacterial amylases in commercial use.
  • one aspect is to use the wild-type protein as the backbone for identifying variants thereof with enhanced characteristics for dish and laundry by, e.g., reducing Ca 2+ dependence, improving LAS stability, improving pH ranges, improving temperature ranges, enhanced specific activity, and the like.
  • IPTG isopropyl ⁇ -D-thiogalactoside kDa kilo Dalton
  • amylase or "amylolytic enzyme” are meant to include any amylase such as glucoamylases, ⁇ -amylase, ⁇ -amylases, the wild-type ⁇ -amylase of Bacillus sp., such as B. licheniformis and B. subtilis.
  • Amylase shall mean an enzyme that is, among other things, capable of catalyzing the degradation of starch.
  • Amylases are hydrolases that cleave the ⁇ -D- (l- ⁇ 4) O-glycosidic linkages in starch.
  • ⁇ -amylases (EC 3.2.1.1; ⁇ -D-(l ⁇ 4)-glucan glucanohydrolase) are defined as endo-acting enzymes cleaving ⁇ -D-(l ⁇ 4) O-glycosidic linkages within the starch molecule in a random fashion.
  • the exo-acting amylolytic enzymes such as ⁇ -amylases (EC 3.2.1.2; ⁇ -D-(l ⁇ 4)-glucan maltohydrolase) and some product-specific amylases like maltogenic ⁇ -amylase (EC 3.2.1.133) cleave the starch molecule from the non-reducing end of the substrate, ⁇ - Amylases, ⁇ -glucosidases (EC 3.2.1.20; ⁇ -D- glucoside glucohydrolase), glucoamylase (EC 3.2.1.3; ⁇ -D-(l— >4)-glucan glucohydrolase), and product-specific amylases can produce malto-oligosaccharides of a specific length from starch.
  • variant enzyme are meant an ⁇ -amylase protein of Bacillus sp. no. 195 that has been modified for example by using a signal sequence of another ⁇ -amylase and has been sequence optimized.
  • parent enzymes shall mean enzymes and polypeptides from which the ⁇ -amylase variant polypeptides are derived.
  • the parent enzyme may be a wild-type enzyme or an ⁇ -amylase that had previously been recombinantly engineered.
  • the ⁇ -amylase polypeptide can be a recombinantly engineered enzyme.
  • the ⁇ -amylase variant can also be a fusion protein containing a heterologous ⁇ -amylase polypeptide.
  • the ⁇ -amylase protein can comprise the signal peptide of B. licheniformis ⁇ -amylase (LAT) linked to the mature protein of another Bacillus ⁇ -amylase.
  • LAT B. licheniformis ⁇ -amylase
  • variant may be used interchangeably with the term "mutant”.
  • Variants shall include polypeptides as well as nucleic acids.
  • Variants shall include insertions; these variants can further contain additional substitutions, insertions, transversions, truncations, and/or inversions, at one or more locations.
  • Variants can include sequences that are complementary to sequences that are capable of hybridizing to the nucleotide sequences presented herein.
  • ⁇ -amylase of Bacillus sp. 195 By “ ⁇ -amylase of Bacillus sp. 195," “Amy 195 ⁇ -amylase”, or “Amy 195" are meant the nucleic acid (FIG. 1) encoding the protein of FIG. 3 or the synthetic nucleic acid sequence of FIG. 2, which also encodes the protein of FIG. 4. It can also include any truncated form (i.e., truncated after residue 492 naturally, recombinantly or synthetically, an enzyme form without the signal sequence, or a form with a heterologous signal sequence and truncated at the carboxy terminus). In addition, the terms can include any derivative sequence of FIG. 3 and underlying DNA sequence containing amino acid substitutions, deletions, insertions, or amino acid extensions at the N- or C-termini that are not found in nature.
  • isolated is meant that the sequence is at least substantially free from at least one other component that the sequence is naturally associated and found in nature.
  • purified is meant that the material is in a relatively pure state, e.g., at least about 90% pure, or at least about 95% pure, or at least about 98% pure.
  • thermostability is meant the ability of the enzyme to retain activity after exposure to elevated temperatures.
  • the thermostability of an enzyme, such as an ⁇ -amylase is measured by its half-life.
  • the half-life (ti ⁇ ) is the time in minutes, hours, or days, during which half the enzyme activity is lost under defined conditions.
  • the half-life value is calculated by measuring the residual ⁇ -amylase activity.
  • pH range is meant the ability of the enzyme to exhibit catalytic activity from acidic to basic conditions spanning 5 or more pH units.
  • amino acid sequence is synonymous with the term “polypeptide” and/or the term “protein”. In some instances, the term “amino acid sequence” is synonymous with the term “peptide”. In some instances, the term “amino acid sequence” is synonymous with the term “enzyme”.
  • nucleotide sequence or “nucleic acid sequence” refers to an oligonucleotide sequence or polynucleotide sequence, and variant, homologues, fragments and derivatives thereof (such as portions thereof).
  • the nucleotide sequence may be of genomic or synthetic or recombinant origin, and may be double-stranded or single-stranded whether representing the sense or anti-sense strand.
  • nucleotide sequence includes genomic DNA, cDNA, synthetic DNA, and RNA.
  • homologous sequence shall mean an entity having a certain degree of identity with the subject amino acid sequences and the subject nucleotide sequences.
  • a homologous sequence is taken to include an amino acid sequence at least 75%, 80%, 85% or 90% identical, or at least 95%, 96%, 97%, 98% or 99% identical to the subject sequence.
  • homologues will comprise the same active sites as the subject amino acid sequence.
  • hybridization shall include the process by which a strand of nucleic acid joins with a complementary strand through base pairing, as well as the process of amplification as carried out in polymerase chain reaction (PCR) technologies.
  • PCR polymerase chain reaction
  • the ⁇ -amylase variant nucleic acid may exist as single- or double-stranded DNA or RNA, an RNA/DNA heteroduplex or an RNA/DNA copolymer.
  • copolymer refers to a single nucleic acid strand that comprises both ribonucleotides and deoxyribonucleotides.
  • the ⁇ -amylase nucleic acid may even be codon optimized to further increase expression.
  • synthetic shall refer to that which is produced by in vitro chemical or enzymatic synthesis. It includes, but is not limited to, ⁇ -amylase variant nucleic acids made with optimal codon usage for host organisms, such as but not limited to Pichia, Streptomyces, Trichoderma reesei, and Hansenula.
  • transformed cell shall include cells that have been genetically altered by use of recombinant DNA techniques. Transformation typically occurs by insertion of one or more nucleotide sequences into a cell.
  • the inserted nucleotide sequence may be a heterologous nucleotide sequence (i.e. is a sequence that is not natural to the cell that is to be transformed, such as a sequence encoding a fusion protein).
  • operably linked shall mean that the components described are in a relationship permitting them to function in their intended manner.
  • a regulatory sequence operably linked to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under condition compatible with the control sequences.
  • biologically active shall refer to a sequence having a similar structural function (but not necessarily to the same degree), and/or similar regulatory function (but not necessarily to the same degree) and/or similar biochemical function (but not necessarily to the same degree) of the naturally occurring sequence.
  • the nucleic acid sequence of Bacillus sp. no. 195 can be operably linked to various promoters and regulators in a vector and expressed in various host cells.
  • the 2,103 residue nucleic acid sequence is disclosed at GenBank Accession No. AB006823 ⁇ see FIGS. IA-B).
  • the polypeptide sequence encoded by the 2,103 residue nucleic acid sequence is disclosed at GenBank Accession No. BAA22082.1 and is 700 amino acids in length (FIG. 3).
  • the first 46 amino acids form the signal peptide. Cleavage occurs after residue 46 (Ala46).
  • the 49.5 kDa form terminates with residue Val492 (sequence in FIG. 4), i.e., proteolytic cleavage occurs after residue 492.
  • the two longer forms, 69 kDa and 60 kDa respectively contain one and two starch binding domains as discussed in Sumitani et al., (2000). Genetically C-terminally truncated forms were created with the products having C-terminal residues of Tyr494, Lys504, and Val509. These recombinantly produced truncation products all expressed at high levels in a nine protease deleted B. subtilis strain (see US20050202535A1) under LAT promoter and signal sequence control as displayed in FIG. 8.
  • One aspect contemplates fusion proteins, wherein the signal sequences of amylases from other microorganisms, such as yeast or other bacterium, are used attached to the mature protein of Bacillus sp. no. 195.
  • the first 46 amino acids that form the signal sequence of FIG. 3 can be removed and exchanged with the signal sequence from another microorganism or a variant of a signal sequence from another microorganism.
  • the LAT sequence underlined and lower case
  • B. subtilis amylase amyE signal sequence for expression in B. subtilis
  • B. subtilis aprE promoter B. subtilis aprE promoter
  • signal sequences also for expression in B. subtilis.
  • a DNA sequence encoding the Amy 195 ⁇ -amylase or variant thereof produced by methods described herein, or by any alternative methods known in the art, can be expressed, in enzyme form, using an expression vector which typically includes control sequences encoding a suitable promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.
  • the Bacillus sp. no. 195 can be grown at 30°C as described in T. Kawaguchi et al., "Purification and some properties of a Haim-sensitive ⁇ -amylase from newly isolated Bacillus sp. No. 195," Biosc. Biotechnol. Biochem. 56: 1792-1796 (1992).
  • a gene encoding the ⁇ -amylase operably linked to a vector can be transfected in to another organism, such as Streptomyces lividans TK-24 and cultured under appropriate conditions as described in J. Sumitani et al., "New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp.
  • the recombinant expression vector carrying the DNA sequence encoding an Amy 195 ⁇ - amylase or variant thereof may be any vector that may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced.
  • the vector may be an autonomously replicating vector, i.e., a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, a bacteriophage or an extrachromosomal element, mini-chromosome or an artificial chromosome.
  • the vector may be one which, when introduced into an isolated host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.
  • the integrated gene may also be amplified to create multiple copies of the gene in the chromosome by use of an amplifiable construct driven by antibiotic selection or other selective pressure, such as an essential regulatory gene or by complementation through dose effect of an essential metabolic pathway gene.
  • the DNA sequence should be operably linked to a suitable promoter sequence.
  • the promoter may be any DNA sequence that shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell.
  • Exemplary promoters for directing the transcription of the DNA sequence encoding an Amy 195 ⁇ -amylase or variant thereof, especially in a bacterial host, are the promoter of the lac operon of E.
  • the Streptomyces coelicolor agarase gene dagA or eel A promoters the promoters of the Bacillus licheniformis ⁇ -amylase gene (amyL), the promoters of the Bacillus stearothermophilus maltogenic amylase gene (amyM), the promoters of the Bacillus amyloliquefaciens ⁇ -amylase (amyQ), the promoters of the Bacillus subtilis xylA and xylB genes etc.
  • examples of useful promoters are those derived from the gene encoding Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral ⁇ -amylase, A. niger acid stable ⁇ -amylase, A. niger glucoamylase, Rhizomucor miehei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase, or A. nidulans acetamidase.
  • TAKA amylase Rhizomucor miehei aspartic proteinase
  • Aspergillus niger neutral ⁇ -amylase A. niger acid stable ⁇ -amylase
  • A. niger glucoamylase Rhizomucor miehei lipase
  • Rhizomucor miehei lipase Rhizomucor miehe
  • a suitable promoter can be selected, for example, from a bacteriophage promoter including a T7 promoter and a phage lambda promoter.
  • suitable promoters for the expression in a yeast species include but are not limited to the Gal 1 and Gal 10 promoters of Saccharomyces cerevisiae and the Pichia pastoris AOXl or A0X2 promoters.
  • the CBHII (cellobiohydrolase II) promoter may be used.
  • An expression vector may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably linked to the DNA sequence encoding Amy 195 ⁇ -amylase or variants thereof.
  • Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter.
  • the vector may further comprise a DNA sequence enabling the vector to replicate in the host cell. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUBHO, pE194, pAMBl, and pIJ702.
  • the vector may also comprise a selectable marker, e.g., a gene the product of which complements a defect in the isolated host cell, such as the dal genes from B. subtilis or B. licheniformis, or a gene that confers antibiotic resistance such as, e.g., ampicillin, kanamycin, chloramphenicol or tetracycline resistance.
  • a selectable marker e.g., a gene the product of which complements a defect in the isolated host cell, such as the dal genes from B. subtilis or B. licheniformis, or a gene that confers antibiotic resistance such as, e.g., ampicillin, kanamycin, chloramphenicol or tetracycline resistance.
  • the vector may comprise Aspergillus selection markers such as amdS, argB, niaD and xxsC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, such as known in the art.
  • the ⁇ -amylase comprises a signal sequence at the amino terminus that permits secretion into the culture medium. If desirable, this signal peptide may be replaced by a different sequence, conveniently accomplished by substitution of the DNA sequences encoding the respective signal polypeptide.
  • the signal sequences of ⁇ -amylases are typically characterized as having three domains, an N-terminal domain, an H-domain, and a C-terminal domain and typically range from 18 to 35 residues in length, but can be longer as exemplified with the Amy 195 signal sequence.
  • the expression vector typically includes the components of a cloning vector, such as, for example, an element that permits autonomous replication of the vector in the selected host organism and one or more phenotypically detectable markers for selection purposes.
  • the expression vector normally comprises control nucleotide sequences such as a promoter, operator, ribosome binding site, translation initiation signal and optionally, a repressor gene or one or more activator genes.
  • the expression vector may comprise a sequence coding for an amino acid sequence capable of targeting the ⁇ -amylase variant to a host cell organelle such as a peroxisome, or to a particular host cell compartment.
  • a targeting sequence includes but is not limited to the sequence, SKL.
  • the nucleic acid sequence of the ⁇ -amylase variant is operably linked to the control sequences in proper manner with respect to expression.
  • FIG. 5 A portion of an exemplary vector is depicted in FIG. 5.
  • the cell may be transformed with the DNA construct encoding the enzyme, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome.
  • This integration is generally considered to be an advantage, as the DNA sequence is more likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional methods, e.g., by homologous or heterologous recombination.
  • the cell may be transformed with an expression vector as described above in connection with the different types of host cells.
  • suitable bacterial host organisms are Gram positive bacterial species such as Bacillaceae including Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus lautus, Bacillus megaterium, and Bacillus thuringiensis; Streptomyces species such as Streptomyces murinus; lactic acid bacterial species including Lactococcus spp. such as Lactococcus lactis; Lactobacillus spp.
  • strains of a Gram negative bacterial species belonging to Enterobacteriaceae including E. coli, or to Pseudomonadaceae can be selected as the host organism.
  • a suitable yeast host organism can be selected from the biotechnologically relevant yeasts species such as but not limited to yeast species such as Pichia sp., Hansenula sp., or Kluyveromyces, Yarrowinia, Schizosaccharomyces species or a species of Saccharomyces, including Saccharomyces cerevisiae or a species belonging to Schizosaccharomyces such as, for example, S. pombe species.
  • a strain of the methylotrophic yeast species, Pichia pastoris can be used as the host organism.
  • the host organism can be a Hansenula species.
  • Suitable host organisms among filamentous fungi include species of Aspergillus, e.g., Aspergillus niger, Aspergillus oryzae, Aspergillus tubigensis, Aspergillus awamori, or Aspergillus nidulans.
  • strains of a Fusarium species e.g., Fusarium oxysporum or of a Rhizomucor species such as Rhizomucor miehei can be used as the host organism.
  • Other suitable strains include Thermomyces and Mucor species.
  • Trichoderma reesei can be used as a host.
  • a suitable procedure for transformation of Aspergillus host cells includes, for example, that described in EP 238023.
  • a method of producing ⁇ -amylase Amy 195 or variant thereof comprising cultivating a host cell as described above under conditions conducive to the production of the enzyme and recovering the enzyme from the cells and/or culture medium.
  • the medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of Amy 195 ⁇ -amylase or variant thereof. Suitable media and media components are available from commercial suppliers or may be prepared according to published recipes (e.g., as described in catalogues of the American Type Culture Collection).
  • an enzyme secreted from the host cells is used in a whole broth preparation.
  • the preparation of a spent whole fermentation broth of a recombinant microorganism can be achieved using any cultivation method known in the art resulting in the expression of an alpha-amylase. Fermentation may, therefore, be understood as comprising shake flask cultivation, small- or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermenters performed in a suitable medium and under conditions allowing the amylase to be expressed or isolated.
  • the term "spent whole fermentation broth” is defined herein as unfractionated contents of fermentation material that includes culture medium, extracellular proteins (e.g., enzymes), and cellular biomass. It is understood that the term "spent whole fermentation broth” also encompasses cellular biomass that has been lysed or permeabilized using methods well known in the art.
  • An enzyme secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulfate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.
  • polynucleotide in a vector is operably linked to a control sequence that is capable of providing for the expression of the coding sequence by the host cell, i.e. the vector is an expression vector.
  • the control sequences may be modified, for example by the addition of further transcriptional regulatory elements to make the level of transcription directed by the control sequences more responsive to transcriptional modulators.
  • the control sequences may in particular comprise promoters.
  • Host cells may be cultured under suitable conditions that allow expression of the Amy 195 ⁇ -amylase or variant thereof.
  • Expression of the enzymes may be constitutive such that they are continually produced, or inducible, requiring a stimulus to initiate expression.
  • protein production can be initiated when required by, for example, addition of an inducer substance to the culture medium, for example dexamethasone or IPTG or Sepharose.
  • Polypeptides can also be produced recombinantly in an in vitro cell-free system, such as the TnTTM (Promega) rabbit reticulocyte system.
  • An Amy 195 ⁇ -amylase, or variant thereof, expressing host also can be cultured in the appropriate medium for the host, under aerobic conditions. Shaking or a combination of agitation and aeration can be provided, with production occurring at the appropriate temperature for that host, e.g., from about 25°C to about 75°C (e.g., 30°C to 45 0 C), depending on the needs of the host and production of the desired ⁇ -amylase variant. Culturing can occur from about 12 to about 100 hours or greater (and any hour value there between, e.g., from 24 to 72 hours).
  • the culture broth is at a pH of about 5.5 to about 8.0, again depending on the culture conditions needed for the host relative to production of the ⁇ -amylase variant.
  • Materials and Methods for Protein Purification Fermentation, separation, and concentration techniques are well known in the art and conventional methods can be used in order to prepare a concentrated Amy 195 ⁇ -amylase or variant thereof containing solution.
  • a fermentation broth is obtained, the microbial cells and various suspended solids, including residual raw fermentation materials, are removed by conventional separation techniques in order to obtain an amylase solution. Filtration, centrifugation, microfiltration, rotary vacuum drum filtration, ultrafiltration, centrifugation followed by ultrafiltration, extraction, or chromatography, or the like, are generally used. It is desirable to concentrate the Amy 195 ⁇ -amylase or variant thereof containing solution in order to optimize recovery. Use of unconcentrated solutions requires increased incubation time in order to collect the purified enzyme precipitate.
  • the enzyme containing solution is concentrated using conventional concentration techniques until the desired enzyme level is obtained. Concentration of the enzyme containing solution may be achieved by any of the techniques discussed herein. Exemplary methods of purification include but are not limited to rotary vacuum filtration and/or ultrafiltration.
  • the enzyme solution is concentrated into a concentrated enzyme solution until the enzyme activity of said concentrated Amy 195 ⁇ -amylase or variant thereof containing solution is at least about 4 g/L (e.g., at least about 4.8 g/L, or at least 5.6 g/L or even higher). These concentrations can be increased to as much as about 25 g/L under certain applications.
  • precipitation agent for purposes of purification is meant a compound effective to precipitate the Amy 195 ⁇ -amylase or variant thereof from the concentrated enzyme solution in solid form, whatever its nature may be, i.e. crystalline, amorphous or blend of both. Precipitation can be performed using, for example, a metal halide precipitation agent.
  • Metal halide precipitation agents include but are not limited to: alkali metal chlorides, alkali metal bromides and blends of two or more of these metal halides.
  • Exemplary metal halides include sodium chloride, potassium chloride, sodium bromide, potassium bromide and blends of two or more of these metal halides.
  • the metal halide precipitation agent, sodium chloride can also be used as a preservative.
  • the metal halide precipitation agent is used in an amount effective to precipitate the Amy 195 ⁇ -amylase or variant thereof.
  • the selection of at least an effective amount and an optimum amount of metal halide effective to cause precipitation of the enzyme, as well as the conditions of the precipitation for maximum recovery including incubation time, pH, temperature and concentration of enzyme, will be readily apparent to one of ordinary skill in the art, after routine testing.
  • the concentration of the metal halide precipitation agent will depend, among others, on the nature of the specific Amy 195 ⁇ -amylase variant and on its concentration in the concentrated enzyme solution. Another alternative to effect precipitation of the enzyme is to use organic compounds.
  • Exemplary organic compound precipitating agents include: 4-hydroxybenzoic acid, alkali metal salts of 4-hydroxybenzoic acid, alkyl esters of 4-hydroxybenzoic acid, and blends of two or more of these organic compounds.
  • the addition of said organic compound precipitation agents can take place prior to, simultaneously with or subsequent to the addition of the metal halide precipitation agent, and the addition of both precipitation agents, organic compound and metal halide, may be carried out sequentially or simultaneously.
  • the organic precipitation agents are selected from the group consisting of alkali metal salts of 4- hydroxybenzoic acid, such as sodium or potassium salts, and linear or branched alkyl esters of 4- hydroxybenzoic acid, wherein the alkyl group contains from 1 to 12 carbon atoms, and blends of two or more of these organic compounds.
  • the organic compound precipitation agents can be, for example, linear or branched alkyl esters of 4-hydroxybenzoic acid, wherein the alkyl group contains from 1 to 10 carbon atoms, and blends of two or more of these organic compounds.
  • Exemplary organic compounds are linear alkyl esters of 4-hydroxybenzoic acid, wherein the alkyl group contains from 1 to 6 carbon atoms, and blends of two or more of these organic compounds.
  • Methyl esters of 4-hydroxybenzoic acid, propyl esters of 4-hydroxybenzoic acid, butyl ester of 4-hydroxybenzoic acid, ethyl ester of 4-hydroxybenzoic acid and blends of two or more of these organic compounds can also be used.
  • Additional organic compounds also include but are not limited to 4-hydroxybenzoic acid methyl ester (named methyl PARABEN), 4- hydroxybenzoic acid propyl ester (named propyl PARABEN), which also are both amylase preservative agents.
  • Addition of the organic compound precipitation agent provides the advantage of high flexibility of the precipitation conditions with respect to pH, temperature, Amy 195 ⁇ -amylase or variant thereof concentration, precipitation agent concentration, and time of incubation.
  • the organic compound precipitation agent is used in an amount effective to improve precipitation of the enzyme by means of the metal halide precipitation agent.
  • the selection of at least an effective amount and an optimum amount of organic compound precipitation agent, as well as the conditions of the precipitation for maximum recovery including incubation time, pH, temperature and concentration of enzyme, will be readily apparent to one of ordinary skill in the art, in light of the present disclosure, after routine testing.
  • at least about 0.01% w/v of organic compound precipitation agent is added to the concentrated enzyme variant solution and usually at least about 0.02% w/v.
  • no more than about 0.3% w/v of organic compound precipitation agent is added to the concentrated enzyme variant solution and usually no more than about 0.2% w/v.
  • the concentrated enzyme solution containing the metal halide precipitation agent, and the organic compound precipitation agent, can be adjusted to a pH, which will, of necessity, depend on the enzyme to be purified.
  • the pH is adjusted at a level near the isoelectric point of the amylase.
  • the pH can be adjusted at a pH in a range from about 2.5 pH units below the isoelectric point (pi) up to about 2.5 pH units above the isoelectric point.
  • the incubation time necessary to obtain a purified enzyme precipitate depends on the nature of the specific enzyme, the concentration of enzyme, and the specific precipitation agent(s) and its (their) concentration.
  • the time effective to precipitate the enzyme is between about 1 to about 30 hours; usually it does not exceed about 25 hours. In the presence of the organic compound precipitation agent, the time of incubation can still be reduced to less about 10 hours and in most cases even about 6 hours.
  • the temperature during incubation is between about 4°C and about 50°C.
  • the method is carried out at a temperature between about 10°C and about 45 °C (e.g., between about 20°C and about 40°C).
  • the optimal temperature for inducing precipitation varies according to the solution conditions and the enzyme or precipitation agent(s) used.
  • the overall recovery of purified enzyme precipitate, and the efficiency with which the process is conducted, is improved by agitating the solution comprising the enzyme, the added metal halide and the added organic compound.
  • the agitation step is done both during addition of the metal halide and the organic compound, and during the subsequent incubation period. Suitable agitation methods include mechanical stirring or shaking, vigorous aeration, or any similar technique.
  • the purified enzyme is then separated from the dissociated pigment and other impurities and collected by conventional separation techniques, such as filtration, centrifugation, microfiltration, rotary vacuum filtration, ultrafiltration, press filtration, cross membrane microfiltration, cross flow membrane microfiltration, or the like. Further purification of the purified enzyme precipitate can be obtained by washing the precipitate with water. For example, the purified enzyme precipitate is washed with water containing the metal halide precipitation agent, or with water containing the metal halide and the organic compound precipitation agents.
  • the Amy 195 ⁇ -amylase or variant thereof accumulates in the culture broth.
  • the culture broth is centrifuged or filtered to eliminate cells, and the resulting cell-free liquid is used for enzyme purification.
  • the cell-free broth is subjected to salting out using ammonium sulfate at about 70% saturation; the 70% saturation-precipitation fraction is then dissolved in a buffer and applied to a column such as a Sephadex G-IOO column, and eluted to recover the enzyme-active fraction.
  • a conventional procedure such as ion exchange chromatography may be used.
  • Purified enzymes are useful for laundry and cleaning applications. For example, they can be used in laundry detergents and spot removers. They can be made into a final product that is either liquid (solution, slurry) or solid (granular, powder).
  • the precipitate was recovered by centrifugation at 10,000 x g (20 minutes and 4°C) and re-dissolved in 20 mM Tris/HCl buffer (pH 7.0) containing 5 mM CaCl 2 .
  • the solubilized precipitate was then dialyzed against the same buffer.
  • the dialyzed sample was then applied to a Sephacryl S- 200 column, which had previously been equilibrated with 20 mM Tris/HCl buffer, (pH 7.0), 5 mM CaCl 2 , and eluted at a linear flow rate of 7 cm/hr with the same buffer. Fractions from the column were collected and assessed for activity as judged by enzyme assay and SDS-PAGE.
  • the protein was further purified as follows.
  • a Toyopearl HW55 column (Tosoh Bioscience, Montgomeryville, PA; Cat. No. 19812) was equilibrated with 20 mM Tris/HCl buffer (pH 7.0) containing 5 mM CaCl 2 and 1.5 M (M-U) 2 SO 4 .
  • the enzyme was eluted with a linear gradient of 1.5 to 0 M (NH 4 ) 2 SO 4 in 20 mM Tris/HCL buffer, pH 7.0 containing 5 mM CaCl 2 .
  • the active fractions were collected, and the enzyme precipitated with (NH 4 ) 2 SO 4 at 80% saturation. The precipitate was recovered, re-dissolved, and dialyzed as described above.
  • the dialyzed sample was then applied to a Mono Q HR5/5 column (Amersham Pharmacia; Cat. No. 17-5167-01) previously equilibrated with 20 mM Tris/HCl buffer (pH 7.0) containing 5 mM CaCl 2 , at a flow rate of 60 mL/hour.
  • the active fractions are collected and added to a 1.5 M (NH 4 ) 2 SO 4 solution.
  • the active enzyme fractions were re-chromatographed on a Toyopearl HW55 column, as before, to yield a homogeneous enzyme as determined by SDS-PAGE. See J.
  • the enzyme can be partially purified as generally described above by removing cells via flocculation with polymers.
  • the enzyme can be purified by microfiltration followed by concentration by ultrafiltration using available membranes and equipment.
  • the enzyme does not need to be purified, and whole broth culture can be lysed and used without further treatment.
  • the enzyme can then be processed, for example, into granules.
  • the Amy 195 ⁇ -amylase and variant(s) thereof possess valuable properties allowing for a variety of industrial applications. These enzymes can be used as a component in washing, dishwashing and hard-surface cleaning detergent compositions. They can be formulated as part of a detergent additive, as part of a detergent composition, as part of an automatic or hand wash dishwashing composition, and the like.
  • the Amy 195 ⁇ -amylase and variant(s) thereof may be incorporated in concentrations conventionally employed in detergents. It is at present contemplated that, in the detergent compositions, the ⁇ -amylase may be added in amount corresponding to 0.00001 — 1 mg (calculated as pure enzyme protein) of ⁇ -amylase per liter of wash/diswash liquor.
  • an Amy 195 ⁇ -amylase or variant thereof may typically be a component of a detergent composition, as the only enzyme or with other enzymes including other amylolytic enzymes. As such, it may be included in the detergent composition in the form of a non-dusting granulate, a stabilized liquid, or a protected enzyme. Non-dusting granulates may be produced, e.g., as disclosed in U.S. Patent Nos. 4,106,991 and 4,661,452 and may optionally be coated by methods known in the art.
  • waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1,000 to 20,000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids.
  • PEG poly(ethylene oxide) products
  • PEG polyethyleneglycol
  • Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods.
  • a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid
  • Other enzyme stabilizers are well known in the art.
  • Protected enzymes may be prepared according to the method disclosed in for example EP 238,216.
  • Polyols have long been recognized as stabilizers of proteins, as well as improving protein solubility. See, e.g., J. K. Kaushik et al., "Why is trehalose an exceptional protein stabilizer?" J. Biol. Chem. 278: 26458-65 (2003) and references cited therein; and Monica Conti et al.,
  • the detergent composition may be in any useful form, e.g., as powders, granules, pastes, or liquid.
  • a liquid detergent may be aqueous, typically containing up to about 70% of water and 0% to about 30% of organic solvent. It may also be in the form of a compact gel type containing only about 30% water.
  • the detergent composition comprises one or more surfactants, each of which may be anionic, nonionic, cationic, or zwitterionic.
  • the detergent will usually contain 0% to about 50% of anionic surfactant, such as linear alkylbenzenesulfonate (LAS); ⁇ -olefinsulfonate (AOS); alkyl sulfate (fatty alcohol sulfate) (AS); alcohol ethoxysulfate (AEOS or AES); secondary alkanesulfonates (SAS); ⁇ -sulfo fatty acid methyl esters; alkyl- or alkenylsuccinic acid; or soap.
  • anionic surfactant such as linear alkylbenzenesulfonate (LAS); ⁇ -olefinsulfonate (AOS); alkyl sulfate (fatty alcohol sulfate) (AS); alcohol ethoxysulfate (AEOS or AES); secondary alkanesulfonates (SAS);
  • the composition may also contain 0% to about 40% of nonionic surfactant such as alcohol ethoxylate (AEO or AE), carboxylated alcohol ethoxylates, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, or polyhydroxy alkyl fatty acid amide (as described for example in WO 92/06154).
  • nonionic surfactant such as alcohol ethoxylate (AEO or AE), carboxylated alcohol ethoxylates, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, or polyhydroxy alkyl fatty acid amide (as described for example in WO 92/06154).
  • the detergent composition may additionally comprise one or more other enzymes, such as lipase, another amylolytic enzyme, cutinase, protease, cellulase, peroxidase, and/or laccase in any combination.
  • the detergent may contain about 1% to about 65% of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, citrate, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTMPA), alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates ⁇ e.g., SKS-6 from Hoechst).
  • a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, citrate, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA
  • the detergent may also be unbuilt, i.e. essentially free of detergent builder.
  • the enzymes can be used in any composition compatible with the stability of the enzyme. Enzymes generally can be protected against deleterious components by known forms of encapsulation, for example, by granulation or sequestration in hydro gels. Enzymes, and specifically ⁇ -amylases, such as amyl95 molecules, either with or without starch binding domains, can be used in a variety of compositions including laundry and dishwashing applications, surface cleaners, as well as in compositions for ethanol production from starch or biomass.
  • the detergent may comprise one or more polymers.
  • examples include carboxymethylcellulose (CMC), poly(vinylpyrrolidone) (PVP), polyethyleneglycol (PEG), poly(vinyl alcohol) (PVA), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • the detergent may contain a bleaching system, which may comprise a H 2 O 2 source such as perborate or percarbonate, which may be combined with a peracid-forming bleach activator such as tetraacetylethylenediamine (TAED) or nonanoyloxybenzenesulfonate (NOBS).
  • a bleaching system which may comprise a H 2 O 2 source such as perborate or percarbonate, which may be combined with a peracid-forming bleach activator such as tetraacetylethylenediamine (TAED) or nonanoyloxybenzenesulfonate (NOBS).
  • TAED tetraacetylethylenediamine
  • NOBS nonanoyloxybenzenesulfonate
  • the bleaching system may comprise peroxyacids ⁇ e.g., the amide, imide, or sulfone type peroxyacids).
  • the bleaching system can also be an enzymatic bleaching system, for example, perhydrolase, such as that described in International PCT Application WO 2005/056783.
  • the enzymes of the detergent composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol; a sugar or sugar alcohol; lactic acid; boric acid or a boric acid derivative such as, e.g., an aromatic borate ester; and the composition may be formulated as described in, e.g., WO 92/19709 and WO 92/19708.
  • stabilizing agents e.g., a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid
  • boric acid or a boric acid derivative such as, e.g., an aromatic borate ester
  • the composition may be formulated as described in, e.g., WO 92/19709 and WO 92/19708.
  • the detergent may also contain other conventional detergent ingredients such as e.g., fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil- suspending agents, anti-soil redeposition agents, dyes, bactericides, tarnish inhibiters, optical brighteners, or perfumes.
  • fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil- suspending agents, anti-soil redeposition agents, dyes, bactericides, tarnish inhibiters, optical brighteners, or perfumes.
  • detergent compositions comprising the Amy 195 ⁇ -amylase or variants thereof can be formulated to include: 1) A detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising linear alkylbenzenesulfonate (calculated as acid) about 7% to about 12%; alcohol ethoxysulfate (e.g., Ci 2- I 8 alcohol, 1-2 ethylene oxide (EO)) or alkyl sulfate (e.g., Ci 6- I 8 ) about 1% to about 4%; alcohol ethoxylate (e.g., C] 4-I5 alcohol, 7 EO) about 5% to about 9%; sodium carbonate (e.g., Na 2 CO 3 ) about 14% to about 20%; soluble silicate (e.g., Na 2 O, 2SiO 2 ) about
  • a detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising linear alkylbenzenesulfonate (calculated as acid) about 6% to about 11%; alcohol ethoxysulfate (e.g., C] 2- I 8 alcohol, 1-2 EO) or alkyl sulfate (e.g., Ci 6- I 8 ) about 1% to about 3%; alcohol ethoxylate (e.g., Ci 4-I5 alcohol, 7 EO) about 5% to about 9%; sodium carbonate (e.g., Na 2 CO 3 ) about 15% to about 21%; soluble silicate (e.g., Na 2 O, 2SiO 2 ) about 1% to about 4%; zeolite (e.g., NaAlSiO 4 ) about 24% to about 34%; sodium sulfate (e.g,.
  • Na 2 SO 4 about 4% to about 10%
  • sodium citrate/citric acid e.g., C 6 H 5 Na 3 O 7 / C 6 H 8 O 7
  • carboxymethylcellulose (CMC) 0% to about 2%
  • polymers e.g., maleic/acrylic acid copolymer, PVP, PEG
  • enzymes calculated as pure enzyme protein
  • minor ingredients e.g., suds suppressors, perfume
  • a detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising linear alkylbenzenesulfonate (calculated as acid) about 8% to about 12%; alcohol ethoxylate ⁇ e.g., C 12 - I5 alcohol, 7 EO) about 10% to about 25%; sodium carbonate (as Na 2 CO 3 ) about 14% to about 22%; soluble silicate ⁇ e.g., Na 2 O, 2SiO 2 ) about 1% to about 5%; zeolite ⁇ e.g.
  • NaAl SiO 4 about 25% to about 35%
  • sodium sulfate ⁇ e.g., Na 2 SO 4
  • carboxymethylcellulose (CMC) 0% to about 2%
  • polymers ⁇ e.g., maleic/acrylic acid copolymer, PVP, PEG) 1-3%
  • enzymes calculated as pure enzyme protein
  • minor ingredients ⁇ e.g., suds suppressors, perfume
  • An aqueous liquid detergent composition comprising linear alkylbenzenesulfonate (calculated as acid) about 15% to about 21%; alcohol ethoxylate ⁇ e.g., C] 2-I5 alcohol, 7 EO or
  • soap as fatty acid ⁇ e.g., oleic acid
  • alkenylsuccinic acid (Ci 2-I4 ) 0% to
  • An aqueous structured liquid detergent composition comprising linear alkylbenzenesulfonate (calculated as acid) about 15% to about 21%; alcohol ethoxylate ⁇ e.g., C 12 - 15 alcohol, 7 EO, or Ci 2-J5 alcohol, 5 EO) 3-9%; soap as fatty acid ⁇ e.g., oleic acid) about 3% to about 10%; zeolite (as NaAl SiO 4 ) about 14% to about 22%; potassium citrate about 9% to about 18%; borate ⁇ e.g., B 4 O 7 ) 0% to about 2%; carboxymethylcellulose (CMC) 0% to about 2%; polymers ⁇ e.g., PEG, PVP) 0% to about 3%; anchoring polymers such as, e.g., lauryl methacrylate/acrylic acid copolymer; molar ratio 25:1, MW 3800) 0% to about 3%;glycerol 0% to about 5%; enzyme
  • a detergent composition formulated as a granulate comprising linear alkylbenzenesulfonate (calculated as acid) about 8% to about 14%; ethoxylated fatty acid monoethanolamide about 5% to about 11%; soap as fatty acid 0% to about 3%; sodium carbonate (e.g., Na 2 CO 3 ) about 4% to about 10%; soluble silicate (Na 2 O, 2SiO 2 ) about 1% to about 4%; zeolite (e.g., NaAlSiO 4 ) about 30% to about 50%; sodium sulfate (e.g., Na 2 SO 4 ) about 3% to about 11%; sodium citrate (e.g., C 6 HsNa 3 O 7 ) about 5% to about 12%; polymers (e.g., PVP, maleic/acrylic acid copolymer, PEG) about 1% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e
  • a detergent composition formulated as a granulate comprising linear alkylbenzenesulfonate (calculated as acid) about 6% to about 12%; nonionic surfactant about 1% to about 4%; soap as fatty acid about 2% to about 6%; sodium carbonate (e.g., Na 2 CO 3 ) about 14% to about 22%; zeolite (e.g. , NaA 1 SiO 4 ) about 18% to about 32%; sodium sulfate (e.g.
  • Na 2 SO 4 about 5% to about 20%
  • sodium citrate e.g., C 6 H 5 Na 3 O 7
  • sodium perborate e.g., NaBO 3 H 2 O
  • bleach activator e.g., NOBS or TAED
  • carboxymethylcellulose CMC
  • polymers e.g., polycarboxylate or PEG
  • enzymes calculated as pure enzyme protein
  • minor ingredients e.g. , optical brightener, perfume
  • An aqueous liquid detergent composition comprising linear alkylbenzenesulfonate (calculated as acid) about 15% to about 23%; alcohol ethoxysulfate (e.g., Ci 2-I5 alcohol, 2-3 EO) about 8% to about 15%; alcohol ethoxylate (e.g., Ci M5 alcohol, 7 EO, or Ci 2-I5 alcohol, 5 EO) about 3% to about 9%; soap as fatty acid (e.g., lauric acid) 0% to about 3%; aminoethanol about 1% to about 5%; sodium citrate about 5% to about 10%; hydrotrope (e.g., sodium toluensulfonate) about 2% to about 6%; borate (e.g., B 4 O 7 ) 0% to about 2%; carboxymethylcellulose 0% to about 1%; ethanol about 1% to about 3%; propylene glycol about 2% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor
  • anionic surfactant linear alkylbenzenesulfonate, alkyl sulfate, ⁇ - olefinsulfonate, ⁇ -sulfo fatty acid methyl esters, alkanesulfonates, soap
  • nonionic surfactant e.g., alcohol ethoxylate
  • sodium carbonate e.g., Na 2 CO 3
  • soluble silicates e.g., Na 2 O, 2SiO 2
  • sodium sulfate e.g.
  • compositions I)- 12) supra wherein all or part of the linear alkylbenzenesulfonate is replaced by (C ⁇ -Cis) alkyl sulfate.
  • a detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising (Ci 2 -Ci 8 ) alkyl sulfate about 9% to about 15%; alcohol ethoxylate about 3% to about 6%; polyhydroxy alkyl fatty acid amide about 1% to about 5%; zeolite (e.g., NaAlSiO 4 ) about 10% to about 20%; layered disilicate (e.g., SK56 from Hoechst) about 10% to about 20%; sodium carbonate (e.g., Na 2 CO 3 ) about 3% to about 12%; soluble silicate (e.g.,
  • the manganese catalyst for example is one of the compounds described in "Efficient manganese catalysts for low-temperature bleaching," Nature 369: 637-639 (1994).
  • Detergent composition formulated as a non-aqueous detergent liquid comprising a liquid nonionic surfactant such as, e.g., linear alkoxylated primary alcohol, a builder system ⁇ e.g., phosphate), an enzyme(s), and alkali.
  • the detergent may also comprise anionic surfactant and/or a bleach system.
  • the Amy 195 ⁇ -amylase or variant thereof may be incorporated in concentrations conventionally employed in detergents. It is at present contemplated that, in the detergent composition, the enzyme may be added in an amount corresponding to 0.00001-1.0 mg (calculated as pure enzyme protein) of Amy 195 ⁇ -amylase or variant thereof per liter of wash liquor.
  • enzymes such as 2,6- ⁇ -D-fructan hydrolase
  • detergent compositions comprising the Amy 195 ⁇ -amylase or variant thereof and used for removal/cleaning of biofilm present on household and/or industrial textile/laundry.
  • the detergent composition may for example be formulated as a hand (manual) or machine (automatic) laundry detergent composition, including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for manual or automatic dishwashing operations.
  • the detergent composition can comprise 2,6- ⁇ -D-fructan hydrolase in addition to Amy 195 ⁇ -amylase or variant thereof, and one or more other cleaning enzymes, such as a protease, a lipase, a cutinase, a carbohydrase, a cellulase, a pectinase, a mannanase, an arabinase, a galactanase, another amylolytic enzyme, a xylanase, an oxidase, a laccase, and/or a peroxidase, and/or combinations thereof.
  • the properties of the chosen enzyme(s) should be compatible with the selected detergent, (e.g., pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc.), and the enzyme(s) should be present in effective amounts.
  • proteases include those of animal, vegetable or microbial origin. Chemically modified or protein engineered mutants are included, as well as naturally processed proteins.
  • the protease may be a serine protease or a metalloprotease, such as an alkaline microbial protease, a trypsin-like protease, or a chymotrypsin-like protease.
  • alkaline proteases are subtilisins, especially those derived from Bacillus, e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147, and subtilisin 168 (see, e.g., WO 89/06279).
  • trypsin-like proteases are trypsin (e.g., of porcine or bovine origin), and Fusarium proteases (see, e.g., WO 89/06270 and WO 94/25583).
  • useful proteases also include but are not limited to the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946.
  • protease enzymes include but are not limited to: Alcalase®, Savinase®, PrimaseTM, DuralaseTM, Esperase®, and KannaseTM(Novo Nordisk AJS); Maxatase®, MaxacalTM, MaxapemTM, Properase®, Purafect®, Purafect OxPTM, FN2TM, and FN3TM (Genencor International, Inc.).
  • Lipases include those of bacterial or fungal origin. Chemically modified, proteolytically modified, or protein engineered mutants are included. Examples of useful lipases include but are not limited to lipases from Humicola (synonym Thermomyces), e.g., from H. lanuginosa (T. lanuginosus) (see e.g., EP 258068 and EP 305216), from H. insolens (see e.g., WO 96/13580); a Pseudomonas lipase (e.g., from P. alcaligenes or P. pseudoalcaligenes; see, e.g., EP 218 272), P.
  • cepacia see e.g., EP 331 376
  • P. stutzeri see e.g., GB 1,372,034
  • P.fluorescens Pseudomonas sp. strain SD 705 (see e.g., WO 95/06720 and WO 96/27002)
  • P. wisconsinensis see e.g., WO 96/12012
  • Bacillus lipase e.g., from B. subtilis; see e.g., Dartois et al. Biochemica et Biophysica Acta, 1131 : 253-360 (1993)
  • B. subtilis see e.g., Dartois et al. Biochemica et Biophysica Acta, 1131 : 253-360 (1993)
  • B. subtilis see e.g., Dartois et al. Biochemica et Biophysica Acta, 1131 : 25
  • Suitable polyesterases can be included in the composition, such as those described in, for example, WO 01/34899 and WO 01/14629.
  • Amylases The compositions can be combined with other amylases, such as non- production enhanced ⁇ -amylase. These can include commercially available amylases, such as but not limited to Duramyl®, Termamyl®, Fungamyl® and BANTM (Novo Nordisk AJS); Rapidase® and Purastar® (from Genencor International, Inc.).
  • Cellulases can be added to the compositions. Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum disclosed for example in U.S. Patent Nos. 4,435,307; 5,648,263; 5,691,178; 5,776,757; and WO 89/09259.
  • Exemplary cellulases contemplated for use are those having color care benefit for the textile.
  • Examples of such cellulases are cellulases described in for example EP 0495257, EP 0531372, WO 96/11262, WO 96/29397, and WO 98/08940.
  • Other examples are cellulase variants, such as those described in WO 94/07998; WO 98/12307; WO 95/24471; PCT/DK98/00299; EP 531315; U.S. Patent Nos. 5,457,046; 5,686,593; and 5,763,254.
  • Peroxidases/Oxidases Suitable peroxidases/oxidases contemplated for use in the compositions include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g., from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include for example Guardzyme TM (Novo Nordisk A/S).
  • the detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes.
  • a detergent additive i.e. a separate additive or a combined additive, can be formulated e.g., as a granulate, a liquid, a slurry, etc.
  • Exemplary detergent additive formulations include but are not limited to granulates, in particular non-dusting granulates, liquids, in particular stabilized liquids or slurries.
  • Non-dusting granulates may be produced, e.g., as disclosed in U.S. Patent Nos. 4,106,991 and 4,661,452 and may optionally be coated by methods known in the art.
  • waxy coating materials are poly(ethylene oxide) products (e.g., polyethyleneglycol, PEG) with mean molar weights of 1,000 to 20,000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids.
  • poly(ethylene oxide) products e.g., polyethyleneglycol, PEG
  • PEG poly(ethylene oxide) products
  • e.g., polyethyleneglycol, PEG poly(ethylene oxide) products
  • ethoxylated nonylphenols having from 16 to 50 ethylene oxide units
  • fatty alcohols fatty acids
  • Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods.
  • Protected enzymes may be prepared according to the method disclosed in EP 238,216.
  • the detergent composition may be in any convenient form, e.g., a bar, a tablet, a powder, a granule, a paste, or a liquid.
  • a liquid detergent may be aqueous, typically containing up to about 70% water, and 0% to about 30% organic solvent.
  • Compact detergent gels containing about 30% or less water are also contemplated.
  • the detergent composition can optionally comprise one or more surfactants, which may be non-ionic, including semi-polar and/or anionic and/or cationic and/or zwitterionic.
  • the surfactants can be present in a wide range, from about 0.1% to about 60% by weight.
  • the detergent When included therein the detergent will typically contain from about 1 % to about 40% of an anionic surfactant, such as linear alkylbenzenesulfonate, ⁇ -olef ⁇ nsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, ⁇ -sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid, or soap.
  • an anionic surfactant such as linear alkylbenzenesulfonate, ⁇ -olef ⁇ nsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, ⁇ -sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid, or soap.
  • the detergent When included therein, the detergent will usually contain from about 0.2% to about 40% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl-N-alkyl derivatives of glucosamine (“glucamides").
  • a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl-N-alkyl derivatives of glucosamine (“glucamides”).
  • glucamides N-acyl-N-alkyl derivatives of glucosamine
  • the detergent may contain 0% to about 65% of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid, alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates (e.g.,SKS-6 from Hoechst).
  • a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid, alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates (e.g.,SKS-6 from Hoechst).
  • the detergent may comprise one or more polymers.
  • Exemplary polymers include carboxymethylcellulose (CMC), poly(vinylpyrrolidone) (PVP), poly(ethylene glycol) (PEG), polyvinyl alcohol) (PVA), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates e.g., polyacrylates, maleic/acrylic acid copolymers), and lauryl methacrylate/acrylic acid copolymers.
  • CMC carboxymethylcellulose
  • PVP poly(vinylpyrrolidone)
  • PEG poly(ethylene glycol)
  • PVA polyvinyl alcohol
  • poly(vinylpyridine-N-oxide) poly(vinylimidazole)
  • polycarboxylates e.g., polyacrylates, maleic/acrylic acid copolymers
  • lauryl methacrylate/acrylic acid copolymers e.g., polyacrylates, maleic/acrylic acid copolymers
  • the enzyme(s) of the detergent composition may be stabilized using conventional stabilizing agents, e.g., as polyol (e.g., propylene glycol or glycerol), a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative (e.g., an aromatic borate ester), or a phenyl boronic acid derivative (e.g., 4-formylphenyl boronic acid).
  • polyol e.g., propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative (e.g., an aromatic borate ester)
  • a phenyl boronic acid derivative e.g., 4-formylphenyl boronic acid
  • the enzyme variants may be added in an amount corresponding to about 0.01 to about 100 mg of enzyme protein per liter of wash liquor (e.g., about 0.05 to about 5.0 mg of enzyme protein per liter of wash liquor or 0.1 to about 1.0 mg of enzyme protein per liter of wash liquor).
  • 4.2 Cleaning Compositions hi the detergent applications, Amyl95 ⁇ -amylase and/or variant thereof are usually used in a liquid composition containing propylene glycol.
  • the enzyme is solubilized in for example in propylene glycol by mixing in a 25% volume/volume propylene glycol solution containing 10% calcium chloride.
  • the Amy 195 ⁇ -amylase and/or variant thereof discussed herein can be formulated in detergent compositions for use in cleaning dishes or other cleaning compositions. These can be powders, gels, or liquids.
  • the compositions can comprise the enzyme alone, or with other amylolytic enzymes and/or with other cleaning enzymes or bleach activating enzymes, and other components common to cleaning compositions.
  • a dishwashing detergent composition can comprise a surfactant.
  • the surfactant may be anionic, non-ionic, cationic, amphoteric or a mixture of these types.
  • the detergent can contain 0% to about 90% by weight of a non-ionic surfactant, such as low- to non-foaming ethoxylated propoxylated straight-chain alcohols.
  • the detergent composition may contain detergent builder salts of inorganic and/or organic types.
  • the detergent builders may be subdivided into phosphorus-containing and non- phosphorus-containing types.
  • the detergent composition usually contains about 1% to about 90% of detergent builders.
  • Examples of phosphorus-containing inorganic alkaline detergent builders, when present, include the water-soluble salts, especially alkali metal pyrophosphates, orthophosphates, and polyphosphates.
  • An example of phosphorus-containing organic alkaline detergent builder, when present, includes the water-soluble salts of phosphonates.
  • non-phosphorus-containing inorganic builders when present, include water-soluble alkali metal carbonates, borates, and silicates, as well as the various types of water-insoluble crystalline or amorphous alumino silicates, of which zeolites are the best-known representatives.
  • suitable organic builders include the alkali metal; ammonium and substituted ammonium; citrates; succinates; malonates; fatty acid sulphonates; carboxymethoxy succinates; ammonium polyacetates; carboxylates; polycarboxylates; aminopolycarboxylates; polyacetyl carboxylates; and polyhydroxsulphonates.
  • suitable organic builders include the higher molecular weight polymers and copolymers known to have builder properties, for example appropriate polyacrylic acid, polymaleic and polyacrylic/polymaleic acid copolymers, and their salts.
  • the cleaning composition may contain bleaching agents of the chlorine/bromine-type or the oxygen-type.
  • inorganic chlorine/bromine-type bleaches are lithium, sodium or calcium hypochlorite, and hypobromite, as well as chlorinated trisodium phosphate.
  • organic chlorine/bromine-type bleaches are heterocyclic N-bromo-and N-chloro-imides such as trichloroisocyanuric, tribromoisocyanuric, dibromoisocyanuric, and dichloroisocyanuric acids, and salts thereof with water-solubilizing cations such as potassium and sodium. Hydantoin compounds are also suitable.
  • the cleaning composition may contain oxygen bleaches, for example in the form of an inorganic persalt, optionally with a bleach precursor or as a peroxy acid compound.
  • oxygen bleaches for example in the form of an inorganic persalt, optionally with a bleach precursor or as a peroxy acid compound.
  • suitable peroxy bleach compounds are alkali metal perborates, both tetrahydrates and monohydrates, alkali metal percarbonates, persilicates, and perphosphates.
  • exemplary activator materials are TAED, and glycerol triacetate.
  • Enzymatic bleach activation systems may also be present in the formulation, e.g., such as perborate or percarbonate, glycerol triacetate and perhydrolase (see, e.g., WO 2005/056783).
  • the cleaning composition may be stabilized using conventional stabilizing agents for the enzyme(s), e.g., a polyol such as, e.g., propylene glycol, a sugar or a sugar alcohol, lactic acid, boric acid, or a boric acid derivative (e.g., an aromatic borate ester).
  • a polyol such as, e.g., propylene glycol, a sugar or a sugar alcohol, lactic acid, boric acid, or a boric acid derivative (e.g., an aromatic borate ester).
  • the cleaning composition may also contain other conventional detergent ingredients, e.g., deflocculant material, filler material, foam depressors, anti-corrosion agents, soil- suspending agents, sequestering agents, anti-soil redeposition agents, dehydrating agents, dyes, bactericides, fluorescers, thickeners, and perfumes.
  • testing cleaning includes the following.
  • a “swatch” is a piece of material such as a fabric that has a stain applied thereto.
  • the material can be, for example, fabrics made of cotton, polyester or mixtures of natural and synthetic fibers.
  • the swatch can further be paper, such as filter paper or nitrocellulose, or a piece of a hard material such as ceramic, metal, or glass.
  • the stain is starch based, but can include blood, milk, ink, grass, tea, wine, spinach, gravy, chocolate egg, cheese, clay, pigment, oil, or mixtures of these compounds.
  • a "smaller swatch” is a section of the swatch that has been cut with a single hole punch device, or has been cut with a custom manufactured 96-hole punch device, where the pattern of the multi-hole punch is matched to standard 96-well microtiter plates, or the section has been otherwise removed from the swatch.
  • the swatch can be of textile, paper, metal, or other suitable material.
  • the smaller swatch can have the stain affixed either before or after it is placed into the well of a 24-, 48- or 96-well microtiter plate.
  • the "smaller swatch” can also be made by applying a stain to a small piece of material.
  • the smaller swatch can be a stained piece of fabric 5/8" or 0.25" in diameter.
  • the custom manufactured punch is designed in such a manner that it delivers 96 swatches simultaneously to all wells of a 96-well plate.
  • the device allows delivery of more than one swatch per well by simply loading the same 96-well plate multiple times.
  • Multi-hole punch devices can be conceived of to deliver simultaneously swatches to any format plate, including but not limited to 24-well, 48-well, and 96-well plates.
  • the soiled test platform can be a bead made of either metal, plastic, glass, ceramic, or other suitable material that is coated with the soil substrate.
  • the one or more coated beads are then placed into wells of 96-, 48-, or 24- well plates or larger formats, containing suitable buffer and enzyme.
  • supernatant can be examined for released soil either by direct absorbance measurement or after a secondary color development reaction. Analysis of the released soil might also be taken by mass spectral analysis.
  • a further microscreening assay can be to deliver and secure a swatch, for example an indigo dyed denim, to a well of a multi-well plate, and add particles such as sand or larger particles such as for example garnet sieved to include particle 6 to 8, or 9 gauge, and agitate the plate so as to cause abrasion of the swatch by the added particles.
  • This assay has found use in the assessment of cellulases in stone washing applications.
  • the effectiveness of the enzyme can be judged by either color release (e.g., released indigo is dissolved in dimethylsulfoxide and absorbance at A 6 oo nm is measured) to the reaction buffer or by reflectance measurements of the abraded swatch.
  • the present invention provides a treatment protocol that allows one to control the degree of fixation of a stain. As a result, it is possible to produce swatches that, for example, release varying amounts of stain when washed in the absence of the enzyme being tested. The use of fixed swatches leads to a dramatic improvement of the signal-to-noise ratio in the wash assays. Furthermore, by varying the degree of fixation, one can generate stains that give optimum results under the various cleaning conditions.
  • Swatches having stains of known "strength" on various types of material are commercially available (EMPA, St. Gallen, Switzerland; wfk—Testgewebe GmbH, Krefeld Germany; or Center for Test Materials, Vlaardingen, The Netherlands) and/or can be made by the practitioner (Morris and Prato, Textile Research Journal 52(4): 280 286 (1982)).
  • Other test swatches include but are not limited to blood/milk/ink (BMI) stain(s) on a cotton-containing fabric, a spinach stain on a cotton-containing fabric, or grass on a cotton-containing fabric, and chocolate/milk/soot on a cotton-containing fabric.
  • BMI blood/milk/ink
  • a BMI stain can be fixed to cotton with 0.0003% to 0.3% hydrogen peroxide.
  • Other combinations include grass or spinach fixed with 0.001% to 1% glutaraldehyde, gelatin and Coomassie stain fixed with 0.001% to 1% glutaraldehyde, or chocolate, milk and soot fixed with 0.001% to 1% glutaraldehyde.
  • the swatch can also be agitated during incubation with the enzyme and/or detergent formulation. Wash performance data is dependent on the orientation of the swatches in the wells (horizontal versus vertical), particularly in the 96-well plate. This would indicate that mixing was insufficient during the incubation period.
  • a plate holder in which the microtiter plate is sandwiched between two plates of aluminum can be constructed. This can be as simple as placing, for example, an adhesive plate sealer over the wells then clamping the two aluminum plates to the 96-well plate with any type of appropriate, commercially available clamps. It can then be mounted in a commercial incubator shaker. Setting the shaker to about 400 rpm results in very efficient mixing, while leakage or cross-contamination is efficiently prevented by the holder.
  • Trinitrobenzenesulfonic acid can be used to quantify the concentration of amino groups in the wash liquor. This can serve as a measure of the amount of protein that was removed from the swatch ⁇ see e.g., Cayot and Tainturier, Anal. Biochem. 249: 184-200 (1997)). However, if a detergent or an enzyme sample leads to the formation of unusually small peptide fragments (for example, from the presence of peptidases in the sample), then one will obtain a larger TNBS signal, i.e., more "noise".
  • wash performance of blood/milk/ink or other stain is based on ink release.
  • Proteolysis of protein on the swatches leads to the release of ink particles which can be quantified by measuring the absorbance of the wash liquor.
  • the absorbance can be measured at any wavelength between 350 and 800 nm.
  • the absorbance is measured at 410 nm or 620 nm.
  • the wash liquor can also be examined to determine the wash performance on stains containing grass, spinach, gelatin or Coomassie stain. Exemplary wavelengths for these stains include 670 nm for spinach or grass and 620 nm for gelatin or Coomassie.
  • an aliquot of the wash liquor (typically 100-150 ⁇ L from a 96-well microplate, for example) is removed and placed in a cuvette or multiwell microplate. This is then placed in a spectrophotometer and the absorbance is read at an appropriate wavelength.
  • the system can also be used to determine an enhanced enzyme and/or detergent composition for dish washing, for example, using a blood/milk/ink stain on a suitable substrate such as cloth, plastic or ceramic.
  • the BMI stain is fixed to cotton by applying 0.3% hydrogen peroxide to the BMI/cotton swatch for 30 minutes at 25°C or by applying 0.03% hydrogen peroxide to the BMI/cotton swatch for 30 minutes at 60°C.
  • Smaller swatches of approximately 0.25" are cut from the BMI/cotton swatch and placed in the wells of a 96-well microtiter plate.
  • a known mixture of a detergent composition and an enzyme such as a variant protein is placed. After placing an adhesive plate sealer onto the top of the microtiter plate, the microtiter plate is clamped to an aluminum plate and agitated on an orbital shaker at approximately 250 rpm for about 10 to 60 minutes.
  • the supernatants are transferred to wells in a new microtiter plate and the absorbance of the ink at 620 nm is measured.
  • This can be similarly tested with spinach stains or grass stains fixed to cotton by applying 0.01% glutaraldehyde to the spinach/cotton swatch or grass/cotton swatch for 30 minutes at 25°C. The same can be done with chocolate, milk, and/or soot stains.
  • a culture of this strain was grown in the following medium (per liter): 10 g Soytone, 75 g glucose, 7.2 g urea, 40 mM MOPS, 4 mM Tricine, 3 mM dibasic potassium phosphate, 21.4 mM KOH, 50 mM NaCl, 276 ⁇ M potassium sulfate, 528 ⁇ M magnesium chloride, 50 ⁇ M trisodium citrate dihydrate, 100 ⁇ M calcium chloride dihydrate, 14 ⁇ M ferrous sulfate heptahydrate, 5.9 ⁇ M manganese sulfate dihydrate, 5.7 ⁇ M zinc sulfate monohydrate, 2.9 ⁇ M cupric chloride dihydrate, 4.2 ⁇ M cobalt hexahydrate, 4.5 ⁇ M sodium molybdate dihydrate.
  • the Amy 195 ⁇ -amylase activity was fractionated from the culture broth by treating the broth with a ⁇ -cyclodextrin-Sepharose affinity resin, collecting the resin, and washing with 25 mM bis-Tris propane buffer (pH 8.5) containing 2 mM calcium chloride (CaCl 2 ), and eluting the washed resin with the same buffer supplemented with 50 mM ⁇ -cyclodextrin.
  • the effect of treating the culture broth with the ⁇ -cyclodextrin resin was partial removal of the 60 kDa species (to about 50%) and complete removal of the 69 kDa species from the broth.
  • the buffer wash of the resin provided nearly pure protein of 60 kDa size; elution with buffer containing ⁇ - cyclodextrin provided the 69 kDa protein contaminated with about 25% of the 60 kDa protein.
  • Enzyme content of fractions was estimated by gel densitometry with OxAm amylase (Genencor International, Inc.) serving as the protein standard. N-terminal analysis of the darkest band in the lane marked “wl" of FIG. 10 provided a sequence of "AAPGPKD ATA" (SEQ ID NO: 5). Mass spectral analysis in conjunction with this N-terminal sequence identified the protein to have the sequence shown in upper case in FIG. 4 (i.e., without the signal sequence and C-terminal extension representing the starch binding motifs). These analyses indicate that this molecular fragment consists of the ⁇ -amylase domains A, B & C.
  • the gene for Amy 195 was truncated at three different sites to allow testing expression of the truncated forms and for testing of wash performance. Truncation was achieved by standard techniques known to those skilled in the art at amino acid residue numbers 494, 504, and 509 using the polypeptide numbering of the sequence in FIG. 4.
  • the plasmids containing the truncated genes were transformed into a nine protease deleted Bacillus subtilis strain
  • Example 2 The truncated gene products obtained in Example 2 above were tested for wash performance in the same manner as described for the proteolytic fragments in Example 3 above.
  • CS28 rice swatches were incubated with a range of Amy 195 catalytic fragment concentrations. Wash performance was judged by color released into the supernatant and measured at 488 nm. All three genetically truncated gene fragments showed good wash performance as is shown in FIG. 9.
  • This swatch assay can be modified in several ways for different purposes.
  • the 96-well assay is highly suitable as a high-throughput cleaning assay by measuring the supernatant after incubation of enzyme with swatches, while for example, a 24-well plate with swatches to fit in the wells can be used to wash larger swatches for which reflectance can be measured as known in the art.
  • the assay can, in principle, be scaled to a 384-well plate.
  • the assay can be carried out with any soiled swatch and in addition to the CS28 swatch, CS26, CS27, and CS29 swatches can be tested as well (e.g., corn starch, potato starch, tapioca starch, respectively; Testfabrics, Inc., West Pittiston, PA) to demonstrate the efficacy of the measurement as described in Example 3.
  • the assay may also be used with detergent compositions and conducted at different temperatures and at different pH values. These assays were adapted from U.S. Patent No. 7,122,334.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Detergent Compositions (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed herein are compositions comprising an alpha-amylase enzyme obtained from Bacillus sp. no. 195, and methods of using the enzyme to clean surfaces and textiles. Also disclosed are variants of the enzyme with different signal sequences.

Description

COMPOSITIONS AND USES FOR AN ALPHA-AMYLASE POLYPEPTIDE OF
BACILLUS SPECIES 195
FIELD OF THE INVENTION Disclosed herein are compositions and methods of using α-amylase enzymes obtained from Bacillus sp. 195.
BACKGROUND
Starch consists of a mixture of amylose (15-30% w/w) and amylopectin (70-85% w/w). Amylose consists of linear chains of α- 1 ,4-linked glucose units having a molecular weight (MW) from about 60,000 to about 800,000. Amylopectin is a branched polymer containing α-1,6 branch points every 24-30 glucose units; its MW may be as high as 100 million.
Sugars from starch, in the form of concentrated dextrose syrups, are currently produced by an enzyme catalyzed process involving: (1) liquefaction (or viscosity reduction) of solid starch with an α-amylase into dextrins having an average degree of polymerization of about 7- 10, and (2) saccharifϊcation of the resulting liquefied starch (i.e. starch hydro lysate) with amyloglucosidase (also called glucoamylase or GA). The resulting syrup has a high glucose content. Much of the glucose syrup that is commercially produced is subsequently enzymatically isomerized to a dextrose/fructose mixture known as isosyrup. α-amylases (EC 3.2.1.1) hydrolyze starch, glycogen, and related polysaccharides by cleaving internal α-l,4-glucosidic bonds at random. This enzyme has a number of important commercial applications in, for example the sugar, brewing, alcohol and textile industries, α- amylases are isolated from a wide variety of bacterial, fungal, plant and animal sources. Industrially, many important α-amylases are those isolated from Bacilli. For a number of years, α-amylase enzymes have been used for a variety of different purposes, including starch liquefaction, textile desizing, starch modification in the paper and pulp industry, and for brewing. These enzymes also can be used to remove starchy stains during dishwashing and laundry washing.
One Bacillus α-amylase that has been sequenced is that from Bacillus sp. no. 195 (BAA). It consists of two domains: a catalytic domain similar to animal α-amylases and a domain that contains two starch binding motifs. See J. Sumitani et al., "New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 α-amylase contributes to starch binding and raw starch degrading," Biochem. J. 350: 477-484 (2000). In Sumitani et al., (2000), three active forms of the gene products were found in the culture supernatant of Streptomyces lividans, in which the Bacillus sp. no. 195 gene product was expressed heterologously. The three products were a 69 kDa form, a 60 kDa form, and a 50 kDa form. The 69 kDa form appears to be the full size mature protein with the molecular weight equivalent to that calculated based on the nucleotide sequence of the full length gene. The 60 kDa form appeared to be the same as that of the natural enzyme of Bacillus sp. no. 195 and was presumed to be generated by proteolytic processing between the two starch binding motifs located in the C- terminus. This form had lower activity for raw starch binding and degradation as compared to the 69 kDa form. The 50 kD form cannot bind or degrade insoluble starches. Amylases have been used in textile processing, laundry and cleaning compositions, desizing compositions, and in baking, starch liquefaction and processing. Thus, there is a continuing need to identify α-amylases that are easier to produce at reduced costs, improve cost margins, deliver plant capacity savings, and higher activity products.
SUMMARY
Accordingly, an aspect is directed to an α-amylase from Bacillus sp. 195 that can be produced in an increased amount and at lower cost, as well addressing other needs in the industry. These variants can be used in a variety of compositions and processes that use α- amylases. An object is to provide a nucleic acid, in one alternative an optimized nucleic acid depicted in FIG. 2 (SEQ ID NO: 2). Another aspect provides for the α-amylase gene being operably linked to a nucleic acid sequence encoding a signal peptide of Bacillus licheniformis α- amylase or a truncated polypeptide thereof.
It is yet another aspect that provides for a nucleic acid which encodes a truncated form of the polypeptide depicted in FIG. 4, wherein the truncation can occur at any residue after amino acid 491 {e.g., amino acid 492, 494, 504, 509, after any starch binding domain, and the like).
A further aspect provides for the full-length polypeptide of FIG. 4 or any carboxy- terminal truncated product after residue 491.
A further embodiment provides for a vector operably linked to the nucleic acid encoding the aforementioned polypeptides.
Yet a further aspect contemplates an isolated host cell with any of the above nucleic acids or vectors comprising said nucleic acids. The isolated host cell can be a prokaryote or eukaryote. The isolated host cell can be a bacterium (e.g., B. subtilis, B. licheniformis, B. lentus, B. brevis, B. stearothermophilus, B. alkalophilus, B. amyloliquefaciens, B. coagulans, B. circulans, B. lautus, B. thuringiensis, Streptomyces lividans, S. murium, or Escherichia colϊ).
Another aspect contemplates a detergent additive comprising a polypeptide described herein, wherein the detergent additive is optionally in the form of a non-dusting granulate, microgranulate, stabilized liquid, gel, or protected enzyme. The polypeptide in the detergent additive can be a truncated polypeptide as described above. The detergent additive can contain about 0.02 mg to about 200 mg of polypeptide per gram of the detergent additive. The detergent additive can further comprise an enzyme selected from the group consisting of a protease, a lipase, a peroxidase, an oxidase, an amylolytic enzyme, a cellulase, a polyesterase, and any combination thereof.
Another aspect contemplates a detergent composition comprising any of the described detergent additives. A detergent composition can optionally comprise one or more of: a surfactant, a bleaching system or bleach, a detergent builder, a polymer, a stabilizing agent, a fabric conditioner, a foam booster, a suds suppressor, an anti-corrosion agent, a dye, a perfume, a soil suspending agent, a tarnish inhibitor, an optical brightener, or a bacteriocide. A detergent composition can comprise or further comprise an additional enzyme, wherein the enzyme is a protease, a lipase, a peroxidase, an oxidase, an amylolytic enzyme, a cellulase, a polyesterase, or any combination thereof. Another aspect contemplates a manual or automatic dishwashing detergent composition comprising a polypeptide described herein.
Yet a further aspect contemplates a method of washing dishes comprising applying a manual or automatic dishwashing detergent described herein to a dish or dishes in need thereof. The method of washing the dishes contemplates adding the dishwashing detergent in an amount such that the wash liquor contains a polypeptide described herein in the amount of about 0.01 ppm to about 4 ppm.
Another aspect contemplates a laundry detergent composition comprising a detergent additive described herein. Yet a further aspect contemplates a method of cleaning a textile comprising washing a soiled textile in solution with a detergent composition described herein. The method further contemplates having the polypeptide described herein in an amount in the solution of about 0.01 to about 2 ppm in the solution. BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. IA-B. Nucleotide coding sequence of Bacillus sp. 195 α-amylase (Accession No. AB006823). The nucleotide sequence encoding the amyl95 signal peptide is underlined. The STOP-codon is indicated in bold. SEQ ID NO: 1. FIG. 2. Nucleotide coding sequence of Bacillus sp. 195 α-amylase after codon optimization. The nucleotide sequence encoding the mature amyl95 protein is preceded by a nucleotide sequence encoding the signal peptide of the B. licheniformis α-amylase (LAT) (SEQ ID NO: 2). The nucleotide sequence encoding the LAT signal peptide is underlined. The stop- codon is indicated in bold. Amino acid codon optimization was performed by GeneArt® (GeneArt GmbH, Germany).
FIG. 3. Polypeptide sequence of Amy 195 (SEQ ID NO: 3). The signal sequence is residues 1-46 (underlined). The mature Amy 195 begins at residue 47. The codons encoding the bold, underlined residues were replaced with a stop codon to generate the genetically truncated forms. Thus, Y511, K521 and V526, using the numbering of Figure 3, are the last amino acid residues of the genetically truncated forms.
FIG. 4. Amy 195 amino acid sequence depicted as a heterologous fusion protein with the LAT signal sequence (SEQ ID NO: 4). The lower case letters in the carboxy terminus form starch binding domains belonging to family CBD-25. The lower case letters (residues 1-29) at the amino terminus represent the amylase signal sequence obtained from B. licheniformis. The capital letters depict the catalytic domain of the enzyme including subdomains A, B, and C, which are expected to span approximately residues 30 to 105 and 208 to 300 for subdomain A; approximately residues 106 to 207 for subdomain B; and approximately 301 to 492 for subdomain C. Val492 is the last amino acid residue of the proteolytically truncated form (using the numbering in Figure 4. Note that subdomain A is discontinuous in the linear sequence of the polypeptide.
FIG. 5. Schematic of the linkage of the nucleic acid encoding the α-amylase of Bacillus sp. 195 to the nucleic acid encoding the LAT signal sequence and to the LAT terminator sequence in the pHPLT vector. The pHPLT plasmid is known in the art (see, e.g., US Pat. No. 5,871,550, and 6,562,612, and US Pat. Publication 20060014265). The pHPLT vector was introduced into, and the amyl95 gene expressed in, a nine protease deleted B. subtilis strain (see US20050202535A1). FIG. 6. Depicts the results for performance assay for the Amy 195 enzyme, as a function of pH and protein concentration. The fraction assayed is that indicated as e-pool on Fig. 10. The assay was carried out in a 96-well plate assay. One-quarter inch textile swatches soiled with colored rice starch (Testfabrics Inc., CS28 colored rice starch) were placed in each well. Buffer: 25 mM HEPES pH 8.0 or 25 mM CAPS pH 10.3 was added to each well. The plate was pre- incubated at 4O0C. The reaction was started by the addition of Amy 195 enzyme to a final concentration of 0 ppm to 2 ppm. The plate was incubated at 400C for 10 minutes with shaking at 750 rpm in an Eppendorf Thermomix apparatus. After this incubation supernatant fluid was moved to a new 96-well plate and absorbance at 488 nm was read in a Molecular Devices plate reader, model Spectra Max 190. The data was plotted with the aid of the software package GRAFIT from Erithicus software. The data points were fitted with the Langmuir isotherm fitting algorithm, which takes the same form as the Michaelis-Menten fitting algorithm, which is available with the software. Every Amy 195 protein expressed contains the signal peptide from LAT, but this is clipped off during the secretion process and is not present in the mature Amyl 95 protein.
FIG. 7. Performance assay of all proteolytic fragments as shown in Fig. 10. The assay was carried out and plotted as described in Example 3 and the legend of FIG. 6 at pH 8. The data shows that all fractions perform equal to or better than OxAm (Genencor International, Inc.). FIG. 8. SDS polyacrylamide gel was run and shows the expression of the genetically truncated Amyl 95 molecules. Truncations shown are C-terminally of residue 494, 504, and 509, using the numbering of Fig. 4. Expression cultures were carried out as described in Example 2 and concentration was estimated with OxAm used as the density standard.
FIG. 9. Application performance of genetically truncated Amy 195 amylase variants. Performance assays were conducted using culture supernatant without further purification.
Assay procedure and data plotting is described in Example 3 and the legend of FIG. 6, at pH 8.0. The data shows that all truncated molecules performed better than OxAm.
FIG. 10. Analysis of fractions from a β-cyclodextrin column, which contained Amyl 95 proteolytic fragments. Fractions are indicated by "wl" ("wash 1" eluted from column with 25 mM bis-tris propane, pH 8.5, 2 mM CaCl2); "w2" ("wash 2" was eluted with a further aliquot of the same buffer); and "e-pool" (fractions eluted with 50 mM β-cyclodextrin in the same buffer and loaded on the gel at three different concentrations). The matrix for the β-cyclodextrin column was synthesized in-house by standard protocol from β-cyclodextrin (Sigma Aldrich Cat. No. c4767) and epoxy-activated-Sepharose-όB (GE Healthcare, NJ. Cat. No. 17-0480-01).
DETAILED DESCRIPTION
The application deals with compositions comprising Bacillus sp. no. 195 α-amylase and methods of use. Also disclosed are variations on how to produce α-amylase and heterologous forms by modifying the polypeptide sequence of the mature α-amylase.
Laundry and dish soils vary greatly in composition and therefore also in their ability to be removed. Relatively few amylases in the market place can be used for both laundry and dish applications. The α-amylase obtained from Bacillus sp. 195 does not show high identity with any of bacterial amylases in commercial use. Thus, one aspect is to use the wild-type protein as the backbone for identifying variants thereof with enhanced characteristics for dish and laundry by, e.g., reducing Ca2+ dependence, improving LAS stability, improving pH ranges, improving temperature ranges, enhanced specific activity, and the like.
1. Definitions and Acronyms
In accordance with this detailed description, the following abbreviations and definitions apply. It must be noted that as used herein, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "an enzyme" includes a plurality of such enzymes, and reference to "the dosage" includes reference to one or more dosages and equivalents thereof known to those skilled in the art, and so forth. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. The following terms are provided below.
1.1 Acronyms
The following acronyms have the associated meanings unless defined otherwise in the context discussed within the specification.
AE alcohol ethoxylate AEO alcohol ethoxylate
AEOS alcohol ethoxysulfate AES alcohol ethoxysulfate
Amy 195 α-amylase from Bacillus sp. no. 195
AOS α-olefϊnsulfonate
AS alkyl sulfate
CBD-25 carbohydrate binding domain protein family 25 cDNA complementary DNA
CMC carboxymethylcellulose
DNA deoxyribonucleic acid
DTMPA diethylenetriaminepentaacetic acid
EC enzyme commission
EDTA ethylenediaminetetraacetic acid
EMPA Eidgenossische Materialprufungs- und Forschungs Anstalt (Swiss Federal
Laboratories for Materials Testing and Research)
EO ethylene oxide (polymer fragment)
F&HC fabric & household care
GA glucoamylase
IPTG isopropyl β-D-thiogalactoside kDa kilo Dalton
LAS linear alkylbenzenesulfonate
LAT pertaining to B. Ucheniformis amylase {e.g., B. licheniformis amylase signal sequence or terminator)
MW molecular weight
MWU modified Wohlgemuth unit; l.όxlO'5 mg/MWU = unit of activity
NOBS nonanoyloxybenzenesulfonate
NTA nitriloacetic acid
OxAm Purastar HPAM 5000L (Genencor International, Inc.)
PEG polyethyleneglycol pi isoelectric point
PVA poly(vinyl alcohol)
PVP poly(vinylpyrrolidone)
RNA ribonucleic acid
SAS alkanesulfonate SDS PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis sp. species
TAED tetraacetylethylenediamine w/v weight/volume w/w weight/weight
1.2 Definitions
The terms "amylase" or "amylolytic enzyme" are meant to include any amylase such as glucoamylases, α-amylase, β-amylases, the wild-type α-amylase of Bacillus sp., such as B. licheniformis and B. subtilis. "Amylase" shall mean an enzyme that is, among other things, capable of catalyzing the degradation of starch. Amylases are hydrolases that cleave the α-D- (l-→4) O-glycosidic linkages in starch. Generally, α-amylases (EC 3.2.1.1; α-D-(l→4)-glucan glucanohydrolase) are defined as endo-acting enzymes cleaving α-D-(l→4) O-glycosidic linkages within the starch molecule in a random fashion. In contrast, the exo-acting amylolytic enzymes, such as β-amylases (EC 3.2.1.2; α-D-(l →4)-glucan maltohydrolase) and some product-specific amylases like maltogenic α-amylase (EC 3.2.1.133) cleave the starch molecule from the non-reducing end of the substrate, β- Amylases, α-glucosidases (EC 3.2.1.20; α-D- glucoside glucohydrolase), glucoamylase (EC 3.2.1.3; α-D-(l— >4)-glucan glucohydrolase), and product-specific amylases can produce malto-oligosaccharides of a specific length from starch. By "amylase variant", "α-amylase variant", "α-amylase variant polypeptide", and
"variant enzyme" are meant an α-amylase protein of Bacillus sp. no. 195 that has been modified for example by using a signal sequence of another α-amylase and has been sequence optimized. As used herein, "parent enzymes," "parent sequence", "parent polypeptide", "wild-type α- amylase protein", and "parent polypeptides" shall mean enzymes and polypeptides from which the α-amylase variant polypeptides are derived. The parent enzyme may be a wild-type enzyme or an α-amylase that had previously been recombinantly engineered. Thus, the α-amylase polypeptide can be a recombinantly engineered enzyme. The α-amylase variant can also be a fusion protein containing a heterologous α-amylase polypeptide. For example, the α-amylase protein can comprise the signal peptide of B. licheniformis α-amylase (LAT) linked to the mature protein of another Bacillus α-amylase. The term "variant" may be used interchangeably with the term "mutant". Variants shall include polypeptides as well as nucleic acids. Variants shall include insertions; these variants can further contain additional substitutions, insertions, transversions, truncations, and/or inversions, at one or more locations. Variants can include sequences that are complementary to sequences that are capable of hybridizing to the nucleotide sequences presented herein. For example, a variant sequence is complementary to sequences capable of hybridizing under stringent conditions (e.g., 50°C and 0.2X SSC { IX SSC = 0.15 M NaCl, 0.015 M Na3 citrate, pH 7.0}) to the nucleotide sequences presented herein. The term variant can further encompass sequences that are complementary to sequences that are capable of hybridizing under high stringent conditions (e.g., 65°C and 0.1X SSC { IX SSC = 0.15 M NaCl, 0.015 M Na3 citrate, pH 7.0}) to the nucleotide sequences presented herein.
By "α-amylase of Bacillus sp. 195," "Amy 195 α-amylase", or "Amy 195" are meant the nucleic acid (FIG. 1) encoding the protein of FIG. 3 or the synthetic nucleic acid sequence of FIG. 2, which also encodes the protein of FIG. 4. It can also include any truncated form (i.e., truncated after residue 492 naturally, recombinantly or synthetically, an enzyme form without the signal sequence, or a form with a heterologous signal sequence and truncated at the carboxy terminus). In addition, the terms can include any derivative sequence of FIG. 3 and underlying DNA sequence containing amino acid substitutions, deletions, insertions, or amino acid extensions at the N- or C-termini that are not found in nature.
By "isolated" is meant that the sequence is at least substantially free from at least one other component that the sequence is naturally associated and found in nature.
By "purified" is meant that the material is in a relatively pure state, e.g., at least about 90% pure, or at least about 95% pure, or at least about 98% pure.
By "thermostable" is meant the ability of the enzyme to retain activity after exposure to elevated temperatures. The thermostability of an enzyme, such as an α-amylase, is measured by its half-life. The half-life (ti^) is the time in minutes, hours, or days, during which half the enzyme activity is lost under defined conditions. The half-life value is calculated by measuring the residual α-amylase activity.
By "pH range" is meant the ability of the enzyme to exhibit catalytic activity from acidic to basic conditions spanning 5 or more pH units.
As used herein, "pH stable" relates to the ability of the enzyme to retain activity over a wide range ofpHs. As used herein, "amino acid sequence" is synonymous with the term "polypeptide" and/or the term "protein". In some instances, the term "amino acid sequence" is synonymous with the term "peptide". In some instances, the term "amino acid sequence" is synonymous with the term "enzyme".
As used herein, "nucleotide sequence" or "nucleic acid sequence" refers to an oligonucleotide sequence or polynucleotide sequence, and variant, homologues, fragments and derivatives thereof (such as portions thereof). The nucleotide sequence may be of genomic or synthetic or recombinant origin, and may be double-stranded or single-stranded whether representing the sense or anti-sense strand. As used herein, the term nucleotide sequence includes genomic DNA, cDNA, synthetic DNA, and RNA.
"Homologue" shall mean an entity having a certain degree of identity with the subject amino acid sequences and the subject nucleotide sequences. A homologous sequence is taken to include an amino acid sequence at least 75%, 80%, 85% or 90% identical, or at least 95%, 96%, 97%, 98% or 99% identical to the subject sequence. Typically, homologues will comprise the same active sites as the subject amino acid sequence.
As used herein, "hybridization" shall include the process by which a strand of nucleic acid joins with a complementary strand through base pairing, as well as the process of amplification as carried out in polymerase chain reaction (PCR) technologies. The α-amylase variant nucleic acid may exist as single- or double-stranded DNA or RNA, an RNA/DNA heteroduplex or an RNA/DNA copolymer.
As used herein, "copolymer" refers to a single nucleic acid strand that comprises both ribonucleotides and deoxyribonucleotides. The α-amylase nucleic acid may even be codon optimized to further increase expression.
As used herein, "synthetic" shall refer to that which is produced by in vitro chemical or enzymatic synthesis. It includes, but is not limited to, α-amylase variant nucleic acids made with optimal codon usage for host organisms, such as but not limited to Pichia, Streptomyces, Trichoderma reesei, and Hansenula.
As used herein, "transformed cell" shall include cells that have been genetically altered by use of recombinant DNA techniques. Transformation typically occurs by insertion of one or more nucleotide sequences into a cell. The inserted nucleotide sequence may be a heterologous nucleotide sequence (i.e. is a sequence that is not natural to the cell that is to be transformed, such as a sequence encoding a fusion protein).
As used herein, "operably linked" shall mean that the components described are in a relationship permitting them to function in their intended manner. A regulatory sequence operably linked to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under condition compatible with the control sequences.
As used herein, "biologically active" shall refer to a sequence having a similar structural function (but not necessarily to the same degree), and/or similar regulatory function (but not necessarily to the same degree) and/or similar biochemical function (but not necessarily to the same degree) of the naturally occurring sequence.
2. Nucleic Acids and Polypeptides Encoded Thereby
The nucleic acid sequence of Bacillus sp. no. 195 can be operably linked to various promoters and regulators in a vector and expressed in various host cells. The 2,103 residue nucleic acid sequence is disclosed at GenBank Accession No. AB006823 {see FIGS. IA-B). The polypeptide sequence encoded by the 2,103 residue nucleic acid sequence is disclosed at GenBank Accession No. BAA22082.1 and is 700 amino acids in length (FIG. 3). The first 46 amino acids form the signal peptide. Cleavage occurs after residue 46 (Ala46). When expressed in B. subtilis, there are three proteolytically processed forms of the protein seen by gel. These forms all have the same amino terminus but differ at their carboxy termini. The 49.5 kDa form terminates with residue Val492 (sequence in FIG. 4), i.e., proteolytic cleavage occurs after residue 492. The two longer forms, 69 kDa and 60 kDa, respectively contain one and two starch binding domains as discussed in Sumitani et al., (2000). Genetically C-terminally truncated forms were created with the products having C-terminal residues of Tyr494, Lys504, and Val509. These recombinantly produced truncation products all expressed at high levels in a nine protease deleted B. subtilis strain (see US20050202535A1) under LAT promoter and signal sequence control as displayed in FIG. 8.
2.1 Fusion Proteins and Recombinant Proteins
One aspect contemplates fusion proteins, wherein the signal sequences of amylases from other microorganisms, such as yeast or other bacterium, are used attached to the mature protein of Bacillus sp. no. 195. Namely, the first 46 amino acids that form the signal sequence of FIG. 3 can be removed and exchanged with the signal sequence from another microorganism or a variant of a signal sequence from another microorganism. For example, the LAT sequence (underlined and lower case) can be substituted for the first 46 amino acids as shown in FIG. 4.
Other examples include but are not limited to B. subtilis amylase (amyE) signal sequence for expression in B. subtilis, the B. subtilis aprE promoter and signal sequences also for expression in B. subtilis. In addition, it is contemplated to test expression in Streptomyces sp. with the use of Streptomyces promoters and signal sequences from CeIA.
3. Method of Producing and Purifying Proteins Methods of producing and purifying proteins that are secreted in to the culture medium from Bacillus are known in the art, as are suitable host cells for producing α-amylases. Exemplary methods for producing the α-amylases are disclosed below. 3.1 Materials and Methods for Producing α-Amylases
A DNA sequence encoding the Amy 195 α-amylase or variant thereof produced by methods described herein, or by any alternative methods known in the art, can be expressed, in enzyme form, using an expression vector which typically includes control sequences encoding a suitable promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.
For example, the Bacillus sp. no. 195 can be grown at 30°C as described in T. Kawaguchi et al., "Purification and some properties of a Haim-sensitive α-amylase from newly isolated Bacillus sp. No. 195," Biosc. Biotechnol. Biochem. 56: 1792-1796 (1992). Alternatively, a gene encoding the α-amylase operably linked to a vector can be transfected in to another organism, such as Streptomyces lividans TK-24 and cultured under appropriate conditions as described in J. Sumitani et al., "New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 α-amylase contributes to starch binding and raw starch degrading," Biochem. J. 350: 477-484 (2000). The recombinant expression vector carrying the DNA sequence encoding an Amy 195 α- amylase or variant thereof may be any vector that may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e., a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, a bacteriophage or an extrachromosomal element, mini-chromosome or an artificial chromosome. Alternatively, the vector may be one which, when introduced into an isolated host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated. The integrated gene may also be amplified to create multiple copies of the gene in the chromosome by use of an amplifiable construct driven by antibiotic selection or other selective pressure, such as an essential regulatory gene or by complementation through dose effect of an essential metabolic pathway gene.
In the vector, the DNA sequence should be operably linked to a suitable promoter sequence. The promoter may be any DNA sequence that shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Exemplary promoters for directing the transcription of the DNA sequence encoding an Amy 195 α-amylase or variant thereof, especially in a bacterial host, are the promoter of the lac operon of E. coli, the Streptomyces coelicolor agarase gene dagA or eel A promoters, the promoters of the Bacillus licheniformis α-amylase gene (amyL), the promoters of the Bacillus stearothermophilus maltogenic amylase gene (amyM), the promoters of the Bacillus amyloliquefaciens α-amylase (amyQ), the promoters of the Bacillus subtilis xylA and xylB genes etc. For transcription in a fungal host, examples of useful promoters are those derived from the gene encoding Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral α-amylase, A. niger acid stable α-amylase, A. niger glucoamylase, Rhizomucor miehei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase, or A. nidulans acetamidase. When the gene encoding the α-amylase variant polypeptide is expressed in a bacterial species such as E. coli, a suitable promoter can be selected, for example, from a bacteriophage promoter including a T7 promoter and a phage lambda promoter. Examples of suitable promoters for the expression in a yeast species include but are not limited to the Gal 1 and Gal 10 promoters of Saccharomyces cerevisiae and the Pichia pastoris AOXl or A0X2 promoters. For expression in Trichoderma reesei, the CBHII (cellobiohydrolase II) promoter may be used. An expression vector may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably linked to the DNA sequence encoding Amy 195 α-amylase or variants thereof. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter. The vector may further comprise a DNA sequence enabling the vector to replicate in the host cell. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUBHO, pE194, pAMBl, and pIJ702.
The vector may also comprise a selectable marker, e.g., a gene the product of which complements a defect in the isolated host cell, such as the dal genes from B. subtilis or B. licheniformis, or a gene that confers antibiotic resistance such as, e.g., ampicillin, kanamycin, chloramphenicol or tetracycline resistance. Furthermore, the vector may comprise Aspergillus selection markers such as amdS, argB, niaD and xxsC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, such as known in the art. See e.g., International PCT Application WO 91/17243. While intracellular expression or solid-state fermentation may be advantageous in some respects, e.g., when using certain bacteria or fungi as host cells, one aspect contemplates expression of the Amy 195 α-amylase or variant thereof into the culture medium. In general, the α-amylase comprises a signal sequence at the amino terminus that permits secretion into the culture medium. If desirable, this signal peptide may be replaced by a different sequence, conveniently accomplished by substitution of the DNA sequences encoding the respective signal polypeptide. The signal sequences of α-amylases are typically characterized as having three domains, an N-terminal domain, an H-domain, and a C-terminal domain and typically range from 18 to 35 residues in length, but can be longer as exemplified with the Amy 195 signal sequence. The expression vector typically includes the components of a cloning vector, such as, for example, an element that permits autonomous replication of the vector in the selected host organism and one or more phenotypically detectable markers for selection purposes. The expression vector normally comprises control nucleotide sequences such as a promoter, operator, ribosome binding site, translation initiation signal and optionally, a repressor gene or one or more activator genes. Additionally, the expression vector may comprise a sequence coding for an amino acid sequence capable of targeting the α-amylase variant to a host cell organelle such as a peroxisome, or to a particular host cell compartment. Such a targeting sequence includes but is not limited to the sequence, SKL. For expression under the direction of control sequences, the nucleic acid sequence of the α-amylase variant is operably linked to the control sequences in proper manner with respect to expression. A portion of an exemplary vector is depicted in FIG. 5. The procedures used to ligate the DNA construct encoding an α-amylase variant, the promoter, terminator and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (see e.g., Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd ed., Cold Spring Harbor, 1989, and 3rd ed., 2001). An isolated cell, either comprising a DNA construct or an expression vector, is advantageously used as a host cell in the recombinant production of Amy 195 α-amylase or variant thereof. The cell may be transformed with the DNA construct encoding the enzyme, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome. This integration is generally considered to be an advantage, as the DNA sequence is more likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional methods, e.g., by homologous or heterologous recombination. Alternatively, the cell may be transformed with an expression vector as described above in connection with the different types of host cells.
Examples of suitable bacterial host organisms are Gram positive bacterial species such as Bacillaceae including Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus lautus, Bacillus megaterium, and Bacillus thuringiensis; Streptomyces species such as Streptomyces murinus; lactic acid bacterial species including Lactococcus spp. such as Lactococcus lactis; Lactobacillus spp. including Lactobacillus reuteri; Leuconostoc spp.; Pediococcus spp.; and Streptococcus spp. Alternatively, strains of a Gram negative bacterial species belonging to Enterobacteriaceae including E. coli, or to Pseudomonadaceae can be selected as the host organism.
A suitable yeast host organism can be selected from the biotechnologically relevant yeasts species such as but not limited to yeast species such as Pichia sp., Hansenula sp., or Kluyveromyces, Yarrowinia, Schizosaccharomyces species or a species of Saccharomyces, including Saccharomyces cerevisiae or a species belonging to Schizosaccharomyces such as, for example, S. pombe species. A strain of the methylotrophic yeast species, Pichia pastoris, can be used as the host organism. Alternatively, the host organism can be a Hansenula species. Suitable host organisms among filamentous fungi include species of Aspergillus, e.g., Aspergillus niger, Aspergillus oryzae, Aspergillus tubigensis, Aspergillus awamori, or Aspergillus nidulans. Alternatively, strains of a Fusarium species, e.g., Fusarium oxysporum or of a Rhizomucor species such as Rhizomucor miehei can be used as the host organism. Other suitable strains include Thermomyces and Mucor species. In addition, Trichoderma reesei can be used as a host. A suitable procedure for transformation of Aspergillus host cells includes, for example, that described in EP 238023.
In a yet further aspect, a method of producing α-amylase Amy 195 or variant thereof is provided comprising cultivating a host cell as described above under conditions conducive to the production of the enzyme and recovering the enzyme from the cells and/or culture medium. The medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of Amy 195 α-amylase or variant thereof. Suitable media and media components are available from commercial suppliers or may be prepared according to published recipes (e.g., as described in catalogues of the American Type Culture Collection).
In one aspect, an enzyme secreted from the host cells is used in a whole broth preparation. In the methods of the present invention, the preparation of a spent whole fermentation broth of a recombinant microorganism can be achieved using any cultivation method known in the art resulting in the expression of an alpha-amylase. Fermentation may, therefore, be understood as comprising shake flask cultivation, small- or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermenters performed in a suitable medium and under conditions allowing the amylase to be expressed or isolated. The term "spent whole fermentation broth" is defined herein as unfractionated contents of fermentation material that includes culture medium, extracellular proteins (e.g., enzymes), and cellular biomass. It is understood that the term "spent whole fermentation broth" also encompasses cellular biomass that has been lysed or permeabilized using methods well known in the art.
An enzyme secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulfate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.
An aspect contemplates the polynucleotide in a vector is operably linked to a control sequence that is capable of providing for the expression of the coding sequence by the host cell, i.e. the vector is an expression vector. The control sequences may be modified, for example by the addition of further transcriptional regulatory elements to make the level of transcription directed by the control sequences more responsive to transcriptional modulators. The control sequences may in particular comprise promoters.
Host cells may be cultured under suitable conditions that allow expression of the Amy 195 α-amylase or variant thereof. Expression of the enzymes may be constitutive such that they are continually produced, or inducible, requiring a stimulus to initiate expression. In the case of inducible expression, protein production can be initiated when required by, for example, addition of an inducer substance to the culture medium, for example dexamethasone or IPTG or Sepharose. Polypeptides can also be produced recombinantly in an in vitro cell-free system, such as the TnT™ (Promega) rabbit reticulocyte system.
An Amy 195 α-amylase, or variant thereof, expressing host also can be cultured in the appropriate medium for the host, under aerobic conditions. Shaking or a combination of agitation and aeration can be provided, with production occurring at the appropriate temperature for that host, e.g., from about 25°C to about 75°C (e.g., 30°C to 450C), depending on the needs of the host and production of the desired α-amylase variant. Culturing can occur from about 12 to about 100 hours or greater (and any hour value there between, e.g., from 24 to 72 hours). Typically, the culture broth is at a pH of about 5.5 to about 8.0, again depending on the culture conditions needed for the host relative to production of the α-amylase variant. 3.2 Materials and Methods for Protein Purification Fermentation, separation, and concentration techniques are well known in the art and conventional methods can be used in order to prepare a concentrated Amy 195 α-amylase or variant thereof containing solution.
After fermentation, a fermentation broth is obtained, the microbial cells and various suspended solids, including residual raw fermentation materials, are removed by conventional separation techniques in order to obtain an amylase solution. Filtration, centrifugation, microfiltration, rotary vacuum drum filtration, ultrafiltration, centrifugation followed by ultrafiltration, extraction, or chromatography, or the like, are generally used. It is desirable to concentrate the Amy 195 α-amylase or variant thereof containing solution in order to optimize recovery. Use of unconcentrated solutions requires increased incubation time in order to collect the purified enzyme precipitate.
The enzyme containing solution is concentrated using conventional concentration techniques until the desired enzyme level is obtained. Concentration of the enzyme containing solution may be achieved by any of the techniques discussed herein. Exemplary methods of purification include but are not limited to rotary vacuum filtration and/or ultrafiltration.
The enzyme solution is concentrated into a concentrated enzyme solution until the enzyme activity of said concentrated Amy 195 α-amylase or variant thereof containing solution is at least about 4 g/L (e.g., at least about 4.8 g/L, or at least 5.6 g/L or even higher). These concentrations can be increased to as much as about 25 g/L under certain applications.
By "precipitation agent" for purposes of purification is meant a compound effective to precipitate the Amy 195 α-amylase or variant thereof from the concentrated enzyme solution in solid form, whatever its nature may be, i.e. crystalline, amorphous or blend of both. Precipitation can be performed using, for example, a metal halide precipitation agent.
Metal halide precipitation agents include but are not limited to: alkali metal chlorides, alkali metal bromides and blends of two or more of these metal halides. Exemplary metal halides include sodium chloride, potassium chloride, sodium bromide, potassium bromide and blends of two or more of these metal halides. The metal halide precipitation agent, sodium chloride, can also be used as a preservative.
The metal halide precipitation agent is used in an amount effective to precipitate the Amy 195 α-amylase or variant thereof. The selection of at least an effective amount and an optimum amount of metal halide effective to cause precipitation of the enzyme, as well as the conditions of the precipitation for maximum recovery including incubation time, pH, temperature and concentration of enzyme, will be readily apparent to one of ordinary skill in the art, after routine testing.
Generally, at least about 5% w/v (weight/volume) to about 25% w/v of metal halide is added to the concentrated enzyme solution, and usually at least 8% w/v. Generally, no more than about 25% w/v of metal halide is added to the concentrated enzyme solution and usually no more than about 20% w/v. The optimal concentration of the metal halide precipitation agent will depend, among others, on the nature of the specific Amy 195 α-amylase variant and on its concentration in the concentrated enzyme solution. Another alternative to effect precipitation of the enzyme is to use organic compounds. Exemplary organic compound precipitating agents include: 4-hydroxybenzoic acid, alkali metal salts of 4-hydroxybenzoic acid, alkyl esters of 4-hydroxybenzoic acid, and blends of two or more of these organic compounds. The addition of said organic compound precipitation agents can take place prior to, simultaneously with or subsequent to the addition of the metal halide precipitation agent, and the addition of both precipitation agents, organic compound and metal halide, may be carried out sequentially or simultaneously.
For further descriptions, see, e.g., U.S. Patent No. 5,281,526. Generally, the organic precipitation agents are selected from the group consisting of alkali metal salts of 4- hydroxybenzoic acid, such as sodium or potassium salts, and linear or branched alkyl esters of 4- hydroxybenzoic acid, wherein the alkyl group contains from 1 to 12 carbon atoms, and blends of two or more of these organic compounds. The organic compound precipitation agents can be, for example, linear or branched alkyl esters of 4-hydroxybenzoic acid, wherein the alkyl group contains from 1 to 10 carbon atoms, and blends of two or more of these organic compounds. Exemplary organic compounds are linear alkyl esters of 4-hydroxybenzoic acid, wherein the alkyl group contains from 1 to 6 carbon atoms, and blends of two or more of these organic compounds. Methyl esters of 4-hydroxybenzoic acid, propyl esters of 4-hydroxybenzoic acid, butyl ester of 4-hydroxybenzoic acid, ethyl ester of 4-hydroxybenzoic acid and blends of two or more of these organic compounds can also be used. Additional organic compounds also include but are not limited to 4-hydroxybenzoic acid methyl ester (named methyl PARABEN), 4- hydroxybenzoic acid propyl ester (named propyl PARABEN), which also are both amylase preservative agents.
Addition of the organic compound precipitation agent provides the advantage of high flexibility of the precipitation conditions with respect to pH, temperature, Amy 195 α-amylase or variant thereof concentration, precipitation agent concentration, and time of incubation.
The organic compound precipitation agent is used in an amount effective to improve precipitation of the enzyme by means of the metal halide precipitation agent. The selection of at least an effective amount and an optimum amount of organic compound precipitation agent, as well as the conditions of the precipitation for maximum recovery including incubation time, pH, temperature and concentration of enzyme, will be readily apparent to one of ordinary skill in the art, in light of the present disclosure, after routine testing. Generally, at least about 0.01% w/v of organic compound precipitation agent is added to the concentrated enzyme variant solution and usually at least about 0.02% w/v. Generally, no more than about 0.3% w/v of organic compound precipitation agent is added to the concentrated enzyme variant solution and usually no more than about 0.2% w/v. The concentrated enzyme solution, containing the metal halide precipitation agent, and the organic compound precipitation agent, can be adjusted to a pH, which will, of necessity, depend on the enzyme to be purified. Generally, the pH is adjusted at a level near the isoelectric point of the amylase. The pH can be adjusted at a pH in a range from about 2.5 pH units below the isoelectric point (pi) up to about 2.5 pH units above the isoelectric point. The incubation time necessary to obtain a purified enzyme precipitate depends on the nature of the specific enzyme, the concentration of enzyme, and the specific precipitation agent(s) and its (their) concentration. Generally, the time effective to precipitate the enzyme is between about 1 to about 30 hours; usually it does not exceed about 25 hours. In the presence of the organic compound precipitation agent, the time of incubation can still be reduced to less about 10 hours and in most cases even about 6 hours.
Generally, the temperature during incubation is between about 4°C and about 50°C. Usually, the method is carried out at a temperature between about 10°C and about 45 °C (e.g., between about 20°C and about 40°C). The optimal temperature for inducing precipitation varies according to the solution conditions and the enzyme or precipitation agent(s) used. The overall recovery of purified enzyme precipitate, and the efficiency with which the process is conducted, is improved by agitating the solution comprising the enzyme, the added metal halide and the added organic compound. The agitation step is done both during addition of the metal halide and the organic compound, and during the subsequent incubation period. Suitable agitation methods include mechanical stirring or shaking, vigorous aeration, or any similar technique.
After the incubation period, the purified enzyme is then separated from the dissociated pigment and other impurities and collected by conventional separation techniques, such as filtration, centrifugation, microfiltration, rotary vacuum filtration, ultrafiltration, press filtration, cross membrane microfiltration, cross flow membrane microfiltration, or the like. Further purification of the purified enzyme precipitate can be obtained by washing the precipitate with water. For example, the purified enzyme precipitate is washed with water containing the metal halide precipitation agent, or with water containing the metal halide and the organic compound precipitation agents.
During fermentation, the Amy 195 α-amylase or variant thereof accumulates in the culture broth. For the isolation and purification of the desired α-amylase variant, the culture broth is centrifuged or filtered to eliminate cells, and the resulting cell-free liquid is used for enzyme purification. In one embodiment, the cell-free broth is subjected to salting out using ammonium sulfate at about 70% saturation; the 70% saturation-precipitation fraction is then dissolved in a buffer and applied to a column such as a Sephadex G-IOO column, and eluted to recover the enzyme-active fraction. For further purification, a conventional procedure such as ion exchange chromatography may be used.
Purified enzymes are useful for laundry and cleaning applications. For example, they can be used in laundry detergents and spot removers. They can be made into a final product that is either liquid (solution, slurry) or solid (granular, powder).
A more specific example of purification, is described in J. Sumitani et al., "New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 α- amylase contributes to starch binding and raw starch degrading," Biochem. J. 350: 477-484 (2000) and is briefly summarized here. The enzyme obtained from 4 liters of a Streptomyces lividans TK24 culture supernatant was treated with (NtLi)2SO4 at 80% saturation. The precipitate was recovered by centrifugation at 10,000 x g (20 minutes and 4°C) and re-dissolved in 20 mM Tris/HCl buffer (pH 7.0) containing 5 mM CaCl2. The solubilized precipitate was then dialyzed against the same buffer. The dialyzed sample was then applied to a Sephacryl S- 200 column, which had previously been equilibrated with 20 mM Tris/HCl buffer, (pH 7.0), 5 mM CaCl2, and eluted at a linear flow rate of 7 cm/hr with the same buffer. Fractions from the column were collected and assessed for activity as judged by enzyme assay and SDS-PAGE. The protein was further purified as follows. A Toyopearl HW55 column (Tosoh Bioscience, Montgomeryville, PA; Cat. No. 19812) was equilibrated with 20 mM Tris/HCl buffer (pH 7.0) containing 5 mM CaCl2 and 1.5 M (M-U)2SO4. The enzyme was eluted with a linear gradient of 1.5 to 0 M (NH4)2SO4 in 20 mM Tris/HCL buffer, pH 7.0 containing 5 mM CaCl2. The active fractions were collected, and the enzyme precipitated with (NH4)2SO4 at 80% saturation. The precipitate was recovered, re-dissolved, and dialyzed as described above. The dialyzed sample was then applied to a Mono Q HR5/5 column (Amersham Pharmacia; Cat. No. 17-5167-01) previously equilibrated with 20 mM Tris/HCl buffer (pH 7.0) containing 5 mM CaCl2, at a flow rate of 60 mL/hour. The active fractions are collected and added to a 1.5 M (NH4)2SO4 solution. The active enzyme fractions were re-chromatographed on a Toyopearl HW55 column, as before, to yield a homogeneous enzyme as determined by SDS-PAGE. See J. Sumitani et al., "New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 α-amylase contributes to starch binding and raw starch degrading," Biochem. J. 350: 477-484 (2000) for general discussion of the method and variations thereon.
For production scale recovery, the enzyme can be partially purified as generally described above by removing cells via flocculation with polymers. Alternatively, the enzyme can be purified by microfiltration followed by concentration by ultrafiltration using available membranes and equipment. However, for some applications, the enzyme does not need to be purified, and whole broth culture can be lysed and used without further treatment. The enzyme can then be processed, for example, into granules.
4. Cleaning Compositions The Amy 195 α-amylase and variant(s) thereof possess valuable properties allowing for a variety of industrial applications. These enzymes can be used as a component in washing, dishwashing and hard-surface cleaning detergent compositions. They can be formulated as part of a detergent additive, as part of a detergent composition, as part of an automatic or hand wash dishwashing composition, and the like. The Amy 195 α-amylase and variant(s) thereof may be incorporated in concentrations conventionally employed in detergents. It is at present contemplated that, in the detergent compositions, the α-amylase may be added in amount corresponding to 0.00001 — 1 mg (calculated as pure enzyme protein) of α-amylase per liter of wash/diswash liquor. Exemplary formulations are provided herein. 4.1 Laundry Detergent Composition Accordingly, an Amy 195 α-amylase or variant thereof may typically be a component of a detergent composition, as the only enzyme or with other enzymes including other amylolytic enzymes. As such, it may be included in the detergent composition in the form of a non-dusting granulate, a stabilized liquid, or a protected enzyme. Non-dusting granulates may be produced, e.g., as disclosed in U.S. Patent Nos. 4,106,991 and 4,661,452 and may optionally be coated by methods known in the art. Examples of waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1,000 to 20,000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids. Examples of film-forming coating materials suitable for application by fluid bed techniques are given in, for example, GB Patent No. 1483591. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods. Other enzyme stabilizers are well known in the art. Protected enzymes may be prepared according to the method disclosed in for example EP 238,216. Polyols have long been recognized as stabilizers of proteins, as well as improving protein solubility. See, e.g., J. K. Kaushik et al., "Why is trehalose an exceptional protein stabilizer?" J. Biol. Chem. 278: 26458-65 (2003) and references cited therein; and Monica Conti et al.,
"Capillary isoelectric focusing: the problem of protein solubility," J. Chromatography A 757: 237-245 (1997).
The detergent composition may be in any useful form, e.g., as powders, granules, pastes, or liquid. A liquid detergent may be aqueous, typically containing up to about 70% of water and 0% to about 30% of organic solvent. It may also be in the form of a compact gel type containing only about 30% water.
The detergent composition comprises one or more surfactants, each of which may be anionic, nonionic, cationic, or zwitterionic. The detergent will usually contain 0% to about 50% of anionic surfactant, such as linear alkylbenzenesulfonate (LAS); α-olefinsulfonate (AOS); alkyl sulfate (fatty alcohol sulfate) (AS); alcohol ethoxysulfate (AEOS or AES); secondary alkanesulfonates (SAS); α-sulfo fatty acid methyl esters; alkyl- or alkenylsuccinic acid; or soap. The composition may also contain 0% to about 40% of nonionic surfactant such as alcohol ethoxylate (AEO or AE), carboxylated alcohol ethoxylates, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, or polyhydroxy alkyl fatty acid amide (as described for example in WO 92/06154).
The detergent composition may additionally comprise one or more other enzymes, such as lipase, another amylolytic enzyme, cutinase, protease, cellulase, peroxidase, and/or laccase in any combination. The detergent may contain about 1% to about 65% of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, citrate, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTMPA), alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates {e.g., SKS-6 from Hoechst). The detergent may also be unbuilt, i.e. essentially free of detergent builder. The enzymes can be used in any composition compatible with the stability of the enzyme. Enzymes generally can be protected against deleterious components by known forms of encapsulation, for example, by granulation or sequestration in hydro gels. Enzymes, and specifically α-amylases, such as amyl95 molecules, either with or without starch binding domains, can be used in a variety of compositions including laundry and dishwashing applications, surface cleaners, as well as in compositions for ethanol production from starch or biomass.
The detergent may comprise one or more polymers. Examples include carboxymethylcellulose (CMC), poly(vinylpyrrolidone) (PVP), polyethyleneglycol (PEG), poly(vinyl alcohol) (PVA), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
The detergent may contain a bleaching system, which may comprise a H2O2 source such as perborate or percarbonate, which may be combined with a peracid-forming bleach activator such as tetraacetylethylenediamine (TAED) or nonanoyloxybenzenesulfonate (NOBS).
Alternatively, the bleaching system may comprise peroxyacids {e.g., the amide, imide, or sulfone type peroxyacids). The bleaching system can also be an enzymatic bleaching system, for example, perhydrolase, such as that described in International PCT Application WO 2005/056783. The enzymes of the detergent composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol; a sugar or sugar alcohol; lactic acid; boric acid or a boric acid derivative such as, e.g., an aromatic borate ester; and the composition may be formulated as described in, e.g., WO 92/19709 and WO 92/19708.
The detergent may also contain other conventional detergent ingredients such as e.g., fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil- suspending agents, anti-soil redeposition agents, dyes, bactericides, tarnish inhibiters, optical brighteners, or perfumes.
The pH (measured in aqueous solution at use concentration) is usually neutral or alkaline, e.g., pH about 7.0 to about 11.0. Particular forms of detergent compositions comprising the Amy 195 α-amylase or variants thereof can be formulated to include: 1) A detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising linear alkylbenzenesulfonate (calculated as acid) about 7% to about 12%; alcohol ethoxysulfate (e.g., Ci2-I8 alcohol, 1-2 ethylene oxide (EO)) or alkyl sulfate (e.g., Ci6-I8) about 1% to about 4%; alcohol ethoxylate (e.g., C]4-I5 alcohol, 7 EO) about 5% to about 9%; sodium carbonate (e.g., Na2CO3) about 14% to about 20%; soluble silicate (e.g., Na2O, 2SiO2) about 2 to about 6%; zeolite (e.g., NaAlSiO4) about 15% to about 22%; sodium sulfate (e.g., Na2SO4) 0% to about 6%; sodium citrate/citric acid (e.g., C6H5Na3OyC6H8O7) about 0% to about 15%; sodium perborate (e.g., NaBO3H2O) about 11% to about 18%; TAED about 2% to about 6%; carboxymethylcellulose (CMC) and 0% to about 2%; polymers (e.g., maleic/acrylic acid, copolymer, PVP, PEG) 0-3%; enzymes (calculated as pure enzyme) 0.0001-0.1% protein; and minor ingredients (e.g., suds suppressors, perfumes, optical brightener, photobleach) 0-5%.
2) A detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising linear alkylbenzenesulfonate (calculated as acid) about 6% to about 11%; alcohol ethoxysulfate (e.g., C]2-I8 alcohol, 1-2 EO) or alkyl sulfate (e.g., Ci6-I8) about 1% to about 3%; alcohol ethoxylate (e.g., Ci4-I5 alcohol, 7 EO) about 5% to about 9%; sodium carbonate (e.g., Na2CO3) about 15% to about 21%; soluble silicate (e.g., Na2O, 2SiO2) about 1% to about 4%; zeolite (e.g., NaAlSiO4) about 24% to about 34%; sodium sulfate (e.g,. Na2SO4) about 4% to about 10%; sodium citrate/citric acid (e.g., C6H5Na3O7/ C6H8O7) 0% to about 15%; carboxymethylcellulose (CMC) 0% to about 2%; polymers (e.g., maleic/acrylic acid copolymer, PVP, PEG) 1-6%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; minor ingredients (e.g., suds suppressors, perfume) 0-5%.
3) A detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising linear alkylbenzenesulfonate (calculated as acid) about 5% to about 9%; alcohol ethoxylate (e.g., Ci2-I5 alcohol, 7 EO) about 7% to about 14%; Soap as fatty acid (e.g., Ci6-22 fatty acid) about 1 to about 3%; sodium carbonate (as Na2CO3) about 10% to about 17%; soluble silicate (e.g., Na2O, 2SiO2) about 3% to about 9%; zeolite (as NaAlSiO4) about 23% to about 33%; sodium sulfate (e.g., Na2SO4) 0% to about 4%; sodium perborate (e.g., NaBO3H2O) about 8% to about 16%; TAED about 2% to about 8%; phosphonate (e.g., EDTMPA) 0% to about 1%; carboxymethylcellulose (CMC) 0% to about 2%; polymers (e.g., maleic/acrylic acid copolymer, PVP, PEG) 0-3%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; minor ingredients (e.g., suds suppressors, perfume, optical brightener) 0-5%. 4) A detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising linear alkylbenzenesulfonate (calculated as acid) about 8% to about 12%; alcohol ethoxylate {e.g., C12-I5 alcohol, 7 EO) about 10% to about 25%; sodium carbonate (as Na2CO3) about 14% to about 22%; soluble silicate {e.g., Na2O, 2SiO2) about 1% to about 5%; zeolite {e.g. , NaAl SiO4) about 25% to about 35%; sodium sulfate {e.g., Na2SO4) 0% to about 10%; carboxymethylcellulose (CMC) 0% to about 2%; polymers {e.g., maleic/acrylic acid copolymer, PVP, PEG) 1-3%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients {e.g., suds suppressors, perfume) 0-5%.
5) An aqueous liquid detergent composition comprising linear alkylbenzenesulfonate (calculated as acid) about 15% to about 21%; alcohol ethoxylate {e.g., C]2-I5 alcohol, 7 EO or
C12-15 alcohol, 5 EO) about 12% to about 18%; soap as fatty acid {e.g., oleic acid) about 3% to about 13%; alkenylsuccinic acid (Ci2-I4) 0% to about 13%; aminoethanol about 8% to about 18%; citric acid about 2% to about 8%; phosphonate 0% to about 3%; polymers {e.g., PVP, PEG) 0% to about 3%; borate {e.g., B4O7) 0% to about 2%; ethanol 0% to about 3%; propylene glycol about 8% to about 14%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients {e.g., dispersants, suds suppressors, perfume, optical brightener) 0-5%.
6) An aqueous structured liquid detergent composition comprising linear alkylbenzenesulfonate (calculated as acid) about 15% to about 21%; alcohol ethoxylate {e.g., C12-15 alcohol, 7 EO, or Ci2-J5 alcohol, 5 EO) 3-9%; soap as fatty acid {e.g., oleic acid) about 3% to about 10%; zeolite (as NaAl SiO4) about 14% to about 22%; potassium citrate about 9% to about 18%; borate {e.g., B4O7) 0% to about 2%; carboxymethylcellulose (CMC) 0% to about 2%; polymers {e.g., PEG, PVP) 0% to about 3%; anchoring polymers such as, e.g., lauryl methacrylate/acrylic acid copolymer; molar ratio 25:1, MW 3800) 0% to about 3%;glycerol 0% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients {e.g., dispersants, suds suppressors, perfume, optical brighteners) 0-5%.
7) A detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising fatty alcohol sulfate about 5% to about 10%; ethoxylated fatty acid monoethanolamide about 3% to about 9%; soap as fatty acid 0-3%; sodium carbonate {e.g., Na2CO3) about 5% to about 10%; Soluble silicate {e.g., Na2O, 2SiO2) about 1% to about 4%; zeolite {e.g., NaAl SiO4) about 20% to about 40%; Sodium sulfate {e.g., Na2SO4) about 2% to about 8%; sodium perborate {e.g., NaBO3H2O) about 12% to about 18%; TAED about 2% to about 7%; polymers {e.g., maleic/acrylic acid copolymer, PEG) about 1% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g., optical brightener, suds suppressors, perfume) 0-5%.
8) A detergent composition formulated as a granulate comprising linear alkylbenzenesulfonate (calculated as acid) about 8% to about 14%; ethoxylated fatty acid monoethanolamide about 5% to about 11%; soap as fatty acid 0% to about 3%; sodium carbonate (e.g., Na2CO3) about 4% to about 10%; soluble silicate (Na2O, 2SiO2) about 1% to about 4%; zeolite (e.g., NaAlSiO4) about 30% to about 50%; sodium sulfate (e.g., Na2SO4) about 3% to about 11%; sodium citrate (e.g., C6HsNa3O7) about 5% to about 12%; polymers (e.g., PVP, maleic/acrylic acid copolymer, PEG) about 1% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g., suds suppressors, perfume) 0- 5%.
9) A detergent composition formulated as a granulate comprising linear alkylbenzenesulfonate (calculated as acid) about 6% to about 12%; nonionic surfactant about 1% to about 4%; soap as fatty acid about 2% to about 6%; sodium carbonate (e.g., Na2CO3) about 14% to about 22%; zeolite (e.g. , NaA 1 SiO4) about 18% to about 32%; sodium sulfate (e.g. , Na2SO4) about 5% to about 20%; sodium citrate (e.g., C6H5Na3O7) about 3% to about 8%; sodium perborate (e.g., NaBO3H2O) about 4% to about 9%; bleach activator (e.g., NOBS or TAED) about 1% to about 5%; carboxymethylcellulose (CMC) 0% to about 2%; polymers (e.g., polycarboxylate or PEG) about 1% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g. , optical brightener, perfume) 0-5%.
10) An aqueous liquid detergent composition comprising linear alkylbenzenesulfonate (calculated as acid) about 15% to about 23%; alcohol ethoxysulfate (e.g., Ci2-I5 alcohol, 2-3 EO) about 8% to about 15%; alcohol ethoxylate (e.g., CiM5 alcohol, 7 EO, or Ci2-I5 alcohol, 5 EO) about 3% to about 9%; soap as fatty acid (e.g., lauric acid) 0% to about 3%; aminoethanol about 1% to about 5%; sodium citrate about 5% to about 10%; hydrotrope (e.g., sodium toluensulfonate) about 2% to about 6%; borate (e.g., B4O7) 0% to about 2%; carboxymethylcellulose 0% to about 1%; ethanol about 1% to about 3%; propylene glycol about 2% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g., polymers, dispersants, perfume, optical brighteners) 0-5%. 11) An aqueous liquid detergent composition comprising linear alkylbenzenesulfonate
(calculated as acid) about 20% to about 32%; alcohol ethoxylate (e.g., Ci2-I5 alcohol, 7 EO, or Ci2-I5 alcohol, 5 EO) 6-12%; aminoethanol about 2% to about 6%; citric acid about 8% to about 14%; borate (e.g., B4O7) about 1% to about 3%; polymer (e.g., maleic/acrylic acid copolymer, anchoring polymer such as, e.g., lauryl methacrylate/acrylic acid copolymer) 0% to about 3%; glycerol about 3% to about 8%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g., hydrotropes, dispersants, perfume, optical brighteners) 0-5%. 12) A detergent composition formulated as a granulate having a bulk density of at least
600 g/L comprising anionic surfactant (linear alkylbenzenesulfonate, alkyl sulfate, α- olefinsulfonate, α-sulfo fatty acid methyl esters, alkanesulfonates, soap) about 25% to about 40%; nonionic surfactant (e.g., alcohol ethoxylate) about 1% to about 10%; sodium carbonate (e.g., Na2CO3) about 8% to about 25%; soluble silicates (e.g., Na2O, 2SiO2) about 5% to about 15%; sodium sulfate (e.g. , Na2SO4) 0% to about 5%; zeolite (NaAl SiO4) about 15% to about 28%; sodium perborate (e.g., NaBO34H2O) 0% to about 20%; bleach activator (TAED or NOBS) about 0% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; minor ingredients (e.g., perfume, optical brighteners) 0-3%.
13) Detergent compositions as described in compositions I)- 12) supra, wherein all or part of the linear alkylbenzenesulfonate is replaced by (Cπ-Cis) alkyl sulfate.
14) A detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising (Ci2-Ci8) alkyl sulfate about 9% to about 15%; alcohol ethoxylate about 3% to about 6%; polyhydroxy alkyl fatty acid amide about 1% to about 5%; zeolite (e.g., NaAlSiO4) about 10% to about 20%; layered disilicate (e.g., SK56 from Hoechst) about 10% to about 20%; sodium carbonate (e.g., Na2CO3) about 3% to about 12%; soluble silicate (e.g.,
Na2O, 2SiO2) 0% to about 6%; sodium citrate about 4% to about 8%; sodium percarbonate about 13% to about 22%; TAED about 3% to about 8%; polymers (e.g., polycarboxylates and PVP) 0% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g., optical brightener, photobleach, perfume, suds suppressors) 0-5%. 15) A detergent composition formulated as a granulate having a bulk density of at least
600 g/L comprising (Cn-Cjg) alkyl sulfate about 4% to about 8%; alcohol ethoxylate about 11% to about 15%; soap about 1% to about 4%; zeolite MAP or zeolite A about 35% to about 45%; sodium carbonate (as Na2CO3) about 2% to about 8%; soluble silicate (e.g., Na2O, 2SiO2) 0% to about 4%; sodium percarbonate about 13% to about 22%; TAED 1-8%; carboxymethylcellulose (CMC) 0% to about 3%; polymers (e.g., polycarboxylates and PVP) 0% to about 3%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g., optical brightener, phosphonate, perfume) 0-3%. 16) Detergent formulations as described in I)- 15) supra, which contain a stabilized or encapsulated peracid, either as an additional component or as a substitute for already specified bleach systems.
17) Detergent compositions as described supra in 1), 3), 7), 9), and 12), wherein perborate is replaced by percarbonate.
18) Detergent compositions as described supra in 1), 3), 7), 9), 12), 14), and 15), which additionally contain a manganese catalyst. The manganese catalyst for example is one of the compounds described in "Efficient manganese catalysts for low-temperature bleaching," Nature 369: 637-639 (1994). 19) Detergent composition formulated as a non-aqueous detergent liquid comprising a liquid nonionic surfactant such as, e.g., linear alkoxylated primary alcohol, a builder system {e.g., phosphate), an enzyme(s), and alkali. The detergent may also comprise anionic surfactant and/or a bleach system.
The Amy 195 α-amylase or variant thereof may be incorporated in concentrations conventionally employed in detergents. It is at present contemplated that, in the detergent composition, the enzyme may be added in an amount corresponding to 0.00001-1.0 mg (calculated as pure enzyme protein) of Amy 195 α-amylase or variant thereof per liter of wash liquor.
In another embodiment, other enzymes, such as 2,6-β-D-fructan hydrolase, can be incorporated in detergent compositions comprising the Amy 195 α-amylase or variant thereof and used for removal/cleaning of biofilm present on household and/or industrial textile/laundry.
The detergent composition may for example be formulated as a hand (manual) or machine (automatic) laundry detergent composition, including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for manual or automatic dishwashing operations.
In a specific aspect, the detergent composition can comprise 2,6-β-D-fructan hydrolase in addition to Amy 195 α-amylase or variant thereof, and one or more other cleaning enzymes, such as a protease, a lipase, a cutinase, a carbohydrase, a cellulase, a pectinase, a mannanase, an arabinase, a galactanase, another amylolytic enzyme, a xylanase, an oxidase, a laccase, and/or a peroxidase, and/or combinations thereof. In general the properties of the chosen enzyme(s) should be compatible with the selected detergent, (e.g., pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc.), and the enzyme(s) should be present in effective amounts.
Proteases: Suitable proteases include those of animal, vegetable or microbial origin. Chemically modified or protein engineered mutants are included, as well as naturally processed proteins. The protease may be a serine protease or a metalloprotease, such as an alkaline microbial protease, a trypsin-like protease, or a chymotrypsin-like protease. Examples of alkaline proteases are subtilisins, especially those derived from Bacillus, e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147, and subtilisin 168 (see, e.g., WO 89/06279). Examples of trypsin-like proteases are trypsin (e.g., of porcine or bovine origin), and Fusarium proteases (see, e.g., WO 89/06270 and WO 94/25583). Examples of useful proteases also include but are not limited to the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946. Commercially available protease enzymes include but are not limited to: Alcalase®, Savinase®, Primase™, Duralase™, Esperase®, and Kannase™(Novo Nordisk AJS); Maxatase®, Maxacal™, Maxapem™, Properase®, Purafect®, Purafect OxP™, FN2™, and FN3™ (Genencor International, Inc.).
Lipases: Suitable lipases include those of bacterial or fungal origin. Chemically modified, proteolytically modified, or protein engineered mutants are included. Examples of useful lipases include but are not limited to lipases from Humicola (synonym Thermomyces), e.g., from H. lanuginosa (T. lanuginosus) (see e.g., EP 258068 and EP 305216), from H. insolens (see e.g., WO 96/13580); a Pseudomonas lipase (e.g., from P. alcaligenes or P. pseudoalcaligenes; see, e.g., EP 218 272), P. cepacia (see e.g., EP 331 376), P. stutzeri (see e.g., GB 1,372,034), P.fluorescens, Pseudomonas sp. strain SD 705 (see e.g., WO 95/06720 and WO 96/27002), P. wisconsinensis (see e.g., WO 96/12012); a Bacillus lipase (e.g., from B. subtilis; see e.g., Dartois et al. Biochemica et Biophysica Acta, 1131 : 253-360 (1993)), B. stearothermophilus (see e.g., JP 64/744992), or B. pumilus (see e.g., WO 91/16422). Additional lipase variants contemplated for use in the formulations include those described for example in: WO 92/05249, WO 94/01541, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079, WO 97/07202, EP 407225, and EP 260105. Some commercially available lipase enzymes include Lipolase® and Lipolase Ultra™ (Novo Nordisk AJS). Polyesterase: Suitable polyesterases can be included in the composition, such as those described in, for example, WO 01/34899 and WO 01/14629.
Amylases: The compositions can be combined with other amylases, such as non- production enhanced α-amylase. These can include commercially available amylases, such as but not limited to Duramyl®, Termamyl®, Fungamyl® and BAN™ (Novo Nordisk AJS); Rapidase® and Purastar® (from Genencor International, Inc.).
Cellulases: Cellulases can be added to the compositions. Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum disclosed for example in U.S. Patent Nos. 4,435,307; 5,648,263; 5,691,178; 5,776,757; and WO 89/09259. Exemplary cellulases contemplated for use are those having color care benefit for the textile. Examples of such cellulases are cellulases described in for example EP 0495257, EP 0531372, WO 96/11262, WO 96/29397, and WO 98/08940. Other examples are cellulase variants, such as those described in WO 94/07998; WO 98/12307; WO 95/24471; PCT/DK98/00299; EP 531315; U.S. Patent Nos. 5,457,046; 5,686,593; and 5,763,254. Commercially available cellulases include Celluzyme® and Carezyme® (Novo Nordisk A/S); Clazinase® and Puradax HA® (Genencor International, Inc.); and KAC-500(B)™ (Kao Corporation). Peroxidases/Oxidases: Suitable peroxidases/oxidases contemplated for use in the compositions include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g., from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include for example Guardzyme ™ (Novo Nordisk A/S).
The detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes. A detergent additive, i.e. a separate additive or a combined additive, can be formulated e.g., as a granulate, a liquid, a slurry, etc. Exemplary detergent additive formulations include but are not limited to granulates, in particular non-dusting granulates, liquids, in particular stabilized liquids or slurries. Non-dusting granulates may be produced, e.g., as disclosed in U.S. Patent Nos. 4,106,991 and 4,661,452 and may optionally be coated by methods known in the art. Examples of waxy coating materials are poly(ethylene oxide) products (e.g., polyethyleneglycol, PEG) with mean molar weights of 1,000 to 20,000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids. Examples of film-forming coating materials suitable for application by fluid bed techniques are given in, for example, GB 1483591. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods. Protected enzymes may be prepared according to the method disclosed in EP 238,216.
The detergent composition may be in any convenient form, e.g., a bar, a tablet, a powder, a granule, a paste, or a liquid. A liquid detergent may be aqueous, typically containing up to about 70% water, and 0% to about 30% organic solvent. Compact detergent gels containing about 30% or less water are also contemplated. The detergent composition can optionally comprise one or more surfactants, which may be non-ionic, including semi-polar and/or anionic and/or cationic and/or zwitterionic. The surfactants can be present in a wide range, from about 0.1% to about 60% by weight.
When included therein the detergent will typically contain from about 1 % to about 40% of an anionic surfactant, such as linear alkylbenzenesulfonate, α-olefϊnsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, α-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid, or soap.
When included therein, the detergent will usually contain from about 0.2% to about 40% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl-N-alkyl derivatives of glucosamine ("glucamides").
The detergent may contain 0% to about 65% of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid, alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates (e.g.,SKS-6 from Hoechst). The detergent may comprise one or more polymers. Exemplary polymers include carboxymethylcellulose (CMC), poly(vinylpyrrolidone) (PVP), poly(ethylene glycol) (PEG), polyvinyl alcohol) (PVA), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates e.g., polyacrylates, maleic/acrylic acid copolymers), and lauryl methacrylate/acrylic acid copolymers.
The enzyme(s) of the detergent composition may be stabilized using conventional stabilizing agents, e.g., as polyol (e.g., propylene glycol or glycerol), a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative (e.g., an aromatic borate ester), or a phenyl boronic acid derivative (e.g., 4-formylphenyl boronic acid). The composition may be formulated as described in WO 92/19709 and WO 92/19708.
It is at present contemplated that in the detergent compositions, in particular the enzyme variants, may be added in an amount corresponding to about 0.01 to about 100 mg of enzyme protein per liter of wash liquor (e.g., about 0.05 to about 5.0 mg of enzyme protein per liter of wash liquor or 0.1 to about 1.0 mg of enzyme protein per liter of wash liquor). 4.2 Cleaning Compositions hi the detergent applications, Amyl95 α-amylase and/or variant thereof are usually used in a liquid composition containing propylene glycol. The enzyme is solubilized in for example in propylene glycol by mixing in a 25% volume/volume propylene glycol solution containing 10% calcium chloride. The Amy 195 α-amylase and/or variant thereof discussed herein can be formulated in detergent compositions for use in cleaning dishes or other cleaning compositions. These can be powders, gels, or liquids. The compositions can comprise the enzyme alone, or with other amylolytic enzymes and/or with other cleaning enzymes or bleach activating enzymes, and other components common to cleaning compositions. Thus, a dishwashing detergent composition can comprise a surfactant. The surfactant may be anionic, non-ionic, cationic, amphoteric or a mixture of these types. The detergent can contain 0% to about 90% by weight of a non-ionic surfactant, such as low- to non-foaming ethoxylated propoxylated straight-chain alcohols.
The detergent composition may contain detergent builder salts of inorganic and/or organic types. The detergent builders may be subdivided into phosphorus-containing and non- phosphorus-containing types. The detergent composition usually contains about 1% to about 90% of detergent builders. Examples of phosphorus-containing inorganic alkaline detergent builders, when present, include the water-soluble salts, especially alkali metal pyrophosphates, orthophosphates, and polyphosphates. An example of phosphorus-containing organic alkaline detergent builder, when present, includes the water-soluble salts of phosphonates. Examples of non-phosphorus-containing inorganic builders, when present, include water-soluble alkali metal carbonates, borates, and silicates, as well as the various types of water-insoluble crystalline or amorphous alumino silicates, of which zeolites are the best-known representatives.
Examples of suitable organic builders include the alkali metal; ammonium and substituted ammonium; citrates; succinates; malonates; fatty acid sulphonates; carboxymethoxy succinates; ammonium polyacetates; carboxylates; polycarboxylates; aminopolycarboxylates; polyacetyl carboxylates; and polyhydroxsulphonates.
Other suitable organic builders include the higher molecular weight polymers and copolymers known to have builder properties, for example appropriate polyacrylic acid, polymaleic and polyacrylic/polymaleic acid copolymers, and their salts.
The cleaning composition may contain bleaching agents of the chlorine/bromine-type or the oxygen-type. Examples of inorganic chlorine/bromine-type bleaches are lithium, sodium or calcium hypochlorite, and hypobromite, as well as chlorinated trisodium phosphate. Examples of organic chlorine/bromine-type bleaches are heterocyclic N-bromo-and N-chloro-imides such as trichloroisocyanuric, tribromoisocyanuric, dibromoisocyanuric, and dichloroisocyanuric acids, and salts thereof with water-solubilizing cations such as potassium and sodium. Hydantoin compounds are also suitable.
The cleaning composition may contain oxygen bleaches, for example in the form of an inorganic persalt, optionally with a bleach precursor or as a peroxy acid compound. Typical examples of suitable peroxy bleach compounds are alkali metal perborates, both tetrahydrates and monohydrates, alkali metal percarbonates, persilicates, and perphosphates. Exemplary activator materials are TAED, and glycerol triacetate. Enzymatic bleach activation systems may also be present in the formulation, e.g., such as perborate or percarbonate, glycerol triacetate and perhydrolase (see, e.g., WO 2005/056783).
The cleaning composition may be stabilized using conventional stabilizing agents for the enzyme(s), e.g., a polyol such as, e.g., propylene glycol, a sugar or a sugar alcohol, lactic acid, boric acid, or a boric acid derivative (e.g., an aromatic borate ester).
The cleaning composition may also contain other conventional detergent ingredients, e.g., deflocculant material, filler material, foam depressors, anti-corrosion agents, soil- suspending agents, sequestering agents, anti-soil redeposition agents, dehydrating agents, dyes, bactericides, fluorescers, thickeners, and perfumes.
Although the present invention(s) has been described with reference to the details below, it would be understood that various modifications can be made.
4.3 Methods of Assessing Detergent Compositions
Numerous α-amylase cleaning assays exist. Exemplary description of testing cleaning includes the following.
A "swatch" is a piece of material such as a fabric that has a stain applied thereto. The material can be, for example, fabrics made of cotton, polyester or mixtures of natural and synthetic fibers. The swatch can further be paper, such as filter paper or nitrocellulose, or a piece of a hard material such as ceramic, metal, or glass. For amylases, the stain is starch based, but can include blood, milk, ink, grass, tea, wine, spinach, gravy, chocolate egg, cheese, clay, pigment, oil, or mixtures of these compounds. A "smaller swatch" is a section of the swatch that has been cut with a single hole punch device, or has been cut with a custom manufactured 96-hole punch device, where the pattern of the multi-hole punch is matched to standard 96-well microtiter plates, or the section has been otherwise removed from the swatch. The swatch can be of textile, paper, metal, or other suitable material. The smaller swatch can have the stain affixed either before or after it is placed into the well of a 24-, 48- or 96-well microtiter plate. The "smaller swatch" can also be made by applying a stain to a small piece of material. For example, the smaller swatch can be a stained piece of fabric 5/8" or 0.25" in diameter. The custom manufactured punch is designed in such a manner that it delivers 96 swatches simultaneously to all wells of a 96-well plate. The device allows delivery of more than one swatch per well by simply loading the same 96-well plate multiple times. Multi-hole punch devices can be conceived of to deliver simultaneously swatches to any format plate, including but not limited to 24-well, 48-well, and 96-well plates. In another conceivable method, the soiled test platform can be a bead made of either metal, plastic, glass, ceramic, or other suitable material that is coated with the soil substrate. The one or more coated beads are then placed into wells of 96-, 48-, or 24- well plates or larger formats, containing suitable buffer and enzyme. In this case, supernatant can be examined for released soil either by direct absorbance measurement or after a secondary color development reaction. Analysis of the released soil might also be taken by mass spectral analysis. A further microscreening assay can be to deliver and secure a swatch, for example an indigo dyed denim, to a well of a multi-well plate, and add particles such as sand or larger particles such as for example garnet sieved to include particle 6 to 8, or 9 gauge, and agitate the plate so as to cause abrasion of the swatch by the added particles. This assay has found use in the assessment of cellulases in stone washing applications. The effectiveness of the enzyme can be judged by either color release (e.g., released indigo is dissolved in dimethylsulfoxide and absorbance at A6oo nm is measured) to the reaction buffer or by reflectance measurements of the abraded swatch.
When, for example, untreated BMI (blood/milk/ink) swatches are washed in detergent without bleach, a large portion of the ink is released even without the help of a protease. Adding a protease leads to a small increase in ink release, which can be hard to quantify over the large background. The present invention provides a treatment protocol that allows one to control the degree of fixation of a stain. As a result, it is possible to produce swatches that, for example, release varying amounts of stain when washed in the absence of the enzyme being tested. The use of fixed swatches leads to a dramatic improvement of the signal-to-noise ratio in the wash assays. Furthermore, by varying the degree of fixation, one can generate stains that give optimum results under the various cleaning conditions.
Swatches having stains of known "strength" on various types of material are commercially available (EMPA, St. Gallen, Switzerland; wfk—Testgewebe GmbH, Krefeld Germany; or Center for Test Materials, Vlaardingen, The Netherlands) and/or can be made by the practitioner (Morris and Prato, Textile Research Journal 52(4): 280 286 (1982)). Other test swatches include but are not limited to blood/milk/ink (BMI) stain(s) on a cotton-containing fabric, a spinach stain on a cotton-containing fabric, or grass on a cotton-containing fabric, and chocolate/milk/soot on a cotton-containing fabric. A BMI stain can be fixed to cotton with 0.0003% to 0.3% hydrogen peroxide. Other combinations include grass or spinach fixed with 0.001% to 1% glutaraldehyde, gelatin and Coomassie stain fixed with 0.001% to 1% glutaraldehyde, or chocolate, milk and soot fixed with 0.001% to 1% glutaraldehyde.
The swatch can also be agitated during incubation with the enzyme and/or detergent formulation. Wash performance data is dependent on the orientation of the swatches in the wells (horizontal versus vertical), particularly in the 96-well plate. This would indicate that mixing was insufficient during the incubation period. Although there are a number of ways to ensure sufficient agitation during incubation, a plate holder in which the microtiter plate is sandwiched between two plates of aluminum can be constructed. This can be as simple as placing, for example, an adhesive plate sealer over the wells then clamping the two aluminum plates to the 96-well plate with any type of appropriate, commercially available clamps. It can then be mounted in a commercial incubator shaker. Setting the shaker to about 400 rpm results in very efficient mixing, while leakage or cross-contamination is efficiently prevented by the holder.
Trinitrobenzenesulfonic acid (TNBS) can be used to quantify the concentration of amino groups in the wash liquor. This can serve as a measure of the amount of protein that was removed from the swatch {see e.g., Cayot and Tainturier, Anal. Biochem. 249: 184-200 (1997)). However, if a detergent or an enzyme sample leads to the formation of unusually small peptide fragments (for example, from the presence of peptidases in the sample), then one will obtain a larger TNBS signal, i.e., more "noise".
Another means of measuring wash performance of blood/milk/ink or other stain is based on ink release. Proteolysis of protein on the swatches leads to the release of ink particles which can be quantified by measuring the absorbance of the wash liquor. The absorbance can be measured at any wavelength between 350 and 800 nm. The absorbance is measured at 410 nm or 620 nm. The wash liquor can also be examined to determine the wash performance on stains containing grass, spinach, gelatin or Coomassie stain. Exemplary wavelengths for these stains include 670 nm for spinach or grass and 620 nm for gelatin or Coomassie. For example, an aliquot of the wash liquor (typically 100-150 μL from a 96-well microplate, for example) is removed and placed in a cuvette or multiwell microplate. This is then placed in a spectrophotometer and the absorbance is read at an appropriate wavelength.
The system can also be used to determine an enhanced enzyme and/or detergent composition for dish washing, for example, using a blood/milk/ink stain on a suitable substrate such as cloth, plastic or ceramic.
In one aspect, the BMI stain is fixed to cotton by applying 0.3% hydrogen peroxide to the BMI/cotton swatch for 30 minutes at 25°C or by applying 0.03% hydrogen peroxide to the BMI/cotton swatch for 30 minutes at 60°C. Smaller swatches of approximately 0.25" are cut from the BMI/cotton swatch and placed in the wells of a 96-well microtiter plate. Into each well, a known mixture of a detergent composition and an enzyme such as a variant protein is placed. After placing an adhesive plate sealer onto the top of the microtiter plate, the microtiter plate is clamped to an aluminum plate and agitated on an orbital shaker at approximately 250 rpm for about 10 to 60 minutes. At the end of this time, the supernatants are transferred to wells in a new microtiter plate and the absorbance of the ink at 620 nm is measured. This can be similarly tested with spinach stains or grass stains fixed to cotton by applying 0.01% glutaraldehyde to the spinach/cotton swatch or grass/cotton swatch for 30 minutes at 25°C. The same can be done with chocolate, milk, and/or soot stains.
EXAMPLES
EXAMPLE 1 Expression in B. subtilis The construct depicted in FIG. 5, was transformed into a 9 protease deleted B. subtilis strain (degUHy32,oppA,ΔspoII3501,amyE::xylRPxylAcomK- ermC, ΔaprE, ΔnprE, Δepr, ΔispA, Δbpr, Δvpr, ΔwprA, Δmpr-ybfJ, ΔnprB) (see US20050202535A1). A culture of this strain was grown in the following medium (per liter): 10 g Soytone, 75 g glucose, 7.2 g urea, 40 mM MOPS, 4 mM Tricine, 3 mM dibasic potassium phosphate, 21.4 mM KOH, 50 mM NaCl, 276 μM potassium sulfate, 528 μM magnesium chloride, 50 μM trisodium citrate dihydrate, 100 μM calcium chloride dihydrate, 14 μM ferrous sulfate heptahydrate, 5.9 μM manganese sulfate dihydrate, 5.7 μM zinc sulfate monohydrate, 2.9 μM cupric chloride dihydrate, 4.2 μM cobalt hexahydrate, 4.5 μM sodium molybdate dihydrate. For a IL volume, all components except for Soytone were mixed in 500 mL, sterile filtered, and added to an equal part of 2X Soytone, which had been sterilized by autoclaving. Trace metals and citrate can be made up as a IOOX or IOOOX stock solutions. Buffers, potassium hydroxide, sodium chloride, potassium sulfate, and magnesium chloride and trace metals can be made up as a 1OX stock solutions. After all components were mixed, the pH was adjusted to 7.3. Prior to use this medium was supplemented with 20 mM calcium chloride. The culture expressed the enzyme in various processed forms. The apparently mature form (without the signal sequence) was observed at the 69 kDa marker on a 10% SDS-PAGE gel. Two shorter forms were also present.
The Amy 195 α-amylase activity was fractionated from the culture broth by treating the broth with a β-cyclodextrin-Sepharose affinity resin, collecting the resin, and washing with 25 mM bis-Tris propane buffer (pH 8.5) containing 2 mM calcium chloride (CaCl2), and eluting the washed resin with the same buffer supplemented with 50 mM β-cyclodextrin. The effect of treating the culture broth with the β-cyclodextrin resin was partial removal of the 60 kDa species (to about 50%) and complete removal of the 69 kDa species from the broth. The buffer wash of the resin provided nearly pure protein of 60 kDa size; elution with buffer containing β- cyclodextrin provided the 69 kDa protein contaminated with about 25% of the 60 kDa protein. These component estimates were determined by SDS-PAGE and are depicted in FIG. 10.
Enzyme content of fractions was estimated by gel densitometry with OxAm amylase (Genencor International, Inc.) serving as the protein standard. N-terminal analysis of the darkest band in the lane marked "wl" of FIG. 10 provided a sequence of "AAPGPKD ATA" (SEQ ID NO: 5). Mass spectral analysis in conjunction with this N-terminal sequence identified the protein to have the sequence shown in upper case in FIG. 4 (i.e., without the signal sequence and C-terminal extension representing the starch binding motifs). These analyses indicate that this molecular fragment consists of the α-amylase domains A, B & C.
EXAMPLE 2 Expression of Genetically Truncated Amy 195 Catalytic Domain
The gene for Amy 195 was truncated at three different sites to allow testing expression of the truncated forms and for testing of wash performance. Truncation was achieved by standard techniques known to those skilled in the art at amino acid residue numbers 494, 504, and 509 using the polypeptide numbering of the sequence in FIG. 4. The plasmids containing the truncated genes were transformed into a nine protease deleted Bacillus subtilis strain
(degUHy32,oppA, ΔspoII3501, amyE::xylRPxylAcomK- ermC, ΔaprE, ΔnprE, Δepr, ΔispA, Δbpr, Δvpr, ΔwprA, Δmpr-ybfJ, ΔnprB). The cells were cultured in 250 mL baffled flasks containing 50 mL of rich medium supplemented with 10 or 30 mM CaCl2 for 64 hours at 37°C and shaking at 250 rpm. The culture supernatants were analyzed by SDS PAGE, and amylase content was estimated by gel densitometry.
Expression of amylase from the truncated genes was found to be about 2-fold higher than expression of the same domain from the full-length wild type gene. These results are shown in FIG. 8 and indicate that the truncated gene is advantageous for protein expression. EXAMPLE 3 Cleaning Assay
All fractions shown on the gel were analyzed further by 96-well CS28 orange dyed rice starch soil swatch applications assay. This assay was carried out in the 25 mM HEPES (pH 8.0) as well as in 25 mM CAPS (pH 10.3) buffers.
Cleaning performance of all Amy 195 species isolated in Example 1 was tested in a simulated laundry assay as a function amylase concentration. Results for fraction "e-pool" of FIG. 10 are shown in FIG. 6. Performance was judged by the amount of color released into the supernatant fluid and measured using a spectrophotometer at 488 nm. For additional information on the assay, see U.S. Patent No. 7,122,334. The enzyme was highly efficient at pH 8.0, but also showed surprising stain removal at pH 10.3. All major protein bands of each lane of the protein gel (FIG. 10) showed cleaning with the band of lane "wl" giving the best performance. All cleaning activities are shown in FIG. 7 under the pH 8.0 conditions. The truncated form ending at amino acid residue 492 of FIG. 4 demonstrated better performance {see FIG. 7, "•") than the form retaining one starch binding domain {see FIG. 7, "o"). Results from this assay show that Amy 195 α-amylase is highly efficient in removing stains from textile swatches.
EXAMPLE 4
Wash Performance of the Genetically Truncated Gene Product The truncated gene products obtained in Example 2 above were tested for wash performance in the same manner as described for the proteolytic fragments in Example 3 above. CS28 rice swatches were incubated with a range of Amy 195 catalytic fragment concentrations. Wash performance was judged by color released into the supernatant and measured at 488 nm. All three genetically truncated gene fragments showed good wash performance as is shown in FIG. 9.
This swatch assay can be modified in several ways for different purposes. The 96-well assay is highly suitable as a high-throughput cleaning assay by measuring the supernatant after incubation of enzyme with swatches, while for example, a 24-well plate with swatches to fit in the wells can be used to wash larger swatches for which reflectance can be measured as known in the art. The two measurements, supernatant absorbance and swatch reflectance, showed nearly perfect correlation.
The correlation of reflectance of the washed swatch with the absorbance of supernatant was high; the coefficient of determination, r2, had a value of 0.99. The assay can, in principle, be scaled to a 384-well plate. The assay can be carried out with any soiled swatch and in addition to the CS28 swatch, CS26, CS27, and CS29 swatches can be tested as well (e.g., corn starch, potato starch, tapioca starch, respectively; Testfabrics, Inc., West Pittiston, PA) to demonstrate the efficacy of the measurement as described in Example 3. The assay may also be used with detergent compositions and conducted at different temperatures and at different pH values. These assays were adapted from U.S. Patent No. 7,122,334.
All references cited above, are herein incorporated by reference in their entirety for all purposes.

Claims

What is Claimed is:
I. A nucleic acid sequence comprising residues 88-2052 of FIG. 2 (SEQ ID NO:2).
2. The nucleic acid sequence of claim 1 operably linked to a nucleic acid sequence encoding a signal peptide of Bacillus licheniformis α-amylase.
3. A nucleic acid encoding a truncated form of a polypeptide comprising residues 30 - 683 of SEQ ID NO:3 (FIG. 3), wherein said truncated form terminates at residue 492, 504, or 509 of SEQ ID NO:3.
4. The polypeptide encoded by the nucleic acid sequence of any of claims 1 or 3.
5 The polypeptide of claim 4, wherein the truncated form has a carboxy terminus at residue 492, 504, or 509 of SEQ ID NO:3 (FIG. 4).
6. A vector operably linked to a nucleic acid of any of claims 1 to 3.
7. An isolated host cell comprising a nucleic acid of any of claims 1 to 3.
8. An isolated host cell comprising a vector of claim 6.
9. The isolated host cell of claim 8, wherein the host cell is a bacterium selected from B. subtilis, B. licheniformis, B. lentus, B. brevis, B. stearothermophilus, B. alklophilus, B. amyloliquefaciens, B. coagulans, B. circulans, B. lautus, B. thuringiensis, Streptomyces lividans, S. murinus, or Escherichia coli.
10. A detergent additive comprising a polypeptide of claim 4, optionally in the form of a non-dusting granulate, microgranulate, stabilized liquid, gel, or protected enzyme.
I 1. The detergent additive of claim 10, wherein the truncated form has a molecular weight of approximately 49 kDa to approximately 69 kDa on a 10% SDS-PAGE gel.
12. The detergent additive of claim 10, wherein said detergent additive contains about 0.02 mg to about 200 mg of polypeptide per gram of the detergent additive.
13. The detergent additive of claim 10, further comprising an enzyme selected from the group consisting of a protease, a lipase, a peroxidase, an oxidase, an amylolytic enzyme, a cellulase, a polyesterase, and any combination thereof.
14. A detergent composition comprising a detergent additive of any of claims 10 to 13.
15. A detergent composition comprising a polypeptide of any of claims 4 or 5, wherein said detergent composition optionally comprises one or more of: a surfactant, a bleaching system or bleach, a detergent builder, a polymer, a stabilizing agent, a fabric conditioner, a foam booster, a suds suppressor, an anti-corrosion agent, a dye, a perfume, a soil suspending agent, a tarnish inhibitor, an optical brightener, or a bacteriocide.
16. A detergent composition of claim 15, further comprising an enzyme selected from the group consisting of a protease, a lipase, a peroxidase, an oxidase, an amylolytic enzyme, a cellulase, a polyesterase, and any combination thereof.
17. A manual or automatic dishwashing detergent composition comprising a polypeptide of any of claims 4 or 5.
18. A method of washing dishes comprising applying a manual or automatic dishwashing detergent of claim 17 to a dish in need thereof.
19. A laundry detergent composition comprising a detergent additive of any of claims 10 to 13.
20. A method of cleaning a textile comprising washing a soiled textile in solution with a detergent composition of any of claims 12 to 14.
PCT/US2007/024959 2006-12-21 2007-12-06 Compositions and uses for an alpha-amylase polypeptide of bacillus species 195 WO2008088493A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2009005655A MX2009005655A (en) 2006-12-21 2007-12-06 Compositions and uses for an alpha-amylase polypeptide of bacillus species 195.
US12/519,879 US8097444B2 (en) 2006-12-21 2007-12-06 Compositions and uses for an alpha-amylase polypeptide of bacillus species 195
CA002673527A CA2673527A1 (en) 2006-12-21 2007-12-06 Compositions and uses for an alpha-amylase polypeptide of bacillus species 195
EP07867644A EP2097519A2 (en) 2006-12-21 2007-12-06 Compositions and uses for an alpha-amylase polypeptide of bacillus species 195
JP2009542789A JP2010512787A (en) 2006-12-21 2007-12-06 Composition and use of Bacillus sp. 195 alpha-amylase polypeptide.
CN2007800468791A CN101563451B (en) 2006-12-21 2007-12-06 Compositions and uses for an alpha-amylase polypeptide of bacillus species 195
BRPI0722093-6A2A BRPI0722093A2 (en) 2006-12-21 2007-12-06 COMPOSITIONS AND USES FOR A BACILLUS ALPHA AMILASE POLYPEPTIDE 195
HK10103590.6A HK1139174A1 (en) 2006-12-21 2010-04-13 Compositions and uses for an alpha-amylase polypeptide of bacillus species 195
US13/312,555 US8470758B2 (en) 2006-12-21 2011-12-06 Detergent compositions and methods of use for an alpha-amylase polypeptide of bacillus species 195

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US87624106P 2006-12-21 2006-12-21
US60/876,241 2006-12-21
US88023607P 2007-01-12 2007-01-12
US60/880,236 2007-01-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/519,879 A-371-Of-International US8097444B2 (en) 2006-12-21 2007-12-06 Compositions and uses for an alpha-amylase polypeptide of bacillus species 195
US13/312,555 Continuation US8470758B2 (en) 2006-12-21 2011-12-06 Detergent compositions and methods of use for an alpha-amylase polypeptide of bacillus species 195

Publications (2)

Publication Number Publication Date
WO2008088493A2 true WO2008088493A2 (en) 2008-07-24
WO2008088493A3 WO2008088493A3 (en) 2009-01-22

Family

ID=39575534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/024959 WO2008088493A2 (en) 2006-12-21 2007-12-06 Compositions and uses for an alpha-amylase polypeptide of bacillus species 195

Country Status (11)

Country Link
US (2) US8097444B2 (en)
EP (1) EP2097519A2 (en)
JP (1) JP2010512787A (en)
KR (1) KR20090101193A (en)
CN (1) CN101563451B (en)
BR (1) BRPI0722093A2 (en)
CA (1) CA2673527A1 (en)
HK (1) HK1139174A1 (en)
MX (1) MX2009005655A (en)
RU (1) RU2459867C2 (en)
WO (1) WO2008088493A2 (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102933A1 (en) * 2010-02-18 2011-08-25 Danisco Us Inc. Amylase from nesterenkonia and methods of use, thereof
CN103965303A (en) * 2013-01-30 2014-08-06 大连海洋大学 Marine bacillus licheniformis protein and application thereof to cardiovascular field
WO2014194034A2 (en) 2013-05-29 2014-12-04 Danisco Us Inc. Novel metalloproteases
WO2014194032A1 (en) 2013-05-29 2014-12-04 Danisco Us Inc. Novel metalloproteases
WO2014194054A1 (en) 2013-05-29 2014-12-04 Danisco Us Inc. Novel metalloproteases
WO2014194117A2 (en) 2013-05-29 2014-12-04 Danisco Us Inc. Novel metalloproteases
WO2015089441A1 (en) 2013-12-13 2015-06-18 Danisco Us Inc. Serine proteases of bacillus species
WO2015089447A1 (en) 2013-12-13 2015-06-18 Danisco Us Inc. Serine proteases of the bacillus gibsonii-clade
WO2015095358A1 (en) 2013-12-18 2015-06-25 E. I. Du Pont De Nemours And Company Cationic poly alpha-1,3-glucan ethers
WO2015123323A1 (en) 2014-02-14 2015-08-20 E. I. Du Pont De Nemours And Company Poly-alpha-1,3-1,6-glucans for viscosity modification
WO2015138283A1 (en) 2014-03-11 2015-09-17 E. I. Du Pont De Nemours And Company Oxidized poly alpha-1,3-glucan as detergent builder
WO2015195777A1 (en) 2014-06-19 2015-12-23 E. I. Du Pont De Nemours And Company Compositions containing one or more poly alpha-1,3-glucan ether compounds
WO2015195960A1 (en) 2014-06-19 2015-12-23 E. I. Du Pont De Nemours And Company Compositions containing one or more poly alpha-1,3-glucan ether compounds
WO2016061438A1 (en) 2014-10-17 2016-04-21 Danisco Us Inc. Serine proteases of bacillus species
WO2016069557A1 (en) 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases of bacillus species
WO2016069548A2 (en) 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases
WO2016069552A1 (en) 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases
WO2016069544A1 (en) 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases
WO2016069569A2 (en) 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases
WO2016106011A1 (en) 2014-12-23 2016-06-30 E. I. Du Pont De Nemours And Company Enzymatically produced cellulose
WO2016201069A1 (en) 2015-06-09 2016-12-15 Danisco Us Inc Low-density enzyme-containing particles
WO2016201040A1 (en) 2015-06-09 2016-12-15 Danisco Us Inc. Water-triggered enzyme suspension
WO2016201044A1 (en) 2015-06-09 2016-12-15 Danisco Us Inc Osmotic burst encapsulates
WO2016205755A1 (en) 2015-06-17 2016-12-22 Danisco Us Inc. Bacillus gibsonii-clade serine proteases
WO2017079751A1 (en) 2015-11-05 2017-05-11 Danisco Us Inc Paenibacillus sp. mannanases
WO2017079756A1 (en) 2015-11-05 2017-05-11 Danisco Us Inc Paenibacillus and bacillus spp. mannanases
WO2017083228A1 (en) 2015-11-13 2017-05-18 E. I. Du Pont De Nemours And Company Glucan fiber compositions for use in laundry care and fabric care
WO2017083226A1 (en) 2015-11-13 2017-05-18 E. I. Du Pont De Nemours And Company Glucan fiber compositions for use in laundry care and fabric care
WO2017083229A1 (en) 2015-11-13 2017-05-18 E. I. Du Pont De Nemours And Company Glucan fiber compositions for use in laundry care and fabric care
WO2017106676A1 (en) 2015-12-18 2017-06-22 Danisco Us Inc Polypeptides with endoglucanase activity and uses thereof
WO2017192300A1 (en) 2016-05-05 2017-11-09 Danisco Us Inc Protease variants and uses thereof
WO2017192692A1 (en) 2016-05-03 2017-11-09 Danisco Us Inc Protease variants and uses thereof
WO2017210295A1 (en) 2016-05-31 2017-12-07 Danisco Us Inc. Protease variants and uses thereof
WO2017219011A1 (en) 2016-06-17 2017-12-21 Danisco Us Inc Protease variants and uses thereof
WO2018085524A2 (en) 2016-11-07 2018-05-11 Danisco Us Inc Laundry detergent composition
WO2018118917A1 (en) 2016-12-21 2018-06-28 Danisco Us Inc. Protease variants and uses thereof
WO2018118950A1 (en) 2016-12-21 2018-06-28 Danisco Us Inc. Bacillus gibsonii-clade serine proteases
WO2018169750A1 (en) 2017-03-15 2018-09-20 Danisco Us Inc Trypsin-like serine proteases and uses thereof
WO2018183662A1 (en) 2017-03-31 2018-10-04 Danisco Us Inc Delayed release enzyme formulations for bleach-containing detergents
WO2019006077A1 (en) 2017-06-30 2019-01-03 Danisco Us Inc Low-agglomeration, enzyme-containing particles
WO2019108599A1 (en) 2017-11-29 2019-06-06 Danisco Us Inc Subtilisin variants having improved stability
WO2019125683A1 (en) 2017-12-21 2019-06-27 Danisco Us Inc Enzyme-containing, hot-melt granules comprising a thermotolerant desiccant
WO2019156670A1 (en) 2018-02-08 2019-08-15 Danisco Us Inc. Thermally-resistant wax matrix particles for enzyme encapsulation
WO2019245705A1 (en) 2018-06-19 2019-12-26 Danisco Us Inc Subtilisin variants
WO2019245704A1 (en) 2018-06-19 2019-12-26 Danisco Us Inc Subtilisin variants
EP3587569A1 (en) 2014-03-21 2020-01-01 Danisco US Inc. Serine proteases of bacillus species
WO2020047215A1 (en) 2018-08-30 2020-03-05 Danisco Us Inc Enzyme-containing granules
WO2020068486A1 (en) 2018-09-27 2020-04-02 Danisco Us Inc Compositions for medical instrument cleaning
WO2020112599A1 (en) 2018-11-28 2020-06-04 Danisco Us Inc Subtilisin variants having improved stability
WO2020242858A1 (en) 2019-05-24 2020-12-03 Danisco Us Inc Subtilisin variants and methods of use
WO2020247582A1 (en) 2019-06-06 2020-12-10 Danisco Us Inc Methods and compositions for cleaning
EP3872174A1 (en) 2015-05-13 2021-09-01 Danisco US Inc. Aprl-clade protease variants and uses thereof
WO2022047149A1 (en) 2020-08-27 2022-03-03 Danisco Us Inc Enzymes and enzyme compositions for cleaning
WO2022165107A1 (en) 2021-01-29 2022-08-04 Danisco Us Inc Compositions for cleaning and methods related thereto
WO2023278297A1 (en) 2021-06-30 2023-01-05 Danisco Us Inc Variant lipases and uses thereof
WO2023034486A2 (en) 2021-09-03 2023-03-09 Danisco Us Inc. Laundry compositions for cleaning
WO2023039270A2 (en) 2021-09-13 2023-03-16 Danisco Us Inc. Bioactive-containing granules
EP4163305A1 (en) 2013-12-16 2023-04-12 Nutrition & Biosciences USA 4, Inc. Use of poly alpha-1,3-glucan ethers as viscosity modifiers
WO2023114932A2 (en) 2021-12-16 2023-06-22 Danisco Us Inc. Subtilisin variants and methods of use
WO2023114939A2 (en) 2021-12-16 2023-06-22 Danisco Us Inc. Subtilisin variants and methods of use
WO2023114936A2 (en) 2021-12-16 2023-06-22 Danisco Us Inc. Subtilisin variants and methods of use
WO2023117970A1 (en) * 2021-12-20 2023-06-29 Basf Se Method for improved production of intracellular proteins in bacillus
WO2023168234A1 (en) 2022-03-01 2023-09-07 Danisco Us Inc. Enzymes and enzyme compositions for cleaning
WO2023250301A1 (en) 2022-06-21 2023-12-28 Danisco Us Inc. Methods and compositions for cleaning comprising a polypeptide having thermolysin activity
US11920170B2 (en) 2015-12-09 2024-03-05 Danisco Us Inc. Alpha-amylase combinatorial variants
WO2024050346A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Detergent compositions and methods related thereto
WO2024050343A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Subtilisin variants and methods related thereto
WO2024050339A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Mannanase variants and methods of use
WO2024102698A1 (en) 2022-11-09 2024-05-16 Danisco Us Inc. Subtilisin variants and methods of use
WO2024163584A1 (en) 2023-02-01 2024-08-08 Danisco Us Inc. Subtilisin variants and methods of use
WO2024186819A1 (en) 2023-03-06 2024-09-12 Danisco Us Inc. Subtilisin variants and methods of use
WO2024191711A1 (en) 2023-03-16 2024-09-19 Nutrition & Biosciences USA 4, Inc. Brevibacillus fermentate extracts for cleaning and malodor control and use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0722093A2 (en) 2006-12-21 2014-04-01 Danisco Us Inc Genencor Div COMPOSITIONS AND USES FOR A BACILLUS ALPHA AMILASE POLYPEPTIDE 195
EP2540824A1 (en) * 2011-06-30 2013-01-02 The Procter & Gamble Company Cleaning compositions comprising amylase variants reference to a sequence listing
MX2015000312A (en) * 2012-07-12 2015-04-10 Novozymes As Polypeptides having lipase activity and polynucleotides encoding same.
FI127298B (en) * 2016-06-23 2018-03-15 Fazer Ab Oy Karl Enzyme with fructan hydrolase activity
US20210388406A1 (en) * 2018-10-31 2021-12-16 Amano Enzyme Inc. Maltotriose-generating amylase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996039528A2 (en) * 1995-06-06 1996-12-12 Genencor International, Inc. MUTANT α-AMYLASE
WO2000029560A1 (en) * 1998-11-16 2000-05-25 Novozymes A/S α-AMYLASE VARIANTS

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
GB1483591A (en) 1973-07-23 1977-08-24 Novo Industri As Process for coating water soluble or water dispersible particles by means of the fluid bed technique
GB1590432A (en) 1976-07-07 1981-06-03 Novo Industri As Process for the production of an enzyme granulate and the enzyme granuate thus produced
DK187280A (en) 1980-04-30 1981-10-31 Novo Industri As RUIT REDUCING AGENT FOR A COMPLETE LAUNDRY
DK263584D0 (en) 1984-05-29 1984-05-29 Novo Industri As ENZYMOUS GRANULATES USED AS DETERGENT ADDITIVES
EP0218272B1 (en) 1985-08-09 1992-03-18 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EG18543A (en) 1986-02-20 1993-07-30 Albright & Wilson Protected enzyme systems
DK122686D0 (en) 1986-03-17 1986-03-17 Novo Industri As PREPARATION OF PROTEINS
ES2058119T3 (en) 1986-08-29 1994-11-01 Novo Nordisk As ENZYMATIC DETERGENT ADDITIVE.
NZ221627A (en) 1986-09-09 1993-04-28 Genencor Inc Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios
DE3854249T2 (en) 1987-08-28 1996-02-29 Novonordisk As Recombinant Humicola Lipase and Process for the Production of Recombinant Humicola Lipases.
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
DK6488D0 (en) 1988-01-07 1988-01-07 Novo Industri As ENZYMES
EP0471265B1 (en) 1988-01-07 1995-10-25 Novo Nordisk A/S Specific protease
JP3079276B2 (en) 1988-02-28 2000-08-21 天野製薬株式会社 Recombinant DNA, Pseudomonas sp. Containing the same, and method for producing lipase using the same
WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
GB8915658D0 (en) 1989-07-07 1989-08-23 Unilever Plc Enzymes,their production and use
KR100236540B1 (en) 1990-04-14 2000-01-15 레클로우크스 라우에르 Alkaline bacillus lipases, coding dna sequences thereof and bacilli which produce these lipases
DK115890D0 (en) 1990-05-09 1990-05-09 Novo Nordisk As ENZYME
WO1991017243A1 (en) 1990-05-09 1991-11-14 Novo Nordisk A/S A cellulase preparation comprising an endoglucanase enzyme
ATE169671T1 (en) 1990-09-13 1998-08-15 Novo Nordisk As LIPASE VARIANTS
ATE219136T1 (en) 1991-01-16 2002-06-15 Procter & Gamble COMPACT DETERGENT COMPOSITIONS WITH HIGHLY ACTIVE CELLULASES
CA2108908C (en) 1991-04-30 1998-06-30 Christiaan A. J. K. Thoen Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
EP0511456A1 (en) 1991-04-30 1992-11-04 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
ATE168130T1 (en) 1991-05-01 1998-07-15 Novo Nordisk As STABILIZED ENZYMES AND DETERGENT COMPOSITIONS
DK72992D0 (en) 1992-06-01 1992-06-01 Novo Nordisk As ENZYME
DK88892D0 (en) 1992-07-06 1992-07-06 Novo Nordisk As CONNECTION
MX9306229A (en) 1992-10-06 1994-05-31 Novo Nordisk As CELLULASE VARIANTS AND DETERGENT COMPOSITIONS THAT CONTAIN IT.
US5281526A (en) 1992-10-20 1994-01-25 Solvay Enzymes, Inc. Method of purification of amylase by precipitation with a metal halide and 4-hydroxybenzic acid or a derivative thereof
DE69434242T2 (en) 1993-04-27 2006-01-12 Genencor International, Inc., Palo Alto Novel lipase variants for use in detergents
DK52393D0 (en) 1993-05-05 1993-05-05 Novo Nordisk As
JP2859520B2 (en) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ Lipase, microorganism producing the same, method for producing lipase, and detergent composition containing lipase
EP0724631A1 (en) 1993-10-13 1996-08-07 Novo Nordisk A/S H 2?o 2?-stable peroxidase variants
JPH07143883A (en) 1993-11-24 1995-06-06 Showa Denko Kk Lipase gene and mutant lipase
CN1077598C (en) 1994-02-22 2002-01-09 诺沃奇梅兹有限公司 A method of preparing a variant of a lipolytic enzyme
WO1995024471A1 (en) 1994-03-08 1995-09-14 Novo Nordisk A/S Novel alkaline cellulases
DK0755442T3 (en) 1994-05-04 2003-04-14 Genencor Int Lipases with improved resistance to surfactants
DK0772684T3 (en) * 1994-06-17 2005-12-12 Genencor Int Amylolytic enzymes derived from B. Licheniformis alpha-amylase with improved characteristics
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
ATE389012T1 (en) 1994-10-06 2008-03-15 Novozymes As AN ENZYME PREPARATION WITH ENDOGLUCANASE ACTIVITY
BE1008998A3 (en) 1994-10-14 1996-10-01 Solvay Lipase, microorganism producing the preparation process for the lipase and uses thereof.
JPH10507642A (en) 1994-10-26 1998-07-28 ノボ ノルディスク アクティーゼルスカブ Enzymes with lipolytic activity
JPH08228778A (en) 1995-02-27 1996-09-10 Showa Denko Kk New lipase gene and production of lipase using the same
CN102080070B (en) 1995-03-17 2016-01-20 诺沃奇梅兹有限公司 new endoglucanase
JP4307549B2 (en) 1995-07-14 2009-08-05 ノボザイムス アクティーゼルスカブ Modified enzyme with lipolytic activity
DE69632538T2 (en) 1995-08-11 2005-05-19 Novozymes A/S NOVEL LIPOLYTIC ENZYMES
US5763385A (en) * 1996-05-14 1998-06-09 Genencor International, Inc. Modified α-amylases having altered calcium binding properties
WO1998008940A1 (en) 1996-08-26 1998-03-05 Novo Nordisk A/S A novel endoglucanase
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
EP0963192B1 (en) 1996-10-08 2003-01-08 Novozymes A/S Diaminobenzoic acid derivatives as dye precursors
BR9712878A (en) 1996-11-04 2000-02-01 Novo Nordisk As Subtilase enzyme variant, processes for the identification of a protease variant showing autoproteolytic stability and for the production of a mutant subtilase enzyme and a subtilase variant, DNA sequence, vector, microbial host cell, composition and use of a variant of subtilase.
KR100561826B1 (en) 1996-11-04 2006-03-16 노보자임스 에이/에스 Subtilase variants and compositions
WO1998034946A1 (en) 1997-02-12 1998-08-13 Massachusetts Institute Of Technology Daxx, a novel fas-binding protein that activates jnk and apoptosis
WO1998056926A1 (en) * 1997-06-10 1998-12-17 Takara Shuzo Co., Ltd. System for expressing hyperthermostable protein
WO1999001544A1 (en) 1997-07-04 1999-01-14 Novo Nordisk A/S FAMILY 6 ENDO-1,4-β-GLUCANASE VARIANTS AND CLEANING COMPOSIT IONS CONTAINING THEM
US5871550A (en) 1997-08-26 1999-02-16 Genencor International, Inc. Mutant Thermonospora spp. cellulase
US6562612B2 (en) 1997-11-19 2003-05-13 Genencor International, Inc. Cellulase producing actinomycetes, cellulase produced therefrom and method of producing same
AU2207099A (en) 1997-12-24 1999-07-19 Genencor International, Inc. An improved method of assaying for a preferred enzyme and/or preferred detergentcomposition
US5961178A (en) * 1998-06-17 1999-10-05 Hodson; James M. Portable chair with integral storage case
BRPI0009362B8 (en) * 1999-03-30 2019-08-20 Novozymes As variant of a precursor alpha amylase, and use of an alpha amylase variant
US7078212B1 (en) * 1999-06-10 2006-07-18 Kao Corporation Mutant α-amylases
US6254645B1 (en) 1999-08-20 2001-07-03 Genencor International, Inc. Enzymatic modification of the surface of a polyester fiber or article
US6933140B1 (en) 1999-11-05 2005-08-23 Genencor International, Inc. Enzymes useful for changing the properties of polyester
EP1326965A2 (en) * 2000-10-13 2003-07-16 Novozymes A/S Alpha-amylase variant with altered properties
DE10138753B4 (en) * 2001-08-07 2017-07-20 Henkel Ag & Co. Kgaa Detergents and cleaners with hybrid alpha-amylases
JP2006180705A (en) * 2003-03-06 2006-07-13 Chugai Pharmaceut Co Ltd Chimeric receptor and method for screening ligand or inhibitor for the receptor
US7550649B2 (en) * 2003-10-30 2009-06-23 Taisho Pharmaceutical Co., Ltd. Transgenic non-human mammal
EP1692158B1 (en) 2003-11-06 2011-10-26 Danisco US Inc. Vegf binding and supported peptides for treating skin diseases
WO2005056783A1 (en) 2003-12-05 2005-06-23 Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Catalytic domains of beta(1,4)-galactosyltransferase i having altered metal ion specificity
JP2007532117A (en) * 2004-04-08 2007-11-15 ジェネンコー・インターナショナル・インク α-amylase mutant
JP4500615B2 (en) * 2004-07-14 2010-07-14 日生研株式会社 Novel polypeptide having protective activity against sweptococcal infection derived from serotype 18, which is another species of the genus Erichiperotricks, its gene and production method
BRPI0722093A2 (en) 2006-12-21 2014-04-01 Danisco Us Inc Genencor Div COMPOSITIONS AND USES FOR A BACILLUS ALPHA AMILASE POLYPEPTIDE 195

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996039528A2 (en) * 1995-06-06 1996-12-12 Genencor International, Inc. MUTANT α-AMYLASE
WO2000029560A1 (en) * 1998-11-16 2000-05-25 Novozymes A/S α-AMYLASE VARIANTS

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ITO SUSUMU ET AL: "Akaline detergent enzymes from alkaliphiles: Enzymatic properties, genetics and structures" EXTREMOPHILES, vol. 2, no. 3, August 1998 (1998-08), pages 185-190, XP002503766 ISSN: 1431-0651 *
KAWAGUCHI TAKASHI ET AL: "Purification and some properties of a Haim-sensitive alpha-amylase from newly isolated Bacillus sp. No. 195" BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, vol. 56, no. 11, 1992, pages 1792-1796, XP002503764 ISSN: 0916-8451 *
LO HUEI-FEN ET AL: "Deletion analysis of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23" ARCHIVES OF MICROBIOLOGY, vol. 178, no. 2, August 2002 (2002-08), pages 115-123, XP002503765 ISSN: 0302-8933 *
MARCO J L ET AL: "Purification and characterization of a truncated Bacillus subtilis alpha-amylase produced by Escherichia coli" APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 44, no. 6, 1996, pages 746-752, XP009102827 ISSN: 0175-7598 *
SUMITANI J ET AL: "NEW TYPE OF STARCH-BINDING DOMAIN: THE DIRECT REPEAT MOTIF IN THE C-TERMINAL REGION OF BACILLUS SP. NO. 195 ALPHA-AMYLASE CONTRIBUTES TO STARCH BINDING AND RAW STARCH DEGRADING" BIOCHEMICAL JOURNAL, THE BIOCHEMICAL SOCIETY, LONDON, vol. 350, no. 2, 1 September 2000 (2000-09-01), pages 477-484, XP009013936 ISSN: 0264-6021 cited in the application *
VIHINEN MAUNO ET AL: "C-terminal truncations of a thermostable Bacillus stearothermophilus alpha-amylase" PROTEIN ENGINEERING, vol. 7, no. 10, 1994, pages 1255-1259, XP009102864 ISSN: 0269-2139 *

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102933A1 (en) * 2010-02-18 2011-08-25 Danisco Us Inc. Amylase from nesterenkonia and methods of use, thereof
US8815559B2 (en) 2010-02-18 2014-08-26 Danisco Us Inc. Amylase from nesterenkonia and methods of use, thereof
CN103965303A (en) * 2013-01-30 2014-08-06 大连海洋大学 Marine bacillus licheniformis protein and application thereof to cardiovascular field
EP3260538A1 (en) 2013-05-29 2017-12-27 Danisco US Inc. Novel metalloproteases
WO2014194032A1 (en) 2013-05-29 2014-12-04 Danisco Us Inc. Novel metalloproteases
WO2014194054A1 (en) 2013-05-29 2014-12-04 Danisco Us Inc. Novel metalloproteases
WO2014194117A2 (en) 2013-05-29 2014-12-04 Danisco Us Inc. Novel metalloproteases
EP4159854A1 (en) 2013-05-29 2023-04-05 Danisco US Inc Novel metalloproteases
EP3882346A1 (en) 2013-05-29 2021-09-22 Danisco US Inc. Novel metalloproteases
WO2014194034A2 (en) 2013-05-29 2014-12-04 Danisco Us Inc. Novel metalloproteases
EP3636662A1 (en) 2013-05-29 2020-04-15 Danisco US Inc. Novel metalloproteases
EP3553173A1 (en) 2013-12-13 2019-10-16 Danisco US Inc. Serine proteases of the bacillus gibsonii-clade
WO2015089447A1 (en) 2013-12-13 2015-06-18 Danisco Us Inc. Serine proteases of the bacillus gibsonii-clade
EP3910057A1 (en) 2013-12-13 2021-11-17 Danisco US Inc. Serine proteases of the bacillus gibsonii-clade
EP3514230A1 (en) 2013-12-13 2019-07-24 Danisco US Inc. Serine proteases of bacillus species
WO2015089441A1 (en) 2013-12-13 2015-06-18 Danisco Us Inc. Serine proteases of bacillus species
EP4163305A1 (en) 2013-12-16 2023-04-12 Nutrition & Biosciences USA 4, Inc. Use of poly alpha-1,3-glucan ethers as viscosity modifiers
WO2015095358A1 (en) 2013-12-18 2015-06-25 E. I. Du Pont De Nemours And Company Cationic poly alpha-1,3-glucan ethers
EP3789407A1 (en) 2013-12-18 2021-03-10 Nutrition & Biosciences USA 4, Inc. Cationic poly alpha-1,3-glucan ethers
WO2015123323A1 (en) 2014-02-14 2015-08-20 E. I. Du Pont De Nemours And Company Poly-alpha-1,3-1,6-glucans for viscosity modification
WO2015138283A1 (en) 2014-03-11 2015-09-17 E. I. Du Pont De Nemours And Company Oxidized poly alpha-1,3-glucan as detergent builder
EP3587569A1 (en) 2014-03-21 2020-01-01 Danisco US Inc. Serine proteases of bacillus species
EP4155398A1 (en) 2014-03-21 2023-03-29 Danisco US Inc. Serine proteases of bacillus species
EP3919599A1 (en) 2014-06-19 2021-12-08 Nutrition & Biosciences USA 4, Inc. Compositions containing one or more poly alpha-1,3-glucan ether compounds
WO2015195777A1 (en) 2014-06-19 2015-12-23 E. I. Du Pont De Nemours And Company Compositions containing one or more poly alpha-1,3-glucan ether compounds
WO2015195960A1 (en) 2014-06-19 2015-12-23 E. I. Du Pont De Nemours And Company Compositions containing one or more poly alpha-1,3-glucan ether compounds
WO2016061438A1 (en) 2014-10-17 2016-04-21 Danisco Us Inc. Serine proteases of bacillus species
WO2016069552A1 (en) 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases
WO2016069569A2 (en) 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases
WO2016069544A1 (en) 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases
WO2016069548A2 (en) 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases
WO2016069557A1 (en) 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases of bacillus species
EP4403631A2 (en) 2014-10-27 2024-07-24 Danisco US Inc. Serine proteases
EP3550017A1 (en) 2014-10-27 2019-10-09 Danisco US Inc. Serine proteases
WO2016106011A1 (en) 2014-12-23 2016-06-30 E. I. Du Pont De Nemours And Company Enzymatically produced cellulose
EP3872174A1 (en) 2015-05-13 2021-09-01 Danisco US Inc. Aprl-clade protease variants and uses thereof
EP4219704A2 (en) 2015-05-13 2023-08-02 Danisco US Inc Aprl-clade protease variants and uses thereof
WO2016201069A1 (en) 2015-06-09 2016-12-15 Danisco Us Inc Low-density enzyme-containing particles
WO2016201044A1 (en) 2015-06-09 2016-12-15 Danisco Us Inc Osmotic burst encapsulates
WO2016201040A1 (en) 2015-06-09 2016-12-15 Danisco Us Inc. Water-triggered enzyme suspension
WO2016205755A1 (en) 2015-06-17 2016-12-22 Danisco Us Inc. Bacillus gibsonii-clade serine proteases
EP4234693A2 (en) 2015-06-17 2023-08-30 Danisco US Inc Bacillus gibsonii-clade serine proteases
EP4141113A1 (en) 2015-11-05 2023-03-01 Danisco US Inc Paenibacillus sp. mannanases
WO2017079751A1 (en) 2015-11-05 2017-05-11 Danisco Us Inc Paenibacillus sp. mannanases
WO2017079756A1 (en) 2015-11-05 2017-05-11 Danisco Us Inc Paenibacillus and bacillus spp. mannanases
US10844324B2 (en) 2015-11-13 2020-11-24 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
US10876074B2 (en) 2015-11-13 2020-12-29 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
WO2017083229A1 (en) 2015-11-13 2017-05-18 E. I. Du Pont De Nemours And Company Glucan fiber compositions for use in laundry care and fabric care
US10822574B2 (en) 2015-11-13 2020-11-03 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
WO2017083228A1 (en) 2015-11-13 2017-05-18 E. I. Du Pont De Nemours And Company Glucan fiber compositions for use in laundry care and fabric care
WO2017083226A1 (en) 2015-11-13 2017-05-18 E. I. Du Pont De Nemours And Company Glucan fiber compositions for use in laundry care and fabric care
US11920170B2 (en) 2015-12-09 2024-03-05 Danisco Us Inc. Alpha-amylase combinatorial variants
WO2017106676A1 (en) 2015-12-18 2017-06-22 Danisco Us Inc Polypeptides with endoglucanase activity and uses thereof
WO2017192692A1 (en) 2016-05-03 2017-11-09 Danisco Us Inc Protease variants and uses thereof
EP3845642A1 (en) 2016-05-05 2021-07-07 Danisco US Inc. Protease variants and uses thereof
WO2017192300A1 (en) 2016-05-05 2017-11-09 Danisco Us Inc Protease variants and uses thereof
WO2017210295A1 (en) 2016-05-31 2017-12-07 Danisco Us Inc. Protease variants and uses thereof
WO2017219011A1 (en) 2016-06-17 2017-12-21 Danisco Us Inc Protease variants and uses thereof
EP4151726A1 (en) 2016-06-17 2023-03-22 Danisco US Inc Protease variants and uses thereof
WO2018085524A2 (en) 2016-11-07 2018-05-11 Danisco Us Inc Laundry detergent composition
WO2018112123A1 (en) 2016-12-15 2018-06-21 Danisco Us Inc. Polypeptides with endoglucanase activity and uses thereof
WO2018118917A1 (en) 2016-12-21 2018-06-28 Danisco Us Inc. Protease variants and uses thereof
WO2018118950A1 (en) 2016-12-21 2018-06-28 Danisco Us Inc. Bacillus gibsonii-clade serine proteases
EP4212622A2 (en) 2016-12-21 2023-07-19 Danisco US Inc. Bacillus gibsonii-clade serine proteases
EP4424805A2 (en) 2016-12-21 2024-09-04 Danisco Us Inc Bacillus gibsonii-clade serine proteases
WO2018169750A1 (en) 2017-03-15 2018-09-20 Danisco Us Inc Trypsin-like serine proteases and uses thereof
WO2018183662A1 (en) 2017-03-31 2018-10-04 Danisco Us Inc Delayed release enzyme formulations for bleach-containing detergents
WO2019006077A1 (en) 2017-06-30 2019-01-03 Danisco Us Inc Low-agglomeration, enzyme-containing particles
WO2019108599A1 (en) 2017-11-29 2019-06-06 Danisco Us Inc Subtilisin variants having improved stability
WO2019125683A1 (en) 2017-12-21 2019-06-27 Danisco Us Inc Enzyme-containing, hot-melt granules comprising a thermotolerant desiccant
WO2019156670A1 (en) 2018-02-08 2019-08-15 Danisco Us Inc. Thermally-resistant wax matrix particles for enzyme encapsulation
WO2019245704A1 (en) 2018-06-19 2019-12-26 Danisco Us Inc Subtilisin variants
WO2019245705A1 (en) 2018-06-19 2019-12-26 Danisco Us Inc Subtilisin variants
WO2020047215A1 (en) 2018-08-30 2020-03-05 Danisco Us Inc Enzyme-containing granules
WO2020068486A1 (en) 2018-09-27 2020-04-02 Danisco Us Inc Compositions for medical instrument cleaning
WO2020112599A1 (en) 2018-11-28 2020-06-04 Danisco Us Inc Subtilisin variants having improved stability
WO2020242858A1 (en) 2019-05-24 2020-12-03 Danisco Us Inc Subtilisin variants and methods of use
WO2020247582A1 (en) 2019-06-06 2020-12-10 Danisco Us Inc Methods and compositions for cleaning
WO2022047149A1 (en) 2020-08-27 2022-03-03 Danisco Us Inc Enzymes and enzyme compositions for cleaning
WO2022165107A1 (en) 2021-01-29 2022-08-04 Danisco Us Inc Compositions for cleaning and methods related thereto
WO2023278297A1 (en) 2021-06-30 2023-01-05 Danisco Us Inc Variant lipases and uses thereof
WO2023034486A2 (en) 2021-09-03 2023-03-09 Danisco Us Inc. Laundry compositions for cleaning
WO2023039270A2 (en) 2021-09-13 2023-03-16 Danisco Us Inc. Bioactive-containing granules
WO2023114936A2 (en) 2021-12-16 2023-06-22 Danisco Us Inc. Subtilisin variants and methods of use
WO2023114932A2 (en) 2021-12-16 2023-06-22 Danisco Us Inc. Subtilisin variants and methods of use
WO2023114939A2 (en) 2021-12-16 2023-06-22 Danisco Us Inc. Subtilisin variants and methods of use
WO2023117970A1 (en) * 2021-12-20 2023-06-29 Basf Se Method for improved production of intracellular proteins in bacillus
WO2023168234A1 (en) 2022-03-01 2023-09-07 Danisco Us Inc. Enzymes and enzyme compositions for cleaning
WO2023250301A1 (en) 2022-06-21 2023-12-28 Danisco Us Inc. Methods and compositions for cleaning comprising a polypeptide having thermolysin activity
WO2024050339A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Mannanase variants and methods of use
WO2024050343A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Subtilisin variants and methods related thereto
WO2024050346A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Detergent compositions and methods related thereto
WO2024102698A1 (en) 2022-11-09 2024-05-16 Danisco Us Inc. Subtilisin variants and methods of use
WO2024163584A1 (en) 2023-02-01 2024-08-08 Danisco Us Inc. Subtilisin variants and methods of use
WO2024186819A1 (en) 2023-03-06 2024-09-12 Danisco Us Inc. Subtilisin variants and methods of use
WO2024191711A1 (en) 2023-03-16 2024-09-19 Nutrition & Biosciences USA 4, Inc. Brevibacillus fermentate extracts for cleaning and malodor control and use thereof

Also Published As

Publication number Publication date
CA2673527A1 (en) 2008-07-24
JP2010512787A (en) 2010-04-30
RU2459867C2 (en) 2012-08-27
US8470758B2 (en) 2013-06-25
US8097444B2 (en) 2012-01-17
EP2097519A2 (en) 2009-09-09
MX2009005655A (en) 2009-10-21
US20100035787A1 (en) 2010-02-11
WO2008088493A3 (en) 2009-01-22
KR20090101193A (en) 2009-09-24
CN101563451B (en) 2012-09-05
US20120142074A1 (en) 2012-06-07
RU2009128054A (en) 2011-01-27
BRPI0722093A2 (en) 2014-04-01
CN101563451A (en) 2009-10-21
HK1139174A1 (en) 2010-09-10

Similar Documents

Publication Publication Date Title
US8470758B2 (en) Detergent compositions and methods of use for an alpha-amylase polypeptide of bacillus species 195
EP2406373B1 (en) Bacillus megaterium strain dsm90-related alpha-amylases, and methods of use, thereof
EP2417254B1 (en) Halomonas strain wdg195-related alpha-amylases, and methods of use, thereof
JP5259723B2 (en) Variants of Bacillus licheniformis alpha amylase with increased thermal stability and / or decreased calcium dependence
US20120045822A1 (en) Cleaning System Comprising An Alpha-Amylase And A Protease
JP5369088B2 (en) Increased amylase production by N-terminal introduction into mature amylase protein
AU2009212526A1 (en) TS23 alpha-amylase variants with altered properties
US20140342431A1 (en) Variant Alpha-Amylases and Methods of Use, Thereof
US8815559B2 (en) Amylase from nesterenkonia and methods of use, thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780046879.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07867644

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 3300/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12009501007

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/005655

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2673527

Country of ref document: CA

Ref document number: 1020097012904

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009542789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007867644

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009128054

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12519879

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0722093

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0722093

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090622