WO2007015546A1 - 間葉系幹細胞誘導剤及び組織再生促進剤並びに間葉系幹細胞の調製方法 - Google Patents
間葉系幹細胞誘導剤及び組織再生促進剤並びに間葉系幹細胞の調製方法 Download PDFInfo
- Publication number
- WO2007015546A1 WO2007015546A1 PCT/JP2006/315406 JP2006315406W WO2007015546A1 WO 2007015546 A1 WO2007015546 A1 WO 2007015546A1 JP 2006315406 W JP2006315406 W JP 2006315406W WO 2007015546 A1 WO2007015546 A1 WO 2007015546A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mesenchymal stem
- cells
- stem cells
- bmp
- bone marrow
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1875—Bone morphogenic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention relates to a mesenchymal stem cell inducer, a tissue regeneration promoter, and a method for preparing mesenchymal stem cells.
- Mesenchymal stem cells are somatic stem cells having self-replicating ability and multipotency to mesenchymal tissue.
- living tissue it exists in connective tissues such as bone marrow and dermis / skeletal muscles' adipose tissue, and functions to maintain and repair connective tissue homeostasis!
- connective tissues such as bone marrow and dermis / skeletal muscles' adipose tissue
- mesenchymal stem cells differentiate and proliferate at the damaged site (Non-patent Document 1).
- Non-patent Document 1 Non-patent Document 1
- mesenchymal stem cells and mesenchymal progenitor cells are detected in peripheral blood circulating in the body.
- BMP-2 bone morphogenetic factor-2
- rhBMP gene-reversible human BMP
- Non-patent document 1 Jiang, Y. et al., Nature, 2002, 418: 41—49
- Non-Patent Document 2 Fujii, M., et al., Mol. Biol. Cell, 1999, 10: 3801-3813
- Non-Patent Document 3 Nakamura, K., et al., Exp. Cell Res., 1999, 250: 351-363 Disclosure of the invention
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a mesenchymal stem cell inducer that increases mesenchymal stem cells in the blood that are hardly detected in force. Another object of the present invention is to provide a tissue regeneration promoter that induces regeneration of a damaged site by systemic administration without local administration to an affected area. Furthermore, an object of the present invention is to provide a method for preparing mesenchymal stem cells from peripheral blood that is lightly burdened on a test animal without collecting bone marrow fluid.
- the mesenchymal stem cell inducer of the present invention contains BMP-2 and is characterized by increasing the number of mesenchymal stem cells in blood.
- the mesenchymal stem cell inducer is administered to an animal, the mesenchymal stem cell can be mobilized from the bone marrow of the animal into the blood, and the mesenchymal stem cell can also be collected from the blood force. . If blood force mesenchymal stem cells can be collected, it becomes unnecessary to collect bone marrow stromal cells from the bone marrow, and the burden on the test animal is greatly reduced economically and temporally.
- the mesenchymal stem cell is preferably a CD45-negative cell.
- CD4 5 negative mesenchymal stem cells By administering the above mesenchymal stem cell inducer to an animal, CD4 5 negative mesenchymal stem cells can be mobilized in the bone marrow blood of the animal, and the blood force is also increased by CD45 negative mesenchymal stem cells. It can be collected.
- the CD45-negative mesenchymal stem cells obtained in this way can be used for tissue regeneration, and can be administered locally to damaged tissues to promote tissue regeneration in vivo or in vitro cell culture. To differentiate into the desired cells and tissues Can be guided.
- the tissue regeneration-promoting agent of the present invention contains BMP-2 and is administered systemically.
- mesenchymal stem cells can be mobilized from the bone marrow of the animal into the blood, and the mesenchymal stem cells can be recruited to the affected affected area. Can be routed.
- the tissue regeneration-promoting agent is particularly preferably a bone whose tissue is preferably bone, brain, liver, skin or vascular endothelium.
- Mesenchymal stem cells can be separated into the above tissue in an in vitro cell culture system. When the tissue is damaged, the mesenchymal stem cells are removed from the bone marrow into the blood. Mobilized to
- the regeneration of the tissue can be promoted.
- the mesenchymal stem cells can be recruited to the fracture site through the blood, and the treatment of the fracture can be promoted by the differentiation of the mesenchymal stem cells into osteoblasts at the fracture site.
- the method for preparing mesenchymal stem cells of the present invention comprises a step of administering BMP-2 to a non-human animal, a step of collecting blood containing mesenchymal stem cells, and a mesenchymal stem cell from the collected blood. Isolating the vesicles.
- mesenchymal stem cells According to the method for preparing mesenchymal stem cells described above, it becomes possible to prepare mesenchymal stem cells from the blood of a non-human animal. Further, according to the above preparation method, since the physical burden on the test animal is light, mesenchymal stem cells can be prepared repeatedly with the same individual power, and more frequently and more easily than the preparation from bone marrow fluid. Mesenchymal stem cells can be obtained.
- the method for preparing mesenchymal stem cells further includes a step of culturing mesenchymal stem cells.
- the mesenchymal stem cells can be increased to the required amount even when the collected blood is in a small amount.
- the mesenchymal stem cells are preferably co-cultured with bone marrow cells. If mesenchymal stem cells are co-cultured with bone marrow cells, Can be suppressed.
- mesenchymal stem cell inducer of the present invention When the mesenchymal stem cell inducer of the present invention is administered to an animal, mesenchymal stem cells can be mobilized from the bone marrow of the animal into the blood, and blood force Mesenchymal stem cells can be collected. It becomes. If blood force mesenchymal stem cells can be collected, it becomes unnecessary to collect bone marrow stromal cells from the bone marrow, and the burden on the test animal is greatly reduced physically and temporally.
- the mesenchymal stem cells can be recruited and increased in the bone marrow strength blood of the animal, and the mesenchymal stem cells are damaged in the affected diseased part. Can be recruited. Moreover, if blood force mesenchymal stem cells can be collected by systemic administration of BMP-2, it becomes unnecessary to collect bone marrow stromal cells from bone marrow for local injection. This burden is greatly reduced in terms of physical 'time' and economics.
- mesenchymal stem cells can be prepared from blood of a non-human animal.
- mesenchymal stem cells can be prepared repeatedly from the same individual by repeating each step.
- FIG. 1 BMP-2 containing collagen transplanted on the back of irradiated C57BLZ6 mice and bone marrow-derived mesenchymal stem cells were recruited to induce ectopic bone formation. It is a photograph shown. The scale bar in the figure is 50 / z m.
- FIG. 2 is a photograph showing a BMP-2-containing collagen 'pellet transplanted on the back of a mouse or a vasculature constructed around the pellet.
- the scale bar in Fig. 2A is 50 / ⁇ ⁇
- the scale bar in Fig. 2 ⁇ is 150 ⁇ m.
- FIG. 3 is a diagram showing the results of analysis of bone marrow-derived mesenchymal stem cells of GFP transgenic mice by a flow cytometer and photographs showing the differentiation potential of the bone marrow-derived mesenchymal stem cells.
- FIG. 4 is a photograph showing that bone marrow-derived mesenchymal stem cells were recruited to a collagen pellet containing BMP-2 transplanted on the back of a nude mouse, and ectopic bone formation was induced.
- the scale bar in the figure is 50 / zm.
- FIG. 5 Bone marrow-derived mesenchymal stem cells mobilized in the blood by a collagen pellet containing BMP-2 transplanted on the back of a GFP transgenic mouse were transplanted into a nude mouse, and then the back of the nude mouse This is a photograph showing that ectopic bone formation was induced in BMP-2-containing collagen pellets of nude mice as a result of transplantation of BMP-2-containing collagen pellets.
- the scale bar in the figure is 50 m.
- FIG. 6 is a diagram and a photograph showing that CD45 negative cells induce ectopic bone formation among peripheral blood mononuclear cells of mice transplanted with BMP-2-containing collagen pellet.
- the skeno lever in the figure is.
- FIG. 7 shows the results of analysis by flow cytometer of CD45 negative cells mobilized in peripheral blood mononuclear cells of mice transplanted with BMP-2-containing collagen 'pellets.
- FIG. 8 A photograph showing the results of comparison of the expression of osteoblast-specific marker genes expressed in peripheral blood mononuclear cells derived from mice transplanted with collagen pellets containing BMP-2, with and without BMP-2 stimulation. Yes (left, RT—analysis by PCR; right, cell shape change).
- FIG. 9 is a view showing the results of analyzing a peripheral blood mononuclear cell of a mouse transplanted with a BMP-2-containing collagen 'pellet by a flow cytometer.
- FIG. 10 shows the results of analyzing peripheral blood mononuclear cells of mice not transplanted with BMP-2-containing collagen 'pellets using a flow cytometer.
- FIG. 12 is a view of CD45 negative cells induced in peripheral blood mononuclear cells of a tibial fracture mouse analyzed with a flow cytometer over time.
- FIG. 13 As a result of transplanting peripheral blood mononuclear cells from a tibial fracture mouse (GFP transgenic mouse) into another tibial fracture mouse (nude mouse), the bone marrow-derived mesenchymal stem cell force nude mouse It is a photograph showing that osteoblasts were recognized after recruitment. The skeno lever in the figure is.
- the mesenchymal stem cell inducer of the present invention contains BMP-2 and is characterized by increasing mesenchymal stem cells in blood.
- a mesenchymal stem cell inducer is an agent that mobilizes mesenchymal stem cells in the blood and increases the number of mesenchymal stem cells in the blood when administered to an animal!
- the mesenchymal stem cell refers to a cell having a self-replicating function and a multipotency for differentiation into a plurality of mesenchymal cells.
- mesenchymal stem cells are distinguished from mesenchymal progenitor cells as a pre-stage of differentiation into mesenchymal cells. It has the effect of increasing the number of mesenchymal progenitor cells just by increasing the number of mesenchymal stem cells in the blood.
- mesenchymal stem cells including bone marrow mesenchymal cells, bone marrow stromal cells, and mesenchymal precursor cells. being called.
- the “mesenchymal stem cell” of the present invention means an undifferentiated cell having the ability to differentiate into a mesenchymal cell. Note that when the mesenchymal stem cell inducer of the present invention increases the number of mesenchymal progenitor cells in the blood, the number of mesenchymal stem cells, which is the previous stage, also increases. From the viewpoint of analysis, there is no contradiction even if it is judged that it functions as a mesenchymal stem cell inducer.
- “Mobilizing mesenchymal stem cells” means being carried out into the blood from bone marrow where mesenchymal stem cells are present.
- BMP-2 is a protein discovered as a factor that induces ectopic bone formation, and directly acts on mesenchymal stem cells and mesenchymal progenitor cells in vivo. It has the effect of inducing differentiation into osteoblasts and inducing the formation of bone and cartilage!
- BMP-2 as a mesenchymal stem cell inducer is used by being administered to animals as a protein (for example, recombinant protein, tissue-derived purified protein, etc.). It may be an expression vector incorporating the BMP-2 gene so that it can be translated into Expression vectors include plasmid vectors, retrovirus vectors, adenovirus vectors, adeno-associated virus vectors, etc. As long as it can express BMP-2, BMP-2 mRNA and its DNA itself are also included.
- Examples of animal species from which BMP-2 originates include humans and non-human animals, such as humans, mice, rats, monkeys, inu, and rabbits, but the same animal species as the animals to be administered. It is preferable that
- a dose suitable for a test animal may be administered to the animal.
- administration routes include intravenous injection, intramuscular injection, Examples include intradermal injection, subcutaneous injection, intraperitoneal injection, oral administration, dermal administration, ophthalmic administration, and nasal administration.
- the preferred route of administration is intravenous injection or intramuscular injection.
- Sterile compositions for injection can be formulated according to normal pharmaceutical practice using an aqueous solution for injection such as distilled water for injection.
- Aqueous solutions for injection include, for example, isotonic solutions containing physiological saline, glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol and sodium chloride.
- Adjuvants such as alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 TM, HCO? 50 may be used in combination.
- a suitable carrier for example, a carrier such as a multiporous collagen disc.
- the mesenchymal stem cell inducer of the present invention is characterized in that the mesenchymal stem cells that increase in blood are CD45-negative cells.
- CD45-negative cells are cells that do not express CD45 antigen on the surface of cells, and are non-hematopoietic undifferentiated cells, and mesenchymal stem cells and mesenchymal progenitor cells are generally CD45. Negative cells.
- CD45 antigen is a tyrosine phosphatase and is also known as leukocyte common antigen (LCA).
- CD45 is present in all human hematopoietic cells, excluding erythrocytes, platelets and their progenitor cells, and is an essential protein for T cell and B cell activity.
- the tissue regeneration-promoting agent of the present invention contains BMP-2 and is administered systemically and is characterized by increasing mesenchymal stem cells in blood.
- a tissue regeneration-promoting agent refers to an agent that induces the repair of an animal tissue when it is damaged or promotes the repair work of a tissue that has already been repaired, thereby leading to the regeneration of the tissue. .
- administering means that a tissue regeneration promoter is circulated throughout the body by administration through a blood vessel or the like that is not locally administered to an affected affected area.
- intravenous injection intramuscular injection, intradermal injection, subcutaneous injection, intraperitoneal injection, oral administration, dermal administration, ocular administration, nasal administration, etc. can be mentioned, but the preferred route of administration is intravenous injection or intramuscular injection. It is.
- tissue whose tissue regeneration promoting agent promotes tissue regeneration is mainly bone, brain, liver, skin or vascular endothelium, but mesenchymal system such as skeletal muscle, cartilage, fat, ligament, tendon, etc. It can also promote organizational regeneration.
- the method for preparing mesenchymal stem cells of the present invention comprises an administration step of administering BMP-2 to a non-human animal, a collecting step of collecting blood containing mesenchymal stem cells, and a step from the collected blood. An isolation step of isolating leaf stem cells.
- BMP-2 may be administered to a human or non-human animal.
- non-human animal refers to, for example, a force that can be exemplified by mouse, rat, monkey, inu, and rabbit.
- the origin of BMP-2 is preferably the same animal species as the animal to be administered.
- a dose suitable for the subject animal may be administered by an appropriate administration route.
- the administration route is intravenous injection or intramuscular injection.
- blood in which mesenchymal stem cells are mobilized in the administration step may be collected, but the method of collecting blood is not particularly limited as long as it is aseptic.
- the method of collecting blood is not particularly limited as long as it is aseptic.
- a syringe, a vacuum blood collection tube, a blood collection capillary, etc. it is also possible to collect blood such as vein, artery, eye or heart.
- the blood collection time is preferably a fixed time after the administration of BMP-2, when the mesenchymal stem cell concentration in the blood is increased. This time should be determined by collecting blood over time and analyzing the number of CD45 negative cells in peripheral blood using a flow cytometer, depending on the species of animal, the concentration of BMP-2 administered and the route of administration. Can do.
- BMP-2 An increase in the number of CD45-negative cells due to giving means an increase in mesenchymal stem cells.
- peripheral blood mononuclear cells are isolated from the collected blood by the Ficoll 'Conley (Ficoll. Hipack) specific gravity centrifugation method, the lymphoquick method, or the nylon column method, and then the flow.
- CD45 negative cells can be isolated by cytometer or immunomagnetic bead method.
- peripheral blood mononuclear cells may only be separated depending on the application.
- the method for preparing mesenchymal stem cells may further include a culture step for culturing mesenchymal cells.
- mesenchymal stem cells prepared by the above method are preferably cultivated by a suitable method known in the field of the cell culture by the following method.
- the isolated mesenchymal stem cells were seeded on a plate (diameter 10 cm) coated with a basement membrane extracellular matrix containing DMEM medium containing 10% FBS so that there were about 2 ⁇ 10 6 cells. Change the medium to remove non-adherent cells on the day, and then culture once every three days.
- the cells were detached with trypsin (0.05%) + EDTA (0.2 mM) to obtain a density of 1 X 10 3 to 5 X 10 3 cells Zcm 2
- trypsin 0.05%) + EDTA (0.2 mM)
- the cells are subcultured by repeatedly seeding the cells in the above-mentioned medium containing bFGF (IngZml) in advance.
- the mesenchymal stem cells do not proliferate!
- bone marrow cells treated in such a manner as a feeder it is possible to suppress sorting during culturing.
- treatment with dartalaldehyde, radiation treatment, and the like is preferred! /.
- C57BLZ6 mice aged 8 to 10 weeks were used as recipient mice, and bone marrow transplantation was performed by injecting 5 ⁇ 10 6 GFP bone marrow cells from the tail vein after irradiation with lOGy radiation. .
- CD45 negative ZGFP positive bone marrow cells bone marrow cells of GFP transgenic mice were mixed with anti-mouse CD45 antibody microbeads (Miltenyi Biotec) for 20 minutes at 8 ° C. After reaction, CD45 positive cells were separated using a magnetic cell sorter (MACS; manufactured by Miltenyi Biotec), and CD45 negative cells were purified and used.
- MCS magnetic cell sorter
- recombinant 'human BMP-2 (rhBMP-2; Astellas Pharma Inc.) was added to 1 / z gZ / il so that 5mmolZl glutamic acid, 2.5% glycine, 0.5% saccharose and 0.0 l% Suspended in a buffer containing Tween-80.
- 3 1 rhBMP-2 suspension was diluted with 22 1 phosphate buffer (PBS), multi-hole collagen 'disk (diameter 6mm, thickness lmm; Eticon, Johnson' End 'Johnson stock Company) and freeze-dried to produce collagen pellets containing BMP-2.
- PBS phosphate buffer
- multi-hole collagen 'disk diameter 6mm, thickness lmm; Eticon, Johnson' End 'Johnson stock Company
- a phosphate buffer (PBS) -containing collagen pellet used for the control group was prepared in the same manner using PBS instead of the rhBMP-2 suspension.
- BMP-2-containing collagen 'pellets or PBS-containing collagen' pellets used for the control group were transplanted under the back fascia of the above-mentioned bone marrow transplanted mice, C57BLZ6 mice or nude mice. Fluorescent photographs of ectopic bone can be obtained by digital microscopy (multi Taken with You Ryichi's system VB-S20 (Keyence).
- a tibial fracture model mouse was prepared as follows. First, a longitudinal incision was made in the skin on the front of the knee, and a 30G injection needle was inserted into the medulla and inserted into the distal part of the tibia. After that, a fracture was created in the tibial shaft using a three-point bending method, and the wound was sutured. The tibial fracture model mice prepared in this way were bred for a certain period and then used for experiments (Hiltunen A., Vuorio E., Aro HT, A standardize dexperimental fracture in the mouse tibia., J. Orthop. Res. ., 1993, 11 (2): 305—12).
- FITC albumin Sigma was injected into the mouse 3 days after the transplantation of BMP-2-containing collagen 'pellet into the mice. Thereafter, the BMP-2-containing collagen 'pellet was extracted, embedded in tissue tech OCT compound, sliced to 6 ⁇ m in thickness with cryostat (Leica Microsystems), and observed with a microscope.
- Ectopic bones or fractured bones were surgically removed, fixed with 4% paraformaldehyde at 4 ° C for 48 hours, and then decalcified with EDTA solution at 4 ° C for 6 days.
- the EDTA solution was replaced with a new solution every other day.
- the decalcified bone was immersed in PBS containing 15% saccharose for 12 hours, followed by 12 hours in PBS containing 30% saccharose. Thereafter, the bone was cut into an appropriate size, embedded in Tissuetech OCT Compound (Sakura Finetech Japan), and rapidly frozen on dry ice.
- a frozen section for immunofluorescence staining was sliced into a 6 m thickness with a cryostat (Leica Microsystems). The sections on the slide glass were washed and then immersed in healthy goat serum for 1 hour to block non-specific adsorption and reacted with anti-mouse 'osteocalcin' polyclonal antibody (Takarano). Thereafter, the sections were reacted with anti-rabbit IgG antibody (Molecular Probes) labeled with Alexa Fluor546 for 2 hours, washed, and reacted with 4,6-diamino-2-phenolindole (DAPI) for 10 minutes at room temperature. I watched it with a microscope.
- DAPI 4,6-diamino-2-phenolindole
- HE staining In order to detect GFP in the tissue, a section on a slide glass was reacted with an anti-GFP polyclonal antibody (MBL), washed, and then detected with diaminobenzidine (DAB). Counterstaining was performed with hematoxylin and eosin (hereinafter HE staining).
- MBL anti-GFP polyclonal antibody
- DAB diaminobenzidine
- BMP-2-containing collagen 'Immunostaining of the peripheral tissue of the pellet and endothelial progenitor cells blocked nonspecific adsorption by immersing sections on slide glass in healthy goat serum for 1 hour, followed by anti-mouse This was reacted with a CD31 monoclonal antibody (BD Biosciences Pharmingen). Thereafter, the sections were reacted with Alexa Fluor 546-labeled anti-rat IgG antibody (Molecular Probes) for 2 hours, washed, stained with DAPI, and viewed with a microscope.
- CD45 negative cells in peripheral blood mononuclear cells induced with BMP-2 were obtained using 10% FCS, 100 U / ml streptomycin using a petri dish with bone marrow cells (used as a feeder) fixed with 2% dartalaldehyde. The cells were cultured for 3 weeks in DMEM medium containing syn / pecillin and 300 ng / ml BMP-2. Thereby, cell differentiation was observed.
- CBFA1 5, -CCGCA CGACAACCGCACCAT-3 '(forward) and 5,-CGCTCCGGCCCAC AA ATCTC-3, (reverse), osteopontin: 5,-TC ACC ATTCGG ATG AGTC TG-3, (forward) and 5,-ACTTGTGGCTCTGATGTTCC- 3 '(reverse),
- a LP 5,-CGCCAGAGTACGCTCCCGCC-3' (forward) and 5, TGTACCC TGAGATTCGT—3, (reverse) and osteoforce noresin: 5,-TCTGCTC ACTCTG CTGAC—3, (forward) and 5 , I GGAGCTGCTGTGACATCC-3 (Reverse)
- the isolated peripheral blood mononuclear cells and mesenchymal stem cells are anti-mouse CD45 antibody conjugated with fluorescein'isothiocyanate (FITC) and anti-mouse CD1 conjugated with phycoerythrin (PE).
- FITC fluorescein'isothiocyanate
- PE phycoerythrin
- lb CD31, CD34, CD44, Flk-1, Sea-1 antibody (BD Biosciences Pharmin gen), anti-mouse Gr-1, conjugated with piotin, CXCR4, purified anti-mouse CD 140a antibody (PDFGRa, BD Biosciences Pharmingen) ), Suspended in 100 ⁇ l of PBS containing purified anti-human BMPR— ⁇ antibody (R & D Systems) and incubated at 4 ° C. for 30 minutes.
- PBS purified anti-human BMPR— ⁇ antibody
- Bone marrow cells aseptically collected from GFP transgenic mice (C57BLZ6, 8-10 weeks old, male) were injected into the C57BLZ6 mice (8-10 weeks old, female) irradiated with lOGy from the tail vein, Thereafter, a BMP-2-containing collagen pellet was transplanted to the back of the mouse.
- FIG. 1C shows an X-ray photograph of a BMP-2-containing collagen 'pellet
- FIG. 1D is an HE-stained image of a tissue section of a BMP-2-containing collagen' pellet.
- FIG. 1G shows nuclei stained with DAPI
- FIG. 1H shows an image triple stained with osteocalcin, GFP and DAPI.
- FIG. 2A shows an HE-stained image of ectopic bone
- the right photograph shows a FITC-stained image
- Fig. 2B shows HE-stained images of each collagen 'pellet on the 3rd day of transplantation, as well as immunofluorescence of CD31 and DAPI, when transplanted with a BMP-2-containing collagen' pellet and with a PBS-containing collagen 'pellet. Staining and these double stainings are shown.
- GFP mesenchymal stem cells CD45 negative ZGFP positive bone marrow cells separated from bone marrow cells of GFP transgenic mice were transplanted into nude mice transplanted with collagen-containing pellets containing BMP-2 for 2 weeks. Tail vein force was also injected daily and subsequent BMP-2 containing collagen pellets were analyzed histologically.
- FIG. 4A-E shows the HE-stained image of the tissue section of the BMP-2-containing collagen pellet
- FIGS. 5B to 5E show stained images of osteocalcin, GFP and DAPI, respectively, and these triple stains. Show the image.
- the ectopic bone formation induced by BMP-2 involves the functional vascular network of newly formed vasculature and the recruitment of bone marrow-derived mesenchymal progenitor cells Tomento contributed greatly.
- peripheral blood mononuclear cells were isolated daily from GFP transgenic mice transplanted with collagen-containing pellets containing BMP-2 for 7 days, and each day, 1 x 106 6 peripheral blood mononuclear cells were removed.
- FIG. 5A shows HE-stained bone sections of nude mice transplanted with the above-mentioned peripheral blood mononuclear cells daily for 7 days.
- HE staining images of the tissue sections of the pellets and FIGS. Stained images with osteocalcin, GFP and DAPI, and triple stained images of these.
- osteoblasts originate from non-hematopoietic lineage mesenchymal stem cells, whether CD45 negative mesenchymal stem cells in the bone marrow contribute to ectopic bone formation induced by BMP-2 Examined.
- a BMP-2-containing collagen 'pellet was transplanted into a mouse irradiated with lOGy radiation, and two types of bone marrow cell pools (CD45 negative ZGFP negative cells and CD45 positive ZGFP positive cells) were mixed and transplanted. .
- Analysis of peripheral blood mononuclear cells by flow cytometry showed that bone marrow cell transplantation was successful.
- an increase in CD45 negative ZGFP negative cells 8.6% compared to 4.0
- a marked decrease in CD45 negative ZGFP positive cells (2. 2% compared to 0.7%) (Fig. 6).
- X-ray photographs of ectopic bone (Fig. 6D, Fig. 6H) and HE-stained images (Fig. 6E, Fig. 61) are all different in mice transplanted with any bone marrow cells. It shows that a proper bone is formed.
- Fig. 6F and Fig. 6J show the force of osteocalcin, GFP, and DAPI triple-stained images. Bone formed in mice transplanted with CD45 negative ZGFP negative cells and CD45 positive ZGFP positive cells (Fig. 6F) is the control. It was shown that the number of GFP positive cells was remarkably smaller than that of bone (Fig. 6J) formed in mice transplanted with the group of GFP bone marrow cells.
- the increase in CD45 negative cells in peripheral blood mononuclear cells is the force that occurred within the first 7 days after transplantation of BMP-2 containing collagen 'pellets. It was limited temporarily (Figure 7A).
- Figure 7A the occupancy of force CD45 negative cells showing data for five different individuals analyzed over time on a flow cytometer was 60-80% at the peak.
- peripheral blood mononuclear cells Day 3 of Experiment 1 in Fig. 7A
- BMPR-II negative cells and Sea- The proportion of 1 negative cells was increased ( Figure 7B). From these results, peripheral It was suggested that BMP-2 stimulation in muscular tissue of the mouse induced the recruitment of CD45 negative cells into the bone marrow force blood.
- CD45 negative cells mobilized in blood by BMP-2 stimulation
- the cells were cultured on one cell, and the expression of osteoblast-specific marker gene was examined by RT-PCR (left side of Fig. 8).
- the morphological change of the CD45 negative cells by BMP-2 stimulation was also examined (right side of FIG. 8).
- FIG. 8 The left side of FIG. 8 is an electrophoresis photograph showing the results of RT-PCR, where lane 1 is a cell before culturing, lane 2 is a non-treated cell after culturing, and lane 3 is a BMP- Shows cells stimulated with 2 (300 ⁇ gZml).
- the right side of FIG. 8 is a photograph comparing the morphological changes of CD45 negative cells with and without BMP-2 (300 ng / ml) stimulation after culture.
- hematopoietic lineage markers such as CD45, CD1 lb and Gr-1 and endothelial cell lineage markers such as CD 34, Flk-1 and CD31 were not detected (FIG. 9).
- SDF-1 chemokines are known to act on CXCR4 positive stem cells in the bone marrow and recruit CXCR4 positive stem cells to peripheral tissues that express SDF-1.
- the expression of SDF-1 was found to increase in the local peripheral fibers and tissues injected with BMP-2 (data not shown), so bone marrow-derived mesenchymal stem cells circulating in the blood BMP-2 containing collagen. It was suggested that SDF-1 might contribute to recruitment into pellets.
- FIG. 4 shows a tissue section of a fractured part of a nude mouse injected with GFP mesenchymal stem cells
- the lower part shows a tissue section of a fractured part of a nude mouse injected with PBS as a control group. From left, GFP, DAPI and immunofluorescent stained images of these double stains, and immunochemically stained images of GFP developed with DAB are shown from the left.
- GFP peripheral blood mononuclear cells of GFP transgenic mice with fractured tibia Cells were injected daily into the nude mice with fractured tibia for 14 days by tail vein force.
- FIG. 13 shows the tissue section of the fractured part of the nude mouse injected daily for 14 days with the GFP peripheral blood mononuclear cells, and the lower part shows the fractured part of the nude mouse injected with PBS as a control group. A tissue section of is shown. The left force GFP, DAPI and immunofluorescent stained images of these double stains, and the immunochemically stained image of GFP developed with DAB are shown.
- mesenchymal stem cell inducer of the present invention When the mesenchymal stem cell inducer of the present invention is administered to an animal, mesenchymal stem cells can be mobilized from the bone marrow of the animal into the blood, and blood force Mesenchymal stem cells can be collected It becomes. If blood force mesenchymal stem cells can be collected, it becomes unnecessary to collect bone marrow stromal cells from the bone marrow, and the burden on the test animal is greatly reduced physically and temporally.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
本発明の間葉系幹細胞誘導剤は、BMP-2を含み、血液中の間葉系幹細胞を増加させることを特徴とする。また、本発明の組織再生促進剤は、BMP-2を含み、全身性に投与されるものであって、血液中の間葉系幹細胞を増加させることを特徴とする。さらに、本発明の間葉系幹細胞の調製方法は、BMP-2を非ヒト動物に投与するステップと間葉系幹細胞を含む血液を採取するステップと採取した血液から間葉系幹細胞を単離するステップとを備えることを特徴とする。
Description
明 細 書
間葉系幹細胞誘導剤及び組織再生促進剤並びに間葉系幹細胞の調製 方法
技術分野
[0001] 本発明は、間葉系幹細胞誘導剤及び組織再生促進剤並びに間葉系幹細胞の調 製方法に関する。
背景技術
[0002] 間葉系幹細胞は、自己複製能と間葉系組織への多分化能を有する体性幹細胞で ある。生体組織では、骨髄並びに真皮 ·骨格筋'脂肪組織等の結合組織に存在し、 結合組織の恒常性維持や修復に機能して!/、る。間葉系組織の再生プロセスでは、 損傷を受けた部位で、間葉系幹細胞が必要とされる細胞に分化し、増殖することが 知られている (非特許文献 1)。し力しながら、体内を循環する末梢血中には、間葉系 幹細胞及び間葉系前駆細胞は極僅かにしか検出されない。
[0003] 一方、骨形成因子ー2 (以下、 BMP - 2)は、異所性の骨形成を誘導する因子とし て発見された。 BMP— 2は、間葉系幹細胞及び間葉系前駆細胞に直接作用して、 S madや p38 MAP kinase等の細胞内シグナル伝達経路の活性化を介して、骨や 軟骨への分ィ匕を誘導すると考えられている (非特許文献 2及び 3)。最近では、ヒト BM P— 2遺伝子がクローニングされ、遺伝子糸且換え型ヒト BMP (rhBMP)の大量生産が 可能となったため、骨欠損の修復及び再生医療への利用に期待されて!、る。
[0004] 非特許文献 1: Jiang, Y.ら、 Nature, 2002年、 418 :41—49
非特許文献 2 :Fujii, M.ら、 Mol. Biol. Cell, 1999年、 10 : 3801 - 3813 非特許文献 3 :Nakamura, K.ら、 Exp. Cell Res.、 1999年、 250 : 351 - 363 発明の開示
発明が解決しょうとする課題
[0005] し力しながら、骨欠損の修復及び再生医療に BMP— 2を利用するには、直接、罹 病患部に BMP— 2を局所投与する力、 in vitroで間葉系幹細胞を分ィ匕させるため に、骨髄液力 分離した間葉系幹細胞に BMP— 2を直接加える必要がある。
[0006] 前者の場合には、罹病患部には内出血が生じ、周辺組織に腫れや痛みが伴うので 、罹病患部への局所投与は被検動物にさらなる痛みを付加することになる。さらに、 損傷部位の治癒過程は、炎症期、修復期、リモデリング期の 3段階が少しずつ重なり 合いながら進行するので、投与部位や投与のタイミングによっては、治癒過程の進行 を遅らせることもある。一方、後者の場合には、間葉系幹細胞を骨髄から採取するた め、被検動物への肉体的'時間的'経済的負担が大きぐ得られる間質系幹細胞の 量にも限りがある。
[0007] 本発明は上記事情に鑑みてなされたものであり、極わずかにし力検出されない血 液中の間葉系幹細胞を増加させる間葉系幹細胞誘導剤を提供することを目的とする 。また、罹病患部に局所投与をすることなぐ全身性の投与で損傷部位の再生を導く 組織再生促進剤を提供することを目的とする。さらに、本発明は、骨髄液の採取を伴 わず、被検動物に対して負担の軽い末梢血から間葉系幹細胞を調製する方法を提 供することを目的とする。
課題を解決するための手段
[0008] 本発明の間葉系幹細胞誘導剤は、 BMP— 2を含み、血液中の間葉系幹細胞を増 カロさせることを特徴とする。
[0009] 上記間葉系幹細胞誘導剤を動物に投与すれば、該動物の骨髄から血液中に間葉 系幹細胞を動員することができ、血液力も間葉系幹細胞を採取することが可能となる 。また、血液力 間葉系幹細胞を採取することができると、骨髄から骨髄間質細胞を 採取することが不要となり、被験動物の負担が肉低的'時間的'経済的に大きく軽減 される。
[0010] 上記間葉系幹細胞誘導剤は、間葉系幹細胞が CD45陰性細胞であることが好まし い。
[0011] 上記間葉系幹細胞誘導剤を動物に投与すれば、該動物の骨髄力 血液中に CD4 5陰性の間葉系幹細胞を動員することができ、血液力も CD45陰性の間葉系幹細胞 を採取することが可能となる。こうして得られた CD45陰性の間葉系幹細胞は、組織 の再生に利用することができ、損傷を受けた組織に局所投与することで in vivoでの 組織再生を促進したり、 in vitroの細胞培養で、目的とする細胞や組織への分化を
誘導することができる。
[0012] 本発明の組織再生促進剤は、 BMP— 2を含み、全身性に投与されるものであって
、血液中の間葉系幹細胞を増加させることを特徴とする。
[0013] 上記組織再生促進剤を動物に全身性に投与すれば、該動物の骨髄から血液中に 間葉系幹細胞を動員することができ、損傷を受けた罹病患部に間葉系幹細胞をリク ルートすることができる。
[0014] 上記組織再生促進剤は、組織が骨、脳、肝臓、皮膚又は血管内皮であることが好 ましぐ骨であることが特に好ましい。
[0015] 間葉系幹細胞は、 in vitroの細胞培養系で、上記組織に分ィ匕させることが可能で あり、上記組織に損傷が生じた場合には、間葉系幹細胞を骨髄から血液中に動員し
、上記組織の再生を促進することができる。
[0016] 例えば、骨折の治療にお!、ては、上記組織再生促進剤を全身性に投与することで
、血液を通じて間葉系幹細胞を骨折部位にリクルートメントすることができ、骨折部位 で該間葉系幹細胞が骨芽細胞に分化することで骨折の治療を促進することができる
[0017] 本発明の間葉系幹細胞の調製方法は、 BMP— 2を非ヒト動物に投与するステップ と、間葉系幹細胞を含む血液を採取するステップと、採取した血液から間葉系幹細 胞を単離するステップと、を備えることを特徴とする。
[0018] 上記の間葉系幹細胞の調製方法によれば、非ヒト動物の血液から間葉系幹細胞を 調製することが可能となる。また、上記調製方法によれば、被検動物への肉体的負 担が軽いため、同一個体力も繰り返し間葉系幹細胞を調製することができ、骨髄液か ら調製するよりも頻回かつ簡便に間葉系幹細胞を得ることができる。
[0019] 上記の間葉系幹細胞の調製方法は、間葉系幹細胞を培養するステップを更に含 むことが好ましい。
[0020] 間葉系幹細胞を培養するステップを含むことにより、採取した血液が少量の場合で あっても、間葉系幹細胞を必要量まで増やすことができる。
[0021] 上記の間葉系幹細胞を培養するステップでは、間葉系幹細胞を骨髄細胞と共培養 することが好ましい。間葉系幹細胞を骨髄細胞と共培養すれば、間葉系幹細胞の分
化を抑制することができる。
発明の効果
[0022] 本発明の間葉系幹細胞誘導剤を動物に投与すれば、該動物の骨髄から血液中に 間葉系幹細胞を動員することができ、血液力 間葉系幹細胞を採取することが可能と なる。また、血液力 間葉系幹細胞を採取することができると、骨髄から骨髄間質細 胞を採取することが不要となり、被験動物の負担が肉体的'時間的'経済的に大きく 軽減される。
[0023] 本発明の組織再生促進剤を動物に投与すれば、該動物の骨髄力 血液中に間葉 系幹細胞をリクルートメントして増やすことができ、損傷を受けた罹病患部に間葉系 幹細胞をリクルートすることができる。また、 BMP— 2を全身性に投与することによつ て血液力 間葉系幹細胞を採取することができると、局所注入用に骨髄から骨髄間 質細胞を採取することが不要となり、被験動物の負担が肉体的'時間的'経済的に大 きく軽減される。
[0024] 本発明の間葉系幹細胞の調製方法によれば、非ヒト動物の血液から間葉系幹細胞 を調製することが可能となる。また、本方法では、各ステップを繰り返すことで、同一 個体から繰り返し間葉系幹細胞を調製することができる。
図面の簡単な説明
[0025] [図 1]放射線照射した C57BLZ6マウスの背中に移植された BMP— 2含有コラーゲ ン 'ペレットに骨髄由来間葉系幹細胞がリクルートメントされ、異所性の骨形成が誘発 されたことを示す写真である。図中のスケールバーは、 50 /z mである。
[図 2]マウスの背中に移植された BMP— 2含有コラーゲン 'ペレット又はその周囲に 構築された脈管構造を示す写真である。図 2A中のスケールバーは 50 /ζ πι、図 2Β中 のスケールバーは 150 μ mである。
[図 3]GFPトランスジエニックマウスの骨髄由来間葉系幹細胞のフローサイトメーター による分析結果を示す図と該骨髄由来間葉系幹細胞の分化能を示す写真である。
[図 4]ヌードマウスの背中に移植された BMP— 2含有コラーゲン ·ペレットに骨髄由来 間葉系幹細胞がリクルートメントされ、異所性の骨形成が誘発されたことを示す写真 である。図中のスケールバーは 50 /z mである。
[図 5]GFPトランスジエニックマウスの背中に移植された BMP— 2含有コラーゲン ·ぺ レットにより血液中に動員された骨髄由来間葉系幹細胞をヌードマウスに移植し、さら に該ヌードマウスの背中に BMP— 2含有コラーゲン ·ペレットを移植した結果、ヌード マウスの BMP— 2含有コラーゲン ·ペレットに異所性の骨形成が誘発されたことを示 す写真である。図中のスケールバーは 50 mである。
[図 6]BMP— 2含有コラーゲン.ペレットを移植したマウスの抹消血単核細胞のうち、 CD45ネガティブ細胞が異所性の骨形成を誘発することを示す図及び写真である。 図中のスケーノレバーは、 である。
[図 7]BMP— 2含有コラーゲン 'ペレットを移植したマウスの抹消血単核細胞中に動 員される CD45ネガティブ細胞のフローサイトメーターによる分析結果を示す図であ る。
[図 8]BMP— 2含有コラーゲン ·ペレットを移植したマウス由来抹消血単核細胞に発 現する骨芽細胞特異的マーカー遺伝子の発現を、 BMP— 2刺激の有無で比較した 結果を示す写真である (左, RT— PCRによる分析;右,細胞の形態変化)。
[図 9]BMP— 2含有コラーゲン 'ペレットを移植されたマウスの抹消血単核細胞をフロ 一サイトメーターにより分析した結果を示す図である。
[図 10]BMP— 2含有コラーゲン 'ペレットを移植していないマウスの抹消血単核細胞 をフローサイトメーターにより分析した結果を示す図である。
圆 11]脛骨骨折マウスに骨髄細胞を移植した結果、骨髄由来間葉系幹細胞が骨折 部位にリクルートメントされ、骨芽細胞の分ィ匕が認められたことを示す写真である。図 中のスケーノレバーは、 である。
[図 12]脛骨骨折マウスの抹消血単核細胞に誘導された CD45ネガティブ細胞をフロ 一サイトメーターにより経時的に分析した図である。
[図 13]脛骨骨折マウス(GFPトランスジエニックマウス)の抹消血単核細胞を、別の脛 骨骨折マウス (ヌードマウス)に移植した結果、骨髄由来間葉系幹細胞力ヌードマウス の骨折部位にリクルートメントされ、骨芽細胞の分ィ匕が認められたことを示す写真で ある。図中のスケーノレバーは、 である。
発明を実施するための最良の形態
[0026] 以下、本発明の好適な実施形態について詳細に説明する。
[0027] (間葉系幹細胞誘導剤)
本発明の間葉系幹細胞誘導剤は、 BMP— 2を含むものであって、血液中の間葉 系幹細胞を増加させることを特徴として 、る。
[0028] 間葉系幹細胞誘導剤とは、動物に投与することにより、血液中に間葉系幹細胞を 動員し、血液中に含まれる間葉系幹細胞の数を増やすものを!ヽぅ。
[0029] 間葉系幹細胞とは、自己複製機能と複数の間葉系細胞に分化する多分化能を有 する細胞のことをいう。
[0030] ここで、細胞系譜解析においては、間葉系幹細胞は、間葉系細胞に分化する前段 階として、間葉系前駆細胞と区別されるが、本発明の間葉系幹細胞誘導剤は、血液 中に間葉系幹細胞の数を増加させるだけでなぐ間葉系前駆細胞の数を増加させる 作用を有するものである。現在、間葉系幹細胞を特異的に識別するマーカーが存在 せず、再生医療の分野においては、骨髄間葉系細胞、骨髄間質細胞及び間葉系前 駆細胞を含めて間葉系幹細胞と呼ばれている。したがって、本発明の「間葉系幹細 胞」とは、間葉系細胞に分化する能力を備えた未分化の細胞のことを意味する。尚、 本発明の間葉系幹細胞誘導剤が、血液中の間葉系前駆細胞の数を増加させた場 合には、その前段階である間葉系幹細胞の数も増加させているため、細胞系譜解析 の立場に立っても、間葉系幹細胞誘導剤として機能したと判断しても矛盾がない。
[0031] 「間葉系幹細胞を動員する」とは、間葉系幹細胞が存在している骨髄から、血液中 に運び出されることをいう。
[0032] BMP— 2は、前述の通り、異所性の骨形成を誘導する因子として発見されたタンパ ク質であり、生体においては、間葉系幹細胞及び間葉系前駆細胞に直接作用して、 骨芽細胞への分化を誘導し、骨や軟骨の形成を誘導する作用を有して!/、る。
[0033] 間葉系幹細胞誘導剤としての BMP— 2は、タンパク質 (例えば、リコンビナントタン パク質、組織由来の精製タンパク質等)として動物に投与して使用されるが、該タン パク質を動作可動に翻訳できるよう〖こ BMP— 2遺伝子を組み込んだ発現ベクター等 であってもよい。発現ベクターとしては、プラスミドベクター、レトロウイルスベクター、 アデノウイルスベクター、アデノ随伴ウィルスベクター等が挙げられる力 動物に投与
して BMP— 2を発現できるものであれば、 BMP— 2の mRNAやその铸型となる DN Aそのものも含まれる。
[0034] BMP— 2の起源となる動物種については、ヒト又は非ヒト動物が挙げられ、例えば、 ヒト、マウス、ラット、サル、ィヌ、ゥサギが例示できるが、投与する動物と同じ動物種で あることが好ましい。
[0035] 本発明の間葉系幹細胞誘導剤の使用方法としては、被検動物に適した用量を該 動物に投与すればよいが、投与経路としては、例えば、静脈内注射、筋肉内注射、 皮内注射、皮下注射、腹腔内注射、経口投与、皮膚投与、眼投与、鼻腔投与等が挙 げられる。好ましい投与路経路は静脈内注射又は筋肉内注射である。注射のための 無菌組成物は、注射用蒸留水などの注射用水溶液を用いて通常の製剤実施に従つ て処方することができる。注射用の水溶液としては、例えば生理食塩水、ブドウ糖や その他の補助薬を含む等張液、例えば D—ソルビトール、 D—マンノース、 D—マン 二トール、塩ィ匕ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体 的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコ ール、非イオン性界面活性剤、例えばポリソルベート 80™、 HCO?50と併用してもよ い。また、徐放化するために、適当な担体、例えば多穴性コラーゲン 'ディスクの様な 担体に染込ませて移植することもできる。
[0036] また、本発明の間葉系幹細胞誘導剤は、血液中で増加する間葉系幹細胞が CD4 5陰性細胞であることを特徴として 、る。
[0037] CD45陰性細胞とは、 CD45抗原を細胞の表面に発現していない細胞であって、 非造血系の未分化細胞が該当し、間葉系幹細胞及び間葉系前駆細胞は原則として CD45陰性細胞である。
[0038] CD45抗原は、チロシンホスファターゼであり、白血球共通抗原 (LCA)としても知ら れている。 CD45は、赤血球、血小板及びそれらの前駆細胞を除いた、総てのヒト造 血系由来細胞に存在し、 T細胞及び B細胞活性ィ匕に必須のタンパク質である。
[0039] (組織再生促進剤)
本発明の組織再生促進剤は、 BMP— 2を含み、全身性に投与されるものであって 、血液中の間葉系幹細胞を増加させることを特徴として 、る。
[0040] 組織再生促進剤とは、動物の組織が損傷を受けた場合に、その修復を誘発したり、 既に修復が開始された組織の修復作業を促進して組織の再生を導くものをいう。
[0041] 「全身性に投与される」とは、損傷を受けた患部に局所投与するのではなぐ血管 等を通じて投与することによって、体全体に組織再生促進剤を循環させることをいう。 例えば、静脈内注射、筋肉内注射、皮内注射、皮下注射、腹腔内注射、経口投与、 皮膚投与、眼投与、鼻腔投与等が挙げられるが、好ましい投与路経路は静脈内注射 又は筋肉内注射である。
[0042] 上記の組織再生促進剤が組織の再生を促進する組織は、主に骨、脳、肝臓、皮膚 又は血管内皮であるが、骨格筋、軟骨、脂肪、靭帯、腱等の間葉系組織の再生をも 促進できる。
[0043] (間葉系幹細胞の調製方法)
次に、本発明の間葉系幹細胞の調製方法について説明する。
[0044] 本発明の間葉系幹細胞の調製方法は、 BMP— 2を非ヒト動物に投与する投与ステ ップと、間葉系幹細胞を含む血液を採取する採取ステップと、採取した血液から間葉 系幹細胞を単離する単離ステップとを備えることを特徴とする。
[0045] 投与ステップでは、 BMP— 2をヒト又は非ヒト動物に投与すればよぐここで「非ヒト 動物」とは、例えば、マウス、ラット、サル、ィヌ、ゥサギが例示できる力 投与する BM P— 2の起源は投与する動物と同じ動物種であることが好ましい。また、投与の方法と しては、上記の通り、被検動物に適した用量を適した投与経路で投与すればよいが 、好ま 、投与路経路は静脈内注射又は筋肉内注射である。
[0046] 採取ステップでは、上記の投与ステップによって間葉系幹細胞が動員された血液を 採取すればよいが、採血の方法は無菌的であれば特に制限されない。例えば、注射 器、真空採血管、採血用キヤビラリ一等を用いて、静脈、動脈、目又は心臓等力も採 血することができる。
[0047] 採血時期は、 BMP— 2の投与後、血液中での間葉系幹細胞濃度が高められた一 定の時期であることが好ましい。この時期は、動物種、投与した BMP— 2濃度及び投 与経路に依存して異なる力 経時的に採血を行い、フローサイトメーターで末梢血中 の CD45陰性細胞数を分析することにより決定することができる。尚、 BMP— 2の投
与による CD45陰性細胞数の増加は、間葉系幹細胞の増加を意味する。
[0048] 単離ステップでは、まず、採取した血液から末梢血単核細胞を、フイコール'コンレ ィ(フイコール.ハイパック)比重遠心法、リンフォクイック法又はナイロンカラム法で単 離し、その後、フローサイトメーター又は免疫磁気ビーズ法で CD45陰性細胞を分離 することができる。尚、単離ステップでは、用途に応じて、末梢血単核細胞を分離す るのみでもよい。
[0049] さらに、上記の間葉系幹細胞の調製方法は、更に間葉系細胞を培養する培養ステ ップを含めることができる。
[0050] 培養ステップでは、上記の方法により調製した間葉系幹細胞を、当該細胞培養の 分野で公知の適する方法で培養することができる力 次のような方法で行うことが好 ましい。
[0051] まず、分離した間葉系幹細胞を、約 2 X 106個となるように、 10%FBS含有 DMEM 培地を含む基底膜細胞外基質でコートしたプレート(直径 10cm)に播種し、 3日目に 非接着細胞を除くために培地を換え、以後 3日に 1回培地を交換して培養する。
[0052] その後、上記の初代培養がコンフルェントになったところで、トリプシン(0. 05%) + EDTA(0. 2mM)で細胞を剥がし、 1 X 103〜5 X 103細胞 Zcm2の密度になるよう に、 bFGF (IngZml)を予め含む上記培地に細胞を播種することを繰り返して継代 培養する。
[0053] 上記間葉系幹細胞は、増殖しな!、ように処理した骨髄細胞をフィーダ一として共培 養することにより、培養中に分ィ匕することを抑制することが可能である。骨髄細胞を増 殖しないように処理する方法としては、ダルタルアルデヒド処理、放射線処理等が挙 げられる力 ダルタルアルデヒド処理が好まし!/、。
実施例
[0054] 本発明を以下の実施例に基づいてさらに詳細に説明するが、本発明はこれらの実 施例に限定されるものではない。
[0055] (骨髄移植)
移植用の骨髄細胞は、 C57BLZ6マウスに Green Fluorescence Protein (GF
P)遺伝子が導入された GFPトランスジエニックマウス(8〜: L0週間齢)の骨髄から無
菌的に調製した。尚、この GFPトランスジヱニックマウスは、大阪大学微生物病研究 所遺伝子機能解析分野の岡部勝教授より分与されたものである。 GFPは、緑色の蛍 光性のタンパク質であり、 GFPトランスジエニックマウスの骨髄細胞には、 GFPが恒常 的に発現している。したがって、該骨髄細胞を骨髄移植に用いれば、 GFPを指標に 移植した骨髄細胞を追跡できる。
[0056] レシピエントマウスには、 8〜10週齢の C57BLZ6マウスを用い、 lOGyの放射線 を照射後、 5 X 106個の GFP骨髄細胞を尾静脈から注入することにより骨髄移植を実 施した。
[0057] 尚、 CD45ネガティブ ZGFPポジティブの骨髄細胞を移植する際には、 GFPトラン スジエニックマウスの骨髄細胞を、 8°Cで 20分間、抗マウス CD45抗体マイクロビーズ (Miltenyi Biotec社製)と反応させ、磁気細胞ソーター(MACS ;Miltenyi Biote c社製)で CD45ポジティブ細胞を分離し、 CD45ネガティブ細胞を精製して用いた。
[0058] (BMP— 2含有コラーゲン.ペレットの作成と移植)
1) BMP— 2含有コラーゲン.ペレットの作成
まず、リコンビナント'ヒト BMP— 2 (rhBMP— 2 ;ァステラス製薬)を、 1 /z gZ /i lに なるように、 5mmolZlのグルタミン酸、 2. 5%グリシン、 0. 5%サッカロース及び 0. 0 l%Tween—80を含有する緩衝液に縣濁した。その後、 3 1の rhBMP— 2懸濁液 を 22 1のリン酸塩緩衝液 (PBS)で希釈し、多穴性コラーゲン 'ディスク(直径 6mm、 厚さ lmm;エティコン社、ジョンソン 'エンド'ジョンソン株式会社)に染み込ませ、凍結 乾燥して BMP - 2含有コラーゲン ·ペレットを作成した。
[0059] 対照群に用いるリン酸緩衝液 (PBS)含有コラーゲン 'ペレットは、 rhBMP— 2縣濁 液の代わりに PBSを用いて、同様に作成した。
[0060] 総ての手順は無菌的に行い、作成したコラーゲン ·ペレットは、使用するまで 20 °Cに保存した。
[0061] 2)コラーゲン 'ペレットの移植
BMP— 2含有コラーゲン 'ペレット又は対照群に用いる PBS含有コラーゲン 'ペレツ トは、上記の骨髄移植マウス、 C57BLZ6マウス又はヌードマウス等の背中の筋膜下 に移植した。異所性の骨の蛍光写真は、移植 3週間後に、デジタル顕微鏡 (マルチビ
ユー了一'システム VB— S20;キーエンス社)で撮影した。
[0062] (脛骨骨折モデルマウス)
脛骨骨折モデルマウスは、以下のようにして作成した。まず、膝前面の皮膚に縦切 開を入れ、脛骨近位 (脛骨粗面近位)カゝら 30Gの注射針を髄内に刺入し脛骨遠位部 まで挿入した。その後、 3点ベンディング法で閉鎖的に脛骨骨幹部に骨折を作製し、 創痍を縫合した。こうして作成した脛骨骨折モデルマウスは、一定期間の飼育を行つ た後、実験に用いた(Hiltunen A.、 Vuorio E.、 Aro H. T.、 A standardize dexperimental fracture in the mouse tibia.、 J. Orthop. Res.、 1993年、 11(2):305— 12)。
[0063] (脈管構造の観察)
血管を染色するために、マウスに BMP— 2含有コラーゲン 'ペレットを移植した日か ら 3週間目に、 FITCアルブミン (シグマ社)を尾静脈カゝら注入した。その後、 BMP— 2含有コラーゲン 'ペレットを摘出し、ティッシュテック OCTコンパウンドに包埋し、クラ ィォスタツト(Leica Microsystems社)で厚さ 6 μ mに薄切し、顕微鏡で観察した。
[0064] (免疫組織化学)
異所性に形成された骨又は骨折部位の骨は外科的に摘出し、 4°Cで 48時間、 4% パラホルムアルデヒドで固定した後、 4°Cで 6日間、 EDTA溶液で脱灰した。 EDTA 溶液は、 1日おきに新しい液に取り変えた。脱灰した骨は、 12時間 15%のサッカロー スを含む PBSに浸漬し、引き続き 12時間 30%のサッカロースを含む PBSに浸漬した 。その後、骨は適当な大きさにカットし、ティッシュテック OCTコンパウンド (サクラファ インテックジャパン社)に包埋し、ドライアイス上で急速凍結した。
[0065] 免疫蛍光染色を行うための凍結切片は、クライオスタツト(Leica Microsystems 社)で厚さ 6 mに薄切した。スライドガラス上の切片は、洗浄後、健常ャギ血清に 1 時間浸すことにより非特異的吸着をブロックし、抗マウス'ォステオカルシン'ポリクロ ーナル抗体 (タカラノィォ社)と反応させた。その後、切片は Alexa Fluor546でラ ベルした抗ゥサギ IgG抗体(Molecular Probes社)と 2時間反応させ、洗浄後、 4, 6—ジアミノー 2—フエ-ルインドール (DAPI)と室温で 10分間反応させ、顕微鏡で 観祭した。
[0066] 組織中の GFPを検出するためには、スライドガラス上の切片を抗 GFPポリクローナ ル抗体(MBL社)で反応させ、洗浄後、ジァミノべンジジン(diaminobenzidine;DA B)で検出した。対比染色は、へマトキシリンとェォジン (以下、 HE染色)で行った。
[0067] BMP— 2含有コラーゲン 'ペレットの周辺組織と内皮前駆細胞の免疫染色は、スラ イドガラス上の切片を、健常ャギ血清に 1時間浸すことにより非特異的吸着をブロック し、引き続き抗マウス CD31モノクローナル抗体(BD Biosciences Pharmingen 社)と反応させた。その後、切片は、 Alexa Fluor 546でラベルした抗ラット IgG抗体 (Molecular Probes社)と 2時間反応させ、洗浄後、 DAPIで染色し、顕微鏡で観 した。
[0068] (in vitro分化)
BMP— 2で誘導された末梢血単核細胞中の CD45ネガティブ細胞は、骨髄細胞( フィーダ一として使用)を 2%のダルタルアルデヒドで固定したシャーレを用い、 10% FCS、 100U/mlストレプトマィシン/ぺ-シリン及び300ng/mlのBMP— 2を含 む DMEM培地で、 3週間培養した。これにより、細胞の分化が観察された。
[0069] (全 RNAの抽出と RT— PCR)
全 RNAは、 RNeasyキット(Qiagen社)を用い、製造元のプロトコルに従って調製し た。逆転写反応は、スーパースクリプト逆転写酵素 (Invitrogen社)を用いて行い、 P CRによる増幅は、以下のプライマーセットを使って行った。 CBFA1 : 5, -CCGCA CGACAACCGCACCAT- 3 ' (フォワード)及び 5, - CGCTCCGGCCCAC AA ATCTC— 3,(リバース)、ォステオポンチン: 5, - TC ACC ATTCGG ATG AGTC TG— 3,(フォワード)と 5, - ACTTGTGGCTCTGATGTTCC - 3 ' (リバース)、 A LP : 5, - CGCCAGAGTACGCTCCCGCC - 3 ' (フォワード)と 5,一 TGTACCC TGAGATTCGT— 3,(リバース)とォステオ力ノレシン: 5, - TCTGCTC ACTCTG CTGAC— 3,(フォワード)と 5,一 GGAGCTGCTGTGACATCC— 3,(リバース)
[0070] (フローサイトメトメ一ターによる分析)
分離した末梢血単核細胞と間葉系幹細胞は、フルォレセイン'イソチォシアン酸塩 ( FITC)と結合した抗マウス CD45抗体、フィコエリトリン(PE)と結合した抗マウス CD1
lb、 CD31、 CD34、 CD44、 Flk— 1、 Sea— 1抗体(BD Biosciences Pharmin gen社)、ピオチンと結合した抗マウス Gr— 1、 CXCR4、精製した抗マウス CD 140a 抗体(PDFGRa、: BD Biosciences Pharmingen社)、精製した抗ヒト BMPR— Π 抗体 (R&D Systems社)を含んでいる 100 μ 1の PBSに縣濁し、 30分間、 4°Cの喑 所でインキュベートした。
[0071] その後、細胞は、 4°Cの喑所で 30分間、ストレプトアビジン PE、ストレプトアビジン P erCP (BD Biosciences Pharmingen社)、抗ラット IgG抗体又は抗ャギ IgG抗体 (Molecular Probes社)と反応させた。フローサイトメーターによる分析は、 FACSc an (Becton Dickinson社)で、 CellQuestソフトウェアを用いて行った。
[0072] (実施例 1) BMP— 2による骨髄由来間葉系前駆細胞のリクルートメントと異所性の 骨の形成:
lOGyの放射線を照射した C57BLZ6マウス(8〜10週齢、雌)に、 GFPトランスジ エニックマウス(C57BLZ6、 8〜10週間齢、雄)から無菌的に採取した骨髄細胞を 尾静脈から注入し、その後、このマウスの背中に BMP— 2含有コラーゲン 'ペレットを 移植した。
[0073] その結果、 BMP— 2含有コラーゲン 'ペレットの移植 3週間目には、移植した BMP —2含有コラーゲン 'ペレット(図 1A)に GFPの蛍光を認め(図 1B)、そこに異所性の 骨の形成を確認した(図 1C、図 1D)。図 1Cは、 BMP— 2含有コラーゲン 'ペレットの X線写真を示し、図 1Dは、 BMP— 2含有コラーゲン 'ペレットの組織切片を HE染色 した像である。
[0074] さらに、ォステオカルシンと GFPの免疫蛍光染色により、新しい骨に沿って存在す る裏打ち細胞が骨芽細胞であり(図 1E)、この骨芽細胞は GFPを同時に発現してい ることが判明した(図 1F)。尚、図 1Gは、 DAPIで染色した核を示し、図 1Hは、ォステ ォカルシン、 GFP及び DAPIで三重染色した像を示す。
[0075] これらの結果より、多数の骨髄由来間葉系前駆細胞が異所性に形成された骨及び その周辺部にリクルートメントされることが判明し、このリクルートメントには、形成され た骨及びその周囲に十分な脈管構造ネットワークが形成される必要のあることが示唆 された。
[0076] (実施例 2)異所性の骨及びその周囲に形成された脈管構造とその役割: 異所性の骨及びその周辺部に形成された脈管構造を可視化するために、 BMP— 2含有コラーゲン 'ペレットを移植したマウスに、 FITCでラベルしたアルブミンを静脈 注射し、血管の内腔を染色した。
[0077] 図 2Aの左の写真は、異所性の骨の HE染色像を示し、右の写真は FITC染色像を 示す。また、図 2Bは、 BMP— 2含有コラーゲン 'ペレットを移植した場合と PBS含有 コラーゲン 'ペレットを移植した場合における、移植 3日目の各コラーゲン 'ペレットの HE染色像、並びに CD31と DAPIの免疫蛍光染色及びこれらの二重染色を示す。
[0078] その結果、異所性の骨とその周囲には脈管構造を示す有意な蛍光が認められ、機 能的な脈管ネットワークが構築されることが示唆された (図 2A)。このことは、脈管内 皮細胞のマーカーである CD31の発現が異所性の骨及びその周囲で認められ、コン トロールの PBS含有コラーゲン.ペレットでは認められなかったことからも支持される( 図 2B)。
[0079] 次に、 BMP— 2含有コラーゲン 'ペレット及びその周囲に誘導された脈管構造が、 間葉系幹細胞をリクルートメントするためのルートとして機能するか否かを確認した。
[0080] まず、 BMP— 2含有コラーゲン 'ペレットを移植したヌードマウスに、 GFPトランスジ エニックマウスの骨髄細胞力 分離した CD45ネガティブ ZGFPポジティブの骨髄細 胞(以下、 GFP間葉系幹細胞)を 2週間毎日尾静脈力も注入し、その後の BMP— 2 含有コラーゲン ·ペレットを組織学的に解析した。
[0081] 尚、静脈注射した GFP間葉系幹細胞は、表面マーカーのフローサイトメーターによ る分析の結果と、ァリザリンレッド染色及びオイルレッド O染色の結果より、 Sea— 1、 C D34及び CD44を強く発現し(図 3A)、骨芽細胞と脂肪細胞に分ィ匕する能力を備え て 、ることを確認して 、る(図 3B)。
[0082] この結果、 GFP間葉系幹細胞は、ヌードマウスの BMP— 2含有コラーゲン.ペレット に形成された異所性の骨に沿って線形的に配置することが判明した(図 4A—E)。尚 、図 5Aは、該 BMP— 2含有コラーゲン.ペレットの組織切片の HE染色像、図 5B〜E は、それぞれ該組織切片のォステオカルシン、 GFP及び DAPI〖こよる染色像、並び にこれらの三重染色像を示す。
[0083] 以上の結果を合わせると、 BMP— 2により誘発される異所性の骨形成には、新しく 形成された脈管構造による機能的脈管ネットワークと骨髄由来間葉系前駆細胞のリ クルートメントが大きく寄与していることが示唆された。
[0084] (実施例 3) BMP— 2刺激による骨髄力 血液中への骨髄由来間葉系細胞の動員:
BMP— 2による刺激が、骨髄力 抹消血中への骨髄由来間葉系細胞の動員を誘 導する力否かについて調べた。
[0085] まず、 BMP— 2含有コラーゲン 'ペレットを移植した GFPトランスジエニックマウスか ら末梢血単核細胞を 7日間毎日分離し、その日ごと、 1 X 106個の該末梢血単核細胞 を、 BMP— 2含有コラーゲン 'ペレットを移植したヌードマウスの尾静脈から注入した 。該末梢血単核細胞を最後に注入した日から 2週間経過した後、移植した BMP— 2 含有コラーゲン 'ペレットを回収して糸且織学的に調べた。
[0086] 図 5Aは、上記の末梢血単核細胞を 7日間毎日移植したヌードマウスの BMP— 2含 有コラーゲン.ペレットの組織切片の HE染像、図 5B〜Eは、それぞれ該組織切片の ォステオカルシン、 GFP及び DAPIにより染色像、並びにこれらの三重染色像を示 す。
[0087] その結果、注入した末梢血単核細胞由来の GFPポジティブ骨芽細胞は、異所性の 骨に沿って線形的に配置することが判明し(図 5)、筋肉組織における BMP— 2刺激 が骨髄由来間葉系細胞を末梢血中に動員する弓 Iき金になって 、ることが示唆された
[0088] (実施例 4) BMP— 2により誘発される異所性の骨形成における CD45ネガティブ 細胞の寄与:
骨芽細胞が非造血系血統の間葉系幹細胞を起源とするため、骨髄中の CD45ネ ガティブ間葉系幹細胞が BMP— 2により誘発される異所性の骨形成に寄与する力否 かについて調べた。
[0089] まず、 lOGyの放射線を照射したマウスに、 BMP— 2含有コラーゲン 'ペレットを移 植し、 2種類の骨髄細胞プール (CD45ネガティブ ZGFPネガティブ細胞及び CD45 ポジティブ ZGFPポジティブ細胞)を混ぜて移植した。末梢血単核細胞のフローサイ トメ一ターによる分析の結果、骨髄細胞の移植が成功したことを示され、 GFPトランス
ジェニックマウス由来の骨髄細胞を移植した対照群と比較して、 CD45ネガティブ Z GFPネガティブ細胞の増加(4. 0に対して 8. 6%)と CD45ネガティブ ZGFPポジテ イブ細胞の顕著な減少(2. 2%に対して 0. 7%)が認められた(図 6)。
[0090] そこで、これらの骨髄移植マウスの BMP— 2含有コラーゲン 'ペレットにおける異所 性の骨形成に及ぼす CD45ネガティブ細胞の影響について調べた。その結果、 CD 45ネガティブ ZGFPポジティブ細胞の割合が減少したマウスにおいても異所性の骨 は形成された力 GFPトランスジエニックマウスの骨髄細胞をそのまま移植したマウス と比べて、 GFPポジティブ骨芽細胞の数が顕著に減少していた(図 6Cと図 6Gの点 線で囲まれた部分の比較)。
[0091] 尚、異所性の骨の X線写真(図 6D、図 6H)及び HE染色像(図 6E、図 61)は、いず れの骨髄細胞を移植したマウスにぉ 、ても異所性の骨が形成されて 、ることを示す。 図 6F及び図 6Jは、ォステオカルシン、 GFP及び DAPIの三重染色像を示す力 CD 45ネガティブ ZGFPネガティブ細胞と CD45ポジティブ ZGFPポジティブ細胞を混 ぜて移植したマウスに形成された骨(図 6F)は、対照群である GFP骨髄細胞をその まま移植したマウスに形成された骨(図 6J)よりも、 GFPポジティブ細胞の数が顕著に 少ないことを示された。
[0092] このことは、 CD45ポジティブ骨髄細胞ではなく CD45ネガティブ骨髄細胞力 BM P— 2による異所性の骨を形成する骨芽細胞の主要な起源であることを示唆している 。すなわち、これらのデータは、 BMP— 2に依存して骨髄力 血液中へ動員される間 葉系前駆細胞が、 CD45ネガティブ細胞であることを強く示唆して 、る。
[0093] また、末梢血単核細胞の中の CD45ネガティブ細胞の増加は、 BMP— 2含有コラ 一ゲン'ペレット移植後の最初の 7日以内に起こった力 この増加は、急激であるが時 間的に制限されるものであった(図 7A)。図 7Aには、フローサイトメーターで経時的 に分析された異なる 5つの個体のデータを示す力 CD45ネガティブ細胞の占有率 は、ピーク時において 60〜80%であった。
[0094] さらに、 CD45ネガティブ細胞の割合が顕著に高められた末梢血単核細胞(図 7A の実験 1の 3日目)をフローサイトメーターで分析した結果、 BMPR— IIネガティブ細 胞及び Sea— 1ネガティブ細胞の割合が高められた(図 7B)。これらの結果より、末梢
の筋肉組織での BMP— 2刺激が骨髄力 血液中への CD45ネガティブ細胞の動員 を誘発することが示唆された。
[0095] CD45ネガティブ細胞において BMPR— IIの発現が減少したことは、 CD45ネガテ イブ細胞を末梢の筋肉組織にリクルートメントする際に、 BMP— 2以外の他の因子が 関与している可能性を示唆している。また、 Sea— 1は、間葉系幹細胞を含むさまざま な幹細胞のマーカーであるため(図 3A)、 Sea- 1の発現が減少した CD45ネガティ ブ細胞は、骨髄に存在する無刺激の間葉系幹細胞と比較して異なる性質を有して 、 る可能性を示唆している。
[0096] (実施例 5) BMP— 2刺激で血液中に動員される CD45ネガティブ細胞の特徴につ いての検討:
BMP— 2刺激で血液中に動員される CD45ネガティブ細胞の特徴にっ 、て検討 するため、磁気細胞ソーター(MACS)で CD45ネガティブ細胞を濃縮し、マウス骨 髄細胞をダルタルアルデヒドで固定したフィーダ一細胞上で培養し、骨芽細胞特異 的マーカー遺伝子の発現を RT—PCRで調べた(図 8左)。その際、 BMP— 2刺激に よる該 CD45ネガティブ細胞の形態的変化にっ ヽても調べた(図 8右)。
[0097] 図 8の左側は、 RT— PCRの結果を示す電気泳動写真であって、レーン 1は培養を する前の細胞、レーン 2は培養後無処理の細胞、レーン 3は培養後 BMP— 2 (300η gZml)で刺激した細胞を示している。また、図 8の右側は、培養後、 BMP— 2 (300 ng/ml)の刺激の有無における、 CD45ネガティブ細胞の形態的変化を比較した写 真である。
[0098] この結果、 CD45ネガティブ細胞は、 in vitroでの培養を開始する前において、転 写調節因子である Cbf a 1を発現し、 BMP— 2刺激の有無にかかわらず、ォステオポ ンチンを発現していることが判明した(図 8)。また、培養した CD45ネガティブ細胞を BMP - 2 (300ng/ml)で処理すると、アルカリホスファターゼゃォステオカルシンの ような骨芽細胞特異的マーカー遺伝子の発現が効率的に誘導され、細胞の形態変 ィ匕が引き起こされることが判明した(図 8)。これらのデータは、骨髄から血液中に動員 された CD45ネガティブ細胞が、末梢組織で骨芽細胞を提供する能力を有すること を示している。
[0099] さらに、 BMP— 2含有コラーゲン 'ペレットを移植したマウスの末梢血単核細胞につ いて、野生型マウスの末梢血単核細胞を対照群として、発現している細胞表面マー カーをフローサイトメーターで分析した結果、 CD45ネガティブ細胞には間葉系細胞 マーカーである CD44の有意な発現が認められた(図 9、図 10)。
[0100] しかしながら、 CD45、 CD1 lb及び Gr—1のような造血系血統マーカー並びに CD 34、 Flk— 1及び CD31のような内皮細胞血統マーカーは、いずれも検出されなかつ た(図 9)。
[0101] 興味深いことに、循環する骨髄由来間葉系幹細胞は、ケモカインである間質細胞 由来因子(SDF—1)のレセプター、 CXCR4を顕著に発現していた(図 9)。 SDF—1 ケモカインは、骨髄で CXCR4ポジティブ幹細胞に作用し、 SDF— 1を発現する末梢 組織に CXCR4ポジティブ幹細胞をリクルートメントすることが知られている。 SDF- 1 の発現は、 BMP— 2を注入した局所の周辺糸且織で上昇することが明らかになつたの で (データ非表示)、血液中を循環している骨髄由来間葉系幹細胞を BMP— 2含有 コラーゲン.ペレットにリクルートメントするために、 SDF— 1が寄与している可能性が 示唆された。
[0102] (実施例 6)脛骨骨折マウスの骨折治癒における骨髄由来間葉系幹細胞の役割: 脛骨骨折マウス (ヌードマウス)に、 14日間、 GFP間葉系幹細胞を尾静脈から注入 した結果、 GFP間葉系幹細胞が骨折した損傷部位にリクルートされ、骨の再生が促 進されることが確認された(図 11)。
[0103] 図 4の上段は、 GFP間葉系幹細胞を注射したヌードマウスの骨折部位の組織切片 を、下段は対照群として PBSを注射したヌードマウスの骨折部位の組織切片を示す 。それぞれ、左から GFP、 DAPI及びこれらの二重染色の免疫蛍光染色像、並びに GFPを DABで発色させた免疫化学染色像を示す。
[0104] 次に、脛骨骨折マウスの末梢血中への CD45ネガティブ細胞の動員について、フロ 一サイトメーターで経時的に分析した。その結果、末梢血中の CD45ネガティブ細胞 の数は一時的ではあるが顕著に上昇することが再現性よく確認された(図 12A)。ま た、末梢血中の CD45ネガティブ細胞数の増加は、 CXCR4ポジティブ細胞の増加と 相関していた(図 12B)。このことは、骨折による誘発される細胞の性質と BMP— 2刺
激で誘発された骨髄由来間葉系幹細胞の性質が顕著に類似することを示唆している
[0105] そこで、脛骨の骨折で誘発された CD45ネガティブ細胞が骨髄由来間葉系幹細胞 の特徴的機能を有するかどうかを調べるために、脛骨を骨折させた GFPトランスジェ ニックマウスの末梢血単核細胞(以下、 GFP末梢血単核細胞)を、 14日間毎日、脛 骨を骨折させたヌードマウスに尾静脈力 注入した。
[0106] 図 13の上段は、上記の GFP末梢血単核細胞を 14日間毎日注入された上記ヌード マウスの骨折部位の組織切片を、下段は対照群としての PBSを注射したヌードマウス の骨折部位の組織切片を示す。それぞれ、左力 GFP、 DAPI及びこれらの二重染 色の免疫蛍光染色像、並びに GFPを DABで発色させた免疫化学染色像を示す。
[0107] その結果、上記の GFP末梢血単核細胞を移植されたヌードマウスの骨折部位には 、 GFPポジティブ骨芽細胞が顕著に蓄積されていることが示された(図 13)。一方、 対照群として PBSを移植したヌードマウスの骨折部位には、 GFPポジティブ骨芽細 胞は検出されなカゝつた。すなわち、骨折で誘発された末梢血単核細胞中の CD45ネ ガティブ細胞は、骨髄由来間葉系前駆細胞の特徴を持ち、骨折部位にリクルートさ れて骨芽細胞に分化することが示された。
産業上の利用可能性
[0108] 本発明の間葉系幹細胞誘導剤を動物に投与すれば、該動物の骨髄から血液中に 間葉系幹細胞を動員することができ、血液力 間葉系幹細胞を採取することが可能と なる。また、血液力 間葉系幹細胞を採取することができると、骨髄から骨髄間質細 胞を採取することが不要となり、被験動物の負担が肉体的'時間的'経済的に大きく 軽減される。
Claims
[1] 骨形成因子 2を含む間葉系幹細胞誘導剤であって、血液中の間葉系幹細胞を 増加させることを特徴とする間葉系幹細胞誘導剤。
[2] 前記間葉系幹細胞は、 CD45陰性細胞である、請求項 1に記載の間葉系幹細胞誘 導剤。
[3] 骨形成因子— 2を含む全身性に投与される組織再生促進剤であって、血液中の間 葉系幹細胞を増加させることを特徴とする組織再生促進剤。
[4] 前記組織は、骨、脳、肝臓、皮膚又は血管内皮である、請求項 3に記載の組織再 生促進剤。
[5] 前記組織は、骨である、請求項 3に記載の組織再生促進剤。
[6] 骨形成因子— 2を非ヒト動物に投与するステップと、
間葉系幹細胞を含む血液を採取するステップと、
採取した血液力 間葉系幹細胞を単離するステップと、
を備える、間葉系幹細胞の調製方法。
[7] 更に、間葉系幹細胞を培養するステップを含む、請求項 6に記載の間葉系幹細胞 の調製方法。
[8] 前記間葉系幹細胞を培養するステップは、間葉系幹細胞を骨髄細胞と共培養する ステップである、請求項 7に記載の間葉系幹細胞の調製方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007529532A JPWO2007015546A1 (ja) | 2005-08-04 | 2006-08-03 | 間葉系幹細胞誘導剤及び組織再生促進剤並びに間葉系幹細胞の調製方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US70517105P | 2005-08-04 | 2005-08-04 | |
US60/705171 | 2005-08-04 | ||
JP2006077243 | 2006-03-20 | ||
JP2006-077243 | 2006-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007015546A1 true WO2007015546A1 (ja) | 2007-02-08 |
Family
ID=37708826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/315406 WO2007015546A1 (ja) | 2005-08-04 | 2006-08-03 | 間葉系幹細胞誘導剤及び組織再生促進剤並びに間葉系幹細胞の調製方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007015546A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008053892A1 (fr) * | 2006-10-30 | 2008-05-08 | Genomix Co., Ltd. | Produit pharmaceutique servant à favoriser la régénération fonctionnelle d'un tissu endommagé |
WO2011152100A1 (ja) * | 2010-06-01 | 2011-12-08 | ピアス株式会社 | 間葉系幹細胞の誘引剤及び間葉系幹細胞の誘引方法 |
WO2012147470A1 (ja) | 2011-04-26 | 2012-11-01 | 株式会社ジェノミックス | 組織再生を誘導するためのペプチドとその利用 |
US8673580B2 (en) | 2008-04-30 | 2014-03-18 | Genomix Co., Ltd. | Agent for recruitment of bone-marrow-derived pluripotent stem cell into peripheral circulation |
WO2014065347A1 (ja) | 2012-10-25 | 2014-05-01 | 株式会社ジェノミックス | Hmgb1断片を利用した新規心筋梗塞の治療法 |
WO2014065348A1 (ja) | 2012-10-25 | 2014-05-01 | 株式会社ジェノミックス | Hmgb1断片を利用した脊髄の損傷に対する新規治療法 |
WO2016121771A1 (ja) * | 2015-01-26 | 2016-08-04 | 宇部興産株式会社 | 骨髄類似構造を利用した細胞培養法、及び骨損傷部位の治療のためのポリイミド多孔質膜 |
CN107050436A (zh) * | 2017-02-27 | 2017-08-18 | 新乡医学院 | Mbl在制备预防或治疗效应t细胞引发疾病药物中的应用 |
US9919010B2 (en) | 2008-04-30 | 2018-03-20 | Genomix Co., Ltd. | Method for collecting functional cells in vivo with high efficiency |
WO2018199107A1 (ja) | 2017-04-25 | 2018-11-01 | 塩野義製薬株式会社 | 組織再生を誘導するためのペプチドとその利用 |
CN111035807A (zh) * | 2020-01-02 | 2020-04-21 | 华中科技大学同济医学院附属协和医院 | 一种超薄apcs植片的制备方法 |
CN111500533A (zh) * | 2019-01-31 | 2020-08-07 | 华东理工大学 | 干细胞发生器及其构建方法 |
US11191786B2 (en) | 2009-10-28 | 2021-12-07 | StemRIM Inc. | Agents for promoting tissue regeneration by recruiting bone marrow mesenchymal stem cells and/or pluripotent stem cells into blood |
US11298403B2 (en) | 2017-12-01 | 2022-04-12 | StemRIM Inc. | Therapeutic agent for inflammatory bowel disease |
US11969459B2 (en) | 2017-01-27 | 2024-04-30 | StemRIM Inc. | Therapeutic agent for cardiomyopathy, old myocardial infarction and chronic heart failure |
-
2006
- 2006-08-03 WO PCT/JP2006/315406 patent/WO2007015546A1/ja active Application Filing
Non-Patent Citations (3)
Title |
---|
ALDEN T.D. ET AL.: "In vivo endochondral bone formation using a bone morphogenetic protein 2 adenoviral vector", HUM. GENE THER., vol. 10, 1999, pages 2245 - 2253, XP002355896 * |
OTSURU S. ET AL.: "BMP-2 mobilizes robust bone marrow mesenchymal progenitor cells to the circulating blood in bone regeneration", ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN KOEN YOSHISHU, vol. 28, 25 November 2005 (2005-11-25), pages 733 + ABS. NO. 3P-1012, XP003007848 * |
SUN S. ET AL.: "Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method", STEM CELLS, vol. 21, 2003, pages 527 - 535, XP003007847 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008053892A1 (fr) * | 2006-10-30 | 2008-05-08 | Genomix Co., Ltd. | Produit pharmaceutique servant à favoriser la régénération fonctionnelle d'un tissu endommagé |
US11197895B2 (en) | 2008-04-30 | 2021-12-14 | StemRIM Inc. | Method for collecting functional cells in vivo with high efficiency |
US9919010B2 (en) | 2008-04-30 | 2018-03-20 | Genomix Co., Ltd. | Method for collecting functional cells in vivo with high efficiency |
US8673580B2 (en) | 2008-04-30 | 2014-03-18 | Genomix Co., Ltd. | Agent for recruitment of bone-marrow-derived pluripotent stem cell into peripheral circulation |
US11191786B2 (en) | 2009-10-28 | 2021-12-07 | StemRIM Inc. | Agents for promoting tissue regeneration by recruiting bone marrow mesenchymal stem cells and/or pluripotent stem cells into blood |
WO2011152100A1 (ja) * | 2010-06-01 | 2011-12-08 | ピアス株式会社 | 間葉系幹細胞の誘引剤及び間葉系幹細胞の誘引方法 |
US9458429B2 (en) | 2010-06-01 | 2016-10-04 | Pias Corporation | Mesenchymal stem cell attractant and method for attracting mesenchymal stem cell |
KR20140036202A (ko) | 2011-04-26 | 2014-03-25 | 가부시키가이샤 제노믹스 | 조직 재생을 유도하기 위한 펩티드 및 그의 이용 |
WO2012147470A1 (ja) | 2011-04-26 | 2012-11-01 | 株式会社ジェノミックス | 組織再生を誘導するためのペプチドとその利用 |
US10550165B2 (en) | 2011-04-26 | 2020-02-04 | StemRIM Inc. | Peptide for inducing regeneration of tissue and use thereof |
US10364276B2 (en) | 2011-04-26 | 2019-07-30 | StemRIM Inc. | Peptide for inducing regeneration of tissue and use thereof |
KR20190073610A (ko) | 2011-04-26 | 2019-06-26 | 가부시키가이샤 스템림 | 조직 재생을 유도하기 위한 펩티드 및 그의 이용 |
EP3358011A1 (en) | 2011-04-26 | 2018-08-08 | Genomix Co., Ltd. | Peptide for inducing regeneration of tissue and use thereof |
KR20150103660A (ko) | 2012-10-25 | 2015-09-11 | 가부시키가이샤 제노믹스 | Hmgb1 단편을 이용한 신규 심근경색의 치료법 |
KR20150102957A (ko) | 2012-10-25 | 2015-09-09 | 가부시키가이샤 제노믹스 | Hmgb1 단편을 이용한 척수 손상에 대한 신규 치료법 |
WO2014065347A1 (ja) | 2012-10-25 | 2014-05-01 | 株式会社ジェノミックス | Hmgb1断片を利用した新規心筋梗塞の治療法 |
US9688733B2 (en) | 2012-10-25 | 2017-06-27 | Genomix Co., Ltd. | Method for treating spinal cord injury using HMGB1 fragment |
WO2014065348A1 (ja) | 2012-10-25 | 2014-05-01 | 株式会社ジェノミックス | Hmgb1断片を利用した脊髄の損傷に対する新規治療法 |
US9623078B2 (en) | 2012-10-25 | 2017-04-18 | Genomix Co., Ltd. | Method for treating cardiac infarction using HMGB1 fragment |
US10590388B2 (en) | 2015-01-26 | 2020-03-17 | Ube Industries, Ltd. | Cell culture method using bone marrow-like structure, and porous polyimide film for healing bone injury site |
US10508264B2 (en) | 2015-01-26 | 2019-12-17 | Ube Industries, Ltd. | Cell culture method using bone marrow-like structure, and porous polyimide film for healing bone injury site |
JPWO2016121771A1 (ja) * | 2015-01-26 | 2017-12-07 | 宇部興産株式会社 | 骨髄類似構造を利用した細胞培養法、及び骨損傷部位の治療のためのポリイミド多孔質膜 |
WO2016121771A1 (ja) * | 2015-01-26 | 2016-08-04 | 宇部興産株式会社 | 骨髄類似構造を利用した細胞培養法、及び骨損傷部位の治療のためのポリイミド多孔質膜 |
US11969459B2 (en) | 2017-01-27 | 2024-04-30 | StemRIM Inc. | Therapeutic agent for cardiomyopathy, old myocardial infarction and chronic heart failure |
CN107050436A (zh) * | 2017-02-27 | 2017-08-18 | 新乡医学院 | Mbl在制备预防或治疗效应t细胞引发疾病药物中的应用 |
CN107050436B (zh) * | 2017-02-27 | 2020-03-17 | 新乡医学院 | Mbl在制备预防或治疗效应t细胞引发疾病药物中的应用 |
WO2018199107A1 (ja) | 2017-04-25 | 2018-11-01 | 塩野義製薬株式会社 | 組織再生を誘導するためのペプチドとその利用 |
KR20190141179A (ko) | 2017-04-25 | 2019-12-23 | 시오노기세이야쿠가부시키가이샤 | 조직 재생을 유도하기 위한 펩티드와 그 이용 |
US11298403B2 (en) | 2017-12-01 | 2022-04-12 | StemRIM Inc. | Therapeutic agent for inflammatory bowel disease |
CN111500533A (zh) * | 2019-01-31 | 2020-08-07 | 华东理工大学 | 干细胞发生器及其构建方法 |
CN111500533B (zh) * | 2019-01-31 | 2024-07-16 | 华东理工大学 | 干细胞发生器及其构建方法 |
CN111035807A (zh) * | 2020-01-02 | 2020-04-21 | 华中科技大学同济医学院附属协和医院 | 一种超薄apcs植片的制备方法 |
CN111035807B (zh) * | 2020-01-02 | 2022-02-11 | 华中科技大学同济医学院附属协和医院 | 一种超薄apcs植片的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007015546A1 (ja) | 間葉系幹細胞誘導剤及び組織再生促進剤並びに間葉系幹細胞の調製方法 | |
KR101730052B1 (ko) | 심근경색의 수복 재생을 유도하는 다능성 간세포 | |
Bao et al. | C-Kit Positive cardiac stem cells and bone marrow–derived mesenchymal stem cells synergistically enhance angiogenesis and improve cardiac function after myocardial infarction in a paracrine manner | |
JP6682090B2 (ja) | 虚血性疾患治療に適した細胞を含む細胞群の生体外増幅方法 | |
JP6571537B2 (ja) | 療法および予防のための細胞を単離する方法 | |
US20100040584A1 (en) | Methods for promoting neovascularization | |
Derby et al. | Adipose-derived stem cell to epithelial stem cell transdifferentiation: a mechanism to potentially improve understanding of fat grafting's impact on skin rejuvenation | |
WO2009027563A1 (es) | Población de células madre adultas derivadas de tejido adiposo cardiaco y su uso en regeneración cardiaca | |
Forte et al. | Human cord blood-derived platelet lysate enhances the therapeutic activity of adipose-derived mesenchymal stromal cells isolated from Crohn’s disease patients in a mouse model of colitis | |
US20110305673A1 (en) | Compositions and methods for tissue repair | |
JP6193214B2 (ja) | 歯髄由来の多能性幹細胞の製造方法 | |
WO2003043651A1 (en) | Drug mobilizing pluripotent stem cells from tissue into peripheral blood | |
JP2020172536A (ja) | 創傷治癒のための幹細胞 | |
JPWO2004101775A1 (ja) | 新規な成体組織由来の幹細胞およびその用途 | |
Yannarelli et al. | Donor mesenchymal stromal cells (MSCs) undergo variable cardiac reprogramming in vivo and predominantly co-express cardiac and stromal determinants after experimental acute myocardial infarction | |
CN112891374A (zh) | 治疗中风的影响的方法 | |
JP2016140346A (ja) | 脂肪組織由来間葉系幹細胞の選別法 | |
JPWO2018021515A1 (ja) | 血管障害の予防又は治療剤 | |
KR101261884B1 (ko) | 제대혈 또는 지방조직유래 성체줄기세포를 함유한 항암용 조성물 | |
JPWO2007015546A1 (ja) | 間葉系幹細胞誘導剤及び組織再生促進剤並びに間葉系幹細胞の調製方法 | |
WO2022123958A1 (en) | Pharmaceutical composition for use in prevention and treatment of liver fibrosis and/or liver cirrhosis, comprising adipose-derived regenerative cells (adrcs) | |
US20050232905A1 (en) | Use of peripheral blood cells for cardiac regeneration | |
Fukuta et al. | Synergistic effect of ex-vivo quality and quantity cultured mononuclear cells and mesenchymal stem cell therapy in ischemic hind limb model mice | |
Guimarães et al. | Enhancing Lung Recellularization with Mesenchymal Stem Cells via Photobiomodulation Therapy: Insights into Cytokine Modulation and Sterilization | |
WO2020111249A1 (ja) | 末梢血流障害の治療剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2007529532 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06782266 Country of ref document: EP Kind code of ref document: A1 |