WO2008069821A1 - Metal aminotroponiminates, bis-oxazolinates and guanidinates - Google Patents
Metal aminotroponiminates, bis-oxazolinates and guanidinates Download PDFInfo
- Publication number
- WO2008069821A1 WO2008069821A1 PCT/US2006/062713 US2006062713W WO2008069821A1 WO 2008069821 A1 WO2008069821 A1 WO 2008069821A1 US 2006062713 W US2006062713 W US 2006062713W WO 2008069821 A1 WO2008069821 A1 WO 2008069821A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- formula
- another
- different
- same
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 154
- 239000002184 metal Substances 0.000 title claims abstract description 151
- 239000002243 precursor Substances 0.000 claims abstract description 159
- 239000003446 ligand Substances 0.000 claims abstract description 99
- 229910052788 barium Inorganic materials 0.000 claims abstract description 75
- 150000001875 compounds Chemical class 0.000 claims abstract description 68
- 238000000231 atomic layer deposition Methods 0.000 claims abstract description 65
- 239000000758 substrate Substances 0.000 claims abstract description 62
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 49
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 37
- 150000002739 metals Chemical class 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 89
- 229910052712 strontium Inorganic materials 0.000 claims description 77
- 125000003118 aryl group Chemical group 0.000 claims description 70
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 51
- 125000000217 alkyl group Chemical group 0.000 claims description 51
- 229910052693 Europium Inorganic materials 0.000 claims description 38
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 38
- 229910052782 aluminium Inorganic materials 0.000 claims description 38
- 229910052787 antimony Inorganic materials 0.000 claims description 38
- 229910052793 cadmium Inorganic materials 0.000 claims description 38
- 229910052791 calcium Inorganic materials 0.000 claims description 38
- 229910052802 copper Inorganic materials 0.000 claims description 38
- 229910052733 gallium Inorganic materials 0.000 claims description 38
- 229910052732 germanium Inorganic materials 0.000 claims description 38
- 229910052737 gold Inorganic materials 0.000 claims description 38
- 229910052735 hafnium Inorganic materials 0.000 claims description 38
- 229910052738 indium Inorganic materials 0.000 claims description 38
- 229910052750 molybdenum Inorganic materials 0.000 claims description 38
- 229910052759 nickel Inorganic materials 0.000 claims description 38
- 229910052762 osmium Inorganic materials 0.000 claims description 38
- 229910052763 palladium Inorganic materials 0.000 claims description 38
- 229910052707 ruthenium Inorganic materials 0.000 claims description 38
- 229910052709 silver Inorganic materials 0.000 claims description 38
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical group [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 38
- 229910052715 tantalum Inorganic materials 0.000 claims description 38
- 229910052718 tin Inorganic materials 0.000 claims description 38
- 229910052719 titanium Inorganic materials 0.000 claims description 38
- 229910052721 tungsten Inorganic materials 0.000 claims description 38
- 229910052727 yttrium Inorganic materials 0.000 claims description 38
- 229910052725 zinc Inorganic materials 0.000 claims description 38
- 229910052726 zirconium Inorganic materials 0.000 claims description 38
- 229910052741 iridium Inorganic materials 0.000 claims description 37
- 229910052714 tellurium Inorganic materials 0.000 claims description 37
- 229910052745 lead Inorganic materials 0.000 claims description 36
- 229910052697 platinum Inorganic materials 0.000 claims description 36
- 238000000151 deposition Methods 0.000 claims description 33
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 26
- 230000003647 oxidation Effects 0.000 claims description 24
- 238000007254 oxidation reaction Methods 0.000 claims description 24
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 230000008021 deposition Effects 0.000 claims description 23
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 20
- 230000001419 dependent effect Effects 0.000 claims description 19
- 125000002097 pentamethylcyclopentadienyl group Chemical group 0.000 claims description 18
- 238000003860 storage Methods 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 13
- 125000000041 C6-C10 aryl group Chemical group 0.000 claims description 9
- 229910002113 barium titanate Inorganic materials 0.000 claims description 8
- 125000001424 substituent group Chemical group 0.000 claims description 8
- 238000007740 vapor deposition Methods 0.000 claims description 8
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 7
- 238000004377 microelectronic Methods 0.000 claims description 7
- 229910052700 potassium Inorganic materials 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052794 bromium Inorganic materials 0.000 claims description 6
- 229910052801 chlorine Inorganic materials 0.000 claims description 6
- 150000001412 amines Chemical class 0.000 claims description 5
- 229910052740 iodine Inorganic materials 0.000 claims description 5
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 claims description 4
- WOIHABYNKOEWFG-UHFFFAOYSA-N [Sr].[Ba] Chemical compound [Sr].[Ba] WOIHABYNKOEWFG-UHFFFAOYSA-N 0.000 claims description 4
- 150000001409 amidines Chemical class 0.000 claims description 4
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 4
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims description 4
- SPGBKYHETUMBKT-UHFFFAOYSA-N 7-iminocyclohepta-1,3,5-trien-1-amine Chemical compound NC1=CC=CC=CC1=N SPGBKYHETUMBKT-UHFFFAOYSA-N 0.000 claims description 3
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 claims description 3
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 150000003973 alkyl amines Chemical class 0.000 claims description 3
- 125000005103 alkyl silyl group Chemical group 0.000 claims description 3
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 claims description 3
- 125000000524 functional group Chemical group 0.000 claims description 3
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 claims description 3
- 239000010408 film Substances 0.000 abstract description 13
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 150000003437 strontium Chemical class 0.000 abstract description 6
- 239000010409 thin film Substances 0.000 abstract description 2
- 238000005019 vapor deposition process Methods 0.000 abstract 2
- 150000002736 metal compounds Chemical class 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 22
- 239000000203 mixture Substances 0.000 description 21
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 21
- 239000011575 calcium Substances 0.000 description 20
- 239000010949 copper Substances 0.000 description 20
- 239000010931 gold Substances 0.000 description 20
- 239000010936 titanium Substances 0.000 description 20
- 239000011701 zinc Substances 0.000 description 20
- 239000010944 silver (metal) Substances 0.000 description 18
- 239000002356 single layer Substances 0.000 description 16
- 239000002904 solvent Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 14
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 0 CC[C@@]1*CCCC1 Chemical compound CC[C@@]1*CCCC1 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 150000002902 organometallic compounds Chemical class 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 239000006200 vaporizer Substances 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000005829 chemical entities Chemical class 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000012705 liquid precursor Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 150000001552 barium Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- -1 e.g. Substances 0.000 description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- 229910014585 C2-Ce Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000002099 adlayer Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000004350 aryl cycloalkyl group Chemical group 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012866 crystallographic experiment Methods 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical group II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- KRIJWFBRWPCESA-UHFFFAOYSA-L strontium iodide Chemical compound [Sr+2].[I-].[I-] KRIJWFBRWPCESA-UHFFFAOYSA-L 0.000 description 1
- 229910001643 strontium iodide Inorganic materials 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F17/00—Metallocenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C279/00—Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
- C07C279/02—Guanidine; Salts, complexes or addition compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/409—Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
Definitions
- the invention relates generally to metal source precursors and their synthesis.
- the invention relates to strontium, barium and other metal aminotroponiminates, strontium, barium and other bis-oxazolinates, strontium and barium guanidinates, as well as metal guanidinates including metals other than strontium and barium, and methods of making and using these compositions.
- the invention in another aspect relates to ligand precursors of the inventive metal source precursors.
- the invention also relates to mixed ligand copper complexes suitable for chemical vapor deposition, atomic layer deposition and rapid vapor deposition applications.
- the invention relates to methods of depositing metal layers on a substrate utilizing the precursors of the invention and substrates generated thereby.
- Chemical vapor deposition is a chemical process that involves a series of chemical reactions to produce a thin layer of solid material on a substrate surface. The process is widely used to fabricate microelectronic devices and products.
- a substrate is exposed to one or more precursors.
- the precursors react with the substrate surface to produce a deposit of solid material on such surface.
- CVD is well-suited to provide uniform coverage of the deposited material on the substrate.
- Atomic layer deposition is a modified CVD process involving a sequential step technique that results in a coating of multiple layers on the substrate.
- ALD is carried out utilizing two complementary precursors that are alternately introduced to the reaction chamber. The first precursor is delivered in excess into the deposition chamber. The precursor will react with the substrate to form a monolayer of reacted precursor on the surface.
- the deposition chamber is purged or evacuated with a carrier gas to remove unreacted precursor followed by the delivery of a reactant (a second precursor) to the deposition chamber for reaction with the monolayer of reacted precursor, to form the desired material. This cycle is repeated until an appropriate thickness of material is achieved.
- ALD provides uniform step coverage and a high level of control over film thicknesses.
- sequential precursor pulses are used to form a film, layer by layer.
- a first precursor may be introduced to form a gas monolayer on a substrate, followed by introduction of a second precursor to react with the gas monolayer to form a first solid monolayer of the film.
- Each cycle including first and second precursor pulses therefore forms one solid monolayer.
- the process then is repeated to form successive layers until a film of desired thickness is obtained.
- RVD rapid vapor deposition
- ALD advanced vapor deposition
- the substrate is sequentially exposed to precursors in gaseous form.
- RVD the process is repeated until a substrate coated with multiple layers reaches a desired thickness.
- the resulting coated substrate is of high coafo ⁇ nality.
- RVD differs from ALD in that the layers in RVD can be deposited more quickly.
- Liquid precursors and/or solid precursors dissolved in suitable solvents enable the direct injection and/or liquid delivery of precursors into a CVD, ALD or RVD vaporizer unit.
- the accurate and precise delivery rate can be obtained through volumetric metering to achieve reproducibility during CVD, ALD or RVD metallization of a VLSI device.
- Solid precursor delivery via specially-designed devices such as ATMI' s ProE Vap® precursor storage and dispensing package or liquid precursor delivery via specially-designed devices, such as ATMFs NOWTrak® precursor storage and dispensing package (both from ATMI, Inc., Danbury, Connecticut, USA) enables highly efficient transport of solid precursors to a CVD, ALD or RVD reactor.
- the present invention relates to metal source precursors for use in CVD, ALD and RVD processes and methods of making the same, as well as to a method of depositing a metal layer on a substrate using such precursors and to substrate structures, e.g., microelectronic device structures, having such layers deposited thereon.
- the invention also relates to ligand precursors useful in making metal source precursors for CVD, ALD and RVD processes.
- the invention relates to a ligand precursor selected from the group consisting of compounds of formulas:
- Rjand R 2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C 5 alkyls, C O -C I0 aryls and C 3 -Ce cycloalkyls;
- Riand R 2 may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -C 5 alkyls, Ce-Q 0 aryls and C 3 -C6 cycloalkyls;
- Rjand R 2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C 5 alkyls, C 6 -C 10 aryls and C 3 -C 6 cycloalkyls;
- R 1 and R 2 may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -C 5 alkyls, C 6 -C 10 aryls and C 3 -C 6 cycloalkyls;
- R 1 , R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -C 5 alkyls, C 6 -C 10 aryls and C 3 -C 6 cycloalkyls;
- Rj, R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C 5 alkyls, C 6 -Ci 0 aryls and C 3 -C 6 cycloalkyls; and
- R' may be the same or different from one another and may be methyl or zPr.
- the invention relates to a metal source precursor selected from the group consisting of compounds of the formulas:
- R : and R 2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C 5 alkyls, C 6 -Ci 0 aryls and C 3 -C 6 cycloalkyls;
- M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M.
- the metal deposited is selected from the group consisting of Ba and Sr;
- each of the R ⁇ and R 2 substituents may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C 5 alkyls, C ⁇ -Cio aryls and C 3 -C O cycloalkyls;
- M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x and x is 1 to 8, dependent on the oxidation state of M.
- the metal deposited is selected from the group consisting of Ba and Sr;
- R R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -C 5 alkyls, Ce-Q 0 aryls and C 3 -C O cycloalkyls;
- M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M.
- the metal deposited is selected from the group consisting of Ba and Sr;
- R' may be the same or different from one another and may be methyl or /Pr;
- R' may be the same or different from one another and may be methyl or iPr and wherein Cp* is pentamethylcyclopentadienyl;
- Cp* is pentamethylcyclopentadienyl.
- the invention relates to various methods of making the above metal source precursors.
- the invention relates to a method of depositing a metal layer on a substrate comprising deposit of the metal on the substrate surface by ALD or RVD, wherein at least one precursor is selected from the metal source precursors of the invention.
- the metal deposited is selected from the group comprising Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te.
- the one or more layers comprise strontium and/or barium.
- the ALD is performed at a temperature of less than or equal to 300 degrees Celsius.
- delivery of the at least one precursor is by solution delivery.
- delivery of the at least one precursor is by dispensing from a ProE Vap® precursor storage and dispensing package.
- delivery of the at least one precursor involves dispensing from a NOWTrak® precursor storage and dispensing package.
- the invention relates to a substrate coated with one or more film monolayers of one or more metals.
- the substrate of the invention is coated by chemical vapor deposition, atomic layer deposition and/or rapid vapor deposition and the deposition method utilizes one or more metal source precursors of the invention.
- the one or more layers comprise Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and/or Te.
- the one or more layers comprise strontium and/or barium.
- the invention relates to a ligand precursor selected from the group consisting of compounds of the formulas:
- R 1 , R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -Cs alkyls, C 6 -C 10 aryls and C 3 -C 6 cycloalkyls; and M is selected from the group consisting of Na and K; and
- R 1 N C(NR 2 R 3 )NR 4 H [0030] where Ri, R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -Cs alkyls, Ce-Q 0 aryls and C 3 -C O cycloalkyls.
- a further aspect of the invention relates to a metal source precursor of the formula wherein Ri, R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C 5 alkyls, C 6 -C] 0 aryls and C 3 -C 6 cycloalkyls; M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is the oxidation state of M.
- the metal deposited is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te.
- the ALD is performed at a temperature of less than or equal to 300 degrees Celsius.
- delivery of the at least one precursor is by solution delivery.
- delivery of the at least one precursor is by dispensing from a ProE Vap® precursor storage and dispensing package.
- delivery of the at least one precursor involves dispensing from a NOWTrak® precursor storage and dispensing package.
- the invention relates to a substrate coated with one or more film monolayers of one or more metals.
- the substrate of the invention is coated by chemical vapor deposition, atomic layer deposition and/or rapid vapor deposition and the deposition method utilizes one or more metal source precursors of the invention.
- metal source precursors of the formula M[RiN C(NR 2 R 3 )
- the invention in another aspect relates to a precursor storage and delivery apparatus comprising a vessel containing a metal source precursor of the invention.
- a further aspect of the invention relates to a vapor of a metal source precursor of the invention.
- a still further aspect of the invention relates to a method of making a microelectronic device product, comprising contacting a microelectronic device substrate with a metal source precursor of the invention, to deposit said metal on the substrate.
- Yet another aspect relates to a mixed ligand barium and strontium complexes suitable for use in CVD, ALD and RVD applications.
- Such mixed ligand copper complexes have the general formula:
- M barium or strontium
- X and Y are each monoanionic and selected from the parent ligands (A)-(H) below, with the proviso that X and Y are different from one another:
- Z is (CH 2 ) 2 or SiMe 2 ; and R 1 , R 2 and R 3 are the same as or different from, one another, and each is independently selected from among C 1 -C 5 alkyl, C ⁇ -Cio aryl, and C 3 -C 6 cycloalkyl;
- Ri, R 2 are the same as or different from one another and each is independently selected from among H, Ci-C 5 alkyl, Ce-Qo aryl, and C 3 -C 6 cycloalkyl;
- Ri, R 2 are the same as or different from one another and each is independently selected from among H, Ci-C 5 alkyl, C 6 -Ci 0 aryl. and C 3 -C 6 cycloalkyl;
- Ri, R 2 , R3 are the same as or different from one another and are independently selected from among H, Q-C5 alkyl, C 6 -Ci 0 aryl, and C 3 -C 6 cycloalkyl;
- Ri, R 2 , R 3 , R 4 , R 5 are the same as or different from one another and are independently selected from among H, C] -C 6 alkyl, C 6 -Ci 0 aryl, Ci-C 8 alkoxy, Ci -C 8 alkylsilyl, and pendant ligands with additional functional group(s) that can provide further coordination to the metal center, e.g., - CH 2 - CH 2 -N(CH 3 ) 2 ;
- Ri, R 2 , R 3 , R 4 are the same as or different from one another and are independently selected from among Q-C ⁇ alkyl, C ⁇ -Cio aryl, silyl and CrC 8 alkylamine; and
- Ri, R 2 are the same as or different from one another and are independently selected from among Ci-C 5 alkyl, C ⁇ -Cio aryl, and C 3 -C6 cycloalkyl.
- Figure 1 is a thermal ellipsoid plot of a strontium guanidinate of the invention.
- ligands include aminotroponiminate, bis-oxazolinate and guanidinate ligands. While aminitroponiminate and bis-oxazolinate ligands have been discussed in the art, it has been with respect to Group III and lanthanide chemistry, not for CVD/ALD/RVD applications. (See Piers et al. Coord. Chem. Rev. vol. 233-4 p. 131-155 (2002)).
- a strontium guanidinate complex has also been reported in the art, but that compound has not been used for CVD/ALD/RVD applications. (See Feil, et al. Eur. J. Inorg. Chem. 2005(21) p. 4438-4443 (2005)).
- the ligand precursors, metal source precursors and corresponding compositions of the invention are volatile and sufficiently stable precursors for CVD, ALD and RVD processes and are reactive at reasonable temperatures for those processes.
- the present invention relates to metal aminotroponiminate ligand precursors, metal source precursors and compositions for use in CVD, ALD and RVD processes, and to methods of making the same.
- the invention relates to a ligand precursor of the formula:
- Rj and R 2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C 5 alkyls, C 6 -Ci 0 aryls and C 3 -C 6 cycloalkyls.
- Ci-C 5 alkyls as used herein includes, but is not limited to, methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl , pentyl and isopentyl and the like.
- C 6 -Ci 0 aryls as used herein includes hydrocarbons derived from benzene or a benzene derivative that are unsaturated aromatic carbocyclic groups of from 6 to 10 carbon atoms.
- the aryls may have a single or multiple rings.
- aryl as used herein also includes substituted aryls. Examples include, but are not limited to phenyl, naphthyl, xylene, phenylethane, substituted phenyl, substituted naphthyl, substituted xylene, substituted phenylethane and the like.
- C 3 -C 6 cycloalkyls as used herein includes, but is not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
- a range of carbon numbers will be regarded as specifying a sequence of consecutive alternative carbon-containing moieties, including all moieties containing numbers of carbon atoms intermediate the endpoint values of carbon number in the specific range as well as moieties containing numbers of carbon atoms equal to an endpoint value of the specific range, e.g., Ci-C 6 , is inclusive of Ci, C 2 , C 3 , C 4 , C 5 and C 6 , and each of such broader ranges may be further limitingly specified with reference to carbon numbers within such ranges, as sub-ranges thereof.
- the range Q-C 6 would be inclusive of and can be further limited by specification of sub-ranges such as C 1 -C 3 , Ci-C 4 , C 2 -Ce, C 4 -Ce, etc. within the scope of the broader range.
- the invention relates to a ligand precursor of the formula:
- Rj and R 2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-Cs alkyls, C ⁇ -Cio aryls and C 3 -Ce cycloalkyls.
- the invention relates to a metal source precursor of the formula:
- Riand R 2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C 5 alkyls, C 6 -Ci 0 aryls and C 3 -C 6 cycloalkyls.
- M is a metal selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and x is 1 to 8, dependent on the oxidation state of M.
- M is barium or strontium.
- the metal product may be bound by or coordinated to molecules of solvent.
- the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
- the invention provides a method of making a compound of the formula: wherein Rj and R 2 may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -C 5 alkyls, C ⁇ -Cio aryls and C 3 -C 6 cycloalkyls.
- M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and x is 1 to 8, dependent on the oxidation state of M.
- M is barium or strontium.
- the metal product may be bound by or coordinated to molecules of solvent.
- the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
- the metal aminotroponiminate ligand precursors, metal source precursors and compositions thereof are utilized for CVD/ALD/RVD process applications.
- the invention relates to a method of forming a metal-containing layer on a substrate.
- metals may include, but are not limited to, Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te.
- deposition of a metal layer on a substrate surface is carried out.
- the metal is strontium or barium.
- the resulting layers can therefore include, without limitation, strontium titanate, barium titanate and strontium barium titanate.
- the present invention relates in various embodiments to metal bis-oxazolinate ligand precursors, metal source precursors and compositions thereof for use in CVD, ALD and RVD processes, as well as methods of making the same.
- the invention relates to a ligand precursor of the formula:
- Ri and R 2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C 5 alkyls, C 6 -C] 0 aryls and C 3 -Ce cycloalkyls.
- the invention provides a ligand precursor of the formula:
- Ri and R 2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C 5 alkyls, C 6 -C] 0 aryls and C 3 -C 6 cycloalkyls.
- the invention relates to a metal source precursor of the formula:
- each of the Ri and R 2 substituents may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -Cs alkyls, C ⁇ -Cio aryls and C 3 - C 6 cycloalkyls.
- M is a metal selected from Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and where x is 1 to 8, dependent on the oxidation state of M.
- M is barium or strontium.
- the metal product may be bound by or coordinated to molecules of solvent.
- the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
- the invention provides a method of making a compound of the formula:
- each of the Ri and R 2 substituents may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-Cs alkyls, C 6 -Ci 0 aryls and C 3 - C 6 cycloalkyls.
- M is a metal selected from Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and where x is 1 to 8, dependent on the oxidation state of M.
- M is barium or strontium.
- the metal product may be bound by or coordinated to molecules of solvent.
- the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
- X is selected from the group consisting of chlorine, bromine and iodine
- K is a potassium or sodium
- the metal bis-Oxazolinate ligand precursors, metal source precursors and compositions thereof are utilized for CVD/ALD/RVD processes.
- the invention in a specific aspect relates to a method of forming a metal containing layer on a substrate.
- metals include, without limitation, strontium and barium.
- the CVD/ALD/RVD process may include, but is not limited to, deposition of a metal layer on a substrate surface.
- metals may include, but are not limited to, Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te.
- deposition of a metal layer on a substrate surface is carried out.
- the metal is strontium or barium.
- the resulting layers may include, but are not limited to strontium titanate, barium titanate and strontium barium titanate.
- guanidinate ligands generate homoleptic and monomeric strontium and barium complexes for use in CVD, ALD and RVD processes. These guanidinate ligands are utilized in homoleptic and monomeric precursors that are transportable (volatile) at temperatures specific to the ALD process. Additionally, the sterically demanding nature of the guanidinate ligands promotes conformal deposition of metals, such as barium or strontium, among others.
- the present invention in a specific aspect relates to strontium and barium guanidinate ligand precursors, metal source precursors and compositions thereof for use in CVD, ALD and RVD processes and methods of making and using such precursors and compositions.
- the invention relates to a ligand precursor of the formula:
- Ri, R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -C5 alkyls, C 6 -C J0 aryls and C3-C6 cycloalkyls.
- the invention relates to a ligand precursor of the formula:
- Rj, R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C 5 alkyls, C 6 -Ci 0 aryls and C 3 -C 6 cycloalkyls.
- the invention relates to a ligand precursor of the formula:
- R' may be the same or different from one another and may be methyl or iPr.
- the invention relates to a metal source precursor of the formula:
- Ri, R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -C5 alkyls, C ⁇ -Cio aryls and C3-C6 cycloalkyls.
- M is a metal selected from Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and x is 1 to 8, dependent on the oxidation state of M.
- M is barium or strontium.
- the metal product can be bound by or coordinated to molecules of solvent.
- the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
- the invention relates to a method of making a compound of the formula:
- R 1 , R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C5 alkyls, Ce-C 10 aryls and C 3 -C6 cycloalkyls.
- M is a metal selected from Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, R, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and x is 1 to 8, dependent on the oxidation state of M.
- M is barium or strontium.
- the metal product may be bound by or coordinated to molecules of solvent.
- the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
- X is selected from the group consisting of chlorine, bromine and iodine and K is selected from the group consisting of potassium and sodium.
- the invention relates to a metal source precursor of the formula:
- R' may be the same or different from one another and may be methyl or zPr.
- the invention relates to a method of making a compound of the formula:
- R' may be the same or different from one another and may be methyl or zPr.
- the method of making the compound comprises the following reaction:
- R' may be the same or different from one another and may be methyl or /Pr.
- the invention relates to a metal source precursor of the formula:
- R' may be the same or different from one another and may be methyl or iPi and wherein Cp* is pentamethylcyclopentadienyl.
- the invention relates to a method of making a compound of the formula:
- R' may be the same or different from one another and may be methyl or iPr and wherein Cp* is pentamethylcyclopentadienyl.
- the method of making the compound comprises the following reaction:
- R' may be the same or different from one another and may be methyl or /Pr and wherein Cp* is pentamethylcyclopentadienyl.
- the invention relates to a metal source precursor of the formula:
- the invention relates to a method of making a compound of the formula:
- the method of making the compound comprises the following reaction:
- R' may be the same or different from one another and may be methyl
- the invention relates to a metal source precursor of the formula:
- Cp* is pentamethylcyclopentadienyl
- the invention relates to a method of making a compound of the formula:
- the method of making the compound comprises the following reaction:
- R' may be the same or different from one another and may be methyl or zPr and wherein Cp* is pentamethylcyclopentadienyl.
- the metal guanidinate ligand precursors, metal source precursors and compositions thereof are utilized for CVD/ALD/RVD process applications.
- another aspect of the invention relates to a method of forming a metal containing layer on a substrate.
- metals may include, but are not limited to, Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te.
- deposition of a metal layer on a substrate surface is carried out.
- the metal is strontium or barium.
- the resulting layers can include, but are not limited to strontium titanate, barium titanate and strontium barium titanate.
- the present invention in another aspect relates to guanidinate ligand precursors, metal source precursors and compositions thereof for use in CVD, ALD and RVD processes.
- the properties of complexes including guanidinate ligands are readily adjusted by varying the steric demands of the ligands.
- the invention relates to a ligand precursor of the formula:
- R 1 N C(NR 2 R 3 )NR 4 M
- Ri, R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q -C 5 alkyls, C ⁇ -Qo aryls and C 3 -C 6 cycloalkyls.
- M is selected from the group consisting of sodium and potassium.
- RiN C(NR 2 R 3 )NR 4 H wherein R 1 , R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -C 5 alkyls, C 6 -C 10 aryls and C 3 -C ⁇ cycloalkyls.
- the invention provides a metal source precursor of the formula:
- R 1 N C(NR 2 R 3 )NR 4 J x
- R 1 , R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C 1 -C 5 alkyls, C 6 -C 10 aryls and C 3 -Cn cycloalkyls.
- M is selected from the group consisting of titanium, yttrium, zirconium, hafnium, praseodymium, erbium, ytterbium, lanthanum, niobium, tantalum, molybdenum, tungsten, ruthenium, osmium, calcium, strontium, barium, iridium, cobalt, nickel, palladium, platinum, copper, silver, gold, zinc, cadmium, gallium, aluminum, germanium, indium, tin, lead, antimony, bismuth, magnesium, europium, and tellurium.
- X is and x is 1 to 8, dependent on the oxidation state of M.
- the guanidinate ligand precursors, metal source precursors and compositions thereof are utilized in CVD/ALD/RVD processes. Such process may include, but is not limited to, deposition of a metal layer on a substrate surface.
- Another aspect of the invention is a method of forming a metal containing layer on a substrate.
- Such metals may include, but are not limited to titanium, yttrium, zirconium, hafnium, praseodymium, erbium, ytterbium, lanthanum, niobium, tantalum, molybdenum, tungsten, ruthenium, osmium, calcium, strontium, barium, iridium, cobalt, nickel, palladium, platinum, copper, silver, gold, zinc, cadmium, gallium, aluminum, germanium, indium, tin, lead, antimony, bismuth, magnesium, europium, and tellurium.
- complex or “compound” as used herein is a substance made up of atoms of two or more elements.
- an organometallic compound is a compound wherein a carbon is covalently bound to a metal.
- Other metal complexes and compounds are set forth herein.
- Complexes or compounds of the invention include ligand precursors and metal source precursors. The terms compound and complex are used interchangeably herein.
- Ligand as used herein is a molecule or other chemical entity that binds to another molecule, e.g., molecule or ion that is covalently bound to a central metal atom to form an organometallic compound.
- Precursor as used herein is a chemical entity that precedes and is the source of another chemical entity.
- a “ligand precursor” is a ligand starting material that is subsequently attached to a metal to form a metal source precursor for use in CVD, ALD and/or RVD applications.
- a “metal source precursor” is a compound that is usable for depositing metal on a substrate in a CVD, ALD or RVD process.
- novel ligand precursors, metal source precursors and compositions thereof, as described herein are usefully employed for forming thin films by CVD, ALD and/or RVD processes, utilizing process conditions, including appertaining temperatures, pressures, concentrations, flow rates and CVD, ALD and/or RVD techniques, as readily determinable within the skill of the art for a specific application, based on the disclosure herein.
- the metal source precursors of the invention are volatilized to form a precursor vapor that is then contacted with a microelectronic device substrate under elevated temperature vapor decomposition conditions to deposit a metal on the substrate.
- CVD involves the contacting of a volatile metal-organic compound in the gas phase with areas of a substrate where growth of a metal film is required (e.g., for formation of an interconnect).
- a surface catalyzed chemical reaction e.g., thermal decomposition, occurs and produces deposition of the desired metal. Since the metal film progressively grows on the desired surface, the resulting film is of a uniform thickness and highly conformal even to severe (e.g., high aspect) geometries.
- CVD is well suited to use in fabricating submicron high aspect ratio features.
- ALD involves the deposition of successive monolayers over a substrate within a deposition chamber that is typically maintained at subatmospheric pressure.
- An exemplary method includes feeding a single source precursor into a deposition chamber to form a first monolayer on a substrate disposed therein. Thereafter, the flow of the first source precursor is terminated and an inert purge gas, e.g., nitrogen or argon, is flowed through the chamber to exhaust any unreacted first source precursor from the chamber. Subsequently, a second source precursor, which may be the same as or different from the first metal source precursor, is flowed into the chamber and reacts with the above-mentioned adsorbed mono-layer precursor materials on the substrate, forming a monolayer. The above process can be repeated until a layer of desired thickness and composition has been formed on the substrate.
- an inert purge gas e.g., nitrogen or argon
- RVD like ALD, involves deposition of successive monolayers over a substrate.
- An exemplary method includes feeding a single source precursor into a deposition chamber to form a first substantially saturated monolayer on a substrate surface. Thereafter, the flow of the first deposition metal source precursor is terminated and an inert purge gas, e.g., nitrogen or argon, is flowed through the chamber to exhaust any unreacted first source precursor and/or any byproducts from the chamber. Subsequently, a second source precursor is flowed into the chamber to form a second monolayer on the first monolayer.
- the second monolayer in specific embodiments can react with the first monolayer, and in other embodiments the second monolayer is non-reactively deposited on the first monolayer.
- An additional source precursor can form a successive monolayer, or the above process can be repeated until a layer of desired thickness and composition has been formed on the substrate.
- the metal source precursors of the invention are volatile and thermally stable, and are usefully employed as CVD, ALD and/or RVD precursors under reduced pressure deposition conditions in corresponding CVD, ALD or RVD reactors.
- compositions of the present invention can be delivered to the CVD, ALD or RVD reactors in a variety of ways.
- a liquid delivery system may be utilized, with the solid ⁇ recursor(s) being dissolved in organic solvents, and liquid delivery processes being used to meter the solution into a vaporizer for transport of the vapor to the reactor.
- a combined liquid delivery and flash vaporization process unit may be employed, to enable low volatility materials to be volumetrically delivered, so that reproducible transport and deposition are achieved without thermal decomposition of the precursor, in order to provide a commercially acceptable CVD, ALD or RVD process.
- a liquid delivery system may be utilized wherein the precursor is stored in and delivered from an ionic liquid.
- metal source precursors that are liquids may be used in neat liquid form, or liquid or solid metal source precursors may be employed in solvent formulations containing same.
- metal source precursor formulations of the invention may include solvent components) of suitable character as may be desirable and advantageous in a given end use application to form metals on a substrate.
- Suitable solvents may for example include alkane solvents (e.g., hexane, heptane, octane, and pentane), aryl solvents (e.g., benzene or toluene), amines (e.g., triethylamine, tert- butylamine), imines and carbodiimides (e.g., N, N'-diisopropylcarbodiimide) alcohols, ethers, ketones, aldehydes and the like.
- alkane solvents e.g., hexane, heptane, octane, and pentane
- aryl solvents e.g., benzene or toluene
- amines e.g., triethylamine, tert- butylamine
- imines and carbodiimides e.g., N, N'-diisoprop
- a stabilizing ligand may be added to the CVD, ALD or RVD reactors before, concurrent with or after addition of the metal source precursors.
- ligands may include, but are not limited to tetraglyme and pmdeta.
- a solid delivery system may be utilized, for example, using the ProE-Vap® solid delivery and vaporizer unit (commercially available from ATMI, Inc., Danbury, CT, USA).
- a liquid delivery system may be utilized, for example using the NOWTrak® system (commercially available from ATMI, Inc., Danbury, CT, USA).
- the packaging utilized in liquid delivery employing the NOWTrak® system includes a disposable liner adapted to hold the liquid precursor composition.
- Exemplary systems include, but are not limited to, those set forth in U.S. Patent No. 6,879,876, filed June 13, 2001 and issued April 12, 2005 and titled “Liquid handling system with electronic information storage”; U.S. Patent Application No. 10/139,104, filed May 3, 2002 and titled "Liquid handling system with electronic information storage”; U.S. Patent Application No.
- the metal source precursors of the invention may be packaged in a precursor storage and dispensing package of any suitable type.
- preferred precursor storage and dispensing packages include those described in U.S. Provisional Patent Application No. 60/662,515 filed in the names of Paul J. Marganski, et al. for "SYSTEM FOR DELIVERY OF REAGENTS FROM SOLID SOURCES THEREOF" and the storage and dispensing apparatus variously described in U.S. Patent 5,518,528; U.S. Patent 5,704,965; U.S. Patent 5,704,967; U.S. Patent 5,707,424; U.S.
- a wide variety of CVD, ALD or RVD process conditions may be employed in the use of the metal source precursors of the present invention.
- Generalized process conditions in specific embodiments include substrate temperatures in a range of 150 - 400 0 C, preferably 150-300 and more preferably less than or equal to 300 0 C; pressure in a range of 0.05 - 5 Torr; carrier gas flows of helium, hydrogen, nitrogen, or argon in a range of 25 -750 seem; and vaporizer temperatures in a range of 50 to 18O 0 C.
- the invention in a further aspect relates to mixed ligand barium or strontium complexes suitable for use in CVD, ALD and RVD applications.
- Such mixed ligand barium or strontium complexes have the general formula:
- M barium or strontium
- X and Y are each monoanionic and selected from the parent ligands (A)-(H) below, with the proviso that X and Y are different from one another:
- Z is (CH 2 ) 2 or SiMe 2 ; and Rj, R 2 and R 3 are the same as or different from one another, and each is independently selected from among C 1 -C5 alkyl, C ⁇ -Cio aryl, and C 3 -C6 cycloalkyl; (B) aminotroponimine ligands of the formula
- Ri, R 2 are the same as or different from one another and each is independently selected from among H, Ci-C 5 alkyl, C ⁇ -Cio aryl, and C 3 -C O cycloalkyl;
- Rj, R 2 are the same as or different from one another and each is independently selected from among H, Ci-C 5 alkyl, C 6 -Ci 0 aryl, and C 3 -C O cycloalkyl;
- R] R 2 , R 3 , R 4 are the same as or different from one another and are independently selected from among H, Ci-C 5 alkyl, C 6 -Ci 0 aryl- and C 3 -C 6 cycloalkyl;
- Rj, R 2 , R 3 are the same as or different from one another and are independently selected from among H, Ci-C 5 alkyl, C 6 -Ci 0 aryl, and C 3 -C 6 cycloalkyl;
- Ri, R 2 , R 3 , R t , R 5 are the same as or different from one another and are independently selected from among H, Q-C 6 alkyl, C 6 -CiO aryl.
- R] are the same as or different from one another and are independently selected from among Ci-C 6 alkyl, C 6 -Ci 0 aryl, silyl and Ci-C 8 alkylamine;
- the foregoing mixed ligand barium or strontium complexes are usefully employed for deposition of conformal barium- or strontium-containing films using CVD/ALD/RVD techniques, as monomeric barium or strontium precursors that are transportable (volatile) at temperatures specific to such processes.
- This aspect of the invention utilizes sterically demanding ligands to generate mixed-ligand, monomeric barium or strontium complexes suitable for CVD/ALD/RVD, in which the ligands are selected from tacn (A), aminotroponimines (B), bis-oxazolines (C), guanidines (D), amidines (E), cyclopentadienes (F), beta-diketimines (G), and amines (H).
- tacn A
- aminotroponimines B
- C bis-oxazolines
- D guanidines
- D amidines
- E cyclopentadienes
- F beta-diketimines
- G beta-diketimines
- H amines
- the mixed ligand complexes of the invention can be readily synthesized from the parent ligands and the metal, wherein each of the two coordinated ligands is different from one another in the complex.
- Such mixed ligand complexes can be utilized as reagents for barium or strontium deposition in CVD, ALD or RVD processes conducted at relatively low temperatures.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Metal aminotroponiminates, metal bis-oxazolinates and metal guanidinates are described, as well as ligand precursors of such compounds, and mixed ligand barium and strontium complexes suitable for chemical vapor deposition, atomic layer deposition, and rapid vapor deposition processes. Such metal compounds are useful in the formation of thin metal films on substrates, e.g., in chemical vapor deposition, atomic layer deposition or rapid vapor deposition processes. The substrates formed have thin film monolayers of the metals provided by the precursors.
Description
METAL AMINOTROPONIMINATES, BIS-OXAZOLINATES AND
GUANIDINATES
CROSS-REFERENCE TO RELATED APPLICATION
The benefit of priority of U.S. Provisional Patent Application 60/868,564 filed December 5, 2006 is hereby claimed.
FIELD OF THE INVENTION
[0001] The invention relates generally to metal source precursors and their synthesis. In one aspect, the invention relates to strontium, barium and other metal aminotroponiminates, strontium, barium and other bis-oxazolinates, strontium and barium guanidinates, as well as metal guanidinates including metals other than strontium and barium, and methods of making and using these compositions. The invention in another aspect relates to ligand precursors of the inventive metal source precursors. The invention also relates to mixed ligand copper complexes suitable for chemical vapor deposition, atomic layer deposition and rapid vapor deposition applications. In a still further aspect, the invention relates to methods of depositing metal layers on a substrate utilizing the precursors of the invention and substrates generated thereby.
BACKGROUND OF THE INVENTION
[0002] Chemical vapor deposition (CVD) is a chemical process that involves a series of chemical reactions to produce a thin layer of solid material on a substrate surface. The process is widely used to fabricate microelectronic devices and products.
[0003] In a typical CVD process, a substrate is exposed to one or more precursors. The precursors react with the substrate surface to produce a deposit of solid material on such surface. CVD is well-suited to provide uniform coverage of the deposited material on the substrate.
[0004] Atomic layer deposition (ALD) is a modified CVD process involving a sequential step technique that results in a coating of multiple layers on the substrate. Typically ALD is carried out utilizing two complementary precursors that are alternately introduced to the reaction chamber. The first precursor is delivered in excess into the deposition chamber. The precursor will react with the substrate to form a monolayer of reacted precursor on the surface. The
deposition chamber is purged or evacuated with a carrier gas to remove unreacted precursor followed by the delivery of a reactant (a second precursor) to the deposition chamber for reaction with the monolayer of reacted precursor, to form the desired material. This cycle is repeated until an appropriate thickness of material is achieved. Advantageously, ALD provides uniform step coverage and a high level of control over film thicknesses.
[0005] In an illustrative ALD process, sequential precursor pulses are used to form a film, layer by layer. A first precursor may be introduced to form a gas monolayer on a substrate, followed by introduction of a second precursor to react with the gas monolayer to form a first solid monolayer of the film. Each cycle including first and second precursor pulses therefore forms one solid monolayer. The process then is repeated to form successive layers until a film of desired thickness is obtained.
[0006] An additional deposition process is rapid vapor deposition (RVD). In RVD, similar to ALD, the. substrate, is sequentially exposed to precursors in gaseous form. In RVD the process is repeated until a substrate coated with multiple layers reaches a desired thickness. The resulting coated substrate is of high coafoπnality. RVD differs from ALD in that the layers in RVD can be deposited more quickly.
[0007] Liquid precursors and/or solid precursors dissolved in suitable solvents enable the direct injection and/or liquid delivery of precursors into a CVD, ALD or RVD vaporizer unit. The accurate and precise delivery rate can be obtained through volumetric metering to achieve reproducibility during CVD, ALD or RVD metallization of a VLSI device. Solid precursor delivery via specially-designed devices, such as ATMI' s ProE Vap® precursor storage and dispensing package or liquid precursor delivery via specially-designed devices, such as ATMFs NOWTrak® precursor storage and dispensing package (both from ATMI, Inc., Danbury, Connecticut, USA) enables highly efficient transport of solid precursors to a CVD, ALD or RVD reactor.
[0008] Historically, deposition of strontium or barium materials using ALD techniques has been performed utilizing precursor complexes that have a high (> 300° C) transport temperature and provide non-conformal substrate surface coverage. Thus it is desirable to develop new precursors for delivery of barium or strontium with transport temperatures specific to the ALD and/or RVD processes and that promote conformal film production. Efficient and economic methods of making and using such precursors would also be desirable.
[0009] Recently, guanidinate anions have received attention for use as ligands in coordination and organometallic compounds, specifically because of the ease of substitution at the carbon and nitrogen atoms and the consequent versatility and flexibility that is provided. Use of such ligands has been limited to lithium salts of the general formula RiN=C(NR2Rs)NR4Li. Complexes including guanidinate ligands are formed by reaction of the corresponding carboiimide (R1N=C=NR4) and appropriate LiNR2Rs reagent. Development of alternative guanidinate compounds would enable the synthesis of a larger range of guanidinate-containing metal source precursors and would therefore be desirable. Methods of making and using such precursors in a cost-effective and efficient manner would also be desirable.
SUMMARY OF THE INVENTION
[0010] The present invention relates to metal source precursors for use in CVD, ALD and RVD processes and methods of making the same, as well as to a method of depositing a metal layer on a substrate using such precursors and to substrate structures, e.g., microelectronic device structures, having such layers deposited thereon. The invention also relates to ligand precursors useful in making metal source precursors for CVD, ALD and RVD processes.
[0011] In one aspect, the invention relates to a ligand precursor selected from the group consisting of compounds of formulas:
[0012] where Rjand R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C5 alkyls, CO-CI0 aryls and C3-Ce cycloalkyls;
(B)
R2
[0013] where Riand R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, Ce-Q0 aryls and C3-C6 cycloalkyls;
[0014] where Rjand R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, C6-C10 aryls and C3-C6 cycloalkyls;
(D)
[0015] where R1 and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, C6-C10 aryls and C3-C6 cycloalkyls;
F* [0016] where R1, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, C6-C10 aryls and C3-C6 cycloalkyls;
[0017] where Rj, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, C6-Ci0 aryls and C3-C6 cycloalkyls; and
wherein R' may be the same or different from one another and may be methyl or zPr.
[0018] In another aspect, the invention relates to a metal source precursor selected from the group consisting of compounds of the formulas:
(A)
[0019] where R:and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C5 alkyls, C6-Ci0 aryls and C3-C6 cycloalkyls; M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M. In one aspect of this embodiment, the metal deposited is selected from the group consisting of Ba and Sr;
[0020] where each of the R\ and R2 substituents may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, Cβ-Cio aryls and C3-CO cycloalkyls; M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x and x is 1 to 8, dependent on the oxidation state of M. In one aspect of this embodiment, the metal deposited is selected from the group consisting of Ba and Sr;
(C)
[0021] where R], R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, Ce-Q0 aryls and C3-CO cycloalkyls; M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M. In one aspect of this embodiment, the metal deposited is selected from the group consisting of Ba and Sr;
(D)
(E)
[0023] wherein R' may be the same or different from one another and may be methyl or iPr and wherein Cp* is pentamethylcyclopentadienyl;
(F)
(G)
[0024] wherein Cp* is pentamethylcyclopentadienyl.
[0025] In additional aspects, the invention relates to various methods of making the above metal source precursors.
[0026] In still another aspect, the invention relates to a method of depositing a metal layer on a substrate comprising deposit of the metal on the substrate surface by ALD or RVD, wherein at least one precursor is selected from the metal source precursors of the invention. In one aspect the metal deposited is selected from the group comprising Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te. In another embodiment the one or more layers comprise strontium and/or barium. In one embodiment of this method, the ALD is performed at a temperature of less than or equal to 300 degrees Celsius. In another aspect of the embodiment, delivery of the at least one precursor is by solution delivery. In still another aspect of the embodiment, delivery of the at least one precursor is by dispensing from a ProE Vap® precursor storage and dispensing package. In still another aspect, delivery of the at least one precursor involves dispensing from a NOWTrak® precursor storage and dispensing package.
[0027] In still another embodiment, the invention relates to a substrate coated with one or more film monolayers of one or more metals. The substrate of the invention is coated by chemical vapor deposition, atomic layer deposition and/or rapid vapor deposition and the deposition method utilizes one or more metal source precursors of the invention. In one embodiment of the invention the one or more layers comprise Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and/or Te. In another embodiment the one or more layers comprise strontium and/or barium.
[0028] In yet another aspect of the invention, the invention relates to a ligand precursor selected from the group consisting of compounds of the formulas:
(A) R1N=C(NR2R3)NR4M
[0029] where R1, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-Cs alkyls, C6-C10 aryls and C3-C6 cycloalkyls; and M is selected from the group consisting of Na and K; and
(B) R1N=C(NR2R3)NR4H
[0030] where Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-Cs alkyls, Ce-Q0 aryls and C3-CO cycloalkyls.
[0031] A further aspect of the invention relates to a metal source precursor of the formula
wherein Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C5 alkyls, C6-C]0 aryls and C3-C6 cycloalkyls; M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is the oxidation state of M.
[0032] Yet another aspect of the invention relates to a method of depositing a metal layer on a substrate comprising deposit of the metal on the substrate surface by atomic layer deposition or rapid layer deposition, wherein at least one precursor is a metal source precursor of the formula M[R]N=C(NR2R3)NR4]X, wherein Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C5 alkyls, C6-Ci0 aryls and C3-C6 cycloalkyls; M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is the oxidation state of M. In one aspect of this embodiment, the metal deposited is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te. In a further embodiment of this aspect of the invention, the ALD is performed at a temperature of less than or equal to 300 degrees Celsius. In another embodiment of this aspect of the invention, delivery of the at least one precursor is by solution delivery. In still another embodiment of this aspect of the invention, delivery of the at least one precursor is by dispensing from a ProE Vap® precursor storage and dispensing package. In still another aspect, delivery of the at least one precursor involves dispensing from a NOWTrak® precursor storage and dispensing package.
[0033] In still another embodiment, the invention relates to a substrate coated with one or more film monolayers of one or more metals. The substrate of the invention is coated by chemical vapor deposition, atomic layer deposition and/or rapid vapor deposition and the deposition method utilizes one or more metal source precursors of the invention. In one embodiment of the invention, the deposition method comprises use of at least one precursor selected from metal source precursors of the formula M[RiN=C(NR2R3)NR4]x, wherein R3, R2, R3 and R4 may be the
same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, Cβ-Cio aryls and C3-C6 cycloalkyls; M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is the oxidation state of M.
[0034] The invention in another aspect relates to a precursor storage and delivery apparatus comprising a vessel containing a metal source precursor of the invention.
[0035] A further aspect of the invention relates to a vapor of a metal source precursor of the invention.
[0036] A still further aspect of the invention relates to a method of making a microelectronic device product, comprising contacting a microelectronic device substrate with a metal source precursor of the invention, to deposit said metal on the substrate.
[0037] Yet another aspect relates to a mixed ligand barium and strontium complexes suitable for use in CVD, ALD and RVD applications. Such mixed ligand copper complexes have the general formula:
X
M
wherein M is barium or strontium, X and Y are each monoanionic and selected from the parent ligands (A)-(H) below, with the proviso that X and Y are different from one another:
wherein: Z is (CH2)2 or SiMe2; and R1, R2 and R3 are the same as or different from, one another, and each is independently selected from among C1-C5 alkyl, Cβ-Cio aryl, and C3-C6 cycloalkyl;
(B) aminotroponimine ligands of the formula
wherein Ri, R2 are the same as or different from one another and each is independently selected from among H, Ci-C5 alkyl, Ce-Qo aryl, and C3-C6 cycloalkyl;
(C) bis(oxazole) ligands of the formula
wherein Ri, R2 are the same as or different from one another and each is independently selected from among H, Ci-C5 alkyl, C6-Ci0 aryl. and C3-C6 cycloalkyl;
(D) guanidine ligands of the formula
wherein Ri, R2, R3, Rψ are the same as or different from one another and are independently selected from among H, Q-C5 alkyl, C6-Q0 aryl, and C3-C6 cycloalkyl;
(E) amidine ligands of the formula
wherein Ri, R2, R3 are the same as or different from one another and are independently selected from among H, Q-C5 alkyl, C6-Ci0 aryl, and C3-C6 cycloalkyl;
(F) cyclopentadiene ligands of the formula
wherein Ri, R2, R3, R4, R5 are the same as or different from one another and are independently selected from among H, C] -C6 alkyl, C6-Ci0 aryl, Ci-C8 alkoxy, Ci -C8 alkylsilyl, and pendant ligands with additional functional group(s) that can provide further coordination to the metal center, e.g., - CH2- CH2-N(CH3)2;
wherein Ri, R2, R3, R4 are the same as or different from one another and are independently selected from among Q-Cβ alkyl, Cβ-Cio aryl, silyl and CrC8 alkylamine; and
(H) amine ligands of the formula
wherein Ri, R2 are the same as or different from one another and are independently selected from among Ci-C5 alkyl, Cβ-Cio aryl, and C3-C6 cycloalkyl.
[0038] Other aspects, features and advantages of the invention will be more fully apparent from the ensuing disclosure and appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0039] Figure 1 is a thermal ellipsoid plot of a strontium guanidinate of the invention.
DETAILED DESCRIPTION OF THE INVENTION
[0040] Previous strontium and barium complexes used in ALD processes have required high (> 300° C) transport temperatures and have resulted in non-conformal surface coverage. The non- conformal coverage has been attributed to formation of oligomeric species during complex decomposition on the substrate surface during the ALD process.
[0041] The present inventors have discovered that utilizing sterically demanding ligands will allow for transport temperatures of less than or equal to 300°C and that the sterically demanding nature of the ligand limits oligomerization behavior, promoting conformal film production in the ALD and RVD processes. Such ligands include aminotroponiminate, bis-oxazolinate and guanidinate ligands. While aminitroponiminate and bis-oxazolinate ligands have been discussed
in the art, it has been with respect to Group III and lanthanide chemistry, not for CVD/ALD/RVD applications. (See Piers et al. Coord. Chem. Rev. vol. 233-4 p. 131-155 (2002)). A strontium guanidinate complex has also been reported in the art, but that compound has not been used for CVD/ALD/RVD applications. (See Feil, et al. Eur. J. Inorg. Chem. 2005(21) p. 4438-4443 (2005)). The ligand precursors, metal source precursors and corresponding compositions of the invention are volatile and sufficiently stable precursors for CVD, ALD and RVD processes and are reactive at reasonable temperatures for those processes.
Metal aminotroponiminates
[0042] The present invention relates to metal aminotroponiminate ligand precursors, metal source precursors and compositions for use in CVD, ALD and RVD processes, and to methods of making the same.
[0043] In one aspect the invention relates to a ligand precursor of the formula:
wherein Rj and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, C6-Ci0 aryls and C3-C6 cycloalkyls. The term "Ci-C5 alkyls" as used herein includes, but is not limited to, methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl , pentyl and isopentyl and the like. The term "C6-Ci0 aryls" as used herein includes hydrocarbons derived from benzene or a benzene derivative that are unsaturated aromatic carbocyclic groups of from 6 to 10 carbon atoms. The aryls may have a single or multiple rings. The term "aryl" as used herein also includes substituted aryls. Examples include, but are not limited to phenyl, naphthyl, xylene, phenylethane, substituted phenyl, substituted naphthyl, substituted xylene, substituted phenylethane and the like. The term "C3-C6 cycloalkyls" as used herein includes, but is not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like. In all chemical formulae herein, a range of carbon numbers will be regarded as specifying a sequence of consecutive alternative carbon-containing moieties, including all moieties containing numbers of carbon atoms intermediate the endpoint values of carbon number in the specific range as well as moieties containing numbers of carbon atoms equal to an endpoint value of the specific range, e.g., Ci-C6, is inclusive of Ci, C2, C3, C4, C5 and C6, and each of such broader ranges may be further limitingly specified with reference to carbon numbers within such
ranges, as sub-ranges thereof. Thus, for example, the range Q-C6 would be inclusive of and can be further limited by specification of sub-ranges such as C1-C3, Ci-C4, C2-Ce, C4-Ce, etc. within the scope of the broader range.
[0044] In another aspect the invention relates to a ligand precursor of the formula:
wherein Rj and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-Cs alkyls, Cβ-Cio aryls and C3-Ce cycloalkyls.
[0045] In still another aspect, the invention relates to a metal source precursor of the formula:
[0046] where Riand R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, C6-Ci0 aryls and C3-C6 cycloalkyls. M is a metal selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and x is 1 to 8, dependent on the oxidation state of M. In one embodiment, M is barium or strontium. In another embodiment, the metal product may be bound by or coordinated to molecules of solvent. In still another embodiment, the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
[0047] In another aspect, the invention provides a method of making a compound of the formula:
wherein Rj and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, Cβ-Cio aryls and C3-C6 cycloalkyls. M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and x is 1 to 8, dependent on the oxidation state of M. In one embodiment, M is barium or strontium. In another embodiment, the metal product may be bound by or coordinated to molecules of solvent. In still another embodiment, the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
[0048] In one aspect the method of making the compound where x=2 comprises the following reaction:
Solvsrt + 2 0 KΛ
wherein X is selected from the group consisting of: chlorine, bromine and iodine. Where potassium is present in the reaction, one of skill could utilize other ions, as known in the art. Examples include, but are not limited to, alkali metals, such as sodium and lithium.
[0049] In another aspect the method of making the compound where x=2 comprises the following reaction:
[0050] In various embodiments, the metal aminotroponiminate ligand precursors, metal source precursors and compositions thereof are utilized for CVD/ALD/RVD process applications.
[0051] In another aspect, the invention relates to a method of forming a metal-containing layer on a substrate. Such metals may include, but are not limited to, Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te. In a specific process embodiment, deposition of a metal layer on a substrate surface is carried out. In one embodiment, the metal is strontium or barium. The resulting layers can therefore include, without limitation, strontium titanate, barium titanate and strontium barium titanate.
Metal bis-Oxazolinates
[0052] The present invention relates in various embodiments to metal bis-oxazolinate ligand precursors, metal source precursors and compositions thereof for use in CVD, ALD and RVD processes, as well as methods of making the same.
[0053] In one aspect, the invention relates to a ligand precursor of the formula:
wherein Ri and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, C6-C]0 aryls and C3-Ce cycloalkyls.
[0054] In another aspect the invention provides a ligand precursor of the formula:
wherein Ri and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, C6-C]0 aryls and C3-C6 cycloalkyls.
wherein each of the Ri and R2 substituents may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-Cs alkyls, Cβ-Cio aryls and C3- C6 cycloalkyls. M is a metal selected from Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and where x is 1 to 8, dependent on the oxidation state of M. In one embodiment, M is barium or strontium. In another embodiment, the metal product may be bound by or coordinated to molecules of solvent. In still another embodiment, the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
[0056] In another aspect the invention provides a method of making a compound of the formula:
wherein each of the Ri and R2 substituents may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-Cs alkyls, C6-Ci0 aryls and C3- C6 cycloalkyls. M is a metal selected from Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and where x is 1 to 8, dependent on the oxidation state of M. In one embodiment, M is barium or strontium. In another embodiment, the metal product may be bound by or coordinated to molecules of solvent. In still another embodiment, the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
[0058] In another aspect the method of making the compound where x=2 comprises the followin ligS r ' eaction:
[0059] where X is selected from the group consisting of chlorine, bromine and iodine, and K is a potassium or sodium.
[0060] In one aspect, the metal bis-Oxazolinate ligand precursors, metal source precursors and compositions thereof are utilized for CVD/ALD/RVD processes. The invention in a specific aspect relates to a method of forming a metal containing layer on a substrate. Such metals include, without limitation, strontium and barium.
[0061] In a specific embodiment, the CVD/ALD/RVD process may include, but is not limited to, deposition of a metal layer on a substrate surface. Such metals may include, but are not limited to, Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te. In a specific process embodiment, deposition of a metal layer on a substrate surface is carried out. In one embodiment, the metal is strontium or barium. The resulting layers may include, but are not limited to strontium titanate, barium titanate and strontium barium titanate.
Metal Guanidinates
[0062] The present inventors have also discovered that the use of sterically demanding guanidinate ligands generate homoleptic and monomeric strontium and barium complexes for use
in CVD, ALD and RVD processes. These guanidinate ligands are utilized in homoleptic and monomeric precursors that are transportable (volatile) at temperatures specific to the ALD process. Additionally, the sterically demanding nature of the guanidinate ligands promotes conformal deposition of metals, such as barium or strontium, among others.
[0063] The present invention in a specific aspect relates to strontium and barium guanidinate ligand precursors, metal source precursors and compositions thereof for use in CVD, ALD and RVD processes and methods of making and using such precursors and compositions.
[0064] In one aspect the invention relates to a ligand precursor of the formula:
j
wherein Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, C6-CJ0 aryls and C3-C6 cycloalkyls.
[0065] In another aspect the invention relates to a ligand precursor of the formula:
wherein Rj, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C5 alkyls, C6-Ci0 aryls and C3-C6 cycloalkyls.
[0066] In still another aspect the invention relates to a ligand precursor of the formula:
[0067] In yet another aspect the invention relates to a metal source precursor of the formula:
wherein Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, Cβ-Cio aryls and C3-C6 cycloalkyls. M is a metal selected from Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and x is 1 to 8, dependent on the oxidation state of M. In one embodiment, M is barium or strontium. In another embodiment, the metal product can be bound by or coordinated to molecules of solvent. In still another embodiment, the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
[0068] In still a further aspect, the invention relates to a method of making a compound of the formula:
wherein R1, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C5 alkyls, Ce-C10 aryls and C3-C6 cycloalkyls. M is a metal selected from Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, R, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te and x is 1 to 8, dependent on the oxidation state of M. In one embodiment, M is barium or strontium. In another embodiment, the metal product may be bound by or coordinated to molecules of solvent. In still another embodiment, the metal product may be bound by or coordinated to molecules of additional ligands, such as, but not limited to, tetraglyme and pmdeta.
[0069] In one aspect the method of making the compound where x=2 comprises the following reaction:
wherein X is selected from the group consisting of chlorine, bromine and iodine and K is selected from the group consisting of potassium and sodium.
[0070] In a further aspect the invention relates to a metal source precursor of the formula:
wherein R' may be the same or different from one another and may be methyl or zPr.
[0071] In still a further aspect the invention relates to a method of making a compound of the formula:
wherein R' may be the same or different from one another and may be methyl or zPr.
[0072] In one aspect, the method of making the compound comprises the following reaction:
wherein R' may be the same or different from one another and may be methyl or /Pr.
[0073] In another aspect the invention relates to a metal source precursor of the formula:
wherein R' may be the same or different from one another and may be methyl or iPi and wherein Cp* is pentamethylcyclopentadienyl.
[0074] In still an additional aspect the invention relates to a method of making a compound of the formula:
wherein R' may be the same or different from one another and may be methyl or iPr and wherein Cp* is pentamethylcyclopentadienyl.
[0075] In one aspect, the method of making the compound comprises the following reaction:
wherein R' may be the same or different from one another and may be methyl or /Pr and wherein Cp* is pentamethylcyclopentadienyl.
[0076] In another aspect the invention relates to a metal source precursor of the formula:
[0077] In an additional aspect the invention relates to a method of making a compound of the formula:
wherein R' may be the same or different from one another and may be methyl
[0079] In a further aspect the invention relates to a metal source precursor of the formula:
wherein Cp* is pentamethylcyclopentadienyl.
[0080] In still a further aspect the invention relates to a method of making a compound of the formula:
wherein Cp* is pentamethylcyclopentadienyl.
[0081] In another aspect, the method of making the compound comprises the following reaction:
wherein R' may be the same or different from one another and may be methyl or zPr and wherein Cp* is pentamethylcyclopentadienyl.
[0082] In one aspect, the metal guanidinate ligand precursors, metal source precursors and compositions thereof are utilized for CVD/ALD/RVD process applications. As such, another aspect of the invention relates to a method of forming a metal containing layer on a substrate. Such metals may include, but are not limited to, Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te. In a specific process embodiment, deposition of a metal layer on a substrate surface is carried out. In one embodiment, the metal is strontium or barium. The resulting layers can include, but are not limited to strontium titanate, barium titanate and strontium barium titanate.
Guanidinate Ligands
[0083] The present invention in another aspect relates to guanidinate ligand precursors, metal source precursors and compositions thereof for use in CVD, ALD and RVD processes. The properties of complexes including guanidinate ligands are readily adjusted by varying the steric demands of the ligands.
[0084] In another aspect, the invention relates to a ligand precursor of the formula:
R1N=C(NR2R3)NR4M wherein Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q -C5 alkyls, Cβ-Qo aryls and C3-C6 cycloalkyls. M is selected from the group consisting of sodium and potassium.
[0085] In still another aspect the invention relates to a ligand precursor of the formula:
RiN=C(NR2R3)NR4H wherein R1, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, C6-C10 aryls and C3-Cδ cycloalkyls.
[0086] In still another aspect the invention provides a metal source precursor of the formula:
M[R1N=C(NR2R3)NR4Jx wherein R1, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, C6-C10 aryls and C3-Cn cycloalkyls. M is selected from the group consisting of titanium, yttrium, zirconium, hafnium, praseodymium, erbium, ytterbium, lanthanum, niobium, tantalum, molybdenum, tungsten, ruthenium, osmium, calcium, strontium, barium, iridium, cobalt, nickel, palladium, platinum, copper, silver, gold, zinc, cadmium, gallium, aluminum, germanium, indium, tin, lead, antimony, bismuth, magnesium, europium, and tellurium. X is and x is 1 to 8, dependent on the oxidation state of M.
[0087] In various embodiments, the guanidinate ligand precursors, metal source precursors and compositions thereof are utilized in CVD/ALD/RVD processes. Such process may include, but is not limited to, deposition of a metal layer on a substrate surface. Another aspect of the invention is a method of forming a metal containing layer on a substrate. Such metals may include, but are not limited to titanium, yttrium, zirconium, hafnium, praseodymium, erbium, ytterbium, lanthanum, niobium, tantalum, molybdenum, tungsten, ruthenium, osmium, calcium, strontium, barium, iridium, cobalt, nickel, palladium, platinum, copper, silver, gold, zinc, cadmium, gallium, aluminum, germanium, indium, tin, lead, antimony, bismuth, magnesium, europium, and tellurium.
[0088] Definitions and Additional Details
[0089] The terms "complex" or "compound" as used herein is a substance made up of atoms of two or more elements. For example, an organometallic compound is a compound wherein a carbon is covalently bound to a metal. Other metal complexes and compounds are set forth herein. Complexes or compounds of the invention include ligand precursors and metal source precursors. The terms compound and complex are used interchangeably herein.
[0090] "Ligand" as used herein is a molecule or other chemical entity that binds to another molecule, e.g., molecule or ion that is covalently bound to a central metal atom to form an organometallic compound.
[0091] "Precursor" as used herein is a chemical entity that precedes and is the source of another chemical entity. A "ligand precursor" is a ligand starting material that is subsequently attached to a metal to form a metal source precursor for use in CVD, ALD and/or RVD applications. A "metal source precursor" is a compound that is usable for depositing metal on a substrate in a CVD, ALD or RVD process.
[0092] The novel ligand precursors, metal source precursors and compositions thereof, as described herein are usefully employed for forming thin films by CVD, ALD and/or RVD processes, utilizing process conditions, including appertaining temperatures, pressures, concentrations, flow rates and CVD, ALD and/or RVD techniques, as readily determinable within the skill of the art for a specific application, based on the disclosure herein.
[0093] In CVD, ALD and/or RVD usage, the metal source precursors of the invention are volatilized to form a precursor vapor that is then contacted with a microelectronic device substrate under elevated temperature vapor decomposition conditions to deposit a metal on the substrate.
[0094] CVD involves the contacting of a volatile metal-organic compound in the gas phase with areas of a substrate where growth of a metal film is required (e.g., for formation of an interconnect). A surface catalyzed chemical reaction, e.g., thermal decomposition, occurs and produces deposition of the desired metal. Since the metal film progressively grows on the desired surface, the resulting film is of a uniform thickness and highly conformal even to severe (e.g., high aspect) geometries. CVD is well suited to use in fabricating submicron high aspect ratio features.
[0095] ALD involves the deposition of successive monolayers over a substrate within a deposition chamber that is typically maintained at subatmospheric pressure. An exemplary method includes feeding a single source precursor into a deposition chamber to form a first monolayer on a substrate disposed therein. Thereafter, the flow of the first source precursor is terminated and an inert purge gas, e.g., nitrogen or argon, is flowed through the chamber to exhaust any unreacted first source precursor from the chamber. Subsequently, a second source precursor, which may be the same as or different from the first metal source precursor, is flowed
into the chamber and reacts with the above-mentioned adsorbed mono-layer precursor materials on the substrate, forming a monolayer. The above process can be repeated until a layer of desired thickness and composition has been formed on the substrate.
[0096] RVD, like ALD, involves deposition of successive monolayers over a substrate. An exemplary method includes feeding a single source precursor into a deposition chamber to form a first substantially saturated monolayer on a substrate surface. Thereafter, the flow of the first deposition metal source precursor is terminated and an inert purge gas, e.g., nitrogen or argon, is flowed through the chamber to exhaust any unreacted first source precursor and/or any byproducts from the chamber. Subsequently, a second source precursor is flowed into the chamber to form a second monolayer on the first monolayer. The second monolayer in specific embodiments can react with the first monolayer, and in other embodiments the second monolayer is non-reactively deposited on the first monolayer. An additional source precursor can form a successive monolayer, or the above process can be repeated until a layer of desired thickness and composition has been formed on the substrate.
[0097] The metal source precursors of the invention are volatile and thermally stable, and are usefully employed as CVD, ALD and/or RVD precursors under reduced pressure deposition conditions in corresponding CVD, ALD or RVD reactors.
[0098] The compositions of the present invention can be delivered to the CVD, ALD or RVD reactors in a variety of ways. For example, a liquid delivery system may be utilized, with the solid ρrecursor(s) being dissolved in organic solvents, and liquid delivery processes being used to meter the solution into a vaporizer for transport of the vapor to the reactor. Alternatively, a combined liquid delivery and flash vaporization process unit may be employed, to enable low volatility materials to be volumetrically delivered, so that reproducible transport and deposition are achieved without thermal decomposition of the precursor, in order to provide a commercially acceptable CVD, ALD or RVD process. In still another alternative, a liquid delivery system may be utilized wherein the precursor is stored in and delivered from an ionic liquid.
[0099] In liquid delivery formulations, metal source precursors that are liquids may be used in neat liquid form, or liquid or solid metal source precursors may be employed in solvent formulations containing same. Thus, metal source precursor formulations of the invention may include solvent components) of suitable character as may be desirable and advantageous in a given end use application to form metals on a substrate.
[00100] Suitable solvents may for example include alkane solvents (e.g., hexane, heptane, octane, and pentane), aryl solvents (e.g., benzene or toluene), amines (e.g., triethylamine, tert- butylamine), imines and carbodiimides (e.g., N, N'-diisopropylcarbodiimide) alcohols, ethers, ketones, aldehydes and the like. The utility of specific solvent compositions for particular metal source precursors may be readily empirically determined, to select an appropriate single component or multiple component solvent medium for the liquid delivery vaporization and transport of the specific metal source precursor that is employed.
[0100] In another aspect of the invention, a stabilizing ligand may be added to the CVD, ALD or RVD reactors before, concurrent with or after addition of the metal source precursors. Such ligands may include, but are not limited to tetraglyme and pmdeta.
[0101] In another aspect of the invention, a solid delivery system may be utilized, for example, using the ProE-Vap® solid delivery and vaporizer unit (commercially available from ATMI, Inc., Danbury, CT, USA).
[0102] In another aspect of the invention, a liquid delivery system may be utilized, for example using the NOWTrak® system (commercially available from ATMI, Inc., Danbury, CT, USA). In still another aspect of the invention, the packaging utilized in liquid delivery employing the NOWTrak® system includes a disposable liner adapted to hold the liquid precursor composition. Exemplary systems include, but are not limited to, those set forth in U.S. Patent No. 6,879,876, filed June 13, 2001 and issued April 12, 2005 and titled "Liquid handling system with electronic information storage"; U.S. Patent Application No. 10/139,104, filed May 3, 2002 and titled "Liquid handling system with electronic information storage"; U.S. Patent Application No. 10/742,125, filed December 19, 2003 and titled "Secure Reader System"; and U.S. Provisional Patent Application No. 60/819,681 filed July 10, 2006 entitled "Fluid storage vessel management systems and methods employing electronic information storage," all of which are hereby incorporated by reference in their entirety.
[0103] The metal source precursors of the invention may be packaged in a precursor storage and dispensing package of any suitable type. Depending on the form, e.g., solid or liquid form, of the precursor, preferred precursor storage and dispensing packages include those described in U.S. Provisional Patent Application No. 60/662,515 filed in the names of Paul J. Marganski, et al. for "SYSTEM FOR DELIVERY OF REAGENTS FROM SOLID SOURCES THEREOF" and the storage and dispensing apparatus variously described in U.S. Patent 5,518,528; U.S. Patent
5,704,965; U.S. Patent 5,704,967; U.S. Patent 5,707,424; U.S. Patent 6,101,816; U.S. Patent 6,089,027; U.S. Patent Application Publication 20040206241; U.S. Patent 6,921,062; U.S. Patent Application 10/858,509; and U.S. Patent Application 10/022,298.
[0104] A wide variety of CVD, ALD or RVD process conditions may be employed in the use of the metal source precursors of the present invention. Generalized process conditions in specific embodiments include substrate temperatures in a range of 150 - 4000C, preferably 150-300 and more preferably less than or equal to 3000C; pressure in a range of 0.05 - 5 Torr; carrier gas flows of helium, hydrogen, nitrogen, or argon in a range of 25 -750 seem; and vaporizer temperatures in a range of 50 to 18O0C.
[0105] The invention in a further aspect relates to mixed ligand barium or strontium complexes suitable for use in CVD, ALD and RVD applications. Such mixed ligand barium or strontium complexes have the general formula:
X
M
wherein M is barium or strontium, X and Y are each monoanionic and selected from the parent ligands (A)-(H) below, with the proviso that X and Y are different from one another:
(A) triazacyclononane-amide (tacn) ligands of the formula
< \
NH
% wherein: Z is (CH2)2 or SiMe2; and Rj, R2 and R3 are the same as or different from one another, and each is independently selected from among C1-C5 alkyl, Cβ-Cio aryl, and C3-C6 cycloalkyl;
(B) aminotroponimine ligands of the formula
wherein Ri, R2 are the same as or different from one another and each is independently selected from among H, Ci-C5 alkyl, Cβ-Cio aryl, and C3-CO cycloalkyl;
(C) bis(oxazole) ligands of the formula
wherein Rj, R2 are the same as or different from one another and each is independently selected from among H, Ci-C5 alkyl, C6-Ci0 aryl, and C3-CO cycloalkyl;
(D) guanidine ligands of the formula
wherein R], R2, R3, R4 are the same as or different from one another and are independently selected from among H, Ci-C5 alkyl, C6-Ci0 aryl- and C3-C6 cycloalkyl;
(E) amidine ligands of the formula
wherein Rj, R2, R3 are the same as or different from one another and are independently selected from among H, Ci-C5 alkyl, C6-Ci0 aryl, and C3-C6 cycloalkyl;
(F) cyclopentadiene ligands of the formula
wherein Ri, R2, R3, Rt, R5 are the same as or different from one another and are independently selected from among H, Q-C6 alkyl, C6-CiO aryl. Ci-Cs alkoxy, Ci-Cs alkylsilyl, or pendant ligands with additional functional group(s), which can provide further coordination to the metal center, e.g., - CH2- CH2-N(CH3)2;
(G) betadiketimine ligands of the formula
wherein R], R2, R3, R4 are the same as or different from one another and are independently selected from among Ci-C6 alkyl, C6-Ci0 aryl, silyl and Ci-C8 alkylamine; and
(H) amine ligands of the formula
wherein Rj, R2 are the same as or different from one another and are independently selected from among C1-C5 alkyl, Cβ-Cio aryl, and C3-C6 cycloalkyl.
[0106] The foregoing mixed ligand barium or strontium complexes are usefully employed for deposition of conformal barium- or strontium-containing films using CVD/ALD/RVD techniques, as monomeric barium or strontium precursors that are transportable (volatile) at temperatures specific to such processes. This aspect of the invention utilizes sterically demanding ligands to generate mixed-ligand, monomeric barium or strontium complexes suitable for CVD/ALD/RVD, in which the ligands are selected from tacn (A), aminotroponimines (B), bis-oxazolines (C), guanidines (D), amidines (E), cyclopentadienes (F), beta-diketimines (G), and amines (H). Such ligands will exist in their monoanionic form once associated with the metal. The sterically demanding ligands are selected to force monomeric structures enabling compound transportation at low temperatures.
[0107] The mixed ligand complexes of the invention can be readily synthesized from the parent ligands and the metal, wherein each of the two coordinated ligands is different from one another in the complex. Such mixed ligand complexes can be utilized as reagents for barium or strontium deposition in CVD, ALD or RVD processes conducted at relatively low temperatures.
[0108] The following examples are intended to illustrate, but not limit the invention.
EXAMPLE 1
[0109] A non-limiting example for the synthesis of strontium guanidinate Sr{(/-pr)NC{N(SiMe3)2}N(^pr)}2<Et2O) is described below. To a stirring 20 ml ether suspension Of SrI2 (1.00 g, 2.93 mmol) was added Na{(z-pr)NC{N(SiMe3)2}N(z"-pr)} (1.811 g, 5.85 mmol). The mixture was stirred for 8 days and filtered through a 0.2 micron filter. The resulting filtrate was concentrated under reduced pressure to afford 1.33 grams of Sr{(i-pr)NC{N(SiMe3)2}N(r-pr)}2-(Et2O). Single crystals of
Sr{(/-pr)NC{N(SiMe3)2}N(/-pr)}2-(Et20) were grown from a concentrated pentane solution at -30 0C and an X-ray crystallographic study was carried out on a single crystal. The thermal ellipsoid plot is shown in Figure 1.
EXAMPLE 2
[0110] Another non-limiting example for the synthesis of strontium guanidinate [Sr(ZPrNC(NMe2)NzPr)2J2 is described here. To a toluene or benzene solution of {Sr[N(SiMe3)2]2}2 (0.31 g, 0.38 mmol, 10 ml solvent) was added 4.0 eq of zPrN(H)C(NMe2)=NzPr (0.26 g, 1.50 mmol). On standing X-ray quality crystals of [Sr(zPrNC(NMe2)NzPr)2]2 formed overnight and were isolated by filtration in 69% yield.
[0111] Although the invention has been described with reference to the above descriptions and examples, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims.
Claims
1. A ligand precursor selected from the group consisting of:
(A) compounds of the formula:
wherein Ri and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-Cs alkyls, C6-Ci0 aryls and C3-C6 cycloalkyls;
(B) compounds of the formula:
wherein Rj and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, Cg-C]0 aryls and C3-C6 cycloalkyls;
(C) compounds of the formula:
wherein Ri and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, C6-C]0 aryls and C3-C6 cycloalkyls;
(D) compounds of the formula:
wherein R] and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, C6-C]0 aryls and C3-C6 cycloalkyls;
(E) compounds of the formula:
wherein Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, Cβ-Cio aryls and C3-C6 cycloalkyls;
(F) compounds of the formula:
wherein Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, Ce-Qo aryls and C3-C6 cycloalkyls; and
(G) compounds of the formula:
wherein R' may be the same or different from one another and may be methyl or ϊPτ.
2. A metal source precursor selected from the group consisting of:
(A) compounds of the formula:
Rjand R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, Cβ-Cio aryls and C3-CO cycloalkyls;
M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os,
Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M;
(B) compounds of the formula:
wherein: each of the Ri and R2 substituents may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, Ce-Ci0 aryls and C3-CO cycloalkyls; and M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M;
(C) compounds of the formula:
Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, Ce-Qo aryls and C3-C6 cycloalkyls; M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M;
(D) compounds of the formula:
wherein R' may be the same or different from one another and may be methyl or zPr;
(E) compounds of the formula:
wherein R' may be the same or different from one another and may be methyl or iPr and wherein Cp* is pentamethylcyclopentadienyl;
(G) compounds of the formula:
wherein Cp* is pentamethylcyclopentadienyl.
3. A metal source precursor of claim 2, wherein M is barium.
4. A metal source precursor of claim 2, wherein M is strontium.
5. A method of making a compound of the formula:
Riand R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C5 alkyls, Ce-Qo aryls and C3-C6 cycloalkyls;
M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 2,
the method comprising the reaction of:
6. A method of making a compound of the formula:
Ri and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Cj-C5 alkyls, C6-Ci0 aryls and C3-C6 cycloalkyls; and
M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os,
Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 2, the method comprising the reaction of:
wherein each of the Rj and R2 substituents may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, C6-C10 aryls and C3-
Cβ cycloalkyls; and
M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os,
Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 2, the method comprising the reaction of:
8. A method of making a compound of the formula:
wherein each of the Ri and R2 substituents may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-Cs alkyls, Cβ-Qo aryls and C3-
Cβ cycloalkyls; and
M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os,
9. A method of making a compound of the formula:
Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, Cβ-Cio aryls and C3-Ce cycloalkyls; M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 2;
the method comprising the reaction of:
wherein R' may be the same or different from one another and may be methyl or iPr, comprising the reaction of:
wherein R' may be the same or different from one another and may be methyl or z'Pr.
11. A method of making a compound of formula:
wherein R' may be the same or different from one another and may be methyl or /Pr and wherein Cp* is pentamethylcyclopentadienyl, comprising the reaction of:
wherein R' may be the same or different from one another and may be methyl or iPr and wherein Cp* is pentamethylcyclopentadienyl.
12. A method of making a compound of the formula:
Comprising the reaction of:
wherein R' may be the same or different from one another and may be methyl.
wherein Cp* is pentamethylcyclopentadienyl, the method comprising the reaction of:
wherein R' may be the same or different from one another and may be methyl or iPr and wherein Cp* is pentamethylcyclopentadienyl.
14. A method of depositing a metal layer on a substrate surface by atomic layer deposition or rapid layer deposition, wherein at least one precursor is selected from the group consisting of:
(A) compounds of the formula:
Ri and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, Cg-Ci0 aryls and C3-C6 cycloalkyls; and
M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M;
(B) compounds of the formula:
wherein: each of the Rj and R2 substituents may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, Ce-Q0 aryls and C3-Ce cycloaLkyls; and
M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os,
Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M;
(C) compounds of the formula:
Ri, K2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, Cβ-Cio aryls and C3-Ce cycloalkyls; M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, R, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M;
wherein R' may be the same or different from one another and may be methyl or /Pr;
(E) compounds of the formula:
wherein R' may be the same or different from one another and may be methyl or j'Pr and wherein Cp* is pentamethylcyclopentadienyl;
(F) compounds of the formula:
wherein Cp* is pentamethylcyclopentadienyl.
15. The method of claim 14, wherein M is barium.
16. The method of claim 14, wherein M is strontium.
17. The method of claim 14, wherein the temperature of the ALD is less than or equal to 300 degrees Celsius.
18. The method of claim 14, wherein delivery of the at least one precursor is by solution delivery.
19. The method of claim 14, wherein delivery of the at least one precursor is by solid delivery.
20. The method of claim 14, wherein the metal layer is selected from the group comprising strontium titanate, barium titanate and strontium barium titanate.
21. A substrate coated with one or more film monolayers of one or more metals, obtained by a method selected from chemical vapor deposition, atomic layer deposition and rapid vapor deposition, wherein at least one precursor is a metal source precursor selected from the group consisting of:
Ri and R2 may be the same as or different from one another and each is independently selected from the group consisting of: H, Q-C5 alkyls, Ce-Qo aryls and C3-C6 cycloalkyls; and
M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os,
Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M;
(B) compounds of the formula:
wherein: each of the Ri and R2 substituents may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, C6-Ci0 aryls and C3-Cg cycloalkyls; and
M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os,
Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M;
(C) compounds of the formula:
Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, Cβ-Cιo aryls and C3-C6 cycloalkyls; M is selected from die group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is 1 to 8, dependent on the oxidation state of M;
(D) compounds of the formula:
wherein R' may be the same or different from one another and may be methyl or iPr;
(E) compounds of the formula:
wherein R' may be the same or different from one another and may be methyl or iPr and wherein Cp* is pentamethylcyclopentadienyl;
(G) compounds of the formula:
wherein Cp* is pentamethylcyclopentadienyl.
22. The substrate of claim 21 , wherein M is barium.
23. The substrate of claim 21, wherein M is strontium.
24. A ligand precursor selected from the group consisting of :
(A) compounds of the formula:
R1N=C(NR2R3)NR4M
wherein:
Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, Cβ-Cjo aryls and C3-Ce cycloalkyls; and M is selected from the group consisting of Na and K; and
(B) compounds of the formula:
R1N=C(NR2R3)NR4H
wherein:
Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, C6-Ci0 aryls and C3-C6 cycloalkyls.
25. A metal source precursor of the formula:
M[R1N=C(NR2R3)NR4L
wherein:
R1, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, C1-C5 alkyls, C6-C10 aryls and C3-C6 cycloalkyls;
M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os,
Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is the oxidation state of M.
26. A method of depositing a metal layer on a substrate comprising deposit of the metal on the substrate surface by atomic layer deposition or rapid vapor deposition, wherein at least one precursor is a metal source precursor of claim 25.
27. The method of claim 26, wherein the metal deposited is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Lr, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te.
28. The method of claim 26, wherein the temperature of the ALD is less than or equal to 300 degrees Celsius.
29. The method of claim 26, wherein delivery of the at least one precursor is by solution delivery.
30. The method of claim 26, wherein delivery of the at least one precursor is by solid delivery.
31. A substrate coated with one or more film monolayers of one or more metals, obtained by a method selected from chemical vapor deposition, atomic layer deposition and rapid vapor deposition, wherein at least one precursor is a metal source precursor selected from the group consisting of: metal source precursors of the formula:
wherein:
Ri, R2, R3 and R4 may be the same as or different from one another and each is independently selected from the group consisting of: H, Ci-C5 alkyls, C6-C10 aryls and C3-C6 cycloalkyls;
M is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os,
Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te; and x is the oxidation state of M.
32. A precursor storage and delivery apparatus comprising a vessel containing a metal source precursor as claimed in claim 2.
33. A vapor of a metal source precursor as claimed in claim 2.
34. A method of making a microelectronic device product, comprising contacting a microelectronic device substrate with a metal source precursor as claimed in claim 2, to deposit said metal on the substrate.
35. The method of claim 34, wherein said metal is selected from the group consisting of Ti, Y, Zr, Hf, Pr, Er, Yb, La, Nb, Ta, Mo, W, Ru, Os, Ca, Sr, Ba, Ir, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, Al, Ge, In, Sn, Pb, Sb, Bi, Mg, Eu, and Te.
36. The method of claim 34, wherein said contacting comprises chemical vapor deposition of said metal on the substrate.
37. The method of claim 34, wherein said contacting comprises atomic layer deposition of said metal on the substrate.
38. The method of claim 34, wherein said contacting comprises rapid vapor deposition of said metal on the substrate.
39. A mixed ligand barium or strontium complex having the general formula: X
M
Y wherein M is barium or strontium, and X and Y are each monoanionic and selected from the parent ligands (A)-(H) below, with the proviso that X and Y are different from one another:
(A) triazacyclononane-amide (tacn) ligands of the formula
wherein: Z is (CH2)2 or SiMe2; and R3, R2 and R3 are the same as or different from one another, and each is independently selected from among Ci-C5 alkyl, Cβ-Cio aryl, and C3-Ce cycloalkyl;
(B) aminotroponimine ligands of the formula
wherein Ri, R2 are the same as or different from one another and each is independently selected from among H, Ci-C5 alkyl, C6-Ci0 aryl, and C3-Cg cycloalkyl;
(C) bis(oxazole) ligands of the formula
wherein R], R2 are the same as or different from one another and each is independently selected from among H, Cx-C5 alkyl, C6-Ci0 aryl> and C3-C6 cycloalkyl;
(D) guanidine ligands of the formula
wherein R1, R2, R3, R4 are the same as or different from one another and are independently selected from among H, Q-C5 alkyl, C6-Ci0 aryl. and C3-C6 cycloalkyl;
(E) amidine ligands of the formula
wherein Ri, R2, R3 are the same as or different from one another and are independently selected from among H, Q-C5 alkyl, C6-Q0 aryl, and C3-C6 cycloalkyl;
(F) cyclopentadiene ligands of the formula
wherein Rj, R2, R3, R4, R5 are the same as or different from one another and are independently selected from among H, Ci-C6 alkyl, C6-Ci0 aryl, Ci-Cg alkoxy, Ci-Cg alkylsilyl, and pendant ligands with additional functional group(s) that can provide further coordination to the metal center;
(G) betadiketimine ligands of the formula
wherein Ri, R2, R3, R4 are the same as or different from one another and are independently selected from among CrC6 alkyl, C6-Ci0 aryl, silyl and CrC8 alkylamine; and
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/517,901 US20110060165A1 (en) | 2006-12-05 | 2006-12-29 | Metal aminotroponiminates, bis-oxazolinates and guanidinates |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86856406P | 2006-12-05 | 2006-12-05 | |
US60/868,564 | 2006-12-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008069821A1 true WO2008069821A1 (en) | 2008-06-12 |
Family
ID=39492513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/062713 WO2008069821A1 (en) | 2006-12-05 | 2006-12-29 | Metal aminotroponiminates, bis-oxazolinates and guanidinates |
Country Status (3)
Country | Link |
---|---|
US (1) | US20110060165A1 (en) |
TW (1) | TW200825200A (en) |
WO (1) | WO2008069821A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102199166A (en) * | 2011-04-11 | 2011-09-28 | 南京航空航天大学 | Functional alkoxyl rear-earth metal lanthanum coordination compound, synthesis method thereof and application thereof |
WO2012076356A1 (en) | 2010-12-07 | 2012-06-14 | L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Novel diazacrown barium and strontium precursors for vapor phase deposition of thin film |
EP2468756A1 (en) | 2010-12-07 | 2012-06-27 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Novel diazacrown strontium precursors for vapor phase deposition of thin films |
EP2468753A1 (en) | 2010-12-07 | 2012-06-27 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Strontium precursors for vapor phase deposition of thin films |
EP2468757A1 (en) | 2010-12-07 | 2012-06-27 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Novel diazacrown barium precursors for vapor phase deposition of thin films |
EP2468755A1 (en) | 2010-12-07 | 2012-06-27 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Novel barium precursors for vapor phase deposition of thin films |
EP2708543A1 (en) | 2012-09-17 | 2014-03-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Salen-type strontium precursors for vapor phase deposition of thin films |
EP2708542A1 (en) | 2012-09-17 | 2014-03-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Salen-type barium precursors for vapor phase deposition of thin films |
EP2708545A1 (en) | 2012-09-18 | 2014-03-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Pentadienyl strontium-organic compounds and their use for thin films deposition |
EP2708544A1 (en) | 2012-09-18 | 2014-03-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Pentadienyl barium-organic compounds and their use for thin films deposition |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101499260B1 (en) | 2006-05-12 | 2015-03-05 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | low temperature deposition of phase change memory materials |
KR101279925B1 (en) | 2006-11-02 | 2013-07-08 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | Antimony and germanium complexes useful for cvd/ald of metal thin films |
KR20100038211A (en) | 2007-06-28 | 2010-04-13 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | Precursors for silicon dioxide gap fill |
US20090215225A1 (en) | 2008-02-24 | 2009-08-27 | Advanced Technology Materials, Inc. | Tellurium compounds useful for deposition of tellurium containing materials |
US8674127B2 (en) | 2008-05-02 | 2014-03-18 | Advanced Technology Materials, Inc. | Antimony compounds useful for deposition of antimony-containing materials |
WO2010065874A2 (en) | 2008-12-05 | 2010-06-10 | Atmi | High concentration nitrogen-containing germanium telluride based memory devices and processes of making |
TW201132787A (en) | 2010-03-26 | 2011-10-01 | Advanced Tech Materials | Germanium antimony telluride materials and devices incorporating same |
US9190609B2 (en) | 2010-05-21 | 2015-11-17 | Entegris, Inc. | Germanium antimony telluride materials and devices incorporating same |
WO2014070682A1 (en) | 2012-10-30 | 2014-05-08 | Advaned Technology Materials, Inc. | Double self-aligned phase change memory device structure |
US10155783B2 (en) | 2013-05-28 | 2018-12-18 | Merck Patent Gmbh | Manganese complexes and use thereof for preparing thin films |
KR20190009245A (en) * | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4962214A (en) * | 1988-05-11 | 1990-10-09 | Massachusettes Institute Of Technology | Catalytic enantioselective addition of hydrocarbon equivalents to alpha, beta-unsaturated carbonyl compounds |
US5453494A (en) * | 1990-07-06 | 1995-09-26 | Advanced Technology Materials, Inc. | Metal complex source reagents for MOCVD |
US6646122B1 (en) * | 2000-02-29 | 2003-11-11 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Ligand and complex for catalytically bleaching a substrate |
Family Cites Families (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2326107A (en) * | 1940-05-28 | 1943-08-03 | American Cyanamid Co | Guanidine ammonium ferrocyanide |
US2839421A (en) * | 1955-04-06 | 1958-06-17 | Du Pont | An alkoxy aluminum chelate, a dispersion of it in an organic liquid and a water repellant porous object |
US3076834A (en) * | 1960-03-04 | 1963-02-05 | Dow Chemical Co | Chelate-phenol adducts |
US3356527A (en) * | 1964-04-23 | 1967-12-05 | Ross W Moshier | Vapor-plating metals from fluorocarbon keto metal compounds |
US3437516A (en) * | 1966-04-28 | 1969-04-08 | Us Air Force | Vapor deposition from perfluoroorganometallic compounds |
US3594216A (en) * | 1969-06-19 | 1971-07-20 | Westinghouse Electric Corp | Vapor phase deposition of metal from a metal-organic beta-ketoamine chelate |
US4147556A (en) * | 1972-01-12 | 1979-04-03 | Ppg Industries, Inc. | Nonflammable beta diketonate composition |
US3988332A (en) * | 1974-05-20 | 1976-10-26 | E. I. Du Pont De Nemours And Company | Hydrocarbylidene compounds of niobium and tantalum |
US4529427A (en) * | 1977-05-19 | 1985-07-16 | At&T Bell Laboratories | Method for making low-loss optical waveguides on an industrial scale |
US4401474A (en) * | 1979-12-03 | 1983-08-30 | Ppg Industries, Inc. | Pyrolytic coating reactant for defect and durability control |
US4281037A (en) * | 1980-08-08 | 1981-07-28 | Dap, Inc. | Cleaning and priming composition containing titanium acetylacetonate and method |
JPS58203443A (en) * | 1982-05-24 | 1983-11-26 | Hitachi Ltd | Composition used for correcting of white spot defect of photomask |
JPS60140880A (en) * | 1983-12-28 | 1985-07-25 | Hitachi Ltd | Manufacture of solar cell |
FR2575936B1 (en) * | 1985-01-15 | 1987-02-13 | Rhone Poulenc Spec Chim | PROCESS FOR THE PURIFICATION OF AQUEOUS SOLUTIONS OF RARE EARTH SALTS BY LIQUID-LIQUID EXTRACTION |
US4898842A (en) * | 1986-03-03 | 1990-02-06 | International Business Machines Corporation | Organometallic-derived cordierite and other compounds comprising oxides of silicon |
JP2729373B2 (en) * | 1987-01-07 | 1998-03-18 | 東京応化工業 株式会社 | Coating solution for metal oxide film formation |
US4948623A (en) * | 1987-06-30 | 1990-08-14 | International Business Machines Corporation | Method of chemical vapor deposition of copper, silver, and gold using a cyclopentadienyl/metal complex |
US5034372A (en) * | 1987-12-07 | 1991-07-23 | Mitsubishi Denki Kabushiki Kaisha | Plasma based method for production of superconductive oxide layers |
JP2615469B2 (en) * | 1988-04-21 | 1997-05-28 | 松下電器産業株式会社 | Method for producing metal sulfide thin film |
US4927670A (en) * | 1988-06-22 | 1990-05-22 | Georgia Tech Research Corporation | Chemical vapor deposition of mixed metal oxide coatings |
US4960916A (en) * | 1989-09-29 | 1990-10-02 | United States Of America As Represented By The Secretary Of The Navy | Organometallic antimony compounds useful in chemical vapor deposition processes |
US5094701A (en) * | 1990-03-30 | 1992-03-10 | Air Products And Chemicals, Inc. | Cleaning agents comprising beta-diketone and beta-ketoimine ligands and a process for using the same |
US5120703A (en) * | 1990-04-17 | 1992-06-09 | Alfred University | Process for preparing oxide superconducting films by radio-frequency generated aerosol-plasma deposition in atmosphere |
US5225561A (en) * | 1990-07-06 | 1993-07-06 | Advanced Technology Materials, Inc. | Source reagent compounds for MOCVD of refractory films containing group IIA elements |
US5820664A (en) * | 1990-07-06 | 1998-10-13 | Advanced Technology Materials, Inc. | Precursor compositions for chemical vapor deposition, and ligand exchange resistant metal-organic precursor solutions comprising same |
US5280012A (en) * | 1990-07-06 | 1994-01-18 | Advanced Technology Materials Inc. | Method of forming a superconducting oxide layer by MOCVD |
US6111124A (en) * | 1997-10-30 | 2000-08-29 | Advanced Technology Materials, Inc. | Lewis base adducts of anhydrous mononuclear tris(β-diketonate) bismuth compositions for deposition of bismuth-containing films, and method of making the same |
US5362328A (en) * | 1990-07-06 | 1994-11-08 | Advanced Technology Materials, Inc. | Apparatus and method for delivering reagents in vapor form to a CVD reactor, incorporating a cleaning subsystem |
US5204314A (en) * | 1990-07-06 | 1993-04-20 | Advanced Technology Materials, Inc. | Method for delivering an involatile reagent in vapor form to a CVD reactor |
US6218518B1 (en) * | 1990-07-06 | 2001-04-17 | Advanced Technology Materials, Inc. | Tetrahydrofuran-adducted group II β-diketonate complexes as source reagents for chemical vapor deposition |
US6110529A (en) * | 1990-07-06 | 2000-08-29 | Advanced Tech Materials | Method of forming metal films on a substrate by chemical vapor deposition |
US5711816A (en) * | 1990-07-06 | 1998-01-27 | Advanced Technolgy Materials, Inc. | Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same |
US5840897A (en) * | 1990-07-06 | 1998-11-24 | Advanced Technology Materials, Inc. | Metal complex source reagents for chemical vapor deposition |
US5220044A (en) * | 1990-10-24 | 1993-06-15 | International Business Machines Corporation | Ligand stabilized +1 metal beta-diketonate coordination complexes and their use in chemical vapor deposition of metal thin films |
US5096737A (en) * | 1990-10-24 | 1992-03-17 | International Business Machines Corporation | Ligand stabilized +1 metal beta-diketonate coordination complexes and their use in chemical vapor deposition of metal thin films |
US5098516A (en) * | 1990-12-31 | 1992-03-24 | Air Products And Chemicals, Inc. | Processes for the chemical vapor deposition of copper and etching of copper |
US5187300A (en) * | 1991-02-04 | 1993-02-16 | Air Products And Chemicals, Inc. | Volatile precursors for copper CVD |
US5085731A (en) * | 1991-02-04 | 1992-02-04 | Air Products And Chemicals, Inc. | Volatile liquid precursors for the chemical vapor deposition of copper |
US5144049A (en) * | 1991-02-04 | 1992-09-01 | Air Products And Chemicals, Inc. | Volatile liquid precursors for the chemical vapor deposition of copper |
US5165960A (en) * | 1991-07-29 | 1992-11-24 | Ford Motor Company | Deposition of magnesium fluoride films |
DE59301905D1 (en) * | 1992-04-09 | 1996-04-18 | Doetsch Neo Plastic | METHOD FOR PRODUCING A SLEEVED SLIDING BEARING AND SLIDING BEARING PRODUCED BY THIS METHOD |
US5376409B1 (en) * | 1992-12-21 | 1997-06-03 | Univ New York State Res Found | Process and apparatus for the use of solid precursor sources in liquid form for vapor deposition of materials |
US5322712A (en) * | 1993-05-18 | 1994-06-21 | Air Products And Chemicals, Inc. | Process for improved quality of CVD copper films |
US5412129A (en) * | 1994-06-17 | 1995-05-02 | Dicarolis; Stephen A. | Stabilization of precursors for thin film deposition |
US5679815A (en) * | 1994-09-16 | 1997-10-21 | Advanced Technology Materials, Inc. | Tantalum and niobium reagents useful in chemical vapor deposition processes, and process for depositing coatings using the same |
US5518528A (en) * | 1994-10-13 | 1996-05-21 | Advanced Technology Materials, Inc. | Storage and delivery system for gaseous hydride, halide, and organometallic group V compounds |
US5707424A (en) * | 1994-10-13 | 1998-01-13 | Advanced Technology Materials, Inc. | Process system with integrated gas storage and delivery unit |
US5704967A (en) * | 1995-10-13 | 1998-01-06 | Advanced Technology Materials, Inc. | Fluid storage and delivery system comprising high work capacity physical sorbent |
US6214105B1 (en) * | 1995-03-31 | 2001-04-10 | Advanced Technology Materials, Inc. | Alkane and polyamine solvent compositions for liquid delivery chemical vapor deposition |
US6444264B2 (en) * | 1995-03-31 | 2002-09-03 | Advanced Technology Materials, Inc. | Method for liquid delivery CVD utilizing alkane and polyamine solvent compositions |
US5916359A (en) * | 1995-03-31 | 1999-06-29 | Advanced Technology Materials, Inc. | Alkane and polyamine solvent compositions for liquid delivery chemical vapor deposition |
US5919522A (en) * | 1995-03-31 | 1999-07-06 | Advanced Technology Materials, Inc. | Growth of BaSrTiO3 using polyamine-based precursors |
US6344079B1 (en) * | 1995-03-31 | 2002-02-05 | Advanced Technology Materials, Inc. | Alkane and polyamine solvent compositions for liquid delivery chemical vapor deposition |
US5783716A (en) * | 1996-06-28 | 1998-07-21 | Advanced Technology Materials, Inc. | Platinum source compositions for chemical vapor deposition of platinum |
KR0179797B1 (en) * | 1995-12-29 | 1999-04-15 | 문정환 | Method of forming cu thin film with bias voltage supplied |
US5668054A (en) * | 1996-01-11 | 1997-09-16 | United Microelectronics Corporation | Process for fabricating tantalum nitride diffusion barrier for copper matallization |
US5744192A (en) * | 1996-11-08 | 1998-04-28 | Sharp Microelectronics Technology, Inc. | Method of using water vapor to increase the conductivity of cooper desposited with cu(hfac)TMVS |
US6303391B1 (en) * | 1997-06-26 | 2001-10-16 | Advanced Technology Materials, Inc. | Low temperature chemical vapor deposition process for forming bismuth-containing ceramic films useful in ferroelectric memory devices |
US5972743A (en) * | 1996-12-03 | 1999-10-26 | Advanced Technology Materials, Inc. | Precursor compositions for ion implantation of antimony and ion implantation process utilizing same |
US6090960A (en) * | 1997-01-07 | 2000-07-18 | Sharp Laboratories Of America, Inc. | Precursor with (methoxy) (methyl) silylolefin ligand to deposit copper and method same |
US5767301A (en) * | 1997-01-21 | 1998-06-16 | Sharp Microelectronics Technology, Inc. | Precursor with (alkyloxy)(alkyl)-silylolefin ligand to deposit copper |
US6117571A (en) * | 1997-03-28 | 2000-09-12 | Advanced Technology Materials, Inc. | Compositions and method for forming doped A-site deficient thin-film manganate layers on a substrate |
US5902639A (en) * | 1997-03-31 | 1999-05-11 | Advanced Technology Materials, Inc | Method of forming bismuth-containing films by using bismuth amide compounds |
US6153519A (en) * | 1997-03-31 | 2000-11-28 | Motorola, Inc. | Method of forming a barrier layer |
US5932363A (en) * | 1997-10-02 | 1999-08-03 | Xerox Corporation | Electroluminescent devices |
US6018065A (en) * | 1997-11-10 | 2000-01-25 | Advanced Technology Materials, Inc. | Method of fabricating iridium-based materials and structures on substrates, iridium source reagents therefor |
US6277436B1 (en) * | 1997-11-26 | 2001-08-21 | Advanced Technology Materials, Inc. | Liquid delivery MOCVD process for deposition of high frequency dielectric materials |
US6015917A (en) * | 1998-01-23 | 2000-01-18 | Advanced Technology Materials, Inc. | Tantalum amide precursors for deposition of tantalum nitride on a substrate |
US6284654B1 (en) * | 1998-04-16 | 2001-09-04 | Advanced Technology Materials, Inc. | Chemical vapor deposition process for fabrication of hybrid electrodes |
US6111122A (en) * | 1998-04-28 | 2000-08-29 | Advanced Technology Materials, Inc. | Group II MOCVD source reagents, and method of forming Group II metal-containing films utilizing same |
US6101816A (en) * | 1998-04-28 | 2000-08-15 | Advanced Technology Materials, Inc. | Fluid storage and dispensing system |
US6355562B1 (en) * | 1998-07-01 | 2002-03-12 | Advanced Technology Materials, Inc. | Adhesion promotion method for CVD copper metallization in IC applications |
WO2000008230A1 (en) * | 1998-08-03 | 2000-02-17 | Advanced Technology Materials, Inc. | Copper precursor composition and process for manufacture of microelectronic device structures |
KR20000013302A (en) * | 1998-08-06 | 2000-03-06 | 최형수 | Glass copper precursor for chemical vapor deposition |
US6037001A (en) * | 1998-09-18 | 2000-03-14 | Gelest, Inc. | Method for the chemical vapor deposition of copper-based films |
US6316797B1 (en) * | 1999-02-19 | 2001-11-13 | Advanced Technology Materials, Inc. | Scalable lead zirconium titanate(PZT) thin film material and deposition method, and ferroelectric memory device structures comprising such thin film material |
US6086779A (en) * | 1999-03-01 | 2000-07-11 | Mcgean-Rohco, Inc. | Copper etching compositions and method for etching copper |
US6099903A (en) * | 1999-05-19 | 2000-08-08 | Research Foundation Of State University Of New York | MOCVD processes using precursors based on organometalloid ligands |
US6110530A (en) * | 1999-06-25 | 2000-08-29 | Applied Materials, Inc. | CVD method of depositing copper films by using improved organocopper precursor blend |
US6269979B1 (en) * | 1999-10-05 | 2001-08-07 | Charles Dumont | Multi-compartmented mixing dispenser |
US6399208B1 (en) * | 1999-10-07 | 2002-06-04 | Advanced Technology Materials Inc. | Source reagent composition and method for chemical vapor deposition formation or ZR/HF silicate gate dielectric thin films |
US6589329B1 (en) * | 2000-03-09 | 2003-07-08 | Advanced Technology Materials, Inc. | Composition and process for production of copper circuitry in microelectronic device structures |
US6599447B2 (en) * | 2000-11-29 | 2003-07-29 | Advanced Technology Materials, Inc. | Zirconium-doped BST materials and MOCVD process forming same |
US6879876B2 (en) * | 2001-06-13 | 2005-04-12 | Advanced Technology Materials, Inc. | Liquid handling system with electronic information storage |
US20030111014A1 (en) * | 2001-12-18 | 2003-06-19 | Donatucci Matthew B. | Vaporizer/delivery vessel for volatile/thermally sensitive solid and liquid compounds |
US6878641B2 (en) * | 2002-10-01 | 2005-04-12 | Advanced Technology Materials, Inc. | Composition and chemical vapor deposition method for forming organic low k dielectric films |
US7172646B2 (en) * | 2003-04-15 | 2007-02-06 | Air Products And Chemicals, Inc. | Reactive liquid based gas storage and delivery systems |
US6822107B1 (en) * | 2003-08-19 | 2004-11-23 | Advanced Technology Materials, Inc. | Chemical vapor deposition precursors for deposition of copper |
US7300873B2 (en) * | 2004-08-13 | 2007-11-27 | Micron Technology, Inc. | Systems and methods for forming metal-containing layers using vapor deposition processes |
-
2006
- 2006-12-29 TW TW095149832A patent/TW200825200A/en unknown
- 2006-12-29 WO PCT/US2006/062713 patent/WO2008069821A1/en active Application Filing
- 2006-12-29 US US12/517,901 patent/US20110060165A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4962214A (en) * | 1988-05-11 | 1990-10-09 | Massachusettes Institute Of Technology | Catalytic enantioselective addition of hydrocarbon equivalents to alpha, beta-unsaturated carbonyl compounds |
US5453494A (en) * | 1990-07-06 | 1995-09-26 | Advanced Technology Materials, Inc. | Metal complex source reagents for MOCVD |
US6646122B1 (en) * | 2000-02-29 | 2003-11-11 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Ligand and complex for catalytically bleaching a substrate |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012076356A1 (en) | 2010-12-07 | 2012-06-14 | L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Novel diazacrown barium and strontium precursors for vapor phase deposition of thin film |
EP2468756A1 (en) | 2010-12-07 | 2012-06-27 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Novel diazacrown strontium precursors for vapor phase deposition of thin films |
EP2468753A1 (en) | 2010-12-07 | 2012-06-27 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Strontium precursors for vapor phase deposition of thin films |
EP2468757A1 (en) | 2010-12-07 | 2012-06-27 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Novel diazacrown barium precursors for vapor phase deposition of thin films |
EP2468755A1 (en) | 2010-12-07 | 2012-06-27 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Novel barium precursors for vapor phase deposition of thin films |
EP2468754A1 (en) | 2010-12-07 | 2012-06-27 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Novel diazacrown barium and strontium precursors for vapor phase deposition of thin film |
CN102199166A (en) * | 2011-04-11 | 2011-09-28 | 南京航空航天大学 | Functional alkoxyl rear-earth metal lanthanum coordination compound, synthesis method thereof and application thereof |
EP2708543A1 (en) | 2012-09-17 | 2014-03-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Salen-type strontium precursors for vapor phase deposition of thin films |
EP2708542A1 (en) | 2012-09-17 | 2014-03-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Salen-type barium precursors for vapor phase deposition of thin films |
EP2708545A1 (en) | 2012-09-18 | 2014-03-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Pentadienyl strontium-organic compounds and their use for thin films deposition |
EP2708544A1 (en) | 2012-09-18 | 2014-03-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Pentadienyl barium-organic compounds and their use for thin films deposition |
Also Published As
Publication number | Publication date |
---|---|
TW200825200A (en) | 2008-06-16 |
US20110060165A1 (en) | 2011-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008069821A1 (en) | Metal aminotroponiminates, bis-oxazolinates and guanidinates | |
US10738008B2 (en) | Nitrogen-containing ligands and their use in atomic layer deposition methods | |
US20170073361A1 (en) | Group 11 mono-metallic precursor compounds and use thereof in metal deposition | |
EP2910665B1 (en) | Volatile dihydropyrazinyl and dihydropyrazine metal complexes | |
EP2609102B1 (en) | Molybdenum (iv) amide precursors and use thereof in atomic layer deposition | |
US8859785B2 (en) | Volatile group 2 metal precursors | |
EP2460807A1 (en) | Metal-enolate precursors for depositing metal-containing films | |
WO2008002546A1 (en) | Metal(iv) tetra-amidinate compounds and their use in vapor deposition | |
JP2016540038A (en) | Metal complexes containing amidoimine ligands | |
US9127031B2 (en) | Bisamineazaallylic ligands and their use in atomic layer deposition methods | |
JP5690684B2 (en) | Alkoxide compounds | |
JP2017226614A (en) | Vanadium compound, raw material for forming thin film and method for producing thin film | |
US8680289B2 (en) | Complexes of imidazole ligands | |
WO2007142700A1 (en) | Copper (i) amidinates and guanidinates for forming copper thin films | |
US20130059077A1 (en) | Method of Atomic Layer Deposition Using Metal Precursors | |
WO2012125439A2 (en) | Precursors and methods for the atomic layer deposition of manganese | |
WO2015163090A1 (en) | Alkoxide compound, raw material for forming thin film, method for producing thin film, and alcohol compound | |
El-Kadri et al. | Film growth precursor development for metal nitrides. Synthesis, structure, and volatility of molybdenum (VI) and tungsten (VI) complexes containing bis (imido) metal fragments and various nitrogen donor ligands | |
WO2022196491A1 (en) | Tin compound, starting material for forming thin film, thin film, method for producing thin film, and halogen compound | |
JP6408178B2 (en) | Alkoxide compounds | |
EP4430054A1 (en) | Precursors for deposition of bismuth-containing films | |
Kurek | Development of Volatile Inorganic Compounds and Their Application for Chemical Vapour Deposition of Metal and Metal Oxide Thin Films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06846856 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12517901 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06846856 Country of ref document: EP Kind code of ref document: A1 |