WO2008069991A1 - Method for making 2-butanol - Google Patents
Method for making 2-butanol Download PDFInfo
- Publication number
- WO2008069991A1 WO2008069991A1 PCT/US2007/024677 US2007024677W WO2008069991A1 WO 2008069991 A1 WO2008069991 A1 WO 2008069991A1 US 2007024677 W US2007024677 W US 2007024677W WO 2008069991 A1 WO2008069991 A1 WO 2008069991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- combinations
- group
- solid
- hydrogenation catalyst
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/60—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of -OH groups, e.g. by dehydration
Definitions
- the present invention relates to a method for making 2-butanol from 2,3-butanediol.
- BDO 2,3-butanediol
- MEK methylethylketone
- the present invention is a method of making 2-butanol comprising: (a) contacting a reactant comprising dry or wet 2,3-butanediol, optionally in the presence of at least one inert solvent, with hydrogen in the presence of a heterogeneous catalyst system that can function both as an acid catalyst and as a hydrogenation catalyst at a temperature between about 75 and about 300 degrees Centigrade and a hydrogen pressure between about 345 kPa and about 20.7 MPa, to produce a reaction product comprising 2-butanol; and (b) recovering 2-butanol from the reaction product.
- BDO 2,3-Butanediol
- the production of 2,3-butanediol by fermentation has been well-studied, particularly for its use as a precursor of 1 ,3-butadiene production during World War II, and has been reviewed in detail by Syu,
- M.-J. Appl. Microbiol. Biotechnol (2001 ) 55:10-18).
- Strains of bacteria useful for producing BDO include Klebsiella pneumoniae and Bacillus polymyxa, as well as recombinant strains of Escherichia coli.
- Carbon and energy sources, culture media, and growth conditions are dependent on the microbial strain used, and are described by Ledingham, G.A. and Neish, A.C. (Fermentative production of 2,3-butanediol, in Underkofler, L.A. and Hickey, RJ.
- BDO useful for the process of the invention can be either “dry BDO” or “wet BDO".
- “Dry BDO” refers to a material that is predominantly BDO, but may contain small amounts of water (under about 5% by weight relative to the weight of the BDO plus the water), and may contain small amounts of other materials from the fermentation broth as long as they do not materially affect the catalytic reaction previously described when performed with reagent grade BDO.
- the conversion of BDO to 2-butanol can be carried out in the presence of a substantial amount of water, i.e., "wet BDO”.
- “Wet BDO” refers to a material having at least about 5% water relative to the weight of the BDO plus water combined. In a more specific embodiment, the wet BDO comprises from about 5% to about 80% water by weight relative to the weight of the water plus BDO.
- BDO can be recovered from fermentation broth by a number of techniques, including vacuum membrane distillation using a microporous polytetrafluoroethylene membrane and solvent extraction using solvents such as ethyl acetate, diethyl ether, and n-butanol as reviewed by Syu (supra).
- Indian Patent No. IN 190544 describes treating fermentation broth comprising BDO with a mixture of barium hydroxide and zinc sulfate, followed by subjecting the treated fermentation broth to solvent extraction with an organic solvent to recover the BDO.
- Dry BDO can be obtained by distillation.
- both BDO and hydrogen are fed into a reactor containing a catalyst system that is capable of converting the BDO to 2-butanol.
- the reactor can be a fixed bed reactor, continuous stirred tank reactor (CSTR), pipe reactor, moving bed reactor, and other reactors that are known to those skilled in the art of catalysis, and the reaction may be conducted in the gas or liquid phase.
- the reactor temperature should be between about 75 and about 300 degrees Centigrade. In a more specific embodiment, the temperature of the reactor is from about 100 degrees Centigrade to about 260 degrees Centigrade.
- the feed materials may, if desired, be preheated before introduction into the reactor.
- the hydrogen pressure within the reactor should be between about 345 kPa and about 20.7 MPa. In a more specific embodiment, the pressure of the reactor is from about 690 kPa to about 3.45 MPa.
- the reaction may be conducted in the presence of at least one inert solvent.
- Suitable inert solvents include liquid hydrocarbons, liquid aromatic compounds, liquid ethers, 2-butanol, or combinations thereof.
- Preferred solvents include Cs to C 20 straight-chain, branched or cyclic liquid hydrocarbons, C 6 to C 20 liquid aromatic compounds, and liquid dialkyl ethers wherein the individual alkyl groups of the dialkyl ether are straight-chain or branched, and wherein the total number of carbons of the dialkyl ether is from 4 to 16. More preferred liquid dialkyl ethers are those wherein the individual alkyl groups have from 2 to 5 carbons.
- the heterogeneous catalyst system useful for the reaction is a catalyst system that can function both as an acid catalyst and as a hydrogenation catalyst.
- the heterogeneous catalyst system can comprise independent catalysts, i.e., at least one solid acid catalyst plus at least one solid hydrogenation catalyst.
- the heterogeneous catalyst system can comprise a dual function catalyst.
- a dual function catalyst is a catalyst wherein at least one solid acid catalyst and at least one solid hydrogenation catalyst are combined into one catalytic material.
- Suitable acid catalysts for the present invention are heterogeneous (or solid) acid catalysts.
- the at least one solid acid catalyst may be supported on at least one catalyst support (herein referred to as a supported acid catalyst).
- Solid acid catalysts include, but are not limited to, (1 ) heterogeneous heteropolyacids (HPAs) and their salts, (2) natural clay minerals, such as those containing alumina or silica (including zeolites), (3) cation exchange resins, (4) metal oxides, (5) mixed metal oxides, (6) metal salts such as metal sulfides, metal sulfates, metal sulfonates, metal nitrates, metal phosphates, metal phosphonates, metal molybdates, metal tungstates, metal borates, and (7) combinations of groups 1 to 6.
- HPAs heterogeneous heteropolyacids
- natural clay minerals such as those containing alumina or silica (including zeolites)
- the metal components of groups 4 to 6 may be selected from elements from Groups I, Ha, Ilia, Vila, Villa, Ib and Mb of the Periodic Table of the Elements, as well as aluminum, chromium, tin, titanium and zirconium.
- Suitable HPAs include compounds of the general Formula X a M b O c q" , where X is a heteroatom such as phosphorus, silicon, boron, aluminum, germanium, titanium, zirconium, cerium, cobalt or chromium, M is at least one transition metal such as tungsten, molybdenum, niobium, vanadium, or tantalum, and q, a, b, and c are individually selected whole numbers or fractions thereof.
- Nonlimiting examples of salts of HPAs are lithium, sodium, potassium, cesium, magnesium, barium, copper, gold and gallium, and onium salts such as ammonia.
- HPAs Methods for preparing HPAs are well known in the art and are described, for example, in Hutchings, G. and Vedrine, J., supra; selected HPAs are also available commercially, for example, through Sigma-Aldrich Corp. (St. Louis, MO).
- HPAs suitable for the process of the invention include tungstosilicic acid (H 4 [SiWi 2 O 40 ] XH 2 O), tungstophosphoric acid (H 3 [PW 12 O 40 ] XH 2 O), molybdophosphoric acid (H 3 [PMOi 2 O 40 ] XH 2 O), molybdosilicic acid (H 4 [SiM ⁇ i 2 O 40 ] xH 2 O), vanadotungstosilicic acid (H 4+n [SiV n Wi 2- n ⁇ 4 o] xH 2 O), vanadotungstophosphoric acid (H 3+n [PV n W 12-n O 40 ] xH 2 O), vanadomolybdophosphoric acid (H 3+n [PVnMoi 2-n O 40 ] xH 2 O), vanadomolybdosilicic acid (H 4+ n[SiV n M ⁇ i 2 .n ⁇ 4 o] xH 2 O), molybd
- Suitable cation exchange resins are styrene-divinylbenzene copolymer-based strong cation exchange resins such as Amberlyst® (Rohm & Haas; Philadelphia, PA), Dowex® (for example, Dowex® Monosphere M-31 ) (Dow; Midland, Ml), CG resins from Resintech, Inc. (West Berlin, NJ), and Lewatit resins such as MonoPlusTM S 100 H from Sybron Chemicals Inc. (Birmingham, NJ).
- Amberlyst® Rohm & Haas; Philadelphia, PA
- Dowex® for example, Dowex® Monosphere M-31
- CG resins from Resintech, Inc. (West Berlin, NJ)
- Lewatit resins such as MonoPlusTM S 100 H from Sybron Chemicals Inc. (Birmingham, NJ).
- Fluorinated sulfonic acid polymers can also be used as solid acid catalysts for the process of the present invention. These acids are partially or totally fluorinated hydrocarbon polymers containing pendant sulfonic acid groups, which may be partially or totally converted to the salt form.
- One particularly suitable fluorinated sulfonic acid polymer is Nafion® perfluorinated sulfonic acid polymer, (E.I. du Pont de Nemours and Company, Wilmington, DE).
- Nafion® Super Acid Catalyst a bead-form strongly acidic resin which is a copolymer of tetrafluoroethylene and perfluoro-3, 6-dioxa-4-methyl-7-octene sulfonyl fluoride, converted to either the proton (H + ), or the metal salt form.
- Preferred solid acid catalysts include cation exchange resins, such as Amberlyst® 15 (Rohm and Haas, Philadelphia, PA), Amberlite® 120 (Rohm and Haas), Nafion®, and natural clay materials, including zeolites such as mordenite.
- the at least one support for the at least one solid acid catalyst can be any solid substance that is inert under the reaction conditions including, but not limited to, oxides such as silica, alumina and titania, compounds thereof or combinations thereof; barium sulfate; calcium carbonate; zirconia; carbons, particularly acid washed carbon; and combinations thereof.
- Acid washed carbon is a carbon that has been washed with an acid, such as nitric acid, sulfuric acid or acetic acid, to remove impurities.
- the support can be in the form of powder, granules, pellets, or the like.
- the supported acid catalyst can be prepared by depositing the acid catalyst on the support by any number of methods well known to those skilled in the art of catalysis, such as spraying, soaking or physical mixing, followed by drying, calcination, and if necessary, activation through methods such as reduction or oxidation.
- the preferred loading of the at least one acid catalyst on the at least one support is from about 0.1 weight percent to about 20 weight percent based on the combined weights of the at least one acid catalyst plus the at least one support.
- supported acid catalysts include, but are not limited to, phosphoric acid on silica, Nafion® on silica, HPAs on silica, sulfated zirconia and sulfated titania.
- the heterogeneous catalyst system useful for the invention must also comprise at least one solid hydrogenation catalyst.
- the at least one solid hydrogenation catalyst may be supported on at least one catalyst support (herein referred to as a supported hydrogenation catalyst).
- the hydrogenation catalyst may be a metal selected from the group consisting of nickel, copper, chromium, cobalt, rhodium, ruthenium, rhenium, osmium, iridium, platinum, palladium, platinum black; compounds thereof; and combinations thereof. It is well-known that Raney-type catalysts may be formed from some of the metals listed above (for example, Raney nickel® (W. R. Grace & Co., Columbia, MD)), and these
- Raney-type catalysts are also expected to be useful as hydrogenation catalysts for the present invention.
- a promoter such as, without limitation, tin, zinc, copper, gold, silver and combinations thereof may be used to affect the reaction, for example, by increasing activity and catalyst lifetime.
- Preferred hydrogenation catalysts include ruthenium, iridium, palladium; compounds thereof; and combinations thereof.
- the at least one support for the at least one solid hydrogenation catalyst can be any solid substance that is inert under the reaction conditions including, but not limited to, oxides such as silica, alumina and titania; barium sulfate; calcium carbonate; zirconia; carbons, particularly acid washed carbon; and combinations thereof.
- the catalyst support can be in the form of powder, granules, pellets, or the like.
- the supported hydrogenation catalyst can be prepared by depositing the hydrogenation catalyst on the support by any number of methods well known to those skilled in the art of catalysis, such as spraying, soaking or physical mixing, followed by drying, calcination, and if necessary, activation through methods such as reduction.
- the preferred loading of the metal of the at least one solid hydrogenation catalyst on the at least one support is from about 0.1 weight percent to about 20 weight percent based on the combined weights of the metal of the at least one hydrogenation catalyst plus the at least one support.
- Preferred supported hydrogenation catalysts include, but are not limited to, ruthenium on carbon, ruthenium on alumina, and iridium on carbon.
- heterogeneous catalyst systems include any unsupported or supported solid acid catalyst as described above with any unsupported or supported hydrogenation catalyst as described above.
- the heterogeneous catalyst system can include an unsupported or supported solid acid catalyst wherein the solid acid catalyst is selected from the group consisting of (1 ) heterogeneous heteropolyacids (HPAs) and their salts, (2) natural clay minerals, such as those containing alumina or silica (including zeolites), (3) cation exchange resins, (4) metal oxides, (5) mixed metal oxides, (6) metal salts such as metal sulfides, metal sulfates, metal sulfonates, metal nitrates, metal phosphates, metal phosphonates, metal molybdates, metal tungstates, metal borates, and (7) combinations of groups 1 to 6, and an unsupported or supported hydrogenation catalyst wherein the hydrogenation catalyst is selected from metals from the group consisting of nickel, copper, chromium, cobalt, r
- the heterogeneous catalyst system can include an unsupported or supported solid acid catalyst wherein the solid acid catalyst is selected from the group consisting of cation exchange resins and natural clay minerals, and an unsupported or supported hydrogenation catalyst wherein the hydrogenation catalyst is selected from metals from the group consisting of nickel, copper, chromium, cobalt, rhodium, ruthenium, rhenium, osmium, iridium, platinum, palladium, platinum black, compounds thereof and combinations thereof.
- the heterogeneous catalyst system can include an unsupported or supported solid acid catalyst wherein the solid acid catalyst is selected from the group consisting of cation exchange resins and natural clay minerals, and an unsupported or supported hydrogenation catalyst wherein the hydrogenation catalyst is selected from metals from the group consisting of ruthenium, iridium, palladium, compounds thereof, and combinations thereof.
- the heterogeneous catalyst system can also be a dual function catalyst. Dual function catalysts (also known as bifunctional catalysts) have been reported; for example, Sie, S.T.
- the dual function catalyst can be a hydrogenation catalyst on an acidic catalyst support.
- Such dual function catalysts can be prepared in such a way that the catalyst support retains acid functionality after deposition of the hydrogenation catalyst.
- the dual function catalyst can be prepared by depositing the metal of the hydrogenation catalyst on the acidic catalyst support by any number of methods well known to those skilled in the art of catalysis, such as spraying, soaking or physical mixing, followed by drying, calcination, and if necessary, activation through methods such as reduction.
- U.S. Patent No. 6,448, 198 (Column 4, line 55 through Column 18, line 9) describes a solid catalyst containing sulfated zirconia and at least one hydrogenating transition metal for use in hydrocarbon transformation reactions (such as isomerization and alkylation), as well as methods for preparing such catalysts.
- the catalyst can be prepared by depositing hydrated zirconia on a catalytic support, calcining the solid, sulfating the solid, depositing a hydrogenating transition metal on the solid, and performing a final calcination of the solid.
- a suitable dual function catalyst can be, but is not limited to, a hydrogenation catalyst comprising a metal selected from the group consisting of nickel, copper, chromium, cobalt, rhodium, ruthenium, rhenium, osmium, iridium, platinum, and palladium; compounds thereof; and combinations thereof deposited by any means described above on an acid catalyst selected from the group consisting of (1 ) heterogeneous heteropolyacids (HPAs) and their salts, (2) natural clay minerals, such as those containing alumina or silica (including zeolites), (3) cation exchange resins, (4) metal oxides, (5) mixed metal oxides, (6) metal salts such as metal sulfides, metal sulfates, metal sulfonates, metal nitrates, metal phosphates, metal phosphonates, metal molybdates, metal tungstates, metal borates, and (7) combinations of groups 1 to 6.
- HPAs heterogeneous
- Preferred dual function catalysts comprise a hydrogenation catalyst comprising a metal selected from the group consisting of nickel, copper, chromium, cobalt, rhodium, ruthenium, rhenium, osmium, iridium, platinum, and palladium; compounds thereof; and combinations thereof deposited by any means described above on an acid catalyst selected from the group consisting of (1 ) natural clay minerals, such as those containing alumina or silica (including zeolites), (2) cation exchange resins, (3) metal salts such as metal sulfides, metal sulfates, metal sulfonates, metal nitrates, metal phosphates, metal phosphonates, metal molybdates, metal tungstates, metal borates, and (4) combinations of groups 1 to 3.
- a hydrogenation catalyst comprising a metal selected from the group consisting of nickel, copper, chromium, cobalt, rhodium, ruthenium, rhenium, os
- dual function catalysts may comprise at least one hydrogenation catalyst on at least one supported acid catalyst.
- a hydrogenation catalyst comprising a metal selected from the group consisting of nickel, copper, chromium, cobalt, rhodium, ruthenium, rhenium, osmium, iridium, platinum, and palladium; compounds thereof; and combinations thereof deposited by any means described above on sulfated titania, sulfated zirconia, phosphoric acid on silica, and Nafion® on silica.
- platinum can be deposited by any means described above on sulfated titania, sulfated zirconia, phosphoric acid on silica, HPAs on silica, or Nafion® on silica.
- the reaction product comprises 2-butanol, as well as water, and may comprise unreacted BDO and/or methylethylketone (MEK).
- 2- Butanol can be recovered by a refining process that includes at least one distillation step (Doherty, M. F. and M. F. Malone, Conceptual Design of Distillation Systems, McGraw-Hill, New York, 2001 ).
- n components can be separated by n-1 distillation columns as is well known to those skilled in the art, taking into account the boiling points of the various components to be separated.
- Extractive distillation requires the use of an entrainer.
- a successful entrainer must form one or more binary and/or ternary azeotropes with water and possibly 2-butanol that has a boiling point lower than the 2-butanol-water azeotrope. This way the entrainer- containing azeotrope(s) will distill overhead.
- the boiling point of the entrainer is not required to be below that of the 2-butanol-water azeotrope, only its azeotropes must be.
- the azeotropes formed by the entrainer should also be heterogeneous so that decantation can be used to cross the azeotropes and distillation boundaries. It is preferable that the entrainer has very low solubility with water.
- the composition of the feed to the azeotropic distillation column can affect the feasibility and/or design of the process. Toluene can be used as the entrainer to effect the distillative separation of 2-butanol from water. Similarly, ethylene glycol can be used as the entrainer to effect the distillative separation of MEK from water.
- tungstic acid, phosphotungstic acid on Si ⁇ 2 were obtained from Alfa Aesar (Ward Hill, MA); CBV-3020E was obtained from PQ Corporation (Berwyn, PA); Nafion®/SiO 2 and ESCAT catalysts can be obtained from Engelhard (Iselin, NJ); ruthenium on alumina was obtained from Aldrich (St. Louis, MO) or from Engelhard; ruthenium on carbon was obtained from Englehard where indicated in the tables below, or from Strem Chemicals, Inc.
- Deloxan® was Deloxan (r), Type ASP1/7, Batch Number T304, particle size 0.4 to 1.25 mm (obtained from Degussa (Parsippany, NJ)); and H-Mordenite can be obtained from Zeolyst Intl. (Valley Forge, PA). 2,3-Butanediol was obtained from Aldrich, St. Louis, MO.
- the catalyst was purged with 500 SCCM N 2 at room temperature for 15 min and then with 100 SCCM He at room temperature for 15 min.
- the catalyst was heated to 150°C and held at 15O 0 C under He for 1 hr.
- 100 SCCM H 2 were added and the sample was held at 150 0 C under He and H 2 for 1 hr.
- the temperature was increased to 300 0 C and the catalyst was reduced at 300 0 C under He-H 2 for 8 hrs.
- the H 2 was stopped, the sample was held at 300°C under He for 30 min and then cooled to room temperature in flowing He.
- the catalyst was finally passivated in 1.5% O 2 in N 2 at 500 SCCM for 1 hr at room temperature and weighed 4.93g when unloaded.
- BDO obtained from Aldrich
- a hydrogenation catalyst and a solid acid catalyst were combined in a 5 ml pressurized reactor.
- the reactor was then charged with hydrogen and heated to reactor temperature for a period of time.
- the pressure, temperature and time are listed in the examples below.
- 1 gm of BDO was combined with 0.05 gm of a hydrogenation catalyst and 0.1 gm of a solid acid catalyst.
- the vessel was cooled, vented and the products analyzed by GC/MS using a capillary column (either (a) CP-Wax 58 [Varian; Palo Alto, CA], 25 m X 0.25 mm, 45 C/6 min, 10 C/min up to 200 C, 200 C/10 min, or (b) DB-1701 [J&W (available through Agilent; Palo Alto, CA)], 3O m X 0.2 5 mm, 50 C/10 min, 10 C/min up to 250 C, 250 C /2 min).
- a capillary column either (a) CP-Wax 58 [Varian; Palo Alto, CA], 25 m X 0.25 mm, 45 C/6 min, 10 C/min up to 200 C, 200 C/10 min, or (b) DB-1701 [J&W (available through Agilent; Palo Alto, CA)], 3O m X 0.2 5 mm, 50 C/10 min, 10 C/min up to 250 C, 250 C
- Examples 6-12 The conversion of BDO was determined in the presence of increasing concentrations of hydrogenation catalyst.
- ESCAT 440 (5% Ru/C) was combined with Amberlite®IR120 at a hydrogen pressure of 5.52 MPa. The reaction was run at 150 0 C for 2 hours.
- the hydrogenation catalyst comprised ruthenium on various supports.
- Examples 32-38 BDO was combined with ruthenium on acid-washed carbon as the hydrogenation catalyst and various acid catalysts at a hydrogen pressure of 5.52 MPa. The reaction was run at 150 ° C for 2 hours.
- BDO was combined with ruthenium on acid-washed carbon as the hydrogenation catalyst and various acid catalysts at a hydrogen pressure of 5.52 MPa. The reaction was run at 125 ° C for 2 hours.
- BDO was combined with ruthenium on acid-washed carbon as the hydrogenation catalyst and various acid catalysts at a hydrogen pressure of 7.58 MPa. The reaction was run at 150 " C for 2 hours.
- BDO was combined with ruthenium on acid-washed carbon as the hydrogenation catalyst and various acid catalysts at a hydrogen pressure of 6.55 MPa. The reaction was run at 150 ° C for 2 hours.
- BDO was combined with rhenium on acid-washed carbon as the hydrogenation catalyst and various acid catalysts at a hydrogen pressure of 6.76 MPa. The reaction was run at 150 0 C for 2 hours.
- Examples 64-70 BDO was combined with indium on acid-washed carbon as the hydrogenation catalyst and various acid catalysts at a hydrogen pressure of 6.76 MPa. The reaction was run at 150 0 C for 2 hours.
- the hydrogenation catalyst comprised ruthenium on various supports.
- the hydrogenation catalyst comprised ruthenium on various supports.
- BDO was combined with the indicated hydrogenation and acid catalysts at a hydrogen pressure of 3.17 MPa.
- the reaction was run at 150 ° C for 2 hours.
- the hydrogenation catalyst comprised ruthenium on various supports.
- Examples 88-94 BDO was combined with ruthenium on acid-washed carbon as the hydrogenation catalyst and various acid catalysts at a hydrogen pressure of 1.38 MPa. The reaction was run at 150 0 C for 2 hours.
- BDO was combined with ruthenium on acid-washed carbon as the hydrogenation catalyst and various acid catalysts at a hydrogen pressure of 3.45 MPa. The reaction was run at 150 0 C for 2 hours.
- BDO was combined with the indicated hydrogenation catalyst and Amberlyst®15 at a hydrogen pressure of 6.55 MPa in the presence of 50 weight percent water (relative to the total weight of the BDO plus water). The reaction was run at 150 ° C for 2 hours.
- BDO was combined with platinum on acid-washed carbon as the hydrogenation catalyst and various acid catalysts at a hydrogen pressure of 6.76 MPa in the presence of 50 weight percent trimethylpentane (relative to the total weight of the BDO plus trimethylpentane). The reaction was run at 150 ° C for 2 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07862388.1A EP2094857B1 (en) | 2006-12-01 | 2007-11-30 | Method for making 2-butanol |
BRPI0717691-0A BRPI0717691B1 (en) | 2006-12-01 | 2007-11-30 | METHOD OF MANUFACTURE OF 2-BUTHANOL |
CA2667912A CA2667912C (en) | 2006-12-01 | 2007-11-30 | Method for making 2-butanol |
US12/516,828 US7754928B2 (en) | 2006-12-01 | 2007-11-30 | Method of making 2-butanol |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US87217406P | 2006-12-01 | 2006-12-01 | |
US60/872,174 | 2006-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008069991A1 true WO2008069991A1 (en) | 2008-06-12 |
Family
ID=39492540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/024677 WO2008069991A1 (en) | 2006-12-01 | 2007-11-30 | Method for making 2-butanol |
Country Status (5)
Country | Link |
---|---|
US (1) | US7754928B2 (en) |
EP (1) | EP2094857B1 (en) |
BR (1) | BRPI0717691B1 (en) |
CA (1) | CA2667912C (en) |
WO (1) | WO2008069991A1 (en) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9286673B2 (en) | 2012-10-05 | 2016-03-15 | Volcano Corporation | Systems for correcting distortions in a medical image and methods of use thereof |
US9292918B2 (en) | 2012-10-05 | 2016-03-22 | Volcano Corporation | Methods and systems for transforming luminal images |
US9301687B2 (en) | 2013-03-13 | 2016-04-05 | Volcano Corporation | System and method for OCT depth calibration |
US9307926B2 (en) | 2012-10-05 | 2016-04-12 | Volcano Corporation | Automatic stent detection |
US9324141B2 (en) | 2012-10-05 | 2016-04-26 | Volcano Corporation | Removal of A-scan streaking artifact |
US9360630B2 (en) | 2011-08-31 | 2016-06-07 | Volcano Corporation | Optical-electrical rotary joint and methods of use |
US9367965B2 (en) | 2012-10-05 | 2016-06-14 | Volcano Corporation | Systems and methods for generating images of tissue |
US9383263B2 (en) | 2012-12-21 | 2016-07-05 | Volcano Corporation | Systems and methods for narrowing a wavelength emission of light |
US9478940B2 (en) | 2012-10-05 | 2016-10-25 | Volcano Corporation | Systems and methods for amplifying light |
US9486143B2 (en) | 2012-12-21 | 2016-11-08 | Volcano Corporation | Intravascular forward imaging device |
US9596993B2 (en) | 2007-07-12 | 2017-03-21 | Volcano Corporation | Automatic calibration systems and methods of use |
US9612105B2 (en) | 2012-12-21 | 2017-04-04 | Volcano Corporation | Polarization sensitive optical coherence tomography system |
US9622706B2 (en) | 2007-07-12 | 2017-04-18 | Volcano Corporation | Catheter for in vivo imaging |
US9709379B2 (en) | 2012-12-20 | 2017-07-18 | Volcano Corporation | Optical coherence tomography system that is reconfigurable between different imaging modes |
US9730613B2 (en) | 2012-12-20 | 2017-08-15 | Volcano Corporation | Locating intravascular images |
US9770172B2 (en) | 2013-03-07 | 2017-09-26 | Volcano Corporation | Multimodal segmentation in intravascular images |
US9858668B2 (en) | 2012-10-05 | 2018-01-02 | Volcano Corporation | Guidewire artifact removal in images |
US9867530B2 (en) | 2006-08-14 | 2018-01-16 | Volcano Corporation | Telescopic side port catheter device with imaging system and method for accessing side branch occlusions |
US10058284B2 (en) | 2012-12-21 | 2018-08-28 | Volcano Corporation | Simultaneous imaging, monitoring, and therapy |
US10070827B2 (en) | 2012-10-05 | 2018-09-11 | Volcano Corporation | Automatic image playback |
US10166003B2 (en) | 2012-12-21 | 2019-01-01 | Volcano Corporation | Ultrasound imaging with variable line density |
US10191220B2 (en) | 2012-12-21 | 2019-01-29 | Volcano Corporation | Power-efficient optical circuit |
US10219780B2 (en) | 2007-07-12 | 2019-03-05 | Volcano Corporation | OCT-IVUS catheter for concurrent luminal imaging |
US10219887B2 (en) | 2013-03-14 | 2019-03-05 | Volcano Corporation | Filters with echogenic characteristics |
US10226597B2 (en) | 2013-03-07 | 2019-03-12 | Volcano Corporation | Guidewire with centering mechanism |
US10238367B2 (en) | 2012-12-13 | 2019-03-26 | Volcano Corporation | Devices, systems, and methods for targeted cannulation |
US10292677B2 (en) | 2013-03-14 | 2019-05-21 | Volcano Corporation | Endoluminal filter having enhanced echogenic properties |
US10332228B2 (en) | 2012-12-21 | 2019-06-25 | Volcano Corporation | System and method for graphical processing of medical data |
US10413317B2 (en) | 2012-12-21 | 2019-09-17 | Volcano Corporation | System and method for catheter steering and operation |
US10420530B2 (en) | 2012-12-21 | 2019-09-24 | Volcano Corporation | System and method for multipath processing of image signals |
US10426590B2 (en) | 2013-03-14 | 2019-10-01 | Volcano Corporation | Filters with echogenic characteristics |
US10568586B2 (en) | 2012-10-05 | 2020-02-25 | Volcano Corporation | Systems for indicating parameters in an imaging data set and methods of use |
US10595820B2 (en) | 2012-12-20 | 2020-03-24 | Philips Image Guided Therapy Corporation | Smooth transition catheters |
US10638939B2 (en) | 2013-03-12 | 2020-05-05 | Philips Image Guided Therapy Corporation | Systems and methods for diagnosing coronary microvascular disease |
US10724082B2 (en) | 2012-10-22 | 2020-07-28 | Bio-Rad Laboratories, Inc. | Methods for analyzing DNA |
US10758207B2 (en) | 2013-03-13 | 2020-09-01 | Philips Image Guided Therapy Corporation | Systems and methods for producing an image from a rotational intravascular ultrasound device |
US10939826B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Aspirating and removing biological material |
US10942022B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Manual calibration of imaging system |
US10993694B2 (en) | 2012-12-21 | 2021-05-04 | Philips Image Guided Therapy Corporation | Rotational ultrasound imaging catheter with extended catheter body telescope |
US11026591B2 (en) | 2013-03-13 | 2021-06-08 | Philips Image Guided Therapy Corporation | Intravascular pressure sensor calibration |
US11040140B2 (en) | 2010-12-31 | 2021-06-22 | Philips Image Guided Therapy Corporation | Deep vein thrombosis therapeutic methods |
US11141063B2 (en) | 2010-12-23 | 2021-10-12 | Philips Image Guided Therapy Corporation | Integrated system architectures and methods of use |
US11154313B2 (en) | 2013-03-12 | 2021-10-26 | The Volcano Corporation | Vibrating guidewire torquer and methods of use |
US11272845B2 (en) | 2012-10-05 | 2022-03-15 | Philips Image Guided Therapy Corporation | System and method for instant and automatic border detection |
US11406498B2 (en) | 2012-12-20 | 2022-08-09 | Philips Image Guided Therapy Corporation | Implant delivery system and implants |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8641788B2 (en) | 2011-12-07 | 2014-02-04 | Igp Energy, Inc. | Fuels and fuel additives comprising butanol and pentanol |
AR095195A1 (en) | 2013-03-15 | 2015-09-30 | W R Grace & Co -Conn | PROCESS FOR THE SELECTIVE PRODUCTION OF PROPANOLS BY HYDROGENATION OF GLICEROL |
US9517984B2 (en) | 2014-04-04 | 2016-12-13 | Battelle Memorial Institute | Conversion of 2,3-butanediol to 2-butanol, olefins and fuels |
CN106018516B (en) | 2016-05-09 | 2018-08-21 | 江苏大学 | A kind of compound slab pH transducer production methods of graphene modified |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050054736A1 (en) * | 2003-09-08 | 2005-03-10 | Bjorn Schlummer | Enantiomerically enriched 2-butanol |
-
2007
- 2007-11-30 BR BRPI0717691-0A patent/BRPI0717691B1/en not_active IP Right Cessation
- 2007-11-30 US US12/516,828 patent/US7754928B2/en not_active Expired - Fee Related
- 2007-11-30 EP EP07862388.1A patent/EP2094857B1/en not_active Not-in-force
- 2007-11-30 WO PCT/US2007/024677 patent/WO2008069991A1/en active Application Filing
- 2007-11-30 CA CA2667912A patent/CA2667912C/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050054736A1 (en) * | 2003-09-08 | 2005-03-10 | Bjorn Schlummer | Enantiomerically enriched 2-butanol |
Non-Patent Citations (3)
Title |
---|
MANITTO ET AL.: "Stereochemistry and fate of hydrogen atoms in the diol-dehydrogenase-catalyzed dehydrogenation of messo-butane-2,3-diol", HELVETICA CHIMICA ACTA, vol. 81, no. 11, 1998, pages 2005 - 2016, XP008109006 * |
MANITTO, P. ET AL., HELVETICA CHIMICA ACTA, vol. 81, 1998, pages 2009 - 2016 |
See also references of EP2094857A4 |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9867530B2 (en) | 2006-08-14 | 2018-01-16 | Volcano Corporation | Telescopic side port catheter device with imaging system and method for accessing side branch occlusions |
US9596993B2 (en) | 2007-07-12 | 2017-03-21 | Volcano Corporation | Automatic calibration systems and methods of use |
US10219780B2 (en) | 2007-07-12 | 2019-03-05 | Volcano Corporation | OCT-IVUS catheter for concurrent luminal imaging |
US11350906B2 (en) | 2007-07-12 | 2022-06-07 | Philips Image Guided Therapy Corporation | OCT-IVUS catheter for concurrent luminal imaging |
US9622706B2 (en) | 2007-07-12 | 2017-04-18 | Volcano Corporation | Catheter for in vivo imaging |
US11141063B2 (en) | 2010-12-23 | 2021-10-12 | Philips Image Guided Therapy Corporation | Integrated system architectures and methods of use |
US11040140B2 (en) | 2010-12-31 | 2021-06-22 | Philips Image Guided Therapy Corporation | Deep vein thrombosis therapeutic methods |
US9360630B2 (en) | 2011-08-31 | 2016-06-07 | Volcano Corporation | Optical-electrical rotary joint and methods of use |
US9286673B2 (en) | 2012-10-05 | 2016-03-15 | Volcano Corporation | Systems for correcting distortions in a medical image and methods of use thereof |
US9858668B2 (en) | 2012-10-05 | 2018-01-02 | Volcano Corporation | Guidewire artifact removal in images |
US10568586B2 (en) | 2012-10-05 | 2020-02-25 | Volcano Corporation | Systems for indicating parameters in an imaging data set and methods of use |
US11510632B2 (en) | 2012-10-05 | 2022-11-29 | Philips Image Guided Therapy Corporation | Systems for indicating parameters in an imaging data set and methods of use |
US9367965B2 (en) | 2012-10-05 | 2016-06-14 | Volcano Corporation | Systems and methods for generating images of tissue |
US9292918B2 (en) | 2012-10-05 | 2016-03-22 | Volcano Corporation | Methods and systems for transforming luminal images |
US11864870B2 (en) | 2012-10-05 | 2024-01-09 | Philips Image Guided Therapy Corporation | System and method for instant and automatic border detection |
US11890117B2 (en) | 2012-10-05 | 2024-02-06 | Philips Image Guided Therapy Corporation | Systems for indicating parameters in an imaging data set and methods of use |
US9478940B2 (en) | 2012-10-05 | 2016-10-25 | Volcano Corporation | Systems and methods for amplifying light |
US9324141B2 (en) | 2012-10-05 | 2016-04-26 | Volcano Corporation | Removal of A-scan streaking artifact |
US9307926B2 (en) | 2012-10-05 | 2016-04-12 | Volcano Corporation | Automatic stent detection |
US10070827B2 (en) | 2012-10-05 | 2018-09-11 | Volcano Corporation | Automatic image playback |
US11272845B2 (en) | 2012-10-05 | 2022-03-15 | Philips Image Guided Therapy Corporation | System and method for instant and automatic border detection |
US10724082B2 (en) | 2012-10-22 | 2020-07-28 | Bio-Rad Laboratories, Inc. | Methods for analyzing DNA |
US10238367B2 (en) | 2012-12-13 | 2019-03-26 | Volcano Corporation | Devices, systems, and methods for targeted cannulation |
US11892289B2 (en) | 2012-12-20 | 2024-02-06 | Philips Image Guided Therapy Corporation | Manual calibration of imaging system |
US11141131B2 (en) | 2012-12-20 | 2021-10-12 | Philips Image Guided Therapy Corporation | Smooth transition catheters |
US11406498B2 (en) | 2012-12-20 | 2022-08-09 | Philips Image Guided Therapy Corporation | Implant delivery system and implants |
US10942022B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Manual calibration of imaging system |
US9730613B2 (en) | 2012-12-20 | 2017-08-15 | Volcano Corporation | Locating intravascular images |
US10939826B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Aspirating and removing biological material |
US9709379B2 (en) | 2012-12-20 | 2017-07-18 | Volcano Corporation | Optical coherence tomography system that is reconfigurable between different imaging modes |
US10595820B2 (en) | 2012-12-20 | 2020-03-24 | Philips Image Guided Therapy Corporation | Smooth transition catheters |
US10332228B2 (en) | 2012-12-21 | 2019-06-25 | Volcano Corporation | System and method for graphical processing of medical data |
US11253225B2 (en) | 2012-12-21 | 2022-02-22 | Philips Image Guided Therapy Corporation | System and method for multipath processing of image signals |
US9383263B2 (en) | 2012-12-21 | 2016-07-05 | Volcano Corporation | Systems and methods for narrowing a wavelength emission of light |
US10420530B2 (en) | 2012-12-21 | 2019-09-24 | Volcano Corporation | System and method for multipath processing of image signals |
US9486143B2 (en) | 2012-12-21 | 2016-11-08 | Volcano Corporation | Intravascular forward imaging device |
US10413317B2 (en) | 2012-12-21 | 2019-09-17 | Volcano Corporation | System and method for catheter steering and operation |
US11786213B2 (en) | 2012-12-21 | 2023-10-17 | Philips Image Guided Therapy Corporation | System and method for multipath processing of image signals |
US10993694B2 (en) | 2012-12-21 | 2021-05-04 | Philips Image Guided Therapy Corporation | Rotational ultrasound imaging catheter with extended catheter body telescope |
US9612105B2 (en) | 2012-12-21 | 2017-04-04 | Volcano Corporation | Polarization sensitive optical coherence tomography system |
US10058284B2 (en) | 2012-12-21 | 2018-08-28 | Volcano Corporation | Simultaneous imaging, monitoring, and therapy |
US10166003B2 (en) | 2012-12-21 | 2019-01-01 | Volcano Corporation | Ultrasound imaging with variable line density |
US10191220B2 (en) | 2012-12-21 | 2019-01-29 | Volcano Corporation | Power-efficient optical circuit |
US9770172B2 (en) | 2013-03-07 | 2017-09-26 | Volcano Corporation | Multimodal segmentation in intravascular images |
US10226597B2 (en) | 2013-03-07 | 2019-03-12 | Volcano Corporation | Guidewire with centering mechanism |
US11154313B2 (en) | 2013-03-12 | 2021-10-26 | The Volcano Corporation | Vibrating guidewire torquer and methods of use |
US10638939B2 (en) | 2013-03-12 | 2020-05-05 | Philips Image Guided Therapy Corporation | Systems and methods for diagnosing coronary microvascular disease |
US11026591B2 (en) | 2013-03-13 | 2021-06-08 | Philips Image Guided Therapy Corporation | Intravascular pressure sensor calibration |
US10758207B2 (en) | 2013-03-13 | 2020-09-01 | Philips Image Guided Therapy Corporation | Systems and methods for producing an image from a rotational intravascular ultrasound device |
US9301687B2 (en) | 2013-03-13 | 2016-04-05 | Volcano Corporation | System and method for OCT depth calibration |
US10219887B2 (en) | 2013-03-14 | 2019-03-05 | Volcano Corporation | Filters with echogenic characteristics |
US10426590B2 (en) | 2013-03-14 | 2019-10-01 | Volcano Corporation | Filters with echogenic characteristics |
US10292677B2 (en) | 2013-03-14 | 2019-05-21 | Volcano Corporation | Endoluminal filter having enhanced echogenic properties |
Also Published As
Publication number | Publication date |
---|---|
US7754928B2 (en) | 2010-07-13 |
US20100056832A1 (en) | 2010-03-04 |
CA2667912C (en) | 2014-01-21 |
CA2667912A1 (en) | 2008-06-12 |
BRPI0717691B1 (en) | 2017-07-18 |
EP2094857B1 (en) | 2014-04-02 |
BRPI0717691A2 (en) | 2013-10-29 |
EP2094857A4 (en) | 2010-12-22 |
EP2094857A1 (en) | 2009-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7754928B2 (en) | Method of making 2-butanol | |
Li et al. | Catalytic conversion of cellulose-based biomass and glycerol to lactic acid | |
Chia et al. | Triacetic acid lactone as a potential biorenewable platform chemical | |
Zhu et al. | Bio-based 1, 4-butanediol and tetrahydrofuran synthesis: perspective | |
KR102266181B1 (en) | A process for manufacturing acrylic acid, acrylonitrile and 1,4-butanediol from 1,3-propanediol | |
EP2989073B1 (en) | Methods to produce fuels | |
WO2016114661A1 (en) | Continuous process for preparing ethylene glycol from a carbohydrate source | |
JP2018510848A (en) | Method for dehydrating oxygenated compounds | |
CN110818566A (en) | Method for preparing cyclopentanol from cyclopentene | |
CN105837428B (en) | Process for catalytic conversion of ketoacids and hydroprocessing to hydrocarbons via ketoacid dimer intermediates | |
EP2516359B1 (en) | Process for preparing ethylbenzene | |
US20100251609A1 (en) | Process for Making a Composition Comprising at Least Two Different Dialkyl Ethers | |
EP3067340B1 (en) | Propene production method | |
US20120116119A1 (en) | Production of 2,4-hexadienoic acid and 1,3-pentadiene from 6-methyl-5,6-dihydro-2-pyrone | |
WO2013028422A4 (en) | Biogenic fuel and method of making same | |
CN102234230A (en) | Process method for synthesizing sec-butyl acetate from C4 fractions | |
NL2014119B1 (en) | Process for preparing alkylene glycol from a carbohydrate. | |
CN113968776A (en) | Method for preparing cyclopentanone from biomass raw material | |
EP3221285B1 (en) | Process for making biobased propylene glycol from lactic acid esters | |
CN109160871B (en) | Method for preparing n-amyl alcohol by hydrogenation of gamma-valerolactone | |
CN107778145B (en) | Method for producing 1, 4-butanediol and/or sec-butanol | |
WO2017001376A1 (en) | Process for the production of 1,4-butanediol and tetrahydrofuran from furan | |
US9012680B2 (en) | Process for preparing an ester | |
KR20100084044A (en) | Process for the selective production of 1-butene from 2-butene using silica supported pt-mo oxide catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07862388 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2667912 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12516828 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007862388 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0717691 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090529 |