[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007000322A1 - Immunogenic composition - Google Patents

Immunogenic composition Download PDF

Info

Publication number
WO2007000322A1
WO2007000322A1 PCT/EP2006/006210 EP2006006210W WO2007000322A1 WO 2007000322 A1 WO2007000322 A1 WO 2007000322A1 EP 2006006210 W EP2006006210 W EP 2006006210W WO 2007000322 A1 WO2007000322 A1 WO 2007000322A1
Authority
WO
WIPO (PCT)
Prior art keywords
immunogenic composition
saccharide
hib
conjugate
carrier protein
Prior art date
Application number
PCT/EP2006/006210
Other languages
French (fr)
Inventor
Ralph Leon Biemans
Dominique Boutriau
Carine Capiau
Philippe Denoel
Pierre Duvivier
Jan Poolman
Original Assignee
Glaxosmithkline Biologicals S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36716943&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007000322(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GBGB0513071.1A external-priority patent/GB0513071D0/en
Priority claimed from GBGB0513069.5A external-priority patent/GB0513069D0/en
Priority claimed from GB0515556A external-priority patent/GB0515556D0/en
Priority claimed from GB0524204A external-priority patent/GB0524204D0/en
Priority claimed from GB0526040A external-priority patent/GB0526040D0/en
Priority claimed from GB0526041A external-priority patent/GB0526041D0/en
Priority to JP2008517437A priority Critical patent/JP5037503B2/en
Priority to MX2007016237A priority patent/MX2007016237A/en
Priority to NZ564371A priority patent/NZ564371A/en
Priority to AT06754596T priority patent/ATE462444T1/en
Priority to ES06754596T priority patent/ES2340711T3/en
Priority to CA2612980A priority patent/CA2612980C/en
Priority to US11/917,569 priority patent/US8431136B2/en
Priority to SI200630681T priority patent/SI1896062T1/en
Priority to PL06754596T priority patent/PL1896062T3/en
Priority to EP06754596A priority patent/EP1896062B1/en
Priority to DK06754596.2T priority patent/DK1896062T3/en
Priority to DE602006013313T priority patent/DE602006013313D1/en
Application filed by Glaxosmithkline Biologicals S.A. filed Critical Glaxosmithkline Biologicals S.A.
Priority to AU2006263944A priority patent/AU2006263944B2/en
Priority to BRPI0612669A priority patent/BRPI0612669B8/en
Publication of WO2007000322A1 publication Critical patent/WO2007000322A1/en
Priority to HK08106653.7A priority patent/HK1116413A1/en
Priority to HR20100211T priority patent/HRP20100211T1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0016Combination vaccines based on diphtheria-tetanus-pertussis
    • A61K39/0017Combination vaccines based on whole cell diphtheria-tetanus-pertussis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0016Combination vaccines based on diphtheria-tetanus-pertussis
    • A61K39/0018Combination vaccines based on acellular diphtheria-tetanus-pertussis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/05Actinobacteria, e.g. Actinomyces, Streptomyces, Nocardia, Bifidobacterium, Gardnerella, Corynebacterium; Propionibacterium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/08Clostridium, e.g. Clostridium tetani
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/09Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
    • A61K39/092Streptococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/095Neisseria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/099Bordetella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/102Pasteurellales, e.g. Actinobacillus, Pasteurella; Haemophilus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/116Polyvalent bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • A61K39/292Serum hepatitis virus, hepatitis B virus, e.g. Australia antigen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/04Drugs for disorders of the respiratory system for throat disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/14Antitussive agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/62Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/62Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
    • A61K2039/627Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier characterised by the linker
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16211Influenzavirus B, i.e. influenza B virus
    • C12N2760/16234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16211Influenzavirus B, i.e. influenza B virus
    • C12N2760/16271Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32611Poliovirus
    • C12N2770/32634Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present application relates to Immunogenic compositions and vaccines comprising a Hib saccharide conjugate and at least two further bacterial saccharide conjugates, processes for making such immunogenic compositions and vaccines, uses and methods of immunisation using the immunogenic composition and vaccine.
  • Bacterial polysaccharides have been shown to be effective immunogens for use in vaccines, particularly when conjugated to a carrier protein.
  • Commercial conjugate vaccines are available against Haemophilus influenzae type b (Hibtiter® Wyeth-Lederle), pneumococcal polysaccharides (Prevnar® -Wyeth-Lederle) and meningococcal polysaccharides (Meningitec® - Wyeth-Lederle and Menactra®- Sanofi).
  • Immunogenic compositions and vaccines comprising a Hib conjugate and further bacterial saccharide conjugates have also been described.
  • WO 02/00249 discloses immunogenic compositions comprising a Hib PRP conjugate and further polysaccharide or oligosaccharide conjugates wherein the polysaccharide conjugates are not adsorbed onto adjuvant, particularly aluminium salts.
  • the clinical trial results presented use the same doses of all bacterial polysaccharides.
  • the present invention concerns the provision of a combination vaccine comprising a Hib conjugate and further bacterial saccharide conjugates which is capable of eliciting an improved immunogenic response due to the optimisation of the doses of the Hib conjugate and other bacterial polysaccharide conjugates.
  • a first aspect of the invention provides an immunogenic composition comprising a Hib saccharide conjugate and at least two further bacterial saccharide conjugates wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of the at least two further bacterial saccharide conjugates.
  • the immunogenic composition of the invention comprises a Hib saccharide conjugate and at least two further bacterial saccharide conjugates wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of the at least two further bacterial saccharide conjugates.
  • the Hib conjugate is present in a lower saccharide dose than the saccharide dose of each of the at least two further bacterial saccharide conjugates.
  • the dose of the Hib conjugate may be at least 10%, 20%, 30%, 40%, 50%, 60%, 70% or 80% lower than the mean or lowest saccharide dose of the at least two further bacterial saccharide conjugates.
  • saccharide includes polysaccharides or oligosaccharides.
  • Polysaccharides are isolated from bacteria or isolated from bacteria and sized to some degree by known methods (see for example EP497524 and EP497525) and optionally by microfluidisation. Polysaccharides can be sized in order to reduce viscosity in polysaccharide samples and/or to improve filterability for conjugated products. Oligosaccharides have a low number of repeat units (typically 5-30 repeat units) and are typically hydrolysed polysaccharides.
  • the “mean dose” is determined by adding the doses of all the further polysaccharides and dividing by the number of further polysaccharides.
  • the “dose” is in the amount of immunogenic composition or vaccine that is administered to a human.
  • Polysaccharides are optionally sized up to 1.5, 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20 times from the size of the polysaccharide isolated from bacteria.
  • “Sized by a factor up to x2" means that the polysaccharide is subject to a process intended to reduce the size of the polysaccharide but to retain a size more than half the size of the native polysaccharide.
  • X3, x4 etc. are to be interpreted in the same way i.e. the polysaccharide is subject to a process intended to reduce the size of the polysaccharide but to retain a size more than a third, a quarter etc. the size of the native polysaccharide respectively.
  • MenA saccharide is for example 5-20OkDa, 10-2OkDa, 5-1OkDa, 20-3OkDa,
  • MenC saccharide is for example 5-20OkDa, 10-2OkDa, 5-1OkDa, 5-15kDa, 20-
  • 5OkDa 50-10OkDa, 100-15OkDa, 150-21OkDa.
  • MenW saccharide is for example 5-20OkDa, 10-2OkDa, 5-1OkDa, 20-5OkDa, 50-10OkDa, 100-15OkDa or 120-14OkDa.
  • MenY saccharide is for example 5-20OkDa, 10-2OkDa, 5-1 OkDa, 20-5OkDa,
  • the polydispersity of the saccharides is 1-1.5, 1-1.3, 1-1.2, 1-1.1 or 1- 1.05 and after conjugation to a carrier protein, the polydispersity of the conjugate is 1.0- 2.0. 1.0-1.5, 1.0-1.2 or 1.5-2.0. All polydispersity measurements are by MALLS. For MALLS analysis of meningococcal saccharides, two columns (TSKG6000 and 5000PWxI TOSOH Bioscience) may be used in combination and the saccharides are eluted in water.
  • Saccharides are detected using a light scattering detector (for instance Wyatt Dawn DSP equipped with a 1OmW argon laser at 488nm) and an inferometric refractometer (for instance Wyatt Otilab DSP equipped with a P100 cell and a red filter at 498nm).
  • a light scattering detector for instance Wyatt Dawn DSP equipped with a 1OmW argon laser at 488nm
  • an inferometric refractometer for instance Wyatt Otilab DSP equipped with a P100 cell and a red filter at 498nm.
  • a Hib saccharide is the polyribosyl phosphate (PRP) capsular polysaccharide or oligosaccharide of Haemophilus influenzae type b.
  • PRP polyribosyl phosphate
  • At least two further bacterial saccharide conjugates refers to at least two saccharide conjugates in which the saccharides are different from Hib and from each other.
  • the at least two further bacterial saccharide conjugates may be derived from one or more of Neisseria meningitidis, Streptococcus pneumoniae, Group A Streptococci, Group B Streptococci, S. typhi, Staphylococcus aureus or Staphylococcus epidermidis.
  • the immunogenic composition comprises capsular polysaccharides or oligosaccharides derived from one or more of serogroups A, B, C 1 W135 and Y of Neisseria meningitidis.
  • a further embodiment comprises capsular polysaccharides or oligosaccharides derived from Streptococcus pneumoniae.
  • the pneumococcal capsular polysaccharide or oligosaccharide antigens are optionally selected from serotypes 1 , 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 1OA, 11 A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F (for example from serotypes 1 , 3, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F).
  • a further embodiment comprises the Type 5, Type 8 or 336 capsular polysaccharides or oligosaccharides of Staphylococcus aureus.
  • a further embodiment comprises the Type I, Type Il or Type III capsular polysaccharides of Staphylococcus epidermidis.
  • a further embodiment comprises the Vi saccharide (poly or oligosaccharide) from S. typhi.
  • a further embodiment comprises the Type Ia, Type Ic, Type Il or Type III capsular polysaccharides or oligosaccharides of Group B streptocoocus.
  • a further embodiment comprises the capsular polysaccharides or oligosaccharides of Group A streptococcus, optionally further comprising at least one M protein or multiple types of M protein.
  • the immunogenic composition of the invention further comprises an antigen from N. meningitidis serogroup B.
  • the antigen is optionally a capsular polysaccharide from N. meningitidis serogroup B (MenB) or a sized polysaccharide or oligosaccharide derived therefrom.
  • the antigen is optionally an outer membrane vesicle preparation from N. meningitidis serogroup B as described in EP301992, WO 01/09350, WO 04/14417, WO 04/14418 and WO 04/14419.
  • the at least two further bacterial saccharide conjugates optionally comprise N. meningitidis serogroup C capsular saccharide (MenC), serogroup C and Y capsular saccharides (MenCY), serogroup C and A capsular saccharides (MenAC), serogroup C and W capsular saccharides (MenCW), serogroup A and Y capsular saccharide (MenAY), serogroup A and W capsular saccharides (MenAW), serogroup W and Y capsular saccharides (Men WY) 1 serogroup A, C and W capsular saccharide (MenACW), serogroup A, C and Y capsular saccharides (MenACY); serogroup A, W135 and Y capsular saccharides (MenAWY), serogroup C, W 135 and Y capsular saccharides (MenCWY); or serogroup A, C, W135 and Y capsular saccharides (MenACWY), serogroup B
  • the immunogenic composition of the invention optionally contains the Hib saccharide conjugate in a saccharide dose between 0.1 and 9 ⁇ g; 1 and 5 ⁇ g or 2 and 3 ⁇ g or around or exactly 2.5 ⁇ g and each of the at least two further saccharide conjugates at a dose of between 2 and 20 ⁇ g, 3 and 10 ⁇ g, or between 4 and 7 ⁇ g or around or exactly 5 ⁇ g.
  • the immunogenic composition of the invention contains a saccharide dose of the Hib saccharide conjugate which is for example less than 90%, 80%, 75%, 70%, 60%, 50%, 40%, 30%, 20% or 10% of the mean saccharide dose of the at least two further saccharide conjugates.
  • the saccharide dose of the Hib saccharide is for example between 20% and 60%, 30% and 60%, 40% and 60% or around or exactly 50% of the mean saccharide dose of the at least two further saccharide conjugates.
  • the immunogenic composition of the invention contains a saccharide dose of the Hib saccharide conjugate which is for example less than 90%, 80%, 75%, 70%, 60%, 50%, 40%, 30%, 20% or 10% of the lowest saccharide dose of the at least two further saccharide conjugates.
  • the saccharide dose of the Hib saccharide is for example between 20% and 60%, 30% and 60%, 40% and 60% or around or exactly 50% of the lowest saccharide dose of the at least two further saccharide conjugates.
  • the dose of each of the two or more further saccharides is optionally the same, or approximately the same.
  • immunogenic compositions of the invention are compositions consisting of or comprising: Hib conjugate and MenA conjugate and MenC conjugate, optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w).
  • the saccharide dose of MenA is greater than the saccharide dose of MenC.
  • Hib conjugate and MenC conjugate and MenY conjugate optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8;4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w).
  • the saccharide dose of MenC is greater than the saccharide dose of MenY.
  • Hib conjugate and MenC conjugate and MenW conjugate optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8;4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w).
  • the saccharide dose of MenC is greater than the saccharide dose of MenW.
  • Hib conjugate and MenA conjugate and MenW conjugate optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8;4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w).
  • the saccharide dose of MenA is greater than the saccharide dose of MenW.
  • Hib conjugate and MenA conjugate and MenY conjugate optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8:4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w).
  • the saccharide dose of MenA is greater than the saccharide dose of MenY.
  • Hib conjugate and MenW conjugate and MenY conjugate optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:1:2, 1:4:2, 1:2:4, 1:4:1, 1:1:4, 1:3;6, 1:1:3, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w).
  • the saccharide dose of MenY is greater than the saccharide dose of MenW.
  • Hib and at least two further saccharides included in pharmaceutical compositions of the invention are conjugated to a carrier protein such as tetanus toxoid, tetanus toxoid fragment C, non-toxic mutants of tetaus toxin, diphtheria toxoid, CRM197, other non-toxic mutants of diphtheria toxin [such as CRM176, CRM 197, CRM228, CRM 45 (Uchida et al J. Biol. Chem.
  • meningitidis serogroup B - EP0372501 meningitidis serogroup B - EP0372501
  • synthetic peptides EP0378881, EP0427347
  • heat shock proteins WO 93/17712, WO 94/03208
  • pertussis proteins WO 98/58668, EP0471177
  • cytokines lymphokines, growth factors or hormones
  • artificial proteins comprising multiple human CD4+ T cell epitopes from various pathogen derived antigens (Falugi et al (2001) Eur J Immunol 31; 3816-3824) such as N19 protein (Baraldoi et al (2004) Infect lmmun 72; 4884-7) pneumococcal surface protein PspA (WO 02/091998) pneumolysin (Kuo et al (1995) Infect lmmun 63; 2706-13), iron uptake proteins (WO 01/72337), toxin A or B of C. difficile (WO 00/61761
  • the immunogenic composition of the invention uses the same carrier protein (independently selected) in the Hib conjugate and the at least two further bacterial saccharide conjugates, optionally in the Hib conjugate and each of the at least two further bacterial saccharide conjugates (e.g. all the other saccharide conjugates present in the immunogenic composition).
  • the immunogenic composition optionally comprises a Hib saccharide conjugate and MenA polysaccharide conjugate, a Hib saccharide conjugate and MenC polysaccharide conjugate, a Hib saccharide conjugate and MenW polysaccharide conjugate, a Hib saccharide conjugate and MenY polysaccharide conjugate, a Hib saccharide conjugate and MenA and MenC polysaccharide conjugates, a Hib saccharide conjugate and MenA and MenW polysaccharide conjugates, a Hib saccharide conjugate and MenA and MenY polysaccharide conjugates, a Hib saccharide conjugate and MenC and MenW polysaccharide conjugates, a Hib saccharide conjugate and MenC and MenY polysaccharide conjugates, a Hib saccharide conjugate and MenC and MenY polysaccharide conjugates, a Hib saccharide conjugate and MenC and MenY polysaccharide conjugates, a Hib sacchar
  • a single carrier protein may carry more than one saccharide antigen (WO 04/083251 ).
  • a single carrier protein might be conjugated to Hib and MenA, Hib and MenC, Hib and MenW, Hib and MenY, MenA and MenC, MenA and MenW, MenA and MenY, MenC and MenW, MenC and MenY or Men W and MenY.
  • the immunogenic composition of the invention comprises a Hib saccharide conjugated to a carrier protein selected from the group consisting of TT, DT, CRM197, fragment C of TT and protein D.
  • the carrier protein is TT or fragment thereof for Hib and the at least two further saccharides
  • the total dose of carrier is between 2.5-25 ⁇ g , 3-20 ⁇ g, 4-15 ⁇ g, 5-12.5 ⁇ g, 15- 20 ⁇ g, 16-19 ⁇ g or 17-18 ⁇ g.
  • the immunogenic composition of the invention comprises at least two further bacterial saccharides conjugated to a carrier protein selected from the group consisting of TT, DT, CRM197, fragment C of TT and protein D.
  • the immunogenic composition of the invention optionally comprises a Hib saccharide conjugate having a ratio of Hib to carrier protein of between 1 :5 and 5:1 ; 1 :2 and 2:1 ; 1 :1 and 1 :4; 1 :2 and 1 :3.5; or around or exactly 1 :2.5 or 1 :3 (w/w).
  • the immunogenic composition of the invention optionally comprises at least one meningococcal saccharide (for example MenA and/or MenC and/or MenW and/or MenY) conjugate having a ratio of Men saccharide to carrier protein of between 1 :5 and 5:1 , between 1 :2 and 5:1 , between 1 :0.5 and 1 :2.5 or between 1 :1.25 and 1 :2.5(w/w).
  • meningococcal saccharide for example MenA and/or MenC and/or MenW and/or MenY
  • MenA and/or MenC and/or MenW and/or MenY conjugate having a ratio of Men saccharide to carrier protein of between 1 :5 and 5:1 , between 1 :2 and 5:1 , between 1 :0.5 and 1 :2.5 or between 1 :1.25 and 1 :2.5(w/w).
  • the ratio of saccharide to carrier protein (w/w) in a conjugate may be determined using the sterilized conjugate.
  • the amount of protein is determined using a Lowry assay (for example Lowry et al (1951 ) J. Biol. Chem. 193, 265-275 or Peterson et al Analytical Biochemistry 100, 201-220 (1979)) and the amount of saccharide is determined using ICP-OES (inductively coupled plasma-optical emission spectroscopy) for MenA, DMAP assay for MenC and Resorcinol assay for MenW and MenY (Monsigny et al (1988) Anal. Biochem. 175, 525-530).
  • ICP-OES inductively coupled plasma-optical emission spectroscopy
  • the immunogenic composition of the invention is conjugated to the carrier protein via a linker, for instance a bifunctional linker.
  • the linker is optionally heterobifunctional or homobifunctional, having for example a reactive amino group and a reative carboxylic acid group, 2 reactive amino groups or two reactive carboxylic acid groups.
  • the linker has for example between 4 and 20, 4 and 12, 5 and 10 carbon atoms.
  • a possible linker is ADH.
  • Other linkers include B-propionamido (WO 00/10599), nitrophenyl-ethylamine (Gever et al (1979) Med. Microbiol. Immunol. 165; 171- 288), haloalkyl halides (US4057685) glycosidic linkages (US4673574, US4808700) and 6- aminocaproic acid (US4459286).
  • the saccharide conjugates present in the immunogenic compositions of the invention may be prepared by any known coupling technique.
  • the saccharide can be coupled via a thioether linkage.
  • the conjugation method may rely on activation of the saccharide with 1-cyano-4-dimethylamino pyridinium tetrafluoroborate (CDAP) to form a cyanate ester.
  • CDAP 1-cyano-4-dimethylamino pyridinium tetrafluoroborate
  • the activated saccharide may thus be coupled directly or via a spacer (linker) group to an amino group on the carrier protein.
  • the cyanate ester is coupled with hexane diamine or ADH and the amino-derivatised saccharide is conjugated to the carrier protein using heteroligation chemistry involving the formation of the thioether linkage, or is conjugated to the carrier protein using carbodiimide (e.g. EDAC or EDC) chemistry.
  • carbodiimide e.g. EDAC or EDC
  • Such conjugates are described in PCT published application WO 93/15760 Uniformed Services University and WO 95/08348 and WO 96/29094.
  • Other suitable techniques use carbiinides, hydrazides, active esters, norborane, p- nitrobenzoic acid, N-hydroxysuccinimide, S-NHS, EDC, TSTU. Many are described in WO 98/42721.
  • Conjugation may involve a carbonyl linker which may be formed by reaction of a free hydroxyl group of the saccharide with CDI (Bethell et al J. Biol. Chem. 1979, 254; 2572-4, Hearn et al J. Chromatogr. 1981. 218; 509-18) followed by reaction of with a protein to form a carbamate linkage. This may involve reduction of the anomeric terminus to a primary hydroxyl group, optional protection/deprotection of the primary hydroxyl group 1 reaction of the primary hydroxyl group with CDI to form a CDI carbamate intermediate and coupling the CDI carbamate intermediate with an amino group on a protein.
  • CDI Carbonyl linker
  • the conjugates can also be prepared by direct reductive amination methods as described in US 4365170 (Jennings) and US 4673574 (Anderson). Other methods are described in EP-0-161-188, EP-208375 and EP-0-477508.
  • a further method involves the coupling of a cyanogen bromide (or CDAP) activated saccharide derivatised with adipic acid hydrazide (ADH) to the protein carrier by carbodiimide condensation (Chu C. et al Infect. Immunity, 1983 245 256), for example using EDAC.
  • CDAP cyanogen bromide
  • ADH adipic acid hydrazide
  • a hydroxyl group on a saccharide is linked to an amino or carboxylic group on a protein either directly or indirectly (through a linker).
  • a linker is present, a hydroxyl group on a saccharide is optionally linked to an amino group on a linker, for example by using CDAP conjugation.
  • a further amino group in the linker for example ADH) may be conjugated to a carboxylic acid group on a protein, for example by using carbodiimide chemistry, for example by using EDAC.
  • the Hib or at least two further saccharides is conjugated to the linker first before the linker is conjugated to the carrier protein.
  • the Hib saccharide is conjugated to the carrier protein using CNBr, or CDAP, or a combination of CDAP and carbodiimide chemistry (such as EDAC), or a combination of CNBr and carbodiimide chemistry, (such as EDAC).
  • Hib is conjugated using CNBr and carbodiimide chemistry (such as EDAC).
  • CNBr is used to join the saccharide and linker and then carbodiimide chemistry is used to join linker to the protein carrier.
  • at least one of the at least two further saccharides is directly conjugated to a carrier protein, optionally Men W and/or MenY and/or MenC saccharide(s) is directly conjugated to a carrier protein.
  • MenW; MenY; MenC; MenW and MenY; MenW and MenC; MenY and MenC; or MenW, MenY and MenC are directly linked to the carrier protein.
  • at least one of the at least two further saccharides is directly conjugated by CDAP.
  • MenW; MenY; MenC; MenW and MenY; MenW and MenC; MenY and MenC; or MenW, MenY and MenC are directly linked to the carrier protein by CDAP (see WO 95/08348 and WO 96/29094).
  • the ratio of Men W and/or Y saccharide to carrier protein is between 1 :0.5 and 1 :2 (w/w) or the ratio of MenC saccharide to carrier protein is between 1 :0.5 and 1 :2 or 1 :1.25 and 1 :1.5 or 1 :0.5 and 1 :1 (w/w), especially where these saccharides are directly linked to the protein, optionally using CDAP.
  • At least one of the at least two further saccharides is conjugated to the carrier protein via a linker, for instance a bifunctional linker.
  • the linker is optionally heterobifunctional or homobifunctional, having for example a reactive amino group and a reative carboxylic acid group, 2 reactive amino groups or two reactive carboxylic acid groups.
  • the linker has for example between 4 and 20, 4 and 12, 5 and 10 carbon atoms.
  • a possible linker is ADH.
  • MenA; MenC; or MenA and MenC is conjugated to a carrier protein via a linker.
  • the further saccharide is conjugated to a carrier protein via a linker using CDAP and EDAC.
  • MenA; MenC; or MenA and MenC are conjugated to a protein via a linker (for example those with two amino groups at its ends such as ADH) using CDAP and EDAC as described above.
  • CDAP is used to conjugate the saccharide to a linker
  • EDAC is used to conjugate the linker to a protein.
  • the conjugation via a linker results in a ratio of saccharide to carrier protein of of between 1 :0.5 and 1 :6; 1 :1 and 1 :5 or 1 :2 and 1 :4, for MenA; MenC; or MenA and MenC.
  • the immunogenic composition comprises N. meningitidis capsular polysaccharides from at least one, two, three or four of serogroups A, C, W and Y conjugated to a carrier protein, wherein at least one, two, three or four or each N. meningitidis polysaccharide is either a native polysaccharide or is sized by a factor up to x2, x3, x4, x5, x6, x7, x8, x9 , x10 or x20. For example, the average size of at least one, two, three or four or each N.
  • meningitidis polysaccharide is above 5OkDa, 6OkDa 1 75kDa, 10OkDa, 110kDa, 12OkDa or 13OkDa.
  • “Native polysaccharide” refers to a polysaccharide that has not been subjected to a process, the purpose of which is to reduce the size of the polysaccharide.
  • the immunogenic composition comprises N. meningitidis capsular polysaccharides from at least one, two, three or four of serogroups A, C, W and
  • Y conjugated to a carrier protein wherein at least one, two, three or four or each N. meningitidis polysaccharide is native polysaccharide.
  • the immunogenic composition comprises N. meningitidis capsular polysaccharides from at least one, two, three or four of serogroups A, C, W and
  • Y conjugated to a carrier protein wherein at least one, two, three or four or each N. meningitidis polysaccharide is sized by a factor up to x2, x3, x4, x5, x6, x7, x8, x9 or x10.
  • the mean size of at least one, two, three, four or each N. meningitidis polysaccharide, where present, is between 50KDa and 150OkDa, 5OkDa and 50OkDa, 50 kDa and 300 KDa, 101kDa and 150OkDa, 101 kDa and 50OkDa, 101 kDa and 30OkDa as determined by MALLS.
  • the MenA saccharide where present, has a molecular weight of 50- 50OkDa, 50-10OkDa, 100-50OkDa, 55-90KDa, 60-7OkDa or 70-8OkDa or 60-8OkDa.
  • the MenC saccharide where present, has a molecular weight of 100- 20OkDa, 50-10OkDa, 100-15OkDa, 101-13OkDa, 150-21OkDa or 180-21OkDa.
  • MenY saccharide where present, has a molecular weight of 60- 19OkDa, 70-18OkDa, 80-17OkDa, 90-16OkDa, 100-15OkDa or 110-14OkDa, 50-10OkDa, 100-14OkDa, 140-17OkDa or 150-16OkDa.
  • MenW saccharide where present, has a molecular weight of 60- 19OkDa, 70-18OkDa, 80-17OkDa, 90-16OkDa, 100-15OkDa, 110-14OkDa, 50-10OkDa or 120-14OkDa.
  • the molecular weights of the saccharide refers to the molecular weight of the polysaccharide measured prior to conjugation and is measured by MALLS.
  • any N. meningitidis saccharides present are native polysaccharides or native polysaccharides which have reduced in size during a normal extraction process.
  • any N. meningitidis saccharides present are sized by mechanical cleavage, for instance by microfluidisation or sonication. Microfluidisation and sonication have the advantage of decreasing the size of the larger native polysaccharides sufficiently to provide a filterable conjugate.
  • the polydispersity of the saccharide is 1-1.5, 1-1.3, 1-1.2, 1-1.1 or 1- 1.05 and after conjugation to a carrier protein, the polydispersity of the conjugate is 1.0- 2,5, 1.0-2.0. 1.0-1.5, 1.0-1.2, 1.5-2.5, 1.7-2.2 or 1.5-2.0. All polydispersity measurements are by MALLS.
  • TSKG6000 and 5000PWxI TOSOH Bioscience may be used in combination and the saccharides are eluted in water. Saccharides are detected using a light scattering detector (for instance Wyatt Dawn DSP equipped with a 1OmW argon laser at 488nm) and an inferometric refractometer (for instance Wyatt Otilab DSP equipped with a P100 cell and a red filter at 498nm).
  • a light scattering detector for instance Wyatt Dawn DSP equipped with a 1OmW argon laser at 488nm
  • an inferometric refractometer for instance Wyatt Otilab DSP equipped with a P100 cell and a red filter at 498nm.
  • the MenA saccharide, where present is is at least partially O- acetylated such that at least 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units are O-acetylated at at least one position.
  • O-acetylation is for example present at least at the O-3 position.
  • the MenC saccharide, where present is is at least partially O- acetylated such that at least 30%. 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% of ( ⁇ 2 ⁇ 9)-linked NeuNAc repeat units are O-acetylated at at least one or two positions. O- acetylation is for example present at the O-7 and/or O-8 position.
  • the MenW saccharide, where present is is at least partially O- acetylated such that at least 30%. 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units are O-acetylated at at least one or two positions. O-acetylation is for example present at the O-7 and/or O-9 position.
  • the MenY saccharide, where present is at least partially O-acetylated such that at least 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units are O-acetylated at at least one or two positions. O-acetylation is present at the 7 and/or 9 position.
  • the percentage of O-acetylation refers to the percentage of the repeat units containing O- acetylation. This may be measured in the saccharide prior to conjugate and/or after conjugation.
  • a further aspect of the invention is a vaccine comprising the immunogenic composition of the invention and a pharmaceutically acceptable excipient.
  • the immunogenic composition or vaccine contains an amount of an adjuvant sufficient to enhance the immune response to the immunogen.
  • Suitable adjuvants include, but are not limited to, aluminium salts (aluminium phosphate or aluminium hydroxide), squalene mixtures (SAF-1), muramyl peptide, saponin derivatives, mycobacterium cell wall preparations, monophosphoryl lipid A, mycolic acid derivatives, non-ionic block copolymer surfactants, Quil A, cholera toxin B subunit, polphosphazene and derivatives, and immunostimulating complexes (ISCOMs) such as those described by Takahashi et al. (1990) Nature 344:873-875.
  • ISCOMs immunostimulating complexes
  • the immunogenic composition comprises a Hib saccharide conjugated to tetanus toxoid via a linker and MenC saccharide conjugated to tetanus toxoid either directly or through a linker and MenY saccharide conjugated to tetanus toxoid.
  • the immunogenic composition of the invention is buffered at, or adjusted to, between pH 7.0 and 8.0, pH 7.2 and 7.6 or around or exactly pH 7.4.
  • the immunogenic composition or vaccines of the invention are optionally lyophilised in the presence of a stabilising agent for example a polyol such as sucrose or trehalose.
  • a stabilising agent for example a polyol such as sucrose or trehalose.
  • the immunologically effective amounts of the immunogens must be determined empirically. Factors to be considered include the immunogenicity, whether or not the immunogen will be complexed with or covalently attached to an adjuvant or carrier protein or other carrier, route of administrations and the number of immunising dosages to be administered. Such factors are known in the vaccine art and it is well within the skill of immunologists to make such determinations without undue experimentation.
  • the active agent can be present in varying concentrations in the pharmaceutical composition or vaccine of the invention.
  • the minimum concentration of the substance is an amount necessary to achieve its intended use, while the maximum concentration is the maximum amount that will remain in solution or homogeneously suspended within the initial mixture.
  • the minimum amount of a therapeutic agent is one which will provide a single therapeutically effective dosage.
  • the minimum concentration is an amount necessary for bioactivity upon reconstitution and the maximum concentration is at the point at which a homogeneous suspension cannot be maintained.
  • the amount is that of a single therapeutic application.
  • each dose will comprise 1- 100 ⁇ g of protein antigen, for example 5-50 ⁇ g or 5-25 ⁇ g.
  • doses of individual bacterial saccharides are 10-20 ⁇ g, 10-5 ⁇ g, 5-2.5 ⁇ g or 2.5-1 ⁇ g.
  • the preferred amount of the substance varies from substance to substance but is easily determinable by one of skill in the art.
  • the vaccine preparations of the present invention may be used to protect or treat a mammal (for example a human patient) susceptible to infection, by means of administering said vaccine via systemic or mucosal route.
  • administrations may include injection via the intramuscular, intraperitoneal, intradermal or subcutaneous routes; or via mucosal administration to the oral/alimentary, respiratory, genitourinary tracts.
  • Intranasal administration of vaccines for the treatment of pneumonia or otitis media is preferred (as nasopharyngeal carriage of pneumococci can be more effectively prevented, thus attenuating infection at its earliest stage).
  • the vaccine of the invention may be administered as a single dose, components thereof may also be coadministered together at the same time or at different times (for instance if saccharides are present in a vaccine these could be administered separately at the same time or 1-2 weeks after the administration of a bacterial protein vaccine for optimal coordination of the immune responses with respect to each other).
  • 2 different routes of administration may be used.
  • viral antigens may be administered ID (intradermal)
  • IM intramuscular
  • IN intranasal
  • saccharides are present, they may be administered IM (or ID) and bacterial proteins may be administered IN (or ID).
  • the vaccines of the invention may be administered IM for priming doses and IN for booster doses.
  • Vaccine preparation is generally described in Vaccine Design ("The subunit and adjuvant approach” (eds Powell M. F. & Newman MJ.) (1995) Plenum Press New York). Encapsulation within liposomes is described by Fullerton, US Patent 4,235,877.
  • a further aspect of the invention is a vaccine kit for concomitant or sequential administration comprising two multi-valent immunogenic compositions for conferring protection in a host against diease caused by Bordetella pertussis, Clostridium tetani, Corynebacterium diphtheriae, Haemophilus influenzae and Neisseria meningitidis.
  • the kit optionally comprises a first container comprising one or more of:
  • TT tetanus toxoid
  • DT diphtheria toxoid
  • Hib saccharide conjugate and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of all the at least two further bacterial saccharide conjugates;
  • Hib saccharide conjugate and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than each of the at least two further bacterial saccharide conjugates (e.g. at a lower saccharide dose that any saccharide present in the composition).
  • Hib conjugate and the at least two further bacterial saccharide conjugates are as described above.
  • a further aspect of the invention is a vaccine kit for concomitant or sequential administration comprising two multi-valent immunogenic compositions for conferring protection in a host against diease caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis.
  • the kit optionally comprises a first container comprising:
  • one or more conjugates of a carrier protein and a capsular saccharide from Streptococcus pneumoniae [where the capsular saccharide(s) is/are optionally from a pneumococcal serotype selected from the group consisting of 1 , 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A 1 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F].
  • Hib saccharide conjugate and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of all the at least two further bacterial saccharide conjugates;
  • Hib saccharide conjugate and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than each of the at least two further bacterial saccharide conjugates (e.g. at a lower saccharide dose that any saccharide present in the composition).
  • Hib conjugate and the at least two further bacterial saccharide conjugates are as described above.
  • the Streptococcus pneumoniae vaccine in the vaccine kit of the present invention will comprise polysaccharide antigens (optionally conjugated), wherein the polysaccharides are derived from at least four serotypes of pneumococcus chosen from the group consisting of 1 , 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 1OA, 11A 1 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F.
  • the four serotypes include 6B, 14, 19F and 23F. More optionally, at least 7 serotypes are included in the composition, for example those derived from serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F.
  • compositions for instance at least 10, 11 , 12, 13 or 14 serotypes.
  • the composition in one embodiment includes 11 capsular polysaccharides derived from serotypes 1 , 3, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F (optionally conjugated).
  • polysaccharide antigens are included, although further polysaccharide antigens, for example 23 valent (such as serotypes 1 , 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11 A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F), are also contemplated by the invention.
  • 23 valent such as serotypes 1 , 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11 A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F
  • the pneumococcal saccharides are conjugated to any known carrier protein, for example CRM197, tetanus toxoid, diphtheria toxoid, protein D or any other carrier proteins as mentioned above.
  • the vaccine kits of the invention comprise a third component.
  • the kit optionally comprises a first container comprising one or more of:
  • TT tetanus toxoid
  • DT diphtheria toxoid
  • a third container comprising:
  • Hib saccharide conjugate and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of all the at least two further bacterial saccharide conjugates;
  • Hib saccharide conjugate and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than each of the at least two further bacterial saccharide conjugates (e.g. at a lower saccharide dose that any saccharide present in the composition).
  • Immunogenic compositions comprising meningococcal conjugates, for example HibMenC, HibMenAC, HibMenAW, HibMenAY, HibMenCW, HibMenCY, HibMenWY,
  • MenAC, MenAW, MenAY, MenCW, MenCY, MenWY or MenACWY optionally comprise antigens from measles and/or mumps and/or rubella and/or varicella.
  • the meningococcal immunogenic composition contains antigens from measles, mumps and rubella or measles, mumps, rubella and varicella.
  • these viral antigens are optionally present in the same container as the meningococcal and/or Hib saccharide conjugate(s). In an embodiment, these viral antigens are lyophilised.
  • a further aspect of the invention is a process for making the immunogenic composition of the invention, comprising the step of mixing a Hib saccharide conjugate with at least two further bacterial saccharide conjugates to form a composition in which the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of the at least two further bacterial saccharide conjugates.
  • Vaccine preparation is generally described in Vaccine Design ("The subunit and adjuvant approach” (eds Powell M. F. & Newman M.J.) (1995) Plenum Press New York). Encapsulation within liposomes is described by Fullerton, US Patent 4,235,877.
  • a further aspect of the invention is a method of immunising a human host against disease caused by Haemophilus influenzae and optionally N. meningitidis infection comprising administering to the host an immunoprotective dose of the immunogenic composition or vaccine or kit of the invention.
  • a further aspect of the invention is an immunogenic composition of the invention for use in the treatment or prevention of disease caused by Haemophilus influenzae and optionally N. meningitidis.
  • a further aspect of the invention is use of the immunogenic composition or vaccine or kit of the invention in the manufacture of a medicament for the treatment or prevention of diseases caused by Haemophilus influenzae and optionally N. meningitidis.
  • Hib PRP polysaccharide was activated by adding CNBr and incubating at pH10.5 for 6 minutes. The pH was lowered to pH8.75 and adipic acid dihydrzide (ADH) was added and incubation continued for a further 90 minutes.
  • ADH adipic acid dihydrzide
  • the activated PRP was coupled to purified tetanus toxoid via carbodiimide condensation using 1-ethyl-3-(3- dimethyl-aminopropyl)carbodiimide (EDAC).
  • EDAC was added to the activated PRP to reach a final ratio of 0.6mg EDAC/mg activated PRP.
  • the pH was adjusted to 5.0 and purified tetanus toxoid was added to reach 2mg TT/mg activated PRP.
  • the resulting solution was left for three days with mild stirring. After filtration through a 0.45 ⁇ m membrane, the conjugate was purifed on a sephacryl S500HR (Pharmacia, Sweden) column equilibrated in 0.2M NaCI.
  • MenC -TT conjugates were produced using native polysaccharides ( of over 15OkDa as measured by MALLS). MenA-TT conjugates were produced using either native polysaccharide or slightly microfluidised polysaccharide of over 6OkDa as measured by the MALLS method of example 2. MenW and MenY-TT conjugates were produced using sized polysaccharides of around 100-20OkDa as measured by MALLS (see example 2). Sizing was by microfluidisation using a homogenizer Emulsiflex C-50 apparatus. The polysaccharides were then filtered through a 0.2 ⁇ m filter.
  • Activation and coupling were performed as described in WO96/29094 and WO 00/56360. Briefly, the polysaccharide at a concentration of 10-20mg/ml in 2M NaCI pH 5.5-6.0 was mixed with CDAPsolution (100mg/ml freshly prepared in acetonitrile/WFI, 50/50) to a final CDAP/polysaccharide ratio of 0.75/1 or 1.5/1. After 1.5 minutes, the pH was raised with sodium hydroxide to pH10.0. After three minutes tetanus toxoid was added to reach a protein/polysaccharide ratio of 1.5/1 for MenW, 1.2/1 for MenY, 1.5/1 for MenA or 1.5/1 for MenC. The reaction continued for one to two hours.
  • glycine was added to a final ratio of glycine/PS (w/w) of 7.5/1 and the pH was adjusted to pH9.0. The mixture was left for 30 minutes.
  • the conjugate was clarified using a 10 ⁇ m Kleenpak filter and was then loaded onto a Sephacryl S400HR column using an elution buffer of 15OmM NaCI, 1OmM or 5mM Tris pH7.5. Clinical lots were filtered on an Opticap 4 sterilizing membrane.
  • the resultant conjugates had an average polysaccharide:protein ratio of 1 :1-1 :5 (w/w).
  • MenA capsular polysaccharide to tetanus toxoid via a spacer the following method was used.
  • the covalent binding of the polysaccharide and the spacer (ADH) is carried out by a coupling chemistry by which the polysaccharide is activated under controlled conditions by a cyanylating agent, 1-cyano-4-dimethylamino-pyridinium tetrafluoroborate (CDAP).
  • CDAP 1-cyano-4-dimethylamino-pyridinium tetrafluoroborate
  • the spacer reacts with the cyanylated PS through its hydrazino groups, to form a stable isourea link between the spacer and the polysaccharide.
  • a 10mg/ml solution of MenA was treated with a freshly prepared 100mg/ml solution of CDAP in acetonitrile/water (50/50 (v/v)) to obtain a CDAP/MenA ratio of 0.75 (w/w). After 1.5 minutes, the pH was raised to pH 10.0. Three minutes later, ADH was added to obtain an ADH/MenA ratio of 8.9. The pH of the solution was decreased to 8.75 and the reaction proceeded for 2 hours.
  • the purified TT solution and the PSA AH solution were diluted to reach a concentration of 10 mg/ml for PSA AH and 10mg/ml for TT.
  • EDAC was added to the PS AH solution in order to reach a final ratio of 0.9 mg EDAC/mg PSA AH -
  • the pH was adjusted to 5.0.
  • the purified tetanus toxoid was added with a peristaltic pump (in 60 minutes) to reach 2 mg TT/mg PSA AH .
  • the resulting solution was left 60 min at +25°C under stirring to obtain a final coupling time of 120 min.
  • the conjugate was clarified using a 10 ⁇ m filter and was purified using a Sephacryl S400HR column.
  • Detectors were coupled to a HPLC size exclusion column from which the samples were eluted.
  • the laser light scattering detector measured the light intensities scattered at 16 angles by the macromolecular solution and on the other hand, an interferometric refractometer placed on-line allowed the determination of the quantity of sample eluted. From these intensities, the size and shape of the macromolecules in solution can be determined.
  • the mean molecular weight in weight (M w ) is defined as the sum of the weights of all the species multiplied by their respective molecular weight and divided by the sum of weights of all the species.
  • Root mean square radius: -Rw- and R 2 W is the square radius defined by:
  • the polydispersity is defined as the ratio -Mw / Mn-.
  • Meningococcal polysaccharides were analysed by MALLS by loading onto two HPLC columns (TSKG6000 and 5000PWxI) used in combination. 25 ⁇ l of the polysaccharide were loaded onto the column and was eluted with 0.75ml of filtered water.
  • the polyaccharides are detected using a light scattering detector ( Wyatt Dawn DSP equipped with a 1OmW argon laser at 488nm) and an inferometric refractometer ( Wyatt Otilab DSP equipped with a P100 cell and a red filter at 498nm).
  • the molecular weight polydispersities and recoveries of all samples were calculated by the Debye method using a polynomial fit order of 1 in the Astra 4.72 software.
  • Study design Open, randomized (1 :1 :1 :1 :1 ), single centre study with five groups.
  • the five groups received the following vaccination regimen respectively, at 6, 10 and 14 weeks of age.
  • TritanrixTM-HepB/Hib-MenAC 2.5/2.5/2.5 henceforth referred to as 2.5/2.5/2.5
  • TritanrixTM-HepB/Hib-MenAC 2.5/5/5 henceforth referred to as 2.5/5/5
  • TritanrixTM-HepB + HiberixTM henceforth referred to as Hiberix
  • Tritanrix is a DTPw vaccine marketted by GlaxoSmithKline Biologicals S.A.
  • the 2.5/2.5/2.5 vaccine was a dose dilution of GSK Biologicals' Hib-MenAC 5/5/5 vaccine containing 2.5 ⁇ g of each of PRP-TT, MenA-TT and MenC-TT.
  • the Hib-MenAC vaccine formulations were mixed extemporaneously with Tritanirix-HepB.
  • GSK Biologicals' combined diphtheria-tetanus-whole cell Bordetella pertussis - hepatitis B (DTPw-HB) vaccine (Tritanrix-HepB) contains not less than 30 International Units (IU) of diphtheria toxoid, not less than 60 IU of tetanus toxoid, not less than 4IU of killed Bordetella pertussis and 10 ⁇ g of recombinant hepatitis B surface antigen.
  • IU International Units
  • Vaccination schedule/site One group received Tritanrix.-HepB vaccine intramuscularly in the left thigh and Hiberix. intramuscularly in the right thigh at 6, 10 and 14 weeks of age. Another group received TritanrixTM-HepB/HiberixTM vaccine intramuscularly in the left thigh and MeningitecTM vaccine intramuscularly in the right thigh at 6, 10 and 14 weeks of age.
  • Vaccine/composition/dose/lot number The TritanrixTM-HepB vaccine used was as described above.
  • HiberixTM contained 10 ⁇ g of PRP conjugated to tetanus toxoid. In the HiberixTM Group, it was mixed with sterile diluent and in the MeningitecTM Group it was mixed with TritanrixTM-HepB.
  • One dose (0.5 ml) of Wyeth Lederle's MENINGITECTM vaccine contained: 10 ⁇ g of capsular polysaccharide of meningococcal group C conjugated to 15 ⁇ g of Corynebacterium diphtheria CRM197 protein and aluminium as salts. Results - immune responses generated against Hib. MenA and MenC
  • Hib MenAC conjugate vaccine with the 2.5/5/5 formulation consistently gave higher titre immune responses against PRP, MenA and MenC than the conjugate vaccine formulations with equal amounts of Hib, MenA and MenC saccharides. This effect was also seen in serum bacteriocidal (SBA) assays where the best responses against MenA and MenC were achieved using the 2.5/5/5 formulation of Hib MenAC conjugate vaccine.
  • SBA serum bacteriocidal
  • a phase II, open, randomized study was carried out to assess the immune memory induced by primary vaccination course of TritanrixTM-HepB/HibMenAC vaccine, and to assess the immunogenicity and reactogenicity of a booster dose of GSK Biologicals' TritanrixTM-HepB vaccine mixed with either GSK Biologicals' Hib-MenAC conjugate vaccine or GSK Biologicals' Hib 25 vaccine at 15 to 18 months of age in subjects primed with TritanrixTM-HepB/Hib-MenAC.
  • Five groups received the primary vaccination regimens at 6, 10 and 14 weeks of age as presented in table 3.
  • Plasma samples were taken from Groups 1 , 3, 5, 7 and 9 at the time of the plain polysaccharide (PS) booster (i.e. Pre-PS - Month 10) and one month after the plain polysaccharide booster (i.e. Post-PS -Month 11).
  • PS plain polysaccharide
  • Diagnosis and criteria for inclusion A male or female subject aged 10 months of age who had completed the three-dose primary vaccination course described in example 1 , free of obvious health problems, who had not received previous booster vaccination against diphtheria, tetanus, pertussis, hepatitis B, meningococcal serogroups A or C and/ or Hib disease since the study conclusion visit of the primary study.
  • Written informed consent was obtained from the parent/ guardian of the subject prior to study entry.
  • Vaccination schedule/site Subjects in Groups 1, 3, 5, 7 and 9 received the combined polysaccharide A and polysaccharide C vaccine, 1/5 th dose of MencevaxTM AC and 10 ⁇ g of plain PRP as an intramuscular injection in the left and right anterolateral thigh at 10 months of age, respectively.
  • Duration of treatment The duration of the entire study was approximately 6 to 9 months per subject which included the booster vaccination administered at 15 to 18 months of age. Interim analysis was done at Month 11 (i.e. one month after administration of the plain polysaccharide booster at Month 10).
  • Criteria for evaluation Prior to and one month after administration of the plain polysaccharide booster the criteria for evaluation for Groups 1 , 3, 5, 7 and 9 were as follows -
  • Anti-PSC antibody concentration > 0.3 ⁇ g/ml
  • Anti-PRP antibody concentration > 0.15 ⁇ g/ml.
  • Demography Results The mean age of the total enrolled cohort was 43.2 weeks with a standard deviation of 6.5 weeks. The male to female ratio was 1.3 (110/83). All subjects belonged to either the East Asian or South-East Asian race.
  • Immunogenicity Results The immunogenicity results for the total enrolled cohort are presented in the table 4.
  • the HibMenAC 2.5/5/5 conjugate vaccine formulation containing a lower amount of Hib tended to give a better immune memory response to MenA and MenC in SBA assays than the vaccine formulations containing equal amounts of all three conjugates. This can be seen from a comparison of the POST-PS readings. Therefore the use of the 2.5/5/5 formulation in priming results in a superior immune memory response.
  • Example 5a Clinical trial using HibMenCY given concomitantly with Infanrix penta and Prevenar in infants at 2, 4 and 6 months
  • Hib-MenCY (2.5/5/5) and Hib-MenCY (5/10/10) were administered in a double-blind manner.
  • the Hib-MenCY (5/5/5) formulation could not be administered in a double blind as it was prepared by reconstituting a Hib-MenCY (10/10/10) formulation with 1.0 ml diluent (half the solution was discarded and the remaining 0.5 ml was administered), whereas the Hib-MenCY (2.5/5/5) and Hib-MenCY (5/10/10) formulations were administered after reconstitution with 0.5 ml diluent.
  • Blood samples (4.0 ml) were obtained from all subjects prior to and one month after completion of the primary vaccination course (Study Month 0 and Study Month 5).
  • Vaccination schedule/site Three doses injected intramuscularly at two month intervals, at approximately 2, 4 and 6 months of age as follows:
  • Hib-MenCY 5/5/5 was prepared by dissolving Hib-MenCY 10/10/10 formulation with 1.0 ml diluent; 0.5 ml was administered and the remaining 0.5 ml was discarded.
  • Immunogenicity Measurement of titers/concentrations of antibodies against each vaccine antigen prior to the first dose (Month 0) and approximately one month after the third dose (Month 5) in all subjects. Determination of bactericidal antibody titers against N. meningitidis serogroups C and Y (SBA-MenC and SBA-MenY) by a bactericidal test (assay cut-offs: a dilution of 1 :8 and 1 :128) and ELISA measurement of antibodies against N.
  • meningitidis serogroups C and Y (anti-PSC and anti-PSY, assay cut-offs >0.3 ⁇ g/ml and ⁇ 2 ⁇ g/ml), the Hib polysaccharide PRP (anti-PRP, assay cut-offs ⁇ O.15 ⁇ g/ml and >1.0 ⁇ g/ml), the three pertussis antigens (anti-PT, anti-FHA, anti-PRN, assay cut-off >5 EL.U/ml), antibodies to hepatitis B surface antigen (anti-HBs, assay cut-off ⁇ 10 mlU/mL), diphtheria and tetanus toxoids (anti-diphtheria and anti-tetanus, assay cut-off 0.1 Ill/ml); anti-poliovirus types 1 , 2 and 3 (assay cut-off 1 :8); seven pneumococcal serotypes anti-4, anti-6B, anti-9V, anti-14, anti
  • GMC/Ts Geometric Mean antibody Concentrations or Titers
  • CIs 95% confidence intervals
  • the distribution of antibody concentration for the 7 pneumococcal antigens was tabulated.
  • the differences between the Hib-MenCY groups, compared with the control group were evaluated in an exploratory manner for each antibody, except for SBA-MenY and anti- PSY, in terms of (1 ) the difference between the control group (minus) the Hib-MenCY groups for the percentage of subjects above the specified cut-offs or with a vaccine response with their standardized asymptotic 95% Cl, (2) the GMC or GMT ratios of the control group over the Hib-MenCY groups with their 95% Cl.
  • the control group was Menjugate for SBA-MenC and anti-PSC; the control group for all other antigens was Group ActHIB.
  • the same comparisons were done to evaluate the difference between each pair of Hib-MenCY formulations for anti-PRP, SBA-MenC, anti-PSC, SBA-MenY, anti-PSY and anti-tetanus antibodies.
  • a further aspect of the study of example 3 was to investigate the level of antibodies raised against the 7 pneumococcal polysaccharides present in the Prevenar vaccine in order to assess the effect of co-administration of HibMenCY on the antibody titre raised against pneumococcal polysaccharides.
  • the GMCs and percentages of subjects with antibodies for the 7 pneumococcal serotypes > 0.05 ⁇ g/ml and ⁇ 0.2 ⁇ g/ml are shown in Table 8. Except for the 6B serotype, seropositivity rates for the 7vPn components ranged from 95.5-100% (antibody concentrations > 0.05 ⁇ g/ml) and 93.9-100% (antibody concentrations > 0.2 ⁇ g/ml) across groups. For the 6B serotype, seropositivity rates ranged from 88.4-98.6% (antibody concentrations ⁇ 0.05 ⁇ g/ml) and 81.2-91.4% (antibody concentrations ⁇ 0.2
  • Group No. in group % > 0.05 ⁇ g/ml % > 0.2 ⁇ g/ml GMC ( ⁇ g/ml)
  • Group No. in group % > 0.05 ⁇ g/ml % > 0.2 ⁇ g/ml GMC ( ⁇ g/ml)
  • Group No. in group % > 0.05 ⁇ g/ml % > 0.2 ⁇ g/ml GMC ( ⁇ g/ml)
  • Group No. in group % > 0.05 ⁇ g/ml % > 0.2 ⁇ g/ml GMC ( ⁇ g/ml)
  • Hib-MenCY 2.5/5/5, Hib-MenCY 5/10/10 and Hib-MenC were administered in a double- blind manner while the Hib-MenCY 5/5/5 group and the Menjugate group were open.
  • MenjugateTM was the vaccine that was administered to all subjects in the group.
  • Table 8 Vaccines administered (study and control), group, schedule/site and dose
  • Immunogenicity Measurement of antibody titres/concentrations against each vaccine antigen: Prior to the first dose (Month 0) and approximately one month after the third dose (Month 3) in all subjects for: SBA-MenC and SBA-MenY, anti-PSC and anti-PSY, anti-PRP, anti- T, anti-FHA, anti-PRN and anti-PT.
  • SBA-MenC and SBA-MenY cut-off 1 :8 and 1 :128)
  • anti-PSC IgG and anti-PSY IgG meningitidis serogroups C and Y polysaccharides
  • anti-PRP IgG Hib polysaccharide polyribosil-ribitol-phosphate
  • 5ELU/ml for anti-FHA, anti-PRN, anti-PT
  • ⁇ 0.1 Ill/ml anti-tetanus toxoid anti-TT.
  • ELISA assays with cut-offs 0.1 IU/ml for anti-diphtheria (anti-D); ⁇ 10 mlU/ml for antihepatitis B (anti-HBs); and microneutralization test cut-off: 1 :8 for anti-polio type 1 , 2 and 3 (anti-polio 1 , 2 and 3).
  • the seroprotection/seropositivity rates and geometric mean concentrations/ rates (GMCs/GMTs) with 95% confidence intervals (95% Cl) were computed per group, for SBA-MenC, anti-PSC, SBA-MenY, anti-PSY, anti-PRP, anti-Tetanus, anti-PT, anti-FHA and anti-PRN prior to and one month after vaccination; for anti-Diphtheria, anti-HBs, anti- Polio 1 , anti-Polio 2 and anti-Polio 3 one month after vaccination.
  • Vaccine response (appearance of antibodies in subjects initially seronegative or at least maintenance of antibody concentrations in subjects initially seropositive) with 95% Cl for anti-PT, anti- PRN and anti-FHA were also computed one month after vaccination. Reverse cumulative curves for each antibody at Month 3 are also presented.
  • the differences between the Hib- MenCY and the Hib- MenC groups, compared with the MenjugateTM control group were evaluated in an exploratory manner for each antibody, except for SBA-MenY and anti- PSY, in terms of (1 ) the difference between the MenjugateTM group (minus) the Hib-
  • MenCY and Hib-MenC groups for the percentage of subjects above the specified cut-offs or with a vaccine response with their standardized asymptotic 95% Cl, (2) the GMC or GMT ratios of the MenjugateTM group over the Hib-MenCY and Hib-MenC groups with their 95% Cl. The same comparisons were done to evaluate the difference between each pair of Hib-MenCY formulations for anti-PRP, SBA-MenC, anti-PSC, SBA-MenY, anti-PSY and anti-TT antibodies.
  • the overall incidences of local and general solicited symptoms were computed by group according to the type of symptom, their intensity and relationship to vaccination (as percentages of subjects reporting general, local, and any solicited symptoms within the 8 days following vaccination and their exact 95% Cl). Incidences of unsolicited symptoms were computed per group. For Grade 3 symptoms, onset ⁇ 48 hours, medical attention, duration, relationship to vaccination and outcomes were provided. Serious Adverse Events were fully described.
  • MenjugateTM 71 100 0 94 9 100 0 80 3 69 1 88 8
  • MenjugateTM 71 100 0 94 9 100 0 100 0 94 9 100 0
  • MenjugateTM 71 100 0 94 9 100 0 1 66 1 39 1 97
  • Hib-MenC Hib-Men (5/5)+ InfanrixTM hexa
  • N number of subjects with available results.
  • % percentage of subjects with concentration/titre within the specified range

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Pulmonology (AREA)
  • Oncology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Otolaryngology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)
  • Surgical Instruments (AREA)

Abstract

The present application discloses an immunogenic composition comprising a Hib saccharide conjugate and at least two further bacterial saccharide conjugates wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of all the at least two further bacterial saccharide conjugates.

Description

Immunogenic Composition
The present application relates to Immunogenic compositions and vaccines comprising a Hib saccharide conjugate and at least two further bacterial saccharide conjugates, processes for making such immunogenic compositions and vaccines, uses and methods of immunisation using the immunogenic composition and vaccine.
Bacterial polysaccharides have been shown to be effective immunogens for use in vaccines, particularly when conjugated to a carrier protein. Commercial conjugate vaccines are available against Haemophilus influenzae type b (Hibtiter® Wyeth-Lederle), pneumococcal polysaccharides (Prevnar® -Wyeth-Lederle) and meningococcal polysaccharides (Meningitec® - Wyeth-Lederle and Menactra®- Sanofi).
Immunogenic compositions and vaccines comprising a Hib conjugate and further bacterial saccharide conjugates have also been described. For instance WO 02/00249 discloses immunogenic compositions comprising a Hib PRP conjugate and further polysaccharide or oligosaccharide conjugates wherein the polysaccharide conjugates are not adsorbed onto adjuvant, particularly aluminium salts. The clinical trial results presented use the same doses of all bacterial polysaccharides.
Choo et al in Pediatr. Infect. Dis. J. (2000) 19; 854-62 describes inoculation of young children with a 7-valent pneumococcal conjugate vaccine mixed with a Haemophilus influenzae type b(hib) conjugate vaccine known as HbOC. The dose of hib conjugate administered was 5 times higher than the dose of each of the pneumococal polysaccharide conjugates administered.
The present invention concerns the provision of a combination vaccine comprising a Hib conjugate and further bacterial saccharide conjugates which is capable of eliciting an improved immunogenic response due to the optimisation of the doses of the Hib conjugate and other bacterial polysaccharide conjugates.
Accordingly, a first aspect of the invention provides an immunogenic composition comprising a Hib saccharide conjugate and at least two further bacterial saccharide conjugates wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of the at least two further bacterial saccharide conjugates.
Detailed description
The immunogenic composition of the invention comprises a Hib saccharide conjugate and at least two further bacterial saccharide conjugates wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of the at least two further bacterial saccharide conjugates. Alternatively, the Hib conjugate is present in a lower saccharide dose than the saccharide dose of each of the at least two further bacterial saccharide conjugates. For example, the dose of the Hib conjugate may be at least 10%, 20%, 30%, 40%, 50%, 60%, 70% or 80% lower than the mean or lowest saccharide dose of the at least two further bacterial saccharide conjugates.
The term "saccharide" includes polysaccharides or oligosaccharides. Polysaccharides are isolated from bacteria or isolated from bacteria and sized to some degree by known methods (see for example EP497524 and EP497525) and optionally by microfluidisation. Polysaccharides can be sized in order to reduce viscosity in polysaccharide samples and/or to improve filterability for conjugated products. Oligosaccharides have a low number of repeat units (typically 5-30 repeat units) and are typically hydrolysed polysaccharides.
The "mean dose" is determined by adding the doses of all the further polysaccharides and dividing by the number of further polysaccharides. The "dose" is in the amount of immunogenic composition or vaccine that is administered to a human.
Polysaccharides are optionally sized up to 1.5, 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20 times from the size of the polysaccharide isolated from bacteria.
"Sized by a factor up to x2" means that the polysaccharide is subject to a process intended to reduce the size of the polysaccharide but to retain a size more than half the size of the native polysaccharide. X3, x4 etc. are to be interpreted in the same way i.e. the polysaccharide is subject to a process intended to reduce the size of the polysaccharide but to retain a size more than a third, a quarter etc. the size of the native polysaccharide respectively.
The size of MenA saccharide is for example 5-20OkDa, 10-2OkDa, 5-1OkDa, 20-3OkDa,
20-4OkDa, 40-8OkDa, 60-8OkDa, 60-7OkDa or 70-8OkDa.
The size of MenC saccharide is for example 5-20OkDa, 10-2OkDa, 5-1OkDa, 5-15kDa, 20-
5OkDa, 50-10OkDa, 100-15OkDa, 150-21OkDa.
The size of MenW saccharide is for example 5-20OkDa, 10-2OkDa, 5-1OkDa, 20-5OkDa, 50-10OkDa, 100-15OkDa or 120-14OkDa.
The size of MenY saccharide is for example 5-20OkDa, 10-2OkDa, 5-1 OkDa, 20-5OkDa,
50-10OkDa, 100-14OkDa, 140-17OkDa or 150-16OkDa as determined by MALLS.
In an embodiment, the polydispersity of the saccharides is 1-1.5, 1-1.3, 1-1.2, 1-1.1 or 1- 1.05 and after conjugation to a carrier protein, the polydispersity of the conjugate is 1.0- 2.0. 1.0-1.5, 1.0-1.2 or 1.5-2.0. All polydispersity measurements are by MALLS. For MALLS analysis of meningococcal saccharides, two columns (TSKG6000 and 5000PWxI TOSOH Bioscience) may be used in combination and the saccharides are eluted in water. Saccharides are detected using a light scattering detector (for instance Wyatt Dawn DSP equipped with a 1OmW argon laser at 488nm) and an inferometric refractometer (for instance Wyatt Otilab DSP equipped with a P100 cell and a red filter at 498nm).
A Hib saccharide is the polyribosyl phosphate (PRP) capsular polysaccharide or oligosaccharide of Haemophilus influenzae type b.
"At least two further bacterial saccharide conjugates" refers to at least two saccharide conjugates in which the saccharides are different from Hib and from each other. The at least two further bacterial saccharide conjugates may be derived from one or more of Neisseria meningitidis, Streptococcus pneumoniae, Group A Streptococci, Group B Streptococci, S. typhi, Staphylococcus aureus or Staphylococcus epidermidis. In an embodiment, the immunogenic composition comprises capsular polysaccharides or oligosaccharides derived from one or more of serogroups A, B, C1 W135 and Y of Neisseria meningitidis. A further embodiment comprises capsular polysaccharides or oligosaccharides derived from Streptococcus pneumoniae. The pneumococcal capsular polysaccharide or oligosaccharide antigens are optionally selected from serotypes 1 , 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 1OA, 11 A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F (for example from serotypes 1 , 3, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F). A further embodiment comprises the Type 5, Type 8 or 336 capsular polysaccharides or oligosaccharides of Staphylococcus aureus. A further embodiment comprises the Type I, Type Il or Type III capsular polysaccharides of Staphylococcus epidermidis. A further embodiment comprises the Vi saccharide (poly or oligosaccharide) from S. typhi. A further embodiment comprises the Type Ia, Type Ic, Type Il or Type III capsular polysaccharides or oligosaccharides of Group B streptocoocus. A further embodiment comprises the capsular polysaccharides or oligosaccharides of Group A streptococcus, optionally further comprising at least one M protein or multiple types of M protein. In an embodiment, the immunogenic composition of the invention further comprises an antigen from N. meningitidis serogroup B. The antigen is optionally a capsular polysaccharide from N. meningitidis serogroup B (MenB) or a sized polysaccharide or oligosaccharide derived therefrom. The antigen is optionally an outer membrane vesicle preparation from N. meningitidis serogroup B as described in EP301992, WO 01/09350, WO 04/14417, WO 04/14418 and WO 04/14419.
In an embodiment, the at least two further bacterial saccharide conjugates optionally comprise N. meningitidis serogroup C capsular saccharide (MenC), serogroup C and Y capsular saccharides (MenCY), serogroup C and A capsular saccharides (MenAC), serogroup C and W capsular saccharides (MenCW), serogroup A and Y capsular saccharide (MenAY), serogroup A and W capsular saccharides (MenAW), serogroup W and Y capsular saccharides (Men WY)1 serogroup A, C and W capsular saccharide (MenACW), serogroup A, C and Y capsular saccharides (MenACY); serogroup A, W135 and Y capsular saccharides (MenAWY), serogroup C, W 135 and Y capsular saccharides (MenCWY); or serogroup A, C, W135 and Y capsular saccharides (MenACWY), serogroup B and C capsular saccharides (MenBC), serogroup B, C and Y capsular saccharides (MenBCY), serogroup B, C and A capsular saccharides (MenABC), serogroup B, C and W capsular saccharides (MenBCW), serogroup A, B and Y capsular saccharide (MenABY), serogroup A, B and W capsular saccharides (MenABW), serogroup B, W and Y capsular saccharides (MenBWY), serogroup A, B, C and W capsular saccharide (MenABCW), serogroup A, B, C and Y capsular saccharides (MenABCY); serogroup A, B, W135 and Y capsular saccharides (MenABWY), serogroup B, C, W135 and Y capsular saccharides (MenBCWY); or serogroup A, B1 C, W135 and Y capsular saccharides (MenABCWY) .
The immunogenic composition of the invention optionally contains the Hib saccharide conjugate in a saccharide dose between 0.1 and 9μg; 1 and 5μg or 2 and 3μg or around or exactly 2.5μg and each of the at least two further saccharide conjugates at a dose of between 2 and 20μg, 3 and 10μg, or between 4 and 7μg or around or exactly 5μg.
"Around" or "approximately" are defined as within 10% more or less of the given figure for the purposes of the invention.
The immunogenic composition of the invention contains a saccharide dose of the Hib saccharide conjugate which is for example less than 90%, 80%, 75%, 70%, 60%, 50%, 40%, 30%, 20% or 10% of the mean saccharide dose of the at least two further saccharide conjugates. The saccharide dose of the Hib saccharide is for example between 20% and 60%, 30% and 60%, 40% and 60% or around or exactly 50% of the mean saccharide dose of the at least two further saccharide conjugates.
The immunogenic composition of the invention contains a saccharide dose of the Hib saccharide conjugate which is for example less than 90%, 80%, 75%, 70%, 60%, 50%, 40%, 30%, 20% or 10% of the lowest saccharide dose of the at least two further saccharide conjugates. The saccharide dose of the Hib saccharide is for example between 20% and 60%, 30% and 60%, 40% and 60% or around or exactly 50% of the lowest saccharide dose of the at least two further saccharide conjugates.
In an embodiment of the invention, the dose of each of the two or more further saccharides is optionally the same, or approximately the same.
Examples of immunogenic compositions of the invention are compositions consisting of or comprising: Hib conjugate and MenA conjugate and MenC conjugate, optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally, the saccharide dose of MenA is greater than the saccharide dose of MenC. Hib conjugate and MenC conjugate and MenY conjugate, optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8;4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally, the saccharide dose of MenC is greater than the saccharide dose of MenY. Hib conjugate and MenC conjugate and MenW conjugate, optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8;4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally the saccharide dose of MenC is greater than the saccharide dose of MenW. Hib conjugate and MenA conjugate and MenW conjugate, optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8;4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally, the saccharide dose of MenA is greater than the saccharide dose of MenW. Hib conjugate and MenA conjugate and MenY conjugate, optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8:4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally the saccharide dose of MenA is greater than the saccharide dose of MenY.
Hib conjugate and MenW conjugate and MenY conjugate, optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:1:2, 1:4:2, 1:2:4, 1:4:1, 1:1:4, 1:3;6, 1:1:3, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally the saccharide dose of MenY is greater than the saccharide dose of MenW.
Hib and at least two further saccharides included in pharmaceutical compositions of the invention are conjugated to a carrier protein such as tetanus toxoid, tetanus toxoid fragment C, non-toxic mutants of tetaus toxin, diphtheria toxoid, CRM197, other non-toxic mutants of diphtheria toxin [such as CRM176, CRM 197, CRM228, CRM 45 (Uchida et al J. Biol. Chem. 218; 3838-3844, 1973); CRM 9, CRM 45, CRM102, CRM 103 and CRM107 and other mutations described by Nicholls and Youle in Genetically Engineered Toxins, Ed: Frankel, Maecel Dekker Inc, 1992; deletion or mutation of Glu-148 to Asp, GIn or Ser and/or Ala 158 to GIy and other mutations disclosed in US 4709017 or US 4950740; mutation of at least one or more residues Lys 516, Lys 526, Phe 530 and/or Lys 534 and other mutations disclosed in US 5917017 or US 6455673; or fragment disclosed in US 5843711], pneumococcal pneumolysin, OMPC (meningococcal outer membrane protein - usually extracted from N. meningitidis serogroup B - EP0372501), synthetic peptides (EP0378881, EP0427347), heat shock proteins (WO 93/17712, WO 94/03208), pertussis proteins (WO 98/58668, EP0471177), cytokines, lymphokines, growth factors or hormones (WO 91/01146), artificial proteins comprising multiple human CD4+ T cell epitopes from various pathogen derived antigens (Falugi et al (2001) Eur J Immunol 31; 3816-3824) such as N19 protein (Baraldoi et al (2004) Infect lmmun 72; 4884-7) pneumococcal surface protein PspA (WO 02/091998) pneumolysin (Kuo et al (1995) Infect lmmun 63; 2706-13), iron uptake proteins (WO 01/72337), toxin A or B of C. difficile (WO 00/61761 ) or Protein D (US6342224).
In an embodiment, the immunogenic composition of the invention uses the same carrier protein (independently selected) in the Hib conjugate and the at least two further bacterial saccharide conjugates, optionally in the Hib conjugate and each of the at least two further bacterial saccharide conjugates (e.g. all the other saccharide conjugates present in the immunogenic composition).
In an embodiment, the immunogenic composition optionally comprises a Hib saccharide conjugate and MenA polysaccharide conjugate, a Hib saccharide conjugate and MenC polysaccharide conjugate, a Hib saccharide conjugate and MenW polysaccharide conjugate, a Hib saccharide conjugate and MenY polysaccharide conjugate, a Hib saccharide conjugate and MenA and MenC polysaccharide conjugates, a Hib saccharide conjugate and MenA and MenW polysaccharide conjugates, a Hib saccharide conjugate and MenA and MenY polysaccharide conjugates, a Hib saccharide conjugate and MenC and MenW polysaccharide conjugates, a Hib saccharide conjugate and MenC and MenY polysaccharide conjugates, a Hib saccharide conjugate and MenW and MenY polysaccharide conjugates, a Hib saccharide conjugate and MenA, MenC and MenW polysaccharide conjugates, a Hib saccharide conjugate and MenA, MenC and MenY polysaccharide conjugates, a Hib saccharide conjugate and MenA, MenW and MenY polysaccharide conjugates, a Hib saccharide conjugate and MenC, MenW and MenY polysaccharide conjugates or a Hib saccharide conjugate and MenA, MenC, MenW and MenY polysaccharide conjugates.
In an embodiment, a single carrier protein may carry more than one saccharide antigen (WO 04/083251 ). For example, a single carrier protein might be conjugated to Hib and MenA, Hib and MenC, Hib and MenW, Hib and MenY, MenA and MenC, MenA and MenW, MenA and MenY, MenC and MenW, MenC and MenY or Men W and MenY.
In an embodiment, the immunogenic composition of the invention comprises a Hib saccharide conjugated to a carrier protein selected from the group consisting of TT, DT, CRM197, fragment C of TT and protein D.
Where the carrier protein is TT or fragment thereof for Hib and the at least two further saccharides, the total dose of carrier is between 2.5-25μg , 3-20μg, 4-15μg, 5-12.5μg, 15- 20μg, 16-19μg or 17-18μg.
In an embodiment, the immunogenic composition of the invention comprises at least two further bacterial saccharides conjugated to a carrier protein selected from the group consisting of TT, DT, CRM197, fragment C of TT and protein D. The immunogenic composition of the invention optionally comprises a Hib saccharide conjugate having a ratio of Hib to carrier protein of between 1 :5 and 5:1 ; 1 :2 and 2:1 ; 1 :1 and 1 :4; 1 :2 and 1 :3.5; or around or exactly 1 :2.5 or 1 :3 (w/w).
The immunogenic composition of the invention optionally comprises at least one meningococcal saccharide (for example MenA and/or MenC and/or MenW and/or MenY) conjugate having a ratio of Men saccharide to carrier protein of between 1 :5 and 5:1 , between 1 :2 and 5:1 , between 1 :0.5 and 1 :2.5 or between 1 :1.25 and 1 :2.5(w/w).
The ratio of saccharide to carrier protein (w/w) in a conjugate may be determined using the sterilized conjugate. The amount of protein is determined using a Lowry assay ( for example Lowry et al (1951 ) J. Biol. Chem. 193, 265-275 or Peterson et al Analytical Biochemistry 100, 201-220 (1979)) and the amount of saccharide is determined using ICP-OES (inductively coupled plasma-optical emission spectroscopy) for MenA, DMAP assay for MenC and Resorcinol assay for MenW and MenY (Monsigny et al (1988) Anal. Biochem. 175, 525-530).
In an embodiment, the immunogenic composition of the invention the Hib saccharide is conjugated to the carrier protein via a linker, for instance a bifunctional linker. The linker is optionally heterobifunctional or homobifunctional, having for example a reactive amino group and a reative carboxylic acid group, 2 reactive amino groups or two reactive carboxylic acid groups. The linker has for example between 4 and 20, 4 and 12, 5 and 10 carbon atoms. A possible linker is ADH. Other linkers include B-propionamido (WO 00/10599), nitrophenyl-ethylamine (Gever et al (1979) Med. Microbiol. Immunol. 165; 171- 288), haloalkyl halides (US4057685) glycosidic linkages (US4673574, US4808700) and 6- aminocaproic acid (US4459286).
The saccharide conjugates present in the immunogenic compositions of the invention may be prepared by any known coupling technique. For example the saccharide can be coupled via a thioether linkage. The conjugation method may rely on activation of the saccharide with 1-cyano-4-dimethylamino pyridinium tetrafluoroborate (CDAP) to form a cyanate ester. The activated saccharide may thus be coupled directly or via a spacer (linker) group to an amino group on the carrier protein. Optionally, the cyanate ester is coupled with hexane diamine or ADH and the amino-derivatised saccharide is conjugated to the carrier protein using heteroligation chemistry involving the formation of the thioether linkage, or is conjugated to the carrier protein using carbodiimide (e.g. EDAC or EDC) chemistry. Such conjugates are described in PCT published application WO 93/15760 Uniformed Services University and WO 95/08348 and WO 96/29094. Other suitable techniques use carbiinides, hydrazides, active esters, norborane, p- nitrobenzoic acid, N-hydroxysuccinimide, S-NHS, EDC, TSTU. Many are described in WO 98/42721. Conjugation may involve a carbonyl linker which may be formed by reaction of a free hydroxyl group of the saccharide with CDI (Bethell et al J. Biol. Chem. 1979, 254; 2572-4, Hearn et al J. Chromatogr. 1981. 218; 509-18) followed by reaction of with a protein to form a carbamate linkage. This may involve reduction of the anomeric terminus to a primary hydroxyl group, optional protection/deprotection of the primary hydroxyl group1 reaction of the primary hydroxyl group with CDI to form a CDI carbamate intermediate and coupling the CDI carbamate intermediate with an amino group on a protein.
The conjugates can also be prepared by direct reductive amination methods as described in US 4365170 (Jennings) and US 4673574 (Anderson). Other methods are described in EP-0-161-188, EP-208375 and EP-0-477508.
A further method involves the coupling of a cyanogen bromide (or CDAP) activated saccharide derivatised with adipic acid hydrazide (ADH) to the protein carrier by carbodiimide condensation (Chu C. et al Infect. Immunity, 1983 245 256), for example using EDAC.
In an embodiment, a hydroxyl group on a saccharide is linked to an amino or carboxylic group on a protein either directly or indirectly (through a linker). Where a linker is present, a hydroxyl group on a saccharide is optionally linked to an amino group on a linker, for example by using CDAP conjugation. A further amino group in the linker for example ADH) may be conjugated to a carboxylic acid group on a protein, for example by using carbodiimide chemistry, for example by using EDAC. In an embodiment, the Hib or at least two further saccharides is conjugated to the linker first before the linker is conjugated to the carrier protein.
In an embodiment, the Hib saccharide is conjugated to the carrier protein using CNBr, or CDAP, or a combination of CDAP and carbodiimide chemistry (such as EDAC), or a combination of CNBr and carbodiimide chemistry, (such as EDAC). Optionally Hib is conjugated using CNBr and carbodiimide chemistry (such as EDAC). For example, CNBr is used to join the saccharide and linker and then carbodiimide chemistry is used to join linker to the protein carrier. In an embodiment, at least one of the at least two further saccharides is directly conjugated to a carrier protein, optionally Men W and/or MenY and/or MenC saccharide(s) is directly conjugated to a carrier protein. For example MenW; MenY; MenC; MenW and MenY; MenW and MenC; MenY and MenC; or MenW, MenY and MenC are directly linked to the carrier protein. Optionally at least one of the at least two further saccharides is directly conjugated by CDAP. For example MenW; MenY; MenC; MenW and MenY; MenW and MenC; MenY and MenC; or MenW, MenY and MenC are directly linked to the carrier protein by CDAP (see WO 95/08348 and WO 96/29094).
In an embodiment, the ratio of Men W and/or Y saccharide to carrier protein is between 1 :0.5 and 1 :2 (w/w) or the ratio of MenC saccharide to carrier protein is between 1 :0.5 and 1 :2 or 1 :1.25 and 1 :1.5 or 1 :0.5 and 1 :1 (w/w), especially where these saccharides are directly linked to the protein, optionally using CDAP.
In an embodiment, at least one of the at least two further saccharides is conjugated to the carrier protein via a linker, for instance a bifunctional linker. The linker is optionally heterobifunctional or homobifunctional, having for example a reactive amino group and a reative carboxylic acid group, 2 reactive amino groups or two reactive carboxylic acid groups. The linker has for example between 4 and 20, 4 and 12, 5 and 10 carbon atoms. A possible linker is ADH.
In an embodiment, MenA; MenC; or MenA and MenC is conjugated to a carrier protein via a linker.
In an embodiment, the further saccharide is conjugated to a carrier protein via a linker using CDAP and EDAC. For example, MenA; MenC; or MenA and MenC are conjugated to a protein via a linker (for example those with two amino groups at its ends such as ADH) using CDAP and EDAC as described above. For example, CDAP is used to conjugate the saccharide to a linker and EDAC is used to conjugate the linker to a protein. Optionally the conjugation via a linker results in a ratio of saccharide to carrier protein of of between 1 :0.5 and 1 :6; 1 :1 and 1 :5 or 1 :2 and 1 :4, for MenA; MenC; or MenA and MenC.
In an embodiment of the invention, the immunogenic composition comprises N. meningitidis capsular polysaccharides from at least one, two, three or four of serogroups A, C, W and Y conjugated to a carrier protein, wherein at least one, two, three or four or each N. meningitidis polysaccharide is either a native polysaccharide or is sized by a factor up to x2, x3, x4, x5, x6, x7, x8, x9 , x10 or x20. For example, the average size of at least one, two, three or four or each N. meningitidis polysaccharide is above 5OkDa, 6OkDa175kDa, 10OkDa, 110kDa, 12OkDa or 13OkDa. "Native polysaccharide" refers to a polysaccharide that has not been subjected to a process, the purpose of which is to reduce the size of the polysaccharide.
In an aspect of the invention, the immunogenic composition comprises N. meningitidis capsular polysaccharides from at least one, two, three or four of serogroups A, C, W and
Y conjugated to a carrier protein, wherein at least one, two, three or four or each N. meningitidis polysaccharide is native polysaccharide.
In an aspect of the invention, the immunogenic composition comprises N. meningitidis capsular polysaccharides from at least one, two, three or four of serogroups A, C, W and
Y conjugated to a carrier protein, wherein at least one, two, three or four or each N. meningitidis polysaccharide is sized by a factor up to x2, x3, x4, x5, x6, x7, x8, x9 or x10.
In an embodiment, the mean size of at least one, two, three, four or each N. meningitidis polysaccharide, where present, is between 50KDa and 150OkDa, 5OkDa and 50OkDa, 50 kDa and 300 KDa, 101kDa and 150OkDa, 101 kDa and 50OkDa, 101 kDa and 30OkDa as determined by MALLS.
In an embodiment, the MenA saccharide, where present, has a molecular weight of 50- 50OkDa, 50-10OkDa, 100-50OkDa, 55-90KDa, 60-7OkDa or 70-8OkDa or 60-8OkDa.
In an embodiment, the MenC saccharide, where present, has a molecular weight of 100- 20OkDa, 50-10OkDa, 100-15OkDa, 101-13OkDa, 150-21OkDa or 180-21OkDa.
In an embodiment the MenY saccharide, where present, has a molecular weight of 60- 19OkDa, 70-18OkDa, 80-17OkDa, 90-16OkDa, 100-15OkDa or 110-14OkDa, 50-10OkDa, 100-14OkDa, 140-17OkDa or 150-16OkDa.
In an embodiment the MenW saccharide, where present, has a molecular weight of 60- 19OkDa, 70-18OkDa, 80-17OkDa, 90-16OkDa, 100-15OkDa, 110-14OkDa, 50-10OkDa or 120-14OkDa.
The molecular weights of the saccharide refers to the molecular weight of the polysaccharide measured prior to conjugation and is measured by MALLS.
In an embodiment any N. meningitidis saccharides present are native polysaccharides or native polysaccharides which have reduced in size during a normal extraction process.
In an embodiment, any N. meningitidis saccharides present are sized by mechanical cleavage, for instance by microfluidisation or sonication. Microfluidisation and sonication have the advantage of decreasing the size of the larger native polysaccharides sufficiently to provide a filterable conjugate. In an embodiment, the polydispersity of the saccharide is 1-1.5, 1-1.3, 1-1.2, 1-1.1 or 1- 1.05 and after conjugation to a carrier protein, the polydispersity of the conjugate is 1.0- 2,5, 1.0-2.0. 1.0-1.5, 1.0-1.2, 1.5-2.5, 1.7-2.2 or 1.5-2.0. All polydispersity measurements are by MALLS.
For MALLS analysis of meningococcal saccharides, two columns (TSKG6000 and 5000PWxI TOSOH Bioscience) may be used in combination and the saccharides are eluted in water. Saccharides are detected using a light scattering detector (for instance Wyatt Dawn DSP equipped with a 1OmW argon laser at 488nm) and an inferometric refractometer (for instance Wyatt Otilab DSP equipped with a P100 cell and a red filter at 498nm).
In an embodiment, the MenA saccharide, where present is is at least partially O- acetylated such that at least 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units are O-acetylated at at least one position. O-acetylation is for example present at least at the O-3 position.
In an embodiment, the MenC saccharide, where present is is at least partially O- acetylated such that at least 30%. 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% of (α2 →9)-linked NeuNAc repeat units are O-acetylated at at least one or two positions. O- acetylation is for example present at the O-7 and/or O-8 position.
In an embodiment, the MenW saccharide, where present is is at least partially O- acetylated such that at least 30%. 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units are O-acetylated at at least one or two positions. O-acetylation is for example present at the O-7 and/or O-9 position.
In an embodiment, the MenY saccharide, where present is at least partially O-acetylated such that at least 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units are O-acetylated at at least one or two positions. O-acetylation is present at the 7 and/or 9 position.
The percentage of O-acetylation refers to the percentage of the repeat units containing O- acetylation. This may be measured in the saccharide prior to conjugate and/or after conjugation.
A further aspect of the invention is a vaccine comprising the immunogenic composition of the invention and a pharmaceutically acceptable excipient. Optionally, the immunogenic composition or vaccine contains an amount of an adjuvant sufficient to enhance the immune response to the immunogen. Suitable adjuvants include, but are not limited to, aluminium salts (aluminium phosphate or aluminium hydroxide), squalene mixtures (SAF-1), muramyl peptide, saponin derivatives, mycobacterium cell wall preparations, monophosphoryl lipid A, mycolic acid derivatives, non-ionic block copolymer surfactants, Quil A, cholera toxin B subunit, polphosphazene and derivatives, and immunostimulating complexes (ISCOMs) such as those described by Takahashi et al. (1990) Nature 344:873-875.
For the HibMen combinations discussed above, it may be advantageous not to use any aluminium salt adjuvant or any adjuvant at all.
In an embodiment, the immunogenic composition comprises a Hib saccharide conjugated to tetanus toxoid via a linker and MenC saccharide conjugated to tetanus toxoid either directly or through a linker and MenY saccharide conjugated to tetanus toxoid.
In an embodiment, the immunogenic composition of the invention is buffered at, or adjusted to, between pH 7.0 and 8.0, pH 7.2 and 7.6 or around or exactly pH 7.4.
The immunogenic composition or vaccines of the invention are optionally lyophilised in the presence of a stabilising agent for example a polyol such as sucrose or trehalose.
As with all immunogenic compositions or vaccines, the immunologically effective amounts of the immunogens must be determined empirically. Factors to be considered include the immunogenicity, whether or not the immunogen will be complexed with or covalently attached to an adjuvant or carrier protein or other carrier, route of administrations and the number of immunising dosages to be administered. Such factors are known in the vaccine art and it is well within the skill of immunologists to make such determinations without undue experimentation.
The active agent can be present in varying concentrations in the pharmaceutical composition or vaccine of the invention. Typically, the minimum concentration of the substance is an amount necessary to achieve its intended use, while the maximum concentration is the maximum amount that will remain in solution or homogeneously suspended within the initial mixture. For instance, the minimum amount of a therapeutic agent is one which will provide a single therapeutically effective dosage. For bioactive substances, the minimum concentration is an amount necessary for bioactivity upon reconstitution and the maximum concentration is at the point at which a homogeneous suspension cannot be maintained. In the case of single-dosed units, the amount is that of a single therapeutic application. Generally, it is expected that each dose will comprise 1- 100μg of protein antigen, for example 5-50μg or 5-25μg. In an embodiment, doses of individual bacterial saccharides are 10-20μg, 10-5μg, 5-2.5μg or 2.5-1 μg. The preferred amount of the substance varies from substance to substance but is easily determinable by one of skill in the art.
The vaccine preparations of the present invention may be used to protect or treat a mammal (for example a human patient) susceptible to infection, by means of administering said vaccine via systemic or mucosal route. These administrations may include injection via the intramuscular, intraperitoneal, intradermal or subcutaneous routes; or via mucosal administration to the oral/alimentary, respiratory, genitourinary tracts. Intranasal administration of vaccines for the treatment of pneumonia or otitis media is preferred (as nasopharyngeal carriage of pneumococci can be more effectively prevented, thus attenuating infection at its earliest stage). Although the vaccine of the invention may be administered as a single dose, components thereof may also be coadministered together at the same time or at different times (for instance if saccharides are present in a vaccine these could be administered separately at the same time or 1-2 weeks after the administration of a bacterial protein vaccine for optimal coordination of the immune responses with respect to each other). In addition to a single route of administration, 2 different routes of administration may be used. For example, viral antigens may be administered ID (intradermal), whilst bacterial proteins may be administered IM (intramuscular) or IN (intranasal). If saccharides are present, they may be administered IM (or ID) and bacterial proteins may be administered IN (or ID). In addition, the vaccines of the invention may be administered IM for priming doses and IN for booster doses.
Vaccine preparation is generally described in Vaccine Design ("The subunit and adjuvant approach" (eds Powell M. F. & Newman MJ.) (1995) Plenum Press New York). Encapsulation within liposomes is described by Fullerton, US Patent 4,235,877.
A further aspect of the invention is a vaccine kit for concomitant or sequential administration comprising two multi-valent immunogenic compositions for conferring protection in a host against diease caused by Bordetella pertussis, Clostridium tetani, Corynebacterium diphtheriae, Haemophilus influenzae and Neisseria meningitidis. For example, the kit optionally comprises a first container comprising one or more of:
tetanus toxoid (TT), diphtheria toxoid (DT), and whole cell or acellular pertussis components
and a second container comprising either:
Hib saccharide conjugate, and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of all the at least two further bacterial saccharide conjugates;
or
Hib saccharide conjugate, and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than each of the at least two further bacterial saccharide conjugates (e.g. at a lower saccharide dose that any saccharide present in the composition).
Examples of the Hib conjugate and the at least two further bacterial saccharide conjugates are as described above.
A further aspect of the invention is a vaccine kit for concomitant or sequential administration comprising two multi-valent immunogenic compositions for conferring protection in a host against diease caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis. For example, the kit optionally comprises a first container comprising:
one or more conjugates of a carrier protein and a capsular saccharide from Streptococcus pneumoniae [where the capsular saccharide(s) is/are optionally from a pneumococcal serotype selected from the group consisting of 1 , 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A1 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F].
and a second container comprising either:
Hib saccharide conjugate, and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of all the at least two further bacterial saccharide conjugates;
or
Hib saccharide conjugate, and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than each of the at least two further bacterial saccharide conjugates (e.g. at a lower saccharide dose that any saccharide present in the composition).
Examples of the Hib conjugate and the at least two further bacterial saccharide conjugates are as described above.
Typically the Streptococcus pneumoniae vaccine in the vaccine kit of the present invention will comprise polysaccharide antigens (optionally conjugated), wherein the polysaccharides are derived from at least four serotypes of pneumococcus chosen from the group consisting of 1 , 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 1OA, 11A1 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F. Optionally the four serotypes include 6B, 14, 19F and 23F. More optionally, at least 7 serotypes are included in the composition, for example those derived from serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F. Optionally more than 7 serotypes are included in the composition, for instance at least 10, 11 , 12, 13 or 14 serotypes. For example the composition in one embodiment includes 11 capsular polysaccharides derived from serotypes 1 , 3, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F (optionally conjugated). In an embodiment of the invention at least 13 polysaccharide antigens (optionally conjugated) are included, although further polysaccharide antigens, for example 23 valent (such as serotypes 1 , 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11 A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F), are also contemplated by the invention.
The pneumococcal saccharides are conjugated to any known carrier protein, for example CRM197, tetanus toxoid, diphtheria toxoid, protein D or any other carrier proteins as mentioned above.
Optionally, the vaccine kits of the invention comprise a third component. For example, the kit optionally comprises a first container comprising one or more of:
tetanus toxoid (TT), diphtheria toxoid (DT), and whole cell or acellular pertussis components
and a second container comprising :
one or more conjugates of a carrier protein and a capsular saccharide from Streptococcus pneumoniae [where the capsular saccharide is optionally from a pneumococcal serotype selected from the group consisting of 1 , 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11 A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F]. and a third container comprising:
Hib saccharide conjugate, and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of all the at least two further bacterial saccharide conjugates;
or
Hib saccharide conjugate, and at least two further bacterial saccharide conjugates, wherein the Hib conjugate is present in a lower saccharide dose than each of the at least two further bacterial saccharide conjugates (e.g. at a lower saccharide dose that any saccharide present in the composition).
Immunogenic compositions comprising meningococcal conjugates, for example HibMenC, HibMenAC, HibMenAW, HibMenAY, HibMenCW, HibMenCY, HibMenWY,
MenAC, MenAW, MenAY, MenCW, MenCY, MenWY or MenACWY, including kits of similar composition to those described above, optionally comprise antigens from measles and/or mumps and/or rubella and/or varicella. For example, the meningococcal immunogenic composition contains antigens from measles, mumps and rubella or measles, mumps, rubella and varicella. In an embodiment, these viral antigens are optionally present in the same container as the meningococcal and/or Hib saccharide conjugate(s). In an embodiment, these viral antigens are lyophilised.
A further aspect of the invention is a process for making the immunogenic composition of the invention, comprising the step of mixing a Hib saccharide conjugate with at least two further bacterial saccharide conjugates to form a composition in which the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of the at least two further bacterial saccharide conjugates. Vaccine preparation is generally described in Vaccine Design ("The subunit and adjuvant approach" (eds Powell M. F. & Newman M.J.) (1995) Plenum Press New York). Encapsulation within liposomes is described by Fullerton, US Patent 4,235,877.
A further aspect of the invention is a method of immunising a human host against disease caused by Haemophilus influenzae and optionally N. meningitidis infection comprising administering to the host an immunoprotective dose of the immunogenic composition or vaccine or kit of the invention.
A further aspect of the invention is an immunogenic composition of the invention for use in the treatment or prevention of disease caused by Haemophilus influenzae and optionally N. meningitidis.
A further aspect of the invention is use of the immunogenic composition or vaccine or kit of the invention in the manufacture of a medicament for the treatment or prevention of diseases caused by Haemophilus influenzae and optionally N. meningitidis.
The terms "comprising", "comprise" and "comprises" herein are intended by the inventors to be optionally substitutable with the terms "consisting of, "consist of and "consists of, respectively, in every instance.
All references or patent applications cited within this patent specification are incorporated by reference herein.
The invention is illustrated in the accompanying examples. The examples below are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. The examples are illustrative , but do not limit the invention.
Examples
Example 1 - preparation of polysaccharide conjugates
The covalent binding of Haemophilus influenzae (Hib) PRP polysaccharide to TT was carried out by a coupling chemistry developed by Chu et al (Infection and Immunity 1983, 40 (1 ); 245-256). Hib PRP polysaccharide was activated by adding CNBr and incubating at pH10.5 for 6 minutes. The pH was lowered to pH8.75 and adipic acid dihydrzide (ADH) was added and incubation continued for a further 90 minutes. The activated PRP was coupled to purified tetanus toxoid via carbodiimide condensation using 1-ethyl-3-(3- dimethyl-aminopropyl)carbodiimide (EDAC). EDAC was added to the activated PRP to reach a final ratio of 0.6mg EDAC/mg activated PRP. The pH was adjusted to 5.0 and purified tetanus toxoid was added to reach 2mg TT/mg activated PRP. The resulting solution was left for three days with mild stirring. After filtration through a 0.45μm membrane, the conjugate was purifed on a sephacryl S500HR (Pharmacia, Sweden) column equilibrated in 0.2M NaCI.
MenC -TT conjugates were produced using native polysaccharides ( of over 15OkDa as measured by MALLS). MenA-TT conjugates were produced using either native polysaccharide or slightly microfluidised polysaccharide of over 6OkDa as measured by the MALLS method of example 2. MenW and MenY-TT conjugates were produced using sized polysaccharides of around 100-20OkDa as measured by MALLS (see example 2). Sizing was by microfluidisation using a homogenizer Emulsiflex C-50 apparatus. The polysaccharides were then filtered through a 0.2μm filter.
Activation and coupling were performed as described in WO96/29094 and WO 00/56360. Briefly, the polysaccharide at a concentration of 10-20mg/ml in 2M NaCI pH 5.5-6.0 was mixed with CDAPsolution (100mg/ml freshly prepared in acetonitrile/WFI, 50/50) to a final CDAP/polysaccharide ratio of 0.75/1 or 1.5/1. After 1.5 minutes, the pH was raised with sodium hydroxide to pH10.0. After three minutes tetanus toxoid was added to reach a protein/polysaccharide ratio of 1.5/1 for MenW, 1.2/1 for MenY, 1.5/1 for MenA or 1.5/1 for MenC. The reaction continued for one to two hours.
After the coupling step, glycine was added to a final ratio of glycine/PS (w/w) of 7.5/1 and the pH was adjusted to pH9.0. The mixture was left for 30 minutes. The conjugate was clarified using a 10μm Kleenpak filter and was then loaded onto a Sephacryl S400HR column using an elution buffer of 15OmM NaCI, 1OmM or 5mM Tris pH7.5. Clinical lots were filtered on an Opticap 4 sterilizing membrane. The resultant conjugates had an average polysaccharide:protein ratio of 1 :1-1 :5 (w/w). In order to conjugate MenA capsular polysaccharide to tetanus toxoid via a spacer, the following method was used. The covalent binding of the polysaccharide and the spacer (ADH) is carried out by a coupling chemistry by which the polysaccharide is activated under controlled conditions by a cyanylating agent, 1-cyano-4-dimethylamino-pyridinium tetrafluoroborate (CDAP). The spacer reacts with the cyanylated PS through its hydrazino groups, to form a stable isourea link between the spacer and the polysaccharide.
A 10mg/ml solution of MenA was treated with a freshly prepared 100mg/ml solution of CDAP in acetonitrile/water (50/50 (v/v)) to obtain a CDAP/MenA ratio of 0.75 (w/w). After 1.5 minutes, the pH was raised to pH 10.0. Three minutes later, ADH was added to obtain an ADH/MenA ratio of 8.9. The pH of the solution was decreased to 8.75 and the reaction proceeded for 2 hours.
Prior to the conjugation reaction, the purified TT solution and the PSAAH solution were diluted to reach a concentration of 10 mg/ml for PSAAH and 10mg/ml for TT. EDAC was added to the PSAH solution in order to reach a final ratio of 0.9 mg EDAC/mg PSAAH- The pH was adjusted to 5.0. The purified tetanus toxoid was added with a peristaltic pump (in 60 minutes) to reach 2 mg TT/mg PSAAH. The resulting solution was left 60 min at +25°C under stirring to obtain a final coupling time of 120 min. The conjugate was clarified using a 10μm filter and was purified using a Sephacryl S400HR column.
Example 2 - determination of molecular weight using MALLS
Detectors were coupled to a HPLC size exclusion column from which the samples were eluted. On one hand, the laser light scattering detector measured the light intensities scattered at 16 angles by the macromolecular solution and on the other hand, an interferometric refractometer placed on-line allowed the determination of the quantity of sample eluted. From these intensities, the size and shape of the macromolecules in solution can be determined.
The mean molecular weight in weight (Mw) is defined as the sum of the weights of all the species multiplied by their respective molecular weight and divided by the sum of weights of all the species.
a) Weight-average molecular weight: -Mw-
Figure imgf000020_0001
b) Number-average molecular weight: -Mn-
Figure imgf000021_0001
c) Root mean square radius: -Rw- and R2W is the square radius defined by:
Figure imgf000021_0002
(-m,- is the mass of a scattering centre i and -r,- is the distance between the scattering centre i and the center of gravity of the macromolecule).
d) The polydispersity is defined as the ratio -Mw / Mn-.
Meningococcal polysaccharides were analysed by MALLS by loading onto two HPLC columns (TSKG6000 and 5000PWxI) used in combination. 25μl of the polysaccharide were loaded onto the column and was eluted with 0.75ml of filtered water. The polyaccharides are detected using a light scattering detector ( Wyatt Dawn DSP equipped with a 1OmW argon laser at 488nm) and an inferometric refractometer ( Wyatt Otilab DSP equipped with a P100 cell and a red filter at 498nm).
The molecular weight polydispersities and recoveries of all samples were calculated by the Debye method using a polynomial fit order of 1 in the Astra 4.72 software.
Example 3 Phase Il clinical trial on HibMenAC -TT conjugate vaccine mixed with DTPw- HepB
Study design: Open, randomized (1 :1 :1 :1 :1 ), single centre study with five groups. The five groups received the following vaccination regimen respectively, at 6, 10 and 14 weeks of age.
. Tritanrix™-HepB/Hib-MenAC 2.5/2.5/2.5: henceforth referred to as 2.5/2.5/2.5 . Tritanrix™-HepB/Hib-MenAC 2.5/5/5: henceforth referred to as 2.5/5/5
. Tritanrix™-HepB/Hib-MenAC 5/5/5: henceforth referred to as 5/5/5
. Tritanrix™-HepB + Hiberix™: henceforth referred to as Hiberix
. Tritanrix™-HepB/Hiberix™ + Meningitec™: henceforth referred to as Meningitec
Blood samples were taken at the time of the first vaccine dose (Pre) and one month after the third vaccine dose
(Post-dose 3). Tritanrix is a DTPw vaccine marketted by GlaxoSmithKline Biologicals S.A.
105 subjects were used in each of the five groups giving a total of 525 subjects in the study.
Table 1
Figure imgf000022_0001
* The 2.5/2.5/2.5 vaccine was a dose dilution of GSK Biologicals' Hib-MenAC 5/5/5 vaccine containing 2.5μg of each of PRP-TT, MenA-TT and MenC-TT.
The Hib-MenAC vaccine formulations were mixed extemporaneously with Tritanirix-HepB. GSK Biologicals' combined diphtheria-tetanus-whole cell Bordetella pertussis - hepatitis B (DTPw-HB) vaccine (Tritanrix-HepB) contains not less than 30 International Units (IU) of diphtheria toxoid, not less than 60 IU of tetanus toxoid, not less than 4IU of killed Bordetella pertussis and 10μg of recombinant hepatitis B surface antigen.
Reference therapy, dose, mode of administration, lot No.:
Vaccination schedule/site: One group received Tritanrix.-HepB vaccine intramuscularly in the left thigh and Hiberix. intramuscularly in the right thigh at 6, 10 and 14 weeks of age. Another group received Tritanrix™-HepB/Hiberix™ vaccine intramuscularly in the left thigh and Meningitec™ vaccine intramuscularly in the right thigh at 6, 10 and 14 weeks of age.
Vaccine/composition/dose/lot number: The Tritanrix™-HepB vaccine used was as described above.
One dose (0.5 ml) of GSK Biologicals' Haemophilus influenzae type b conjugate vaccine: Hiberix™ contained 10 μg of PRP conjugated to tetanus toxoid. In the Hiberix™ Group, it was mixed with sterile diluent and in the Meningitec™ Group it was mixed with Tritanrix™-HepB. One dose (0.5 ml) of Wyeth Lederle's MENINGITEC™ vaccine contained: 10 μg of capsular polysaccharide of meningococcal group C conjugated to 15 μg of Corynebacterium diphtheria CRM197 protein and aluminium as salts. Results - immune responses generated against Hib. MenA and MenC
Table 2a Anti - PRP (μg/ml)
Group 2.5/2. 5/2.5 2.5/5/5 5/5/5 Hiberix™ Meningitec™
% 95%CL % 95%CL % 95%CL % 95%CL % 95%CL
GMC/T LL UL
GMC/T LL UL GMCfT LL UL GMC/T LL UL GMCH" LL UL
%>0.15 100 96.5 100
100 96.5 100 99.0 94.8 100 100 96.5 100 100 96.5 100
10.94 8.62 13.88
GMC 20.80 15.96 27.10 22.62 17.72 28.88 19.36 15.33 24.46 38.55 29.93 49.64
Table 2b SBA -MenC
Group 2.5/2 .5/2.5 2.5/5/5 5/5/5 Hiberix™ Meningitec™
% 95%CL % 95%CL % 95%CL % 95%CL % 95%CL
GMC/T LL UL GMCH" LL UL GMC/T LL UL GMC/T LL UL GMC/T LL UL
%>1 :8 100 96.5 100
99 94.7 100 100 96.5 100 100 96.5 100 2.9 0.6 8.4
4501 3904 5180
GMT 3132 2497 3930 4206 3409 5189 3697 3118 4384 4.7 3.9 5.6
Table 2c SBA MenA
Group 2.5/2 5/2.5 2.5/5/5 5/5/5 Hiberix™ Meningitec™
% 95%CL % 95%CL % 95%CL % 95%CL % 95%CL GMC/T LL UL
GMC/l LL UL GMC/T LL UL GMC/T LL UL GMC/T LL UL
%>1 :8 9.1 4.0 17.1
99.7 91.9 99.7 100 95.8 100 100 96.2 100 6.8 2.5 14.3
5.6 4.4 7.2
GMT 316.7 251.4 398.9 418.5 358.6 488.5 363 310.5 ' 124.4 5.6 4.3 7.4
Table 2d Anti-PSC (μg/ml)
Group 2.5/2 5/2.5 2.5/5/5 5/5/5 Hiberix™ Meningitec™
% 95%CL % 95%CL % 95%CL % 95%CL % 95%CL
GMC/T LL UL
GMC/l " LL UL GMC/T LL UL GMCAT LL UL GMC/l " LL UL
%>0.3 100 96.5 100
100 96.5 100 100 96.4 100 100 96.5 100 8.2 3.6 15.6
58.02 51.42 65.46
GMC 49.03 43.24 55.59 71.11 62.49 80.92 61.62 54.88 69.20 0.17 0.15 0.19
Table 2e Anti - PSA (μg/ml) Group 2.5/2.5/2.5 2.5/5/5 5/5/5 Hiberix™ Meningitec™
% 95%CL % 95%CL % 95%CL % 95%CL % 95%CL GMC/T LL UL
GMC/T LL UL GMC/T LL UL GMC/T LL UL GMC/1 LL UL
%>0.3 96.4 2.2 12.5
100 100 100 96.5 100 99.0 5.9
94.8 100 1.0 0.0 5.4
0.17
GMC 0.15 0.18
18.10 15 34 21 35 26.51 22.93 30.79 23.40 20.05 27.30 0.15 0.15 0 15
Conclusion
The Hib MenAC conjugate vaccine with the 2.5/5/5 formulation consistently gave higher titre immune responses against PRP, MenA and MenC than the conjugate vaccine formulations with equal amounts of Hib, MenA and MenC saccharides. This effect was also seen in serum bacteriocidal (SBA) assays where the best responses against MenA and MenC were achieved using the 2.5/5/5 formulation of Hib MenAC conjugate vaccine.
Example 4 HibMenAC Clinical Trial - priming with HibMenAC conjugates
A phase II, open, randomized study was carried out to assess the immune memory induced by primary vaccination course of Tritanrix™-HepB/HibMenAC vaccine, and to assess the immunogenicity and reactogenicity of a booster dose of GSK Biologicals' Tritanrix™-HepB vaccine mixed with either GSK Biologicals' Hib-MenAC conjugate vaccine or GSK Biologicals' Hib25 vaccine at 15 to 18 months of age in subjects primed with Tritanrix™-HepB/Hib-MenAC. Five groups received the primary vaccination regimens at 6, 10 and 14 weeks of age as presented in table 3.
Table 3
Figure imgf000024_0001
Blood samples were taken from Groups 1 , 3, 5, 7 and 9 at the time of the plain polysaccharide (PS) booster (i.e. Pre-PS - Month 10) and one month after the plain polysaccharide booster (i.e. Post-PS -Month 11).
Note: The immunogenicity results obtained in the five groups who received the plain polysaccharide booster (i.e. Groups 1 , 3, 5, 7 and 9) have been presented.
Number of subjects: Planned: 450 (45 subjects per group)
Enrolled: In Groups 1 , 3, 5, 7 and 9 receiving the plain polysaccharide booster a total of 193 subjects (42 in Group 1 , 39 in Group 3, 37 in Group 5, 36 in Group 7 and 39 in Group 9) were enrolled. Completed: Not applicable
Immunogenicity: Total enrolled cohort = 193 subjects
Note: In this study the total enrolled cohort = total vaccinated cohort.
Diagnosis and criteria for inclusion: A male or female subject aged 10 months of age who had completed the three-dose primary vaccination course described in example 1 , free of obvious health problems, who had not received previous booster vaccination against diphtheria, tetanus, pertussis, hepatitis B, meningococcal serogroups A or C and/ or Hib disease since the study conclusion visit of the primary study. Written informed consent was obtained from the parent/ guardian of the subject prior to study entry.
Study vaccines, dose, mode of administration, lot no.: All vaccines used in this study were developed and manufactured by GSK Biologicals.
Vaccination schedule/site: Subjects in Groups 1, 3, 5, 7 and 9 received the combined polysaccharide A and polysaccharide C vaccine, 1/5th dose of Mencevax™ AC and 10 μg of plain PRP as an intramuscular injection in the left and right anterolateral thigh at 10 months of age, respectively.
Duration of treatment: The duration of the entire study was approximately 6 to 9 months per subject which included the booster vaccination administered at 15 to 18 months of age. Interim analysis was done at Month 11 (i.e. one month after administration of the plain polysaccharide booster at Month 10).
Criteria for evaluation: Prior to and one month after administration of the plain polysaccharide booster the criteria for evaluation for Groups 1 , 3, 5, 7 and 9 were as follows -
- SBA-MenA antibody titre > 1 :8
- SBA-MenC antibody titre > 1 :8
- Anti-PSA antibody concentration > 0.3 μg/ml
- Anti-PSC antibody concentration > 0.3 μg/ml - Anti-PRP antibody concentration > 0.15 μg/ml.
Statistical methods: This interim analysis was based on the total enrolled cohort. All analyses were purely descriptive and no statistical inference on any end points was calculated. Analyses were performed only for the five groups (i.e. Groups 1 , 3, 5, 7 and 9) that received the plain polysaccharide booster at 10 months of age. Though these five groups were sub-groups of the main groups in the primary study, the results are presented as per the primary study group allocation.
Analysis of immunogenicity: The results obtained at three time points have been presented in this example namely - one month after the third vaccine dose in the primary vaccination study (Example 1 ), prior to the administration of the polysaccharide booster (i.e. at 10 months of age) for evaluation of the persistence of immune response after primary vaccination and one month after the administration of the polysaccharide booster (i.e. at 11 months of age) for evaluation of immune memory induced by primary vaccination. At each time point: Geometric Mean antibody Concentrations or Titres (GMCs or GMTs) with 95% confidence intervals (CIs) were tabulated for serum bactericidal assay (SBA)-MenC, SBA-MenA, anti-PSC, anti-PSA and anti-PRP. Seropositivity or seroprotection rates with exact 95% CIs were calculated for each antibody. Antibody concentrations or titres prior to polysaccharide booster & one month post-polysaccharide booster were investigated using reverse cumulative curves (RCCs) for each antigen and serotype.
Results
Demography Results: The mean age of the total enrolled cohort was 43.2 weeks with a standard deviation of 6.5 weeks. The male to female ratio was 1.3 (110/83). All subjects belonged to either the East Asian or South-East Asian race.
Immunogenicity Results: The immunogenicity results for the total enrolled cohort are presented in the table 4.
Table 4a
Figure imgf000027_0001
Table 4b
Figure imgf000028_0001
Conclusion
The HibMenAC 2.5/5/5 conjugate vaccine formulation containing a lower amount of Hib tended to give a better immune memory response to MenA and MenC in SBA assays than the vaccine formulations containing equal amounts of all three conjugates. This can be seen from a comparison of the POST-PS readings. Therefore the use of the 2.5/5/5 formulation in priming results in a superior immune memory response.
Looking at the PIII(M3) data, higher readings were seen for the 2.5/5/5 formulation for Hib (22.5 v 17) and MenC (76v 48 or 56 and 5339 v 3342 or 3863 by SBA) .
Example 5a: Clinical trial using HibMenCY given concomitantly with Infanrix penta and Prevenar in infants at 2, 4 and 6 months
Study design: Phase II, open (partially double-blind*), randomized (1 :1 :1 :1 :1 ), controlled, multicentric study with five parallel groups who received concomitant vaccines as follows as a 3-dose primary vaccination course at age 2, 4 and 6 months:
Group Hib-MenCY 2.5/5/5 : Hib-MenCY (2.5/5/5) + Infanrix® penta + Prevenar® Group Hib-MenCY 5/10/10 : Hib-MenCY (5/10/10) + Infanrix® penta + Prevenar®
Group Hib-MenCY 5/5/5 : Hib-MenCY (5/5/5) + Infanrix® penta + Prevenar®
Group Menjugate : Menjugate® + Act HIB® + Infanrix® penta**
Group ActHIB : ActHIB® + Infanrix® penta + Prevenar®
*Hib-MenCY (2.5/5/5) and Hib-MenCY (5/10/10) were administered in a double-blind manner. The Hib-MenCY (5/5/5) formulation could not be administered in a double blind as it was prepared by reconstituting a Hib-MenCY (10/10/10) formulation with 1.0 ml diluent (half the solution was discarded and the remaining 0.5 ml was administered), whereas the Hib-MenCY (2.5/5/5) and Hib-MenCY (5/10/10) formulations were administered after reconstitution with 0.5 ml diluent.
**Subjects from this group will be offered two doses of a licensed pneumococcal conjugate vaccine at the end of the booster study 792014/002 according to prescribing information.
Blood samples (4.0 ml) were obtained from all subjects prior to and one month after completion of the primary vaccination course (Study Month 0 and Study Month 5).
The study was planned to be on 400 subjects with 80 subjects in each of the five groups. In study was completed with a total of 398 subjects (Group Hib-MenCY 2.5/5/5: 80 Group Hib-MenCY 5/10/10: 81 ; Group Hib-MenCY 5/5/5: 78; Group Menjugate: 81 ; Group ActHIB: 78)
Vaccination schedule/site: Three doses injected intramuscularly at two month intervals, at approximately 2, 4 and 6 months of age as follows:
Table 5: Vaccines administered and site
Grou Vaccines administered left thigh Vaccines administered ri ht thi h
Figure imgf000029_0001
Figure imgf000030_0001
Table 6: Candidate vaccine formulation and lot numbers
Figure imgf000030_0002
*The Hib-MenCY 5/5/5 was prepared by dissolving Hib-MenCY 10/10/10 formulation with 1.0 ml diluent; 0.5 ml was administered and the remaining 0.5 ml was discarded.
Criteria for evaluation: Immunogenicity: Measurement of titers/concentrations of antibodies against each vaccine antigen prior to the first dose (Month 0) and approximately one month after the third dose (Month 5) in all subjects. Determination of bactericidal antibody titers against N. meningitidis serogroups C and Y (SBA-MenC and SBA-MenY) by a bactericidal test (assay cut-offs: a dilution of 1 :8 and 1 :128) and ELISA measurement of antibodies against N. meningitidis serogroups C and Y (anti-PSC and anti-PSY, assay cut-offs >0.3μg/ml and ≥2μg/ml), the Hib polysaccharide PRP (anti-PRP, assay cut-offs ≥O.15μg/ml and >1.0μg/ml), the three pertussis antigens (anti-PT, anti-FHA, anti-PRN, assay cut-off >5 EL.U/ml), antibodies to hepatitis B surface antigen (anti-HBs, assay cut-off ≥ 10 mlU/mL), diphtheria and tetanus toxoids (anti-diphtheria and anti-tetanus, assay cut-off 0.1 Ill/ml); anti-poliovirus types 1 , 2 and 3 (assay cut-off 1 :8); seven pneumococcal serotypes anti-4, anti-6B, anti-9V, anti-14, anti-18C, anti-19F, anti-23F (assay cut-off 0.05μg/ml). Primary vaccine response to the pertussis antigens was defined as seropositivity (detectable antibodies) after the third dose in subjects with previously undetectable antibodies or at least maintenance of pre vaccination antibody concentration in subjects who were initially seropositive.
Safety (Criteria for evaluation): 8-day (Days 0 to 7) follow-up, after administration of each vaccine dose, of solicited local (pain, redness, swelling) and general (drowsiness, fever, irritability, and loss of appetite) symptoms reported on diary cards by the parent(s)
/guardian(s) of the subjects; 31 day (Days 0 to 30) follow-up, after each vaccine dose, of unsolicited non-serious adverse events; and of serious adverse events (SAEs) during the entire study period.
Statistical methods: lmmunogenicity
Geometric Mean antibody Concentrations or Titers (GMC/Ts) with 95% confidence intervals (CIs) were tabulated for each antigen. Calculation of GMC/Ts was performed by taking the anti-logarithm in base 10 (anti-log10) of the mean of the Iog10 concentration or titer transformations. Antibody concentrations or titers below the assay cut-off were given an arbitrary value of half the cut-off for the purpose of GMC/T calculation. Percentages of subjects with antibody concentration/titer above the specified assay cut-offs or with a vaccine response with exact 95% Cl were calculated. Antibody concentrations/titers were investigated using reverse cumulative antibody curves for each antigen post-vaccination. The distribution of antibody concentration for the 7 pneumococcal antigens was tabulated. The differences between the Hib-MenCY groups, compared with the control group were evaluated in an exploratory manner for each antibody, except for SBA-MenY and anti- PSY, in terms of (1 ) the difference between the control group (minus) the Hib-MenCY groups for the percentage of subjects above the specified cut-offs or with a vaccine response with their standardized asymptotic 95% Cl, (2) the GMC or GMT ratios of the control group over the Hib-MenCY groups with their 95% Cl. The control group was Menjugate for SBA-MenC and anti-PSC; the control group for all other antigens was Group ActHIB. The same comparisons were done to evaluate the difference between each pair of Hib-MenCY formulations for anti-PRP, SBA-MenC, anti-PSC, SBA-MenY, anti-PSY and anti-tetanus antibodies.
Seroprotection/seropositivity rates &GMC/Ts (ATP cohort for immunogenicity)
Table 7a Anti - PRP (μg/ml)
Group N %≥ 0.15 LL UL >1 LL UL GMC LL UL
6.441 5.315 7.805
Hib MenCY 2.5/5/5 74 100.0 95.1 100.0 97.3 90.6 99.7 7.324 5.877 9.127
Hib MenCY 5/10/10 76 100.0 95.3 100.0 98.7 92.9 100.0
5.577 4.375 7.110
Hib MenCY 5/5/5 70 100.0 94.9 100.0 92.9 84.1 97.6
4.465 3.399 5.865
Menjugate™ 74 98.6 92.7 100.0 89.2 79.8 95.2
5.714 4.538 7.195
ActHIB™ 74 100.0 95.1 100.0 94.6 86.7 98.5
Table 7b SBA -MenC (1/DiI)
Group N %> 1 8 LL UL >1 :128 LL UL GMT LL UL
1293.1 1027.7 1627.1
Hib MenCY 2.5/5/5 69 100.0 94.8 100.0 98.6 92.2 100.0
1065.6 858.8 1322.3
Hib MenCY 5/10/10 76 100.0 95.3 100.0 97.4 90.8 99.7
968.4 770.8 1216.6
Hib MenCY 5/5/5 72 100.0 95.3 100.0 95.8 88.3 99.1
1931.9 1541.2 2421.6
Menjugate™ 74 100.0 95.1 100.0 98.6 92.7 100.0
4.2 3.8 4.5
ActHIB™ 76 1.3 0.0 7.1 0.0 0.0 4.7
Table 7c Anti-PSC (μg/ml)
Group N %> 0.3 LL UL >2 LL UL GMC LL UL
12.02 9.90 14.59
Hib MenCY 2.5/5/5 63 100.0 94.3 100.0 98.4 91.5 100.0
12.09 10.59 13.81
Hib MenCY 5/10/10 65 100.0 94.5 100.0 100.0 94.5 100.0
9.95 8.34 11.87
Hib MenCY 5/5/5 61 100.0 94.1 100.0 98.4 91.2 100.0
15.36 12.67 18.62
Menjugate™ 62 100.0 94.2 100.0 100.0 94.2 100.0
0.15 0.15 0.16
ActHIB™ 63 1.6 0.0 8.5 0.0 0.0 5.7
Table 7d SBA-MenY (1/DiI)
Group N %> 1:8 LL UL >1 :128 LL UL GMT LL UL
843.5 640.1 1111.7
Hib MenCY 2.5/5/5 67 98.5 92.0 100.0 95.5 87.5 99.1
1020.0 790.0 1316.8
Hib MenCY 5/10/10 68 100.0 94.7 100.0 97.1 89.8 99.6
741.8 538.0 1022.9
Hib MenCY 5/5/5 69 98.6 92.2 100.0 89.9 80.2 95.8
6.9 5.0 9.5
Menjugate™ 68 14.7 7.3 25.4 8.8 3.3 18.2
7.3 5.2 10.1
ActHIB™ 74 16.2 8.7 26.6 9.5 3.9 18.5
Table 7e Anti - PSY (μg/ml)
Group N %> 0.3 LL UL >2 LL UL GMC LL UL
19.22 15.42 23.95
Hib MenCY 2.5/5/5 67 100.0 94.6 100.0 100.0 94.6 100.0
19.09 15.44 23.59
Hib MenCY 5/10/10 70 100.0 94.9 100.0 98.6 92.3 100.0
15.83 12.64 19.82
Hib MenCY 5/5/5 72 100.0 95.0 100.0 97.2 90.3 99.7 0.16 0.15 0.17
Menjugate™ 66 3.0 0.4 10.5 0.0 0.0 5.4
0.15 0.15 0.15
ActHIB™ 69 0.0 0.0 5.2 0.0 0.0 5.2
Conclusion
The 2.5/5/5 and 5/10/10 formulations resulted in higher titres against Hib, MenA and
MenC in terms of immunogenicity and SBA results. Therefore the inclusion of lower doses of Hib conjugate in a combined conjugate vaccine gave superior results.
Co-administration of Hib-MenCY with Infanrix penta and Prevenar gave satisfactory results
Example 5b Effect of Co-administration of HibMenCY with Prevenar on the response to pneumococcal polysaccharides
A further aspect of the study of example 3 was to investigate the level of antibodies raised against the 7 pneumococcal polysaccharides present in the Prevenar vaccine in order to assess the effect of co-administration of HibMenCY on the antibody titre raised against pneumococcal polysaccharides.
The GMCs and percentages of subjects with antibodies for the 7 pneumococcal serotypes > 0.05μg/ml and ≥ 0.2μg/ml are shown in Table 8. Except for the 6B serotype, seropositivity rates for the 7vPn components ranged from 95.5-100% (antibody concentrations > 0.05 μg/ml) and 93.9-100% (antibody concentrations > 0.2 μg/ml) across groups. For the 6B serotype, seropositivity rates ranged from 88.4-98.6% (antibody concentrations ≥ 0.05 μg/ml) and 81.2-91.4% (antibody concentrations ≥ 0.2
μg/ml) across groups (ActHIB group: 92.3% ≥ 0.05 μg/ml; 86.2% > 0.2 μg/ml).
Table 8a Anti-4
Figure imgf000033_0001
ActHib™ 66 100% 100% 2.062
Table 8b Anti-6B
Group No. in group % > 0.05 μg/ml % > 0.2 μg/ml GMC (μg/ml)
Hib-MenCY 68 95.6% 85.3% 1.060 2.5/5/5
Hib-MenCY 70 98.6% 91.4% 1.079 5/10/10
Hib-MenCY 69 88.4% 81.2% 0.834 5/5/5
Menjugate™ 63 4.8% 1.6% 0.027
ActHib™ 65 92.3% 86.2% 0.879
Table 8c Anti-9V
Group No. in group % > 0.05 μg/ml % > 0.2 μg/ml GMC (μg/ml)
Hib-MenCY 68 100% 100% 3.102 2.5/5/5
Hib-MenCY 71 98.6% 97.2% 2.363 5/10/10
Hib-MenCY 71 100% 100% 2.823 5/5/5
Menjugate™ 62 4.8% 1.6% 0.028
ActHib™ 67 98.5% 98.5% 2.651
Table 8d Anti-14
Group No. in group % > 0.05 μg/ml % > 0.2 μg/ml GMC (μg/ml)
Hib-MenCY 65 100% 98.5% 4.095 2.5/5/5
Hib-MenCY 65 100% 100% 5.592 5/10/10
Hib-MenCY 68 100% 100% 4.309 5/5/5
Menjugate™ 49 49% 14.3% 0.062
ActHib™ 65 100% 98.5% 4.372
Table 8e Anti-18C
Group No. in group % > 0.05 μg/ml % > 0.2 μg/ml GMC (μg/ml)
Figure imgf000035_0001
Table 8f Anti-19F
Figure imgf000035_0002
Table 8g Anti-23F
Figure imgf000035_0003
Conclusion
Co-administration of all three formulations of HibMenCY with Prevnar led to satisfactory immune responses against the seven pneumococcal serotypes. Serotype 6B is a difficult immunogen to raise a response against. In the case of 6B, a higher GMC and percentage of subjects achieving the two threshold levels was achieved using the lower Hib dose formulations of HibMenC. Therefore the uses of lower dose Hib conjugate vaccines for co-administration with pneumococcal polysaccharide conjugates leads to a better response against the 6B antigen. Example 6 - Phase Il clinical trial administering Hib MenCY concomitantly with Infanrix penta according to a 2, 3 and 4 month schedule
Study design: A Phase II, open (partially double-blind*) randomized controlled multi- center study with 5 groups receiving a three-dose primary schedule with vaccines as follows:
Group Hib-MenCY 2.5/5/5: Hib-MenCY (2.5/5/5 ) + Infanrix™ penta Group Hib-MenCY 5/10/10: Hib-MenCY (5/10/10) + Infanrix™ penta Group Hib-MenCY 5/5/5: Hib-MenCY (5/5/5) + Infanrix™ penta Group Hib-MenC: Hib-MenC (5/5) + Infanrix™ penta Group Menjugate: Menjugate™** + Infanrix™ hexa (control).
*Hib-MenCY 2.5/5/5, Hib-MenCY 5/10/10 and Hib-MenC were administered in a double- blind manner while the Hib-MenCY 5/5/5 group and the Menjugate group were open. **Menjugate™ was the vaccine that was administered to all subjects in the group.
Vaccination at +/- 2, 3, 4 months of age (StudyMonth 0, Month 1 and Month 2), and blood samples (3.5ml) from all subjects prior to and one month post primary vaccination (StudyMonth 0 and Month 3).
Study vaccine, dose, mode of administration, lot number: Three doses injected intramuscularly at one month intervals, at approximately 2, 3 and 4 months of age as follows:
Table 8: Vaccines administered (study and control), group, schedule/site and dose
Figure imgf000036_0001
Immunogenicity: Measurement of antibody titres/concentrations against each vaccine antigen: Prior to the first dose (Month 0) and approximately one month after the third dose (Month 3) in all subjects for: SBA-MenC and SBA-MenY, anti-PSC and anti-PSY, anti-PRP, anti- T, anti-FHA, anti-PRN and anti-PT. Using serum bactericidal activity against N. meningitidis serogroups C and Y (SBA-MenC and SBA-MenY cut-off: 1 :8 and 1 :128); ELISA assays with cut-offs: ≥0.3 μg/ml and >2μg/ml for anti- N. meningitidis serogroups C and Y polysaccharides (anti-PSC IgG and anti-PSY IgG); ≥O.15 μg/ml and >1.0μg/ml for Hib polysaccharide polyribosil-ribitol-phosphate (anti-PRP IgG); 5ELU/ml for anti-FHA, anti-PRN, anti-PT; ≥0.1 Ill/ml anti-tetanus toxoid (anti-TT). Only at one month after the third dose (Month 3) in all subjects for: anti-D, anti-HBs and anti-polio 1 , 2 and 3. Using ELISA assays with cut-offs: 0.1 IU/ml for anti-diphtheria (anti-D); ≥10 mlU/ml for antihepatitis B (anti-HBs); and microneutralization test cut-off: 1 :8 for anti-polio type 1 , 2 and 3 (anti-polio 1 , 2 and 3).
Statistical methods:
The seroprotection/seropositivity rates and geometric mean concentrations/titres (GMCs/GMTs) with 95% confidence intervals (95% Cl) were computed per group, for SBA-MenC, anti-PSC, SBA-MenY, anti-PSY, anti-PRP, anti-Tetanus, anti-PT, anti-FHA and anti-PRN prior to and one month after vaccination; for anti-Diphtheria, anti-HBs, anti- Polio 1 , anti-Polio 2 and anti-Polio 3 one month after vaccination. Vaccine response (appearance of antibodies in subjects initially seronegative or at least maintenance of antibody concentrations in subjects initially seropositive) with 95% Cl for anti-PT, anti- PRN and anti-FHA were also computed one month after vaccination. Reverse cumulative curves for each antibody at Month 3 are also presented. The differences between the Hib- MenCY and the Hib- MenC groups, compared with the Menjugate™ control group were evaluated in an exploratory manner for each antibody, except for SBA-MenY and anti- PSY, in terms of (1 ) the difference between the Menjugate™ group (minus) the Hib-
MenCY and Hib-MenC groups for the percentage of subjects above the specified cut-offs or with a vaccine response with their standardized asymptotic 95% Cl, (2) the GMC or GMT ratios of the Menjugate™ group over the Hib-MenCY and Hib-MenC groups with their 95% Cl. The same comparisons were done to evaluate the difference between each pair of Hib-MenCY formulations for anti-PRP, SBA-MenC, anti-PSC, SBA-MenY, anti-PSY and anti-TT antibodies. The overall incidences of local and general solicited symptoms were computed by group according to the type of symptom, their intensity and relationship to vaccination (as percentages of subjects reporting general, local, and any solicited symptoms within the 8 days following vaccination and their exact 95% Cl). Incidences of unsolicited symptoms were computed per group. For Grade 3 symptoms, onset ≤48 hours, medical attention, duration, relationship to vaccination and outcomes were provided. Serious Adverse Events were fully described.
Seroprotection/seropositivity rates &GMC/Ts (ATP cohort for immunogenicity)
Table 9a Anti - PRP (μg/ml)
Group N %> 0.15 LL UL >1 LL UL GMC LL UL
9 01 7 25 11 21
Hib MenCY 2 5/5/5 67 100 0 94 6 100 0 98 5 92 0 100 0
9 49 7 72 11 65
Hib MenCY 5/10/10 67 100 0 94 6 100 0 98 5 92 0 100 0
8 08 6 53 9 98
Hib MenCY 5/5/5 70 100 0 94 9 100 0 98 6 92 3 100 0
10 44 8 49 12 83
Hib MenC 74 100 0 95 1 100 0 98 6 92 7 100 0
2 60 1 97 3 43
Menjugate™ 71 100 0 94 9 100 0 80 3 69 1 88 8
Table 9b SBA -MenC (Titre)
Group N %> 1: 8 LL UL >1 :128 LL UL GMT LL UL
1005 8 773 5 1308 0
Hib MenCY 2 5/5/5 70 100 0 94 9 100 0 95 7 88 0 99 1
1029 8 799 7 13260
Hib MenCY 5/10/10 67 100 0 94 6 100 0 94 0 854 98 3
906 9 691 3 1189 8
Hib MenCY 5/5/5 71 100 0 94 9 100 0 94 4 86 2 98 4
871 0 677 3 1120 0
Hib MenC 74 100 0 95 1 100 0 95 9 88 6 99 2
3557 6 2978 8 4248 8
Menjugate™ 71 100 0 94 9 100 0 100 0 94 9 100 0
Table 9c Anti-PSC (μg/ml)
Group N %> 0.3 LL UL >2 LL UL GMC LL UL
21 70 18 36 25 65
Hib MenCY 2 5/5/5 69 100 0 94 8 100 0 100 0 94 8 100 0
27 26 23 26 31 95
Hib MenCY 5/10/10 66 100 0 94 6 100 0 100 0 94 6 100 0
19 02 16 49 21 93
Hib MenCY 5/5/5 70 100 0 94 9 100 0 100 0 94 9 100 0
21 08 18 24 24 35
Hib MenC 74 100 0 95 1 100 0 100 0 95 1 100 0
38 49 33 64 44 05
Menjugate™ 71 100 0 94 9 100 0 100 0 94 9 100 0 Table 9d SBA-MenY (Titre)
Group N %> 1 :8 LL UL >1 :128 LL UL GMT LL UL
470 7 351 1 631 2
Hib MenCY 2 5/5/5 69 97 1 89 9 99 6 92 8 83 9 97 6
437 1 322 0 593 4 8
Hib MenCY 5/10/10 66 97 0 89 5 99 6 86 4 75 7 93 6
635 3 501 5 804 8
Hib MenCY 5/5/5 71 98 6 92 4 100 0 95 8 88 1 99 1
9 3 6 3 13 7
Hib MenC 74 21 6 12 9 32 7 13 5 6 7 23 5
7 5 54 104
Menjugate™ 71 19 7 11 2 30 9 9 9 4 1 19 3
Table 9e Anti - PSY (μg/ml)
Group N %> 0.3 LL UL >2 LL UL GMC LL UL
26 86 22 86 31 56
Hib MenCY 2 5/5/5 69 100 0 94 8 100 0 100 0 94 8 100 0
37 02 31 84 43 04
Hib MenCY 5/10/10 66 100 0 94 6 100 0 100 0 94 6 100 0
23 57 19 94 27 86
Hib MenCY 5/5/5 70 100 0 94 9 100 0 100 0 94 9 100 0
0 19 0 15 0 25
Hib MenC 74 8 1 3 0 16 8 4 1 0 8 11 4
0 17 0 15 0 19
Menjugate™ 71 5 6 1 6 13 8 1 4 0 0 7 6
Table 9e Anti-tetanus (IU/ml)
Group N %> 0.1 LL UL GMC LL UL
Hib MenCY 2 5/5/5 68 100 0 94 7 100 0 3 06 2 63 3 55
Hib MenCY 5/10/10 67 100 0 94 6 100 0 3 25 2 88 3 68
Hib MenCY 5/5/5 70 100 0 94 9 100 0 2 97 2 59 3 41
Hib MenC 74 100 0 95 1 100 0 3 15 2 73 3 64
Menjugate™ 71 100 0 94 9 100 0 1 66 1 39 1 97
Group Hib-MenCY 2.5/5/5: Hib-MenCY (2 5/5/5) + Infanrix™ penta Group Hib-MenCY 5/10/10: Hib-MenCY (5/10/10) + Infanrix ™ penta
Group Hib-MenCY 5/5/5: Hib-MenCY (5/5/5) +lnfanrιx™ penta
Group Hib-MenC: Hib-Men (5/5)+ Infanrix™ hexa
Group Menjugate. Menjugate™ + Infanrix™ penta
N = number of subjects with available results. % = percentage of subjects with concentration/titre within the specified range
GMC/T: geometric mean concentration/titre 95% Cl = 95% confidence interval; LL
Lower Limit; UL = Upper Limit
Conclusion The immune responses against Hib and MenC were superior using the two formulations with reduced doses of Hib. For MenY, an improved SBA response was seen using the 2.5/5/5 and 5/10/10 formulations compared to the 5/5/5 formulation.

Claims

1. An immunogenic composition comprising a Hib saccharide conjugate and at least two further bacterial saccharide conjugates wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of all the at least two further bacterial saccharide conjugates.
2. The immunogenic composition of claim 1 wherein the Hib conjugate is present in a lower saccharide dose than the saccharide dose of each of the at least two further bacterial saccharide conjugates.
3. The immunogenic composition of claim 1 or 2 wherein the at least two further bacterial saccharide conjugates comprise a N. meningitidis capsular saccharide derived from a strain selected from the group consisting of serogroups A, B, C1 W135 and Y.
4. The immunogenic composition of claim 3 wherein the at least two further bacterial saccharide conjugates comprise N. meningitidis serogroup C capsular saccharide (MenC).
5. The immunogenic composition of claim 3 or 4 wherein the at least two further bacterial saccharide conjugates comprises N. meningitidis serogroup Y capsular saccharide (MenY).
6. The immunogenic composition of any one of claims 3-5 wherein the at least two further bacterial saccharide conjugates comprise N. meningitidis serogroup A capsular saccharide (MenA).
7. The immunogenic composition of any one of claims 3-6 wherein the at least two further bacterial saccharide conjugates comprise N. meningitidis serogroup
W135 capsular saccharide (MenW).
8. The immunogenic composition of any preceding claim comprising a N. meningitidis serogroup B outer membrane vesicle preparation.
9. The immunogenic composition of any preceding claim wherein the at least two further bacterial saccharide conjugates comprise a S. pneumoniae capsular saccharide derived from a strain selected from the group consisting of serotypes 1 , 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F.
10. The immunogenic composition of any preceding claim wherein the at least two further bacterial saccharide conjugates comprise a S. typhi Vi capsular saccharide.
11. The immunogenic composition of any preceding claim wherein the saccharide dose of the Hib saccharide conjugate is between 0.1 and 9μg, 1 and 5μg or 2 and 3μg of saccharide.
12. The immunogenic composition of any preceding claim wherein the saccharide dose of each of the at least two further saccharide conjugates is between 2 and
20μg, 3 and 10μg or 4 and 7μg of saccharide.
13. The immunogenic composition of any preceding claim wherein the saccharide dose of the Hib saccharide conjugate is less than 90%, 75% or 60%, or is between 20% and 60% or is around 50% of the mean saccharide dose of the at least two further saccharide conjugates.
14. The immunogenic composition of any preceding claim wherein the saccharide dose of the Hib saccharide conjugate is less than 90%, 75% or 60% or is between 20-60% or is around 50% of the saccharide dose of each of the at least two further saccharide conjugates
15. The immunogenic composition of any preceding claim wherein the same carrier protein is used in the Hib conjugate and two or more of the at least two further bacterial saccharide conjugates.
16. The immunogenic composition of claim 15 when dependent on claim 3 wherein the same carrier protein is used in the Hib conjugate and the MenA conjugate.
17. The immunogenic composition of claim 15 or 16 when dependent on claim 3 wherein the same carrier protein is used in the Hib conjugate and the MenC conjugate.
18. The immunogenic composition of any one of claims 15-17 when dependent on claim 3 wherein the same carrier protein is used in the Hib conjugate and the
MenY conjugate.
19. The immunogenic composition of any one of claims 15-18 when dependent on claim 3 wherein the same carrier protein is used in the Hib conjugate and the MenW conjugate.
20. The immunogenic composition of any one of claims 15-19 when dependent on claim 8 wherein the same carrier protein is used in the Hib conjugate and the S. pneumoniae capsular saccharide conjugate.
21. The immunogenic composition of any one of claims 15-20 when dependent on claim 9 wherein the same carrier protein is used in the Hib conjugate and the S. typhi Vi capsular saccharide conjugate.
22. The immunogenic composition of any preceding claim wherein the Hib saccharide is conjugated to a carrier protein selected from the group consisting of TT, DT, CRM197, fragment C of TT, protein D, OMPC and pneumolysin.
23. The immunogenic composition of any preceding claim wherein the at least two further bacterial saccharides are conjugated to a carrier protein selected from the group consisting of TT, DT, CRM197, fragment C of TT, protein D, OMPC and pneumolysin.
24. The immunogenic composition of any preceding claim wherein the ratio of Hib to carrier protein in the Hib saccharide conjugate is between 1 :5 and 5:1 (w/w).
25. The immunogenic composition of claim 24 wherein the ratio of Hib to carrier protein in the Hib saccharide conjugate is between 1 :1 and 1 :4, 1 :2 and 1:3.5 or around 1 :3 (w/w).
26. The immunogenic composition of any preceding claim wherein the the Hib saccharide is conjugated to the carrier protein via a linker.
27. The immunogenic composition of claim 26 wherein the linker is bifunctional.
28. The immunogenic composition of claim 27 wherein the linker has two reactive amino groups.
29. The immunogenic composition of claim 27 wherein the linker has two reactive carboxylic acid groups.
30. The immunogenic composition of claim 26 wherein the linker has a reactive amino group at one end and a reactive carboxylic acid group at the other end.
31. The immunogenic composition of any one of claims 26-30 wherein the linker has between 4 and 12 carbon atoms.
32. The immunogenic composition of claim 26 or 27 wherein the linker is ADH.
33. The immunogenic composition of any one of claims 1-32 wherein the Hib saccharide is conjugated to the carrier protein or linker using CNBr or CDAP.
34. The immunogenic composition of any preceding claim wherein the carrier protein is conjugated to the Hib saccharide or liker using carbodiimide chemistry, optionally EDAC chemistry.
35. The immunogenic composition of any preceding claim wherein all the at least two further bacterial saccharide conjugates have saccharide:carrier ratios of 1 :5-
5:1 or 1 :1-1 :4(w/w).
36. The immunogenic composition of any preceding claim wherein at least one of the at least two further saccharides is directly conjugated to a carrier protein.
37. The immunogenic composition of claim 36 wherein the at least one of the two further saccharide is Men W and/or MenY, MenW and/or MenC, MenY and/or MenC, or MenW and MenC and MenY.
38. The immunogenic composition of claim 36 or 37 wherein the at least one of the at least two further saccharides is directly conjugated by CDAP chemistry.
39. The immunogenic composition of any one of claims 36-38 wherein the ratio of Men W and/or Y saccharide to carrier protein is between 1 :0.5 and 1 :2.
40. The immunogenic composition of any one of claims 36-39 wherein the ratio of MenC saccharide to carrier protein is between 1 :0.5 and 1 :2.
41. The immunogenic composition of any preceding claim wherein one or more of the at least two further saccharides is conjugated to the carrier protein via a linker.
42. The immunogenic composition of claim 41 wherein the linker is bifunctional.
43. The immunogenic composition of claim 42 wherein the linker has two reactive amino groups.
44. The immunogenic composition of claim 42 wherein the linker has two reactive carboxylic acid groups.
45. The immunogenic composition of claim 42 wherein the linker has a reactive amino group at one end and a reactive carboxylic acid group at the other end.
46. The immunogenic composition of any one of claims 41-45 wherein the linker has between 4 and 12 carbon atoms.
47. The immunogenic composition of claim 41 or 42 wherein the linker is ADH.
48. The immunogenic composition of any one of claims 41-47 wherein the or each one or more of the at least two further bacterial saccharides is conjugated to the linker with CDAP chemistry.
49. The immunogenic composition of claim 41-48 wherein the carrier protein is conjugated to the linker using carbodiimide chemistry, optionally using EDAC.
50. The immunogenic composition of any one of claims 41-49 wherein the or each one or more of the at least two further bacterial saccharides is conjugated to the linker before the carrier protein is conjugated to the linker.
51. The immunogenic composition of any one of claims 41-50 wherein MenA is conjugated to a carrier protein via a linker.
52. The immunogenic composition of claim 58 wherein the ratio of MenA saccharide to carrier protein is between 1 :2 and 1:5.
53. The immunogenic composition of any one of claims 41-52 wherein MenC is conjugated to a carrier protein via a linker.
54. The immunogenic composition of claim 53 wherein the ratio of MenC saccharide to carrier protein is between 1 :2 and 1 :5.
55. The immunogenic composition of any preceding claim, wherein the MenA saccharide, where present, has a molecular weight of above 5OkDa, 75kDa, 10OkDa or an average size of between 50-10OkDa, 55-90KDa or 60-8OkDa.
56. The immunogenic composition of any preceding claim wherein the MenC saccharide, where present, has a molecular weight of above 5OkDa, 75kDa,
10OkDa or an average size of between 100-20OkDa, 100-15OkDa or 150- 20OkDa.
57. The immunogenic composition of any preceding claim wherein the MenY saccharide, where present, has a molecular weight of above 5OkDa, 75kDa,
10OkDa or an average size of between 60-19OkDa, 70-18OkDa, 80-17OkDa, 90- 16OkDa, 100-15OkDa or 110-14OkDa.
58. The immunogenic composition of any preceding claim wherein the MenW saccharide, where present, has a molecular weight of above 5OkDa, 75kDa, 10OkDa or an average size of between 60-19OkDa1 70-18OkDa, 80-17OkDa, 90- 16OkDa, 100-15OkDa or 110-14OkDa.
59. The immunogenic composition of any preceding claim wherein MenC, where present is at least partially O-acetylated such that at least 30% of the repeat units are O-acetylated at at least one position.
60. The immunogenic composition of any preceding claim wherein MenY, where present is at least partially O-acetylated such that at least 20% of the repeat units are O-acetylated at at least one position.
61. The immunogenic composition of any preceding claim wherein MenW, where present is at least partially O-acetylated such that at least 30% of the repeat units are O-acetylated at at least one position.
62. The immunogenic composition of any preceding claim wherein MenA, where present is at least partially O-acetylated such that at least 50% of the repeat units are O-acetylated at at least one position.
63. The immunogenic composition of any preceding claim which contains no aluminium salts.
64. The immunogenic composition of any preceding claim which is unadjuvanted.
65. The immunogenic composition of any preceding claim which is buffered at between pH 7.0 and 8.0.
66. A vaccine comprising the immunogenic composition of any one of claims 1-65 and a pharmaceutically acceptable excipient.
67. A vaccine kit for concomitant or sequential administration comprising two multi- valent immunogenic compositions for conferring protection in a host against disease caused by Bordetella pertussis, Clostridium tetani, Corynebacterium diphtheriae, and Haemophilus influenzae, said kit comprising a first container comprising :
tetanus toxoid (TT), diphtheria toxoid (DT), and whole cell or acellular pertussis components; and a second container comprising the immunogenic composition of any one of claims 1-65.
68. The vaccine kit of claim 67 wherein the first container further comprises hepatitis B surface antigen, optionally adsorbed on aluminium phosphate.
69. The vaccine kit of claim 67 or 68 wherein the first or second container further comprises inactivated polio virus (IPV).
70. A process for making the immunogenic composition of any one of claims 1-65 comprising the step of mixing a Hib saccharide conjugate with at least two further bacterial saccharide conjugates to form a composition in which the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of all the at least two further bacterial saccharide conjugates.
71. A method of immunising a human host against meningitis comprising administering to the host an immunoprotective dose of the immunogenic composition, vaccine or kit of any one of claims 1-69.
72. A method of immunising a human host against disease caused by Haemophilus influenzae comprising administering to the host an immunoprotective dose of the immunogenic composition, vaccine or kit of any one of claims 1-69.
73. A method of immunising a human host against disease caused by Neisseria meningitidis comprising administering to the host an immunoprotective dose of the immunogenic composition, vaccine or kit of any one of claims 3-69 wherein the at least two further bacterial saccharide conjugates comprise a N. meningitidis capsular saccharide derived from a strain selected from the group consisting of serogroup A, B, C, W135 and Y.
74. The immunogenic composition, vaccine or kit of any one of claims 1-69 for use in the treatment or prevention of meningitis.
75. The immunogenic composition, vaccine or kit of any one of claims 1-69 for use in the treatment or prevention of disease caused by Haemophilus influenzae.
76. The immunogenic composition, vaccine or kit of any one of claims 3-69 wherein the at least two further bacterial saccharide conjugates comprise a N. meningitidis capsular saccharide derived from a strain selected from the group consisting of MenA, MenB, MenC, MenW and MenY, for use in the treatment or prevention of disease caused by Neisseria meningitidis.
77. The use of the immunogenic composition, vaccine or kit of any one of claims 1- 69 in the manufacture of a medicament for the treatment or prevention of meningitis.
78. The use of the immunogenic composition, vaccine or kit of any one of claims 1- 69 in the manufacture of a medicament for the treatment or prevention of disease caused by Haemophilus influenzae.
79. The use of the immunogenic composition, vaccine or kit of any one of claims 1-
69 wherein the at least two further bacterial saccharide conjugates comprise a N. meningitidis capsular saccharide derived from a strain selected from the group consisting of MenA, MenB, MenC, MenW and MenY, in the manufacture of a medicament for the treatment or prevention of diseases caused by Neisseria meningitidis.
PCT/EP2006/006210 2005-06-27 2006-06-23 Immunogenic composition WO2007000322A1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
PL06754596T PL1896062T3 (en) 2005-06-27 2006-06-23 Immunogenic composition
EP06754596A EP1896062B1 (en) 2005-06-27 2006-06-23 Immunogenic composition
DK06754596.2T DK1896062T3 (en) 2005-06-27 2006-06-23 Immunogenic composition
BRPI0612669A BRPI0612669B8 (en) 2005-06-27 2006-06-23 immunogenic composition, vaccine, composition, and lyophilized composition
MX2007016237A MX2007016237A (en) 2005-06-27 2006-06-23 Immunogenic composition.
JP2008517437A JP5037503B2 (en) 2005-06-27 2006-06-23 Immunogenic composition
DE602006013313T DE602006013313D1 (en) 2005-06-27 2006-06-23 IMMUNOGENIC COMPOSITION
AU2006263944A AU2006263944B2 (en) 2005-06-27 2006-06-23 Immunogenic composition
NZ564371A NZ564371A (en) 2005-06-27 2006-06-23 Immunogenic composition comprising Hib saccharide conjugate and at least two further bacterial saccharide conjugates
AT06754596T ATE462444T1 (en) 2005-06-27 2006-06-23 IMMUNOGENIC COMPOSITION
ES06754596T ES2340711T3 (en) 2005-06-27 2006-06-23 IMMUNOGEN COMPOSITION.
CA2612980A CA2612980C (en) 2005-06-27 2006-06-23 Immunogenic composition comprising a haemophilus influenzae type b saccharide conjugate
US11/917,569 US8431136B2 (en) 2005-06-27 2006-06-23 Immunogenic composition
SI200630681T SI1896062T1 (en) 2005-06-27 2006-06-23 Immunogenic composition
HK08106653.7A HK1116413A1 (en) 2005-06-27 2008-06-17 Immunogenic composition
HR20100211T HRP20100211T1 (en) 2005-06-27 2010-04-14 Immunogenic composition

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
GBGB0513071.1A GB0513071D0 (en) 2005-06-27 2005-06-27 Immunogenic composition
GB0513071.1 2005-06-27
GB0513069.5 2005-06-27
GBGB0513069.5A GB0513069D0 (en) 2005-06-27 2005-06-27 Immunogenic composition
GB0515556A GB0515556D0 (en) 2005-07-28 2005-07-28 Immunogenic composition
GB0515556.9 2005-07-28
GB0524204A GB0524204D0 (en) 2005-11-28 2005-11-28 Immunogenic composition
GB0524204.5 2005-11-28
GB0526041.9 2005-12-21
GB0526041A GB0526041D0 (en) 2005-12-21 2005-12-21 Immunogenic composition
GB0526040A GB0526040D0 (en) 2005-12-21 2005-12-21 Immunogenic composition
GB0526040.1 2005-12-21

Publications (1)

Publication Number Publication Date
WO2007000322A1 true WO2007000322A1 (en) 2007-01-04

Family

ID=36716943

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/EP2006/006269 WO2007000342A2 (en) 2005-06-27 2006-06-23 Immunogenic composition
PCT/EP2006/006220 WO2007000327A1 (en) 2005-06-27 2006-06-23 Immunogenic composition
PCT/EP2006/006270 WO2007000343A2 (en) 2005-06-27 2006-06-23 Process for manufacturing vaccines
PCT/EP2006/006268 WO2007000341A2 (en) 2005-06-27 2006-06-23 Immunogenic composition
PCT/EP2006/006188 WO2007000314A2 (en) 2005-06-27 2006-06-23 Immunogenic composition
PCT/EP2006/006210 WO2007000322A1 (en) 2005-06-27 2006-06-23 Immunogenic composition

Family Applications Before (5)

Application Number Title Priority Date Filing Date
PCT/EP2006/006269 WO2007000342A2 (en) 2005-06-27 2006-06-23 Immunogenic composition
PCT/EP2006/006220 WO2007000327A1 (en) 2005-06-27 2006-06-23 Immunogenic composition
PCT/EP2006/006270 WO2007000343A2 (en) 2005-06-27 2006-06-23 Process for manufacturing vaccines
PCT/EP2006/006268 WO2007000341A2 (en) 2005-06-27 2006-06-23 Immunogenic composition
PCT/EP2006/006188 WO2007000314A2 (en) 2005-06-27 2006-06-23 Immunogenic composition

Country Status (37)

Country Link
US (13) US8431136B2 (en)
EP (11) EP2878307B1 (en)
JP (9) JP5297800B2 (en)
KR (7) KR101351873B1 (en)
CN (3) CN102218138A (en)
AP (1) AP2436A (en)
AR (3) AR056396A1 (en)
AT (3) ATE462444T1 (en)
AU (7) AU2006263936B2 (en)
BE (1) BE2012C042I2 (en)
BR (5) BRPI0612656B1 (en)
CA (5) CA2612957C (en)
CY (5) CY1109996T1 (en)
DE (1) DE602006013313D1 (en)
DK (7) DK2283857T3 (en)
EA (4) EA012528B1 (en)
ES (9) ES2898451T3 (en)
FR (1) FR22C1008I2 (en)
HK (4) HK1114011A1 (en)
HR (4) HRP20100211T1 (en)
HU (7) HUE046905T2 (en)
IL (8) IL187924A (en)
LT (1) LT2351578T (en)
LU (2) LU92085I2 (en)
MA (4) MA29603B1 (en)
MX (5) MX2007016405A (en)
MY (3) MY148110A (en)
NL (1) NL300549I2 (en)
NO (4) NO345422B1 (en)
NZ (6) NZ564371A (en)
PE (6) PE20110096A1 (en)
PL (8) PL1896063T3 (en)
PT (8) PT2878307T (en)
SI (8) SI1896061T1 (en)
TW (5) TW201336507A (en)
UA (2) UA95238C2 (en)
WO (6) WO2007000342A2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026249A3 (en) * 2005-09-01 2007-10-04 Novartis Vaccines & Diagnostic Multiple vaccination including serogroup c meningococcus
WO2009000825A2 (en) * 2007-06-26 2008-12-31 Glaxosmithkline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
WO2010067202A2 (en) 2008-12-11 2010-06-17 Novartis Ag Mixing lyophilised meningococcal vaccines with non-hib vaccines
WO2010067201A2 (en) 2008-12-11 2010-06-17 Novartis Ag MIXING LYOPHILISED MENINGOCOCCAL VACCINES WITH D-T-Pa VACCINES
WO2010070453A2 (en) 2008-12-17 2010-06-24 Novartis Ag Meningococcal vaccines including hemoglobin receptor
WO2011110531A3 (en) * 2010-03-09 2012-03-08 Glaxosmithkline Biologicals S.A. Conjugation process of bacterial polysaccharides to carrier proteins
EP2462949A2 (en) 2007-10-19 2012-06-13 Novartis AG Meningococcal vaccine formulations
WO2012117377A1 (en) 2011-03-02 2012-09-07 Novartis Ag Combination vaccines with lower doses of antigen and/or adjuvant
US20120276137A1 (en) * 2009-06-22 2012-11-01 Wyeth Llc Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions
US8398983B2 (en) 2005-06-27 2013-03-19 Glaxosmithkline Biologicals, S.A. Immunogenic composition
WO2013132043A1 (en) 2012-03-08 2013-09-12 Novartis Ag Combination vaccines with tlr4 agonists
US8568735B2 (en) 2009-06-22 2013-10-29 Wyeth Llc Immunogenic compositions of Staphylococcus aureus antigens
WO2014037472A1 (en) 2012-09-06 2014-03-13 Novartis Ag Combination vaccines with serogroup b meningococcus and d/t/p
WO2014095771A1 (en) 2012-12-18 2014-06-26 Novartis Ag Conjugates for protecting against diphtheria and/or tetanus
KR20140123553A (en) * 2012-01-30 2014-10-22 세럼 인스티튜트 오브 인디아 엘티디. Immunogenic Composition
WO2015158898A3 (en) * 2014-04-17 2015-12-10 Medizinische Hochschule Hannover Means and methods for producing neisseria meningitidis capsular polysaccharides of low dispersity
US9315530B2 (en) 2010-09-01 2016-04-19 Novartis Ag Adsorption of immunopotentiators to insoluble metal salts
US9375471B2 (en) 2012-03-08 2016-06-28 Glaxosmithkline Biologicals Sa Adjuvanted formulations of booster vaccines
AU2012261764B2 (en) * 2005-09-01 2016-09-08 Novartis Vaccines And Diagnostics Gmbh & Co. Kg Multiple vaccination including serogroup C meningococcus
WO2018045286A1 (en) * 2016-09-02 2018-03-08 Sanofi Pasteur, Inc. Neisseria meningitidis vaccine
WO2018042017A2 (en) 2016-09-02 2018-03-08 Glaxosmithkline Biologicals Sa Vaccines for neisseria gonorrhoeae
US9950062B2 (en) 2009-09-02 2018-04-24 Glaxosmithkline Biologicals Sa Compounds and compositions as TLR activity modulators
US11090375B2 (en) 2014-01-21 2021-08-17 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03000198A (en) * 2000-06-29 2004-09-13 Glaxosmithkline Biolog Sa Vaccine composition.
MX339524B (en) 2001-10-11 2016-05-30 Wyeth Corp Novel immunogenic compositions for the prevention and treatment of meningococcal disease.
PT2191844E (en) 2003-01-30 2014-06-04 Novartis Ag Injectable vaccines against multiple meningococcal serogroups
GB0408977D0 (en) * 2004-04-22 2004-05-26 Chiron Srl Immunising against meningococcal serogroup Y using proteins
GB0505518D0 (en) * 2005-03-17 2005-04-27 Chiron Srl Combination vaccines with whole cell pertussis antigen
US7955605B2 (en) * 2005-04-08 2011-06-07 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
SI1962899T1 (en) 2005-12-22 2011-11-30 Glaxosmithkline Biolog Sa Pneumococcal polysaccharide conjugate vaccine
US10828361B2 (en) * 2006-03-22 2020-11-10 Glaxosmithkline Biologicals Sa Regimens for immunisation with meningococcal conjugates
WO2007111940A2 (en) 2006-03-22 2007-10-04 Novartis Ag Regimens for immunisation with meningococcal conjugates
GB0612854D0 (en) 2006-06-28 2006-08-09 Novartis Ag Saccharide analysis
KR20090057423A (en) 2006-09-07 2009-06-05 글락소스미스클라인 바이오로지칼즈 에스.에이. Vaccine
AR064642A1 (en) 2006-12-22 2009-04-15 Wyeth Corp POLINUCLEOTIDE VECTOR THAT INCLUDES IT RECOMBINATING CELL THAT UNDERSTANDS THE VECTOR POLYPEPTIDE, ANTIBODY, COMPOSITION THAT UNDERSTANDS THE POLINUCLEOTIDE, VECTOR, RECOMBINATING CELL POLYPEPTIDE OR ANTIBODY, USE OF THE COMPOSITION AND A COMPOSITION AND A METHOD
GB0700135D0 (en) * 2007-01-04 2007-02-14 Glaxosmithkline Biolog Sa Vaccine
GB0700136D0 (en) * 2007-01-04 2007-02-14 Glaxosmithkline Biolog Sa Process for manufacturing vaccines
GB0713880D0 (en) 2007-07-17 2007-08-29 Novartis Ag Conjugate purification
US20160228500A9 (en) * 2007-07-23 2016-08-11 Martina Ochs Immunogenic Polypeptides and Monoclonal Antibodies
GB0714963D0 (en) 2007-08-01 2007-09-12 Novartis Ag Compositions comprising antigens
EA201100268A1 (en) * 2008-08-28 2011-10-31 Глаксосмитклайн Байолоджикалс С.А. VACCINE
CN102264444B (en) 2008-10-27 2015-08-05 诺华股份有限公司 Purification process
BRPI1009829A2 (en) 2009-03-24 2016-11-16 Novartis Ag meningococcal h-factor binding protein combinations and pneumococcal saccharide conjugates
SI2411048T1 (en) 2009-03-24 2020-08-31 Glaxosmithkline Biologicals Sa Adjuvanting meningococcal factor h binding protein
JP5593626B2 (en) * 2009-03-31 2014-09-24 凸版印刷株式会社 Measuring spoon
CN109248313B (en) 2009-04-14 2023-01-17 葛兰素史密丝克莱恩生物有限公司 Compositions for immunization against staphylococcus aureus
AU2010243285B2 (en) * 2009-04-30 2013-06-06 Coley Pharmaceutical Group, Inc. Pneumococcal vaccine and uses thereof
GB0910046D0 (en) * 2009-06-10 2009-07-22 Glaxosmithkline Biolog Sa Novel compositions
JP2013504556A (en) 2009-09-10 2013-02-07 ノバルティス アーゲー Combination vaccine for respiratory tract disease
LT2493498T (en) * 2009-10-30 2017-05-25 Glaxosmithkline Biologicals Sa Purification of staphylococcus aureus type 5 and type 8 capsular saccharides
GB0919690D0 (en) 2009-11-10 2009-12-23 Guy S And St Thomas S Nhs Foun compositions for immunising against staphylococcus aureus
US9173954B2 (en) 2009-12-30 2015-11-03 Glaxosmithkline Biologicals Sa Polysaccharide immunogens conjugated to E. coli carrier proteins
TW201136603A (en) * 2010-02-09 2011-11-01 Merck Sharp & Amp Dohme Corp 15-valent pneumococcal polysaccharide-protein conjugate vaccine composition
GB201003333D0 (en) 2010-02-26 2010-04-14 Novartis Ag Immunogenic proteins and compositions
GB201003924D0 (en) * 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Immunogenic composition
GB201005625D0 (en) 2010-04-01 2010-05-19 Novartis Ag Immunogenic proteins and compositions
CA2803239A1 (en) 2010-06-25 2011-12-29 Novartis Ag Combinations of meningococcal factor h binding proteins
PL3246044T5 (en) 2010-08-23 2024-06-17 Wyeth Llc Stable formulations of neisseria meningitidis rlp2086 antigens
MX362802B (en) 2010-09-10 2019-02-13 Wyeth Llc Star Non-lipidated variants of neisseria meningitidis orf2086 antigens.
US9259462B2 (en) 2010-09-10 2016-02-16 Glaxosmithkline Biologicals Sa Developments in meningococcal outer membrane vesicles
WO2012072769A1 (en) 2010-12-01 2012-06-07 Novartis Ag Pneumococcal rrgb epitopes and clade combinations
GB201114923D0 (en) 2011-08-30 2011-10-12 Novartis Ag Immunogenic proteins and compositions
JP6170932B2 (en) 2011-11-07 2017-07-26 ノバルティス アーゲー Carrier molecule comprising spr0096 antigen and spr2021 antigen
JP2013112653A (en) * 2011-11-30 2013-06-10 Jnc Corp New polymer and process for producing the same
GB201121301D0 (en) 2011-12-12 2012-01-25 Novartis Ag Method
US10596246B2 (en) 2011-12-29 2020-03-24 Glaxosmithkline Biological Sa Adjuvanted combinations of meningococcal factor H binding proteins
BR112014019166A2 (en) 2012-02-02 2017-07-04 Novartis Ag promoters for increased protein expression in meningococci
CN102569723A (en) * 2012-02-13 2012-07-11 华为技术有限公司 Lithium ion battery positive electrode material and preparation method thereof, positive electrode and lithium ion battery
EP2822586A1 (en) 2012-03-07 2015-01-14 Novartis AG Adjuvanted formulations of streptococcus pneumoniae antigens
SA115360586B1 (en) 2012-03-09 2017-04-12 فايزر انك Neisseria meningitidis compositions and methods thereof
EP4043029A1 (en) 2012-03-09 2022-08-17 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
KR102057217B1 (en) * 2012-06-20 2020-01-22 에스케이바이오사이언스 주식회사 Multivalent pneumococcal polysaccharide-protein conjugate composition
ITMI20121597A1 (en) * 2012-09-25 2014-03-26 Beta Pharma S A CONJUGATE BETWEEN FRAGRANCE OF BACTERIAL CELL WALL AND A MUCOPOLYSACCHARID VEHICLE AND ITS USES IN MEDICAL AREA
US20160101187A1 (en) 2012-10-02 2016-04-14 Novartis Ag Nonlinear saccharide conjugates
WO2014083060A2 (en) 2012-11-30 2014-06-05 Novartis Ag Pseudomonas antigens and antigen combinations
KR20140075196A (en) 2012-12-11 2014-06-19 에스케이케미칼주식회사 Multivalent pneumococcal polysaccharide-protein conjugate composition
TR201807340T4 (en) 2013-02-01 2018-06-21 Glaxosmithkline Biologicals Sa Intradermal administration of immunological compositions comprising bell-like receptor agonists.
JP6446377B2 (en) 2013-03-08 2018-12-26 ファイザー・インク Immunogenic fusion polypeptide
DK2976101T3 (en) * 2013-03-18 2020-11-23 Glaxosmithkline Biologicals Sa Treatment procedure
KR102199096B1 (en) 2013-09-08 2021-01-06 화이자 인코포레이티드 Neisseria meningitidis compositions and methods thereof
IN2014DE02450A (en) 2013-09-25 2015-06-26 Suzuki Motor Corp
RU2535122C1 (en) * 2013-11-06 2014-12-10 Федеральное казенное учреждение здравоохранения "Российский научно-исследовательский противочумный институт "Микроб" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека ("РосНИПЧИ "Микроб") Method for preparing choleragen anatoxin
AU2015208821B2 (en) * 2014-01-21 2017-11-02 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
EP2921856B1 (en) 2014-03-18 2016-09-14 Serum Institute Of India Private Limited A quantitative assay for 4-pyrrolidinopyridine (4-ppy) in polysaccharide-protein conjugate vaccines
CN107249626A (en) 2015-02-19 2017-10-13 辉瑞大药厂 Neisseria meningitidis compositions and methods thereof
KR20210027523A (en) * 2015-07-21 2021-03-10 화이자 인코포레이티드 Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
US20170333546A1 (en) * 2015-12-08 2017-11-23 Jl Medical Corporation Method for Producing and Vaccine Composition of Neisseria Meningitidis Serogroups A, C, Y, and W-135 Oligosaccharides Conjugated to Glycan-Free Carrier Protein
CN108883192A (en) * 2016-03-15 2018-11-23 默沙东和惠康基金会合资的希勒曼实验室私人有限公司 Novel polysaccharide-protein conjugate and its acquisition technique
TW202247855A (en) 2016-09-13 2022-12-16 美商愛力根公司 Non-protein clostridial toxin compositions
KR102388325B1 (en) * 2016-10-20 2022-04-18 케이엠 바이올로직스 가부시키가이샤 Manufacturing method of Hib conjugate vaccine using low molecular weight PRP
CA3048981A1 (en) 2016-12-30 2018-07-05 Sutrovax, Inc. Polypeptide-antigen conjugates with non-natural amino acids
US11951165B2 (en) 2016-12-30 2024-04-09 Vaxcyte, Inc. Conjugated vaccine carrier proteins
JP7010961B2 (en) 2017-01-31 2022-02-10 ファイザー・インク Neisseria meningitidis composition and method thereof
MX2020002556A (en) 2017-09-07 2020-07-13 Merck Sharp & Dohme Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates.
US11524076B2 (en) 2017-09-07 2022-12-13 Merck Sharp & Dohme Llc Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
WO2019145981A1 (en) * 2018-01-29 2019-08-01 Msd Wellcome Trust Hilleman Laboratories Pvt. Ltd. Novel meningococcal vaccine composition and process thereof
WO2019198096A1 (en) * 2018-04-11 2019-10-17 Msd Wellcome Trust Hilleman Laboratories Pvt. Ltd. Tetravalent meningococcal vaccine composition and process to prepare thereof
JOP20200214A1 (en) 2019-09-03 2021-03-03 Serum Institute Of India Pvt Ltd Immunogenic compositions against enteric diseases and methods for its preparation thereof
CN114728051A (en) 2019-11-22 2022-07-08 葛兰素史克生物有限公司 Dosage and administration of bacterial glycoconjugate vaccines
EP4243862A1 (en) 2020-11-13 2023-09-20 GlaxoSmithKline Biologicals SA Bacterial protein carriers and conjugation methods
RU2770877C1 (en) * 2021-04-08 2022-04-22 Федеральное бюджетное учреждение науки "Ростовский научно-исследовательский институт микробиологии и паразитологии" Method of producing antigenic conjugated substance of haemophilic type b microbe for creating vaccine preparations
GB202215414D0 (en) 2022-10-18 2022-11-30 Glaxosmithkline Biologicals Sa Vaccine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235877A (en) 1979-06-27 1980-11-25 Merck & Co., Inc. Liposome particle containing viral or bacterial antigenic subunit
WO2002000249A2 (en) * 2000-06-29 2002-01-03 Glaxosmithkline Biologicals S.A. Multivalent vaccine composition
WO2005032583A2 (en) * 2003-10-02 2005-04-14 Chiron Srl Liquid vaccines for multiple meningococcal serogroups

Family Cites Families (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB513069A (en) 1937-04-24 1939-10-03 Linde Air Prod Co Improvements in method of and apparatus for the treatment of metallic bodies by oxidising gas
GB505518A (en) 1938-02-03 1939-05-12 Daniel Morgan Skeins Improvements in or relating to envelopes
US4057685A (en) 1972-02-02 1977-11-08 Abbott Laboratories Chemically modified endotoxin immunizing agent
US4123520A (en) * 1977-08-01 1978-10-31 Merck & Co., Inc. Method for preparing high molecular weight meningococcal Group C vaccine
DE2748132A1 (en) * 1977-10-27 1979-05-03 Behringwerke Ag STABILIZER FOR POLYSACCHARIDE
US4235994A (en) * 1978-06-26 1980-11-25 Merck & Co., Inc. High molecular weight meningococcal group C vaccine and method for preparation thereof
DE3071552D1 (en) 1979-09-21 1986-05-22 Hitachi Ltd Semiconductor switch
DE3040825A1 (en) * 1980-10-30 1982-09-09 Dr. Karl Thomae Gmbh, 7950 Biberach NEW TRIDEKAPEPTID, METHOD FOR THE PRODUCTION AND USE THEREOF
US4673574A (en) 1981-08-31 1987-06-16 Anderson Porter W Immunogenic conjugates
US4459286A (en) 1983-01-31 1984-07-10 Merck & Co., Inc. Coupled H. influenzae type B vaccine
NL8500370A (en) * 1984-02-22 1985-09-16 Sandoz Ag DIAZEPINOINDOLS, METHODS FOR THEIR PREPARATION AND PHARMACEUTICAL PREPARATIONS CONTAINING THEM.
US4695624A (en) 1984-05-10 1987-09-22 Merck & Co., Inc. Covalently-modified polyanionic bacterial polysaccharides, stable covalent conjugates of such polysaccharides and immunogenic proteins with bigeneric spacers, and methods of preparing such polysaccharides and conjugates and of confirming covalency
US4808700A (en) 1984-07-09 1989-02-28 Praxis Biologics, Inc. Immunogenic conjugates of non-toxic E. coli LT-B enterotoxin subunit and capsular polymers
US4709017A (en) 1985-06-07 1987-11-24 President And Fellows Of Harvard College Modified toxic vaccines
IT1187753B (en) 1985-07-05 1987-12-23 Sclavo Spa GLYCOPROTEIC CONJUGATES WITH TRIVALENT IMMUNOGENIC ACTIVITY
DE3526940A1 (en) 1985-07-27 1987-02-12 Siegfried Fricker ANCHOR TO CONCRETE IN HEAVY LOADS
IL78929A0 (en) 1985-07-29 1986-09-30 Abbott Lab Microemulsion compositions for parenteral administration
US4727136A (en) 1985-10-01 1988-02-23 Canadian Patents And Development Ltd. Modified meningococcal group B polysaccharide for conjugate vaccine
US4950740A (en) 1987-03-17 1990-08-21 Cetus Corporation Recombinant diphtheria vaccines
JPH01125328A (en) 1987-07-30 1989-05-17 Centro Natl De Biopreparados Meningococcus vaccine
US5180815A (en) * 1988-04-13 1993-01-19 Fuji Photo Film Co., Ltd. Modified protein for carrying hapten
DE58906053D1 (en) 1988-05-31 1993-12-02 Koenig Haug Beatrice SHELVING SYSTEM.
DE3841091A1 (en) 1988-12-07 1990-06-13 Behringwerke Ag SYNTHETIC ANTIGENS, METHOD FOR THEIR PRODUCTION AND THEIR USE
EP0378881B1 (en) 1989-01-17 1993-06-09 ENIRICERCHE S.p.A. Synthetic peptides and their use as universal carriers for the preparation of immunogenic conjugates suitable for the development of synthetic vaccines
US5334379A (en) 1989-07-14 1994-08-02 American Cyanamid Company Cytokine and hormone carriers for conjugate vaccines
IT1237764B (en) 1989-11-10 1993-06-17 Eniricerche Spa SYNTHETIC PEPTIDES USEFUL AS UNIVERSAL CARRIERS FOR THE PREPARATION OF IMMUNOGENIC CONJUGATES AND THEIR USE FOR THE DEVELOPMENT OF SYNTHETIC VACCINES.
HU218146B (en) 1989-12-14 2000-06-28 National Research Council Of Canada Improved meningococcalpolysaccharide conjugate vaccine
SE466259B (en) 1990-05-31 1992-01-20 Arne Forsgren PROTEIN D - AN IGD BINDING PROTEIN FROM HAEMOPHILUS INFLUENZAE, AND THE USE OF THIS FOR ANALYSIS, VACCINES AND PURPOSE
ATE128628T1 (en) 1990-08-13 1995-10-15 American Cyanamid Co FIBER HEMAGGLUTININ FROM BORDETELLA PERTUSSIS AS A CARRIER FOR CONJUGATE VACCINE.
US5153312A (en) 1990-09-28 1992-10-06 American Cyanamid Company Oligosaccharide conjugate vaccines
CA2059693C (en) 1991-01-28 2003-08-19 Peter J. Kniskern Polysaccharide antigens from streptococcus pneumoniae
CA2059692C (en) 1991-01-28 2004-11-16 Peter J. Kniskern Pneumoccoccal polysaccharide conjugate vaccine
GB2264352A (en) 1992-01-31 1993-08-25 Richards Eng Ltd Incineration apparatus
WO1993015760A1 (en) 1992-02-11 1993-08-19 U.S. Government, As Represented By The Secretary Of The Army Dual carrier immunogenic construct
IT1262896B (en) 1992-03-06 1996-07-22 CONJUGATE COMPOUNDS FORMED FROM HEAT SHOCK PROTEIN (HSP) AND OLIGO-POLY-SACCHARIDES, THEIR USE FOR THE PRODUCTION OF VACCINES.
WO1993021769A1 (en) 1992-05-06 1993-11-11 President And Fellows Of Harvard College Diphtheria toxin receptor-binding region
ATE168271T1 (en) 1992-05-23 1998-08-15 Smithkline Beecham Biolog COMBINED VACCINES CONTAINING HEPATITIS B SURFACE ANTIGEN AND OTHER ANTIGENS
IL102687A (en) 1992-07-30 1997-06-10 Yeda Res & Dev Conjugates of poorly immunogenic antigens and synthetic pepide carriers and vaccines comprising them
SG47725A1 (en) 1992-10-27 1998-04-17 American Cyanamid Co Combination pediatric vaccine with enhanced immunogenicity of each vaccine component
EP0636252B1 (en) 1992-12-14 1998-03-18 I/O EXPLORATION PRODUCTS (U.S.A.), Inc. Hydraulic seismic actuator
US5849301A (en) 1993-09-22 1998-12-15 Henry M. Jackson Foundation For The Advancement Of Military Medicine Producing immunogenic constructs using soluable carbohydrates activated via organic cyanylating reagents
DE122009000058I1 (en) 1993-09-22 2009-12-31 Jackson H M Found Military Med PROCESS FOR ACTIVATING SOLUBLE CARBOHYDRATE BY USING NEW CYANYLATION REAGENTS FOR PREPARING IMMUNOGENIC CONSTRUCTS
DE4416166C2 (en) * 1994-05-06 1997-11-20 Immuno Ag Stable preparation for the treatment of blood clotting disorders
US5869058A (en) * 1994-05-25 1999-02-09 Yeda Research And Development Co. Ltd. Peptides used as carriers in immunogenic constructs suitable for development of synthetic vaccines
US5917017A (en) 1994-06-08 1999-06-29 President And Fellows Of Harvard College Diphtheria toxin vaccines bearing a mutated R domain
US6455673B1 (en) 1994-06-08 2002-09-24 President And Fellows Of Harvard College Multi-mutant diphtheria toxin vaccines
GB9422096D0 (en) 1994-11-02 1994-12-21 Biocine Spa Combined meningitis vaccine
JPH11502820A (en) 1995-03-22 1999-03-09 ヘンリー エム.ジャクソン ファウンデイション フォー ザ アドバンスメント オブ ミリタリー メディスン Production of immunogenic constructs using soluble carbohydrates activated by an organic cyanating reagent
ES2308962T3 (en) 1995-06-07 2008-12-16 Glaxosmithkline Biologicals S.A. VACCINES UNDERSTANDING A CONJUGATE OF ANTIGEN POLISACARIDO-PROTEINA TRANSPORADORA AND A PROTEIN FREE CARRIER.
SI1082965T1 (en) 1995-06-23 2009-08-31 Glaxosmithkline Biolog Sa A vaccine composition comprising a polysaccharide conjugate antigen adsorbed onto aluminium phosphate
SE9601158D0 (en) 1996-03-26 1996-03-26 Stefan Svenson Method of producing immunogenic products and vaccines
EP0936601B1 (en) 1996-10-23 2002-04-24 Matsushita Electric Industrial Co., Ltd. Optical disc
EP1400592A1 (en) 1996-10-31 2004-03-24 Human Genome Sciences, Inc. Streptococcus pneumoniae polynucleotides and sequences
WO1998026799A1 (en) 1996-12-18 1998-06-25 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Conjugate vaccine for salmonella paratyphi a
US6299881B1 (en) 1997-03-24 2001-10-09 Henry M. Jackson Foundation For The Advancement Of Military Medicine Uronium salts for activating hydroxyls, carboxyls, and polysaccharides, and conjugate vaccines, immunogens, and other useful immunological reagents produced using uronium salts
FR2763244B1 (en) 1997-05-14 2003-08-01 Pasteur Merieux Serums Vacc MULTIVALENT VACCINE COMPOSITION WITH MIXED CARRIER
GB9713156D0 (en) 1997-06-20 1997-08-27 Microbiological Res Authority Vaccines
GB9717953D0 (en) 1997-08-22 1997-10-29 Smithkline Beecham Biolog Vaccine
WO1999013906A1 (en) 1997-09-15 1999-03-25 Pasteur Merieux Msd Multivalent vaccines
AU9399498A (en) 1997-09-18 1999-04-05 Trustees Of The University Of Pennsylvania, The Receptor-binding pocket mutants of influenza a virus hemagglutinin for use in targeted gene delivery
US5965714A (en) 1997-10-02 1999-10-12 Connaught Laboratories, Inc. Method for the covalent attachment of polysaccharides to protein molecules
US7018637B2 (en) 1998-02-23 2006-03-28 Aventis Pasteur, Inc Multi-oligosaccharide glycoconjugate bacterial meningitis vaccines
CA2264970A1 (en) 1998-03-10 1999-09-10 American Cyanamid Company Antigenic conjugates of conserved lipolysaccharides of gram negative bacteria
GB9806456D0 (en) 1998-03-25 1998-05-27 Smithkline Beecham Biolog Vaccine composition
GB9808932D0 (en) * 1998-04-27 1998-06-24 Chiron Spa Polyepitope carrier protein
EP1073667A2 (en) * 1998-04-28 2001-02-07 Galenica Pharmaceuticals, Inc. Polysaccharide-antigen conjugates
ATE446107T1 (en) 1998-08-19 2009-11-15 Baxter Healthcare Sa IMMUNOGENIC BETA-PROPIONAMIDO-BONDED POLYSACCHARIDE-PROTEIN CONJUGATE SUITABLE AS A VACCINE AND PRODUCED USING N-ACRYLOYLATED POLYSACCHARIDE
WO2000033882A1 (en) 1998-12-04 2000-06-15 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services A vi-repa conjugate vaccine for immunization against salmonella typhi
ES2322306T3 (en) 1998-12-21 2009-06-18 Medimmune, Inc. STREPTPCPCCUS PNEUMONIAE PROTEINS AND IMMUNOGENIC FRAGMENTS FOR VACCINES.
US6146902A (en) 1998-12-29 2000-11-14 Aventis Pasteur, Inc. Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
WO2000050006A2 (en) 1999-02-26 2000-08-31 Chiron Corporation Microemulsions with adsorbed macromoelecules and microparticles
TR200102739T2 (en) * 1999-03-19 2001-12-21 Smithkline Beecham Biologicals S.A. Vaccine
JP2002541808A (en) 1999-04-09 2002-12-10 テクラブ, インコーポレイテッド Recombinant toxin A protein carrier for polysaccharide conjugate vaccine
KR100833364B1 (en) 1999-06-25 2008-05-28 와이어쓰 홀딩스 코포레이션 Production of the lipidated form of the peptidoglycan-associated lipoproteins of gram-negative bacteria
GB9918319D0 (en) 1999-08-03 1999-10-06 Smithkline Beecham Biolog Vaccine composition
GB9925559D0 (en) 1999-10-28 1999-12-29 Smithkline Beecham Biolog Novel method
ES2307553T3 (en) 1999-12-02 2008-12-01 Novartis Vaccines And Diagnostics, Inc. COMPOSITIONS AND PROCEDURES TO STABILIZE BIOLOGICAL MOLECULES AFTER LIOPHILIZATION.
FR2806304B1 (en) 2000-03-17 2002-05-10 Aventis Pasteur POLYSACCHARIDIC CONJUGATES OF PNEUMOCOCCUS FOR VACCINE USE AGAINST TETANUS AND DIPHTHERIA
GB0007432D0 (en) 2000-03-27 2000-05-17 Microbiological Res Authority Proteins for use as carriers in conjugate vaccines
GB0108364D0 (en) 2001-04-03 2001-05-23 Glaxosmithkline Biolog Sa Vaccine composition
EP1322328B1 (en) * 2000-07-27 2014-08-20 Children's Hospital & Research Center at Oakland Vaccines for broad spectrum protection against diseases caused by neisseria meningitidis
GB0103170D0 (en) * 2001-02-08 2001-03-28 Smithkline Beecham Biolog Vaccine composition
EP2277895B1 (en) * 2000-10-27 2013-08-14 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A & B
PL226184B1 (en) 2001-01-23 2017-06-30 Aventis Pasteur Multivalent meningococcal polysaccharide-protein conjugate vaccine
GB0107658D0 (en) * 2001-03-27 2001-05-16 Chiron Spa Streptococcus pneumoniae
GB0107661D0 (en) * 2001-03-27 2001-05-16 Chiron Spa Staphylococcus aureus
WO2002091998A2 (en) 2001-05-11 2002-11-21 Aventis Pasteur, Inc. Novel meningitis conjugate vaccine
US6615062B2 (en) 2001-05-31 2003-09-02 Infraredx, Inc. Referencing optical catheters
GB0115176D0 (en) * 2001-06-20 2001-08-15 Chiron Spa Capular polysaccharide solubilisation and combination vaccines
GB0118249D0 (en) * 2001-07-26 2001-09-19 Chiron Spa Histidine vaccines
AR045702A1 (en) * 2001-10-03 2005-11-09 Chiron Corp COMPOSITIONS OF ASSISTANTS.
MX339524B (en) 2001-10-11 2016-05-30 Wyeth Corp Novel immunogenic compositions for the prevention and treatment of meningococcal disease.
CU23031A1 (en) * 2002-01-24 2005-02-23 Ct Ingenieria Genetica Biotech SURFACE ANTIGEN OF THE HEPATITIS B VIRUS AS A MUCOSOPT IMMUNOPOTENTIATOR, RESULTS FORMULATIONS
EP1490395A4 (en) 2002-03-15 2006-06-21 Wyeth Corp Mutants of the p4 protein of nontypable haemophilus influenzae with reduced enzymatic activity
BR0308768A (en) 2002-03-26 2005-02-15 Chiron Srl Modified saccharides having improved water stability
GB0210128D0 (en) * 2002-05-02 2002-06-12 Chiron Spa Nucleic acids and proteins from streptococcus groups A & B
DE60328481D1 (en) 2002-05-14 2009-09-03 Novartis Vaccines & Diagnostic SLEEP-CAPACITIVE VACCINE CONTAINING THE ADJUVANZ CHITOSAN AND MENIGOKOKKENANTIGENE
GB0302218D0 (en) 2003-01-30 2003-03-05 Chiron Sri Vaccine formulation & Mucosal delivery
EP1506007B1 (en) 2002-05-14 2011-06-22 Novartis Vaccines and Diagnostics S.r.l. Mucosal combination vaccines for bacterial meningitis
GB0211118D0 (en) * 2002-05-15 2002-06-26 Polonelli Luciano Vaccines
AU2003257003A1 (en) 2002-07-30 2004-02-16 Baxter Healthcare S.A. Chimeric multivalent polysaccharide conjugate vaccines
GB0220199D0 (en) * 2002-08-30 2002-10-09 Univ Utrecht Mutant protein and refolding method
KR101237329B1 (en) 2002-08-02 2013-02-28 글락소스미스클라인 바이오로지칼즈 에스.에이. Neisserial vaccine compositions comprising a combination of antigens
GB0220194D0 (en) 2002-08-30 2002-10-09 Chiron Spa Improved vesicles
HUE031886T2 (en) 2002-10-11 2017-08-28 Glaxosmithkline Biologicals Sa Polypeptide vaccines for broad protection against hypervirulent meningococcal lineages
CN1401328A (en) 2002-10-18 2003-03-12 北京绿竹生物技术有限责任公司 Epidemic meningitis polyose-protein binding vaccine
ATE352316T1 (en) * 2002-11-01 2007-02-15 Glaxosmithkline Biolog Sa IMMUNOGENIC COMPOSITION
GB0227346D0 (en) 2002-11-22 2002-12-31 Chiron Spa 741
CN1168501C (en) 2002-12-27 2004-09-29 北京绿竹生物技术有限责任公司 Poly saccharide-protein combination vaccine
PT2191844E (en) * 2003-01-30 2014-06-04 Novartis Ag Injectable vaccines against multiple meningococcal serogroups
MXPA05009579A (en) * 2003-03-13 2005-11-17 Glaxosmithkline Biolog Sa Purification process for bacterial cytolysin.
CA2519511A1 (en) 2003-03-17 2004-09-30 Wyeth Holdings Corporation Mutant cholera holotoxin as an adjuvant and an antigen carrier protein
EP1624888B1 (en) 2003-05-07 2016-10-12 Sanofi Pasteur, Inc. Multivalent meningococcal derivatized polysaccharide-protein conjugates and corresponding vaccine
PL1631264T5 (en) 2003-06-02 2018-09-28 Glaxosmithkline Biologicals Sa Immunogenic compositions based on biodegradable microparticles comprising a diphtheria- and a tetanus toxoid
GB0313916D0 (en) 2003-06-16 2003-07-23 Glaxosmithkline Biolog Sa Vaccine composition
AU2004251742A1 (en) * 2003-06-23 2005-01-06 Sanofi Pasteur, Inc. Immunization method against Neisseria meningitidis serogroups A and C
KR101034055B1 (en) 2003-07-18 2011-05-12 엘지이노텍 주식회사 Light emitting diode and method for manufacturing light emitting diode
AU2004263135B2 (en) * 2003-08-06 2010-11-25 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Polysaccharide-protein conjugate vaccines
US8048432B2 (en) * 2003-08-06 2011-11-01 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Polysaccharide-protein conjugate vaccines
JP2007502980A (en) * 2003-08-21 2007-02-15 アプレラ コーポレイション Reduction of matrix interference for MALDI mass spectrometry
ES2346314T3 (en) 2003-10-02 2010-10-14 Glaxosmithkline Biolog Sa ANTIGENS OF B. PERTUSSIS AND USE OF THE SAME IN VACCINATION.
EP1706481A2 (en) 2003-12-23 2006-10-04 GlaxoSmithKline Biologicals S.A. Vaccine
GB0405787D0 (en) * 2004-03-15 2004-04-21 Chiron Srl Low dose vaccines
CN1997390B (en) 2004-04-05 2012-10-10 辉瑞产品有限公司 Microfluidized oil-in-water emulsions and vaccine compositions
GB0409745D0 (en) * 2004-04-30 2004-06-09 Chiron Srl Compositions including unconjugated carrier proteins
GB0500787D0 (en) * 2005-01-14 2005-02-23 Chiron Srl Integration of meningococcal conjugate vaccination
EP1740217B1 (en) * 2004-04-30 2011-06-15 Novartis Vaccines and Diagnostics S.r.l. Meningococcal conjugate vaccination
GB0413868D0 (en) * 2004-06-21 2004-07-21 Chiron Srl Dimensional anlaysis of saccharide conjugates
KR101505496B1 (en) * 2004-09-22 2015-03-25 글락소스미스클라인 바이오로지칼즈 에스.에이. Immunogenic composition for use in vaccination against staphylococcei
US20060121055A1 (en) * 2004-12-06 2006-06-08 Becton, Dickinson And Company, Inc. Compositions with enhanced immunogenicity
GB0428394D0 (en) * 2004-12-24 2005-02-02 Chiron Srl Saccharide conjugate vaccines
GB0502095D0 (en) * 2005-02-01 2005-03-09 Chiron Srl Conjugation of streptococcal capsular saccharides
NZ561042A (en) 2005-02-18 2011-03-31 Novartis Vaccines & Diagnostic Proteins and nucleic acids from meningitis/sepsis-associated escherichia coli - SEQ ID: 7052
GB0505518D0 (en) * 2005-03-17 2005-04-27 Chiron Srl Combination vaccines with whole cell pertussis antigen
US20070184072A1 (en) 2005-04-08 2007-08-09 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
CA3165042A1 (en) * 2005-04-08 2006-10-19 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
US8062641B2 (en) * 2005-05-06 2011-11-22 Novartis Ag Immunogens for meningitidis-A vaccines
WO2007000342A2 (en) 2005-06-27 2007-01-04 Glaxosmithkline Biologicals S.A. Immunogenic composition
CN1709505B (en) 2005-07-13 2010-06-16 北京绿竹生物制药有限公司 Polyvalent bacteria capsule polysaccharide-protein conjugate combined vaccine
US8007807B2 (en) * 2005-09-01 2011-08-30 Novartis Vaccines And Diagnostics Gmbh Multiple vaccination including serogroup C meningococcus
EP2208999B1 (en) * 2005-09-05 2014-08-27 GlaxoSmithKline Biologicals SA Serum bactericidal assay for N. meningitidis specific antisera
GB0522765D0 (en) * 2005-11-08 2005-12-14 Chiron Srl Combination vaccine manufacture
GB0607088D0 (en) 2006-04-07 2006-05-17 Glaxosmithkline Biolog Sa Vaccine
SI1962899T1 (en) 2005-12-22 2011-11-30 Glaxosmithkline Biolog Sa Pneumococcal polysaccharide conjugate vaccine
BRPI0620418A2 (en) 2005-12-23 2011-11-08 Glaxosmithkline Biolog Sa method for immunizing a human patient against a disease, uses at least two and at least seven, ten, eleven, thirteen or fourteen conjugates and vaccines, and
BRPI0708849B1 (en) * 2006-03-17 2022-05-17 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Methods for the preparation of complex multivalent immunogenic conjugates, said conjugates, and pharmaceutical compositions
EP2476434A1 (en) * 2006-03-30 2012-07-18 GlaxoSmithKline Biologicals S.A. Immunogenic composition
AR060187A1 (en) * 2006-03-30 2008-05-28 Glaxosmithkline Biolog Sa IMMUNOGENIC COMPOSITION
AU2007263531B2 (en) * 2006-06-29 2012-03-15 J. Craig Venter Institute, Inc. Polypeptides from neisseria meningitidis
US7491517B2 (en) 2006-07-19 2009-02-17 Jeeri R Reddy Method of producing meningococcal meningitis vaccine for Neisseria meningitidis serotypes A,C,Y, and W-135
ZA200900379B (en) 2006-07-21 2010-08-25 Univ California Human endogenous retrovirus polypeptide compositions and methods of use thereof
KR20090057423A (en) 2006-09-07 2009-06-05 글락소스미스클라인 바이오로지칼즈 에스.에이. Vaccine
GB0700135D0 (en) 2007-01-04 2007-02-14 Glaxosmithkline Biolog Sa Vaccine
GB0700136D0 (en) 2007-01-04 2007-02-14 Glaxosmithkline Biolog Sa Process for manufacturing vaccines
WO2008111374A1 (en) 2007-03-14 2008-09-18 Konica Minolta Business Technologies, Inc. Information embedding method, its program, and information embedding device
CN101687028A (en) 2007-05-02 2010-03-31 葛兰素史密丝克莱恩生物有限公司 Vaccine
RU2009149359A (en) * 2007-06-04 2011-07-20 Новартис АГ (CH) COMPOSITION OF VACCINES AGAINST Meningitis
CN101784282B (en) * 2007-06-26 2015-07-08 葛兰素史密丝克莱恩生物有限公司 Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
GB0714963D0 (en) * 2007-08-01 2007-09-12 Novartis Ag Compositions comprising antigens
EA201100268A1 (en) * 2008-08-28 2011-10-31 Глаксосмитклайн Байолоджикалс С.А. VACCINE
GB0816447D0 (en) * 2008-09-08 2008-10-15 Glaxosmithkline Biolog Sa Vaccine
US8259461B2 (en) * 2008-11-25 2012-09-04 Micron Technology, Inc. Apparatus for bypassing faulty connections
MX338753B (en) * 2009-09-30 2016-04-29 Novartis Ag Conjugation of staphylococcus aureus type 5 and type 8 capsular polysaccharides.
TW201136603A (en) 2010-02-09 2011-11-01 Merck Sharp & Amp Dohme Corp 15-valent pneumococcal polysaccharide-protein conjugate vaccine composition
GB201003922D0 (en) * 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Conjugation process
EP2545068B8 (en) * 2010-03-11 2018-03-21 GlaxoSmithKline Biologicals S.A. Immunogenic composition or vaccine against gram-negative bacterial, for example neiserial, infection or disease
WO2011155196A1 (en) 2010-06-11 2011-12-15 パナソニック株式会社 Evaluation system of speech sound hearing, method of same and program of same
JP6170932B2 (en) * 2011-11-07 2017-07-26 ノバルティス アーゲー Carrier molecule comprising spr0096 antigen and spr2021 antigen
GB2495341B (en) * 2011-11-11 2013-09-18 Novartis Ag Fermentation methods and their products
KR101897317B1 (en) * 2012-01-30 2018-09-11 세럼 인스티튜트 오브 인디아 프라이비트 리미티드 Immunogenic Composition
JP2015518845A (en) 2012-05-22 2015-07-06 ノバルティス アーゲー Neisseria meningitidis serogroup X conjugate
WO2014001328A1 (en) 2012-06-25 2014-01-03 Nadiro A/S A lifeboat deployment unit
HUE043091T2 (en) * 2012-12-05 2019-08-28 Glaxosmithkline Biologicals Sa Immunogenic composition
GB201310008D0 (en) * 2013-06-05 2013-07-17 Glaxosmithkline Biolog Sa Immunogenic composition for use in therapy
MX2017001638A (en) * 2014-08-05 2017-04-27 Glaxosmithkline Biologicals Sa Carrier molecule for antigens.
TWI715617B (en) * 2015-08-24 2021-01-11 比利時商葛蘭素史密斯克藍生物品公司 Methods and compositions for immune protection against extra-intestinal pathogenic e. coli
GB201518684D0 (en) * 2015-10-21 2015-12-02 Glaxosmithkline Biolog Sa Vaccine
EP3506935B1 (en) * 2016-09-02 2024-01-10 Sanofi Pasteur, Inc. Neisseria meningitidis vaccine
US11951165B2 (en) * 2016-12-30 2024-04-09 Vaxcyte, Inc. Conjugated vaccine carrier proteins
JP7010961B2 (en) * 2017-01-31 2022-02-10 ファイザー・インク Neisseria meningitidis composition and method thereof
CA3070039A1 (en) * 2017-07-18 2019-01-24 Serum Institute Of India Pvt Ltd. An immunogenic composition having improved stability, enhanced immunogenicity and reduced reactogenicity and process for preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235877A (en) 1979-06-27 1980-11-25 Merck & Co., Inc. Liposome particle containing viral or bacterial antigenic subunit
WO2002000249A2 (en) * 2000-06-29 2002-01-03 Glaxosmithkline Biologicals S.A. Multivalent vaccine composition
WO2005032583A2 (en) * 2003-10-02 2005-04-14 Chiron Srl Liquid vaccines for multiple meningococcal serogroups

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EDA TAMM ET AL.: "Double-blind study comparing the immunogenicity of a licensed DTwPHib-CRM197 conjugate vaccine (Quattvaxem) with three investigational, liquid formulations using lower doses of Hib-CRM197 conjugate", VACCINE, vol. 23, February 2005 (2005-02-01), pages 1715 - 1719, XP004739805 *
VACCINE DESIGN: "The subunit and adjuvant approach", 1995, PLENUM PRESS

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10245317B2 (en) 2005-06-27 2019-04-02 Glaxosmithkline Biologicals S.A. Immunogenic composition
US9358279B2 (en) 2005-06-27 2016-06-07 Glaxosmithkline Biologicals S.A. Immunogenic composition
US9486515B2 (en) * 2005-06-27 2016-11-08 Glaxosmithkline Biologicals S.A. Immunogenic composition
US8883163B2 (en) 2005-06-27 2014-11-11 Glaxosmithkline Biologicals S.A. Immunogenic composition
US9789179B2 (en) 2005-06-27 2017-10-17 Glaxosmithkline Biologicals S.A. Immunogenic composition
US9931397B2 (en) 2005-06-27 2018-04-03 Glaxosmithkline Biologicals S.A. Immunogenic composition
US8431136B2 (en) 2005-06-27 2013-04-30 Glaxosmithkline Biologicals S.A. Immunogenic composition
EP1896063B2 (en) 2005-06-27 2016-03-02 GlaxoSmithKline Biologicals s.a. Immunogenic composition
US8398983B2 (en) 2005-06-27 2013-03-19 Glaxosmithkline Biologicals, S.A. Immunogenic composition
US11241495B2 (en) 2005-06-27 2022-02-08 Glaxosmithkline Biologicals S.A. Immunogenic composition
US10166287B2 (en) 2005-06-27 2019-01-01 Glaxosmithkline Biologicals S.A. Immunogenic composition
EP2308504A3 (en) * 2005-09-01 2011-11-30 Novartis Vaccines and Diagnostics GmbH Multiple vaccines including serogroup C meningococcus
EP2308505A3 (en) * 2005-09-01 2011-11-30 Novartis Vaccines and Diagnostics GmbH Multiple vaccines including serogroup C meningococcus
EP1967204A1 (en) * 2005-09-01 2008-09-10 Novartis Vaccines and Diagnostics GmbH & Co. KG Multiple vaccination including serogroup c meningococcus
WO2007026249A3 (en) * 2005-09-01 2007-10-04 Novartis Vaccines & Diagnostic Multiple vaccination including serogroup c meningococcus
AU2012261764B2 (en) * 2005-09-01 2016-09-08 Novartis Vaccines And Diagnostics Gmbh & Co. Kg Multiple vaccination including serogroup C meningococcus
WO2009000825A3 (en) * 2007-06-26 2009-06-25 Glaxosmithkline Biolog Sa Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
WO2009000825A2 (en) * 2007-06-26 2008-12-31 Glaxosmithkline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
EP2462949A2 (en) 2007-10-19 2012-06-13 Novartis AG Meningococcal vaccine formulations
WO2010067201A2 (en) 2008-12-11 2010-06-17 Novartis Ag MIXING LYOPHILISED MENINGOCOCCAL VACCINES WITH D-T-Pa VACCINES
WO2010067202A2 (en) 2008-12-11 2010-06-17 Novartis Ag Mixing lyophilised meningococcal vaccines with non-hib vaccines
WO2010070453A2 (en) 2008-12-17 2010-06-24 Novartis Ag Meningococcal vaccines including hemoglobin receptor
KR101774062B1 (en) * 2009-06-22 2017-09-01 와이어쓰 엘엘씨 Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions
US8889145B2 (en) 2009-06-22 2014-11-18 Wyeth Llc Immunogenic compositions of Staphylococcus aureus antigens
US9623100B2 (en) 2009-06-22 2017-04-18 Wyeth Llc Compositions and methods for preparing Staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions
US9114105B2 (en) 2009-06-22 2015-08-25 Wyeth Llc Immunogenic compositions of Staphylococcus aureus antigens
US9125951B2 (en) 2009-06-22 2015-09-08 Wyeth Llc Compositions and methods for preparing Staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions
TWI505834B (en) * 2009-06-22 2015-11-01 Wyeth Llc Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions
US20120276137A1 (en) * 2009-06-22 2012-11-01 Wyeth Llc Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions
US8568735B2 (en) 2009-06-22 2013-10-29 Wyeth Llc Immunogenic compositions of Staphylococcus aureus antigens
US9950062B2 (en) 2009-09-02 2018-04-24 Glaxosmithkline Biologicals Sa Compounds and compositions as TLR activity modulators
US9265840B2 (en) 2010-03-09 2016-02-23 Glaxosmithkline Biologicals S.A. Conjugation process of bacterial polysaccharides to carrier proteins
EP2815762B1 (en) 2010-03-09 2017-05-31 GlaxoSmithKline Biologicals S.A. Conjugation process of bacterial polysaccharides to carrier proteins
EA023059B1 (en) * 2010-03-09 2016-04-29 Глаксосмитклайн Байолоджикалс С.А. Process for conjugation of bacterial polysaccharides with carrier proteins
US9265839B2 (en) 2010-03-09 2016-02-23 Glaxosmithkline Biologicals S.A. Conjugation process of bacterial polysaccharides to carrier proteins
CN102883745A (en) * 2010-03-09 2013-01-16 葛兰素史密丝克莱恩生物有限公司 Conjugation process
WO2011110531A3 (en) * 2010-03-09 2012-03-08 Glaxosmithkline Biologicals S.A. Conjugation process of bacterial polysaccharides to carrier proteins
EP2815762A3 (en) * 2010-03-09 2015-03-25 GlaxoSmithKline Biologicals S.A. Conjugation process of bacterial polysaccharides to carrier proteins
US8753645B2 (en) 2010-03-09 2014-06-17 Glaxosmithkline Biologicals S.A. Conjugation process of bacterial polysaccharides to carrier proteins
US9315530B2 (en) 2010-09-01 2016-04-19 Novartis Ag Adsorption of immunopotentiators to insoluble metal salts
US10098949B2 (en) 2010-09-01 2018-10-16 Glaxosmithkline Biologicals S.A. Adsorption of immunopotentiators to insoluble metal salts
US10603369B2 (en) 2011-03-02 2020-03-31 Glaxosmithkline Biologicals Sa Combination vaccines with lower doses of antigen and/or adjuvant
WO2012117377A1 (en) 2011-03-02 2012-09-07 Novartis Ag Combination vaccines with lower doses of antigen and/or adjuvant
KR20140123553A (en) * 2012-01-30 2014-10-22 세럼 인스티튜트 오브 인디아 엘티디. Immunogenic Composition
EP2809349B1 (en) * 2012-01-30 2018-12-19 Serum Institute Of India Private Limited Immunogenic composition
KR101897317B1 (en) * 2012-01-30 2018-09-11 세럼 인스티튜트 오브 인디아 프라이비트 리미티드 Immunogenic Composition
US10842868B2 (en) 2012-03-08 2020-11-24 Glaxosmithkline Biologicals Sa Adjuvanted formulations of booster vaccines
US9375471B2 (en) 2012-03-08 2016-06-28 Glaxosmithkline Biologicals Sa Adjuvanted formulations of booster vaccines
US9931399B2 (en) 2012-03-08 2018-04-03 Glaxosmithkline Biologicals Sa Adjuvanted formulations of booster vaccines
WO2013132043A1 (en) 2012-03-08 2013-09-12 Novartis Ag Combination vaccines with tlr4 agonists
WO2014037472A1 (en) 2012-09-06 2014-03-13 Novartis Ag Combination vaccines with serogroup b meningococcus and d/t/p
US9526776B2 (en) 2012-09-06 2016-12-27 Glaxosmithkline Biologicals Sa Combination vaccines with serogroup B meningococcus and D/T/P
WO2014095771A1 (en) 2012-12-18 2014-06-26 Novartis Ag Conjugates for protecting against diphtheria and/or tetanus
US11090375B2 (en) 2014-01-21 2021-08-17 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
US11160855B2 (en) 2014-01-21 2021-11-02 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
US11872274B2 (en) 2014-01-21 2024-01-16 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
US10407703B2 (en) 2014-04-17 2019-09-10 Medizinische Hochschule Hannover Means and methods for producing Neisseria meningitidis capsular polysaccharides of low dispersity
WO2015158898A3 (en) * 2014-04-17 2015-12-10 Medizinische Hochschule Hannover Means and methods for producing neisseria meningitidis capsular polysaccharides of low dispersity
WO2018042017A2 (en) 2016-09-02 2018-03-08 Glaxosmithkline Biologicals Sa Vaccines for neisseria gonorrhoeae
WO2018045286A1 (en) * 2016-09-02 2018-03-08 Sanofi Pasteur, Inc. Neisseria meningitidis vaccine
US11147866B2 (en) 2016-09-02 2021-10-19 Sanofi Pasteur Inc. Neisseria meningitidis vaccine
US11707514B2 (en) 2016-09-02 2023-07-25 Sanofi Pasteur Inc. Neisseria meningitidis vaccine
EP4309670A3 (en) * 2016-09-02 2024-07-17 Sanofi Pasteur, Inc. Neisseria meningitidis vaccine

Also Published As

Publication number Publication date
US20080193476A1 (en) 2008-08-14
WO2007000341A2 (en) 2007-01-04
CY1118646T1 (en) 2017-07-12
CN102526723B (en) 2017-07-07
PE20142165A1 (en) 2015-01-09
US20170065714A1 (en) 2017-03-09
AU2006263964B2 (en) 2010-05-20
NZ564371A (en) 2010-05-28
CA2612963C (en) 2016-10-18
PT3009146T (en) 2021-11-30
SI1896065T2 (en) 2014-12-31
EP2283857B1 (en) 2019-07-24
TW200738259A (en) 2007-10-16
US20090136541A1 (en) 2009-05-28
EP2878307B1 (en) 2019-07-24
ES2621780T3 (en) 2017-07-05
US8398983B2 (en) 2013-03-19
MX2007016237A (en) 2008-03-07
JP5037503B2 (en) 2012-09-26
KR101351870B1 (en) 2014-02-17
CA2612963A1 (en) 2007-01-04
IL188072A (en) 2017-07-31
DK1896065T3 (en) 2011-08-29
TW201414490A (en) 2014-04-16
BRPI0612669B1 (en) 2019-08-13
MX2007016403A (en) 2008-03-07
NO20076302L (en) 2008-03-26
PL2878307T3 (en) 2020-01-31
EP1896065B2 (en) 2014-09-03
DK2283857T3 (en) 2019-10-28
MY147783A (en) 2013-01-31
BRPI0612670B8 (en) 2021-05-25
WO2007000342A2 (en) 2007-01-04
CN103083657A (en) 2013-05-08
MX2007016405A (en) 2008-03-07
US20180064806A1 (en) 2018-03-08
EP1896061A2 (en) 2008-03-12
ES2750243T3 (en) 2020-03-25
JP2013107913A (en) 2013-06-06
NO344452B1 (en) 2019-12-09
KR101359953B1 (en) 2014-02-21
EP2878307A1 (en) 2015-06-03
JP5297800B2 (en) 2013-09-25
NZ564370A (en) 2011-10-28
HRP20100211T1 (en) 2010-05-31
MY147490A (en) 2012-12-14
HRP20170457T1 (en) 2017-05-19
NZ590204A (en) 2012-02-24
WO2007000314A2 (en) 2007-01-04
US9358279B2 (en) 2016-06-07
HUS1200023I1 (en) 2021-03-29
NO20076350L (en) 2008-03-26
EP1896063A1 (en) 2008-03-12
BRPI0612654A2 (en) 2012-10-02
FR22C1008I2 (en) 2024-01-19
US20200000911A1 (en) 2020-01-02
EP1896061B1 (en) 2019-06-12
US10166287B2 (en) 2019-01-01
AU2006263944A1 (en) 2007-01-04
PL1896065T5 (en) 2014-12-31
IL188072A0 (en) 2008-03-20
BRPI0612656B1 (en) 2021-09-08
ATE516816T1 (en) 2011-08-15
US9789179B2 (en) 2017-10-17
AU2006263963B2 (en) 2010-05-13
CA2611964C (en) 2016-11-08
PE20070163A1 (en) 2007-03-01
EP1896062A1 (en) 2008-03-12
NZ564606A (en) 2010-10-29
SI2878307T1 (en) 2019-11-29
KR101351873B1 (en) 2014-02-17
AR056397A1 (en) 2007-10-10
IL187924A (en) 2011-11-30
IL213795A0 (en) 2011-07-31
BRPI0612670A2 (en) 2010-11-30
HK1116414A1 (en) 2008-12-24
PL1896062T3 (en) 2010-08-31
BRPI0612656A8 (en) 2018-01-23
NL300549I2 (en) 2017-01-03
EA012214B1 (en) 2009-08-28
BE2012C042I2 (en) 2021-07-19
BRPI0612669B8 (en) 2021-05-25
SI1896065T1 (en) 2011-10-28
PL3009146T3 (en) 2022-02-07
AU2006263936B2 (en) 2010-05-20
NZ564605A (en) 2011-01-28
PE20110096A1 (en) 2011-03-07
HUS000497I2 (en) 2021-03-29
CN102218138A (en) 2011-10-19
EA012506B1 (en) 2009-10-30
CA2612957A1 (en) 2007-01-04
BRPI0612655A2 (en) 2010-11-30
ATE462444T1 (en) 2010-04-15
AU2006263964A1 (en) 2007-01-04
EA013374B1 (en) 2010-04-30
SI1896062T1 (en) 2010-07-30
KR101408113B1 (en) 2014-06-16
JP2008543905A (en) 2008-12-04
AU2010212417A1 (en) 2010-09-09
EP3009146A1 (en) 2016-04-20
IL188046A0 (en) 2008-03-20
WO2007000343A2 (en) 2007-01-04
IL214657A0 (en) 2011-09-27
SI1896061T1 (en) 2019-10-30
HUE056842T2 (en) 2022-03-28
ES2377075T3 (en) 2012-03-22
JP5280199B2 (en) 2013-09-04
KR20130122810A (en) 2013-11-08
NO342815B1 (en) 2018-08-13
KR101532068B1 (en) 2015-06-29
ES2662651T3 (en) 2018-04-09
NZ564607A (en) 2011-06-30
US20130004532A1 (en) 2013-01-03
FR22C1008I1 (en) 2022-04-29
JP5731737B2 (en) 2015-06-10
WO2007000327A1 (en) 2007-01-04
LUC00247I2 (en) 2024-10-04
ES2741529T3 (en) 2020-02-11
HK1114011A1 (en) 2008-10-24
CA2612980A1 (en) 2007-01-04
AR056396A1 (en) 2007-10-10
PT1896065E (en) 2011-08-31
MA29603B1 (en) 2008-07-01
CA2611960C (en) 2015-05-05
KR20080018226A (en) 2008-02-27
BRPI0612656A2 (en) 2010-11-30
SI2283857T1 (en) 2019-11-29
TWI477283B (en) 2015-03-21
IL213718A (en) 2013-07-31
UA95237C2 (en) 2011-07-25
UA95238C2 (en) 2011-07-25
DK1896061T3 (en) 2019-08-26
KR20080024222A (en) 2008-03-17
PE20110072A1 (en) 2011-02-04
JP2008543907A (en) 2008-12-04
HUS2200002I1 (en) 2022-12-28
HRP20120102T1 (en) 2012-02-29
WO2007000341A3 (en) 2007-05-31
CY2012027I1 (en) 2015-10-07
EA012528B1 (en) 2009-10-30
US8883163B2 (en) 2014-11-11
AR053935A1 (en) 2007-05-23
WO2007000342A3 (en) 2007-05-31
US20090041802A1 (en) 2009-02-12
CA2611964A1 (en) 2007-01-04
LU92085I9 (en) 2019-01-04
EA200702576A1 (en) 2008-06-30
SI3009146T1 (en) 2022-02-28
TW200730187A (en) 2007-08-16
US20190298822A1 (en) 2019-10-03
MA29569B1 (en) 2008-06-02
JP2008543909A (en) 2008-12-04
HUE046905T2 (en) 2020-03-30
IL188046A (en) 2012-03-29
IL187924A0 (en) 2008-03-20
MX2007016236A (en) 2008-03-07
MX2007016402A (en) 2008-03-07
TWI537001B (en) 2016-06-11
CY1112698T1 (en) 2016-02-10
JP2015134829A (en) 2015-07-27
EP2201961B1 (en) 2018-01-24
IL188045A0 (en) 2008-03-20
KR20130086087A (en) 2013-07-30
JP2008543908A (en) 2008-12-04
PT2878307T (en) 2019-10-24
US11241495B2 (en) 2022-02-08
EP2351578A1 (en) 2011-08-03
HUE031380T2 (en) 2017-07-28
US8431136B2 (en) 2013-04-30
SI2351578T1 (en) 2017-05-31
US20130171188A1 (en) 2013-07-04
CA2612957C (en) 2016-07-19
HUE047211T2 (en) 2020-04-28
BRPI0612669A2 (en) 2010-11-30
ES2901378T3 (en) 2022-03-22
EP1896062B1 (en) 2010-03-31
US9931397B2 (en) 2018-04-03
LT2351578T (en) 2017-04-10
MA29993B1 (en) 2008-12-01
US8846049B2 (en) 2014-09-30
EP1896066A2 (en) 2008-03-12
TW201336507A (en) 2013-09-16
MA29602B1 (en) 2008-07-01
EP1896065A2 (en) 2008-03-12
US10245317B2 (en) 2019-04-02
LU92085I2 (en) 2012-12-19
WO2007000314A3 (en) 2007-05-31
AU2006263944B2 (en) 2012-03-01
EP3009146B1 (en) 2021-10-20
NO20076343L (en) 2008-03-25
AP2436A (en) 2012-08-31
AU2006263963A1 (en) 2007-01-04
CN102526723A (en) 2012-07-04
WO2007000342A8 (en) 2008-07-10
KR20080030577A (en) 2008-04-04
BRPI0612654B8 (en) 2021-05-25
AP2007004274A0 (en) 2007-12-31
US20150044253A1 (en) 2015-02-12
ES2377075T5 (en) 2016-04-29
EP2201961A1 (en) 2010-06-30
AU2010203115C1 (en) 2013-05-02
ES2747025T3 (en) 2020-03-09
EA200702577A1 (en) 2008-06-30
KR20080018216A (en) 2008-02-27
PT2351578T (en) 2017-04-07
DK2878307T3 (en) 2019-10-07
EA200702575A1 (en) 2008-06-30
CY2012027I2 (en) 2015-10-07
ES2898451T3 (en) 2022-03-07
US20090252759A1 (en) 2009-10-08
WO2007000343A3 (en) 2007-05-31
US8329184B2 (en) 2012-12-11
IL213795A (en) 2013-05-30
PL1896063T3 (en) 2012-04-30
NO345422B1 (en) 2021-01-25
ATE536884T1 (en) 2011-12-15
IL222346A (en) 2015-07-30
EP1896064A2 (en) 2008-03-12
CY1111827T1 (en) 2015-10-07
AU2010203115A1 (en) 2010-08-12
HUE045482T2 (en) 2019-12-30
DK2351578T3 (en) 2017-04-24
EA200702574A1 (en) 2008-06-30
NO20076363L (en) 2008-03-26
HK1116413A1 (en) 2008-12-24
US20080199490A1 (en) 2008-08-21
HK1206587A1 (en) 2016-01-15
TWI407970B (en) 2013-09-11
JP5769688B2 (en) 2015-08-26
BRPI0612670B1 (en) 2020-04-28
EP1896063B1 (en) 2011-12-14
AU2006263965B2 (en) 2012-09-13
BRPI0612655B1 (en) 2021-06-15
AU2006263965A1 (en) 2007-01-04
DE602006013313D1 (en) 2010-05-12
EP1896063B2 (en) 2016-03-02
US20100215686A1 (en) 2010-08-26
JP5718960B2 (en) 2015-05-13
PL2283857T3 (en) 2020-02-28
JP2008543904A (en) 2008-12-04
DK1896062T3 (en) 2010-06-28
HRP20110567T4 (en) 2015-01-16
PL1896061T3 (en) 2020-02-28
PE20070499A1 (en) 2007-05-21
JP2013209395A (en) 2013-10-10
PE20070123A1 (en) 2007-02-08
MY148110A (en) 2013-02-28
EP1896066B8 (en) 2022-01-19
AU2006263936A1 (en) 2007-01-04
PT2283857T (en) 2019-10-24
JP5965512B2 (en) 2016-08-03
KR101321056B1 (en) 2013-10-30
PL1896065T3 (en) 2011-12-30
PT1896062E (en) 2010-05-17
US9486515B2 (en) 2016-11-08
EP1896066B1 (en) 2021-10-27
PT1896061T (en) 2019-08-01
DK1896063T3 (en) 2012-03-19
TWI422386B (en) 2014-01-11
AU2010203115B2 (en) 2012-03-15
NO345305B1 (en) 2020-12-07
DK1896065T4 (en) 2014-10-20
BRPI0612655A8 (en) 2018-01-30
CY1109996T1 (en) 2014-09-10
SI1896063T1 (en) 2012-03-30
JP2013018798A (en) 2013-01-31
CA2611960A1 (en) 2007-01-04
CA2612980C (en) 2019-01-15
PT1896063E (en) 2012-02-13
HRP20110567T1 (en) 2011-09-30
ES2340711T3 (en) 2010-06-08
EP1896065B1 (en) 2011-07-20
EP2283857A1 (en) 2011-02-16
PL2351578T3 (en) 2017-07-31
BRPI0612654B1 (en) 2021-05-04
CN103083657B (en) 2016-06-08
IL213718A0 (en) 2011-07-31
KR20080025184A (en) 2008-03-19
EP2351578B1 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
US11241495B2 (en) Immunogenic composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11917569

Country of ref document: US

Ref document number: 2006263944

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/016237

Country of ref document: MX

Ref document number: 564371

Country of ref document: NZ

REEP Request for entry into the european phase

Ref document number: 2006754596

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006754596

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2612980

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008517437

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 07136744

Country of ref document: CO

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

ENP Entry into the national phase

Ref document number: 2006263944

Country of ref document: AU

Date of ref document: 20060623

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006263944

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006754596

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0612669

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071226