[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007119265A1 - Stress-applied semiconductor device and method for manufacturing same - Google Patents

Stress-applied semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2007119265A1
WO2007119265A1 PCT/JP2006/305608 JP2006305608W WO2007119265A1 WO 2007119265 A1 WO2007119265 A1 WO 2007119265A1 JP 2006305608 W JP2006305608 W JP 2006305608W WO 2007119265 A1 WO2007119265 A1 WO 2007119265A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
silicon substrate
mixed crystal
stress
polycrystalline
Prior art date
Application number
PCT/JP2006/305608
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Katakami
Hiroshi Morioka
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008510728A priority Critical patent/JP5168140B2/en
Priority to PCT/JP2006/305608 priority patent/WO2007119265A1/en
Publication of WO2007119265A1 publication Critical patent/WO2007119265A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Definitions

  • the present invention generally relates to a semiconductor device, and more particularly, to a stress-applying semiconductor device in which an operation speed is improved by applying strain and a manufacturing method thereof.
  • p-channel MOS transistors are known to improve carrier mobility by applying uniaxial compressive stress to the channel region.
  • the schematic configuration shown in Fig. 1 has been proposed.
  • a gate electrode 3 is formed on a silicon substrate 1 corresponding to a channel region via a gate insulating film 2, and the gate electrode 3 is formed in the silicon substrate 1.
  • the p-type diffusion regions la and lb are formed so as to define channel regions on both sides of the substrate.
  • side wall insulating films 3A and 3B are formed on the side wall of the gate electrode 3 so as to cover a part of the surface of the silicon substrate 1.
  • the diffusion regions la and lb act as source and drain etching regions of the MOS transistor, respectively, and holes transported through the channel region directly below the gate electrode 3 from the diffusion region la to lb.
  • the flow is controlled by the gate voltage applied to the gate electrode 3.
  • SiGe mixed crystal layers 1 A and 1 B are further formed on the silicon substrate 1 on the outer side of the sidewall insulating films 3 A and 3 B, respectively, with respect to the silicon substrate 1.
  • P-type source and drain regions continuous with the diffusion regions la and lb are formed, respectively.
  • the SiGe mixed crystal layers 1A and 1B have a larger lattice constant than the silicon substrate 1, the SiGe mixed crystal layers 1A and IB are indicated by arrows a.
  • compressive stress is formed, and as a result, the SiGe mixed crystal layers 1A and IB are distorted in a direction substantially perpendicular to the surface of the silicon substrate 1 indicated by an arrow b.
  • the strain in the SiGe mixed crystal layers 1A and 1B indicated by the arrow b is a corresponding strain.
  • the channel region in the silicon substrate is induced as indicated by an arrow c.
  • a uniaxial compressive stress is induced in the channel region as indicated by an arrow d.
  • the symmetry of the Si crystal constituting the channel region is locally modulated, and this symmetry is further applied.
  • the degeneration of the valence band of heavy holes and the valence band of light holes can be solved, so that the hole mobility in the channel region increases and the operation speed of the transistor improves.
  • the increase in hole mobility and the accompanying increase in transistor operation speed due to the locally induced stress in the channel region are particularly noticeable in ultra-miniaturized semiconductor devices having a gate length of lOOnm or less.
  • an n + -type polysilicon gate electrode 13 is formed on a silicon substrate 11 via a gate insulating film 12, and the polysilicon gate electrode 13 in the silicon substrate 11 is formed.
  • an n-type source extension region 11a and a drain extension region 1 lb are formed.
  • a sidewall insulating film 14N made of a SiN film is formed on both side wall surfaces of the gate electrode 13 via a sidewall oxide film 140x, and the sidewall insulating film 14N in the silicon substrate 11 is formed.
  • An n + -type source region 1 lc and a drain region 1 Id are formed in the outer portion.
  • Silicide films 15S, 15D, and 15G are formed on the source region 11c, the drain region lld, and the gate electrode 13, respectively, and the silicide film is further formed on the silicon substrate 11.
  • a SiN film 16 in which tensile stress is accumulated is formed so as to continuously cover the films 15S, 15D, 15G and the sidewall insulating film 14N.
  • the gate electrode 13 is urged in a direction perpendicular to the substrate surface toward the silicon substrate 11 by the action of tensile force of the SiN film 16 due to force, and as a result, the gate electrode 13 is directly below the gate electrode 13. The same strain as that when tensile stress is applied in the gate length direction is induced in the channel region.
  • the stress value in the channel region can be further increased in such a conventional p-channel or n-channel MOS transistor, it is considered that the operation speed can be further improved.
  • the present invention provides a silicon substrate, a gate electrode formed on the silicon substrate via a gate insulating film, and on the first and second sides of the gate electrode in the silicon substrate.
  • the first and second groove portions formed separately from each other, and the first and second groove portions made of a mixed crystal of Si and another group IV element and filling the first and second groove portions, respectively.
  • the present invention provides a step of forming a first polycrystalline film made of a mixed crystal of Si and another element on a silicon substrate via a first insulating film; Forming a second polycrystalline film having a concentration of the other element higher than that of the first polycrystalline film on the polycrystalline film through a second insulating film; and the first and second A polycrystalline film of the same material as the second insulating film.
  • the first polycrystalline pattern having the first width and the second polycrystalline pattern having the first width are formed on the silicon substrate by the insulating film pattern having the first width.
  • a step of forming a laminated structure laminated via a turn, and isotropic etching is performed on the laminated structure, and the width of the second polycrystalline pattern is changed from the first width to the second width.
  • a step of selectively reducing the first polycrystalline pattern, and anisotropic etching is performed on the silicon substrate using the first polycrystalline pattern as a mask.
  • Forming the first and second grooves on the first and second sides of the laminated structure, respectively, and using the second polycrystalline pattern as a mask, the insulating film pattern and the first polycrystalline pattern Anisotropic etching and the first step And filling the second groove with first and second semiconductor layers made of a mixed crystal of Si and another group IV element in an epitaxial manner.
  • the silicon substrate is anisotropically etched in the direction perpendicular to the substrate surface using the first polycrystalline pattern having the first width as a mask, and the second polycrystalline pattern having the second width is used.
  • the first polycrystalline pattern is anisotropically etched in the direction perpendicular to the substrate surface using the first and second masks as masks, so that the first polycrystalline pattern is formed on both sides of the region where the first polycrystalline pattern is formed in the silicon substrate.
  • the second groove portion is formed, and the gate electrode is formed in the center portion of the region in a self-aligned manner with a desired gate length by the first polycrystalline pattern.
  • the second polycrystalline pattern is obtained by selectively laterally etching the second polycrystalline film pattern on the first polycrystalline film pattern with respect to the first polycrystalline pattern, It should be noted that it is formed in a self-aligned manner in the central portion of the region. Therefore, the first polycrystalline pattern is anisotropically etched in the direction perpendicular to the substrate using the second polycrystalline pattern formed in this manner as a mask, so that the desired gate electrode is formed into the first polycrystalline pattern. The pattern makes it possible to reliably form the central portion of the region.
  • the first or second epitaxial semiconductor layer acting as a source of compressive or tensile stress to the first or second groove, and thus to the channel region of the semiconductor device is 20 nm from the side wall surface of the gate electrode. It is possible to form the following close distances, increasing the stress applied to the channel region of the stress application semiconductor device. It is possible to force S. That is, according to the present invention, the operation speed of the semiconductor device can be improved with a simple configuration and process.
  • the Ge concentration in the first polycrystalline pattern serving as the gate electrode is stepped in the film thickness direction by utilizing the fact that the etching rate of the SiGe mixed crystal layer varies with the Ge concentration.
  • the opposing side wall surfaces of the first and second groove portions can be formed in a shape inclined toward opposite directions. At this time, the shape of the side wall surface becomes a stepped surface or a continuous surface depending on whether the Ge concentration change in the first polycrystalline pattern is stepped or continuous.
  • FIG. 1 is a diagram showing a configuration of a stress applying semiconductor device according to a related technique of the present invention.
  • FIG. 2 is a diagram showing a configuration of a stress applying semiconductor device according to another related technique of the present invention.
  • FIG. 3A is a view (No. 1) showing a step of manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 3B is a diagram (part 2) illustrating the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3C is a diagram (part 3) illustrating the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3D is a diagram (part 4) illustrating the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3E is a view (No. 5) showing a step of manufacturing a semiconductor device according to the first embodiment of the present invention
  • FIG. 3F is a view (No. 6) showing a step of manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 3G is a view (No. 7) showing a step of manufacturing a semiconductor device according to the first embodiment of the present invention
  • FIG. 3H is a view (No. 8) showing a step of manufacturing the semiconductor device according to the first embodiment of the present invention
  • FIG. 4 is a graph showing the relationship between the etching rate of the SiGe mixed crystal layer and the Ge concentration.
  • FIG. 5A is a view (No. 1) showing a step of manufacturing a semiconductor device according to the second embodiment of the invention.
  • FIG. 5B is a diagram (part 2) illustrating the manufacturing process of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 5C is a view (No. 3) illustrating the manufacturing process of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 5D is a view (No. 4) showing a manufacturing step of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 5E is a view (No. 5) showing a step of manufacturing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 5F is a view (No. 6) showing a manufacturing step of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 5G is a view (No. 7) showing a step of manufacturing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 6A is a view (No. 1) showing a step of manufacturing a semiconductor device according to a third embodiment of the invention.
  • FIG. 6B is a diagram (part 2) illustrating the manufacturing process of the semiconductor device according to the third embodiment of the present invention.
  • FIG. 6C is a view (No. 3) illustrating the manufacturing process of the semiconductor device according to the third embodiment of the present invention.
  • FIG. 6D is a view (No. 4) showing a step of manufacturing the semiconductor device according to the third embodiment of the present invention.
  • FIG. 6E is a view (No. 5) showing a step of manufacturing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 6F is a view (No. 6) showing a manufacturing step of the semiconductor device according to the third embodiment of the invention.
  • FIG. 6G is a view (No. 7) showing a step of manufacturing a semiconductor device according to the third embodiment of the present invention.
  • 3A to 3H are diagrams showing a manufacturing process of the p-channel MOS transistor 20 according to the first embodiment of the present invention.
  • element region 21A is formed on silicon substrate 21 by element isolation region 211.
  • a silicon oxide film or silicon oxynitride film 22 having a thickness of 0.8 to 1.2 nm is formed on the element region 21A.
  • the composition of the silicon substrate 21 is Si so as to cover the silicon oxynitride film 22.
  • the SiGe mixed crystal layer 23 is doped p + type at this stage.
  • the SiGe mixed crystal layer 23 is doped n + type.
  • the composition is represented by Si Ge through a silicon oxide film 24 having a thickness of 10 to 20 nm, and Ge has an atomic concentration of 1 to 30%.
  • the polycrystalline SiGe mixed crystal layer 25 containing (Ge) more than the Ge concentration in the SiGe mixed crystal layer 23 is formed with a film thickness of 70 to 120 nm.
  • a resist pattern R1 force is formed on the polycrystalline SiGe mixed crystal layer 25 via an antireflection film (BARC) 26 with a width W1 larger than Onm and smaller than 40 nm with respect to a desired gate length Lg. ing.
  • BARC antireflection film
  • the underlying layers 23 to 26 are patterned, and a SiGe mixed crystal layer pattern 23A corresponding to the SiGe mixed crystal layer 23 is formed.
  • a silicon oxide film pattern 24A corresponding to the silicon oxide film 24 is formed corresponding to the SiGe mixed crystal layer 25 with a SiGe mixed crystal layer pattern 25A force having the width W1.
  • B + or In + is ion-implanted in the silicon substrate 21 to a depth of, for example, 10 to 30 nm using the stacked pattern including the SiGe mixed crystal layer patterns 23A and 25A as a mask.
  • a p + type source region 21c and a p + type drain region 21d are formed in the silicon substrate 21 on the first and second sides of the SiGe pattern 23A, respectively.
  • the SiGe mixed crystal exhibits the etching rate shown in FIG. 4 with respect to dry etching using HBr as an etching gas.
  • the etching rate is about 120 nmZ, whereas the etching rate increases when the Ge concentration in the film increases even under the same etching conditions.
  • there is a slight difference in force depending on the plasma source used for etching and other conditions.
  • the structure of FIG. 3B is introduced into a normal dry etching apparatus, and is dry-etched under isotropic etching conditions.
  • the SiGe pattern with a width of W2 (W2 and W1) corresponding to the desired gate length (Lg) is slimmed as shown by the arrow in the figure by selective etching for the low SiGe pattern 23A.
  • a mixed crystal layer pattern 25B is formed.
  • the p-channel MOS transistor 30 has a gate length Lg of 30 nm or less.
  • a force using a mixed gas mainly composed of HBr is used, using other gases containing C1 and F, such as CI and CF.
  • the resist pattern R1 and the antireflection film pattern 26A are removed.
  • the Si Ge mixed crystal layer pattern 25B is formed by lateral etching from both sides, it is surely formed at the center of the SiGe mixed crystal layer pattern 23A below it.
  • dry etching acting mainly in a direction perpendicular to the substrate 21 with respect to the structure of FIG. 3C masks the SiGe mixed crystal layer pattern 23A and the insulating film pattern 24A.
  • a gas in which ⁇ is added to HBr is used as an etching gas.
  • the trenches 21TA and 21TB force, respectively, the source region 21c and the drain region, respectively. It is formed with a depth not exceeding 21d.
  • the groove portions 21TA and 21TB are respectively defined by side wall surfaces 21ta and 21tb facing each other.
  • the SiGe mixed crystal layer pattern 23A force used as a mask when forming the groove portions 21TA and 21TB, together with the insulating film pattern 24A thereon, Further, the SiGe mixed crystal layer pattern 25B is patterned using the upper SiGe mixed crystal layer pattern 25B as a mask.
  • the gate electrode is formed so as to be covered with the insulating film pattern 24B having a width of W2. In this case, the SiON film 22A is not gate-insulated. Constructs an edge membrane.
  • the structure of FIG. 3D is introduced into a reduced pressure CVD apparatus, and the partial pressure of an inert gas atmosphere such as hydrogen, nitrogen, He or Ar is changed at a substrate temperature of 400 to 550 ° C. Set to 5 to 1330 Pa, and silane (SiH) gas as Si gas phase raw material, l to 10 Pa partial pressure
  • germane (GeH) gas as the gas phase raw material of Ge, with a partial pressure of 0.:!
  • the p-type SiGe mixed crystal layers 25A and 25B are grown beyond the interface between the silicon substrate and the gate insulating film 22A.
  • the SiGe epitaxial layer 25A thus formed is formed as described above.
  • the channel region 25B acts so as to extend the channel region directly below the gate electrode 23B in the direction perpendicular to the substrate surface.
  • the channel region is equivalent to the case where uniaxial compressive stress is applied in the gate length direction. Distortion is induced.
  • a p-type impurity element for example, B or In is ion-implanted into the structure of FIG. 3E, and the sidewalls 21 ta and 21tb of the silicon substrate 21 are defined.
  • a p-type source extension region 21a and a drain extension region 21b are formed on both sides of the gate electrode 23B.
  • a pair of side wall insulating films 23W are formed on the gate electrode 23B.
  • a silicon oxide film or silicon nitride film is formed by CVD deposition and etchback, and a p-type Si cap layer is formed on each of the SiGe mixed crystal layers 25A and 25B.
  • 26A and 26B are formed epitaxially, and a polysilicon cap film 26C is formed on the SiGe gate electrode 23B.
  • Si cap layers 26A to 26C are used as an underlayer for silicide formation.
  • the salicide process can be stably performed and a desired low-resistance silicide layer can be formed.
  • the SiGe mixed crystal layers 25A and 25B serve as stress sources, and the channel transistors directly under the gate electrode 23B are used. Uniaxial compressive stress acting in the gate length direction is applied to the region, hole mobility is improved, and transistor operation speed is improved.
  • the SiGe mixed crystal layers 25A, 25B are replaced with the groove portions 21TA.
  • the distance from the side wall surface 21ta or 21tb to the corresponding side wall surface of the gate electrode 23B is close to the gate electrode 23B, for example.
  • FIG. 3F it is possible to form the wings (see FIG. 3F) at an arbitrary distance that is 20 nm or less larger than Onm, thereby increasing the magnitude of the uniaxial compressive stress.
  • the gate electrode 23B is formed on the side wall surface by the lateral etching process of FIG. 3C.
  • the SiGe mixed crystal layers 25A and 25B are replaced with a SiC mixed crystal layer containing C (carbon) at an atomic concentration of 0.1 to 10%, and the source
  • a SiC mixed crystal layer containing C (carbon) at an atomic concentration of 0.1 to 10% By introducing an n-type impurity element into the region 21c and the drain region 21d instead of the p-type impurity element, and then introducing the n-type impurity element into the source extension region 21a and the drain extension region 21b, an n-channel MS It is also possible to constitute a transistor.
  • the SiC mixed crystal has a lattice constant smaller than that of the silicon substrate 21, the stress source regions 25A and 25B contract downward, and accordingly, the channel region immediately below the gate electrode 23B does not enter the channel region. A uniaxial tensile stress acting in the gate length direction is generated.
  • a SiGe mixed crystal layer 43 configured by stacking SiGe mixed crystal layers 23a to 23d having different Ge compositions is used.
  • the Ge composition increases stepwise in the atomic concentration range of:! -30% from the SiGe mixed crystal layer 23a to 23d.
  • the SiGe mixed crystal layer 25 has a Ge concentration higher than the maximum Ge concentration in the SiGe mixed crystal layer 43.
  • the laminated structure of the layers 23 to 26 is patterned using the resist pattern R1 having a width W1 in the step of FIG. 5B, and accordingly, from the SiGe mixed crystal layer 43.
  • a SiGe mixed crystal layer pattern 43A is formed.
  • a p + -type source region 21c and a drain region 2 Id are formed in the silicon substrate 21 corresponding to the element region 21A.
  • the SiGe mixed crystal layers 23a to 23d are also subjected to slimming by an amount corresponding to the Ge concentration in the film, respectively.
  • a SiGe mixed crystal layer pattern 43B having a stepped shape is formed from the SiGe mixed crystal layer pattern 43A.
  • grooves 41TA and 41TB corresponding to the grooves 21TA and 21TB are formed on both sides of the SiGe mixed crystal layer pattern 43B in the silicon substrate 21.
  • the groove portions 41TA and 41TB correspond to the side wall surfaces 21ta and 21tb, and are respectively defined by a pair of opposing side wall surfaces 41ta and 41tb.
  • lta and 41tb have a step shape corresponding to the step shape of the SiGe mixed crystal layer pattern 43B, and as a whole, they are inclined in opposite directions. That is, the distance between the side wall surfaces 41ta and 41tb increases stepwise from the interface between the silicon substrate 21 and the gate insulating film 22 downward.
  • the groove portions 41TA and 41TB are formed so as not to exceed the source region 21c and the drain region 2 Id.
  • the Si Ge mixed crystal constituting the SiGe mixed crystal layer pattern 43B is formed along with the formation of the groove portions 41TA and 41TB by dry etching acting in the direction perpendicular to the substrate surface.
  • the layers 23a to 23b are also sequentially etched using the pattern immediately above as a mask, and a stacked pattern 43C having a width W2 corresponding to a desired gate length design value is formed.
  • the width W2 of the stacked layer pattern 43C is determined by the insulating film pattern 24C obtained by patterning the insulating film pattern 24B in the step of FIG. 5C using the SiGe mixed crystal layer pattern 25B as a mask.
  • the stacked pattern 43C constitutes the gate electrode of the p-channel MOS transistor 40.
  • the insulating film pattern 24C is used as a mask, and the trenches 41TA and 41TB are SiGe mixed crystal layers 25A and 25B.
  • the source extension region 21a and the drain extension region 21b are provided in the region between the SiGe mixed crystal layers 25A and 25B in the silicon substrate 21 in the step of FIG. 5F. It is formed by ion implantation of a p-type impurity element using as a mask.
  • a sidewall insulating film 23W is formed on the side wall surface of the gate electrode 43C in the same manner as in the previous step of FIG. 3G. Further, although not shown, FIG. 3G and FIG. The p-channel MOS transistor 40 is completed through the same process as in FIG.
  • the sidewall surfaces of the SiGe mixed crystal layers 25A and 25B can be inclined surfaces opposite to each other, and the surface portion of the silicon substrate 21 where the channel is formed has a stress source.
  • SiGe mixed crystal layers 25A and 25B are placed close to each other to maximize the stress applied to the channel, and at the same time, the SiGe mixed crystal layers 25A and 25B are spaced apart from each other in the silicon substrate 21.
  • these can be surely included in the source region 21c and the drain region 21d.
  • the SiGe mixed crystal layers 25A and 25B are set to C (carbon) of 0.
  • the gate electrode 43B and the hard mask film 25 thereon are provided with S as described above. It is possible to use an iGe mixed crystal layer.
  • a SiGe mixed crystal layer 63 in which the Ge composition is continuously increased from the lower end to the upper end is used.
  • the Ge composition is in the range of! ⁇ 30% in atomic concentration.
  • the SiGe mixed crystal layer 25 has a Ge concentration higher than the maximum Ge concentration in the SiGe mixed crystal layer 63.
  • the laminated structure of the layers 23 to 26 is patterned using the resist pattern R1 having a width W1 in the step of FIG. 6B, and accordingly, from the SiGe mixed crystal layer 63.
  • a SiGe mixed crystal layer pattern 63A is formed.
  • a p + -type source region 21c and a drain region 2 Id are formed in the silicon substrate 21 corresponding to the element region 21A.
  • the SiGe mixed crystal pattern 63A is also received in an amount corresponding to the Ge concentration in the film, and as a result, the SiGe mixed crystal SiGe mixed crystal layer pattern 63B defined by continuous slope is formed from layer pattern 63A
  • grooves 61TA and 61TB corresponding to the grooves 41TA and 41TB are formed in the silicon substrate 21 on both sides of the SiGe mixed crystal layer pattern 43B.
  • the groove portions 61TA and 61TB are defined by a pair of opposite side wall surfaces 61ta and 61tb corresponding to the side wall surfaces 41ta and 41tb, respectively.
  • the side wall surfaces 61ta and 61tb are formed by the SiGe mixture.
  • the crystal layer pattern 63B has an inclined shape corresponding to the inclined side wall surface, and is inclined in opposite directions as a whole. That is, the distance between the side wall surfaces 61ta and 61tb continuously increases from the interface between the silicon substrate 21 and the gate insulating film 22 downward.
  • the groove portions 61TA and 61TB are formed so as not to exceed the source region 21c and the drain region 2 Id.
  • the SiGe mixed crystal layer pattern 63B is also sequentially etched to obtain a desired A SiGe mixed crystal layer pattern 63C with a width W2 corresponding to the gate length design value is formed.
  • the width W2 of the SiGe mixed crystal layer pattern 63C is determined by the insulating film pattern 24C obtained by patterning the insulating film pattern 24B in the process of FIG. 6C using the SiGe mixed crystal layer pattern 25B as a mask. Has been.
  • the SiGe mixed crystal layer pattern 63C constitutes the gate electrode of the p-channel MOS transistor 60.
  • the groove 61TA , 61TB are filled with SiGe mixed crystal layers 25A and 25B by a regrowth process similarly to the process of FIG. 5E, and in the process of FIG.
  • the source extension region 21a and the drain extension region 21b are formed by ion implantation of a p-type impurity element using the gate electrode 63C as a mask.
  • a side wall insulating film 23W is formed on the side wall surface of the gate electrode 63C in the same manner as in the previous step of FIG. 5G. Further, although not shown, FIG. 3G and FIG. The p-channel MOS transistor 60 is completed through the same process as in FIG.
  • the sidewall surfaces of the SiGe mixed crystal layers 25A and 25B can be inclined surfaces that are opposite to each other, and the surface portion of the silicon substrate 21 where the channel is formed has a stress source.
  • the SiGe mixed crystal layers 25A and 25B are made close to each other to maximize the stress applied to the channel, and at the same time, the SiGe mixed crystal layers 25A and 25B are spaced apart from each other in the silicon substrate 21, and these are separated into the source region 21c, The drain region 21d can be surely included. As a result, it is possible to suppress the occurrence of leakage current due to the p-type SiGe layer having a small band gap being in direct contact with the n-type silicon substrate 21 having a large band gap.
  • n-channel MOS transistor can be configured by introducing an n-type impurity element into the extension region 21b.
  • the SiC mixed crystal has a lattice constant smaller than that of the silicon substrate 21, the stress source regions 25A and 25B contract downward, and accordingly, the channel region immediately below the gate electrode 23B does not enter the channel region. A uniaxial tensile stress acting in the gate length direction is generated.
  • the gate electrodes 23B, 43C, and 63C have been described as SiGe mixed crystal patterns or SiC mixed crystal patterns.
  • the gate electrodes are used in the dry etching process of the silicon substrate of FIG. If it can be used as a mask, it may contain other elements.
  • the SiGe mixed crystal layer 25 may contain other elements as long as it can serve as a mask in the dry etching of the underlying layer 23.
  • the silicon substrate is anisotropically etched in the direction perpendicular to the substrate surface using the first polycrystalline pattern of the first width as a mask, and the second polycrystal of the second width is used.
  • the first polycrystalline pattern is anisotropically etched in a direction perpendicular to the substrate surface, so that both sides of the region where the first polycrystalline pattern is formed in the silicon substrate.
  • First and second trenches are formed, and a gate electrode is formed in the center of the region in a self-aligned manner with a desired gate length by the first polycrystalline pattern.
  • the second polycrystalline pattern is obtained by selectively laterally etching the second polycrystalline film pattern on the first polycrystalline film pattern with respect to the first polycrystalline pattern, It should be noted that it is formed in a self-aligned manner in the central portion of the region. Therefore, the first polycrystalline pattern is anisotropically etched in the direction perpendicular to the substrate using the second polycrystalline pattern formed in this manner as a mask, so that the desired gate electrode is formed into the first polycrystalline pattern. The pattern makes it possible to reliably form the central portion of the region.
  • the first or second epitaxial semiconductor layer acting as a source of compressive or tensile stress to the first or second groove, and thus to the channel region of the semiconductor device is 20 nm from the side wall surface of the gate electrode. It can be formed at the following close distance, and the force S can be increased to increase the stress applied to the channel region of the stress application semiconductor device. That is, according to the present invention, the operation speed of the semiconductor device can be improved with a simple configuration and process.
  • the Ge concentration in the first polycrystalline pattern serving as the gate electrode is stepped in the film thickness direction by utilizing the fact that the etching rate of the SiGe mixed crystal layer varies with the Ge concentration.
  • the opposing side wall surfaces of the first and second groove portions can be formed in a shape inclined in opposite directions.
  • the shape of the side wall surface becomes a stepped surface or a continuous surface depending on whether the Ge concentration change in the first polycrystalline pattern is stepped or continuous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

Disclosed is a stress-applied semiconductor device comprising a gate electrode formed on a silicon substrate via a gate insulating film, a first and a second groove formed apart from each other in the silicon substrate respectively on a first and a second side of the gate electrode, and epitaxial layers respectively having a first and a second conductivity type which are composed of a mixed crystal of Si and another group IV element and respectively filled into the first and second grooves. In this stress-applied semiconductor device, the gate electrode is made of a polycrystalline substance composed of a mixed crystal of Si and another element.

Description

明 細 書  Specification
応力印加半導体装置およびその製造方法  Stress applying semiconductor device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は一般に半導体装置に係り、特に歪み印加により動作速度を向上させた応 力印加半導体装置およびその製造方法に関する。 背景技術  TECHNICAL FIELD [0001] The present invention generally relates to a semiconductor device, and more particularly, to a stress-applying semiconductor device in which an operation speed is improved by applying strain and a manufacturing method thereof. Background art
[0002] 微細化技術の進歩に伴い、今日では 30nm以下のゲート長を有する超微細化'超 高速半導体装置が可能になっている。  [0002] With the advancement of miniaturization technology, ultra-miniaturized 'ultra-high-speed semiconductor devices having a gate length of 30 nm or less are now possible.
[0003] このような超微細化 ·超高速トランジスタでは、ゲート電極直下のチャネル領域の面 積が、従来の半導体装置に比較して非常に小さぐこのためチャネル領域を走行す る電子あるいはホールの移動度は、このようなチャネル領域に印加された応力により 大きな影響を受ける。そこで、このようなチャネル領域に印加される応力を最適化して 、半導体装置の動作速度を向上させる試みが数多くなされている。  [0003] In such ultra-miniaturized / high-speed transistors, the area of the channel region directly below the gate electrode is very small compared to conventional semiconductor devices. Therefore, the electrons or holes traveling in the channel region are small. Mobility is greatly affected by the stress applied to such channel regions. Therefore, many attempts have been made to improve the operation speed of the semiconductor device by optimizing the stress applied to the channel region.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 特に pチャネル MOSトランジスタでは、チャネル領域に一軸性の圧縮応力を印加 することでキャリアの移動度が向上することが知られており、チャネル領域に圧縮応 力を印加する手段として、図 1に示す概略的構成が提案されてレ、る。  [0004] In particular, p-channel MOS transistors are known to improve carrier mobility by applying uniaxial compressive stress to the channel region. As a means for applying compressive stress to the channel region, The schematic configuration shown in Fig. 1 has been proposed.
[0005] 図 1を参照するに、シリコン基板 1上にはチャネル領域に対応してゲート電極 3が、 ゲート絶縁膜 2を介して形成されており、前記シリコン基板 1中には前記ゲート電極 3 の両側にチャネル領域を画成するように、 p型拡散領域 laおよび lbが形成されてい る。さらに前記ゲート電極 3の側壁には、前記シリコン基板 1の表面の一部をも覆うよう に側壁絶縁膜 3A, 3Bが形成されている。  Referring to FIG. 1, a gate electrode 3 is formed on a silicon substrate 1 corresponding to a channel region via a gate insulating film 2, and the gate electrode 3 is formed in the silicon substrate 1. The p-type diffusion regions la and lb are formed so as to define channel regions on both sides of the substrate. Further, side wall insulating films 3A and 3B are formed on the side wall of the gate electrode 3 so as to cover a part of the surface of the silicon substrate 1.
[0006] 前記拡散領域 la, lbはそれぞれ M〇Sトランジスタのソースおよびドレインエタステ ンシヨン領域として作用し、前記拡散領域 laから lbへと前記ゲート電極 3直下のチヤ ネル領域を輸送されるホールの流れが、前記ゲート電極 3に印加されたゲート電圧に より制御される。 [0007] 図 1の構成では、さらに前記シリコン基板 1中、前記側壁絶縁膜 3Aおよび 3Bのそ れぞれ外側に、 SiGe混晶層 1A, 1Bがシリコン基板 1に対してェピタキシャルに形成 されており、前記 SiGe混晶層 1A, 1B中には、それぞれ前記拡散領域 laおよび lb に連続する P型のソースおよびドレイン領域が形成されている。 [0006] The diffusion regions la and lb act as source and drain etching regions of the MOS transistor, respectively, and holes transported through the channel region directly below the gate electrode 3 from the diffusion region la to lb. The flow is controlled by the gate voltage applied to the gate electrode 3. In the configuration of FIG. 1, SiGe mixed crystal layers 1 A and 1 B are further formed on the silicon substrate 1 on the outer side of the sidewall insulating films 3 A and 3 B, respectively, with respect to the silicon substrate 1. In the SiGe mixed crystal layers 1A and 1B, P-type source and drain regions continuous with the diffusion regions la and lb are formed, respectively.
[0008] 図 1の構成の MOSトランジスタでは、前記 SiGe混晶層 1A, 1Bがシリコン基板 1に 対してより大きな格子定数を有するため、前記 SiGe混晶層 1A, IB中には矢印 aで 示す圧縮応力が形成され、その結果、 SiGe混晶層 1A, IBは、矢印 bで示す前記シ リコン基板 1の表面に略垂直な方向に歪む。  In the MOS transistor having the configuration of FIG. 1, since the SiGe mixed crystal layers 1A and 1B have a larger lattice constant than the silicon substrate 1, the SiGe mixed crystal layers 1A and IB are indicated by arrows a. As a result, compressive stress is formed, and as a result, the SiGe mixed crystal layers 1A and IB are distorted in a direction substantially perpendicular to the surface of the silicon substrate 1 indicated by an arrow b.
[0009] 前記 SiGe混晶層 1A, IBはシリコン基板 1に対してェピタキシャルに形成されてい るため、このような矢印 bで示す SiGe混晶層 1A, 1Bにおける歪みは対応する歪みを 、前記シリコン基板中の前記チャネル領域に、矢印 cで示すように誘起するが、かかる 歪みに伴い、前記チャネル領域には、矢印 dで示すように一軸性の圧縮応力が誘起 される。  [0009] Since the SiGe mixed crystal layers 1A and IB are formed epitaxially with respect to the silicon substrate 1, the strain in the SiGe mixed crystal layers 1A and 1B indicated by the arrow b is a corresponding strain. The channel region in the silicon substrate is induced as indicated by an arrow c. Along with this strain, a uniaxial compressive stress is induced in the channel region as indicated by an arrow d.
[0010] 図 1の MOSトランジスタでは、チャネル領域にこのような一軸性の圧縮応力が印加 される結果、前記チャネル領域を構成する Si結晶の対称性が局所的に変調され、さ らにかかる対称性の変化に伴って、重いホールの価電子帯と軽いホールの価電子帯 の縮退が解けるため、チャネル領域におけるホール移動度が増大し、トランジスタの 動作速度が向上する。このようなチャネル領域に局所的に誘起された応力によるホ ール移動度の増大およびこれに伴うトランジスタ動作速度の向上は、特にゲート長が lOOnm以下の超微細化半導体装置に顕著に現れる。  In the MOS transistor of FIG. 1, as a result of such uniaxial compressive stress being applied to the channel region, the symmetry of the Si crystal constituting the channel region is locally modulated, and this symmetry is further applied. As the characteristics change, the degeneration of the valence band of heavy holes and the valence band of light holes can be solved, so that the hole mobility in the channel region increases and the operation speed of the transistor improves. The increase in hole mobility and the accompanying increase in transistor operation speed due to the locally induced stress in the channel region are particularly noticeable in ultra-miniaturized semiconductor devices having a gate length of lOOnm or less.
[0011] 一方、 nチャネル MOSトランジスタにおいては、逆にチャネル領域に面内引張り応 力を印加するのが動作速度の向上に効果的であることが知られており、例えば図 2に 示すように、ゲート電極上に引張り応力を蓄積した応力膜を設け、ゲート電極をシリコ ン基板中のチャネル領域に対し、押圧する構成が提案されている。  On the other hand, in an n-channel MOS transistor, on the contrary, it is known that applying an in-plane tensile stress to the channel region is effective in improving the operation speed. For example, as shown in FIG. A configuration has been proposed in which a stress film in which tensile stress is accumulated is provided on the gate electrode, and the gate electrode is pressed against the channel region in the silicon substrate.
[0012] 図 2を参照するに、シリコン基板 11上には、ゲート絶縁膜 12を介して n+型ポリシリコ ンゲート電極 13が形成されており、前記シリコン基板 11中、前記ポリシリコンゲート電 極 13のそれぞれの側に n型ソースエクステンション領域 11aおよびドレインェクステン シヨン領域 1 lbが形成されている。 [0013] また前記ゲート電極 13の両側壁面上には、側壁酸化膜 14〇xを介して SiN膜より なる側壁絶縁膜 14Nが形成されており、前記シリコン基板 11中、前記側壁絶縁膜 1 4Nよりも外側の部分には、 n+型のソース領域 1 lcおよびドレイン領域 1 Idが形成さ れている。 Referring to FIG. 2, an n + -type polysilicon gate electrode 13 is formed on a silicon substrate 11 via a gate insulating film 12, and the polysilicon gate electrode 13 in the silicon substrate 11 is formed. On each side, an n-type source extension region 11a and a drain extension region 1 lb are formed. In addition, a sidewall insulating film 14N made of a SiN film is formed on both side wall surfaces of the gate electrode 13 via a sidewall oxide film 140x, and the sidewall insulating film 14N in the silicon substrate 11 is formed. An n + -type source region 1 lc and a drain region 1 Id are formed in the outer portion.
[0014] 前記ソース領域 11cおよびドレイン領域 l ld、さらに前記ゲート電極 13上には、そ れぞれシリサイド膜 15S, 15D, 15Gが形成されており、さらに前記シリコン基板 11上 には、前記シリサイド膜 15S, 15D, 15Gおよび前記側壁絶縁膜 14Nを連続して覆う ように、引張り応力を蓄積した SiN膜 16が形成されている。  [0014] Silicide films 15S, 15D, and 15G are formed on the source region 11c, the drain region lld, and the gate electrode 13, respectively, and the silicide film is further formed on the silicon substrate 11. A SiN film 16 in which tensile stress is accumulated is formed so as to continuously cover the films 15S, 15D, 15G and the sidewall insulating film 14N.
[0015] 力、かる SiN膜 16の引張り応力の作用により、前記ゲート電極 13は、前記シリコン基 板 11に向かって、基板面に垂直方向に付勢され、その結果、前記ゲート電極 13直 下のチャネル領域に、ゲート長方向に引張り応力が印加された場合と同様な歪みが 誘起される。  The gate electrode 13 is urged in a direction perpendicular to the substrate surface toward the silicon substrate 11 by the action of tensile force of the SiN film 16 due to force, and as a result, the gate electrode 13 is directly below the gate electrode 13. The same strain as that when tensile stress is applied in the gate length direction is induced in the channel region.
[0016] かかる引張り応力歪みにより、前記チャネル領域においては電子の移動度が増大 し、 nチャネル MOSトランジスタの動作速度が向上する。  [0016] Due to such tensile stress strain, the mobility of electrons increases in the channel region, and the operating speed of the n-channel MOS transistor is improved.
[0017] 一方、このような従来の pチャネルあるいは nチャネル MOSトランジスタにおいてさら にチャネル領域における応力値を増大させることができれば、その動作速度をさらに 向上させることができると考えられる。 [0017] On the other hand, if the stress value in the channel region can be further increased in such a conventional p-channel or n-channel MOS transistor, it is considered that the operation speed can be further improved.
課題を解決するための手段  Means for solving the problem
[0018] 一の側面において本発明は、シリコン基板と、前記シリコン基板上にゲート絶縁膜 を介して形成されたゲート電極と、前記シリコン基板中、前記ゲート電極の第 1および 第 2の側に、それぞれ離間して形成された第 1および第 2の溝部と、 Siと他の IV族元 素の混晶よりなり、前記第 1および第 2の溝部をそれぞれ充填する第 1および第 2の、 導電型を有するェピタキシャル層と、を備え、前記ゲート電極は、 Siと他の元素の混 晶よりなる多結晶体である応力印加半導体装置を提供する。  [0018] In one aspect, the present invention provides a silicon substrate, a gate electrode formed on the silicon substrate via a gate insulating film, and on the first and second sides of the gate electrode in the silicon substrate. The first and second groove portions formed separately from each other, and the first and second groove portions made of a mixed crystal of Si and another group IV element and filling the first and second groove portions, respectively. A stress-applying semiconductor device, wherein the gate electrode is a polycrystal made of a mixed crystal of Si and another element.
[0019] 他の側面において本発明は、シリコン基板上に、第 1の絶縁膜を介して、 Siと他の 元素の混晶よりなる第 1の多結晶膜を形成する工程と、前記第 1の多結晶膜上に、第 2の絶縁膜を介して、前記第 1の多結晶膜より前記他の元素の濃度の高い第 2の多 結晶膜を形成する工程と、前記第 1および第 2の多結晶膜を前記第 2の絶縁膜と共 にパターエングし、前記シリコン基板上に、第 1の幅を有する第 1の多結晶パターンと 、前記第 1の幅を有する第 2の多結晶パターンとが、前記第 1の幅を有する絶縁膜パ ターンを介して積層された積層構造を形成する工程と、前記積層構造に対して等方 性エッチングを行い、前記第 2の多結晶パターンの幅を、前記第 1の幅から第 2の幅 まで、前記第 1の多結晶パターンに対して選択的に縮小する工程と、前記第 1の多結 晶パターンをマスクに、前記シリコン基板に、異方性エッチングを行レ、、前記シリコン 基板中、前記積層構造の第 1および第 2の側に、それぞれ第 1および第 2の溝を形成 する工程と、前記第 2の多結晶パターンをマスクに、前記絶縁膜パターンおよび前記 第 1の多結晶パターンを異方性エッチングする工程と、前記第 1および第 2の溝を、 S iと他の IV族元素の混晶よりなる第 1および第 2の半導体層でェピタキシャルに充填 する工程と、を含むことを特徴とする応力印加半導体装置の製造方法を提供する。 発明の効果 In another aspect, the present invention provides a step of forming a first polycrystalline film made of a mixed crystal of Si and another element on a silicon substrate via a first insulating film; Forming a second polycrystalline film having a concentration of the other element higher than that of the first polycrystalline film on the polycrystalline film through a second insulating film; and the first and second A polycrystalline film of the same material as the second insulating film. The first polycrystalline pattern having the first width and the second polycrystalline pattern having the first width are formed on the silicon substrate by the insulating film pattern having the first width. A step of forming a laminated structure laminated via a turn, and isotropic etching is performed on the laminated structure, and the width of the second polycrystalline pattern is changed from the first width to the second width. A step of selectively reducing the first polycrystalline pattern, and anisotropic etching is performed on the silicon substrate using the first polycrystalline pattern as a mask. Forming the first and second grooves on the first and second sides of the laminated structure, respectively, and using the second polycrystalline pattern as a mask, the insulating film pattern and the first polycrystalline pattern Anisotropic etching and the first step And filling the second groove with first and second semiconductor layers made of a mixed crystal of Si and another group IV element in an epitaxial manner. Provide a method. The invention's effect
本発明によれば、前記第 1の幅の第 1の多結晶パターンをマスクにシリコン基板を 基板面に垂直方向に異方性エッチングし、また前記第 2の幅の第 2の多結晶パター ンをマスクに前記第 1の多結晶パターンを基板面に垂直方向に異方性エッチングす ることにより、前記シリコン基板中、前記第 1の多結晶パターンが形成されていた領域 の両側に、第 1および第 2の溝部が形成され、さらに前記第 1の多結晶パターンにより 、ゲート電極が前記領域の中央部に、所望のゲート長で自己整合的に形成される。 その際、前記第 2の多結晶パターンは、前記第 1の多結晶膜パターン上の第 2の多 結晶膜パターンを、前記第 1の多結晶パターンに対して選択的にラテラルエッチング することで、前記領域の中央部に自己整合的に形成されることに注意すべきである。 そこで、このようにして形成された第 2の多結晶パターンをマスクに前記第 1の多結晶 パターンを基板に垂直方向に異方性エッチングすることにより、所望のゲート電極を 前記第 1の多結晶パターンにより、前記領域の中央部に確実に形成することが可能 になる。これにより、前記第 1あるいは第 2の溝部、従って前記半導体装置のチャネル 領域への圧縮あるいは引張り応力源として作用する前記第 1あるいは第 2のェピタキ シャル半導体層を、前記ゲート電極の側壁面から 20nm以下の至近距離に形成する ことが可能となり、応力印加半導体装置のチャネル領域に印加される応力を増大さ せること力 S可能となる。すなわち本発明は、簡単な構成および工程で、半導体装置の 動作速度の向上を実現することができる。 According to the present invention, the silicon substrate is anisotropically etched in the direction perpendicular to the substrate surface using the first polycrystalline pattern having the first width as a mask, and the second polycrystalline pattern having the second width is used. The first polycrystalline pattern is anisotropically etched in the direction perpendicular to the substrate surface using the first and second masks as masks, so that the first polycrystalline pattern is formed on both sides of the region where the first polycrystalline pattern is formed in the silicon substrate. And the second groove portion is formed, and the gate electrode is formed in the center portion of the region in a self-aligned manner with a desired gate length by the first polycrystalline pattern. At this time, the second polycrystalline pattern is obtained by selectively laterally etching the second polycrystalline film pattern on the first polycrystalline film pattern with respect to the first polycrystalline pattern, It should be noted that it is formed in a self-aligned manner in the central portion of the region. Therefore, the first polycrystalline pattern is anisotropically etched in the direction perpendicular to the substrate using the second polycrystalline pattern formed in this manner as a mask, so that the desired gate electrode is formed into the first polycrystalline pattern. The pattern makes it possible to reliably form the central portion of the region. Thus, the first or second epitaxial semiconductor layer acting as a source of compressive or tensile stress to the first or second groove, and thus to the channel region of the semiconductor device, is 20 nm from the side wall surface of the gate electrode. It is possible to form the following close distances, increasing the stress applied to the channel region of the stress application semiconductor device. It is possible to force S. That is, according to the present invention, the operation speed of the semiconductor device can be improved with a simple configuration and process.
[0021] また本発明では、 SiGe混晶層のエッチング速度が Ge濃度で変化することを利用し て、前記ゲート電極となる前記第 1の多結晶パターン中の Ge濃度を膜厚方向に階段 状あるいは連続的に変化させることにより、前記第 1および第 2の溝部の相対向する 側壁面を相互に反対方向に向かって傾斜する形状に形成することが可能となる。そ の際、前記第 1の多結晶パターン中に Ge濃度変化が階段状であるか、連続的である かにより、前記側壁面の形状が階段面あるいは連続面となる。これにより、チャネル 領域への応力印加効果が大きいゲート絶縁膜とシリコン基板との界面近傍では、応 力源となる前記第 1および第 2の半導体層領域が互いに最も近接して形成される構 造が容易に得られる。  In the present invention, the Ge concentration in the first polycrystalline pattern serving as the gate electrode is stepped in the film thickness direction by utilizing the fact that the etching rate of the SiGe mixed crystal layer varies with the Ge concentration. Alternatively, by continuously changing, the opposing side wall surfaces of the first and second groove portions can be formed in a shape inclined toward opposite directions. At this time, the shape of the side wall surface becomes a stepped surface or a continuous surface depending on whether the Ge concentration change in the first polycrystalline pattern is stepped or continuous. As a result, in the vicinity of the interface between the gate insulating film and the silicon substrate where the effect of applying stress to the channel region is large, the first and second semiconductor layer regions serving as stress sources are formed closest to each other. Is easily obtained.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明の関連技術による応力印加半導体装置の構成を示す図である。  FIG. 1 is a diagram showing a configuration of a stress applying semiconductor device according to a related technique of the present invention.
[図 2]本発明の別の関連技術による応力印加半導体装置の構成を示す図である。  FIG. 2 is a diagram showing a configuration of a stress applying semiconductor device according to another related technique of the present invention.
[図 3A]本発明の第 1の実施形態による半導体装置の製造工程を示す図(その 1)で ある。  FIG. 3A is a view (No. 1) showing a step of manufacturing the semiconductor device according to the first embodiment of the invention.
[図 3B]本発明の第 1の実施形態による半導体装置の製造工程を示す図(その 2)であ る。  FIG. 3B is a diagram (part 2) illustrating the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
[図 3C]本発明の第 1の実施形態による半導体装置の製造工程を示す図(その 3)で ある。  FIG. 3C is a diagram (part 3) illustrating the manufacturing process of the semiconductor device according to the first embodiment of the present invention;
[図 3D]本発明の第 1の実施形態による半導体装置の製造工程を示す図(その 4)で ある。  FIG. 3D is a diagram (part 4) illustrating the manufacturing process of the semiconductor device according to the first embodiment of the present invention;
[図 3E]本発明の第 1の実施形態による半導体装置の製造工程を示す図(その 5)であ る。  FIG. 3E is a view (No. 5) showing a step of manufacturing a semiconductor device according to the first embodiment of the present invention;
[図 3F]本発明の第 1の実施形態による半導体装置の製造工程を示す図(その 6)であ る。  FIG. 3F is a view (No. 6) showing a step of manufacturing the semiconductor device according to the first embodiment of the invention.
[図 3G]本発明の第 1の実施形態による半導体装置の製造工程を示す図(その 7)で ある。 [図 3H]本発明の第 1の実施形態による半導体装置の製造工程を示す図(その 8)で ある。 FIG. 3G is a view (No. 7) showing a step of manufacturing a semiconductor device according to the first embodiment of the present invention; FIG. 3H is a view (No. 8) showing a step of manufacturing the semiconductor device according to the first embodiment of the present invention;
[図 4]SiGe混晶層のエッチング速度と Ge濃度の関係を示す図である。  FIG. 4 is a graph showing the relationship between the etching rate of the SiGe mixed crystal layer and the Ge concentration.
[図 5A]本発明の第 2の実施形態による半導体装置の製造工程を示す図(その 1)で ある。  FIG. 5A is a view (No. 1) showing a step of manufacturing a semiconductor device according to the second embodiment of the invention.
[図 5B]本発明の第 2の実施形態による半導体装置の製造工程を示す図(その 2)であ る。  FIG. 5B is a diagram (part 2) illustrating the manufacturing process of the semiconductor device according to the second embodiment of the present invention.
[図 5C]本発明の第 2の実施形態による半導体装置の製造工程を示す図(その 3)で ある。  FIG. 5C is a view (No. 3) illustrating the manufacturing process of the semiconductor device according to the second embodiment of the present invention.
[図 5D]本発明の第 2の実施形態による半導体装置の製造工程を示す図(その 4)で ある。  FIG. 5D is a view (No. 4) showing a manufacturing step of the semiconductor device according to the second embodiment of the present invention.
[図 5E]本発明の第 2の実施形態による半導体装置の製造工程を示す図(その 5)であ る。  FIG. 5E is a view (No. 5) showing a step of manufacturing a semiconductor device according to the second embodiment of the present invention;
[図 5F]本発明の第 2の実施形態による半導体装置の製造工程を示す図(その 6)であ る。  FIG. 5F is a view (No. 6) showing a manufacturing step of the semiconductor device according to the second embodiment of the present invention.
[図 5G]本発明の第 2の実施形態による半導体装置の製造工程を示す図(その 7)で ある。  FIG. 5G is a view (No. 7) showing a step of manufacturing a semiconductor device according to the second embodiment of the present invention;
[図 6A]本発明の第 3の実施形態による半導体装置の製造工程を示す図(その 1)で ある。  FIG. 6A is a view (No. 1) showing a step of manufacturing a semiconductor device according to a third embodiment of the invention.
[図 6B]本発明の第 3の実施形態による半導体装置の製造工程を示す図(その 2)であ る。  FIG. 6B is a diagram (part 2) illustrating the manufacturing process of the semiconductor device according to the third embodiment of the present invention.
[図 6C]本発明の第 3の実施形態による半導体装置の製造工程を示す図(その 3)で ある。  FIG. 6C is a view (No. 3) illustrating the manufacturing process of the semiconductor device according to the third embodiment of the present invention.
[図 6D]本発明の第 3の実施形態による半導体装置の製造工程を示す図(その 4)で ある。  FIG. 6D is a view (No. 4) showing a step of manufacturing the semiconductor device according to the third embodiment of the present invention.
[図 6E]本発明の第 3の実施形態による半導体装置の製造工程を示す図(その 5)であ る。  FIG. 6E is a view (No. 5) showing a step of manufacturing a semiconductor device according to the third embodiment of the present invention;
[図 6F]本発明の第 3の実施形態による半導体装置の製造工程を示す図(その 6)であ る。 FIG. 6F is a view (No. 6) showing a manufacturing step of the semiconductor device according to the third embodiment of the invention. The
[図 6G]本発明の第 3の実施形態による半導体装置の製造工程を示す図(その 7)で ある。  FIG. 6G is a view (No. 7) showing a step of manufacturing a semiconductor device according to the third embodiment of the present invention;
符号の説明  Explanation of symbols
[0023] 20, 40, 60 半導体装置 [0023] 20, 40, 60 Semiconductor device
21 基板  21 Board
21 A 素子領域  21 A element area
211 素子分離領域  211 Element isolation region
21TA, 21TB, 41TA, 41TB, 61TA, 61TB 溝部  21TA, 21TB, 41TA, 41TB, 61TA, 61TB Groove
21a, 21b ソース/ドレインエクステンション領域  21a, 21b Source / drain extension region
21c, 2 Id ソース/ドレイン領域  21c, 2 Id Source / drain region
21ta, 21tb, 41ta, 41tb, 61ta, 61tb 溝部側壁面  21ta, 21tb, 41ta, 41tb, 61ta, 61tb groove side wall
22, 22A ゲート絶縁膜  22, 22A Gate insulation film
23, 23a〜23d, 25、 43, 63 SiGe混晶層  23, 23a-23d, 25, 43, 63 SiGe mixed crystal layer
23 A, 25A, 25B、 43A, 43B, 63 A, 63B SiGe混晶層ノヽ。ターン  23 A, 25 A, 25 B, 43 A, 43 B, 63 A, 63 B SiGe mixed crystal layer. Turn
23B、 43C, 63C SiGe混晶ゲート電極  23B, 43C, 63C SiGe mixed crystal gate electrode
24 絶縁膜  24 Insulating film
24A, 24B, 24C 絶縁膜パターン  24A, 24B, 24C Insulating film pattern
25A, 25B 再成長 SiGe混晶層  25A, 25B regrown SiGe mixed crystal layer
26A〜26C Siキャップ膜  26A ~ 26C Si cap film
27A〜27C シリサイド層  27A ~ 27C Silicide layer
26 反射防止膜  26 Anti-reflective coating
R1 レジストパターン  R1 resist pattern
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] [第 1の実施形態] [0024] [First embodiment]
図 3A〜3Hは、本発明の第 1の実施形態による pチャネル M〇Sトランジスタ 20の製 造工程を示す図である。  3A to 3H are diagrams showing a manufacturing process of the p-channel MOS transistor 20 according to the first embodiment of the present invention.
[0025] 図 3Aを参照するに、シリコン基板 21上には素子分離領域 211により素子領域 21A が画成されており、前記素子領域 21A上には厚さが 0. 8〜: 1. 2nmのシリコン酸化 膜ないしシリコン酸窒化膜 22が形成されている。 Referring to FIG. 3A, element region 21A is formed on silicon substrate 21 by element isolation region 211. A silicon oxide film or silicon oxynitride film 22 having a thickness of 0.8 to 1.2 nm is formed on the element region 21A.
[0026] さらに前記シリコン基板 21上には前記シリコン酸窒化膜 22を覆うように、組成が Si [0026] Furthermore, the composition of the silicon substrate 21 is Si so as to cover the silicon oxynitride film 22.
Geで表される、 Geを 1〜30%の原子濃度で含む多結晶 SiGe混晶層 23が、 50 〜150nmの膜厚で形成されている。 pチャネルトランジスタを形成する場合には、こ の段階で前記 SiGe混晶層 23を p+型にドープしておく。なお、 n型 M〇Sトランジスタ を形成する場合には、前記 SiGe混晶層 23は n+型にドープする。  A polycrystalline SiGe mixed crystal layer 23 containing Ge at an atomic concentration of 1 to 30%, represented by Ge, is formed with a film thickness of 50 to 150 nm. In the case of forming a p-channel transistor, the SiGe mixed crystal layer 23 is doped p + type at this stage. When forming an n-type MOS transistor, the SiGe mixed crystal layer 23 is doped n + type.
[0027] 前記多結晶 SiGe混晶層 23上には、厚さが 10〜20nmのシリコン酸化膜 24を介し て、組成が Si Geで表される、 Geを 1〜30%の原子濃度で、ただし前記 SiGe混 晶層 23中の Ge濃度よりも多く含む(xく y)多結晶 SiGe混晶層 25が、 70〜120nmの 膜厚で形成されている。 [0027] On the polycrystalline SiGe mixed crystal layer 23, the composition is represented by Si Ge through a silicon oxide film 24 having a thickness of 10 to 20 nm, and Ge has an atomic concentration of 1 to 30%. However, the polycrystalline SiGe mixed crystal layer 25 containing (Ge) more than the Ge concentration in the SiGe mixed crystal layer 23 is formed with a film thickness of 70 to 120 nm.
[0028] さらに前記多結晶 SiGe混晶層 25上には反射防止膜 (BARC) 26を介してレジスト パターン R1力 所望のゲート長 Lgに対し Onmよりも大で 40nmよりも小さい幅 W1で 形成されている。 Further, a resist pattern R1 force is formed on the polycrystalline SiGe mixed crystal layer 25 via an antireflection film (BARC) 26 with a width W1 larger than Onm and smaller than 40 nm with respect to a desired gate length Lg. ing.
[0029] 次に図 3Bの工程において前記レジストパターン R1をマスクに、前記その下の層 23 〜26がパターユングされ、前記 SiGe混晶層 23に対応して SiGe混晶層パターン 23 Aが、シリコン酸化膜 24に対応してシリコン酸化膜パターン 24Aが、、前記 SiGe混晶 層 25に対応して SiGe混晶層パターン 25A力 前記幅 W1で形成される。  Next, in the step of FIG. 3B, using the resist pattern R1 as a mask, the underlying layers 23 to 26 are patterned, and a SiGe mixed crystal layer pattern 23A corresponding to the SiGe mixed crystal layer 23 is formed. A silicon oxide film pattern 24A corresponding to the silicon oxide film 24 is formed corresponding to the SiGe mixed crystal layer 25 with a SiGe mixed crystal layer pattern 25A force having the width W1.
[0030] さらに図 3Bの工程では、前記 SiGe混晶層パターン 23A, 25Aを含む積層パター ンをマスクに B +あるいは In +が前記シリコン基板 21中、例えば 10〜30nmの深さま でイオン注入され、前記素子領域において前記シリコン基板 21中、前記 SiGeパター ン 23Aの第 1および第 2の側に、 p +型ソース領域 21cおよび p +型ドレイン領域 21d がそれぞれ形成されている。  Further, in the step of FIG. 3B, B + or In + is ion-implanted in the silicon substrate 21 to a depth of, for example, 10 to 30 nm using the stacked pattern including the SiGe mixed crystal layer patterns 23A and 25A as a mask. In the element region, a p + type source region 21c and a p + type drain region 21d are formed in the silicon substrate 21 on the first and second sides of the SiGe pattern 23A, respectively.
[0031] ところで、 SiGe混晶は、 HBrをエッチングガスとしたドライエッチングに対して、図 4 に示すエッチング速度を示す。  Incidentally, the SiGe mixed crystal exhibits the etching rate shown in FIG. 4 with respect to dry etching using HBr as an etching gas.
[0032] 図 4を参照するに、 x = 0で前記 SiGe混晶が Geを含まない場合、エッチング速度は 約 120nmZ分であるのに対し、同じエッチング条件でも膜中の Ge濃度が増大すると エッチング速度も増大し、例えば Ge濃度が 50%の場合 (x = 0. 5)、エッチング速度 は 2倍近く増大することがわかる。エッチングに用いるプラズマ源、およびその他の条 件によって多少の差はある力 S、 Ge濃度が高いほどエッチレートが上昇する傾向は変 わらない。 [0032] Referring to FIG. 4, when x = 0 and the SiGe mixed crystal does not contain Ge, the etching rate is about 120 nmZ, whereas the etching rate increases when the Ge concentration in the film increases even under the same etching conditions. The rate also increases, for example when the Ge concentration is 50% (x = 0.5), the etching rate It can be seen that increases almost twice. Depending on the plasma source used for etching and other conditions, there is a slight difference in force.
[0033] そこで本発明では図 3Cの工程において、図 3Bの構造を通常のドライエッチング装 置に導入し、等方性エッチング条件でドライエッチングし、 Ge濃度の高い SiGeパタ ーン 25Aを Ge濃度の低い SiGeパターン 23Aに対して選択的に、ラテラルエツチン グにより、図中に矢印で示すようにスリミングし、所望のゲート長 (Lg)に対応した、幅 が W2 (W2く W1)の SiGe混晶層パターン 25Bを形成する。本実施形態では、 pチヤ ネル MOSトランジスタ 30は、 30nm以下のゲート長 Lgを有する。本実施例では HBr を主とした混合ガスを用いた力 他の C1や Fを含むガス、例えば CI , CF等を用いて  Therefore, in the present invention, in the process of FIG. 3C, the structure of FIG. 3B is introduced into a normal dry etching apparatus, and is dry-etched under isotropic etching conditions. The SiGe pattern with a width of W2 (W2 and W1) corresponding to the desired gate length (Lg) is slimmed as shown by the arrow in the figure by selective etching for the low SiGe pattern 23A. A mixed crystal layer pattern 25B is formed. In this embodiment, the p-channel MOS transistor 30 has a gate length Lg of 30 nm or less. In this example, a force using a mixed gas mainly composed of HBr is used, using other gases containing C1 and F, such as CI and CF.
2 4  twenty four
も、 SiGe混晶層の Ge濃度に依存したエッチングは可能である。  However, etching depending on the Ge concentration of the SiGe mixed crystal layer is possible.
[0034] 図 3Cの状態では、さらに前記スリミング工程の後、レジストパターン R1および反射 防止膜パターン 26Aが除去されている。なお図 3Cの等方性エッチングでは、前記 Si Ge混晶層パターン 25Bは両側からのラテラルエッチングにより形成されるため、その 下の SiGe混晶層パターン 23Aの中央部に確実に形成される。 In the state of FIG. 3C, after the slimming process, the resist pattern R1 and the antireflection film pattern 26A are removed. In the isotropic etching of FIG. 3C, since the Si Ge mixed crystal layer pattern 25B is formed by lateral etching from both sides, it is surely formed at the center of the SiGe mixed crystal layer pattern 23A below it.
[0035] 次に図 3Dの工程において、前記図 3Cの構造に対し、基板 21に対して主に垂直 方向に作用するドライエッチングが、前記 SiGe混晶層パターン 23Aおよび絶縁膜パ ターン 24Aをマスクに、 HBrに〇を添加したガスをエッチングガスとして使レ、、 Siに対 Next, in the step of FIG. 3D, dry etching acting mainly in a direction perpendicular to the substrate 21 with respect to the structure of FIG. 3C masks the SiGe mixed crystal layer pattern 23A and the insulating film pattern 24A. In addition, a gas in which 〇 is added to HBr is used as an etching gas.
2  2
して選択的に作用するエッチング条件で適用され、前記シリコン基板 21中、前記 Si Ge混晶層パターン 23Aの第 1および第 2の側に、溝部 21TA, 21TB力 それぞれ 前記ソース領域 21c、ドレイン領域 21dを超えない深さで形成される。前記溝部 21T A, 21TBは、互いに対向する側壁面 21ta, 21tbにより、それぞれ画成されている。  Are applied under etching conditions that act selectively, and in the silicon substrate 21, on the first and second sides of the Si Ge mixed crystal layer pattern 23A, the trenches 21TA and 21TB force, respectively, the source region 21c and the drain region, respectively. It is formed with a depth not exceeding 21d. The groove portions 21TA and 21TB are respectively defined by side wall surfaces 21ta and 21tb facing each other.
[0036] また図 3Dの工程では、前記溝部 21TA, 21TBの形成後、前記溝部 21TA, 21T Bの形成に際してマスクとして使われた SiGe混晶層パターン 23A力 その上の絶縁 膜パターン 24A共々、そのさらに上の SiGe混晶層パターン 25Bをマスクにパター二 ングされ、前記シリコン基板 21上、前記側壁面 21taと 21tbの間の領域の中央部に、 幅が W2の SiGe混晶層パターン 23B力 同じく幅が W2の絶縁膜パターン 24Bに覆 われて、ゲート電極として形成されている。この場合、前記 SiON膜 22Aがゲート絶 縁膜を構成する。 In the step of FIG. 3D, after the formation of the groove portions 21TA and 21TB, the SiGe mixed crystal layer pattern 23A force used as a mask when forming the groove portions 21TA and 21TB, together with the insulating film pattern 24A thereon, Further, the SiGe mixed crystal layer pattern 25B is patterned using the upper SiGe mixed crystal layer pattern 25B as a mask. The gate electrode is formed so as to be covered with the insulating film pattern 24B having a width of W2. In this case, the SiON film 22A is not gate-insulated. Constructs an edge membrane.
[0037] 次に図 3Eの工程において、図 3Dの構造は減圧 CVD装置に導入され、 400〜55 0°Cの基板温度で、水素、窒素、 Heあるいは Arなど不活性ガス雰囲気の分圧を 5〜 1330Paに設定し、さらにシラン(SiH )ガスを Siの気相原料として、 l〜10Paの分圧  Next, in the process of FIG. 3E, the structure of FIG. 3D is introduced into a reduced pressure CVD apparatus, and the partial pressure of an inert gas atmosphere such as hydrogen, nitrogen, He or Ar is changed at a substrate temperature of 400 to 550 ° C. Set to 5 to 1330 Pa, and silane (SiH) gas as Si gas phase raw material, l to 10 Pa partial pressure
4  Four
で、ゲルマン(GeH )ガスを Geの気相原料として、 0.:!〜 lOPaの分圧で、またジボ  Then, using germane (GeH) gas as the gas phase raw material of Ge, with a partial pressure of 0.:! To lOPa,
4  Four
ラン(B H )ガスをドーパントガスとして、 1 X 10— 5〜1 X 10— 3で、またさらに塩化水素(Run the (BH) gas as a dopant gas, at 1 X 10- 5 ~1 X 10- 3 , or even hydrogen chloride (
2 6 2 6
HC1)ガスエッチングガスとして、 1〜: !OPaの分圧で、 1〜40分間にわたり供給する。 これにより、前記トレンチ 21TA, 21TB中に p型 SiGe混晶層領域 25A, 25B力 S、そ れぞれェピタキシャル成長する。  HC1) Gas etching gas is supplied at 1 to:! OPa partial pressure for 1 to 40 minutes. Thus, p-type SiGe mixed crystal layer regions 25A and 25B force S are grown epitaxially in the trenches 21TA and 21TB, respectively.
[0038] 図 3Eの工程では、前記 p型 SiGe混晶層 25A, 25Bは、前記シリコン基板とゲート 絶縁膜 22Aの界面を超えて成長されてレ、る。  In the step of FIG. 3E, the p-type SiGe mixed crystal layers 25A and 25B are grown beyond the interface between the silicon substrate and the gate insulating film 22A.
[0039] 先に図 1で説明したように、このようにして形成された SiGeェピタキシャル層 25A,[0039] As described above with reference to FIG. 1, the SiGe epitaxial layer 25A thus formed is formed as described above.
25Bは前記ゲート電極 23B直下のチャネル領域を基板面に垂直方向に延伸するよう に作用し、その結果、前記チャネル領域には、ゲート長方向に一軸性圧縮応力が印 加された場合と等価な歪みが誘起される。 25B acts so as to extend the channel region directly below the gate electrode 23B in the direction perpendicular to the substrate surface. As a result, the channel region is equivalent to the case where uniaxial compressive stress is applied in the gate length direction. Distortion is induced.
[0040] なお図 3Eの工程では、前記ゲート電極 23Bは絶縁膜パターン 24Bで覆われてい るため、この上には SiGe混晶層の成長は生じない。 In the step of FIG. 3E, since the gate electrode 23B is covered with the insulating film pattern 24B, no SiGe mixed crystal layer grows on the gate electrode 23B.
[0041] 次に図 3Fの工程において、図 3Eの構造に対して p型不純物元素、例えば Bあるい は Inがイオン注入され、前記シリコン基板 21のうち、前記側壁面 21 ta, 21tbで画成 された領域中、前記ゲート電極 23Bの両側に、 p型ソースエクステンション領域 21aお よびドレインエクステンション領域 21bが形成される。 Next, in the process of FIG. 3F, a p-type impurity element, for example, B or In is ion-implanted into the structure of FIG. 3E, and the sidewalls 21 ta and 21tb of the silicon substrate 21 are defined. In the formed region, a p-type source extension region 21a and a drain extension region 21b are formed on both sides of the gate electrode 23B.
[0042] さらに図 3Gの工程において、前記ゲート電極 23B上に一対の側壁絶縁膜 23WがFurther, in the step of FIG. 3G, a pair of side wall insulating films 23W are formed on the gate electrode 23B.
、シリコン酸化膜あるいはシリコン窒化膜の CVD法による堆積およびエッチバックに より形成され、さらに前記 SiGe混晶層 25A, 25B上に、それぞれ p型の Siキャップ層In addition, a silicon oxide film or silicon nitride film is formed by CVD deposition and etchback, and a p-type Si cap layer is formed on each of the SiGe mixed crystal layers 25A and 25B.
26A, 26Bがェピタキシャルに形成され、またポリシリコンキャップ膜 26Cが前記 SiG eゲート電極 23B上に形成される。 26A and 26B are formed epitaxially, and a polysilicon cap film 26C is formed on the SiGe gate electrode 23B.
[0043] これらの Siキャップ層 26A〜26Cは、シリサイド形成の下地層として使われ、次の図[0043] These Si cap layers 26A to 26C are used as an underlayer for silicide formation.
3Hの工程においてサリサイド法により、前記 Siキャップ層 26A〜26C上に、 NiSiや CoSiなどよりなるシリサイド層 27A〜27C力 それぞれ形成される。特に前記サリサOn the Si cap layers 26A to 26C by the salicide method in the 3H process, NiSi or Silicide layers made of CoSi or the like 27A to 27C are formed respectively. Especially the Salisa
2 2
イド工程の下地として、 Geを含まない Siキャップ層を形成することで、サリサイド工程 を安定して実行し、所望の低抵抗シリサイド層を形成することが可能となる。  By forming a Si cap layer that does not contain Ge as a base for the id process, the salicide process can be stably performed and a desired low-resistance silicide layer can be formed.
[0044] 先にも述べたように、このようにして形成された pチャネル M〇Sトランジスタ 20では、 前記 SiGe混晶層 25A, 25Bが応力源となって、前記ゲート電極 23B直下のチヤネ ノレ領域に、ゲート長方向に作用する一軸性圧縮応力が印加され、ホールの移動度 が向上し、トランジスタの動作速度が向上する。  [0044] As described above, in the p-channel MOS transistor 20 formed in this way, the SiGe mixed crystal layers 25A and 25B serve as stress sources, and the channel transistors directly under the gate electrode 23B are used. Uniaxial compressive stress acting in the gate length direction is applied to the region, hole mobility is improved, and transistor operation speed is improved.
[0045] その際、本実施形態では、前記側壁面 21a, 21bとゲート電極 23Bの間隔が、図 3 Cのラテラルエッチングにより制御されるため、前記 SiGe混晶層 25A, 25Bを、前記 溝部 21TA, 21TBを前記側壁絶縁膜 23Wをマスクに形成する従来の技術に比べ て、前記ゲート電極 23Bに近接して、例えば前記側壁面 21taあるいは 21tbから前 記ゲート電極 23Bの対応する側壁面までの距離ひ(図 3F参照)を、 Onmよりは大き レ、が 20nm以下の任意に距離に形成することが可能となり、前記一軸性圧縮応力の 大きさを増大させることができる。  At this time, in this embodiment, since the distance between the side wall surfaces 21a, 21b and the gate electrode 23B is controlled by the lateral etching of FIG. 3C, the SiGe mixed crystal layers 25A, 25B are replaced with the groove portions 21TA. Compared to the conventional technique in which 21 TB is formed using the side wall insulating film 23W as a mask, the distance from the side wall surface 21ta or 21tb to the corresponding side wall surface of the gate electrode 23B is close to the gate electrode 23B, for example. As shown in FIG. 3F, it is possible to form the wings (see FIG. 3F) at an arbitrary distance that is 20 nm or less larger than Onm, thereby increasing the magnitude of the uniaxial compressive stress.
[0046] さらに図 3Cのラテラルエッチング工程により、前記ゲート電極 23Bは、前記側壁面  Further, the gate electrode 23B is formed on the side wall surface by the lateral etching process of FIG. 3C.
21taから 21tbの間のシリコン基板領域の中央部に確実に形成されるため、素子特 性のばらつきも抑制される。  Since it is reliably formed in the center of the silicon substrate region between 21ta and 21tb, variations in device characteristics are also suppressed.
[0047] なお、図 3A〜3Hの構成において、前記 SiGe混晶層 25A, 25Bを、 C (炭素)を 0· 1〜: 10%の原子濃度で含む SiC混晶層により置き換え、また前記ソース領域 21c、ド レイン領域 21dに p型不純物元素の代わりに n型不純物元素を導入し、さらにソース エクステンション領域 21a, ドレインエクステンション領域 21bに n型不純物元素を導 入することにより、 nチャネル M〇Sトランジスタを構成することも可能である。この場合 には、 SiC混晶がシリコン基板 21よりも小さい格子定数を有するため、前記応力源領 域 25A, 25Bは下方に収縮し、これに伴って前記ゲート電極 23B直下のチャネル領 域には、ゲート長方向に作用する一軸性引張り応力が発生する。  3A to 3H, the SiGe mixed crystal layers 25A and 25B are replaced with a SiC mixed crystal layer containing C (carbon) at an atomic concentration of 0.1 to 10%, and the source By introducing an n-type impurity element into the region 21c and the drain region 21d instead of the p-type impurity element, and then introducing the n-type impurity element into the source extension region 21a and the drain extension region 21b, an n-channel MS It is also possible to constitute a transistor. In this case, since the SiC mixed crystal has a lattice constant smaller than that of the silicon substrate 21, the stress source regions 25A and 25B contract downward, and accordingly, the channel region immediately below the gate electrode 23B does not enter the channel region. A uniaxial tensile stress acting in the gate length direction is generated.
[0048] このように、図 3Hの構成を使って nチャネル M〇Sトランジスタを形成する場合、前 記ゲート電極 23B、およびその上のハードマスク膜 25には、先に説明したと同様に S iGe混晶層を使うことが可能である。 [第 2の実施形態] [0048] As described above, when an n-channel MOS transistor is formed using the configuration of FIG. 3H, the gate electrode 23B and the hard mask film 25 thereabove are formed with S as described above. It is possible to use an iGe mixed crystal layer. [Second Embodiment]
次に、本発明の第 2の実施形態による半導体装置の製造工程を、図 5A〜5Gを参 照しながら説明する。ただし図中、先に説明した部分には対応する参照符号を付し、 説明を省略する。  Next, a manufacturing process of the semiconductor device according to the second embodiment of the present invention will be described with reference to FIGS. However, in the figure, the parts described above are denoted by corresponding reference numerals, and the description thereof is omitted.
[0049] 図 5Aを参照するに、本実施形態では前記 SiGe混晶層 23の代わりに、 Ge組成の 異なる SiGe混晶層 23a〜23dの積層により構成された SiGe混晶層 43が使われ、前 記 SiGe混晶層 43中において Ge組成は、前記 SiGe混晶層 23aから 23dに向かって 、原子濃度で:!〜 30%の範囲で、階段状に増大している。また前記 SiGe混晶層 25 は、前記 SiGe混晶層 43中の最大 Ge濃度よりも高い Ge濃度を有している。  Referring to FIG. 5A, in this embodiment, instead of the SiGe mixed crystal layer 23, a SiGe mixed crystal layer 43 configured by stacking SiGe mixed crystal layers 23a to 23d having different Ge compositions is used. In the SiGe mixed crystal layer 43, the Ge composition increases stepwise in the atomic concentration range of:! -30% from the SiGe mixed crystal layer 23a to 23d. The SiGe mixed crystal layer 25 has a Ge concentration higher than the maximum Ge concentration in the SiGe mixed crystal layer 43.
[0050] 本実施形態においても、図 5Bの工程において幅が W1のレジストパターン R1を使 つて、前記層 23〜26の積層構造がパターユングされ、これに伴って、前記 SiGe混 晶層 43から SiGe混晶層パターン 43Aが形成される。さらに p型不純物元素をイオン 注入することにより、前記シリコン基板 21中に、前記素子領域 21Aに対応して p+型 のソース領域 21cおよびドレイン領域 2 Idが形成される。  [0050] Also in the present embodiment, the laminated structure of the layers 23 to 26 is patterned using the resist pattern R1 having a width W1 in the step of FIG. 5B, and accordingly, from the SiGe mixed crystal layer 43. A SiGe mixed crystal layer pattern 43A is formed. Further, by ion implantation of a p-type impurity element, a p + -type source region 21c and a drain region 2 Id are formed in the silicon substrate 21 corresponding to the element region 21A.
[0051] 次に図 5Cの工程において、先の図 3Cの工程と同様に、等方性エッチング条件で ドライエッチングを行うことにより、前記 SiGe混晶層パターン 25Aに対してスリミングを 行レ、、 pチャネル MOSトランジスタのゲート長設計値に対応した W2の幅のパターン 2 5Bを形成する。  Next, in the process of FIG. 5C, similarly to the process of FIG. 3C, by performing dry etching under isotropic etching conditions, slimming is performed on the SiGe mixed crystal layer pattern 25A. Form a W2 width pattern 25B corresponding to the gate length design value of the p-channel MOS transistor.
[0052] 図 5Cの工程では、この等方性ドライエッチング工程の際に、前記 SiGe混晶層 23a 〜23dも、それぞれスリミングを、膜中の Ge濃度に対応した量だけ受け、その結果、 前記 SiGe混晶層パターン 43Aから、階段状の形状の SiGe混晶層パターン 43Bが 形成される。  In the process of FIG. 5C, during the isotropic dry etching process, the SiGe mixed crystal layers 23a to 23d are also subjected to slimming by an amount corresponding to the Ge concentration in the film, respectively. A SiGe mixed crystal layer pattern 43B having a stepped shape is formed from the SiGe mixed crystal layer pattern 43A.
[0053] そこで、図 5Dの工程において、シリコン基板 21に対し、前記 SiGe混晶層パターン 43Bをマスクに、主として基板面に垂直方向に作用する異方性エッチングを適用す ることにより、前記素子領域 21Aにおいて前記シリコン基板 21中、前記 SiGe混晶層 パターン 43Bの両側に、前記溝部 21TA, 21TBに対応した溝部 41TA, 41TBが形 成される。ここで前記溝部 41TA, 41TBは、前記側壁面 21ta, 21tbに対応して、相 対向する一対の側壁面 41ta, 41tbによりそれぞれ画成されている力 前記側壁面 4 lta, 41tbは、前記 SiGe混晶層パターン 43Bの段差形状に対応した段差形状を有 しており、全体として、相反する方向に傾斜している。すなわち、側壁面 41ta, 41tb 間の距離は、前記シリコン基板 21とゲート絶縁膜 22の界面から下方に向かって、階 段状に増大する。 Therefore, in the step of FIG. 5D, by applying anisotropic etching acting mainly in the direction perpendicular to the substrate surface to the silicon substrate 21 using the SiGe mixed crystal layer pattern 43B as a mask, the element In the region 21A, grooves 41TA and 41TB corresponding to the grooves 21TA and 21TB are formed on both sides of the SiGe mixed crystal layer pattern 43B in the silicon substrate 21. Here, the groove portions 41TA and 41TB correspond to the side wall surfaces 21ta and 21tb, and are respectively defined by a pair of opposing side wall surfaces 41ta and 41tb. lta and 41tb have a step shape corresponding to the step shape of the SiGe mixed crystal layer pattern 43B, and as a whole, they are inclined in opposite directions. That is, the distance between the side wall surfaces 41ta and 41tb increases stepwise from the interface between the silicon substrate 21 and the gate insulating film 22 downward.
[0054] 本実施形態においても、前記溝部 41TA, 41TBは、前記ソース領域 21c, ドレイン 領域 2 Idを超えないように形成される。  Also in the present embodiment, the groove portions 41TA and 41TB are formed so as not to exceed the source region 21c and the drain region 2 Id.
[0055] また図 5Dの工程では、このような基板面に垂直方向に作用するドライエッチングに よる溝部 41TA, 41TBの形成に伴レ、、前記 SiGe混晶層パターン 43Bを構成する Si Ge混晶層 23a〜23bも、直上のパターンをマスクに、順次エッチングを受け、所望の ゲート長設計値に対応した幅 W2の積層パターン 43Cが形成される。ここで、前記積 層パターン 43Cの幅 W2は、図 5Cの工程における絶縁膜パターン 24Bを前記 SiGe 混晶層パターン 25Bをマスクにパターユングして得られる絶縁膜パターン 24Cにより 決定されている。  In the step of FIG. 5D, the Si Ge mixed crystal constituting the SiGe mixed crystal layer pattern 43B is formed along with the formation of the groove portions 41TA and 41TB by dry etching acting in the direction perpendicular to the substrate surface. The layers 23a to 23b are also sequentially etched using the pattern immediately above as a mask, and a stacked pattern 43C having a width W2 corresponding to a desired gate length design value is formed. Here, the width W2 of the stacked layer pattern 43C is determined by the insulating film pattern 24C obtained by patterning the insulating film pattern 24B in the step of FIG. 5C using the SiGe mixed crystal layer pattern 25B as a mask.
[0056] 前記積層パターン 43Cは、 pチャネル MOSトランジスタ 40のゲート電極を構成する  [0056] The stacked pattern 43C constitutes the gate electrode of the p-channel MOS transistor 40.
[0057] 次に図 5Eの工程において、前記絶縁膜パターン 24Cをマスクに、前記溝部 41TA , 41TB中を SiGe混晶層 25A, 25Bで、先の図 3Eの工程と同様に再成長工程によ りェピタキシャルに充填し、さらに図 5Fの工程において、シリコン基板 21のうち、前記 SiGe混晶層 25A, 25Bの間の領域に、前記ソースエクステンション領域 21aおよび ドレインエクステンション領域 21bが、前記ゲート電極 23Cをマスクに p型不純物元素 をイオン注入することにより形成される。 Next, in the step of FIG. 5E, the insulating film pattern 24C is used as a mask, and the trenches 41TA and 41TB are SiGe mixed crystal layers 25A and 25B. In the step of FIG. 5F, the source extension region 21a and the drain extension region 21b are provided in the region between the SiGe mixed crystal layers 25A and 25B in the silicon substrate 21 in the step of FIG. 5F. It is formed by ion implantation of a p-type impurity element using as a mask.
[0058] さらに図 5Gの工程において、前記ゲート電極 43Cの側壁面に、側壁絶縁膜 23W が、先の図 3Gの工程と同様にして形成され、さらに引き続き、図示はしないが図 3G および図 3Hと同様な工程を経て、 pチャネル MOSトランジスタ 40が完成する。  Further, in the step of FIG. 5G, a sidewall insulating film 23W is formed on the side wall surface of the gate electrode 43C in the same manner as in the previous step of FIG. 3G. Further, although not shown, FIG. 3G and FIG. The p-channel MOS transistor 40 is completed through the same process as in FIG.
[0059] 本実施形態においては、前記 SiGe混晶層 25A, 25Bの側壁面を、互いに相反す る傾斜面とすることができ、チャネルが形成されるシリコン基板 21の表面部分では応 力源となる SiGe混晶層 25A, 25Bを近接させてチャネルに印加される応力を最大化 すると同時に、シリコン基板 21中、深部においては SiGe混晶層 25A, 25Bを離間さ せ、これらをソース領域 21c、ドレイン領域 21dにより確実に内包することが可能となる 。これにより、バンドギャップの小さい p型 SiGe層がバンドギャップの大きい n型シリコ ン基板 21と直接に接することによるリーク電流の発生を抑制することが可能となる。 [0059] In the present embodiment, the sidewall surfaces of the SiGe mixed crystal layers 25A and 25B can be inclined surfaces opposite to each other, and the surface portion of the silicon substrate 21 where the channel is formed has a stress source. SiGe mixed crystal layers 25A and 25B are placed close to each other to maximize the stress applied to the channel, and at the same time, the SiGe mixed crystal layers 25A and 25B are spaced apart from each other in the silicon substrate 21. Thus, these can be surely included in the source region 21c and the drain region 21d. As a result, it is possible to suppress the occurrence of leakage current due to the p-type SiGe layer having a small band gap being in direct contact with the n-type silicon substrate 21 having a large band gap.
[0060] なお、図 5A〜5Gの構成において、前記 SiGe混晶層 25A, 25Bを、 C (炭素)を 0.  [0060] In the configurations shown in FIGS. 5A to 5G, the SiGe mixed crystal layers 25A and 25B are set to C (carbon) of 0.
1〜: 10%の原子濃度で含む SiC混晶層により置き換え、また前記ソース領域 21c、ド レイン領域 21dに p型不純物元素の代わりに n型不純物元素を導入し、さらにソース ェクステンション領域 21 a, ドレインェクステンション領域 21 bに n型不純物元素を導 入することにより、 nチャネル M〇Sトランジスタを構成することも可能である。この場合 には、 SiC混晶がシリコン基板 21よりも小さい格子定数を有するため、前記応力源領 域 25A, 25Bは下方に収縮し、これに伴って前記ゲート電極 23B直下のチャネル領 域には、ゲート長方向に作用する一軸性引張り応力が発生する。  1 to: Replaced by a SiC mixed crystal layer containing an atomic concentration of 10%, and introduced an n-type impurity element in place of the p-type impurity element in the source region 21c and drain region 21d, and then the source extension region 21 It is also possible to configure an n-channel MOS transistor by introducing an n-type impurity element into a and the drain extension region 21 b. In this case, since the SiC mixed crystal has a lattice constant smaller than that of the silicon substrate 21, the stress source regions 25A and 25B contract downward, and accordingly, the channel region immediately below the gate electrode 23B does not enter the channel region. A uniaxial tensile stress acting in the gate length direction is generated.
[0061] このように、図 5Gの構成を使って nチャネル M〇Sトランジスタを形成する場合、前 記ゲート電極 43B、およびその上のハードマスク膜 25には、先に説明したと同様に S iGe混晶層を使うことが可能である。  As described above, when an n-channel MOS transistor is formed using the configuration shown in FIG. 5G, the gate electrode 43B and the hard mask film 25 thereon are provided with S as described above. It is possible to use an iGe mixed crystal layer.
[第 3の実施形態]  [Third embodiment]
次に、本発明の第 3の実施形態による pチャネル MOSトランジスタ 60の製造工程を 、図 6A〜6Gを参照しながら説明する。ただし図中、先に説明した部分に対応する部 分には同一の参照符号を付し、説明を省略する。  Next, a manufacturing process of the p-channel MOS transistor 60 according to the third embodiment of the present invention will be described with reference to FIGS. However, in the figure, the same reference numerals are assigned to the portions corresponding to the portions described above, and the description thereof is omitted.
[0062] 図 6Aを参照するに、本実施形態では前記 SiGe混晶層 43の代わりに、 Ge組成を 下端から上端まで連続的に増加させた SiGe混晶層 63が使われ、前記 SiGe混晶層 63中にぉレ、て Ge組成は原子濃度で:!〜 30 %の範囲内である。また前記 SiGe混晶 層 25は、前記 SiGe混晶層 63中の最大 Ge濃度よりも高い Ge濃度を有している。  [0062] Referring to FIG. 6A, in the present embodiment, instead of the SiGe mixed crystal layer 43, a SiGe mixed crystal layer 63 in which the Ge composition is continuously increased from the lower end to the upper end is used. In the layer 63, the Ge composition is in the range of! ~ 30% in atomic concentration. The SiGe mixed crystal layer 25 has a Ge concentration higher than the maximum Ge concentration in the SiGe mixed crystal layer 63.
[0063] 本実施形態においても、図 6Bの工程において幅が W1のレジストパターン R1を使 つて、前記層 23〜26の積層構造がパターユングされ、これに伴って、前記 SiGe混 晶層 63から SiGe混晶層パターン 63Aが形成される。さらに p型不純物元素をイオン 注入することにより、前記シリコン基板 21中に、前記素子領域 21Aに対応して p+型 のソース領域 21cおよびドレイン領域 2 Idが形成される。  [0063] Also in the present embodiment, the laminated structure of the layers 23 to 26 is patterned using the resist pattern R1 having a width W1 in the step of FIG. 6B, and accordingly, from the SiGe mixed crystal layer 63. A SiGe mixed crystal layer pattern 63A is formed. Further, by ion implantation of a p-type impurity element, a p + -type source region 21c and a drain region 2 Id are formed in the silicon substrate 21 corresponding to the element region 21A.
[0064] 次に図 6Cの工程において、先の図 3Cの工程と同様に、等方性エッチング条件で ドライエッチングを行うことにより、前記 SiGe混晶層パターン 25Aに対してスリミングを 行レ、、 pチャネル MOSトランジスタのゲート長設計値に対応した W2の幅のパターン 2 5Bを形成する。 [0064] Next, in the process of FIG. 6C, as in the process of FIG. By performing dry etching, slimming is performed on the SiGe mixed crystal layer pattern 25A, and a pattern 25B having a width of W2 corresponding to the gate length design value of the p-channel MOS transistor is formed.
[0065] 図 6Cの工程では、この等方性ドライエッチング工程の際に、前記 SiGe混晶層バタ ーン 63Aも、膜中の Ge濃度に対応した量だけ受け、その結果、前記 SiGe混晶層パ ターン 63Aから、連続的な斜面で画成された SiGe混晶層パターン 63Bが形成される  In the process of FIG. 6C, during this isotropic dry etching process, the SiGe mixed crystal pattern 63A is also received in an amount corresponding to the Ge concentration in the film, and as a result, the SiGe mixed crystal SiGe mixed crystal layer pattern 63B defined by continuous slope is formed from layer pattern 63A
[0066] そこで、図 6Dの工程において前記シリコン基板 21に対し、前記 SiGe混晶層パタ ーン 63Bをマスクに、主として基板面に垂直方向に作用する異方性エッチングを適 用することにより、前記素子領域 21Aにおいて前記シリコン基板 21中、前記 SiGe混 晶層パターン 43Bの両側に、前記溝部 41TA, 41TBに対応した溝部 61TA, 61T Bが形成される。ここで前記溝部 61TA, 61TBは、前記側壁面 41ta, 41tbに対応し て、相対向する一対の側壁面 61ta, 61tbによりそれぞれ画成されているが、前記側 壁面 61ta, 61tbは、前記 SiGe混晶層パターン 63Bの傾斜側壁面に対応した斜面 形状を有しており、全体として、相反する方向に傾斜している。すなわち、側壁面 61t a, 61tb間の距離は、前記シリコン基板 21とゲート絶縁膜 22の界面から下方に向か つて、連続的に増大する。 Therefore, in the step of FIG. 6D, by applying anisotropic etching mainly acting in the direction perpendicular to the substrate surface to the silicon substrate 21 using the SiGe mixed crystal layer pattern 63B as a mask, In the element region 21A, grooves 61TA and 61TB corresponding to the grooves 41TA and 41TB are formed in the silicon substrate 21 on both sides of the SiGe mixed crystal layer pattern 43B. Here, the groove portions 61TA and 61TB are defined by a pair of opposite side wall surfaces 61ta and 61tb corresponding to the side wall surfaces 41ta and 41tb, respectively. However, the side wall surfaces 61ta and 61tb are formed by the SiGe mixture. The crystal layer pattern 63B has an inclined shape corresponding to the inclined side wall surface, and is inclined in opposite directions as a whole. That is, the distance between the side wall surfaces 61ta and 61tb continuously increases from the interface between the silicon substrate 21 and the gate insulating film 22 downward.
[0067] 本実施形態においても、前記溝部 61TA, 61TBは、前記ソース領域 21c, ドレイン 領域 2 Idを超えないように形成される。  Also in the present embodiment, the groove portions 61TA and 61TB are formed so as not to exceed the source region 21c and the drain region 2 Id.
[0068] また図 6Dの工程では、このような基板面に垂直方向に作用するドライエッチングに よる溝部 61TA, 61TBの形成に伴い、前記 SiGe混晶層パターン 63Bも順次エッチ ングを受け、所望のゲート長設計値に対応した幅 W2の SiGe混晶層パターン 63Cが 形成される。ここで、前記 SiGe混晶層パターン 63Cの幅 W2は、図 6Cの工程におけ る絶縁膜パターン 24Bを、前記 SiGe混晶層パターン 25Bをマスクにパターユングし て得られる絶縁膜パターン 24Cにより決定されている。  In the step of FIG. 6D, along with the formation of the groove portions 61TA and 61TB by dry etching acting in the direction perpendicular to the substrate surface, the SiGe mixed crystal layer pattern 63B is also sequentially etched to obtain a desired A SiGe mixed crystal layer pattern 63C with a width W2 corresponding to the gate length design value is formed. Here, the width W2 of the SiGe mixed crystal layer pattern 63C is determined by the insulating film pattern 24C obtained by patterning the insulating film pattern 24B in the process of FIG. 6C using the SiGe mixed crystal layer pattern 25B as a mask. Has been.
[0069] 前記 SiGe混晶層パターン 63Cは、 pチャネル M〇Sトランジスタ 60のゲート電極を 構成する。  [0069] The SiGe mixed crystal layer pattern 63C constitutes the gate electrode of the p-channel MOS transistor 60.
[0070] 次に図 6Eの工程において、前記絶縁膜パターン 24Cをマスクに、前記溝部 61TA , 61TB中を SiGe混晶層 25A, 25Bで、先の図 5Eの工程と同様に再成長工程によ りェピタキシャルに充填し、さらに図 6Fの工程において、前記シリコン基板 21のうち、 前記 SiGe混晶層 65A, 65Bの間の領域に、前記ソースエクステンション領域 21aお よびドレインエクステンション領域 21bが、前記ゲート電極 63Cをマスクに p型不純物 元素をイオン注入することにより形成される。 Next, in the step of FIG. 6E, using the insulating film pattern 24C as a mask, the groove 61TA , 61TB are filled with SiGe mixed crystal layers 25A and 25B by a regrowth process similarly to the process of FIG. 5E, and in the process of FIG. In the region between the mixed crystal layers 65A and 65B, the source extension region 21a and the drain extension region 21b are formed by ion implantation of a p-type impurity element using the gate electrode 63C as a mask.
[0071] さらに図 6Gの工程において、前記ゲート電極 63Cの側壁面に、側壁絶縁膜 23W が、先の図 5Gの工程と同様にして形成され、さらに引き続き、図示はしないが図 3G および図 3Hと同様な工程を経て、 pチャネル MOSトランジスタ 60が完成する。  Further, in the step of FIG. 6G, a side wall insulating film 23W is formed on the side wall surface of the gate electrode 63C in the same manner as in the previous step of FIG. 5G. Further, although not shown, FIG. 3G and FIG. The p-channel MOS transistor 60 is completed through the same process as in FIG.
[0072] 本実施形態においては、前記 SiGe混晶層 25A, 25Bの側壁面を、互いに相反す る傾斜面とすることができ、チャネルが形成されるシリコン基板 21の表面部分では応 力源となる SiGe混晶層 25A, 25Bを近接させてチャネルに印加される応力を最大化 すると同時に、シリコン基板 21中、深部においては SiGe混晶層 25A, 25Bを離間さ せ、これらをソース領域 21c、ドレイン領域 21dにより確実に内包することが可能となる 。これにより、バンドギャップの小さい p型 SiGe層がバンドギャップの大きい n型シリコ ン基板 21と直接に接することによるリーク電流の発生を抑制することが可能となる。  [0072] In the present embodiment, the sidewall surfaces of the SiGe mixed crystal layers 25A and 25B can be inclined surfaces that are opposite to each other, and the surface portion of the silicon substrate 21 where the channel is formed has a stress source. The SiGe mixed crystal layers 25A and 25B are made close to each other to maximize the stress applied to the channel, and at the same time, the SiGe mixed crystal layers 25A and 25B are spaced apart from each other in the silicon substrate 21, and these are separated into the source region 21c, The drain region 21d can be surely included. As a result, it is possible to suppress the occurrence of leakage current due to the p-type SiGe layer having a small band gap being in direct contact with the n-type silicon substrate 21 having a large band gap.
[0073] なお、図 6A〜6Gの構成において、前記 SiGe混晶層 25A, 25Bを、 C (炭素)を 0.  [0073] In the configurations of Figs. 6A to 6G, the SiGe mixed crystal layers 25A and 25B are replaced with C (carbon) of 0.
1〜: 10%の原子濃度で含む SiC混晶層により置き換え、また前記ソース領域 21c、ド レイン領域 21dに p型不純物元素の代わりに n型不純物元素を導入し、さらにソース エクステンション領域 21a,ドレインエクステンション領域 21bに n型不純物元素を導 入することにより、 nチャネル MOSトランジスタを構成することも可能である。この場合 には、 SiC混晶がシリコン基板 21よりも小さい格子定数を有するため、前記応力源領 域 25A, 25Bは下方に収縮し、これに伴って前記ゲート電極 23B直下のチャネル領 域には、ゲート長方向に作用する一軸性引張り応力が発生する。  1 to: Replaced by SiC mixed crystal layer containing atomic concentration of 10%, introduced n-type impurity element instead of p-type impurity element into the source region 21c and drain region 21d, and further source extension region 21a and drain An n-channel MOS transistor can be configured by introducing an n-type impurity element into the extension region 21b. In this case, since the SiC mixed crystal has a lattice constant smaller than that of the silicon substrate 21, the stress source regions 25A and 25B contract downward, and accordingly, the channel region immediately below the gate electrode 23B does not enter the channel region. A uniaxial tensile stress acting in the gate length direction is generated.
[0074] このように、図 3Gの構成を使って nチャネル M〇Sトランジスタを形成する場合、前 記ゲート電極 63B、およびその上のハードマスク膜 25には、先に説明したと同様に S iGe混晶層を使うことが可能である。また、これを SiC混晶により置き換えることも可能 である。この場合、前記ゲート電極 63B中の C濃度は、原子濃度で 0. 1〜: 10%の範 囲内で、その下端から上端に向かって、連続的に増大される。 [0075] 以上の説明では、ゲート電極 23B, 43C, 63Cを SiGe混晶パターンあるいは SiC 混晶パターンとして説明したが、前記ゲート電極は、図 3D, 5Dあるいは 6Dのシリコ ン基板のドライエッチング工程の際にマスクとなりうるものであればよぐ他の元素を含 むものであってもよレ、。同様に SiGe混晶層 25も、その下の層 23のドライエッチング に際してマスクとなりうるものであればよぐ他の元素を含むものであってもよい。 [0074] Thus, when an n-channel MOS transistor is formed using the configuration shown in FIG. It is possible to use an iGe mixed crystal layer. It is also possible to replace this with SiC mixed crystals. In this case, the C concentration in the gate electrode 63B is continuously increased from the lower end to the upper end in the atomic concentration range of 0.1 to 10%. [0075] In the above description, the gate electrodes 23B, 43C, and 63C have been described as SiGe mixed crystal patterns or SiC mixed crystal patterns. However, the gate electrodes are used in the dry etching process of the silicon substrate of FIG. If it can be used as a mask, it may contain other elements. Similarly, the SiGe mixed crystal layer 25 may contain other elements as long as it can serve as a mask in the dry etching of the underlying layer 23.
[0076] 以上、本発明を好ましい実施例について説明したが、本発明は特許請求の範囲に 記載した要旨内において、様々な変形 ·変更が可能である。  While the present invention has been described with reference to the preferred embodiments, various modifications and changes can be made to the present invention within the spirit and scope of the appended claims.
産業上の利用可能性  Industrial applicability
[0077] 本発明によれば、前記第 1の幅の第 1の多結晶パターンをマスクにシリコン基板を 基板面に垂直方向に異方性エッチングし、また前記第 2の幅の第 2の多結晶パター ンをマスクに前記第 1の多結晶パターンを基板面に垂直方向に異方性エッチングす ることにより、前記シリコン基板中、前記第 1の多結晶パターンが形成されていた領域 の両側に、第 1および第 2の溝部が形成され、さらに前記第 1の多結晶パターンにより 、ゲート電極が前記領域の中央部に、所望のゲート長で自己整合的に形成される。 その際、前記第 2の多結晶パターンは、前記第 1の多結晶膜パターン上の第 2の多 結晶膜パターンを、前記第 1の多結晶パターンに対して選択的にラテラルエッチング することで、前記領域の中央部に自己整合的に形成されることに注意すべきである。 そこで、このようにして形成された第 2の多結晶パターンをマスクに前記第 1の多結晶 パターンを基板に垂直方向に異方性エッチングすることにより、所望のゲート電極を 前記第 1の多結晶パターンにより、前記領域の中央部に確実に形成することが可能 になる。これにより、前記第 1あるいは第 2の溝部、従って前記半導体装置のチャネル 領域への圧縮あるいは引張り応力源として作用する前記第 1あるいは第 2のェピタキ シャル半導体層を、前記ゲート電極の側壁面から 20nm以下の至近距離に形成する ことが可能となり、応力印加半導体装置のチャネル領域に印加される応力を増大さ せること力 S可能となる。すなわち本発明は、簡単な構成および工程で、半導体装置の 動作速度の向上を実現することができる。  According to the present invention, the silicon substrate is anisotropically etched in the direction perpendicular to the substrate surface using the first polycrystalline pattern of the first width as a mask, and the second polycrystal of the second width is used. Using the crystal pattern as a mask, the first polycrystalline pattern is anisotropically etched in a direction perpendicular to the substrate surface, so that both sides of the region where the first polycrystalline pattern is formed in the silicon substrate. First and second trenches are formed, and a gate electrode is formed in the center of the region in a self-aligned manner with a desired gate length by the first polycrystalline pattern. In this case, the second polycrystalline pattern is obtained by selectively laterally etching the second polycrystalline film pattern on the first polycrystalline film pattern with respect to the first polycrystalline pattern, It should be noted that it is formed in a self-aligned manner in the central portion of the region. Therefore, the first polycrystalline pattern is anisotropically etched in the direction perpendicular to the substrate using the second polycrystalline pattern formed in this manner as a mask, so that the desired gate electrode is formed into the first polycrystalline pattern. The pattern makes it possible to reliably form the central portion of the region. Thus, the first or second epitaxial semiconductor layer acting as a source of compressive or tensile stress to the first or second groove, and thus to the channel region of the semiconductor device, is 20 nm from the side wall surface of the gate electrode. It can be formed at the following close distance, and the force S can be increased to increase the stress applied to the channel region of the stress application semiconductor device. That is, according to the present invention, the operation speed of the semiconductor device can be improved with a simple configuration and process.
[0078] また本発明では、 SiGe混晶層のエッチング速度が Ge濃度で変化することを利用し て、前記ゲート電極となる前記第 1の多結晶パターン中の Ge濃度を膜厚方向に階段 状あるいは連続的に変化させることにより、前記第 1および第 2の溝部の相対向する 側壁面を相互に反対方向に向かって傾斜する形状に形成することが可能となる。そ の際、前記第 1の多結晶パターン中に Ge濃度変化が階段状であるか、連続的である かにより、前記側壁面の形状が階段面あるいは連続面となる。これにより、チャネル 領域への応力印加効果が大きいゲート絶縁膜とシリコン基板との界面近傍では、応 力源となる前記第 1および第 2の半導体層領域が互いに最も近接して形成される構 造が容易に得られる。 In the present invention, the Ge concentration in the first polycrystalline pattern serving as the gate electrode is stepped in the film thickness direction by utilizing the fact that the etching rate of the SiGe mixed crystal layer varies with the Ge concentration. By changing the shape or continuously, the opposing side wall surfaces of the first and second groove portions can be formed in a shape inclined in opposite directions. At this time, the shape of the side wall surface becomes a stepped surface or a continuous surface depending on whether the Ge concentration change in the first polycrystalline pattern is stepped or continuous. As a result, in the vicinity of the interface between the gate insulating film and the silicon substrate where the effect of applying stress to the channel region is large, the first and second semiconductor layer regions serving as stress sources are formed closest to each other. Is easily obtained.

Claims

請求の範囲 The scope of the claims
[1] シリコン基板と、  [1] a silicon substrate;
前記シリコン基板上にゲート絶縁膜を介して形成されたゲート電極と、 前記シリコン基板中、前記ゲート電極の第 1および第 2の側に、それぞれ離間して 形成された第 1および第 2の溝部と、  A gate electrode formed on the silicon substrate via a gate insulating film; and first and second groove portions formed on the first and second sides of the gate electrode in the silicon substrate so as to be spaced apart from each other. When,
Siと他の IV族元素の混晶よりなり、前記第 1および第 2の溝部をそれぞれ充填する 第 1および第 2の、導電型を有するェピタキシャル層と、  First and second epitaxial layers made of a mixed crystal of Si and another group IV element and filling the first and second grooves, respectively,
を備え、  With
前記ゲート電極は、 Siと他の元素の混晶よりなる多結晶体である応力印加半導体 装置。  The stress application semiconductor device, wherein the gate electrode is a polycrystalline body made of a mixed crystal of Si and another element.
[2] 前記ゲート電極を構成する他の元素と前記第 1および第 2のェピタキシャル層を構 成する前記他の IV族元素とは、同一の元素である請求項 1記載の応力印加半導体 装置。  2. The stress-applying semiconductor device according to claim 1, wherein the other element constituting the gate electrode and the other group IV element constituting the first and second epitaxial layers are the same element. .
[3] 前記ゲート電極を構成する他の元素と前記第 1および第 2のェピタキシャル層を構 成する前記他の IV族元素とは、異なった元素である請求項 1記載の応力印加半導 体装置。  [3] The stress application semiconductor according to [1], wherein the other elements constituting the gate electrode and the other group IV elements constituting the first and second epitaxial layers are different elements. Body equipment.
[4] 前記第 1の溝部および第 2の溝部は、前記シリコン基板とゲート絶縁膜との界面に おいて、それぞれ前記ゲート電極の前記第 1の側の側壁面および前記第 2の側の側 壁面から、 Onmを超え 20nm以下の距離だけ離間して形成されている請求項 1記載 の応力印加半導体装置。  [4] The first groove portion and the second groove portion are the side wall surface on the first side and the side on the second side of the gate electrode, respectively, at the interface between the silicon substrate and the gate insulating film. 2. The stress applying semiconductor device according to claim 1, wherein the stress applying semiconductor device is formed apart from the wall surface by a distance exceeding Onm and not more than 20 nm.
[5] 前記ゲート電極を構成する混晶は、前記ゲート絶縁膜に接する下端から、上端に 向かって前記他の元素の濃度を階段状に増加させる請求項 1記載の応力印加半導 体装置。  5. The stress applying semiconductor device according to claim 1, wherein the mixed crystal constituting the gate electrode increases the concentration of the other element stepwise from the lower end in contact with the gate insulating film toward the upper end.
[6] 前記第 1および第 2の溝部は、互いに対向する第 1および第 2の側壁面により画成 され、前記第 1および第 2の側壁面は、前記第 1および第 2の側壁面の間隔が、前記 シリコン基板とゲート絶縁膜との界面からの深さと共に、階段状に増大するように形成 されている請求項 5記載の応力印加半導体装置。  [6] The first and second groove portions are defined by first and second side wall surfaces facing each other, and the first and second side wall surfaces are formed on the first and second side wall surfaces. 6. The stress applying semiconductor device according to claim 5, wherein the interval is formed so as to increase stepwise with the depth from the interface between the silicon substrate and the gate insulating film.
[7] 前記ゲート電極を構成する混晶は、前記ゲート絶縁膜に接する下端から、上端に 向かって前記他の元素の濃度を連続的に増加させる請求項 1記載の応力印加半導 体装置。 [7] The mixed crystal constituting the gate electrode extends from the lower end in contact with the gate insulating film to the upper end. 2. The stress applying semiconductor device according to claim 1, wherein the concentration of the other element is continuously increased.
[8] 前記第 1および第 2の溝部は、互いに対向する第 1および第 2の側壁面により画成 され、前記第 1および第 2の側壁面は、前記第 1および第 2の側壁面の間隔が、前記 シリコン基板とゲート絶縁膜との界面からの深さと共に、連続的に増大するように形成 されている請求項 7記載の応力印加半導体装置。  [8] The first and second groove portions are defined by first and second side wall surfaces facing each other, and the first and second side wall surfaces are formed on the first and second side wall surfaces. 8. The stress applying semiconductor device according to claim 7, wherein the interval is formed so as to continuously increase with the depth from the interface between the silicon substrate and the gate insulating film.
[9] 前記応力印加半導体装置は pチャネル MOSトランジスタであり、前記第 1および第 [9] The stress applying semiconductor device is a p-channel MOS transistor, and the first and second transistors
2のェピタキシャル層は、 p型にドープされた SiGe混晶よりなることを特徴とする請求 項 1記載の応力印加半導体装置。  2. The stress applying semiconductor device according to claim 1, wherein the second epitaxial layer is made of a p-type doped SiGe mixed crystal.
[10] 前記応力印加半導体装置は nチャネル MOSトランジスタであり、前記第 1および第 [10] The stress applying semiconductor device is an n-channel MOS transistor, and the first and the second
2のェピタキシャル層は、 n型にドープされた SiC混晶よりなることを特徴とする請求項 The epitaxial layer according to claim 2, wherein the epitaxial layer is made of an n-type doped SiC mixed crystal.
1記載の応力印加半導体装置。 The stress applying semiconductor device according to 1.
[11] 前記第 1および第 2の溝部は、それぞれ前記シリコン基板中に形成されたソースお よびドレイン領域に内包されており、前記ソースおよびドレイン領域は、前記第 1およ び第 2のェピタキシャル層と同じ導電型を有する請求項 1記載の応力印加半導体装 置。 [11] The first and second groove portions are respectively included in source and drain regions formed in the silicon substrate, and the source and drain regions are formed in the first and second regions. 2. The stress applying semiconductor device according to claim 1, wherein the stress applying semiconductor device has the same conductivity type as that of the epitaxial layer.
[12] シリコン基板上に、第 1の絶縁膜を介して、 Siと他の元素の混晶よりなる第 1の多結 晶膜を形成する工程と、  [12] forming a first polycrystalline film made of a mixed crystal of Si and another element on the silicon substrate via the first insulating film;
前記第 1の多結晶膜上に、第 2の絶縁膜を介して、前記第 1の多結晶膜より前記他 の元素の濃度の高い第 2の多結晶膜を形成する工程と、  Forming a second polycrystalline film having a concentration of the other element higher than that of the first polycrystalline film on the first polycrystalline film via a second insulating film;
前記第 1および第 2の多結晶膜を前記第 2の絶縁膜と共にパターユングし、前記シ リコン基板上に、第 1の幅を有する第 1の多結晶パターンと、前記第 1の幅を有する第 2の多結晶パターンとが、前記第 1の幅を有する絶縁膜パターンを介して積層された 積層構造を形成する工程と、  The first and second polycrystalline films are patterned together with the second insulating film, and a first polycrystalline pattern having a first width and the first width are formed on the silicon substrate. Forming a laminated structure in which a second polycrystalline pattern is laminated via an insulating film pattern having the first width;
前記積層構造に対して等方性エッチングを行い、前記第 2の多結晶パターンの幅 を、前記第 1の幅から第 2の幅まで、前記第 1の多結晶パターンに対して選択的に縮 小する工程と、  Isotropic etching is performed on the stacked structure, and the width of the second polycrystalline pattern is selectively reduced with respect to the first polycrystalline pattern from the first width to the second width. A process of reducing,
前記第 1の多結晶パターンをマスクに、前記シリコン基板に、異方性エッチングを行 レ、、前記シリコン基板中、前記積層構造の第 1および第 2の側に、それぞれ第 1およ び第 2の溝を形成する工程と、 Using the first polycrystalline pattern as a mask, anisotropic etching is performed on the silicon substrate. Forming a first groove and a second groove on the first and second sides of the stacked structure in the silicon substrate, respectively;
前記第 2の多結晶パターンをマスクに、前記絶縁膜パターンおよび前記第 1の多結 晶パターンを異方性エッチングする工程と、  Anisotropically etching the insulating film pattern and the first polycrystalline pattern using the second polycrystalline pattern as a mask;
前記第 1および第 2の溝を、 Siと他の IV族元素の混晶よりなる第 1および第 2の半 導体層でェピタキシャルに充填する工程と、  Filling the first and second grooves with first and second semiconductor layers made of a mixed crystal of Si and another group IV element, and
を含むことを特徴とする応力印加半導体装置の製造方法。  A method for manufacturing a stress-applying semiconductor device, comprising:
[13] 前記第 1の多結晶膜では前記他の元素の濃度が、その下端力も上端に向かって、 階段状に増大していることを特徴とする請求項 12記載の応力印加半導体装置の製 造方法。 [13] The stress-applied semiconductor device according to [12], wherein the concentration of the other element in the first polycrystalline film is increased stepwise toward the upper end. Manufacturing method.
[14] 前記第 1および第 2の溝は、互いに対向する第 1および第 2の側壁面により画成さ れ、前記第 1および第 2の側壁面は、前記第 1および第 2の側壁面の間隔が、前記シ リコン基板とゲート絶縁膜との界面からの深さと共に、階段状に増大するように形成さ れている請求項 13記載の応力印加半導体装置の製造方法。  [14] The first and second grooves are defined by first and second side wall surfaces facing each other, and the first and second side wall surfaces are the first and second side wall surfaces. 14. The method of manufacturing a stress-applying semiconductor device according to claim 13, wherein the distance is increased stepwise with the depth from the interface between the silicon substrate and the gate insulating film.
[15] 前記第 1の多結晶膜では前記他の元素の濃度が、その下端から上端に向かって、 連続的に増大していることを特徴とする請求項 12記載の応力印加半導体装置の製 造方法。  15. The stress applying semiconductor device according to claim 12, wherein the concentration of the other element in the first polycrystalline film continuously increases from the lower end to the upper end. Manufacturing method.
[16] 前記第 1および第 2の溝は、互いに対向する第 1および第 2の側壁面により画成さ れ、前記第 1および第 2の側壁面は、前記第 1および第 2の側壁面の間隔が、前記シ リコン基板とゲート絶縁膜との界面からの深さと共に、連続的に増大するように形成さ れている請求項 15記載の応力印加半導体装置の製造方法。  [16] The first and second grooves are defined by first and second side wall surfaces facing each other, and the first and second side wall surfaces are defined by the first and second side wall surfaces. 16. The method of manufacturing a stress-applying semiconductor device according to claim 15, wherein the gap is continuously increased with the depth from the interface between the silicon substrate and the gate insulating film.
[17] 前記第 1および第 2の半導体層を形成する工程は、前記絶縁膜パターンをマスクと した再成長工程により実行される請求項 10記載の pチャネル MOSトランジスタの製 造方法。  17. The method for manufacturing a p-channel MOS transistor according to claim 10, wherein the step of forming the first and second semiconductor layers is performed by a regrowth step using the insulating film pattern as a mask.
[18] 前記第 1および第 2の溝部の形成工程に先立って、前記シリコン基板中に前記積 層構造をマスクに不純物元素のイオン注入を行レ、、前記積層構造のそれぞれ第 1お よび第 2の側に、ソースおよびドレイン拡散領域を形成する工程を含み、前記第 1およ び第 2の溝部は、それぞれ前記ソースおよびドレイン拡散領域を超えないように形成 される請求項 12記載の応力印加半導体装置の製造方法。 [18] Prior to the step of forming the first and second groove portions, ion implantation of an impurity element is performed in the silicon substrate using the stacked structure as a mask, and the first and second trench structures are respectively formed. Including a step of forming source and drain diffusion regions on the second side, wherein the first and second groove portions are formed so as not to exceed the source and drain diffusion regions, respectively. 13. The method for manufacturing a stress applying semiconductor device according to claim 12, wherein:
さらに、前記第 1および第 2の半導体層を形成する工程の後、前記シリコン基板中に 不純物元素をイオン注入により導入し、前記ゲート電極のそれぞれ第 1および第 2の 側に、ソースエクステンション領域およびドレインエクステンション領域を形成するェ 程を含む請求項 12記載の応力印加半導体装置の製造方法。  Further, after the step of forming the first and second semiconductor layers, an impurity element is introduced into the silicon substrate by ion implantation, and a source extension region and a gate extension electrode are respectively formed on the first and second sides of the gate electrode. 13. The method for manufacturing a stress applying semiconductor device according to claim 12, further comprising a step of forming a drain extension region.
PCT/JP2006/305608 2006-03-20 2006-03-20 Stress-applied semiconductor device and method for manufacturing same WO2007119265A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008510728A JP5168140B2 (en) 2006-03-20 2006-03-20 Stress applying semiconductor device and manufacturing method thereof
PCT/JP2006/305608 WO2007119265A1 (en) 2006-03-20 2006-03-20 Stress-applied semiconductor device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/305608 WO2007119265A1 (en) 2006-03-20 2006-03-20 Stress-applied semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2007119265A1 true WO2007119265A1 (en) 2007-10-25

Family

ID=38609087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305608 WO2007119265A1 (en) 2006-03-20 2006-03-20 Stress-applied semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5168140B2 (en)
WO (1) WO2007119265A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183489A (en) * 2013-05-21 2014-12-03 中芯国际集成电路制造(上海)有限公司 Transistor and forming method thereof
JP2020519013A (en) * 2017-04-27 2020-06-25 東京エレクトロン株式会社 Method for manufacturing NFET and PFET nanowire devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198796A (en) * 1991-01-11 1993-08-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
JPH1022501A (en) * 1996-07-02 1998-01-23 Toshiba Corp Semiconductor device and its manufacture
JP2002043566A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2002237590A (en) * 2001-02-09 2002-08-23 Univ Tohoku Mos field effect transistor
WO2004070804A1 (en) * 2003-02-07 2004-08-19 Nec Corporation Method for forming nickel silicide film, method for manufacturing semiconductor device, and method for etching nickel silicide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786579A (en) * 1993-09-14 1995-03-31 Toshiba Corp Semiconductor device
JP4837902B2 (en) * 2004-06-24 2011-12-14 富士通セミコンダクター株式会社 Semiconductor device
US7696537B2 (en) * 2005-04-18 2010-04-13 Toshiba America Electronic Components, Inc. Step-embedded SiGe structure for PFET mobility enhancement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198796A (en) * 1991-01-11 1993-08-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
JPH1022501A (en) * 1996-07-02 1998-01-23 Toshiba Corp Semiconductor device and its manufacture
JP2002043566A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2002237590A (en) * 2001-02-09 2002-08-23 Univ Tohoku Mos field effect transistor
WO2004070804A1 (en) * 2003-02-07 2004-08-19 Nec Corporation Method for forming nickel silicide film, method for manufacturing semiconductor device, and method for etching nickel silicide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183489A (en) * 2013-05-21 2014-12-03 中芯国际集成电路制造(上海)有限公司 Transistor and forming method thereof
CN104183489B (en) * 2013-05-21 2017-05-17 中芯国际集成电路制造(上海)有限公司 Transistor and forming method thereof
JP2020519013A (en) * 2017-04-27 2020-06-25 東京エレクトロン株式会社 Method for manufacturing NFET and PFET nanowire devices
JP7205912B2 (en) 2017-04-27 2023-01-17 東京エレクトロン株式会社 Methods of fabricating NFET and PFET nanowire devices

Also Published As

Publication number Publication date
JPWO2007119265A1 (en) 2009-08-27
JP5168140B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
US7413961B2 (en) Method of fabricating a transistor structure
US7868317B2 (en) MOS devices with partial stressor channel
US9466716B2 (en) Dual-SiGe epitaxy for MOS devices
US8008157B2 (en) CMOS device with raised source and drain regions
US8912567B2 (en) Strained channel transistor and method of fabrication thereof
US7605407B2 (en) Composite stressors with variable element atomic concentrations in MOS devices
EP3392905B1 (en) Pmos transistor strain optimization with raised junction regions
JP5283233B2 (en) Stress enhanced MOS transistor and method of manufacturing the same
JP4847152B2 (en) Semiconductor device and manufacturing method thereof
US8569846B2 (en) MOS devices with improved source/drain regions with SiGe
KR100703967B1 (en) CMOS transistor and method for fabricating the same
US7592214B2 (en) Method of manufacturing a semiconductor device including epitaxially growing semiconductor epitaxial layers on a surface of semiconductor substrate
US7432559B2 (en) Silicide formation on SiGe
US7372099B2 (en) Semiconductor device and its manufacturing method
JP2006253317A (en) SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE AND p-CHANNEL MOS TRANSISTOR
KR20060134772A (en) Semiconductor device and production method thereof
US20090101945A1 (en) Semiconductor device
WO2007091316A1 (en) p-CHANNEL MOS TRANSISTOR AND SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE
JP5168140B2 (en) Stress applying semiconductor device and manufacturing method thereof
US9349864B1 (en) Methods for selectively forming a layer of increased dopant concentration
KR101204709B1 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06729576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008510728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06729576

Country of ref document: EP

Kind code of ref document: A1