[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007036257A1 - Verfahren zur enantioselektiven enzymatischen reduktion von ketoverbindungen - Google Patents

Verfahren zur enantioselektiven enzymatischen reduktion von ketoverbindungen Download PDF

Info

Publication number
WO2007036257A1
WO2007036257A1 PCT/EP2006/007425 EP2006007425W WO2007036257A1 WO 2007036257 A1 WO2007036257 A1 WO 2007036257A1 EP 2006007425 W EP2006007425 W EP 2006007425W WO 2007036257 A1 WO2007036257 A1 WO 2007036257A1
Authority
WO
WIPO (PCT)
Prior art keywords
chain
methyl
alkyl
ethyl
branched
Prior art date
Application number
PCT/EP2006/007425
Other languages
English (en)
French (fr)
Inventor
Antje Gupta
Anke Tschentscher
Maria Bobkova
Original Assignee
Iep Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iep Gmbh filed Critical Iep Gmbh
Priority to JP2008531549A priority Critical patent/JP2009508499A/ja
Priority to DE502006009367T priority patent/DE502006009367D1/de
Priority to AT06762851T priority patent/ATE506446T1/de
Priority to EP06762851A priority patent/EP1926821B1/de
Priority to US12/067,752 priority patent/US20080233619A1/en
Priority to SI200631058T priority patent/SI1926821T1/sl
Priority to PL06762851T priority patent/PL1926821T3/pl
Priority to DK06762851.1T priority patent/DK1926821T3/da
Priority to CA2621306A priority patent/CA2621306C/en
Publication of WO2007036257A1 publication Critical patent/WO2007036257A1/de
Priority to KR1020087009691A priority patent/KR101345252B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group

Definitions

  • the present invention relates to a process for the enantioselective enzymatic reduction of keto compounds with carbonyl reductases.
  • Carbonyl reductases are known as catalysts for the reduction of carbonyl compounds or for the oxidation of secondary alcohols. These enzymes require a coenzyme, e.g. NAD (P) H.
  • NAD NAD
  • the reduction of ketones with the lactobacillus kefir-derived carbonyl reductase and the coenzyme NADPH is e.g. from US 5,342,767. It is possible with these enzymes to reduce keto compounds to optically active hydroxy compounds. Another method is known for example from WO 03/078615.
  • Optically active hydroxy compounds are valuable chiral building blocks with wide application for the synthesis of pharmacologically active compounds, aromatic substances, pheromones, agrochemicals and enzyme inhibitors.
  • pharmacologically active compounds aromatic substances, pheromones, agrochemicals and enzyme inhibitors.
  • chiral compounds there is an increasing demand for chiral compounds and thus for chiral synthesis technologies, since racemic compounds will scarcely be used as pharmaceuticals in the future.
  • the asymmetric reduction of prochiral keto compounds is a sector of stereoselective catalysis in which biocatalysis represents a powerful competitive technology for chemical catalysis.
  • Chemical asymmetric hydrogenation requires the use of highly toxic and environmentally hazardous heavy metal catalysts, extreme and thus energy-intensive reaction conditions and large amounts of organic solvents. Furthermore, these methods are often characterized by side reactions and insufficient enantiomeric excesses.
  • Reductions of prochiral keto compounds to hydroxy compounds and vice versa occur in nature in numerous biochemical pathways, both in primary metabolism and in secondary metabolism, in any organism and are catalyzed by different types of secondary alcohol dehydrogenases and oxidoreductases. These enzymes are usually cofactor-dependent.
  • CPCR Carbonyl reductase from Candida parapsilosis (CPCR) (US 5,523,223 and US 5,763,236, (Enzyme Microb Technol. 1993 Nov; 15 (l l): 950-8)) or Pichia capsulata ADH (DE 10327454.4);
  • the invention has as its object to eliminate this disadvantage.
  • alkenyl is straight-chain or branched-chain and optionally contains up to four double bonds
  • alkynyl is straight-chain or branched-chain and optionally contains up to four triple bonds
  • R 2 is one of the radicals
  • alkyl is straight-chain or branched-chain
  • alkenyl is straight-chain or branched-chain and optionally contains up to three double bonds
  • alkynyl is straight-chain or branched-chain and optionally contains two triple bonds
  • alkyl is straight or branched chain and is unsubstituted or mono-, di- or trisubstituted by -OH, halogen , -NO 2 and / or -NH 2 is substituted, where the radicals mentioned above under 8) to 11) are unsubstituted or independently of one another mono-, di- or trisubstituted by -OH, halogen, -NO 2 and / or -NH 2 ,
  • the invention is based on the finding that processes using the highly-expressed, isolated alcohol dehydrogenases and oxidoreductases by employing the water-immiscible 4-methyl-2-pentanol, 5-methyl-2-hexanol and / or 2-heptanol for coenzyme regeneration of NAD (P) H can be significantly improved or simplified.
  • Preferred variants of the process according to the invention are characterized in that the liquid, biphasic mixture when using an oxidoreductase of microbial origin at least 40 vol .-%, in particular between 40 and 80 vol .-%, 4-methyl-2-pentanol, 5-methyl 2-hexanol and / or 2-heptanol, based on the total volume of the reaction mixture.
  • the reduction of the keto compound is thus carried out in a two-phase system consisting of an aqueous phase containing the cofactor NADH or NADPH and the oxidoreductase, and an organic phase formed by the cosubstrate 4-methyl-2-pentanol and of the mostly keto compound dissolved in it.
  • the coenzyme regeneration of NAD (P) H is carried out by oxidation of the cosubstrate 4-methyl-2-pentanol, 5-methyl-2-hexanol and / or 2-heptanol, which also serves as a solvent and extractant especially for poorly water-soluble keto compounds.
  • ketones with low boiling points such as e.g. 1, 1, 1 trifluoroacetone
  • the separation of hydroxy compounds, acetone, 2-propanol and water by distillation is often difficult.
  • alcohols used according to the invention have proven to stabilize many oxidoreductases used, which generally leads to a reduced enzyme consumption compared with other aqueous-organic two-phase systems.
  • Coenzyme regeneration may be substrate coupled, (i.e., an enzyme to reduce the keto substrate and to oxidize the 4-methyl-2-pentanol), or enzyme-coupled.
  • substrate coupled i.e., an enzyme to reduce the keto substrate and to oxidize the 4-methyl-2-pentanol
  • enzyme-coupled the cofactor NADH or NADPH is regenerated with the help of a second highly expressed isolated secondary alcohol dehydrogenase.
  • ttn's total turn over number, mole product formed per mole of cofactor
  • the concentration of the co-substrate is in the range of 10% to 90% by volume of the reaction mixture, preferably between 40 and 80% by volume.
  • the enzyme consumption of oxidoreductase is in the range of 10 000 - 10 million U / kg (open at the top) keto compound to be reacted.
  • the enzyme unit 1 U corresponds to the amount of enzyme required to implement 1 ⁇ mol of the compound of the formula I per minute (min).
  • NADH is understood as meaning reduced nicotinamide adenine dinucleotide.
  • NAD is understood to mean nicotinamide adenine dinucleotide.
  • NADPH is meant reduced nicotinamide adenine dinucleotide phosphate
  • NADP means nicotinamide adenine dinucleotide phosphate.
  • aryl refers to aromatic carbon radicals having 6 to 14 carbon atoms in the ring.
  • - (C 6 -C i 4) -aryl radicals are for example phenyl, naphthyl, for example 1-naphthyl, 2-naphthyl, biphenylyl, for example 2-biphenylyl, 3-biphenylyl and 4-biphenylyl, anthryl or fluorenyl.
  • Biphenylyl radicals, naphthyl radicals and in particular phenyl radicals are preferred aryl radicals.
  • halogen is understood to mean an element from the series fluorine, chlorine, bromine or iodine.
  • - (C 1 -C 20 ) -alkyl is meant a hydrocarbon radical whose carbon chain is straight-chain or branched and contains 1 to 20 carbon atoms, for example methyl, ethyl, propyl, isopropyl, butyl, tert-butyl,
  • Hydrocarbon radicals understood as cyclopropyl, cylobutyl, cyclopentyl, cyclohexyl or cycloheptyl.
  • - (C 5 -C 14) heterocycle means a monocyclic or bicyclic 5-membered to 14-membered heterocyclic ring which is partially saturated or fully saturated. Examples of heteroatoms are N, O and S.
  • Examples of the terms - (C 5 - C 4) -heterocycle are radicals deriving from pyrrole, furan, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, tetrazole, l, 2,3,5-oxathiadiazole-2-oxides, triazolones, oxadiazolones, isoxazolones, oxadiazolidinediones, triazoles, which are represented by F, -CN, -CF 3 or -C (O) -O- (C 1 -C 4 ) - Alkyl substituert are, 3-hydroxypyrro-2,4-diones, 5-oxo-l, 2,4-thiadiazoles, pyridine, pyrazine, pyrimidine, indole, isoindole, indazole, phthalazine, quinoline,
  • the radicals are 2- or 3-pyrrolyl, phenylpyrrolyl, such as 4- or 5-phenyl-2-pyrrolyl, 2-furyl, 2-thienyl, 4-imidazolyl, methylimidazolyl, for example 1-methyl-2, -4- or -5-imidazolyl, l, 3-thiazol-2-yl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-, 3- or 4-pyridyl-N-oxide, 2-pyrazinyl, 2 -, 4- or 5-pyrimidyl, 2-, 3- or 5-indolyl, substituted 2-indolyl, for example 1-methyl, 5-methyl, 5-methoxy, 5-benzyloxy, 5-chloro or 4,5-dimethyl-2-indolyl, 1-benzyl-2 or 3-indolyl, 4,5,6,7-tetrahydro-2-indolyl, cyclohepta [b]
  • Preferred compounds of the formula I are ethyl 4-chloroacetoacetate, methyl acetoacetate, ethyl 8-chloro-6-oxooctanoic acid, ethyl 3-oxovalerate, 4-hydroxy-2-butanone, ethyl 2-oxovalerate, ethyl 2-oxo 4-phenylbutyric acid, ethyl pyruvate, ethylphenyl glyoxylate, 1-phenyl-2-propanone, 2,3-dichloroacetophenone, acetophenone, 2-octanone, 3-octanone, 2-butanone, 2,5-hexanedione, 1,4- Dichloro-2-butanone, phenacyl chloride, ethyl 4-bromoacetoacetate, 1,1-dichloroacetone, 1,1,3-trichloroacetone, 1,1,1-trifluoroacetone and 1-chlor
  • the enzyme can either be completely purified, partially purified or used in cells.
  • the cells used can be native, permeabilized or lysed.
  • the enzyme unit 1 U corresponds to the amount of enzyme required to react 1 ⁇ mol of the compound of formula I per minute (min).
  • another oxidoreductase preferably a secondary alcohol dehydrogenase
  • a secondary alcohol dehydrogenase may be present for coenzyme regeneration.
  • Suitable secondary alcohol dehydrogenases are, for example, those from Thermoanaerobium brockii, Clostridium beijerinckii, Lactobacillus minor or Lactobacillus brevis, Pichia capsulata, Candida parapsilosis, Rhodococcus erythropolis.
  • the alcohol dehydrogenase can be used in the process according to the invention either completely purified or partially purified, or whole cells containing the alcohol dehydrogenase can be used.
  • the cells used can be native, permeabilized or lysed.
  • a buffer may be added to the water, for example potassium phosphate, tris / HCl or triethanolamine buffer having a pH of from 5 to 10, preferably a pH of from 6 to 9.
  • the buffer may additionally contain ions for stabilizing or Activation of both enzymes include, for example, magnesium ions to stabilize the alcohol dehydrogenase from Lactobaillus minor.
  • the substrate may be solid or liquid, water-soluble or water-insoluble.
  • the substrate may also be completely or incompletely dissolved during the reaction.
  • the reaction mixture may contain an additional organic solvent.
  • the preferred organic solvents are, for example, ethyl acetate, tert-butyl methyl ether, diisopropyl ether, heptane, hexane or cyclohexane or mixtures thereof of different composition.
  • the concentration of the cofactor NAD (P) H relative to the aqueous phase is from 0.001 mM to 1 mM, in particular from 0.01 mM to 0.1 mM.
  • the compounds of the formula I are used in the process according to the invention, for example in an amount of 2% to 50% (w / v) based on the total volume, preferably from 10% to 30% (w / v).
  • the process according to the invention is carried out, for example, in a closed reaction vessel made of glass or metal.
  • the components are transferred individually into the reaction vessel and stirred under an atmosphere of, for example, nitrogen or air.
  • the reaction time is from 1 hour to 96 hours, in particular from 2 hours to 24 hours.
  • the process according to the invention can also be used for the enzyme-catalyzed oxidation reaction.
  • the reaction conditions are essentially the same as in the abovementioned process for the enantiospecific reduction of the keto compound of the formula I.
  • the corresponding hydroxy compound of the formula II is oxidized to the corresponding keto compound.
  • the inexpensive corresponding ketones 4-methyl-2-pentanone, 5-methyl-2-hexanone or 5 methyl-3-heptanone used for the regeneration of NAD (P).
  • the process can also be used to prepare hard to access keto compounds from their racemic alcohols by using unselective oxidoreductases or else mixtures of enantioselective oxidoreductases.
  • the reduction of the compounds of formula 1 is carried out in the components below are transferred to a reaction vessel and incubated with good mixing at room temperature.
  • the aqueous phase is separated from the organic phase containing the product and the product (R) - ethyl-4-chloro-3-hydroxybutyrate is purified by distillation from 4-methyl-2-pentanol. In this way, the (R) -ethyl-4-chloro-3-hydroxybutyrate can be obtained in high chemical and optical purity.
  • the aqueous phase is separated from the organic phase containing the product and the product (S, S) butanediol is purified by distillation of 4-methyl-2-pentanol. In this way, the (S, S) butanediol can be obtained in high chemical and optical purity
  • the aqueous phase separated from the product-containing organic phase and the product / reactant mixture 2,5- (S, S) hexanediol / 2,5-hexanedione separated by distillation of 4-methyl-2-pentanol.
  • the product 2,5- (S, S) hexanediol can be separated in a subsequent vacuum distillation of the starting material 2,5-hexanedione and win in a chemical purity> 99%.
  • the total yield of the process is for example 40-60%. 4. Synthesis of (R) -2-chloro-1- (3-chlorophenyl) ethane-1-ol with NADH-dependent enzyme from Pichia capsulata
  • the aqueous phase is separated from the organic phase containing the product and the product 2-chloro-l- (3-chlorophenyl) ethan-l-ol separated by distillation of 4-methyl-2-pentanol.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur enantioselektiven enzymatischen Reduktion von Ketoverbindungen, welches zweiphasig durchgeführt wird und zur Coenzyregenerierung 4- Methyl-2-pentanol, 5-Methyl-2-hexanol und/oder 2-Heptanol verwendet.

Description

VERFAHREN ZUR ENANTIOSELEKTIVEN ENZYMATISCHEN REDUKTION VON
KETOVERBINDUNGEN
Die vorliegende Erfindung betrifft ein Verfahren zur enantioselektiven enzymatischen Reduktion von Ketoverbindungen mit Carbonylreduktasen.
Carbonylreduktasen (weitere Bezeichnungen: Alkoholdehydrogenasen, Oxidoreduktasen) sind als Katalysatoren zur Reduktion von Carbonylverbindungen bzw. zur Oxidation von sekundären Alkoholen bekannt. Diese Enzyme benötigen ein Co-Enzym, z.B. NAD(P)H. Die Reduktion von Ketonen mit der aus Lactobacillus kefir gewonnenen Carbonylreduktase und dem Co-Enzym NADPH ist z.B. aus der US 5,342,767 bekannt. Es gelingt mit diesen Enzymen, Ketoverbindungen zu optisch aktiven Hydroxyverbindungen zu reduzieren. Ein weiteres Verfahren ist beispielsweise aus der WO 03/078615 bekannt.
Optisch aktive Hydroxyverbindungen sind wertvolle chirale Bausteine mit breiter Anwendung für die Synthese von pharmakologisch wirksamen Verbindungen, aromatischen Substanzen, Pheromonen, Agrochemikalien und Enzyminhibitoren. Dabei ist insbesondere in der pharmazeutischen Industrie ein steigender Bedarf an chiralen Verbindungen und somit chiralen Synthesetechnologien zu verzeichnen, da racemische Verbindungen in Zukunft kaum noch als Arzneimittel Verwendung finden werden.
Die asymmetrische Reduktion prochiraler Ketoverbindungen ist ein Sektor der stereoselektiven Katalyse, in dem die Biokatalyse eine leistungsfähige Konkurrenztechnologie zur chemischen Katalyse darstellt. Die chemische asymmetrische Hydrierung erfordert den Einsatz hochgiftiger und umweltbelastender Schwermetallkatalysatoren, extremer und somit energieintensiver Reaktionsbedingungen sowie große Mengen organischer Lösungsmittel. Ferner sind diese Verfahren häufig gekennzeichnet durch Nebenreaktionen und unzureichende Enantiomerenüberschüsse.
Reduktionen prochiraler Ketoverbindungen zu Hydroxyverbindungen und umgekehrt kommen in der Natur in zahlreichen biochemischen Pathways, sowohl im Primärstoffwechsel als auch im Sekundärstoffwechsel, in jedem Organismus vor und werden von unterschiedlichen Typen von sekundären Alkoholdehydrogenasen und Oxidoreduktasen katalysiert. Diese Enzyme sind in der Regel cofaktorabhängig.
Die prinzipielle Machbarkeit der Nutzung von Biokatalysatoren zu Reduktion von prochiralen Ketoverbindungen zu chiralen Hydroxyverbindungen wurde in der Vergangenheit wiederholt anhand von Modellsystemen demonstriert, wobei sowohl mit isolierten Oxidoreduktasen als auch mit unterschiedlichen Ganzzellbiotransformationssystemen gearbeitet wurde. Der biokatalytische Ansatz ist hinsichtlich der milden Reaktionsbedingungen, fehlender Nebenprodukte und oft wesentlich besseren erreichbaren Enantiomerenüberschüssen vorteilhaft. Dabei ist die Verwendung isolierter Enzyme gegenüber Verfahren mit ganzen Zellen hinsichtlich des erreichbaren Enantiomerenüberschuss, der Enstehung von Abbau-und Nebenprodukten als auch hinsichtlich der Produktisolation im Vorteil. Des weiteren ist die Verwendung von Ganzzellprozessen nicht jedem Chemieunternehmen möglich, da dafür spezielle Ausrüstung und Know how erforderlich sind.
Jüngst konnte gezeigt werden, daß die Verwendung isolierter Oxidoreduktasen in wäßrig/organischen Zweiphasen-Systemen mit organischen Lösungsmitteln äußerst effizient und auch in hohen Konzentrationen (> 5 %) möglich ist. Bei den beschriebenen Systemen bildet dabei die zu reduzierende, meist schlecht wasserlösliche Ketoverbindung zusammen mit dem organischen Lösungsmittel die organische Phase. Teilweise kann auch auf das organische Lösungsmittel selbst verzichtet werden, dann wird die organische Phase von der zu reduzierenden Ketoverbindung gebildet (DElOl 19274, DE10327454.4, DE 103 37 401.9, DE 103 00 335.5). Die Coenzymregenerierung wird dabei durch die gleichzeitige Oxidation sekundärer Alkohole realisiert, wobei in den meisten Fällen das preiswerte wassermischbare 2-Propanol verwendet wird.
Beispiele für geeignete R-und S-spezifische Oxidoreduktasen und Dehydrogenasen hoher Enantioselektivität sind:
Carbonylreduktase aus Candida parapsilosis (CPCR) (US 5,523,223 und US 5,763,236,(Enzyme Microb Technol. 1993 Nov;15(l l):950-8) ) oder Pichia capsulata ADH (DE 10327454.4);
Carbonylreduktase aus Rhodococcus erythropolis (RECR) (US 5,523,223), Norcardia fusca (Biosci. Biotechnol. Biochem.,63 (10) (1999), Seiten 1721-1729), (Appl Microbiol Biotechnol. 2003 Sep;62(4):380-6. Epub 2003 Apr 26), und Rhodococcus ruber (J Org Chem. 2003 Jan 24;68(2):402-6.);
und
R-spezifische sekundären Alkoholdehydrogenasen aus Organismen der Gattung Lactobacillus (Lactobacillus kefir (US5200335), Lactobacillus brevis (DE 19610984 Al) (Acta Crystallogr D Biol Crystallogr. 2000 Dec;56 Pt 12: 1696-8), Lactobacillus minor (DElOl 19274) oder Pseudomonas (US 05385833)(Appl Microbiol Biotechnol. 2002 Aug;59(4-5):483-7. Epub 2002 Jun 26.,J. Org. Chem. 1992, 57, 1532); Bei den Verfahren des Standes der Technik besteht der Bedarf, die Coenzymregenerierung zu verbessern bzw. zu vereinfachen. Die meisten Alkoholdehydrogenasen und Oxidoreduktasen werden bei Propanolkonzentration von >15 % Vol.-% schnell inaktiviert, was dazu führt, daß dieses in Batchverfahren nicht in beliebigem Überschuss zur Ketoverbindung einsetzbar ist, wodurch bei gleicher Konzentration an Ketoverbindung bei Substraten mit ungünstiger Gleichgewichtslage nur unbefriedigende Umsätze erreicht werden können.
Die Erfindung stellt sich die Aufgabe, diesen Nachteil zu beseitigen.
Das erfindungsgemäße Verfahren zur enantioselektiven enzymatischen Reduktion von Ketoverbindungen der allgemeinen Formel I
R1-C(O)-R2 (I)
in der Rl für einen der Reste
1) -(C1 -C20)- Alkyl, worin Alkyl geradkettig oder verzweigtkettig ist,
2) -(C2-C20)-Alkenyl, worin Alkenyl geradkettig oder verzweigtkettig ist und gegebenenfalls bis zu vier Doppelbindungen enthält,
3) -(C2-C20)-Alkinyl, worin Alkinyl geradkettig oder verzweigtkettig ist und gegebenenfalls bis zu vier Dreifachbindungen enthält,
4) -(C6-C I4)-Aryl,
5) -(C,-C8)-Alkyl-(C6-C14)-Aryl,
6) -(C5-C i4)-Heterocyclus, der unsubstituiert oder ein-, zwei- oder dreifach durch -OH, Halogen, -NO2 und/oder -NH2 substituiert ist, oder
7) -(C3-C7)-Cycloalkyl, steht, wobei die oben unter 1) bis 7) genannten Reste unsubstituiert sind oder unabhängig voneinander ein-, zwei- oder dreifach durch -OH, Halogen, -NO2 und/oder -NH2 substituiert sind,
und R2 für einen der Reste
8) -(C 1-C6)- Alkyl, worin Alkyl geradkettig oder verzweigtkettig ist,
9) -(C2-C6)- Alkenyl, worin Alkenyl geradkettig oder verzweigtkettig ist und gegebenenfalls bis zu drei Doppelbindungen enthält,
10) -(C2-C6)-Alkinyl, worin Alkinyl geradkettig oder verzweigtkettig ist und gegebenenfalls zwei Dreifachbindungen enthält, oder
11) -(Ci-Ci0)-Alkyl-C(O)-O-(Ci-C6)-Alkyl, worin Alkyl gerade oder verzweigtkettig ist und unsubstituiert ist oder ein-, zwei- oder dreifach durch -OH, Halogen, -NO2 und/oder -NH2 substituiert ist, steht, wobei die oben unter 8) bis 11) genannten Reste unsubstituiert sind oder unabhängig voneinander ein-, zwei- oder dreifach durch -OH, Halogen, -NO2 und/oder -NH2 substituiert sind,
ist dadurch gekennzeichnet, daß
eine flüssige, zweiphasige Mischung, welche
(a) mindestens 5 Gew. /Vol. -% eine Verbindung der Formel (I),
(b) mindestens 10 Vol.-% 4-Methyl-2-pentanol, 5-Methyl-2-hexanol und/oder 2-Heptanol und
(c) Wasser enthält, mit einer Oxidoreduktase in Gegenwart eines Co-Faktors behandelt wird, um eine chirale Hydroxyverbindung der allgemeinen Formel II
Figure imgf000005_0001
zu bilden, in welcher Ri und R2 die oben angegebene Bedeutung haben.
Die Erfindung beruht auf der Erkenntnis, daß Verfahren, welche die hochexprimierten, isolierten Alkoholdehydrogenasen und Oxidoreduktasen verwenden, durch Einsatz des nicht mit Wasser mischbaren 4-Methyl-2-pentanols, 5-Methyl-2-hexanols und/oder 2-Heptanols zur Coenzymregererierung von NAD(P)H entscheidend verbessert bzw. vereinfacht werden können.
Bevorzugte Varianten des erfindungsgemäßen Verfahrens sind dadurch gekennzeichnet, daß die flüssige, zweiphasige Mischung bei Anwendung einer Oxidoreduktase mikrobiellen Ursprungs mindestens 40 Vol.-%, insbesondere zwischen 40 und 80 Vol.-%, 4-Methyl-2-pentanol, 5-Methyl- 2-hexanol und/oder 2-Heptanol, bezogen auf das Gesamtvolumen des Reaktionsansatzes, enthält.
Im erfindungsgemäßen Verfahren wird die Reduktion der Ketoverbindung somit in einem Zwei- Phasensystem durchgeführt, bestehend aus einer wäßrigen Phase, den Cofaktor NADH oder NADPH und die Oxidoreduktase enthaltend, und einer organischen Phase, gebildet vom Cosubstrat 4-Methyl-2-pentanol und von der größtenteils darin gelösten Ketoverbindung.
Die Coenzymregeneration von NAD(P)H erfolgt dabei durch Oxidation des Cosubstrates 4-Methyl- 2-pentanol, 5-Methyl-2-hexanol und/oder 2-Heptanol, das gleichzeitig als Lösungs-und Extraktionsmittel insbesondere für schwer wasserlösliche Ketoverbindungen dient.
Durch den Einsatz von 4-Methyl-2-pentanol, 5-Methyl-2-hexanol und/oder 2-Heptanol als Lösungsmittel und Cosubstrat können auch für Substrate mit ungünstiger Gleichgewichtslage gute Umsätze (>90%), hohe Konzentrationen sowie wesentlich kürzere Reaktionszeiten realisiert werden.
Besonders vorteilhaft ist das beschriebene Verfahren auch für die Reduktion von Ketonen mit niedrigen Siedepunkten, wie z.B. 1 , 1 , 1 -Trifluoraceton, und solcher, bei denen die Siedepunkte der resultierenden chiralen Alkohole, wie im Falle von l,l,l-Trifluorpropan-2-ol unter dem von Wasser liegt. In diesen Fällen ist oft die Trennung von Hydroxyverbindungen, Aceton, 2-Propanol und Wasser mittels Destillation erschwert.
Desweiteren haben sich die erfindungsgemäß eingesetzten Alkohole als stabilisierend auf viele eingesetzte Oxidoreduktasen erwiesen, was allgemein zu einem verringertem Enzymverbrauch verglichen mit anderen wäßrig-organischen Zwei-Phasensystemen führt.
Die Coenzymregenerierung kann dabei substratgekoppelt, (d.h. ein Enzym zur Reduktion des Ketosubstrates und zur Oxidation des 4-Methyl-2-pentanol) oder enzymgekoppelt erfolgen. Beim enzymgekoppelten Ansatz erfolgt die Regeneration des Cofaktors NADH oder NADPH mit Hilfe einer zweiten hochexprimierten isolierten sekundären Alkoholdehydrogenase.
Mit dieser Methode werden ttn's (total turn over number, mol Produkt gebildet pro mol Cofaktor) erreicht die im Bereich vonl03-106 liegen. Die realisierbaren Substratkonzentrationen liegen dabei größtenteils weit über 5 % (Volumenprozent).
Die Konzentration des Cosubstrates liegt dabei im Bereich von 10 % bis 90 % Vol.-% des Reaktionsgemisches, bevorzugt zwischen 40 und 80 Vol.-%.
Der Enzymverbrauch der Oxidoreduktase liegt im Bereich von 10 000 — 10 Mio U/kg (nach oben offen) umzusetzende Ketoverbindung. Der Enzymeinheit 1 U entspricht dabei der Enzymmenge die benötigt wird um 1 μmol der Verbindung der Formel I je Minute (min) umzusetzen.
Unter dem Begriff „NADH" wird reduziertes Nicotinamid-adenin-dinucleotid verstanden. Unter dem Begriff „NAD" wird Nicotinamid-adenin-dinucleotid verstanden. Unter dem Begriff „NADPH" wird reduziertes Nicotinamid-adenin-dinucleotid-phosphat verstanden. Unter dem Begriff „NADP" wird Nicotinamid-adenin-dinucleotid-phosphat verstanden.
Unter dem Begriff chirale „Hydroxyverbindung" werden beispielsweise Verbindungen der Formel II
R1-C(OH)-R2 (II) verstanden, wobei Rl und R2 die Bedeutung wie in Formel I haben.
Unter dem Begriff Aryl werden aromatische Kohlenstoffreste verstanden mit 6 bis 14 Kohlenstoffatomen im Ring. -(C6-C i4)-Arylreste sind beispielsweise Phenyl, Naphthyl, zum Beispiel 1 -Naphthyl, 2-Naphthyl, Biphenylyl, zum Beispiel 2-Biphenylyl, 3-Biphenylyl und 4- Biphenylyl, Anthryl oder Fluorenyl. Biphenylylreste, Naphthylreste und insbesondere Phenylreste sind bevorzugte Arylreste. Unter dem Begriff "Halogen" wird ein Element aus der Reihe Fluor, Chlor, Brom oder Jod verstanden. Unter dem Begriff "-(Ci-C20)-Alkyl wird ein Kohlenwasserstoffrest verstanden, dessen Kohlenstoffkette geradkettig oder verzweigt ist und 1 bis 20 Kohlenstoffatome enthält beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, tertiär-Butyl,
Pentyl, Hexyl, Heptyl, Octyl, Nonenyl oder Decanyl. Unter dem Begriff "-Co-Alkyl" wird eine kovalente Bindung verstanden. Unter dem Begriff ,,-(C3-C7)-Cycloalkyl" werden cyclische
Kohlenwasserstoffreste verstanden wie Cyclopropyl, Cylobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl. Der Begriff "-(C5-Ci4)-Heterocyclus" steht für einen monocyclischen oder bicyclischen 5-gliedrigen bis 14-gliedrigen heterocyclischen Ring, der teilweise gesättigt oder vollständig gesättigt ist. Beispiele für Heteroatome sind N, O und S. Beispiele für die Begriffe -(C5- Ci4)-Heterocyclus sind Reste, die sich von Pyrrol, Furan, Thiophen, Imidazol, Pyrazol, Oxazol, Isoxazol, Thiazol, Isothiazol, Tetrazol, l,2,3,5-Oxathiadiazol-2-Oxide, Triazolone, Oxadiazolone, Isoxazolone, Oxadiazolidindione, Triazole, welche durch F, -CN, -CF3 oder -C(O)-O-(C1 -C4)- Alkyl substituert sind, 3-Hydroxypyrro-2,4-dione, 5-Oxo-l,2,4-Thiadiazole, Pyridin, Pyrazin, Pyrimidin, Indol, Isoindol, Indazol, Phthalazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnolin, - Carbolin und benz-anellierte, cyclopenta-, cyclohexa- oder cyclohepta-anellierte Derivate dieser Heterocyclen ableiten. Insbesondere bevorzugt sind die Reste 2- oder 3-Pyrrolyl, Phenylpyrrolyl wie 4- oder 5-Phenyl-2-pyrrolyl, 2-Furyl, 2-Thienyl, 4-Imidazolyl, Methyl-imidazolyl, zum Beispiel l-Methyl-2-, -4- oder -5-imidazolyl, l,3-Thiazol-2-yl, 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-, 3- oder 4- Pyridyl-N-oxid, 2-Pyrazinyl, 2-, 4- oder 5-Pyrimidmyl, 2-, 3- oder 5-Indolyl, substituiertes 2- Indolyl, zum Beispiel 1 -Methyl-, 5-Methyl-, 5-Methoxy-, 5-Benzyloxy-, 5-Chlor- oder 4,5- Dimethyl-2-indolyl, l-Benzyl-2- oder -3-indolyl, 4,5,6,7-Tetrahydro-2-indolyl, Cyclohepta[b]-5- pyrrolyl, 2-, 3- oder 4-Chinolyl, 1-, 3- oder 4-Isochinolyl, l-Oxo-l,2-dihydro-3-isochinolyl, 2- Chinoxalinyl, 2-Benzofuranyl, 2-Benzo-thienyl, 2-Benzoxazolyl oder Benzothiazolyl oder Dihydropyridinyl, Pyrrolidinyl, zum Beispiel 2- oder 3-(N-Methylpyrrolidinyl), Piperazinyl, Morpholinyl, Thiomorpholinyl, Tetrahydrothienyl oder Benzodioxolanyl.
Bevorzugte Verbindungen der Formel I sind Ethyl-4-chloracetoacetat, Methylacetoacetat, Ethyl-8- chloro-6-oxooctansäure, Ethyl-3-oxovaleriat, 4-Hydroxy-2-butanon, Ethyl-2-oxovaleriat, Ethyl-2- oxo-4-phenylbuttersäure, Ethylpyruvat, Ethylphenylglyoxylat, l-Phenyl-2-propanon, 2,3- Dichloracetophenon, Acetophenon, 2-Octanon, 3-Octanon , 2-Butanon, 2,5-Hexandion, 1,4- Dichlor-2-butanon, Phenacylchlorid, Ethyl-4-bromoacetoacetat, 1 , 1 -Dichloraceton, 1,1,3- Trichloraceton, 1,1,1-Trifluoraceton und 1 -Chloraceton.
Im erfindungsgemäßen Verfahren kann das Enzym entweder vollständig gereinigt, teilweise gereinigt oder in Zellen enthalten eingesetzt werden. Die eingesetzten Zellen können dabei nativ, permeabilisiert oder lysiert vorliegen.
Je kg umzusetzender Verbindung der Formel I werden 10 000 bis 10 Mio U Oxidoreduktase eingesetzt, (nach oben offen) Der Enzymeinheit 1 U entspricht dabei der Enzymmenge die benötigt wird um 1 μmol der Verbindung der Formel I je Minute (min) umzusetzen.
Zusätzlich zur Oxidoreduktase für die enantioselektive Ketoreduktion kann noch eine weitere Oxidoreduktase, bevorzugt eine sekundäre Alkoholdehydrogenase, zur Coenzymregenerierung enthalten sein. Geeignete sekundäre Alkoholdehydrogenasen sind beispielsweise die aus Thermoanaerobium brockii, Clostridium beijerinckii, Lactobacillus minor oder Lactobacillus brevis, Pichia capsulata, Candida parapsilosis, Rhodococcus erythropolis.
Die Alkohol-Dehydrogenase kann in dem erfindungsgemäßen Verfahren entweder vollständig gereinigt oder teilweise gereinigt eingesetzt werden oder es können ganze Zellen, die die Alkohol- Dehydrogenase enthalten, verwendet werden. Die eingesetzten Zellen können dabei nativ, permeabilisiert oder lysiert vorliegen.
Dem Wasser kann ein Puffer zugesetzt wer den, beispielsweise Kaliumphosphat-, Tris/HCl- oder Triethanolamin-Puffer mit einem pH- Wert von 5 bis 10, vorzugsweise ein pH- Wert von 6 bis 9. Der Puffer kann zusätzlich noch Ionen zur Stabilisierung oder Aktivierung beider Enzyme enthalten, beispielsweise Magnesiumionen zur Stabilisierung der Alkohol-Dehydrogenase aus Lactobaillus minor.
Das Substrat kann fest oder flüssig, wasserlöslich oder wasserunlöslich sein. Das Substrat kann ferner während der Reaktion vollständig oder auch unvollständig gelöst vorliegen. Dem Reaktionsansatz kann ein zusätzliches organisches Lösungsmittel enthalten. Die bevorzugten organischen Lösungsmittel sind beispielsweise Ethylacetat, tertiär-Butylmethylether, Diisopropylether, Heptan, Hexan oder Cyclohexan oder deren Gemische unterschiedlicher Zusammensetzung.
Die Konzentration des Cofaktors NAD(P)H bezogen auf die wässrige Phase beträgt von 0,001 mM bis 1 mM, insbesondere von 0,01 mM bis 0,1 mM. Die Verbindungen der Formel I werden im erfindungsgemäßen Verfahren beispielsweise in einer Menge von 2% -50% (w/v) bezogen auf das Gesamtvolumen eingesetzt, bevorzugt von 10% bis 30% (w/v).
Das erfindungsgemäße Verfahren wird beispielsweise in einem geschlossen Reaktionsgefäß aus Glas oder Metall durchgeführt. Dazu werden die Komponenten einzeln in das Reaktionsgefäß überfuhrt und unter einer Atmosphäre von beispielsweise Stickstoff oder Luft gerührt. Je nach Substrat und eingesetzter Verbindung der Formel I beträgt die Reaktionszeit von 1 Stunde bis 96 Stunden, insbesondere von 2 Stunden bis 24 Stunden.
Umgekehrt kann das erfindungsgemäße Verfahren auch für die enzymkatalysierte Oxidationsreaktion angewandt werden. Die Reaktionsbedingungen sind im wesentlichen dieselben wie im obengenannten Verfahren zur enantiospezifi sehen Reduktion der Ketoverbindung der Formel I. Im Verfahren wird jedoch statt einer enantioselektiven Reduktion der Ketoverbindung der Formel I, die ensprechende Hydroxyverbindung der Formel II zur entsprechenden Ketoverbindung oxydiert. Ferner werden im Verfahren anstelle von 4-Methyl-2-pentanol, 5-Methyl-2-hexanol bzw. 5-Methyl-3-heptanol die preiswerten korrespondierenden Ketone 4-Methyl-2-pentanon, 5-Methyl- 2-hexanon bzw. 5 Methyl-3-heptanon zur Regenerierung von NAD(P) eingesetzt. Dabei wird bei Verwendung einer racemischen Hydroxyverbindung der Formel II in Verbindung mit einer enantioselektiven Oxidoreduktase die Ketoverbindung der Formel I und ein Enantiomer der racemischen Hydroxyverbindung der Formel II erhalten.
Das Verfahren kann aber auch zur Darstellung schwer zugänglicher Ketoverbindungen aus deren racemischen Alkoholen angewendet werden indem unselektive Oxidoreduktasen oder auch Gemische von enantioselektiven Oxidoreduktasen zum Einsatz kommen.
Die Erfindung wird nachfolgend an Hand von Beispielen noch näher erläutert.
Beispiele
Die Reduktion der Verbindungen der Formel 1 wird durchgeführt in dem untenstehende Komponenten in ein Reaktionsgefäß überführt werden und bei guter Durchmischung bei Raumtemperatur inkubiert werden.
1. Synthese von ( R)-Ethyl-4-chloro-3-hydroxybuttersäure mit NADH abhängigem Enzym aus Candida ara silosis
Figure imgf000009_0001
Figure imgf000010_0001
Nach Beendigung der Reaktion wird die wäßrige Phase, von der das Produkt enthaltenden organischen Phase abgetrennt und das Produkt (R) — Ethyl-4-chloro-3-hydroxybutyrate mitttels Destillation vom 4-Methyl-2-pentanol gereinigt. In dieser weise kann das (R) -Ethyl-4-chloro-3- hydroxybutyrate in hoher chemischer und optischer Reinheit gewonnen werden.
2. Synthese S1S- Butandiol mit NADH abhängigem Enzym aus Candida parapsilosis
Figure imgf000010_0002
Figure imgf000011_0001
Nach Beendigung der Reaktion wird die wäßrige Phase, von der das Produkt enthaltenden organischen Phase abgetrennt und das Produkt (S,S) Butandiol mittels Destillation vom 4-Methyl-2- pentanol gereinigt. In dieser Weise kann das (S, S) Butandiol in hoher chemischer und optischer Reinheit gewonnen werden
3. Synthese 2,5- S, S- Hexandiol mit NADH abhängigem Enzym aus Candida parapsilosis
Figure imgf000011_0002
Nach Beendigung der Reaktion wird die wäßrige Phase, von der das Produkt enthaltenden organischen Phase abgetrennt und das Produkt/Eduktgemisch 2,5- (S, S) Hexandiol/ 2,5-Hexandion mittels Destillation vom 4-Methyl-2-pentanol abgetrennt.
Das Produkt 2,5- (S, S) Hexandiol läßt sich in einer anschließenden Vakuumdestillation vom Edukt 2,5-Hexandion abtrennen und in einer chemische Reinheit >99 % gewinnen. Die Gesamtausbeute des Prozesses beträgt dabei beispielsweise 40-60 %. 4. Synthese (R)-2-Chlor-l -(3-chlorphenyl)ethan-l -ol mit NADH abhängigem Enzym aus Pichia capsulata
Figure imgf000012_0001
Nach Beendigung der Reaktion wird die wäßrige Phase, von der das Produkt enthaltenden organischen Phase abgetrennt und das Produkt 2-Chlor-l-(3-chlorphenyl)ethan-l-ol mittels Destillation vom 4-Methyl-2-pentanol abgetrennt.
5. Reduktion von 8- chloro-6-oxooktansäureethylester zu S-8-chloro-6- h drox oktansäureeth lester mittels NADPH abhän i er Oxidoreduktase
Figure imgf000012_0002
Figure imgf000013_0001
6. Reduktion von 3-oxovalerianssäure-methylester zu S-3-hydroxy-oxovalerianssäure- meth lester Pichia ca sulata
Figure imgf000013_0002

Claims

PATENTANSPRÜCHE:
1. Verfahren zur enantioselektiven enzymatischen Reduktion von Ketoverbindungen der allgemeinen Formel I
R1-C(O)-R2 (I)
in der Rl für einen der Reste
1) -(Ci-C2o)-Alkyl, worin Alkyl geradkettig oder verzweigtkettig ist,
2) -(C2-C2o)-Alkenyl, worin Alkenyl geradkettig oder verzweigtkettig ist und gegebenenfalls bis zu vier Doppelbindungen enthält,
3) -(C2-C)-Alkinyl, worin Alkinyl geradkettig oder verzweigtkettig ist und gegebenenfalls bis zu vier Dreifachbindungen enthält,
4) -(C6-C14)-Aryl,
5) -(C1-C8)-Alkyl-(C6-C14)-Aryl,
6) -(C5-C14)-Heterocyclus, der unsubstituiert oder ein-, zwei- oder dreifach durch -OH, Halogen, -NO2 und/oder -NH2 substituiert ist, oder
7) -(C3-C7)-Cycloalkyl, steht, wobei die oben unter 1) bis 7) genannten Reste unsubstituiert sind oder unabhängig voneinander ein-, zwei- oder dreifach durch -OH, Halogen, -NO2 und/oder -NH2 substituiert sind,
und R2 für einen der Reste
8) -(Ci-C6)-Alkyl, worin Alkyl geradkettig oder verzweigtkettig ist,
9) -(C2-C6)-Alkenyl, worin Alkenyl geradkettig oder verzweigtkettig ist und gegebenenfalls bis zu drei Doppelbindungen enthält,
10) -(C2-C6)- Alkinyl, worin Alkinyl geradkettig oder verzweigtkettig ist und gegebenenfalls zwei Dreifachbindungen enthält, oder
1 1) -(CrCio)-Alkyl-C(0)-0-(Ci-C6)-Alkyl, worin Alkyl gerade oder verzweigtkettig ist und unsubstituiert ist oder ein-, zwei- oder dreifach durch -OH, Halogen, -NO2 und/oder -NH2 substituiert ist, steht, wobei die oben unter 8) bis 11) genannten Reste unsubstituiert sind oder unabhängig voneinander ein-, zwei- oder dreifach durch -OH, Halogen, -NO2 und/oder -NH2 substituiert sind,
dadurch gekennzeichnet, daß
eine flüssige, zweiphasige Mischung, welche (a) mindestens 5 Gew./Vol.-% eine Verbindung der Formel (I),
(b) mindestens 10 Vol.-% 4-Methyl-2-pentanol, 5-Methyl-2-hexanol und/oder 2-Heptanol und
(c) Wasser enthält, mit einer Oxidoreduktase in Gegenwart eines Co-Faktors behandelt wird, um eine chirale Hydroxyverbindung der allgemeinen Formel II
Ri-CH(OH)-R2 (II)
zu bilden, in welcher Ri und R2 die oben angegebene Bedeutung haben.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Oxidoreduktase mikrobiellen Ursprungs ist und insbesondere aus Bakterien der Gruppe Lactobacillales, insbesondere der Gattung Lactobacillus, oder aus Hefen, insbesondere der Gattungen Pichia, Candida, Pachysolen, Debaromyces oder Issatschenkia stammt.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß als Co-Faktor NAD(P)H eingesetzt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die flüssige, zweiphasige Mischung bei Anwendung einer Oxidoreduktase mikrobiellen Ursprungs mindestens 40 Vol.-% 4-Methyl-2-pentanol, 5-Methyl-2-hexanol und/oder 2-Heptanol enthält.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die flüssige, zweiphasige Mischung zwischen 40 und 80 Vol.-% 4-Methyl-2-pentanol, 5-Methyl-2-hexanol und/oder 2- Heptanol enthält.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die flüssige, zweiphasige Mischung die Verbindung der allgemeinen Formel (I) zwischen 2 und 50 Gew./Vol. %, insbesondere zwischen 10 und 50 Gew./Vol. -%, enthält.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Verbindung der allgemeinen Formel (I) Ethyl-4-chloracetoacetat, Methylacetoacetat, Ethyl-8-chloro-6- oxooctansäure, Ethyl-3-oxovaleriat, 4-Hydroxy-2-butanon, Ethyl-2-oxovaleriat, Ethyl-2-oxo-4- phenylbuttersäure, Ethylpyruvat, Ethylphenylglyoxylat, 1 -Phenyl-2-propanon, 2,3- Dichloracetophenon, Acetophenon, 2-Octanon, 3-Octanon , 2-Butanon, 2,5-Hexandion, 1,4- Dichlor-2-butanon, Phenacylchlorid, Ethyl-4-bromoacetoacetat, 1,1-Dichloraceton, 1,1,3- Trichloraceton, 1,1,1-Trifluoraceton oder 1 -Chloraceton eingesetzt wird.
PCT/EP2006/007425 2005-09-23 2006-07-27 Verfahren zur enantioselektiven enzymatischen reduktion von ketoverbindungen WO2007036257A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2008531549A JP2009508499A (ja) 2005-09-23 2006-07-27 酵素を用いたケトン化合物を光学異性体選択的に還元する方法
DE502006009367T DE502006009367D1 (de) 2005-09-23 2006-07-27 Verfahren zur enantioselektiven enzymatischen Reduktion von Ketoverbindungen
AT06762851T ATE506446T1 (de) 2005-09-23 2006-07-27 Verfahren zur enantioselektiven enzymatischen reduktion von ketoverbindungen
EP06762851A EP1926821B1 (de) 2005-09-23 2006-07-27 Verfahren zur enantioselektiven enzymatischen Reduktion von Ketoverbindungen
US12/067,752 US20080233619A1 (en) 2005-09-23 2006-07-27 Process For the Enantioselective Enzymatic Reduction of Keto Compounds
SI200631058T SI1926821T1 (sl) 2005-09-23 2006-07-27 Postopek za enantioselektivno encimatsko redukcijo keto spojin
PL06762851T PL1926821T3 (pl) 2005-09-23 2006-07-27 Sposób enancjoselektywnej redukcji enzymatycznej związków ketonowych
DK06762851.1T DK1926821T3 (da) 2005-09-23 2006-07-27 Fremgangsmåde til enantioselektiv enzymatisk reduktion af ketoforbindelser
CA2621306A CA2621306C (en) 2005-09-23 2006-07-27 Process for the enantioselective enzymatic reduction of keto compounds
KR1020087009691A KR101345252B1 (ko) 2005-09-23 2008-04-23 케토 화합물의 거울상이성질체 선택적인 효소적 환원 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1570/2005 2005-09-23
AT0157005A AT502185B1 (de) 2005-09-23 2005-09-23 Verfahren zur enantioselektiven enzymatischen reduktion von ketoverbindungen

Publications (1)

Publication Number Publication Date
WO2007036257A1 true WO2007036257A1 (de) 2007-04-05

Family

ID=37102120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/007425 WO2007036257A1 (de) 2005-09-23 2006-07-27 Verfahren zur enantioselektiven enzymatischen reduktion von ketoverbindungen

Country Status (14)

Country Link
US (1) US20080233619A1 (de)
EP (1) EP1926821B1 (de)
JP (1) JP2009508499A (de)
KR (1) KR101345252B1 (de)
CN (1) CN101273136A (de)
AT (2) AT502185B1 (de)
CA (1) CA2621306C (de)
DE (1) DE502006009367D1 (de)
DK (1) DK1926821T3 (de)
ES (1) ES2365159T3 (de)
PL (1) PL1926821T3 (de)
PT (1) PT1926821E (de)
SI (1) SI1926821T1 (de)
WO (1) WO2007036257A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226386A1 (de) 2009-03-05 2010-09-08 IEP GmbH Verfahren zur stereoselektiven enzymatischen Reduktion von Ketoverbindungen
JP2010539910A (ja) * 2007-09-27 2010-12-24 イーエーペー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 中間体のエナンチオ選択的酵素的還元方法
US7879585B2 (en) 2006-10-02 2011-02-01 Codexis, Inc. Ketoreductase enzymes and uses thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501436B2 (en) 2009-06-22 2013-08-06 Sk Biopharmaceuticals Co. Ltd. Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester
US8404461B2 (en) 2009-10-15 2013-03-26 SK Biopharmaceutical Co. Ltd. Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester
CN105481645B (zh) * 2015-12-01 2017-12-15 浙江科技学院 一种(s)‑1,1,1‑三氟‑2‑丙醇的合成方法
DE112019006382T8 (de) * 2018-12-22 2021-12-09 Malladi Drugs And Pharmaceuticals Ltd. NEUES VERFAHREN ZUR HERSTELLUNG VONR-PHENYLACETYLCARBINOL UND β-AMINOALKOHOLEN

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763236A (en) * 1993-09-24 1998-06-09 Daicel Chemical Industries Ltd. Method for producing ketone or aldehyde using an alcohol dehydrogenase of Candida Parapsilosis
WO2003078615A1 (en) * 2002-03-18 2003-09-25 Ciba Specialty Chemicals Holding Inc. Alcohol dehydrogenases with high solvent and temperature stability
WO2004111083A2 (de) * 2003-06-18 2004-12-23 Iep Gmbh Oxidoreduktase aus pichia capsulata
WO2005108593A1 (de) * 2004-05-10 2005-11-17 Iep Gmbh Verfahren zur herstellung von 2-butanol

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014573C1 (de) * 1990-05-07 1991-10-10 Forschungszentrum Juelich Gmbh, 5170 Juelich, De
US5225339A (en) * 1992-02-26 1993-07-06 The Scripps Research Institute Lactobacillus kefir alcohol dehydrogenase
US5523223A (en) * 1992-03-13 1996-06-04 Forschungszentrum Julich Gmbh Ketoester reductase for conversion of keto acid esters to optically active hydroxy acid esters
JPH08266292A (ja) * 1995-03-31 1996-10-15 Fuji Oil Co Ltd 光学活性アルコールの製造方法
JP3766465B2 (ja) * 1996-02-29 2006-04-12 天野エンザイム株式会社 光学活性な2級アルコールの製造法
DE10119274A1 (de) * 2001-04-20 2002-10-31 Juelich Enzyme Products Gmbh Enzymatisches Verfahren zur enantioselektiven Reduktion von Ketoverbindungen
DE10208007A1 (de) * 2002-02-26 2003-09-18 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung von Alkoholen aus Substraten mittels Oxidoreduktasen, Zweiphasensystem umfassend eine wässrige Phase und eine organische Phase sowie Vorrichtung zur Durchführung des Verfahrens
JP2004097208A (ja) * 2002-07-15 2004-04-02 Sumitomo Chem Co Ltd 3−ヒドロキシシクロヘキサノンの製造方法
DE10300335B4 (de) * 2003-01-09 2008-06-26 Iep Gmbh Oxidoreduktase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763236A (en) * 1993-09-24 1998-06-09 Daicel Chemical Industries Ltd. Method for producing ketone or aldehyde using an alcohol dehydrogenase of Candida Parapsilosis
WO2003078615A1 (en) * 2002-03-18 2003-09-25 Ciba Specialty Chemicals Holding Inc. Alcohol dehydrogenases with high solvent and temperature stability
WO2004111083A2 (de) * 2003-06-18 2004-12-23 Iep Gmbh Oxidoreduktase aus pichia capsulata
WO2005108593A1 (de) * 2004-05-10 2005-11-17 Iep Gmbh Verfahren zur herstellung von 2-butanol
AT413541B (de) * 2004-05-10 2006-03-15 Iep Gmbh Verfahren zur herstellung von 2-butanol

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200579, Derwent World Patents Index; AN 2005-779499, XP002404833 *
HUMMEL WERNER: "Large-scale applications of NAD(P)-dependent oxidoreductases: Recent developments", TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 17, no. 12, December 1999 (1999-12-01), pages 487 - 492, XP002237302, ISSN: 0167-7799 *
SOMERS W A C ET AL: "Enantioselective oxidation of secondary alcohols at a quinohaemoprotein alcohol dehydrogenase electrode", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY - PART A ENZYME ENGINEERING AND BIOTECHNOLOGY 1998 UNITED STATES, vol. 75, no. 2-3, 1998, pages 151 - 162, XP008070470, ISSN: 0273-2289 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879585B2 (en) 2006-10-02 2011-02-01 Codexis, Inc. Ketoreductase enzymes and uses thereof
US8273547B2 (en) 2006-10-02 2012-09-25 Codexis, Inc. Engineered ketoreductases and methods for producing stereoisomerically pure statins
US8617864B2 (en) 2006-10-02 2013-12-31 Codexis, Inc. Polynucleotides encoding ketoreductases for producing stereoisomerically pure statins and synthetic intermediates therefor
JP2010539910A (ja) * 2007-09-27 2010-12-24 イーエーペー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 中間体のエナンチオ選択的酵素的還元方法
EP2226386A1 (de) 2009-03-05 2010-09-08 IEP GmbH Verfahren zur stereoselektiven enzymatischen Reduktion von Ketoverbindungen
WO2010100195A1 (de) 2009-03-05 2010-09-10 Iep Gmbh Verfahren zur stereoselektiven enzymatischen reduktion von ketoverbindungen

Also Published As

Publication number Publication date
CA2621306C (en) 2013-06-11
KR101345252B1 (ko) 2013-12-26
CN101273136A (zh) 2008-09-24
PL1926821T3 (pl) 2011-09-30
DE502006009367D1 (de) 2011-06-01
KR20080049136A (ko) 2008-06-03
PT1926821E (pt) 2011-07-27
EP1926821A1 (de) 2008-06-04
US20080233619A1 (en) 2008-09-25
ES2365159T3 (es) 2011-09-23
AT502185A4 (de) 2007-02-15
DK1926821T3 (da) 2011-08-15
JP2009508499A (ja) 2009-03-05
AT502185B1 (de) 2007-02-15
SI1926821T1 (sl) 2011-08-31
ATE506446T1 (de) 2011-05-15
CA2621306A1 (en) 2007-04-05
EP1926821B1 (de) 2011-04-20

Similar Documents

Publication Publication Date Title
EP2426209B1 (de) Oxidoreduktasen zur stereoselektiven Reduktion von Ketoverbindungen
EP1851322B1 (de) Verfahren zur enantioselektiven enzymatischen reduktion von ketoverbindungen
EP1926821B1 (de) Verfahren zur enantioselektiven enzymatischen Reduktion von Ketoverbindungen
EP1383899B1 (de) Enzymatisches verfahren zur enantioselektiven reduktion von ketoverbindungen
EP1633779A2 (de) Oxidoreduktase aus pichia capsulata
EP2145009A1 (de) Verfahren zur enzymatischen reduktion von alkenderivaten
DE10300335B4 (de) Oxidoreduktase
EP2403953B1 (de) Verfahren zur stereoselektiven enzymatischen reduktion von ketoverbindungen
DE102005038606A1 (de) Verfahren zur enzymatischen Herstellung von chiralen 1-acylierten 1,2-Diolen
EP1959019A1 (de) Verfahren zur enzymatischen Reduktion von Alkenderivaten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2621306

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2411/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006762851

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680035056.4

Country of ref document: CN

Ref document number: 2008531549

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12067752

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087009691

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006762851

Country of ref document: EP