[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007053775A1 - Novel activin receptor and uses thereof - Google Patents

Novel activin receptor and uses thereof Download PDF

Info

Publication number
WO2007053775A1
WO2007053775A1 PCT/US2006/043044 US2006043044W WO2007053775A1 WO 2007053775 A1 WO2007053775 A1 WO 2007053775A1 US 2006043044 W US2006043044 W US 2006043044W WO 2007053775 A1 WO2007053775 A1 WO 2007053775A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
seq
activin
protein
amino acid
Prior art date
Application number
PCT/US2006/043044
Other languages
French (fr)
Inventor
Hq Han
Keith Soo-Nyung Kwak
Xiaolan Zhou
Original Assignee
Amgen Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amgen Inc. filed Critical Amgen Inc.
Priority to ES06827481T priority Critical patent/ES2385581T3/en
Priority to JP2008539077A priority patent/JP5349966B2/en
Priority to EP06827481A priority patent/EP1943273B1/en
Priority to AU2006308614A priority patent/AU2006308614B2/en
Priority to AT06827481T priority patent/ATE554101T1/en
Priority to CA2627200A priority patent/CA2627200C/en
Publication of WO2007053775A1 publication Critical patent/WO2007053775A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/06Anabolic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • A61P3/14Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/26Androgens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • TGF- ⁇ transforming growth factor- ⁇ family members and TGF- ⁇ receptors, as well as methods of modulating the activities of TGF- ⁇ family members for the treatment of various disorders.
  • TGF- ⁇ The transforming growth factor ⁇ family of proteins includes the transforming growth factors- ⁇ (TGF- ⁇ ), activins, bone morphogenic proteins (BMP), nerve growth factors (NGFs), brain-derived neurotrophic factor (BDNF), and growth/ differentiation factors (GDFs). These family members are involved in the regulation of a wide range of biological processes including cell proliferation, differentiation, and other functions.
  • Activins were originally discovered as gonadal peptides involved in the regulation of follicle stimulating hormone synthesis, and are now believed to be involved in the regulation of a number of biological activities including control of section and expression of anterior pituitary hormones such as FSH, GH, and ACTH, neuron survival, hypothalamic oxytocin secretion, erythropoiesis, placental and gonadal steroidogenesis, early embryonic development, and proliferation of some types of tumors.
  • Activins A, B and AB are the homodimers and heterdimer respectively of two polypeptide chains, BA and BB (Vale et al.
  • GDF-8 Growth/differentiation factor 8
  • myostatin is a TGF-B family member expressed for the most part in the cells of developing and adult skeletal muscle tissue. Myostatin appears to play an essential role in negatively controlling skeletal muscle growth (McPherron et al. Nature (London) 387, 83-90 (1997)). Antagonizing myostatin has been shown to increase lean muscle mass in animals (McFerron et al, supra, Zimmers et al, Science 296:1486 (2002)).
  • Another member of the TGF- ⁇ family of proteins is a related growth/differentiation factor, GDF-Il. GDF-Il has approximately 90% identity of the amino acid sequence of myostatin.
  • GDF-Il has a role in the axial patterning in developing animals (Oh et al, Genes Dev 11:1812-26 (1997)), and also appears to play a role in skeletal muscle development and growth. However, the postnatal role of GDF-11 is not currently understood.
  • a family of transmembrane serine/threonine kinases are known to act as receptors for activins and other TGF- ⁇ family members. These receptors fall into two distinct subfamilies known as type I and type II receptors that act cooperatively to bind ligand and transduce signal (Attisano et al., MoI Cell Biol 16 (3), 1066-1073 (1996)). Most TGF- ⁇ ligands are believed bind first to a type II receptor and this ligand/type II receptor complex then recruits a type I receptor (Mathews, LS, Endocr Rev 15:310-325 (1994); Massague, Nature Rev: MoI Cell Biol. 1, 169-178 (2000)).
  • the type II receptor kinase then phosphorylates and activates the type I receptor kinase, which in turn phosphorylates the Smad proteins.
  • Activins initially bind their type II receptors ActRIIA for activin A, or ActRIIB for activin B. This is followed by the recruitment, phosphorylation and subsequent activation of the type I receptor, activin- like kinase 4 (ALK4).
  • ALK4 binds and then phosphorylates a subset of cytoplasmic Smad proteins (Smad2 and Smad3) that produce signal transduction for activins (Derynck, R et al. Cell 95, 737-740 (1998)).
  • TGF- ⁇ proteins are known to be associated with a variety of disease states and antagonizing these proteins may be useful as therapeutic treatments for the disease states. In particular antagonizing several TGF- ⁇ proteins simultaneously may be particularly effective for treating certain diseases.
  • the present invention provides a novel composition of matter and methods of using the composition of matter as a treatment for muscle-related and other disorders.
  • the present invention provides a protein comprising human activin receptor IIB5
  • the protein comprises polypeptides having an amino acid sequence set forth in SEQ ID NO: 2.
  • the protein comprises a polypeptide having an amino acid sequence with at least about 80% or greater identity to SEQ ID NO: 2, wherein the polypeptide is capable of binding myostatin, activin A, or GDF-Il.
  • the protein comprises a polypeptide having an amino acid sequence with at least about 80% or greater identity to SEQ ID NO: 2, wherein the C terminal of the polypeptide consists of the amino acid sequence set forth in SEQ ID NO: 3, and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-Il.
  • the protein comprises a polypeptide having an amino acid sequence with at least about 80% or greater identity to SEQ ID NO: 2, wherein the C terminal of the polypeptide has an amino acid sequence with at about least 80% or greater identity to SEQ ID NO: 3, and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-11.
  • the polypeptide lacks an ActRIIB5 signal sequence.
  • the protein comprises a polypeptide encoded by the polynucleotide having the sequence set forth in SEQ ID NO: 1.
  • the protein of the present invention comprises ActRIHB5 polypeptides fused to one or more heterologous polypeptides.
  • the fused ActRIIB5 polypeptides lack a signal sequence.
  • the ActRHB5 polypeptides are fused to the heterologous polypeptides via one or more linker sequences.
  • the heterologous polypeptides comprise an Fc domain.
  • the Fc domain is connected to the ActR ⁇ B5 polypeptides by at least one linker sequence.
  • ActRIIB5 polypeptides are attached to a non-protein earlier molecule such as a PEG molecule.
  • the present invention provides an isolated nucleic acid molecule comprising a polynucleotide encoding an ActRIIB5 polypeptide.
  • the nucleic acid molecule comprises (a) a polynucleotide having the nucleic acid sequence set forth in SEQ ID NO: 1 or its complement.
  • the nucleic acid molecule comprises (b) a polynucleotide encoding a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 2 or its complement.
  • the nucleic acid molecule comprises (c) a polynucleotide which hybridizes to (a) or (b) under conditions of at least moderate stringency in about 50% formamide, 6X SSC at about 42 0 C and washing conditions of about 60 0 C, 0.5X SSC, 0.1% SDS, and wherein the encoded polypeptide comprises a C terminal having an amino acid sequence set forth in SEQ ID NO: 3, and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-Il.
  • the nucleic acid molecule comprises the polynucleotide of (c) wherein the C terminal of the encoded polypeptide has an amino sequence at least about 80% or greater identity to SEQ ID NO: 3, and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-11.
  • the nucleic acid molecule comprises a polynucleotide having at least about 80% or greater identity to SEQ ID NO: 1.
  • nucleic acid molecule of the present invention further comprises polynucleotides encoding at least one heterologous protein in frame with the polynucleotides encoding an ActRHB5 polypeptide.
  • nucleic acid molecule comprises polynucleotides encoding linker peptide sequences attaching the ActR. ⁇ B5 polypeptide to at least one heterologous protein.
  • the heterologous protein is an Fc polypeptide.
  • the present invention further provides a vector comprising the nucleic acid molecules set forth above, as well as a host cell genetically engineered to express the nucleic acid molecules described above, and methods for producing the ActRIIB5 protein.
  • the present invention further provides a composition containing the protein of the present invention.
  • the composition is a pharmaceutical composition containing the protein in admixture with a pharmaceutically acceptable carrier.
  • the present invention provides a method of inhibiting the TGF- ⁇ proteins myostatin, activin or GDF-Il activity in vitro and in vivo by contacting the proteins with an ActRIIB5 polypeptide.
  • the present invention provides a method of increasing lean muscle mass and strength, and a method of increasing the ratio of lean muscle to fat in a subject in need thereof by administering an effective amount of the composition containing ActRIIB5 proteins to the subject.
  • the subject is a food animal.
  • the present invention provides a method of treating or preventing a muscle wasting disease in a subject suffering from such a disorder by administering a therapeutic composition containing an ActRHB5 protein to the subject.
  • the muscle wasting disease includes or results from, but is not limited to, the following conditions: muscular dystrophy, amyotrophic lateral sclerosis, congestive obstructive pulmonary disease, chronic heart failure, cancer cachexia, chemical cachexia, HIV/AIDS, renal failure, uremia, rheumatoid arthritis, age-related sarcopenia, organ atrophy, carpal tunnel syndrome, androgen deprivation, and muscle-wasting due to inactivity such as prolonged bed rest, spinal chord injury, stroke, bone fracture, aging.
  • the muscle wasting may also result from events such as weightlessness from space flight, insulin resistance, muscle wasting due to burns, androgen deprivation, and other disorders.
  • the present invention provides a method of treating a disease correlated to expression of activin A.
  • the disease is cancer.
  • the present invention provides a method of treating a metabolic disorder comprising administering a therapeutic composition to a subject in need of such treatment, wherein the metabolic disorder is selected from diabetes, obesity, impaired glucose tolerance, hyperglycemia, androgen deprivation, metabolic syndrome, and bone loss.
  • the present invention provides a method of gene therapy comprising administering a vector encoding the ActRIIB5 proteins of the present invention protein to a subject in need thereof, wherein the vector is capable of expressing the ActRBIK polypeptide in the subject.
  • the present invention further provides a method of detecting and quantitating the
  • TGF- ⁇ proteins myostatin, GDF-11 or activin A by contacting these proteins with an ActRIIB5 polypeptide and detecting the polypeptide.
  • FIGURES Figure 1 shows the results of Biacore® assay determination of EC 50 for ActRIIB5/Fc compared to ActRUB-ECD/Fc.
  • Figure 2 shows the increase in body weight over time in C57B1/6 mice injected with AAV-activin A, AAV-promyostatin/Fc, AAV-ActRIIB5/Fc, AAV-ActRIIB-ECD/Fc and AAV-empty vector control.
  • Figure 3 shows the percentage of body weight change compared to the control at seven weeks post viral infection in C57B1/6 mice injected with AAV-activin A, AAV- ActRIIB5/Fc, AAV-ActRIIB-ECD/Fc, and AAV-promyostatin/Fc vector .
  • Figure 4A shows a decrease in body weight over time for Ay obese mice injected with AAV-ActRHB5/Fc compared with a control group of Ay obese mice injected with AAV-empty vectors over a period of about three months.
  • Figure 4B shows a decrease in weekly food intake for the same group of AAV-ActRHB5 mice compared with the control group over the same period of time.
  • Figure 5A shows the change in lean body mass over time for Ay obese mice injected with AAV-ActRIIB5/Fc compared with a control group of Ay obese mice injected with AAV-empty vector over a period of about three months.
  • Figure 5B shows a large decrease in fat mass for the AAV-ActRHB5/Fc mice compared with a control group of AAV-empty mice over the same period of time.
  • the present invention provides a novel human activin receptor designated activin receptor IIB5 (ActRIIB5).
  • This receptor is characterized by its ability to bind to three TGF- ⁇ proteins, myostatin (GDF-8), activin A, and GDF-11, and to inhibit the activities of these proteins.
  • TGF- ⁇ family members or "TGF- ⁇ proteins” refers to the structurally related growth factors of the transforming growth factor family including activins, and growth and differential factor (GDF) proteins (Kinglsey et al. Genes Dev. 8: 133-146 (1994), McPherron et al. Growth factors and cytokines in health and disease, VoI IB, D. LeRoith and CBondy. ed., JAI Press Inc., Greenwich, Conn, USA: pp 357-393). GDF-8, also referred to as myostatin, is now know to be a negative regulator of skeletal muscle tissue (McPherron et al.
  • Myostatin is synthesized as an inactive preproprotein complex approximately 375 amino acids in length, having GenBank Accession No: AAB86694 for human.
  • the precursor protein is activated by proteolytic cleavage at a tetrabasic processing site to produce an N-terminal inactive prodomain and an approximately 109 amino acid C-terminal protein which dimerizes to form a homodimer of about 25 kDa. This homodimer is the mature, biologically active protein (Zimmers et al., Science 296, 1486 (2002)).
  • prodomain or “propeptide” refers to the inactive N-terminal protein which is cleaved off to release the active C-terminal protein.
  • myostatin or “mature myostatin” refers to the mature, biologically active C-terminal polypeptide, in monomer, dimer or other form, as well as biologically active fragments or related polypeptides including allelic variants, splice variants, and fusion peptides and polypeptides. The mature myostatin has been reported to have 100% sequence identity among many species including human, mouse, chicken, porcine, turkey, and rat (Lee et al., PNAS 98, 9306 (2001)).
  • GDF-11 refers to the BMP protein having SwissPro accession number 095390, as well as variants and species homologs of that protein. GDF-11 has approximately 90% identity to myostatin at the amino acid level. GDF-11 is involved in the regulation of anterior/posterior patterning of the axial skeleton (McPherron et al, Natr Genet 22 (93): 260-264 (1999); Gamer et al, Dev. Biol. 208 (1), 222-232 (1999)) but postnatal functions are unknown.
  • Activin A is the homodimer of the polypeptide chains BA.
  • activin A refers to the activin protein having GenBank Accession No: NM_002192, as well as variants and species homologs of that protein.
  • activin type II B receptor refers to the human precursor activin receptor having accession number NP_001097 for protein or any variants or homologs of this receptor.
  • the human ActRIIB precursor polynucleotide and amino acid sequences are set forth in SEQ ID NO: 4 and 5 respectively.
  • a variation of ActRIIB is set forth in SEQ ID NO: 6, wherein arginine at position 64 has been replaced with alanine.
  • SEQ ID NO: 5 is referred to as the R form and SEQ ID NO: 6 is referred to as the A form.
  • the extracellular domain of ActRIIB (ActREB-ECD) is represented by amino acids 1 through 124 of SEQ ID NO: 5 and 6. Additional murine isoforms for this receptor have been identified as muActRIIBl, muActRIIB2, muActRIIB3 and muActRIIB4.
  • the present invention provides a novel human activin receptor designated activin receptor IIB5 (ActRIIB5).
  • This receptor is characterized by the C terminal sequence set forth in SEQ ID NO: 3.
  • the cDNA of this receptor was isolated as described in Example 1, and was found to be missing the 152 nucleotide bases corresponding to exon 4.
  • This receptor is further characterized as missing the transmembrane region encoded by exon 4 of the ActRIIB.
  • This receptor is further characterized as being a soluble, secreted instead of a membrane bound receptor.
  • the receptor is further characterized as having the ability to bind and inhibit the activity of any one of activin A, myostatin, or GDF-11.
  • the present invention provides isolated proteins which comprise ActIIB5 receptor polypeptides.
  • isolated refers to a nucleic acid molecule purified to some degree from endogenous material.
  • the protein comprises ActREB5 polypeptides having the amino acid sequence set forth in SEQ ID NO: 2, and variants and derivatives of this polypeptide, which retain the activity of the polypeptide of SEQ ID NO: 2.
  • the protein comprises a polypeptide having at least about 80% identity, at least about 85% identity, at least about 90% identity, at least about 95% identity, at least about 98% identity, or at least about 99% identity to the amino acid sequence set forth in SEQ ID NO: 2, wherein the polypeptide retains the activity of the polypeptide of SEQ ID NO: 2.
  • the protein comprises the ActRIIB5 polypeptides described above wherein the polypeptide has a C terminal comprising the amino acid sequence set forth in SEQ ID NO: 3, and wherein the polypeptide retains the activity of the polypeptide of SEQ ID NO: 2.
  • the protein comprises the ActRIIB5 polypeptides described above wherein the C terminal has an amino acid sequence having at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or at least about 99% identity to SEQ ID NO: 3, wherein the polypeptide retains the activity of the polypeptide of SEQ ID NO: 2.
  • the ActRIIB5 polypeptide lacks a signal sequence of SEQ ID NO: 2, for example, amino acids 1 to 17 of SEQ ID NO: 2.
  • variant refers a polypeptide having one or more amino acid inserted, deleted or substituted into the original amino acid sequence, but having a sequence which remains substantially similar to SEQ ID NO: 2, and which retain the activities of ActR ⁇ B5 polypeptides SEQ ID NO: 2.
  • fragments of the polypeptides which retain the activity of the polypeptides are included in the term "variants”.
  • substantially similar is at least about 80% identical to the amino acid sequence, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical to the amino acid sequence set forth in SEQ ID NO: 2, and retain the biological activities of the polypeptide of SEQ ID NO: 2.
  • Amino acid substitutions which are conservative substitutions are unlikely to affect biological activity are considered identical for purposes of this invention and include the following: Ala for Ser, VaI for lie, Asp for GIu, Thr for Ser, Ala for GIy, Ala for Thr, Ser for Asn, Ala for VaI, Ser for GIy, Tyr for Phe, Ala for Pro, Lys for Arg, Asp for Asn, Leu for He, Leu for VaI, Ala for GIu, Asp for GIy, and the reverse. (See, for example, Neurath et al., The Proteins, Academic Press, New York (1979)).
  • Amino acid substitutions also include substitutions in SEQ ID NO: 2 of non- naturally occurring amino acids, D-amino acids, altered amino acids, or peptidomimetics. Amino acid substitutions also includes non-conservative amino acid substitutions, such as neutral hydrophobic for neutral polar, acidic for basic, and other class substitutions, provided that the substituted polypeptides retain the activities of the polypeptides having the amino acid sequence in SEQ ID NO: 2. Variants further include modifications to the C and N termini which arise from processing due to expression in various cell types such as mammalian cells, E.
  • variants further include polypeptide fragments and polypeptides comprising inactivated N-glycosylation site(s), inactivated protease processing site(s), or conservative amino acid substitution(s), of the polypeptide sequence set forth in SEQ ID NO: 2.
  • Methods of determining the relatedness or percent identity of two polypeptides are designed to give the largest match between the sequences tested.
  • Preferred computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package, including GAP (Devereux et al., Nucl. Acid. Res., 12:387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI, BLASTP, BLASTN, and FASTA (Altschul et al., J. MoI. Biol., 215:403-410 (1990)).
  • the BLASTX program is publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul et al. NCB/NLM/NIH Bethesda, MD 20894; Altschul et al., supra (1990)).
  • NCBI National Center for Biotechnology Information
  • the well-known Smith Waterman algorithm may also be used to determine identity.
  • the term "derivative" of the ActRIIB5 polypeptides refers to the attachment of at least one additional chemical moiety, or at least one additional polypeptide to form covalent or aggregate conjugates such as glycosyl groups, lipids, acetyl groups, or C- terminal or N-terminal fusion proteins, conjugation to PEG molecules, and other modifications which are described more fully below.
  • an "ActRIIB5 polypeptide activity" or "a biological activity of ActRIIB5 polypeptide” refers to one or more in vitro or in vivo activities of the ActRIIB5 polypeptides including but not limited to those demonstrated in the Examples below. Activities of the ActRHB5 polypeptides include, but are not limited to, the ability to bind to myostatin or activin A or GDF-Il, the ability to reduce or neutralize an activity of myostatin or activin A or GDF-11. For example, pMARE C2C12 cell-based assay described in Example 3 below measures activin A neutralizing activity, myostatin neutralizing activity, and GDF-11 neutralizing activity.
  • In vivo activities include but are not limited to increasing body weight, increasing lean muscle mass, and decreasing fat mass as demonstrated in animal models below.
  • Biological activities further include reducing or preventing cachexia caused by certain types of tumors, and preventing metastasis of certain tumor cells. Further discussion of ActRIIB5 polypeptide activities is provided below.
  • the proteins of the present invention further comprise heterologous proteins attached to the ActRIIB5 polypeptide either directly or through a linker sequence to form a fusion protein.
  • fusion protein refers to a protein having a heterologous polypeptide attached via recombinant DNA techniques.
  • Heterologous proteins include but are not limited to Fc polypeptides, his tags, and leucine zipper domains to promote oligomerization and stabilization of the ActRIIB5 polypeptides as described in, for example, WO 00/29581, which is herein incorporated by reference.
  • Fc or “Fc polypeptide” refers to polypeptides containing the Fc domain of an antibody.
  • the "Fc domain” refers to the portion of the antibody that is responsible for binding to antibody receptors on cells.
  • An Fc domain can contain one, two or all of the following: the constant heavy 1 domain (C H 1), the constant heavy 2 domain (C H 2), the constant heavy 3 domain (C H 3), and the hinge region.
  • the Fc domain of the human IgGl for example, contains the C H 2 domain, and the C H 3 domain and hinge region, but not the C H 1 domain. Truncated forms of such polypeptides containing the hinge region that promotes dimerization are also included. See, for example, C. A. Hasemann and J. Donald Capra, Immunoglobins: Structure and Function, in William E. Paul, ed.
  • Fc is a fully human Fc which may originate from any of the immunoglobulins, such as IgGl and IgG2.
  • Fc molecules that are partially human, or originate from non-human species are also included herein.
  • Fc molecules may be made up of monomelic polypeptides that may be linked into dimeric or multimeric forms by covalent (i.e., disulfide bonds) and non-covalent association.
  • the number of intermolecular disulfide bonds between monomeric subunits of native Fc molecules ranges from 1 to 4 depending on class (e.g., IgG, IgA, IgE) or subclass (e.g., IgGl, IgG2, IgG3,
  • Fc as used herein is used to refer to the monomeric, dimeric, and multimeric forms.
  • Fc variant refers to a modified form of a native Fc sequence. Fc variants may be constructed for example, by substituting or deleting residues, inserting residues or truncating portions containing the site. The inserted or substituted residues may also be altered amino acids, such as peptidomimetics or D-amino acids.
  • the proteins of the present invention can optionally further comprise a "linker" group.
  • Linkers serve primarily as a spacer between a polypeptide and a second heterologous protein or other type of fusion or between two or more ActRIIB5 polypeptides.
  • the linker is made up of amino acids linked together by peptide bonds, preferably from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids.
  • one or more of these amino acids may be glycosylated, as is understood by those in the art.
  • the 1 to 20 amino acids are selected from glycine, alanine, proline, asparagine, glutamine, and lysine.
  • a linker is made up of a majority of amino acids that are sterically unhindered, such as glycine and alanine.
  • exemplary linkers are polyglycines (particularly (Gly)s, (GIy) 8 , poly(Gly-Ala), and polyalanines.
  • the linkers of the present invention are also non-peptide linkers.
  • These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C 1 -C 6 ) lower acyl, halogen (e.g., Cl, Br), CN, NH 2 , phenyl, etc.
  • the proteins of the present invention can also be attached to a non-protein molecule for the purpose of conferring desired properties such as reducing degradation and/or increasing half-life, reducing toxicity, reducing immunogenicity, and/or increasing the biological activity of the ActRIDB polypeptides.
  • exemplary molecules include but are not limited to linear polymers such as polyethylene glycol (PEG), polylysine, a dextran; a lipid; a cholesterol group (such as a steroid); a carbohydrate, or an oligosaccharide molecule.
  • the present invention provides isolated nucleic acid molecules comprising polynucleotides encoding the ActRIIB5 polypeptides of the present invention.
  • isolated refers to nucleic acid molecules purified to some degree from endogenous material.
  • the nucleotide acid molecule of the present invention comprises a polynucleotide encoding SEQ DD NO: 2. Due to the known degeneracy of the genetic code, wherein more than one codon can encode the same amino acid, a DNA sequence can vary from that shown in SEQ ID NO: 1, and still encode a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • nucleic acid molecule comprises a polynucleotide encoding a polypeptide having at least about 80% identity to SEQ ID NO: 2, at least about 90% identity to SEQ ID NO: 2, at least about 95% identity to SEQ ED NO: 2, at least about 99% identity to SEQ ID NO: 2.
  • the percent identity may be determined by visual inspection and mathematical calculation.
  • the percent identity of two nucleic acid sequences can be determined by comparing sequence information using the GAP computer program, version 6.0 described by (Devereux et al., Nucl. Acids Res., 12:387 (1984)) and available from the University of Wisconsin Genetics Computer Group (UWGCG).
  • the preferred default parameters for the GAP program include: (1) a comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of (Gribskov and Burgess, Nucl.
  • nucleic acid molecule of the present invention comprises a polynucleotide having the polynucleotide sequence set forth in SEQ ID NO: 1, or the complementary strand of SEQ ID NO: 1.
  • the present invention provides nucleic acid molecules which hybridize under stringent or moderate conditions with the polypeptide-encoding regions of SEQ ID NO: 1, wherein the encoded polypeptide comprises a C terminal amino acid sequence as set forth in SEQ ID NO: 3, and wherein the encoded polypeptide maintains an activity of ActRIIB5 polypeptides.
  • the present invention provides nucleic acid molecules which hybridize under stringent or moderate conditions with the polypeptide-encoding regions of
  • SEQ ID NO: 1 wherein the encoded polypeptide comprises a C terminal amino acid sequence having at least about 80% identity, at least about 85% identity, at least about 90% identity, at least about 95% identity, at least about 98% identity, at least about 99% identity to the amino acid sequence set forth in SEQ ID NO: 3, and wherein the encoded polypeptide has at least one activity of ActR ⁇ B5 polypeptides.
  • conditions of moderate stringency can be readily determined by those having ordinary skill in the art based on, for example, the length of the DNA.
  • the basic conditions are set forth by (Sambrook et al. Molecular Cloning: A Laboratory Manual, 2ed. Vol. 1, pp.
  • highly stringent conditions for hybridization and washing are 0.015 M sodium chloride, 0.0015 M sodium citrate at 65-68 0 C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 50% formamide at 42 0 C.
  • Other conditions include hybridizing and washing at approximately 68°C, 0.2X SSC, 0.1% SDS.
  • the skilled artisan will recognize that the temperature and wash solution salt concentration can be adjusted as necessary according to factors such as the length of the sequence. See Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory, 1989); Anderson et al., Nucleic Acid Hybridization: A Practical Approach, Ch.4 (IRL Press Limited).
  • Nucleic acid molecules of the invention include DNA in both single-stranded and double-stranded form, as well as the RNA complement thereof.
  • DNA includes, for example, cDNA, genomic DNA, synthetic DNA, DNA amplified by PCR, and combinations thereof.
  • Genomic DNA may be isolated by conventional techniques, such as by using the cDNA of SEQ ID NO:1, or a suitable fragment thereof, as a probe.
  • Genomic DNA encoding ActRIIB5 polypeptides is obtained from genomic libraries which are available for a number of species.
  • Synthetic DNA is available from chemical synthesis of overlapping oligonucleotide fragments followed by assembly of the fragments to reconstitute part or all of the coding regions and flanking sequences.
  • RNA may be obtained from procaryotic expression vectors which direct high-level synthesis of mRNA, such as vectors using T7 promoters and RNA polymerase.
  • cDNA is obtained from libraries prepared from mRNA isolated from various tissues that express ActRIIB5.
  • the DNA molecules of the invention include full length genes as well as polynucleotides and fragments thereof.
  • the full length gene may also include sequences encoding the N-terminal signal sequence.
  • the invention also provides methods of producing and identifying ActRHB5 polynucleotides.
  • the well-known polymerase chain reaction (PCR) procedure may be employed to isolate and amplify a DNA sequence encoding a desired protein fragment.
  • Oligonucleotides that define the desired termini of the DNA fragment are employed as 5' and
  • the oligonucleotides may additionally contain recognition sites for restriction endonucleases, to facilitate insertion of the amplified DNA fragment into an expression vector.
  • PCR techniques are described in Saiki et al., Science, 239:487 (1988); Wu et al.,
  • expression vectors containing the nucleic acid sequences are also provided, and host cells transformed with such vectors and methods of producing the ActRIIB5 polypeptides are also provided.
  • expression vector refers to a plasmid, phage, virus or vector for expressing a polypeptide from a polynucleotide sequence.
  • Vectors for the expression of ActRH5 polypeptides contain at a minimum sequences required for vector propagation and for expression of the cloned insert.
  • An expression vector comprises a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a sequence that encodes ActRIIB5 polypeptides to be transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. These sequences may further include a selection marker.
  • Vectors suitable for expression in host cells are readily available and the nucleic acid molecules are inserted into the vectors using standard recombinant DNA techniques. Such vectors can include promoters which function in specific tissues, and viral vectors for the expression of ActRIIB5 in targeted human or animal cells.
  • Some exemplary expression vectors suitable for expression of ActRIIB5 include, but are not limited to, pDSRa, (described in WO 90/14363, herein incorporated by reference) and its derivatives, containing ActRHB5 polynucleotides, and pDC323 or pDC324 vectors (described in Bianchi et al, Biotech and Bioengineering, VoI 84(4):439-444 (2003)) containing ActRII5 polynucleotides, as well as additional suitable vectors known in the art or described below, are provided by the present invention.
  • pDSRa described in WO 90/14363, herein incorporated by reference
  • pDC323 or pDC324 vectors described in Bianchi et al, Biotech and Bioengineering, VoI 84(4):439-444 (2003)
  • the application further provides methods of making ActRIIB5 polypeptides and proteins.
  • expression/host systems include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transfected with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with bacterial expression vectors (e.g., Ti or pBR322 plasmid); or animal cell systems.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transfected with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, T
  • Mammalian cells useful in recombinant protein productions include but are not limited to VERO cells, HeLa cells, Chinese hamster ovary (CHO) cell lines, COS cells (such as COS-7), W138, BHK, HepG2, 3T3, RIN, MDCK, A549, PC12, K562 and 293 cells.
  • Mammalian host cells may be preferred '. when post-translational modifications such as glycosylation and polypeptide processing are important for activity.
  • Mammalian expression allows for the production of secreted or soluble polypeptides which may be recovered from the growth medium.
  • ActRIIB5 proteins and polypeptides are produced recombinantly by culturing a host cell transformed with an expression vector containing the nucleic acid molecules of the present invention under conditions allowing for production.
  • Transformed cells can be used for long-term, high-yield protein production.
  • the cells Once such cells are transformed with vectors that contain selectable markers as well as the desired expression cassette, the cells can be allowed to grow for 1-2 days in an enriched media before they are switched to selective media.
  • the selectable marker is designed to allow growth and recovery of cells that successfully express the introduced sequences. Resistant clumps of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell line employed. An overview of expression of recombinant proteins is found in Methods of Enzymology, v. 185, Goeddell, D.V., ed., Academic Press (1990).
  • the expressed polypeptides of this invention may need to be "refolded” and oxidized into a proper tertiary structure and disulfide linkages generated in order to be biologically active.
  • Refolding can be accomplished using a number of procedures well known in the art. Such methods include, for example, exposing the solubilized polypeptide to a pH usually above 7 in the presence of a chaotropic agent.
  • a chaotrope is similar to the choices used for inclusion body solubilization, however a chaotrope is typically used at a lower concentration.
  • Exemplary chaotropic agents are guanidine and urea.
  • the refolding/oxidation solution will also contain a reducing agent plus its oxidized form in a specific ratio to generate a particular redox potential which allows for disulfide shuffling to occur for the formation of cysteine bridges.
  • Some commonly used redox couples include cysteine/cystamine, glutathione/dithiobisGSH, cupric chloride, dithiothreitol DTT/dithiane DTT, and 2- mercaptoethanol (bME)/dithio-bME.
  • a co-solvent may be used to increase the efficiency of the refolding.
  • cosolvents include glycerol, polyethylene glycol of various molecular weights, and arginine.
  • the proteins and polypeptides of the present can be synthesized in solution or on a solid support in accordance with conventional techniques.
  • Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart and Young (supra); Tarn et al., J Am Chem Soc, 105:6442, (1983); Merrifield, Science 232:341-347 (1986); Barany and Merrifield, The Peptides, Gross and Meienhofer, eds, Academic Press, New York, 1-284; Barany et al., Int J Pep Protein Res, 30:705
  • Protein purification techniques are well known to those of skill in the art. These techniques involve, at one level, the crude fractionation of the proteinaceous and non-proteinaceous fractions. Having separated the peptide polypeptides from other proteins, the peptide or polypeptide of interest can be further purified using chromatographic and electrophoretic techniques to achieve partial or complete purification (or purification to homogeneity).
  • Analytical methods particularly suited to the preparation of polypeptides or the present invention are ion-exchange chromatography, exclusion chromatography; polyacrylamide gel electrophoresis; isoelectric focusing.
  • a particularly efficient method of purifying peptides is fast protein liquid chromatography or even HPLC.
  • isolated polypeptide or “purified polypeptide” as used herein, is intended to refer to a composition, isolatable from other components, wherein the polypeptide is purified to any degree relative to its naturally- obtainable state.
  • a purified polypeptide therefore also refers to a polypeptide that is free from the environment in which it may naturally occur.
  • purified will refer to a polypeptide composition that has been subjected to fractionation to remove various other components, and which composition substantially retains its expressed biological activity.
  • substantially purified this designation will refer to a peptide or polypeptide composition in which the polypeptide or peptide forms the major component of the composition, such as constituting about 50%, about 60%, about 70%, about 80%, about 90%, about 95% or more of the proteins in the composition.
  • Various methods for quantifying the degree of purification of polypeptide will be known to those of skill in the art in light of the present disclosure. These include, for example, determining the specific binding activity of an active fraction, or assessing the amount of peptide or polypeptide within a fraction by SDS/PAGE analysis.
  • a preferred method for assessing the purity of a polypeptide fraction is to calculate the binding activity of the fraction, to compare it to the binding activity of the initial extract, and to thus calculate the degree of purification, herein assessed by a "-fold purification number.”
  • the actual units used to represent the amount of binding activity will, of course, be dependent upon the particular assay technique chosen to follow the purification and whether or not the polypeptide or peptide exhibits a detectable binding activity.
  • the present invention further includes antibodies which specifically bind to the ActRIIB5 receptor polypeptides of the present invention.
  • the term “specifically binds” refers to antibodies having a binding affinity (Ka) for ActR ⁇ B5 polypeptides of 10 6 M "1 or greater.
  • the term “antibody” refers to intact antibodies including polyclonal antibodies (see, for example Antibodies: A Laboratory Manual, Harlow and Lane (eds), Cold Spring Harbor Press, (1988)), and monoclonal antibodies (see, for example, U.S. Patent Nos.
  • antibody also refers to a fragment of an antibody such as F(ab), F(ab'), F(ab') 2 , Fv, Fc, and single chain antibodies which are produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies.
  • antibody also refers to bispecific or bifunctional antibodies, which are an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites.
  • Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. (See Songsivilai et al, Clin. Exp. Immunol. 79:315-321 (1990), Kostelny et al., J. Immunol.l48:1547-1553 (1992)).
  • antibody also refers to chimeric antibodies, that is, antibodies having a human constant antibody immunoglobin domain coupled to one or more non-human variable antibody immunoglobin domain, or fragments thereof (see, for example, U.S. Patent No. 5,595,898 and U.S. Patent No. 5,693,493).
  • Antibodies also refers to "humanized" antibodies (see, for example, U.S.
  • compositions containing the ActRIIB5 polypeptides and proteins of the present invention comprise a therapeutically or prophylactically effective amount of the polypeptide in admixture with pharmaceutically acceptable materials, and physiologically acceptable formulation materials.
  • the pharmaceutical composition may contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition.
  • Suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine or lysine); antimicrobials; antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates, other organic acids); bulking agents (such as mannitol or glycine), chelating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin); fillers; monosaccharides; disaccharides and other carbohydrates (such as glucose, mannose, or dextrins); proteins (such as serum albumin, gelatin or immunoglobulins); coloring; flavoring and diluting agents; emulsifying agents; hydrophilic
  • compositions will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format, and desired dosage. See for example, Remington's Pharmaceutical Sciences, supra. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the polypeptide.
  • suitable compositions may be water for injection, physiological saline solution for parenteral administration.
  • the primary vehicle or earlier in a pharmaceutical composition may be either aqueous or non-aqueous in nature.
  • a suitable vehicle or carrier may be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration.
  • Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles.
  • Other exemplary pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, which may further include sorbitol or a suitable substitute therefore.
  • compositions may be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (Remington's Pharmaceutical Sciences, supra) in the form of a lyophilized cake or an aqueous solution. Further, the therapeutic composition may be formulated as a lyophilizate using appropriate excipients such as sucrose.
  • the formulations can be delivered in a variety of methods, for example, by inhalation therapy, orally, or by injection.
  • parenteral administration is contemplated, the therapeutic compositions for use in this invention may be in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired polypeptide in a pharmaceutically acceptable vehicle.
  • a particularly suitable vehicle for parenteral injection is sterile distilled water in which a polypeptide is formulated as a sterile, isotonic solution, properly preserved.
  • Yet another preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (polylactic acid, polyglycolic acid), beads, or liposomes, that provides for the controlled or sustained release of the product which may then be delivered via a depot injection.
  • an agent such as injectable microspheres, bio-erodible particles, polymeric compounds (polylactic acid, polyglycolic acid), beads, or liposomes, that provides for the controlled or sustained release of the product which may then be delivered via a depot injection.
  • Hyaluronic acid may also be used, and this may have the effect of promoting sustained duration in the circulation.
  • Other suitable means for the introduction of the desired molecule include implantable drug delivery devices.
  • compositions suitable for injectable administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, ringer's solution, or physiologically buffered saline.
  • Aqueous injection suspensions may contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
  • suspensions of the active compounds may be prepared as appropriate oily injection suspensions.
  • Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes.
  • Non-lipid polycationic amino polymers may also be used for delivery.
  • the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.
  • a pharmaceutical composition may be formulated for inhalation.
  • Inhalation solutions may also be formulated with a propellant for aerosol delivery.
  • solutions may be nebulized. Pulmonary administration is further described in PCT Application No. PCT/US94/001875, which describes pulmonary delivery of chemically modified proteins.
  • compositions may be administered orally.
  • molecules that are administered in this fashion can be formulated with or without those carriers customarily used in the compounding of solid dosage forms such as tablets and capsules.
  • a capsule may be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized.
  • Additional agents can be included to facilitate absorption of the therapeutic molecule.
  • Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders may also be employed.
  • Pharmaceutical compositions for oral administration can also be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.
  • compositions for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores.
  • auxiliaries can be added, if desired.
  • Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen.
  • disintegrating or solubilizing agents may be added, such as the cross- linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.
  • Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.
  • compositions that can be used orally also include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol.
  • Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers.
  • the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
  • sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices may include polyesters, hydrogels, polylactides (U.S.
  • Sustained-release compositions also include liposomes, which can be prepared by any of several methods known in the art. See e.g., Eppstein et al., PNAS (USA), 82:3688 (1985); EP 36,676; EP 88,046; EP 143,949.
  • the pharmaceutical composition to be used for in vivo administration typically must be sterile. This may be accomplished by filtration through sterile filtration membranes.
  • compositions are lyophilized, sterilization using this method may be conducted either prior to or following lyophilization and reconstitution.
  • the composition for parenteral administration may be stored in lyophilized form or in solution.
  • parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
  • the pharmaceutical composition may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, or a dehydrated or lyophilized powder.
  • Such formulations may be stored either in a ready-to-use form or in a form (e.g., lyophilized) requiring reconstitution prior to administration.
  • kits for producing a single-dose administration unit may each contain both a first container having a dried protein and a second container having an aqueous formulation. Also included within the scope of this invention are kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes).
  • An effective amount of a pharmaceutical composition to be employed therapeutically will depend, for example, upon the therapeutic context and objectives.
  • One skilled in the art will appreciate that the appropriate dosage levels for treatment will thus vary depending, in part, upon the molecule delivered, the indication for which the polypeptide is being used, the route of administration, and the size (body weight, body surface or organ size) and condition (the age and general health) of the patient. Accordingly, the clinician may titer the dosage and modify the route of administration to obtain the optimal therapeutic effect.
  • a typical dosage may range from about 0.1mg/kg to up to about 100 mg/kg or more, depending on the factors mentioned above.
  • Polypeptide compositions may be preferably injected or administered intravenously.
  • compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation. The frequency of dosing will depend upon the pharmacokinetic parameters of the polypeptide in the formulation used. Typically, a composition is administered until a dosage is reached that achieves the desired effect. The composition may therefore be administered as a single dose, or as multiple doses (at the same or different concentrations/dosages) over time, or as a continuous infusion. Further refinement of the appropriate dosage is routinely made. Appropriate dosages may be ascertained through use of appropriate dose-response data.
  • the route of administration of the pharmaceutical composition is in accord with known methods, e.g. orally, through injection by intravenous, intraperitoneal, intracerebral (intra-parenchymal), intracerebro ventricular, intramuscular, intra-ocular, intraarterial, intraportal, intralesional routes, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, or intraperitoneal; as well as intranasal, enteral, topical, sublingual, urethral, vaginal, or rectal means, by sustained release systems or by implantation devices.
  • the compositions may be administered by bolus injection or continuously by infusion, or by implantation device.
  • the composition may be administered locally via implantation of a membrane, sponge, or another appropriate material on to which the desired molecule has been absorbed or encapsulated.
  • a membrane, sponge, or another appropriate material on to which the desired molecule has been absorbed or encapsulated may be used.
  • the device may be implanted into any suitable tissue or organ, and delivery of the desired molecule may be via diffusion, timed-release bolus, or continuous administration.
  • the ActR ⁇ B5 polypeptides of the present invention can be delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein, to express and secrete the polypeptide.
  • Such cells may be animal or human cells, and may be autologous, heterologous, or xenogeneic.
  • the cells may be immortalized.
  • the cells may be encapsulated to avoid infiltration of surrounding tissues.
  • the encapsulation materials are typically biocompatible, semi-permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues.
  • ActRHB5 gene therapy in vivo is also envisioned wherein a nucleic acid molecule encoding ActRIIB5, or a variant or derivative of ActRIIB5 is introduced directly into the subject.
  • a nucleic acid sequence encoding an ActR ⁇ B5 is introduced into target cells via local injection of a nucleic acid construct with or without an appropriate delivery vector, such as an adeno-associated vims vector.
  • Alternative viral vectors include, but are not limited to, retroviruses, adenovirus, herpes simplex, virus and papilloma virus vectors.
  • Physical transfer of the virus vector may be achieved in vivo by local injection of the desired nucleic acid construct or other appropriate delivery vector containing the desired nucleic acid sequence, liposome-mediated transfer, direct injection (naked DNA), or microparticle bombardment (gene-gun).
  • the present invention provides methods and compositions for reducing or neutralizing the amount or activity of myostatin, activin A, or GDF-11 in vivo and in vitro by contacting the proteins with an ActRIIB5 protein.
  • the Examples below demonstrate that the ActRIIB5 proteins have a high affinity for myostatin, activin A, and GDF-11, and are capable of reducing and inhibiting the biological activities of myostatin, activin A and GDF-11.
  • the Examples demonstrate that ActRIIB5 have a higher activity compared with ActRIIB-ECD as demonstrated by the IC 50 values in Example 3, and the biological response in animals is superior for the ActRIIB5 animals compared with the ActRIIB-ECD animals as demonstrated in Examples 5 and 6.
  • the present invention provides methods and reagents for treating myostatin-related and/or activin A related disorders in a subject in need thereof by administering an effective dosage of an ActRIIB5 composition to the subject.
  • subject refers to any animal, such as mammals including humans.
  • the present invention provides for the use of the ActRIIB proteins in the preparation of a pharmaceutical composition for the treatment of muscle- wasting, metabolic, and activin A related disorders listed below.
  • the present invention provides for the use of ActRIIB nucleic acids and vectors in the preparation of a pharmaceutical composition for the treatment of muscle- wasting, metabolic, and activin A related disorders listed below.
  • compositions of the present invention have been shown to increase lean muscle mass as a percentage of body weight and decreases fat mass as percentage of body weight in animal models as shown in the Examples below.
  • the disorders that can be treated by an ActRIIB5 composition include but are not limited to various forms of muscle wasting, as well as metabolic disorders such as diabetes and related disorders, and bone degenerative diseases such as osteoporosis.
  • Muscle wasting disorders include dystrophies such as Duchenne's muscular dystrophy, progressive muscular dystrophy, Becker's type muscular dystrophy, Dejerine-Landouzy muscular dystrophy, Erb's muscular dystrophy, and infantile neuroaxonal muscular dystrophy. Additional muscle wasting disorders arise from chronic diseases or disorders such as amyotrophic lateral sclerosis, congestive obstructive pulmonary disease, cancer, AIDS, renal failure, organ atrophy, androgen deprivation, and rheumatoid arthritis.
  • Over-expression of myostatin may contribute to cachexia, a severe muscle and fat wasting syndrome.
  • serum and intramuscular concentrations of myostatin- immunoreactive protein was found to be increased in men exhibiting AIDS-related muscle wasting and was inversely related to fat-free mass (Gonzalez-Cadavid et al., PNAS USA 95: 14938-14943 (1998)).
  • Myostatin levels have also been shown to increase in response to burns injuries, resulting in a catabolic muscle effect (Lang et al, FASEB J 15, 1807-1809 (2001)).
  • Additional conditions resulting in muscle wasting may arise from inactivity due to disability such as confinement in a wheelchair, prolonged bed rest due to stroke, illness, spinal chord injury, bone fracture or trauma, and muscular atrophy in a microgravity environment (space flight).
  • plasma myostatin immunoreactive protein was found to increase after prolonged bed rest (Zachwieja et al. J Gravit Physiol. 6(2): 11(1999). It was also found that the muscles of rats exposed to a microgravity environment during a space shuttle flight expressed an increased amount of myostatin compared with the muscles of rats which were not exposed (Lalani et al., LEndocrin 167 (3):417-28 (2000)).
  • age-related increases in fat to muscle ratios, and age-related muscular atrophy appear to be related to myostatin.
  • myostatin For example, the average serum myostatin- immunoreactive protein increased with age in groups of young (19-35 yr old), middle-aged (36-75 yr old), and elderly (76-92 yr old) men and women, while the average muscle mass and fat-free mass declined with age in these groups (Yarasheski et al. J Nutr Aging 6(5):343-8 (2002)).
  • myostatin has now been found to be expressed at low levels in heart muscle and expression is upregulated after cardiomyocytes after infarct (Sharma et al., J Cell Physiol. 180 (l):l-9 (1999)). Therefore, reducing myostatin levels in the heart muscle may improve recovery of heart muscle after infarct.
  • Myostatin also appears to influence metabolic disorders including type 2 diabetes, noninsulin-dependent diabetes mellitus, hyperglycemia, and obesity. For example, lack of myostatin has been shown to improve the obese and diabetic phenotypes of two mouse models (Yen et al. supra). It has been shown in the Examples below that administering AAV- ActRHB5 vectors increases the muscle to fat ratio in an animal, in particular for obese animal models. Therefore, decreasing fat composition by administering the compositions of the present invention will improve diabetes, obesity, and hyperglycemic conditions in animals. In addition the Examples below and Figure 4B demonstrates that compositions containing ActR ⁇ B5 may decrease food intake in obese individuals.
  • myostatin-deficient mice showed increased mineral content and density of the mouse humerus and increased mineral content of both trabecular and cortical bone at the regions where the muscles attach, as well as increased muscle mass (Hamrick et al. Calcif
  • ActIIBR compositions of the present invention can be used to treat the effects of androgen deprivation such as androgen deprivation therapy used for the treatment of prostate cancer.
  • the present invention also provides methods and compositions for increasing muscle mass in food animals by administering an effective dosage of the ActRIIB5 proteins to the animal. Since the mature C-terminal myostatin polypeptide is identical in all species tested, ActRIIB5 proteins would be expected to be effective for increasing muscle mass and reducing fat in any agriculturally important species including cattle, chicken, turkeys, and pigs.
  • the ActRHB5 proteins and compositions of the present invention also antagonizes the activity of activin A.
  • Activin A is known to be expressed in certain types of cancers, particularly gonadal tumors such as ovarian carcinomas, and to cause severe cachexia. (Ciprano et al. Endocrinol 141 (7):2319-27 (2000), Shou et al., Endocrinol 138 (ll):5000-5 (1997); Coerver et al, MoI Endocrinol 10(5):534-43 (1996); Ito et al. British J Cancer
  • Example 4 shows that expression of activin A in the animal models results in a severe cachexia. Expression of the ActRIIB5/Fc in the animals counters that cachexia, as shown in Examples 5 and 6. Overexpression of myostatin is also thought to contribute to cachexia, as described above. Therefore the compositions can be used to treat conditions related to activin A overexpression, as well as myostatin overexpression, such as cachexia from certain cancers and the treatment of certain gonadal type tumors.
  • compositions of the present invention may be used alone or in combination with other therapeutic agents to enhance their therapeutic effects or decrease potential side effects. These properties include increased activity, increased solubility, reduced degradation, increased half-life, reduced toxicity, and reduced immunogenicity. Thus the compositions of the present invention are useful for extended treatment regimes. In addition, the properties of hydrophilicity and hydrophobicity of the compounds of the invention are well balanced, thereby enhancing their utility for both in vitro and especially in vivo uses.
  • compounds of the invention have an appropriate degree of solubility in aqueous media that permits absorption and bioavailability in the body, while also having a degree of solubility in lipids that permits the compounds to traverse the cell membrane to a putative site of action, such as a particular muscle mass.
  • the ActRIIB5 proteins and polypeptides of the present invention are useful for detecting and quantitating myostatin, activin A, or GDF-11 in any number of assays.
  • the ActRIIB5 polypeptides of the present invention are useful as capture agents to bind and immobilize myostatin, activin A, or GDF-11 in a variety of assays, similar to those described, for example, in Asai, ed., Methods in Cell Biology, 37, Antibodies in Cell Biology, Academic Press, Inc., New York (1993).
  • the polypeptides may be labeled in some manner or may react with a third molecule such as an antibody which is labeled to enable myostatin to be detected and quantitated.
  • a polypeptide or a third molecule can be modified with a detectable moiety, such as biotin, which can then be bound by a fourth molecule, such as enzyme-labeled streptavidin, or other proteins.
  • a detectable moiety such as biotin
  • a fourth molecule such as enzyme-labeled streptavidin, or other proteins.
  • Example I isolation of cDNA and expression in cells
  • the cDNA of the novel human activin type IIB receptor was isolated from a cDNA library of human testis origin (Clontech, Inc.) according to the following protocol. Primers for the N-terminal and the C-terminal of the human activin IIB receptor (SEQ ID NO: 4) were generated and PCR was performed using these primers against templates from human cDNA libraries. PCT was performed using the GC-RICH PCR System (Roche, cat #2140306). Both N and C terminal PGR products were digested with PvuII/EcoRI and subcloned into pcDNA3.1-HisA vector (Invitrogen, Carlsbad, Ca.) to make a full length clone.
  • a cDNA clone from the human testes cDNA library was identified as a novel N-terminal splice variant receptor.
  • the polynucleotide sequence of this receptor designated human activin type IIB5 receptor (ActRIIB5).
  • the cDNA clone of this receptor was missing 152 nucleotide bases that correspond to the entire Exon-4 in the wild-type human activin type IIB receptor gene.
  • the truncation of exon-4 in the splice variant resulted in the deletion of the amino acid sequence that spans the transmembrane region as well as in a frame shift leading to an early translational termination.
  • the amino acid sequence of the splice variant receptor contains most of the extracellular domain, encoded by exons 1, 2 and 3 of the wild-type human activin type IIB receptor, and an additional tail region of 36 amino acids resulting from the frame shift.
  • the amino acid sequence is set forth in SEQ ID NO: 2.
  • the C terminal sequence is set forth in SEQ ID NO: 3. Due to the lack of transmembrane region, the ActRHB5 encodes a soluble form of activin type IIB receptor. Transfection of the ActRBIK cDNA in cells led to the expression of secreted, instead of membrane-bound, form of the receptor protein.
  • Example 2 Expression of ActRIIB5 cDNA encoding ActR ⁇ B5 was cloned into a mammalian pDC323 or pDC324 vectors (Bianchi et al, Biotech and Bioengineering, VoI 84(4):439-444 (2003)) and expressed in a 293T cell line.
  • polynucleotides encoding the ActRIIB5 were cloned adjacent to polynucleotides encoding the (GIy) 8 linker sequence adjacent to polynucleotides encoding the human IgGl Fc into a pDSRa vector (described in WO/9014363, herein incorporated by reference).
  • Polynucleotides encoding ActRHB-ECD (amino acids 1-124 of SEQ ID NO: 5) were cloned adjacent to polynucleotides encoding the human IgGl Fc into a pDSRa vector (no linker). These constructs were transfected into a s stable CHO cell line. The soluble receptor-Fc fusions expressed were used for the side-by- side in vitro testing described below.
  • the PCR products generated as described above were digested with Nhel/Sall and subcloned into an AAV-Fc vector at the same sites.
  • the AAV-Fc vector allows for transfer of the ActRIIB5 gene into an animal for expression in vivo.
  • Example 3 In vitro Activities HuActRIIB5/Fc and HuActRIIB-ECD/Fc were generated as described above. The ability the ActRIIB5 receptor to inhibit the binding of each of the three ligands myostatin, activin A, and GDF-Il to the activin IIB receptor was tested using a cell based activity assay as described below.
  • a myostatin/activin/GDF- 11 -responsive reporter cell line was generated by transfection of C2C12 myoblast cells (ATCC No: CRL-1772) with a pMARE-luc construct.
  • the pMARE-luc construct was made by cloning twelve repeats of the CAGA sequence, representing the myostatin/activin response elements (Dennler et al. EMBO 17: 3091-3100 (1998)) into a pLuc-MCS reporter vector (Stratagene cat # 219087) upstream of the TATA box.
  • the myoblast C2C12 cells naturally express myostatin/activin/GDF-11 receptor activin receptor DUB on its cell surface.
  • Blocking assays were carried out using immobilized human ActRHB-ECD/Fc (R&D Systems, Minneapolis, Mn.) on a CM5 chip (Biacore, Inc., Piscataway, NJ) in the presence and absence of each of the two soluble receptors ActRHB-ECD/Fc and ActRIIB5/Fc using the BIAcore ® assay system according to the manufacturer's instructions.
  • activin A was overexpressed in mice using AAV mediated gene transfer.
  • the effects on body weight and body composition were analyzed.
  • AAV-activin A transduced group showed a drastic reduction in body weight compared to the control mice transduced with AAV-empty vector.
  • the activin A-transduced group became so severely cachexic that their average body weight was only about 1 A of that of empty vector-transduced control group.
  • Necropsy revealed that AAV-activin A administration resulted a dramatic depletion by approximately 60% of lean body mass, skeletal muscle mass and fat mass.
  • the activin-transduced mice also showed severe wasting of organs as indicated by significantly reduced organ weights such as liver and heart.
  • AAV viral particles were packaged and titered prior to injection as follows: AAV- empty, AAV-activin A, AAV-ActRIIB5/Fc, AAV-ActRIIB-ECD/Fc, and AAV-ProMyo/Fc, wherein AAV-ProMyo stands for propeptide of myostatin.
  • AAV-ProMyo stands for propeptide of myostatin.
  • Body weights were determined every other day. The results are shown in Figure 2.
  • AAV-ActRIIB5/Fc group and the AAV-ActRIIB-ECD/Fc group developed increased body weights compared to the AA V- Vector control group, as well as increased body weight compared to the AAV-ProMyo/Fc group. Comparing the two soluble receptor groups, the AAV-ActRIIB5/Fc group showed the greatest amount of increase in body weight gain. In contrast, the AA V- Vector control group showed a dramatic decrease in body weights in comparison to the AA V- Vector control group.
  • body weight changes of individual groups were plotted as percentage of that of the control group (AAV-empty vector group).
  • the AAV- ActRIIB5/Fc group showed the highest average body weight increase over control, approximately 25%, compared with 21% body weight increase for the ActRIEB-ECD/Fc group.
  • the AAV-ActRIIB5/Fc group and the AAV-ActRIIB-ECD/Fc group showed body weight increases greater than that elicited by the ProMyo/Fc group of approximately 16%.
  • AAV-activin group had a significant drop in body weight by 19%. A comparison of these changes is shown in Figure 3.
  • lean body mass in each group of ten mice was determined using nuclear magnetic resonance (NMR) by measuring body composition of live mice. At the same time, the body fat content of the mice in each group was determined. The measurements were taken on live mice using the EchoMRI 2003 (Echo Medical Systems, Houston, Tx). EchoMRI 2004 is a whole body composition analyzer that measures the masses of fat and lean tissues in live animals using NMR technology. The average percentage of lean mass and fat as percentage of body weight for each group of 10 mice is presented in Table 2 below. Fat (% body weight) lean mass (% body weight)
  • mice were tested for gripping strength using a Columbia Instruments meter, model 1027 dsm (Columbus, Ohio). The results were averaged for each group.
  • the increase in gripping strength measured was about 46% for the promyostatin/Fc group, about 56% for the ActRIIB-ECD/Fc group, and about 60% for the ActRITB5/Fc group.
  • Example VI Changes in body weight and composition in Ay Obese mice
  • Two groups of Ay Obese mice (Jackson Laboratories, Bar Harbor, Maine) of 11 animals each (8 animals per group at the termination of the experiment) were injected with an AAV-empty vector and an AAV-ActRHB5/Fc vector respectively.
  • the viruses were injected at 8x10 12 pfu / mouse into the portal vein of each mouse.
  • the mice were then monitored for changes in body weight, food intake, lean muscle mass and fat mass over a three month period post injection.
  • Food intake was determined by weighing the remaining uneaten food in the mouse cage on a daily basis and calculating the weekly intake.
  • the lean muscle mass and fat mass were determined by NMR as described above.
  • Figure 4A shows a decrease in body weight
  • Figure 4B shows a decrease in weekly food intake in the AAV-ActRIIB5/Fc mice compared with the control mice.
  • Figure 5A shows increase in lean mass, as determined by NMR for the AAV-
  • Figure 5B shows a large decrease of fat mass for the AAV-ActRIIB5/Fc compared to the control mice, by approximately 50%.
  • the mice were sacrificed and examined for internal changes.
  • the livers of the AAV-ActRIIB5/Fc treated mice were compared with those treated with AAV-empty control.
  • Visual inspection of the livers of the AAV-empty treated mice and the AAV-ActRIIB5/Fc treated mice showed that the livers of the control AAV- empty mice contained fat deposits within the livers, whereas the AAV-ActRIIB5/Fc treated mice were free of fat deposits. Therefore, the expression of the ActRIIB5/Fc in the Ay mice corrected the fatty livers which characterize the Ay obese mice, as well as caused a decrease in overall body weight, a decrease in amount of food consumed, an increase in lean muscle mass and large decrease in fat mass.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Diabetes (AREA)
  • Neurology (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Endocrinology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Pulmonology (AREA)
  • Virology (AREA)
  • Urology & Nephrology (AREA)
  • Hospice & Palliative Care (AREA)

Abstract

The present invention provides novel activin IIB5 receptor polypeptides capable of binding and inhibiting the activities of activin A, myostatin, or GDF-11. The present invention also provides polynucleotides, vectors and host cells capable of producing the receptor polypeptides. Compositions and methods for treating muscle-wasting, metabolic and other disorders are also provided.

Description

NOVEL ACTIVIN RECEPTOR AND USES THEREOF
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of United States provisional application serial number 60/732,270, filed November 1, 2005, the entire disclosure of which is relied upon and incorporated by reference.
TECHNICAL FIELD OF THE INVENTION
The technical field of this invention relates to transforming growth factor-β (TGF-β) family members and TGF-β receptors, as well as methods of modulating the activities of TGF-β family members for the treatment of various disorders.
BACKGROUND OF THE INVENTION
The transforming growth factor β (TGF-β) family of proteins includes the transforming growth factors-β (TGF-β), activins, bone morphogenic proteins (BMP), nerve growth factors (NGFs), brain-derived neurotrophic factor (BDNF), and growth/ differentiation factors (GDFs). These family members are involved in the regulation of a wide range of biological processes including cell proliferation, differentiation, and other functions. Activins were originally discovered as gonadal peptides involved in the regulation of follicle stimulating hormone synthesis, and are now believed to be involved in the regulation of a number of biological activities including control of section and expression of anterior pituitary hormones such as FSH, GH, and ACTH, neuron survival, hypothalamic oxytocin secretion, erythropoiesis, placental and gonadal steroidogenesis, early embryonic development, and proliferation of some types of tumors. Activins A, B and AB are the homodimers and heterdimer respectively of two polypeptide chains, BA and BB (Vale et al. Nature 321, 776-779 (1986), Ling et al., Nature 321, 779-782 (1986)). These two β chains can also dimerize with a related α chain giving rise to inhibins A and B respectively (Mason et al, Nature 318, 659-663 (1986)). It is well established that inhibins are necessary for maintaining normal function in many tissues, particularly those associated with reproductive functions. In these tissues inhibins oppose many, but not all, of the activin activities.
Growth/differentiation factor 8 (GDF-8), also referred to as myostatin, is a TGF-B family member expressed for the most part in the cells of developing and adult skeletal muscle tissue. Myostatin appears to play an essential role in negatively controlling skeletal muscle growth (McPherron et al. Nature (London) 387, 83-90 (1997)). Antagonizing myostatin has been shown to increase lean muscle mass in animals (McFerron et al, supra, Zimmers et al, Science 296:1486 (2002)). Another member of the TGF-β family of proteins is a related growth/differentiation factor, GDF-Il. GDF-Il has approximately 90% identity of the amino acid sequence of myostatin. GDF-Il has a role in the axial patterning in developing animals (Oh et al, Genes Dev 11:1812-26 (1997)), and also appears to play a role in skeletal muscle development and growth. However, the postnatal role of GDF-11 is not currently understood.
A family of transmembrane serine/threonine kinases are known to act as receptors for activins and other TGF-β family members. These receptors fall into two distinct subfamilies known as type I and type II receptors that act cooperatively to bind ligand and transduce signal (Attisano et al., MoI Cell Biol 16 (3), 1066-1073 (1996)). Most TGF-β ligands are believed bind first to a type II receptor and this ligand/type II receptor complex then recruits a type I receptor (Mathews, LS, Endocr Rev 15:310-325 (1994); Massague, Nature Rev: MoI Cell Biol. 1, 169-178 (2000)). The type II receptor kinase then phosphorylates and activates the type I receptor kinase, which in turn phosphorylates the Smad proteins. Activins initially bind their type II receptors ActRIIA for activin A, or ActRIIB for activin B. This is followed by the recruitment, phosphorylation and subsequent activation of the type I receptor, activin- like kinase 4 (ALK4). On activation, ALK4 binds and then phosphorylates a subset of cytoplasmic Smad proteins (Smad2 and Smad3) that produce signal transduction for activins (Derynck, R et al. Cell 95, 737-740 (1998)).
Cross-linking studies have determined that myostatin is capable of binding the activin type π receptors ActRIIA and ActRIIB in vitro (Lee et al. PNAS USA 98:9306-11 (2001)). There is also evidence that GDF-11 binds to both ActRIIA and ActRIIB (Oh et al., Genes Dev 16:2749-54 (2002)).
TGF-β proteins are known to be associated with a variety of disease states and antagonizing these proteins may be useful as therapeutic treatments for the disease states. In particular antagonizing several TGF-β proteins simultaneously may be particularly effective for treating certain diseases. The present invention provides a novel composition of matter and methods of using the composition of matter as a treatment for muscle-related and other disorders.
SUMMARY OF THE INVENTION The present invention provides a protein comprising human activin receptor IIB5
(designated ActRIIB5) polypeptides. In one embodiment, the protein comprises polypeptides having an amino acid sequence set forth in SEQ ID NO: 2. In another embodiment the protein comprises a polypeptide having an amino acid sequence with at least about 80% or greater identity to SEQ ID NO: 2, wherein the polypeptide is capable of binding myostatin, activin A, or GDF-Il. In another embodiment, the protein comprises a polypeptide having an amino acid sequence with at least about 80% or greater identity to SEQ ID NO: 2, wherein the C terminal of the polypeptide consists of the amino acid sequence set forth in SEQ ID NO: 3, and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-Il. In another embodiment, the protein comprises a polypeptide having an amino acid sequence with at least about 80% or greater identity to SEQ ID NO: 2, wherein the C terminal of the polypeptide has an amino acid sequence with at about least 80% or greater identity to SEQ ID NO: 3, and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-11. In one embodiment, the polypeptide lacks an ActRIIB5 signal sequence. In another embodiment, the protein comprises a polypeptide encoded by the polynucleotide having the sequence set forth in SEQ ID NO: 1.
In another embodiment, the protein of the present invention comprises ActRIHB5 polypeptides fused to one or more heterologous polypeptides. In one embodiment, the fused ActRIIB5 polypeptides lack a signal sequence. In one embodiment the ActRHB5 polypeptides are fused to the heterologous polypeptides via one or more linker sequences. In another embodiment the heterologous polypeptides comprise an Fc domain. In another embodiment, the Fc domain is connected to the ActRϋB5 polypeptides by at least one linker sequence. In another embodiment, ActRIIB5 polypeptides are attached to a non-protein earlier molecule such as a PEG molecule.
In another aspect the present invention provides an isolated nucleic acid molecule comprising a polynucleotide encoding an ActRIIB5 polypeptide. In one embodiment, the nucleic acid molecule comprises (a) a polynucleotide having the nucleic acid sequence set forth in SEQ ID NO: 1 or its complement. In another embodiment, the nucleic acid molecule comprises (b) a polynucleotide encoding a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 2 or its complement. In another embodiment, the nucleic acid molecule comprises (c) a polynucleotide which hybridizes to (a) or (b) under conditions of at least moderate stringency in about 50% formamide, 6X SSC at about 420C and washing conditions of about 600C, 0.5X SSC, 0.1% SDS, and wherein the encoded polypeptide comprises a C terminal having an amino acid sequence set forth in SEQ ID NO: 3, and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-Il. In another embodiment, the nucleic acid molecule comprises the polynucleotide of (c) wherein the C terminal of the encoded polypeptide has an amino sequence at least about 80% or greater identity to SEQ ID NO: 3, and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-11. In another embodiment, the nucleic acid molecule comprises a polynucleotide having at least about 80% or greater identity to SEQ ID NO: 1.
In another embodiment, the nucleic acid molecule of the present invention further comprises polynucleotides encoding at least one heterologous protein in frame with the polynucleotides encoding an ActRHB5 polypeptide. In one embodiment, nucleic acid molecule comprises polynucleotides encoding linker peptide sequences attaching the ActR.πB5 polypeptide to at least one heterologous protein. In another embodiment the heterologous protein is an Fc polypeptide. The present invention further provides a vector comprising the nucleic acid molecules set forth above, as well as a host cell genetically engineered to express the nucleic acid molecules described above, and methods for producing the ActRIIB5 protein.
The present invention further provides a composition containing the protein of the present invention. In one embodiment, the composition is a pharmaceutical composition containing the protein in admixture with a pharmaceutically acceptable carrier.
In another aspect, the present invention provides a method of inhibiting the TGF-β proteins myostatin, activin or GDF-Il activity in vitro and in vivo by contacting the proteins with an ActRIIB5 polypeptide. In another aspect the present invention provides a method of increasing lean muscle mass and strength, and a method of increasing the ratio of lean muscle to fat in a subject in need thereof by administering an effective amount of the composition containing ActRIIB5 proteins to the subject. In one embodiment of this method, the subject is a food animal.
In another aspect, the present invention provides a method of treating or preventing a muscle wasting disease in a subject suffering from such a disorder by administering a therapeutic composition containing an ActRHB5 protein to the subject. The muscle wasting disease includes or results from, but is not limited to, the following conditions: muscular dystrophy, amyotrophic lateral sclerosis, congestive obstructive pulmonary disease, chronic heart failure, cancer cachexia, chemical cachexia, HIV/AIDS, renal failure, uremia, rheumatoid arthritis, age-related sarcopenia, organ atrophy, carpal tunnel syndrome, androgen deprivation, and muscle-wasting due to inactivity such as prolonged bed rest, spinal chord injury, stroke, bone fracture, aging. The muscle wasting may also result from events such as weightlessness from space flight, insulin resistance, muscle wasting due to burns, androgen deprivation, and other disorders. In another aspect, the present invention provides a method of treating a disease correlated to expression of activin A. In one embodiment, the disease is cancer. In another aspect, the present invention provides a method of treating a metabolic disorder comprising administering a therapeutic composition to a subject in need of such treatment, wherein the metabolic disorder is selected from diabetes, obesity, impaired glucose tolerance, hyperglycemia, androgen deprivation, metabolic syndrome, and bone loss. In another aspect, the present invention provides a method of gene therapy comprising administering a vector encoding the ActRIIB5 proteins of the present invention protein to a subject in need thereof, wherein the vector is capable of expressing the ActRBIK polypeptide in the subject.
The present invention further provides a method of detecting and quantitating the
TGF-β proteins myostatin, GDF-11 or activin A by contacting these proteins with an ActRIIB5 polypeptide and detecting the polypeptide.
BRIEF DESCRIPTION OF THE FIGURES Figure 1 shows the results of Biacore® assay determination of EC50 for ActRIIB5/Fc compared to ActRUB-ECD/Fc.
Figure 2 shows the increase in body weight over time in C57B1/6 mice injected with AAV-activin A, AAV-promyostatin/Fc, AAV-ActRIIB5/Fc, AAV-ActRIIB-ECD/Fc and AAV-empty vector control.
Figure 3 shows the percentage of body weight change compared to the control at seven weeks post viral infection in C57B1/6 mice injected with AAV-activin A, AAV- ActRIIB5/Fc, AAV-ActRIIB-ECD/Fc, and AAV-promyostatin/Fc vector .
Figure 4A shows a decrease in body weight over time for Ay obese mice injected with AAV-ActRHB5/Fc compared with a control group of Ay obese mice injected with AAV-empty vectors over a period of about three months. Figure 4B shows a decrease in weekly food intake for the same group of AAV-ActRHB5 mice compared with the control group over the same period of time.
Figure 5A shows the change in lean body mass over time for Ay obese mice injected with AAV-ActRIIB5/Fc compared with a control group of Ay obese mice injected with AAV-empty vector over a period of about three months. Figure 5B shows a large decrease in fat mass for the AAV-ActRHB5/Fc mice compared with a control group of AAV-empty mice over the same period of time. DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a novel human activin receptor designated activin receptor IIB5 (ActRIIB5). This receptor is characterized by its ability to bind to three TGF-β proteins, myostatin (GDF-8), activin A, and GDF-11, and to inhibit the activities of these proteins.
As used herein the term "TGF-β family members" or "TGF-β proteins" refers to the structurally related growth factors of the transforming growth factor family including activins, and growth and differential factor (GDF) proteins (Kinglsey et al. Genes Dev. 8: 133-146 (1994), McPherron et al. Growth factors and cytokines in health and disease, VoI IB, D. LeRoith and CBondy. ed., JAI Press Inc., Greenwich, Conn, USA: pp 357-393). GDF-8, also referred to as myostatin, is now know to be a negative regulator of skeletal muscle tissue (McPherron et al. PNAS USA 94:12457-12461 (1997)). Myostatin is synthesized as an inactive preproprotein complex approximately 375 amino acids in length, having GenBank Accession No: AAB86694 for human. The precursor protein is activated by proteolytic cleavage at a tetrabasic processing site to produce an N-terminal inactive prodomain and an approximately 109 amino acid C-terminal protein which dimerizes to form a homodimer of about 25 kDa. This homodimer is the mature, biologically active protein (Zimmers et al., Science 296, 1486 (2002)). As used herein, the term "prodomain" or "propeptide" refers to the inactive N-terminal protein which is cleaved off to release the active C-terminal protein. As used herein the term "myostatin" or "mature myostatin" refers to the mature, biologically active C-terminal polypeptide, in monomer, dimer or other form, as well as biologically active fragments or related polypeptides including allelic variants, splice variants, and fusion peptides and polypeptides. The mature myostatin has been reported to have 100% sequence identity among many species including human, mouse, chicken, porcine, turkey, and rat (Lee et al., PNAS 98, 9306 (2001)). As used herein GDF-11 refers to the BMP protein having SwissPro accession number 095390, as well as variants and species homologs of that protein. GDF-11 has approximately 90% identity to myostatin at the amino acid level. GDF-11 is involved in the regulation of anterior/posterior patterning of the axial skeleton (McPherron et al, Natr Genet 22 (93): 260-264 (1999); Gamer et al, Dev. Biol. 208 (1), 222-232 (1999)) but postnatal functions are unknown. Activin A is the homodimer of the polypeptide chains BA. As used herein the term "activin A" refers to the activin protein having GenBank Accession No: NM_002192, as well as variants and species homologs of that protein.
Activin receptors
As used herein, the term "activin type II B receptor" (ActRHB) refers to the human precursor activin receptor having accession number NP_001097 for protein or any variants or homologs of this receptor. The human ActRIIB precursor polynucleotide and amino acid sequences are set forth in SEQ ID NO: 4 and 5 respectively. A variation of ActRIIB is set forth in SEQ ID NO: 6, wherein arginine at position 64 has been replaced with alanine. SEQ ID NO: 5 is referred to as the R form and SEQ ID NO: 6 is referred to as the A form. The extracellular domain of ActRIIB (ActREB-ECD) is represented by amino acids 1 through 124 of SEQ ID NO: 5 and 6. Additional murine isoforms for this receptor have been identified as muActRIIBl, muActRIIB2, muActRIIB3 and muActRIIB4.
The present invention provides a novel human activin receptor designated activin receptor IIB5 (ActRIIB5). This receptor is characterized by the C terminal sequence set forth in SEQ ID NO: 3. The cDNA of this receptor was isolated as described in Example 1, and was found to be missing the 152 nucleotide bases corresponding to exon 4. This receptor is further characterized as missing the transmembrane region encoded by exon 4 of the ActRIIB. This receptor is further characterized as being a soluble, secreted instead of a membrane bound receptor. The receptor is further characterized as having the ability to bind and inhibit the activity of any one of activin A, myostatin, or GDF-11.
The present invention provides isolated proteins which comprise ActIIB5 receptor polypeptides. As used herein the term "isolated" refers to a nucleic acid molecule purified to some degree from endogenous material. In one embodiment, the protein comprises ActREB5 polypeptides having the amino acid sequence set forth in SEQ ID NO: 2, and variants and derivatives of this polypeptide, which retain the activity of the polypeptide of SEQ ID NO: 2. In one embodiment, the protein comprises a polypeptide having at least about 80% identity, at least about 85% identity, at least about 90% identity, at least about 95% identity, at least about 98% identity, or at least about 99% identity to the amino acid sequence set forth in SEQ ID NO: 2, wherein the polypeptide retains the activity of the polypeptide of SEQ ID NO: 2. In another embodiment, the protein comprises the ActRIIB5 polypeptides described above wherein the polypeptide has a C terminal comprising the amino acid sequence set forth in SEQ ID NO: 3, and wherein the polypeptide retains the activity of the polypeptide of SEQ ID NO: 2. In another the embodiment, the protein comprises the ActRIIB5 polypeptides described above wherein the C terminal has an amino acid sequence having at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or at least about 99% identity to SEQ ID NO: 3, wherein the polypeptide retains the activity of the polypeptide of SEQ ID NO: 2. In one embodiment, the ActRIIB5 polypeptide lacks a signal sequence of SEQ ID NO: 2, for example, amino acids 1 to 17 of SEQ ID NO: 2. As used herein the term "variant" refers a polypeptide having one or more amino acid inserted, deleted or substituted into the original amino acid sequence, but having a sequence which remains substantially similar to SEQ ID NO: 2, and which retain the activities of ActRϋB5 polypeptides SEQ ID NO: 2. As used herein fragments of the polypeptides which retain the activity of the polypeptides are included in the term "variants". For the purposes of the present invention, "substantially similar" is at least about 80% identical to the amino acid sequence, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical to the amino acid sequence set forth in SEQ ID NO: 2, and retain the biological activities of the polypeptide of SEQ ID NO: 2. Amino acid substitutions which are conservative substitutions are unlikely to affect biological activity are considered identical for purposes of this invention and include the following: Ala for Ser, VaI for lie, Asp for GIu, Thr for Ser, Ala for GIy, Ala for Thr, Ser for Asn, Ala for VaI, Ser for GIy, Tyr for Phe, Ala for Pro, Lys for Arg, Asp for Asn, Leu for He, Leu for VaI, Ala for GIu, Asp for GIy, and the reverse. (See, for example, Neurath et al., The Proteins, Academic Press, New York (1979)). Additional information regarding phenotypically silent amino acid exchanges can be found in Bowie et al., 1999, Science 247:1306-1310. Amino acid substitutions also include substitutions in SEQ ID NO: 2 of non- naturally occurring amino acids, D-amino acids, altered amino acids, or peptidomimetics. Amino acid substitutions also includes non-conservative amino acid substitutions, such as neutral hydrophobic for neutral polar, acidic for basic, and other class substitutions, provided that the substituted polypeptides retain the activities of the polypeptides having the amino acid sequence in SEQ ID NO: 2. Variants further include modifications to the C and N termini which arise from processing due to expression in various cell types such as mammalian cells, E. coli, yeasts and other recombinant host cells. Variants further include polypeptide fragments and polypeptides comprising inactivated N-glycosylation site(s), inactivated protease processing site(s), or conservative amino acid substitution(s), of the polypeptide sequence set forth in SEQ ID NO: 2.
Identity and similarity of related peptides and polypeptides can be readily calculated by known methods. Such methods include, but are not limited to, those described in
Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York (1988); Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York (1993); Computer Analysis of Sequence Data, Part 1, Griffin, A.M., and Griffin, H.G., eds. Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press (1987); Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York (1991); and Carillo et al., SIAM J. Applied Math., 48:1073 (1988). Methods of determining the relatedness or percent identity of two polypeptides are designed to give the largest match between the sequences tested. Preferred computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package, including GAP (Devereux et al., Nucl. Acid. Res., 12:387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI, BLASTP, BLASTN, and FASTA (Altschul et al., J. MoI. Biol., 215:403-410 (1990)). The BLASTX program is publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul et al. NCB/NLM/NIH Bethesda, MD 20894; Altschul et al., supra (1990)). The well-known Smith Waterman algorithm may also be used to determine identity.
As used herein the term "derivative" of the ActRIIB5 polypeptides refers to the attachment of at least one additional chemical moiety, or at least one additional polypeptide to form covalent or aggregate conjugates such as glycosyl groups, lipids, acetyl groups, or C- terminal or N-terminal fusion proteins, conjugation to PEG molecules, and other modifications which are described more fully below.
As used herein, the term an "ActRIIB5 polypeptide activity" or "a biological activity of ActRIIB5 polypeptide" refers to one or more in vitro or in vivo activities of the ActRIIB5 polypeptides including but not limited to those demonstrated in the Examples below. Activities of the ActRHB5 polypeptides include, but are not limited to, the ability to bind to myostatin or activin A or GDF-Il, the ability to reduce or neutralize an activity of myostatin or activin A or GDF-11. For example, pMARE C2C12 cell-based assay described in Example 3 below measures activin A neutralizing activity, myostatin neutralizing activity, and GDF-11 neutralizing activity. In vivo activities include but are not limited to increasing body weight, increasing lean muscle mass, and decreasing fat mass as demonstrated in animal models below. Biological activities further include reducing or preventing cachexia caused by certain types of tumors, and preventing metastasis of certain tumor cells. Further discussion of ActRIIB5 polypeptide activities is provided below.
The proteins of the present invention further comprise heterologous proteins attached to the ActRIIB5 polypeptide either directly or through a linker sequence to form a fusion protein. As used herein the term "fusion protein" refers to a protein having a heterologous polypeptide attached via recombinant DNA techniques. Heterologous proteins include but are not limited to Fc polypeptides, his tags, and leucine zipper domains to promote oligomerization and stabilization of the ActRIIB5 polypeptides as described in, for example, WO 00/29581, which is herein incorporated by reference. As used herein the term "Fc" or "Fc polypeptide" refers to polypeptides containing the Fc domain of an antibody. The "Fc domain" refers to the portion of the antibody that is responsible for binding to antibody receptors on cells. An Fc domain can contain one, two or all of the following: the constant heavy 1 domain (CH1), the constant heavy 2 domain (CH2), the constant heavy 3 domain (CH3), and the hinge region. The Fc domain of the human IgGl, for example, contains the CH2 domain, and the CH3 domain and hinge region, but not the CH1 domain. Truncated forms of such polypeptides containing the hinge region that promotes dimerization are also included. See, for example, C. A. Hasemann and J. Donald Capra, Immunoglobins: Structure and Function, in William E. Paul, ed. One Fc is a fully human Fc which may originate from any of the immunoglobulins, such as IgGl and IgG2. However, Fc molecules that are partially human, or originate from non-human species are also included herein. Fc molecules may be made up of monomelic polypeptides that may be linked into dimeric or multimeric forms by covalent (i.e., disulfide bonds) and non-covalent association. The number of intermolecular disulfide bonds between monomeric subunits of native Fc molecules ranges from 1 to 4 depending on class (e.g., IgG, IgA, IgE) or subclass (e.g., IgGl, IgG2, IgG3,
IgAl, IgGA2). The term "Fc" as used herein is used to refer to the monomeric, dimeric, and multimeric forms. As used herein, the term "Fc variant" refers to a modified form of a native Fc sequence. Fc variants may be constructed for example, by substituting or deleting residues, inserting residues or truncating portions containing the site. The inserted or substituted residues may also be altered amino acids, such as peptidomimetics or D-amino acids.
The proteins of the present invention can optionally further comprise a "linker" group. Linkers serve primarily as a spacer between a polypeptide and a second heterologous protein or other type of fusion or between two or more ActRIIB5 polypeptides. In one embodiment, the linker is made up of amino acids linked together by peptide bonds, preferably from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids. One or more of these amino acids may be glycosylated, as is understood by those in the art. In one embodiment, the 1 to 20 amino acids are selected from glycine, alanine, proline, asparagine, glutamine, and lysine.
Preferably, a linker is made up of a majority of amino acids that are sterically unhindered, such as glycine and alanine. Exemplary linkers are polyglycines (particularly (Gly)s, (GIy)8, poly(Gly-Ala), and polyalanines.
The linkers of the present invention are also non-peptide linkers. For example, alkyl linkers such as -NH-(CH2)S-C(O)-, wherein s = 2-20 can be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C1-C6) lower acyl, halogen (e.g., Cl, Br), CN, NH2, phenyl, etc.
The proteins of the present invention can also be attached to a non-protein molecule for the purpose of conferring desired properties such as reducing degradation and/or increasing half-life, reducing toxicity, reducing immunogenicity, and/or increasing the biological activity of the ActRIDB polypeptides. Exemplary molecules include but are not limited to linear polymers such as polyethylene glycol (PEG), polylysine, a dextran; a lipid; a cholesterol group (such as a steroid); a carbohydrate, or an oligosaccharide molecule.
In another aspect, the present invention provides isolated nucleic acid molecules comprising polynucleotides encoding the ActRIIB5 polypeptides of the present invention. As used herein the term "isolated" refers to nucleic acid molecules purified to some degree from endogenous material. In one embodiment, the nucleotide acid molecule of the present invention comprises a polynucleotide encoding SEQ DD NO: 2. Due to the known degeneracy of the genetic code, wherein more than one codon can encode the same amino acid, a DNA sequence can vary from that shown in SEQ ID NO: 1, and still encode a polypeptide having the amino acid sequence of SEQ ID NO: 2. Such variant DNA sequences can result from silent mutations occurring during production, or can be the product of deliberate mutagenesis of SEQ ID NO: 2. In another embodiment the nucleic acid molecule comprises a polynucleotide encoding a polypeptide having at least about 80% identity to SEQ ID NO: 2, at least about 90% identity to SEQ ID NO: 2, at least about 95% identity to SEQ ED NO: 2, at least about 99% identity to SEQ ID NO: 2.
The percent identity may be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two nucleic acid sequences can be determined by comparing sequence information using the GAP computer program, version 6.0 described by (Devereux et al., Nucl. Acids Res., 12:387 (1984)) and available from the University of Wisconsin Genetics Computer Group (UWGCG). The preferred default parameters for the GAP program include: (1) a comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of (Gribskov and Burgess, Nucl. Acids Res., 14:6745 (1986)), as described by (Schwartz and Dayhoff, eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 353-358 (1979)); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps. Other programs used by one skilled in the art of sequence comparison may also be used. In another embodiment the nucleic acid molecule of the present invention comprises a polynucleotide having the polynucleotide sequence set forth in SEQ ID NO: 1, or the complementary strand of SEQ ID NO: 1. In another embodiment, the present invention provides nucleic acid molecules which hybridize under stringent or moderate conditions with the polypeptide-encoding regions of SEQ ID NO: 1, wherein the encoded polypeptide comprises a C terminal amino acid sequence as set forth in SEQ ID NO: 3, and wherein the encoded polypeptide maintains an activity of ActRIIB5 polypeptides.
In another embodiment, the present invention provides nucleic acid molecules which hybridize under stringent or moderate conditions with the polypeptide-encoding regions of
SEQ ID NO: 1, wherein the encoded polypeptide comprises a C terminal amino acid sequence having at least about 80% identity, at least about 85% identity, at least about 90% identity, at least about 95% identity, at least about 98% identity, at least about 99% identity to the amino acid sequence set forth in SEQ ID NO: 3, and wherein the encoded polypeptide has at least one activity of ActRϋB5 polypeptides.
As used herein, conditions of moderate stringency can be readily determined by those having ordinary skill in the art based on, for example, the length of the DNA. The basic conditions are set forth by (Sambrook et al. Molecular Cloning: A Laboratory Manual, 2ed. Vol. 1, pp. 1.101-104, Cold Spring Harbor Laboratory Press, (1989)), and include use of a prewashing solution for the nitrocellulose filters 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0), hybridization conditions of about 50% formamide, 6X SSC at about 42°C (or other similar hybridization solution, such as Stark's solution, in about 50% formamide at about 420C), and washing conditions of about 600C, 0.5X SSC, 0.1% SDS. Conditions of high stringency can also be readily determined by the skilled artisan based on, for example, the length of the DNA. Generally, such conditions defined as "highly stringent conditions" for hybridization and washing are 0.015 M sodium chloride, 0.0015 M sodium citrate at 65-680C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 50% formamide at 420C. Other conditions include hybridizing and washing at approximately 68°C, 0.2X SSC, 0.1% SDS. The skilled artisan will recognize that the temperature and wash solution salt concentration can be adjusted as necessary according to factors such as the length of the sequence. See Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory, 1989); Anderson et al., Nucleic Acid Hybridization: A Practical Approach, Ch.4 (IRL Press Limited).
Nucleic acid molecules of the invention include DNA in both single-stranded and double-stranded form, as well as the RNA complement thereof. DNA includes, for example, cDNA, genomic DNA, synthetic DNA, DNA amplified by PCR, and combinations thereof. Genomic DNA may be isolated by conventional techniques, such as by using the cDNA of SEQ ID NO:1, or a suitable fragment thereof, as a probe. Genomic DNA encoding ActRIIB5 polypeptides is obtained from genomic libraries which are available for a number of species. Synthetic DNA is available from chemical synthesis of overlapping oligonucleotide fragments followed by assembly of the fragments to reconstitute part or all of the coding regions and flanking sequences. RNA may be obtained from procaryotic expression vectors which direct high-level synthesis of mRNA, such as vectors using T7 promoters and RNA polymerase. cDNA is obtained from libraries prepared from mRNA isolated from various tissues that express ActRIIB5. The DNA molecules of the invention include full length genes as well as polynucleotides and fragments thereof. The full length gene may also include sequences encoding the N-terminal signal sequence.
The invention also provides methods of producing and identifying ActRHB5 polynucleotides. The well-known polymerase chain reaction (PCR) procedure may be employed to isolate and amplify a DNA sequence encoding a desired protein fragment.
Oligonucleotides that define the desired termini of the DNA fragment are employed as 5' and
3' primers. The oligonucleotides may additionally contain recognition sites for restriction endonucleases, to facilitate insertion of the amplified DNA fragment into an expression vector. PCR techniques are described in Saiki et al., Science, 239:487 (1988); Wu et al.,
Recombinant DNA Methodology, eds., Academic Press, Inc., San Diego, pp. 189-196 (1989); and Innis et al., PCR Protocols: A Guide to Methods and Applications, eds., Academic Press,
Inc. (1990).
In another aspect of the present invention, expression vectors containing the nucleic acid sequences are also provided, and host cells transformed with such vectors and methods of producing the ActRIIB5 polypeptides are also provided. The term "expression vector" refers to a plasmid, phage, virus or vector for expressing a polypeptide from a polynucleotide sequence. Vectors for the expression of ActRH5 polypeptides contain at a minimum sequences required for vector propagation and for expression of the cloned insert. An expression vector comprises a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a sequence that encodes ActRIIB5 polypeptides to be transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. These sequences may further include a selection marker. Vectors suitable for expression in host cells are readily available and the nucleic acid molecules are inserted into the vectors using standard recombinant DNA techniques. Such vectors can include promoters which function in specific tissues, and viral vectors for the expression of ActRIIB5 in targeted human or animal cells. Some exemplary expression vectors suitable for expression of ActRIIB5 include, but are not limited to, pDSRa, (described in WO 90/14363, herein incorporated by reference) and its derivatives, containing ActRHB5 polynucleotides, and pDC323 or pDC324 vectors (described in Bianchi et al, Biotech and Bioengineering, VoI 84(4):439-444 (2003)) containing ActRII5 polynucleotides, as well as additional suitable vectors known in the art or described below, are provided by the present invention.
The application further provides methods of making ActRIIB5 polypeptides and proteins. A variety of other expression/host systems may be utilized. These systems include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transfected with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with bacterial expression vectors (e.g., Ti or pBR322 plasmid); or animal cell systems. Mammalian cells useful in recombinant protein productions include but are not limited to VERO cells, HeLa cells, Chinese hamster ovary (CHO) cell lines, COS cells (such as COS-7), W138, BHK, HepG2, 3T3, RIN, MDCK, A549, PC12, K562 and 293 cells. Mammalian host cells may be preferred '. when post-translational modifications such as glycosylation and polypeptide processing are important for activity. Mammalian expression allows for the production of secreted or soluble polypeptides which may be recovered from the growth medium.
Using an appropriate host- vector system, ActRIIB5 proteins and polypeptides are produced recombinantly by culturing a host cell transformed with an expression vector containing the nucleic acid molecules of the present invention under conditions allowing for production. Transformed cells can be used for long-term, high-yield protein production. Once such cells are transformed with vectors that contain selectable markers as well as the desired expression cassette, the cells can be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The selectable marker is designed to allow growth and recovery of cells that successfully express the introduced sequences. Resistant clumps of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell line employed. An overview of expression of recombinant proteins is found in Methods of Enzymology, v. 185, Goeddell, D.V., ed., Academic Press (1990).
In some cases, such as in expression using procaryotic systems, the expressed polypeptides of this invention may need to be "refolded" and oxidized into a proper tertiary structure and disulfide linkages generated in order to be biologically active. Refolding can be accomplished using a number of procedures well known in the art. Such methods include, for example, exposing the solubilized polypeptide to a pH usually above 7 in the presence of a chaotropic agent. The selection of chaotrope is similar to the choices used for inclusion body solubilization, however a chaotrope is typically used at a lower concentration. Exemplary chaotropic agents are guanidine and urea. In most cases, the refolding/oxidation solution will also contain a reducing agent plus its oxidized form in a specific ratio to generate a particular redox potential which allows for disulfide shuffling to occur for the formation of cysteine bridges. Some commonly used redox couples include cysteine/cystamine, glutathione/dithiobisGSH, cupric chloride, dithiothreitol DTT/dithiane DTT, and 2- mercaptoethanol (bME)/dithio-bME. In many instances, a co-solvent may be used to increase the efficiency of the refolding. Commonly used cosolvents include glycerol, polyethylene glycol of various molecular weights, and arginine.
The proteins and polypeptides of the present can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart and Young (supra); Tarn et al., J Am Chem Soc, 105:6442, (1983); Merrifield, Science 232:341-347 (1986); Barany and Merrifield, The Peptides, Gross and Meienhofer, eds, Academic Press, New York, 1-284; Barany et al., Int J Pep Protein Res, 30:705
It is necessary to purify the proteins and polypeptides of the present invention. Protein purification techniques are well known to those of skill in the art. These techniques involve, at one level, the crude fractionation of the proteinaceous and non-proteinaceous fractions. Having separated the peptide polypeptides from other proteins, the peptide or polypeptide of interest can be further purified using chromatographic and electrophoretic techniques to achieve partial or complete purification (or purification to homogeneity). Analytical methods particularly suited to the preparation of polypeptides or the present invention are ion-exchange chromatography, exclusion chromatography; polyacrylamide gel electrophoresis; isoelectric focusing. A particularly efficient method of purifying peptides is fast protein liquid chromatography or even HPLC. The term "isolated polypeptide" or "purified polypeptide" as used herein, is intended to refer to a composition, isolatable from other components, wherein the polypeptide is purified to any degree relative to its naturally- obtainable state. A purified polypeptide therefore also refers to a polypeptide that is free from the environment in which it may naturally occur. Generally, "purified" will refer to a polypeptide composition that has been subjected to fractionation to remove various other components, and which composition substantially retains its expressed biological activity. Where the term "substantially purified" is used, this designation will refer to a peptide or polypeptide composition in which the polypeptide or peptide forms the major component of the composition, such as constituting about 50%, about 60%, about 70%, about 80%, about 90%, about 95% or more of the proteins in the composition.
Various methods for quantifying the degree of purification of polypeptide will be known to those of skill in the art in light of the present disclosure. These include, for example, determining the specific binding activity of an active fraction, or assessing the amount of peptide or polypeptide within a fraction by SDS/PAGE analysis. A preferred method for assessing the purity of a polypeptide fraction is to calculate the binding activity of the fraction, to compare it to the binding activity of the initial extract, and to thus calculate the degree of purification, herein assessed by a "-fold purification number." The actual units used to represent the amount of binding activity will, of course, be dependent upon the particular assay technique chosen to follow the purification and whether or not the polypeptide or peptide exhibits a detectable binding activity.
Various techniques suitable for use in purification will be well known to those of skill in the art. These include, for example, precipitation with ammonium sulphate, PEG, antibodies (immunoprecipitation) and the like or by heat denaturation, followed by centrifugation; chromatography steps such as affinity chromatography (e.g., Protein-A- Sepharose), ion exchange, gel filtration, reverse phase, hydroxylapatite and affinity chromatography; isoelectric focusing; gel electrophoresis; and combinations of these techniques. As is generally known in the art, it is believed that the order of conducting the various purification steps may be changed, or that certain steps may be omitted, and still result in a suitable method for the preparation of a substantially purified polypeptide.
Antibodies
The present invention further includes antibodies which specifically bind to the ActRIIB5 receptor polypeptides of the present invention. As used herein the term "specifically binds" refers to antibodies having a binding affinity (Ka) for ActRϋB5 polypeptides of 106 M"1 or greater. As used herein, the term "antibody" refers to intact antibodies including polyclonal antibodies (see, for example Antibodies: A Laboratory Manual, Harlow and Lane (eds), Cold Spring Harbor Press, (1988)), and monoclonal antibodies (see, for example, U.S. Patent Nos. RE 32,011, 4,902,614, 4,543,439, and 4,411,993, and Monoclonal Antibodies: A New Dimension in Biological Analysis, Plenum Press, Kennett, McKearn and Bechtol (eds.) (1980)). As used herein, the term "antibody" also refers to a fragment of an antibody such as F(ab), F(ab'), F(ab')2, Fv, Fc, and single chain antibodies which are produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. The term "antibody" also refers to bispecific or bifunctional antibodies, which are an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. (See Songsivilai et al, Clin. Exp. Immunol. 79:315-321 (1990), Kostelny et al., J. Immunol.l48:1547-1553 (1992)). As used herein the term "antibody" also refers to chimeric antibodies, that is, antibodies having a human constant antibody immunoglobin domain coupled to one or more non-human variable antibody immunoglobin domain, or fragments thereof (see, for example, U.S. Patent No. 5,595,898 and U.S. Patent No. 5,693,493). Antibodies also refers to "humanized" antibodies (see, for example, U.S. Pat. No. 4,816,567 and WO 94/10332), minibodies (WO 94/09817), maxibodies, and antibodies produced by transgenic animals, in which a transgenic animal containing a proportion of the human antibody producing genes but deficient in the production of endogenous antibodies are capable of producing human antibodies (see, for example, Mendez et al., Nature Genetics 15:146-156 (1997), and U.S. Patent No. 6,300,129). The term "antibodies" also includes multimeric antibodies, or a higher order complex of proteins such as heterdimeric antibodies, and anti-idiotypic antibodies. "Antibodies" also includes anti-idiotypic antibodies. The antibodies against ActRHB5 can be used, for example, to identify and quantitate ActRHB5 in vitro and in vivo.
Pharmaceutical Compositions
Pharmaceutical compositions containing the ActRIIB5 polypeptides and proteins of the present invention are also provided. Such compositions comprise a therapeutically or prophylactically effective amount of the polypeptide in admixture with pharmaceutically acceptable materials, and physiologically acceptable formulation materials. The pharmaceutical composition may contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition. Suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine or lysine); antimicrobials; antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates, other organic acids); bulking agents (such as mannitol or glycine), chelating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin); fillers; monosaccharides; disaccharides and other carbohydrates (such as glucose, mannose, or dextrins); proteins (such as serum albumin, gelatin or immunoglobulins); coloring; flavoring and diluting agents; emulsifying agents; hydrophilic polymers (such as polyvinylpyrrolidone); low molecular weight polypeptides; salt-forming counterions (such as sodium); preservatives (such as benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide); solvents (such as glycerin, propylene glycol or polyethylene glycol); sugar alcohols (such as mannitol or sorbitol); suspending agents; surfactants or wetting agents (such as pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate 80, triton, tromethamine, lecithin, cholesterol, tyloxapal); stability enhancing agents (sucrose or sorbitol); tonicity enhancing agents (such as alkali metal halides (preferably sodium or potassium chloride, mannitol sorbitol); delivery vehicles; diluents; excipients and/or pharmaceutical adjuvants. (Remington's Pharmaceutical Sciences, 18th Edition, A.R. Gennaro, ed., Mack Publishing Company, 1990).
The optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format, and desired dosage. See for example, Remington's Pharmaceutical Sciences, supra. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the polypeptide. For example, suitable compositions may be water for injection, physiological saline solution for parenteral administration.
The primary vehicle or earlier in a pharmaceutical composition may be either aqueous or non-aqueous in nature. For example, a suitable vehicle or carrier may be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles. Other exemplary pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, which may further include sorbitol or a suitable substitute therefore. In one embodiment of the present invention, compositions may be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (Remington's Pharmaceutical Sciences, supra) in the form of a lyophilized cake or an aqueous solution. Further, the therapeutic composition may be formulated as a lyophilizate using appropriate excipients such as sucrose.
The formulations can be delivered in a variety of methods, for example, by inhalation therapy, orally, or by injection. When parenteral administration is contemplated, the therapeutic compositions for use in this invention may be in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired polypeptide in a pharmaceutically acceptable vehicle. A particularly suitable vehicle for parenteral injection is sterile distilled water in which a polypeptide is formulated as a sterile, isotonic solution, properly preserved. Yet another preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (polylactic acid, polyglycolic acid), beads, or liposomes, that provides for the controlled or sustained release of the product which may then be delivered via a depot injection. Hyaluronic acid may also be used, and this may have the effect of promoting sustained duration in the circulation. Other suitable means for the introduction of the desired molecule include implantable drug delivery devices.
In another aspect, pharmaceutical formulations suitable for injectable administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions. In another embodiment, a pharmaceutical composition may be formulated for inhalation. Inhalation solutions may also be formulated with a propellant for aerosol delivery. In yet another embodiment, solutions may be nebulized. Pulmonary administration is further described in PCT Application No. PCT/US94/001875, which describes pulmonary delivery of chemically modified proteins.
It is also contemplated that certain formulations may be administered orally. In one embodiment of the present invention, molecules that are administered in this fashion can be formulated with or without those carriers customarily used in the compounding of solid dosage forms such as tablets and capsules. For example, a capsule may be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized. Additional agents can be included to facilitate absorption of the therapeutic molecule. Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders may also be employed. Pharmaceutical compositions for oral administration can also be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.
Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross- linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate. Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.
Pharmaceutical preparations that can be used orally also include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
Additional pharmaceutical compositions will be evident to those skilled in the art, including formulations involving polypeptides in sustained- or controlled-delivery formulations. Techniques for formulating a variety of other sustained- or controlled-delivery means, such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See for example, PCT/US93/00829 that describes controlled release of porous polymeric microparticles for the delivery of pharmaceutical compositions. Additional examples of sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices may include polyesters, hydrogels, polylactides (U.S. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., Biopolymers, 22:547-556 (1983), poly (2-hydroxyethyl-methacrylate) (Langer et al., J. Biomed. Mater. Res., 15:167-277, (1981); Langer et al., Chem. Tech.,12:98-105(1982)), ethylene vinyl acetate (Langer et al., supra) or poly-D(-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomes, which can be prepared by any of several methods known in the art. See e.g., Eppstein et al., PNAS (USA), 82:3688 (1985); EP 36,676; EP 88,046; EP 143,949.
The pharmaceutical composition to be used for in vivo administration typically must be sterile. This may be accomplished by filtration through sterile filtration membranes.
Where the composition is lyophilized, sterilization using this method may be conducted either prior to or following lyophilization and reconstitution. The composition for parenteral administration may be stored in lyophilized form or in solution. In addition, parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
Once the pharmaceutical composition has been formulated, it may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, or a dehydrated or lyophilized powder. Such formulations may be stored either in a ready-to-use form or in a form (e.g., lyophilized) requiring reconstitution prior to administration.
In a specific embodiment, the present invention is directed to kits for producing a single-dose administration unit. The kits may each contain both a first container having a dried protein and a second container having an aqueous formulation. Also included within the scope of this invention are kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes).
An effective amount of a pharmaceutical composition to be employed therapeutically will depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment will thus vary depending, in part, upon the molecule delivered, the indication for which the polypeptide is being used, the route of administration, and the size (body weight, body surface or organ size) and condition (the age and general health) of the patient. Accordingly, the clinician may titer the dosage and modify the route of administration to obtain the optimal therapeutic effect. A typical dosage may range from about 0.1mg/kg to up to about 100 mg/kg or more, depending on the factors mentioned above. Polypeptide compositions may be preferably injected or administered intravenously. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation. The frequency of dosing will depend upon the pharmacokinetic parameters of the polypeptide in the formulation used. Typically, a composition is administered until a dosage is reached that achieves the desired effect. The composition may therefore be administered as a single dose, or as multiple doses (at the same or different concentrations/dosages) over time, or as a continuous infusion. Further refinement of the appropriate dosage is routinely made. Appropriate dosages may be ascertained through use of appropriate dose-response data.
The route of administration of the pharmaceutical composition is in accord with known methods, e.g. orally, through injection by intravenous, intraperitoneal, intracerebral (intra-parenchymal), intracerebro ventricular, intramuscular, intra-ocular, intraarterial, intraportal, intralesional routes, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, or intraperitoneal; as well as intranasal, enteral, topical, sublingual, urethral, vaginal, or rectal means, by sustained release systems or by implantation devices. Where desired, the compositions may be administered by bolus injection or continuously by infusion, or by implantation device. Alternatively or additionally, the composition may be administered locally via implantation of a membrane, sponge, or another appropriate material on to which the desired molecule has been absorbed or encapsulated. Where an implantation device is used, the device may be implanted into any suitable tissue or organ, and delivery of the desired molecule may be via diffusion, timed-release bolus, or continuous administration.
In some cases, the ActRϋB5 polypeptides of the present invention can be delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein, to express and secrete the polypeptide. Such cells may be animal or human cells, and may be autologous, heterologous, or xenogeneic. Optionally, the cells may be immortalized. In order to decrease the chance of an immunological response, the cells may be encapsulated to avoid infiltration of surrounding tissues. The encapsulation materials are typically biocompatible, semi-permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues.
ActRHB5 gene therapy in vivo is also envisioned wherein a nucleic acid molecule encoding ActRIIB5, or a variant or derivative of ActRIIB5 is introduced directly into the subject. For example, a nucleic acid sequence encoding an ActRϋB5 is introduced into target cells via local injection of a nucleic acid construct with or without an appropriate delivery vector, such as an adeno-associated vims vector. Alternative viral vectors include, but are not limited to, retroviruses, adenovirus, herpes simplex, virus and papilloma virus vectors. Physical transfer of the virus vector may be achieved in vivo by local injection of the desired nucleic acid construct or other appropriate delivery vector containing the desired nucleic acid sequence, liposome-mediated transfer, direct injection (naked DNA), or microparticle bombardment (gene-gun).
Uses of ActRIIB5 Compositions The present invention provides methods and compositions for reducing or neutralizing the amount or activity of myostatin, activin A, or GDF-11 in vivo and in vitro by contacting the proteins with an ActRIIB5 protein. The Examples below demonstrate that the ActRIIB5 proteins have a high affinity for myostatin, activin A, and GDF-11, and are capable of reducing and inhibiting the biological activities of myostatin, activin A and GDF-11. The Examples demonstrate that ActRIIB5 have a higher activity compared with ActRIIB-ECD as demonstrated by the IC50 values in Example 3, and the biological response in animals is superior for the ActRIIB5 animals compared with the ActRIIB-ECD animals as demonstrated in Examples 5 and 6.
In one aspect, the present invention provides methods and reagents for treating myostatin-related and/or activin A related disorders in a subject in need thereof by administering an effective dosage of an ActRIIB5 composition to the subject. As used herein the term "subject" refers to any animal, such as mammals including humans.
In another aspect, the present invention provides for the use of the ActRIIB proteins in the preparation of a pharmaceutical composition for the treatment of muscle- wasting, metabolic, and activin A related disorders listed below. In another aspect, the present invention provides for the use of ActRIIB nucleic acids and vectors in the preparation of a pharmaceutical composition for the treatment of muscle- wasting, metabolic, and activin A related disorders listed below.
The compositions of the present invention have been shown to increase lean muscle mass as a percentage of body weight and decreases fat mass as percentage of body weight in animal models as shown in the Examples below.
The disorders that can be treated by an ActRIIB5 composition include but are not limited to various forms of muscle wasting, as well as metabolic disorders such as diabetes and related disorders, and bone degenerative diseases such as osteoporosis. Muscle wasting disorders include dystrophies such as Duchenne's muscular dystrophy, progressive muscular dystrophy, Becker's type muscular dystrophy, Dejerine-Landouzy muscular dystrophy, Erb's muscular dystrophy, and infantile neuroaxonal muscular dystrophy. Additional muscle wasting disorders arise from chronic diseases or disorders such as amyotrophic lateral sclerosis, congestive obstructive pulmonary disease, cancer, AIDS, renal failure, organ atrophy, androgen deprivation, and rheumatoid arthritis.
Over-expression of myostatin may contribute to cachexia, a severe muscle and fat wasting syndrome. In one example, serum and intramuscular concentrations of myostatin- immunoreactive protein was found to be increased in men exhibiting AIDS-related muscle wasting and was inversely related to fat-free mass (Gonzalez-Cadavid et al., PNAS USA 95: 14938-14943 (1998)). Myostatin levels have also been shown to increase in response to burns injuries, resulting in a catabolic muscle effect (Lang et al, FASEB J 15, 1807-1809 (2001)). Additional conditions resulting in muscle wasting may arise from inactivity due to disability such as confinement in a wheelchair, prolonged bed rest due to stroke, illness, spinal chord injury, bone fracture or trauma, and muscular atrophy in a microgravity environment (space flight). For example, plasma myostatin immunoreactive protein was found to increase after prolonged bed rest (Zachwieja et al. J Gravit Physiol. 6(2): 11(1999). It was also found that the muscles of rats exposed to a microgravity environment during a space shuttle flight expressed an increased amount of myostatin compared with the muscles of rats which were not exposed (Lalani et al., LEndocrin 167 (3):417-28 (2000)).
In addition, age-related increases in fat to muscle ratios, and age-related muscular atrophy appear to be related to myostatin. For example, the average serum myostatin- immunoreactive protein increased with age in groups of young (19-35 yr old), middle-aged (36-75 yr old), and elderly (76-92 yr old) men and women, while the average muscle mass and fat-free mass declined with age in these groups (Yarasheski et al. J Nutr Aging 6(5):343-8 (2002)). In addition, myostatin has now been found to be expressed at low levels in heart muscle and expression is upregulated after cardiomyocytes after infarct (Sharma et al., J Cell Physiol. 180 (l):l-9 (1999)). Therefore, reducing myostatin levels in the heart muscle may improve recovery of heart muscle after infarct.
Myostatin also appears to influence metabolic disorders including type 2 diabetes, noninsulin-dependent diabetes mellitus, hyperglycemia, and obesity. For example, lack of myostatin has been shown to improve the obese and diabetic phenotypes of two mouse models (Yen et al. supra). It has been shown in the Examples below that administering AAV- ActRHB5 vectors increases the muscle to fat ratio in an animal, in particular for obese animal models. Therefore, decreasing fat composition by administering the compositions of the present invention will improve diabetes, obesity, and hyperglycemic conditions in animals. In addition the Examples below and Figure 4B demonstrates that compositions containing ActRϋB5 may decrease food intake in obese individuals.
In addition, increasing muscle mass by reducing myostatin levels may improve bone strength and reduce osteoporosis and other degenerative bone diseases. It has been found, for example, that myostatin-deficient mice showed increased mineral content and density of the mouse humerus and increased mineral content of both trabecular and cortical bone at the regions where the muscles attach, as well as increased muscle mass (Hamrick et al. Calcif
Tissue Int 71(l):63-8 (2002)). In addition, the ActIIBR compositions of the present invention can be used to treat the effects of androgen deprivation such as androgen deprivation therapy used for the treatment of prostate cancer.
The present invention also provides methods and compositions for increasing muscle mass in food animals by administering an effective dosage of the ActRIIB5 proteins to the animal. Since the mature C-terminal myostatin polypeptide is identical in all species tested, ActRIIB5 proteins would be expected to be effective for increasing muscle mass and reducing fat in any agriculturally important species including cattle, chicken, turkeys, and pigs.
The ActRHB5 proteins and compositions of the present invention also antagonizes the activity of activin A. Activin A is known to be expressed in certain types of cancers, particularly gonadal tumors such as ovarian carcinomas, and to cause severe cachexia. (Ciprano et al. Endocrinol 141 (7):2319-27 (2000), Shou et al., Endocrinol 138 (ll):5000-5 (1997); Coerver et al, MoI Endocrinol 10(5):534-43 (1996); Ito et al. British J Cancer
82(8):1415-20 (2000), Lambert-Messerlian, et al, Gynecologic Oncology 7491):93-7 (1999). Example 4 below shows that expression of activin A in the animal models results in a severe cachexia. Expression of the ActRIIB5/Fc in the animals counters that cachexia, as shown in Examples 5 and 6. Overexpression of myostatin is also thought to contribute to cachexia, as described above. Therefore the compositions can be used to treat conditions related to activin A overexpression, as well as myostatin overexpression, such as cachexia from certain cancers and the treatment of certain gonadal type tumors.
The compositions of the present invention may be used alone or in combination with other therapeutic agents to enhance their therapeutic effects or decrease potential side effects. These properties include increased activity, increased solubility, reduced degradation, increased half-life, reduced toxicity, and reduced immunogenicity. Thus the compositions of the present invention are useful for extended treatment regimes. In addition, the properties of hydrophilicity and hydrophobicity of the compounds of the invention are well balanced, thereby enhancing their utility for both in vitro and especially in vivo uses. Specifically, compounds of the invention have an appropriate degree of solubility in aqueous media that permits absorption and bioavailability in the body, while also having a degree of solubility in lipids that permits the compounds to traverse the cell membrane to a putative site of action, such as a particular muscle mass.
In addition, the ActRIIB5 proteins and polypeptides of the present invention are useful for detecting and quantitating myostatin, activin A, or GDF-11 in any number of assays. In general, the ActRIIB5 polypeptides of the present invention are useful as capture agents to bind and immobilize myostatin, activin A, or GDF-11 in a variety of assays, similar to those described, for example, in Asai, ed., Methods in Cell Biology, 37, Antibodies in Cell Biology, Academic Press, Inc., New York (1993). The polypeptides may be labeled in some manner or may react with a third molecule such as an antibody which is labeled to enable myostatin to be detected and quantitated. For example, a polypeptide or a third molecule can be modified with a detectable moiety, such as biotin, which can then be bound by a fourth molecule, such as enzyme-labeled streptavidin, or other proteins. (Akerstrom, J Immunol 135:2589 (1985); Chaubert, Mod Pathol 10:585 (1997)).
The invention having been described, the following examples are offered by way of illustration, and not limitation.
Example I: isolation of cDNA and expression in cells
The cDNA of the novel human activin type IIB receptor was isolated from a cDNA library of human testis origin (Clontech, Inc.) according to the following protocol. Primers for the N-terminal and the C-terminal of the human activin IIB receptor (SEQ ID NO: 4) were generated and PCR was performed using these primers against templates from human cDNA libraries. PCT was performed using the GC-RICH PCR System (Roche, cat #2140306). Both N and C terminal PGR products were digested with PvuII/EcoRI and subcloned into pcDNA3.1-HisA vector (Invitrogen, Carlsbad, Ca.) to make a full length clone. After sequencing a number of PCR products, a cDNA clone from the human testes cDNA library was identified as a novel N-terminal splice variant receptor. The polynucleotide sequence of this receptor, designated human activin type IIB5 receptor (ActRIIB5). The cDNA clone of this receptor was missing 152 nucleotide bases that correspond to the entire Exon-4 in the wild-type human activin type IIB receptor gene. The truncation of exon-4 in the splice variant resulted in the deletion of the amino acid sequence that spans the transmembrane region as well as in a frame shift leading to an early translational termination. The amino acid sequence of the splice variant receptor contains most of the extracellular domain, encoded by exons 1, 2 and 3 of the wild-type human activin type IIB receptor, and an additional tail region of 36 amino acids resulting from the frame shift. The amino acid sequence is set forth in SEQ ID NO: 2. The C terminal sequence is set forth in SEQ ID NO: 3. Due to the lack of transmembrane region, the ActRHB5 encodes a soluble form of activin type IIB receptor. Transfection of the ActRBIK cDNA in cells led to the expression of secreted, instead of membrane-bound, form of the receptor protein.
Example 2: Expression of ActRIIB5 cDNA encoding ActRϋB5 was cloned into a mammalian pDC323 or pDC324 vectors (Bianchi et al, Biotech and Bioengineering, VoI 84(4):439-444 (2003)) and expressed in a 293T cell line. To generate the Fc fusions, polynucleotides encoding the ActRIIB5 (SEQ ID NO:1) were cloned adjacent to polynucleotides encoding the (GIy)8 linker sequence adjacent to polynucleotides encoding the human IgGl Fc into a pDSRa vector (described in WO/9014363, herein incorporated by reference). Polynucleotides encoding ActRHB-ECD (amino acids 1-124 of SEQ ID NO: 5) were cloned adjacent to polynucleotides encoding the human IgGl Fc into a pDSRa vector (no linker). These constructs were transfected into a s stable CHO cell line. The soluble receptor-Fc fusions expressed were used for the side-by- side in vitro testing described below.
For the in vivo animal experiments described in Example 4 below, the PCR products generated as described above were digested with Nhel/Sall and subcloned into an AAV-Fc vector at the same sites. The AAV-Fc vector allows for transfer of the ActRIIB5 gene into an animal for expression in vivo.
Example 3: In vitro Activities HuActRIIB5/Fc and HuActRIIB-ECD/Fc were generated as described above. The ability the ActRIIB5 receptor to inhibit the binding of each of the three ligands myostatin, activin A, and GDF-Il to the activin IIB receptor was tested using a cell based activity assay as described below.
C2C12 Cell Based Activity Assay
A myostatin/activin/GDF- 11 -responsive reporter cell line was generated by transfection of C2C12 myoblast cells (ATCC No: CRL-1772) with a pMARE-luc construct. The pMARE-luc construct was made by cloning twelve repeats of the CAGA sequence, representing the myostatin/activin response elements (Dennler et al. EMBO 17: 3091-3100 (1998)) into a pLuc-MCS reporter vector (Stratagene cat # 219087) upstream of the TATA box. The myoblast C2C12 cells naturally express myostatin/activin/GDF-11 receptor activin receptor DUB on its cell surface. When myostatin/activinA/GDF-11 binds the cell receptors, the Smad pathway is activated, and phosphorylated Smad binds to the response element (Macias-Silva et al. Cell 87:1215 (1996)), resulting in the expression of the luciferase gene. Luciferase activity is then measured using a commercial luciferase reporter assay kit (cat # E4550, Promega, Madison, WI) according to manufacturer's protocol. A stable line of C2C12 cells that had been transfected with pMARE-luc (C2C12/pMARE clone #44) was used to measure activity according to the following procedure. Reporter cells were plated into 96 well cultures. Screening using dilutions of each type of soluble receptor was performed with the concentration fixed at 4 nM myostatin, 20 nM activin, and 4 nM GDF-11. Myostatin, activin and GDF-Il were each pre-incubated with the soluble receptors at several concentrations. Myostatin/activin/GDF-11 activity was measured by determining the luciferase activity in the treated cultures. The IC50 values were for the determined for each soluble receptor as set out in Table 1 below.
Figure imgf000030_0001
TABLE 1 The table above shows that the soluble receptors can block myostatin signaling through its receptor but also activin A and GDF-Il signaling.
BIAcore® assay
Blocking assays were carried out using immobilized human ActRHB-ECD/Fc (R&D Systems, Minneapolis, Mn.) on a CM5 chip (Biacore, Inc., Piscataway, NJ) in the presence and absence of each of the two soluble receptors ActRHB-ECD/Fc and ActRIIB5/Fc using the BIAcore® assay system according to the manufacturer's instructions.
100% myostatin binding signal was determined in the absence of receptor in solution. Various concentrations of the soluble receptors were diluted in sample buffer and incubated with 4 nM myostatin before being injected over the receptor surface. Since only free myostatin molecules were able to bind to the chip, a decreased binding response with increasing concentration of the receptors indicated binding of the receptors to myostatin in solution. Plotting the binding signal vs. concentration of soluble receptor, ActRIIB-ECD/Fc and ActRIIB5/Fc were calculated to have an EC50 of approximately 18 nM and 7 nM respectively. The comparison between the two receptors is shown in Figure 1.
Example 4: Activin A over-expression in C57BI/6 mice
To explore the postnatal role of activin in postnatal animals, activin A was overexpressed in mice using AAV mediated gene transfer. Aged-matched young adult (5- week-old) female C57B1/6 mice ( Charles River laboratories, Wilmington, Mass) were separated into two weight-balanced groups (n=6/group), which were subsequently injected via portal vein with either AAV-activin A or AAV-empty vector (control) at IXlO13 pfu/mouse. The effects on body weight and body composition were analyzed. AAV-activin A transduced group showed a drastic reduction in body weight compared to the control mice transduced with AAV-empty vector. Within 2 weeks post AAV injection, the activin A-transduced group became so severely cachexic that their average body weight was only about 1A of that of empty vector-transduced control group. Necropsy revealed that AAV-activin A administration resulted a dramatic depletion by approximately 60% of lean body mass, skeletal muscle mass and fat mass. In addition, the activin-transduced mice also showed severe wasting of organs as indicated by significantly reduced organ weights such as liver and heart.
An additional experiment using a reduced amount (IXlO12 pfu/mouse) of AAV- Activin A virus was performed. The results showed a reduction in body weight and lean body mass resulting from activin-transduction but the effects were less dramatic as compared to the initial experiment using AAV-activin A at a higher dose (IXlO13 pfu/mouse). This demonstrates that the postnatal cachectic effect of activin A is dose-dependent.
Example 5: Anabolic Effect of AAV-ActRIIB5 in C57B1/6 mice
Age-matched (5-week-old) C57B1/6 male mice were divided into 5 groups (n=10 per group). AAV viral particles were packaged and titered prior to injection as follows: AAV- empty, AAV-activin A, AAV-ActRIIB5/Fc, AAV-ActRIIB-ECD/Fc, and AAV-ProMyo/Fc, wherein AAV-ProMyo stands for propeptide of myostatin. Each of the above AAV viruses were injected at 8xlO12 pfu / mouse except for AAV-activin A, of which an reduced amount of viral particles at IxIO12 pfu /mouse was injected (n=10/group). The viral particles were injected via the portal vein. Body weights were determined every other day. The results are shown in Figure 2. AAV-ActRIIB5/Fc group and the AAV-ActRIIB-ECD/Fc group developed increased body weights compared to the AA V- Vector control group, as well as increased body weight compared to the AAV-ProMyo/Fc group. Comparing the two soluble receptor groups, the AAV-ActRIIB5/Fc group showed the greatest amount of increase in body weight gain. In contrast, the AA V- Vector control group showed a dramatic decrease in body weights in comparison to the AA V- Vector control group.
At seven weeks post viral injection, body weight changes of individual groups were plotted as percentage of that of the control group (AAV-empty vector group). The AAV- ActRIIB5/Fc group showed the highest average body weight increase over control, approximately 25%, compared with 21% body weight increase for the ActRIEB-ECD/Fc group. The AAV-ActRIIB5/Fc group and the AAV-ActRIIB-ECD/Fc group showed body weight increases greater than that elicited by the ProMyo/Fc group of approximately 16%. In contrast, AAV-activin group had a significant drop in body weight by 19%. A comparison of these changes is shown in Figure 3.
One-month post viral injection, lean body mass in each group of ten mice was determined using nuclear magnetic resonance (NMR) by measuring body composition of live mice. At the same time, the body fat content of the mice in each group was determined. The measurements were taken on live mice using the EchoMRI 2003 (Echo Medical Systems, Houston, Tx). EchoMRI 2004 is a whole body composition analyzer that measures the masses of fat and lean tissues in live animals using NMR technology. The average percentage of lean mass and fat as percentage of body weight for each group of 10 mice is presented in Table 2 below. Fat (% body weight) lean mass (% body weight)
Figure imgf000032_0001
TABLE 2 As can be seen from Table 2 above, the AAV-ActRIIB5/Fc group of mice showed the smallest percentage of body fat, and the largest percentage of lean mass for all of the groups after one month. This data shows that ActRHB5/Fc is effective in enhancing body weight, lean body mass and decreasing fat mass in the animals tested.
In a related experiment, the five groups of ten mice per group were tested for gripping strength using a Columbia Instruments meter, model 1027 dsm (Columbus, Ohio). The results were averaged for each group. The AAV-prornyostatin/Fc group averaged a gripping strength compared with the AAV-empty control mice was about 21% for the promyostatin/Fc group, about 31% for the ActRIIB-ECD/Fc group and about 33% for the ActRϋB5/Fc group of mice. The increase in gripping strength measured was about 46% for the promyostatin/Fc group, about 56% for the ActRIIB-ECD/Fc group, and about 60% for the ActRITB5/Fc group.
Example VI; Changes in body weight and composition in Ay Obese mice Two groups of Ay Obese mice (Jackson Laboratories, Bar Harbor, Maine) of 11 animals each (8 animals per group at the termination of the experiment) were injected with an AAV-empty vector and an AAV-ActRHB5/Fc vector respectively. The viruses were injected at 8x1012 pfu / mouse into the portal vein of each mouse. The mice were then monitored for changes in body weight, food intake, lean muscle mass and fat mass over a three month period post injection. Food intake was determined by weighing the remaining uneaten food in the mouse cage on a daily basis and calculating the weekly intake. The lean muscle mass and fat mass were determined by NMR as described above. The results of the experiments are shown in Figures 4 and 5. Figure 4A shows a decrease in body weight and Figure 4B shows a decrease in weekly food intake in the AAV-ActRIIB5/Fc mice compared with the control mice. Figure 5A shows increase in lean mass, as determined by NMR for the AAV-
ActRJIB5/Fc, while Figure 5B shows a large decrease of fat mass for the AAV-ActRIIB5/Fc compared to the control mice, by approximately 50%.
At the termination of the experiment, the mice were sacrificed and examined for internal changes. The livers of the AAV-ActRIIB5/Fc treated mice were compared with those treated with AAV-empty control. Visual inspection of the livers of the AAV-empty treated mice and the AAV-ActRIIB5/Fc treated mice showed that the livers of the control AAV- empty mice contained fat deposits within the livers, whereas the AAV-ActRIIB5/Fc treated mice were free of fat deposits. Therefore, the expression of the ActRIIB5/Fc in the Ay mice corrected the fatty livers which characterize the Ay obese mice, as well as caused a decrease in overall body weight, a decrease in amount of food consumed, an increase in lean muscle mass and large decrease in fat mass. The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

Claims

CLAIMSWhat is claimed is:
1. An isolated nucleic acid molecule comprising a polynucleotide selected from the group consisting of :
(a) a polynucleotide having the polynucleotide sequence set forth in SEQ ID NO: 1 or its complement;
(b) a polynucleotide encoding a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 2; and
(c) the polynucleotide sequence that hybridizes to either (a) or (b) under conditions of moderate stringency in about 50% formamide, 6X SSC at about 420C and washing conditions of about 600C, 0.5X SSC, 0.1% SDS, and wherein polypeptide encoded comprises a C terminal having an amino acid sequence set forth in SEQ ID NO: 3, and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-Il.
(d) the polynucleotide sequence that hybridizes to either (a) or (b) under conditions of moderate stringency in about 50% formamide, 6X SSC at about 42°C and washing conditions of about 6O0C, 0.5X SSC, 0.1% SDS, and wherein polypeptide encoded comprises a C terminal having an amino acid sequence at least 80% identical to SEQ ID NO: 3, and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-11.
2. An isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide having an amino acid sequence at least 80% identical to the amino acid sequence set forth in SEQ ID NO: 2, wherein the polynucleotide comprises a C terminal having the amino acid sequence set forth in SEQ ID NO: 3.
3. The isolated nucleic acid sequence of claim 2, wherein the polynucleotide comprises a C terminal having an amino acid sequence at least 80% identical to SEQ ID NO: 3.
4. The isolated nucleic acid molecule of claim 1, wherein the nucleic acid molecule further comprises polynucleotides encoding least one heterologous protein in frame with the polynucleotides encoding an activin type IIB5 receptor.
5. The isolated nucleic acid molecule of claim 4, wherein heterologous protein is an Fc polypeptide.
6. The isolated nucleic acid molecule of claim 5, wherein the Fc is attached by a linker peptide.
7. An isolated nucleic acid molecule comprising a polynucleotide consisting of the sequence set forth in SEQ ID NO: 1.
8. The nucleic acid molecule of any one of claims 1 through 7, wherein the polynucleotide is operably linked to a transcriptional or translational regulatory sequence.
9. The nucleic acid molecule of claim 8 wherein the transcriptional or translational sequence comprises a transcriptional promoter or enhancer.
10. A recombinant vector that directs the expression of the nucleic acid molecule of claim 1.
11. An isolated protein comprising an activin type IIB5 receptor polypeptide, wherein the polypeptide is selected from the group consisting of:
(a) a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 2;
(b) a polypeptide consisting of an amino acid sequence having at least 80% identity to SEQ ID NO: 2, wherein the polypeptide is capable of binding myostatin, activin A or GDF-Il;
(c) the polypeptide of (b), wherein the C terminal of the polypeptide comprises the amino acid sequence set forth in SEQ ID NO: 3; and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-Il; and
(d) the polypeptide of (b), wherein the C terminal of the polypeptide comprises an amino acid sequence having at least 80% identity to SEQ ID NO: 3, and wherein the polypeptide is capable of binding myostatin, activin A, or GDF-Il.
12. An isolated protein comprising an activin type IIB5 receptor polypeptide, wherein the polypeptide consists of the amino acid sequence set forth in SEQ ID NO: 2.
13. The protein of claim 12, wherein amino acid residue 64 in SEQ ID NO: 2 is alanine.
14. An isolated protein comprising a polypeptide encoded by the polynucleotide set forth in SEQ ID NO: 1.
15. The protein of claim 11 , wherein the polypeptide is fused to at least one heterologous polypeptide.
16. The protein of claim 15, wherein the heterologous protein is an Fc polypeptide.
17. The protein of claim 16, wherein the Fc polypeptide is attached via a linker sequence.
18. A host cell genetically engineered to express the nucleic acid molecule of claim 1.
19. The host cell of claim 18 wherein the host cell is a mammalian cell.
20. A host cell genetically engineered to produce the protein of claim 11.
21. The host cell of claim 20, wherein the host cell is a mammalian cell.
22. A method of producing an activin IIB5 receptor polypeptide comprising culturing the host cell of claim 21 under conditions promoting expression of the polypeptide, and recovering the polypeptide.
23. A pharmaceutical composition comprising the activin type IIB5 receptor protein of claim 11 in admixture with a pharmaceutically acceptable carrier.
24. A method of inhibiting myostatin activity in a subject in need thereof comprising administering a therapeutically effective amount of the composition of claim 23 to the subject.
25. A method of increasing lean muscle mass in a subject in need thereof comprising administering a therapeutically effective amount of the composition of claim 23 to the subject.
26. A method of increasing the ratio of lean muscle mass to fat in a subject in need thereof comprising administering a therapeutically effective amount of the composition of claim 23 to the subject.
27. A method of treating a muscle-wasting disease in a subject suffering from such as disease comprising administering a therapeutically effective amount of the composition of claim 23 to the subject.
28. The method of claim 27, wherein the disease is cancer cachexia.
29. The method of claim 27, wherein the disease selected from muscular dystrophy, amyotrophic lateral sclerosis, congestive obstructive pulmonary disease, chronic heart failure, cancer cachexia, AIDS, renal failure, uremia, rheumatoid arthritis, age-related sarcopenia, organ atrophy, carpal tunnel syndrome, androgen deprivation, and muscle-wasting due to prolonged bed rest, spinal chord injury, stroke, bone fracture, and aging.
30. A method of treating a metabolic disorder in a subject in need thereof comprising administering a therapeutically effective amount of the composition of claim 23 to the subject.
31. The method of claim 30, wherein the metabolic disorder is selected from diabetes, obesity, hyperglycemia, and bone loss.
32. A method of treating a disease in which activin is over-expressed in a subject comprising administering a therapeutically effective amount of the composition of claim 23 to the subject.
33. The method of claim 30, wherein the disease is cancer.
34. The method of claim 25, wherein the subject is a food animal.
35. A method of treatment of a muscle wasting disorder comprising administering the vector of claim 10 to a subject, wherein the vector is capable of directing expression of ActREB5 polypeptides in the subject.
36. The method of claim 35 wherein the vector is an AAV vector.
PCT/US2006/043044 2005-11-01 2006-11-01 Novel activin receptor and uses thereof WO2007053775A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES06827481T ES2385581T3 (en) 2005-11-01 2006-11-01 Novel activin receptor and uses thereof
JP2008539077A JP5349966B2 (en) 2005-11-01 2006-11-01 Novel activin receptors and uses thereof
EP06827481A EP1943273B1 (en) 2005-11-01 2006-11-01 Novel activin receptor and uses thereof
AU2006308614A AU2006308614B2 (en) 2005-11-01 2006-11-01 Novel activin receptor and uses thereof
AT06827481T ATE554101T1 (en) 2005-11-01 2006-11-01 NEW ACTIVIN RECEPTOR AND APPLICATIONS THEREOF
CA2627200A CA2627200C (en) 2005-11-01 2006-11-01 Novel activin receptor and its uses in treating metabolic disorders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73227005P 2005-11-01 2005-11-01
US60/732,270 2005-11-01

Publications (1)

Publication Number Publication Date
WO2007053775A1 true WO2007053775A1 (en) 2007-05-10

Family

ID=37762538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/043044 WO2007053775A1 (en) 2005-11-01 2006-11-01 Novel activin receptor and uses thereof

Country Status (8)

Country Link
US (4) US8067562B2 (en)
EP (1) EP1943273B1 (en)
JP (4) JP5349966B2 (en)
AT (1) ATE554101T1 (en)
AU (1) AU2006308614B2 (en)
CA (1) CA2627200C (en)
ES (1) ES2385581T3 (en)
WO (1) WO2007053775A1 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008109167A2 (en) * 2007-03-06 2008-09-12 Amgen Inc. Variant activin receptor polypeptides and uses thereof
WO2008067480A3 (en) * 2006-11-29 2008-10-30 Nationwide Childrens Hospital Myostatin inhibition for enhancing muscle and/or improving muscle function
WO2010019261A1 (en) 2008-08-14 2010-02-18 Acceleron Pharma Inc. Use of gdf traps to increase red blood cell levels
WO2010062383A3 (en) * 2008-11-26 2010-08-19 Amgen Inc. Variants of activin iib receptor polypeptides and uses thereof
US7842663B2 (en) 2007-02-02 2010-11-30 Acceleron Pharma Inc. Variants derived from ActRIIB and uses therefor
WO2011020045A1 (en) 2009-08-13 2011-02-17 Acceleron Pharma Inc. Combined use of gdf traps and erythropoietin receptor activators to increase red blood cell levels
WO2011056896A1 (en) 2009-11-03 2011-05-12 Acceleron Pharma Inc. Methods for treating fatty liver disease
WO2011063018A1 (en) 2009-11-17 2011-05-26 Acceleron Pharma Inc. Actriib proteins and variants and uses therefore relating to utrophin induction for muscular dystrophy therapy
US7951771B2 (en) 2005-11-23 2011-05-31 Acceleron Pharma Inc. Activin-ActRIIa antagonists and uses for promoting bone growth
US7960343B2 (en) 2007-09-18 2011-06-14 Acceleron Pharma Inc. Activin-ActRIIa antagonists and uses for decreasing or inhibiting FSH secretion
US7988973B2 (en) 2006-12-18 2011-08-02 Acceleron Pharma Inc. Activin-ActRII antagonists and uses for increasing red blood cell levels
US8128933B2 (en) 2005-11-23 2012-03-06 Acceleron Pharma, Inc. Method of promoting bone growth by an anti-activin B antibody
US8138142B2 (en) 2009-01-13 2012-03-20 Acceleron Pharma Inc. Methods for increasing adiponectin in a patient in need thereof
US8173601B2 (en) 2007-02-09 2012-05-08 Acceleron Pharma, Inc. Activin-ActRIIa antagonists and uses for treating multiple myeloma
US8178488B2 (en) 2009-06-08 2012-05-15 Acceleron Pharma, Inc. Methods for increasing thermogenic adipocytes
US8216997B2 (en) 2008-08-14 2012-07-10 Acceleron Pharma, Inc. Methods for increasing red blood cell levels and treating anemia using a combination of GDF traps and erythropoietin receptor activators
US8252900B2 (en) 2004-07-23 2012-08-28 Acceleron Pharma Inc. Actriib-Fc polynucleotides, polypeptides, and compositions
US8293881B2 (en) 2009-06-12 2012-10-23 Acceleron Pharma Inc. Isolated nucleic acid encoding a truncated ActRIIB fusion protein
WO2013059347A1 (en) 2011-10-17 2013-04-25 Acceleron Pharma, Inc. Methods and compositions for treating ineffective erythropoiesis
US8501678B2 (en) 2007-03-06 2013-08-06 Atara Biotherapeutics, Inc. Variant activin receptor polypeptides and uses thereof
US8895016B2 (en) 2006-12-18 2014-11-25 Acceleron Pharma, Inc. Antagonists of activin-actriia and uses for increasing red blood cell levels
US8920798B2 (en) 2002-12-20 2014-12-30 Amgen Inc. Myostatin binding agents, nucleic acids encoding the same, and methods of treatment
US8999343B2 (en) 2010-08-16 2015-04-07 Amgen Inc. Antibodies that bind myostatin, compositions and methods
WO2015161220A1 (en) 2014-04-18 2015-10-22 Acceleron Pharma, Inc. Methods for increasing red blood cell levels and treating sickle-cell disease
WO2015192111A1 (en) 2014-06-13 2015-12-17 Acceleron Pharma, Inc. Methods and compositions for treating ulcers
US9284364B2 (en) 2005-11-01 2016-03-15 Amgen Inc. Isolated nucleic acid molecule encoding a fusion protein comprising an activin receptor
AU2013216639B2 (en) * 2008-11-26 2016-05-05 Amgen Inc. Variants of activin IIB receptor polypeptides and uses thereof
WO2016090188A1 (en) 2014-12-03 2016-06-09 Acceleron Pharma Inc. Methods for treating myelodysplastic syndromes and sideroblastic anemias
US9493556B2 (en) 2010-11-08 2016-11-15 Acceleron Pharma Inc. Actriia binding agents and uses thereof
US9526759B2 (en) 2007-02-01 2016-12-27 Acceleron Pharma Inc. Activin-actriia antagonists and uses for treating or preventing breast cancer
US9610327B2 (en) 2007-03-06 2017-04-04 Amgen Inc. Variant activin receptor polypeptides, alone or in combination with chemotherapy, and uses thereof
WO2017079591A2 (en) 2015-11-04 2017-05-11 Acceleron Pharma Inc. Methods for increasing red blood cell levels and treating ineffective erythropoiesis
WO2017091706A1 (en) 2015-11-23 2017-06-01 Acceleron Pharma Inc. Methods for treating eye disorders
WO2018013936A1 (en) 2016-07-15 2018-01-18 Acceleron Pharma Inc. Compositions and methods for treating pulmonary hypertension
WO2018022762A1 (en) 2016-07-27 2018-02-01 Acceleron Pharma Inc. Methods and compositions for treating myelofibrosis
CN109293763A (en) * 2018-10-26 2019-02-01 中国农业科学院特产研究所 Mink activin B albumen and its preparation and application
US10195249B2 (en) 2012-11-02 2019-02-05 Celgene Corporation Activin-ActRII antagonists and uses for treating bone and other disorders
US10260068B2 (en) * 2014-03-31 2019-04-16 Sumitomo Dainippon Pharma Co., Ltd. Prophylactic agent and therapeutic agent for fibrodysplasia ossificans progressiva
RU2733492C2 (en) * 2015-04-22 2020-10-02 Байоджен Ма Инк. Novel hybrid actriib ligand trap proteins for treating diseases associated with muscular atrophy
US11471510B2 (en) 2014-12-03 2022-10-18 Celgene Corporation Activin-ActRII antagonists and uses for treating anemia
US11541070B2 (en) 2013-02-01 2023-01-03 Atara Biotherapeutics, Inc. Administration of an anti-activin-A compound to a subject
US11813308B2 (en) 2014-10-09 2023-11-14 Celgene Corporation Treatment of cardiovascular disease using ActRII ligand traps

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102753578B (en) * 2009-04-27 2015-04-22 诺华股份有限公司 Compositions and methods for increasing muscle growth
EP2912462B1 (en) * 2012-10-24 2019-08-07 Celgene Corporation Biomarker for use in treating anemia
ES2924479T3 (en) 2013-04-08 2022-10-07 Harvard College Compositions for rejuvenating skeletal muscle stem cells
BR112018004981A2 (en) * 2015-09-15 2018-10-09 Scholar Rock, Inc. anti-pro-myostatin / latent myostatin antibodies and uses thereof.
IL293766B2 (en) 2016-01-06 2023-08-01 Harvard College Treatment with gdf11 prevents weight gain, improves glucose tolerance and reduces hepatosteatosis
WO2018089706A2 (en) 2016-11-10 2018-05-17 Keros Therapeutics, Inc. Activin receptor type iia variants and methods of use thereof
KR20200085832A (en) 2017-11-09 2020-07-15 케로스 테라퓨틱스, 인크. Activin receptor type IIA variants and methods of use thereof
CN112292144A (en) 2018-01-12 2021-01-29 科乐斯疗法公司 Activin receptor type IIB variants and methods of use thereof
WO2024186418A1 (en) * 2023-03-09 2024-09-12 Merck Sharp & Dohme Llc Formulations comprising actriia polypeptide variants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039948A2 (en) * 2002-10-25 2004-05-13 Wyeth Actriib fusion polypeptides and uses therefor

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567584A (en) 1988-01-22 1996-10-22 Zymogenetics, Inc. Methods of using biologically active dimerized polypeptide fusions to detect PDGF
US5750375A (en) 1988-01-22 1998-05-12 Zymogenetics, Inc. Methods of producing secreted receptor analogs and biologically active dimerized polypeptide fusions
US5885794A (en) 1991-05-10 1999-03-23 The Salk Institute For Biological Studies Recombinant production of vertebrate activin receptor polypeptides and identification of receptor DNAs in the activin/TGF-β superfamily
US6162896A (en) 1991-05-10 2000-12-19 The Salk Institute For Biological Studies Recombinant vertebrate activin receptors
US20050186593A1 (en) 1991-05-10 2005-08-25 The Salk Institute For Biological Studies Cloning and recombinant production of CRF receptor(s)
US6153407A (en) 1992-07-28 2000-11-28 Beth Israel Deaconess Medical Center Erythropoietin DNA having modified 5' and 3' sequences and its use to prepare EPO therapeutics
US6607884B1 (en) 1993-03-19 2003-08-19 The Johns Hopkins University School Of Medicine Methods of detecting growth differentiation factor-8
US6465239B1 (en) 1993-03-19 2002-10-15 The John Hopkins University School Of Medicine Growth differentiation factor-8 nucleic acid and polypeptides from aquatic species and non-human transgenic aquatic species
EP1333035A3 (en) 1993-03-19 2004-07-07 The Johns Hopkins University School Of Medicine Growth differentiation factor-8
US5994618A (en) 1997-02-05 1999-11-30 Johns Hopkins University School Of Medicine Growth differentiation factor-8 transgenic mice
US5863738A (en) * 1994-04-29 1999-01-26 Creative Biomolecules, Inc. Methods of antagonizing OP-1 binding to a cell surface receptor utilizing ALK polypeptides
US6891082B2 (en) 1997-08-01 2005-05-10 The Johns Hopkins University School Of Medicine Transgenic non-human animals expressing a truncated activintype II receptor
US6656475B1 (en) 1997-08-01 2003-12-02 The Johns Hopkins University School Of Medicine Growth differentiation factor receptors, agonists and antagonists thereof, and methods of using same
US6472179B2 (en) 1998-09-25 2002-10-29 Regeneron Pharmaceuticals, Inc. Receptor based antagonists and methods of making and using
US6660843B1 (en) 1998-10-23 2003-12-09 Amgen Inc. Modified peptides as therapeutic agents
DE60027135T2 (en) 1999-01-21 2007-01-11 Metamorphix, Inc. INHIBITORS FOR GROWTH DIFFERENTIATION FACTOR AND ITS APPLICATIONS
JP4487376B2 (en) 2000-03-31 2010-06-23 味の素株式会社 Kidney disease treatment
US6812339B1 (en) * 2000-09-08 2004-11-02 Applera Corporation Polymorphisms in known genes associated with human disease, methods of detection and uses thereof
KR20140004805A (en) 2002-12-20 2014-01-13 암겐 인코포레이티드 Binding agents which inhibit myostatin
WO2005047334A1 (en) 2003-11-13 2005-05-26 Hanmi Pharmaceutical. Co., Ltd. Igg fc fragment for a drug carrier and method for the preparation thereof
US8110665B2 (en) 2003-11-13 2012-02-07 Hanmi Holdings Co., Ltd. Pharmaceutical composition comprising an immunoglobulin FC region as a carrier
EP3059245B1 (en) 2004-07-23 2018-11-07 Acceleron Pharma Inc. Actrii receptor antagonistic antibodies
WO2006020884A2 (en) 2004-08-12 2006-02-23 Wyeth Combination therapy for diabetes, obesity, and cardiovascular diseases using gdf-8 inhibitors
MX2007003320A (en) 2004-09-24 2007-05-18 Amgen Inc Modified fc molecules.
KR100754667B1 (en) 2005-04-08 2007-09-03 한미약품 주식회사 Immunoglobulin Fc fragment modified by non-peptide polymer and pharmaceutical composition comprising the same
EP1874546B1 (en) * 2005-04-25 2012-11-14 Ulvac, Inc. Printhead maintenance station
US8067562B2 (en) * 2005-11-01 2011-11-29 Amgen Inc. Isolated nucleic acid molecule comprising the amino acid sequence of SEQ ID NO:1
CL2007002567A1 (en) 2006-09-08 2008-02-01 Amgen Inc ISOLATED PROTEINS FROM LINK TO ACTIVINE TO HUMAN.
TW201907946A (en) 2007-02-02 2019-03-01 美商艾瑟勒朗法瑪公司 Variants derived from ActRIIB and their uses
TW201718635A (en) 2007-03-06 2017-06-01 安美基公司 Variant activin receptor polypeptides and uses thereof
US8318135B2 (en) 2007-03-19 2012-11-27 National Research Council Of Canada Antagonist of ligands and uses thereof
CN103877564A (en) 2007-09-18 2014-06-25 阿塞勒隆制药公司 Activin-actriia antagonists and uses for decreasing or inhibiting fsh secretion
PL2340031T4 (en) 2008-08-14 2020-12-28 Acceleron Pharma Inc. Gdf traps for use to treat anemia
US8216997B2 (en) 2008-08-14 2012-07-10 Acceleron Pharma, Inc. Methods for increasing red blood cell levels and treating anemia using a combination of GDF traps and erythropoietin receptor activators
AU2009320364B2 (en) 2008-11-26 2013-05-16 Amgen Inc. Variants of activin IIB receptor polypeptides and uses thereof
WO2010083034A1 (en) 2009-01-13 2010-07-22 Acceleron Pharma Inc. Methods for increasing adiponectin
US8178488B2 (en) 2009-06-08 2012-05-15 Acceleron Pharma, Inc. Methods for increasing thermogenic adipocytes
US20120295814A1 (en) 2010-01-08 2012-11-22 The Brigham And Women's Hospital, Inc. CA-125 Immune Complexes as Biomarkers of Ovarian Cancer
CA2794513A1 (en) 2010-03-31 2011-10-06 Aeterna Zentaris Gmbh Perifosine and capecitabine as a combined treatment for cancer
JP2012171705A (en) * 2011-02-17 2012-09-10 Riso Kagaku Corp Printing apparatus
JP6155653B2 (en) * 2013-01-17 2017-07-05 株式会社寺岡精工 Label printer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039948A2 (en) * 2002-10-25 2004-05-13 Wyeth Actriib fusion polypeptides and uses therefor

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
ATTISANO ET AL., MOL CELL BIOL, vol. 16, no. 3, 1996, pages 1066 - 1073
DATABASE EMBL [online] 13 December 2003 (2003-12-13), "Homo sapiens ACVR2B gene, VIRTUAL TRANSCRIPT, partial sequence, genomic survey sequence.", XP002422656, retrieved from EBI accession no. EMBL:AY421275 Database accession no. AY421275 *
DATABASE Geneseq [online] 16 February 1999 (1999-02-16), "Mouse ActRIIB4 receptor protein.", XP002422657, retrieved from EBI accession no. GSP:AAW86245 Database accession no. AAW86245 *
DATABASE Geneseq [online] 29 July 2004 (2004-07-29), "Amino acid sequence of ActRIIB.", XP002422655, retrieved from EBI accession no. GSP:ADO43580 Database accession no. ADO43580 *
DERYNCK, R ET AL., CELL, vol. 95, 1998, pages 737 - 740
HARRISON C A ET AL: "Antagonists of activin signaling: mechanisms and potential biological applications", TRENDS IN ENDOCRINOLOGY AND METABOLISM, ELSEVIER SCIENCE PUBLISHING, NEW YORK, NY, US, vol. 16, no. 2, March 2005 (2005-03-01), pages 73 - 78, XP004768099, ISSN: 1043-2760 *
LEE ET AL., PNAS USA, vol. 98, 2001, pages 9306 - 11
MASSAGUE, NATURE REV: MOL CELL BIOL., vol. 1, 2000, pages 169 - 178
MATHEWS, LS, ENDOCR REV, vol. 15, 1994, pages 310 - 325
OH ET AL., GENES DEV, vol. 11, 1997, pages 1812 - 26
OH ET AL., GENES DEV, vol. 16, 2002, pages 2749 - 54
TOBIN J F ET AL: "Myostatin, a negative regulator of muscle mass: implications for muscle degenerative diseases", CURRENT OPINION IN PHARMACOLOGY, ELSEVIER SCIENCE PUBLISHERS,, NL, vol. 5, no. 3, June 2005 (2005-06-01), pages 328 - 332, XP004901935, ISSN: 1471-4892 *

Cited By (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920798B2 (en) 2002-12-20 2014-12-30 Amgen Inc. Myostatin binding agents, nucleic acids encoding the same, and methods of treatment
US8252900B2 (en) 2004-07-23 2012-08-28 Acceleron Pharma Inc. Actriib-Fc polynucleotides, polypeptides, and compositions
US9138459B2 (en) 2004-07-23 2015-09-22 Acceleron Pharma Inc. ACTRIIB-FC polynucleotides, polypeptides, and compositions
JP2016187361A (en) * 2005-11-01 2016-11-04 アムジェン インコーポレイテッド Novel activin receptor and uses thereof
US9284364B2 (en) 2005-11-01 2016-03-15 Amgen Inc. Isolated nucleic acid molecule encoding a fusion protein comprising an activin receptor
US11129873B2 (en) 2005-11-23 2021-09-28 Acceleron Pharma Inc. Method for promoting bone growth using activin-actriia antagonists
US8629109B2 (en) 2005-11-23 2014-01-14 Acceleron Pharma Inc. Method for promoting bone growth using activin-actriia antagonists
US8486403B2 (en) 2005-11-23 2013-07-16 Acceleron Pharma, Inc. Method of promoting bone growth by an anti-activin A antibody
US9163075B2 (en) 2005-11-23 2015-10-20 Acceleron Pharma Inc. Isolated polynucleotide that encodes an ActRIIa-Fc fusion polypeptide
US8128933B2 (en) 2005-11-23 2012-03-06 Acceleron Pharma, Inc. Method of promoting bone growth by an anti-activin B antibody
US10239940B2 (en) 2005-11-23 2019-03-26 Acceleron Pharma Inc. Method of promoting bone growth by an anti-actriia antibody
US7951771B2 (en) 2005-11-23 2011-05-31 Acceleron Pharma Inc. Activin-ActRIIa antagonists and uses for promoting bone growth
US9480742B2 (en) 2005-11-23 2016-11-01 Acceleron Pharma Inc. Method of promoting bone growth by an anti-actriia antibody
US9572865B2 (en) 2005-11-23 2017-02-21 Acceleron Pharma Inc. Activin-actriia antagonists and uses for treating multiple myeloma
US8067360B2 (en) 2005-11-23 2011-11-29 Acceleron Pharma Inc. Method for promoting bone growth using activin-ActRIIa antagonists
US10071135B2 (en) 2005-11-23 2018-09-11 Acceleron Pharma Inc. Method of identifying an agent that promotes bone growth or increases bone density
EP2679237A1 (en) * 2006-11-29 2014-01-01 Nationwide Children's Hospital Myostatin inhibition for enhancing muscle and/or improving muscle function
US8895309B2 (en) 2006-11-29 2014-11-25 Nationwide Children's Hospital Myostatin inhibition for enhancing muscle and/or improving muscle function
WO2008067480A3 (en) * 2006-11-29 2008-10-30 Nationwide Childrens Hospital Myostatin inhibition for enhancing muscle and/or improving muscle function
US10093707B2 (en) 2006-12-18 2018-10-09 Acceleron Pharma Inc. Antagonists of activin-ActRIIa and uses for increasing red blood cell levels
US8007809B2 (en) 2006-12-18 2011-08-30 Acceleron Pharma Inc. Activin-actrii antagonists and uses for increasing red blood cell levels
US7988973B2 (en) 2006-12-18 2011-08-02 Acceleron Pharma Inc. Activin-ActRII antagonists and uses for increasing red blood cell levels
US8895016B2 (en) 2006-12-18 2014-11-25 Acceleron Pharma, Inc. Antagonists of activin-actriia and uses for increasing red blood cell levels
US9526759B2 (en) 2007-02-01 2016-12-27 Acceleron Pharma Inc. Activin-actriia antagonists and uses for treating or preventing breast cancer
US9399669B2 (en) 2007-02-02 2016-07-26 Acceleron Pharma Inc. Variants derived from ActRIIB
US10259861B2 (en) 2007-02-02 2019-04-16 Acceleron Pharma Inc. Variants derived from ActRIIB and uses therefor
US8343933B2 (en) 2007-02-02 2013-01-01 Acceleron Pharma, Inc. Variants derived from ActRIIB and uses therefor
US7842663B2 (en) 2007-02-02 2010-11-30 Acceleron Pharma Inc. Variants derived from ActRIIB and uses therefor
US8173601B2 (en) 2007-02-09 2012-05-08 Acceleron Pharma, Inc. Activin-ActRIIa antagonists and uses for treating multiple myeloma
US9809638B2 (en) 2007-03-06 2017-11-07 Amgen Inc. Variant activin receptor
US8716459B2 (en) 2007-03-06 2014-05-06 Amgen Inc. Isolated nucleic acid molecules encoding variant activin receptor polypeptides
US9447165B2 (en) 2007-03-06 2016-09-20 Amgen Inc. Variant activin IIB receptor
US8501678B2 (en) 2007-03-06 2013-08-06 Atara Biotherapeutics, Inc. Variant activin receptor polypeptides and uses thereof
US8999917B2 (en) 2007-03-06 2015-04-07 Amgen Inc. Variant activin receptor polypeptides and uses thereof
US9610327B2 (en) 2007-03-06 2017-04-04 Amgen Inc. Variant activin receptor polypeptides, alone or in combination with chemotherapy, and uses thereof
WO2008109167A3 (en) * 2007-03-06 2009-06-18 Amgen Inc Variant activin receptor polypeptides and uses thereof
EA020510B1 (en) * 2007-03-06 2014-11-28 Амген Инк. Variant activin receptor polypeptides and uses thereof
WO2008109167A2 (en) * 2007-03-06 2008-09-12 Amgen Inc. Variant activin receptor polypeptides and uses thereof
US7947646B2 (en) 2007-03-06 2011-05-24 Amgen Inc. Variant activin receptor polypeptides
US10407487B2 (en) 2007-03-06 2019-09-10 Amgen Inc. Variant activin receptor
US7960343B2 (en) 2007-09-18 2011-06-14 Acceleron Pharma Inc. Activin-ActRIIa antagonists and uses for decreasing or inhibiting FSH secretion
US8367611B2 (en) 2007-09-18 2013-02-05 Acceleron Pharma Inc. Activin-actriia antagonists for inhibiting germ cell maturation
US9353356B2 (en) 2007-09-18 2016-05-31 Acceleron Pharma Inc. Activin-actriia antagonists for treating a follicle-stimulating horomone-secreting pituitary tumor
US10377996B2 (en) 2008-08-14 2019-08-13 Acceleron Pharma Inc. Methods of identifying ActRIIB variants
WO2010019261A1 (en) 2008-08-14 2010-02-18 Acceleron Pharma Inc. Use of gdf traps to increase red blood cell levels
US10829532B2 (en) 2008-08-14 2020-11-10 Acceleron Pharma Inc. Combined use of gdf traps and erythropoietin receptor activators to increase red blood cell levels
US10829533B2 (en) 2008-08-14 2020-11-10 Acceleron Pharma Inc. Combined use of GDF traps and erythropoietin receptor activators to increase red blood cell levels
US8703927B2 (en) 2008-08-14 2014-04-22 Acceleron Pharma Inc. Isolated nucleotide sequences encoding GDF traps
JP7329573B2 (en) 2008-08-14 2023-08-18 アクセルロン ファーマ インコーポレイテッド Use of GDF Traps to Increase Red Blood Cell Levels
EP3750552A1 (en) 2008-08-14 2020-12-16 Acceleron Pharma Inc. Gdf traps
US10889626B2 (en) 2008-08-14 2021-01-12 Acceleron Pharma Inc. Combined use of GDF traps and erythropoietin receptor activators to increase red blood cell levels
JP2022009561A (en) * 2008-08-14 2022-01-14 アクセルロン ファーマ インコーポレイテッド Use of gdf trap to increase red blood cell level
US10689427B2 (en) 2008-08-14 2020-06-23 Acceleron Pharma Inc. Combined use of GDF traps and erythropoietin receptor activators to increase red blood cell levels
US8216997B2 (en) 2008-08-14 2012-07-10 Acceleron Pharma, Inc. Methods for increasing red blood cell levels and treating anemia using a combination of GDF traps and erythropoietin receptor activators
US11168311B2 (en) 2008-08-14 2021-11-09 Acceleron Pharma Inc. Methods for treating anemia in a subject in need thereof
US9505813B2 (en) 2008-08-14 2016-11-29 Acceleron Pharma Inc. Use of GDF traps to treat anemia
US11162085B2 (en) 2008-08-14 2021-11-02 Acceleron Pharma Inc. Methods for treating anemia in a subject in need thereof
US11155791B2 (en) 2008-08-14 2021-10-26 Acceleron Pharma Inc. Methods for treating anemia in a subject in need thereof
JP2011530599A (en) * 2008-08-14 2011-12-22 アクセルロン ファーマ, インコーポレイテッド Use of GDF traps to increase red blood cell levels
US8058229B2 (en) 2008-08-14 2011-11-15 Acceleron Pharma Inc. Method of increasing red blood cell levels or treating anemia in a patient
US9439945B2 (en) 2008-08-14 2016-09-13 Acceleron Pharma Inc. Isolated nucleotide sequences encoding GDF traps
US8361957B2 (en) 2008-08-14 2013-01-29 Acceleron Pharma, Inc. Isolated GDF trap polypeptide
US9932379B2 (en) 2008-08-14 2018-04-03 Acceleron Pharma Inc. Isolated nucleotide sequences encoding GDF traps
EP3494986A1 (en) 2008-08-14 2019-06-12 Acceleron Pharma Inc. Gdf traps for use to treat anemia
US8410043B2 (en) 2008-11-26 2013-04-02 Atara Biotherapeutics, Inc. Stabilized activin IIB receptor polypeptides and uses thereof
WO2010062383A3 (en) * 2008-11-26 2010-08-19 Amgen Inc. Variants of activin iib receptor polypeptides and uses thereof
AU2013216639B2 (en) * 2008-11-26 2016-05-05 Amgen Inc. Variants of activin IIB receptor polypeptides and uses thereof
JP2016199577A (en) * 2008-11-26 2016-12-01 アムジエン・インコーポレーテツド Variants of activin iib receptor polypeptide and uses thereof
US10308704B2 (en) 2008-11-26 2019-06-04 Amgen Inc. Isolated nucleic acid molecules encoding stabilized receptor polypeptides and uses thereof
US9273114B2 (en) 2008-11-26 2016-03-01 Amgen Inc. Stabilized receptor polypeptides and uses thereof
US11685770B2 (en) 2008-11-26 2023-06-27 Amgen Inc. Stabilized receptor polypeptides and uses thereof
CN102245634A (en) * 2008-11-26 2011-11-16 安姆根有限公司 Stabilized receptor polypeptides and uses thereof
CN104371024A (en) * 2008-11-26 2015-02-25 安姆根有限公司 Activin IIB receptor polypeptides and uses thereof
US8138142B2 (en) 2009-01-13 2012-03-20 Acceleron Pharma Inc. Methods for increasing adiponectin in a patient in need thereof
US8765663B2 (en) 2009-01-13 2014-07-01 Acceleron Pharma Inc. Methods for increasing adiponectin
EP3845239A1 (en) 2009-06-08 2021-07-07 Acceleron Pharma Inc. Use of anti-actriib proteins for increasing thermogenic adipocytes
US9790284B2 (en) 2009-06-08 2017-10-17 Acceleron Pharma Inc. Methods for increasing thermogenic adipocytes
US8178488B2 (en) 2009-06-08 2012-05-15 Acceleron Pharma, Inc. Methods for increasing thermogenic adipocytes
US10968282B2 (en) 2009-06-08 2021-04-06 Acceleron Pharma Inc. Methods for screening compounds for increasing thermogenic adipocytes
US8703694B2 (en) 2009-06-08 2014-04-22 Acceleron Pharma, Inc. Methods for increasing thermogenic adipocytes
EP3345921A1 (en) 2009-06-08 2018-07-11 Acceleron Pharma Inc. Use of anti-actriib antibodies for increasing thermogenic adipocytes
US9745559B2 (en) 2009-06-12 2017-08-29 Acceleron Pharma Inc. Method for decreasing the body fat content in a subject by administering an ActRIIB protein
US10358633B2 (en) 2009-06-12 2019-07-23 Acceleron Pharma Inc. Method for producing an ActRIIB-Fc fusion polypeptide
US11066654B2 (en) 2009-06-12 2021-07-20 Acceleron Pharma Inc. Methods and compositions for reducing serum lipids
US8293881B2 (en) 2009-06-12 2012-10-23 Acceleron Pharma Inc. Isolated nucleic acid encoding a truncated ActRIIB fusion protein
US9181533B2 (en) 2009-06-12 2015-11-10 Acceleron Pharma, Inc. Truncated ACTRIIB-FC fusion protein
CN102655872A (en) * 2009-08-13 2012-09-05 阿塞勒隆制药公司 Combined use of GDF traps and erythropoietin receptor activators to increase red blood cell levels
WO2011020045A1 (en) 2009-08-13 2011-02-17 Acceleron Pharma Inc. Combined use of gdf traps and erythropoietin receptor activators to increase red blood cell levels
CN102655872B (en) * 2009-08-13 2016-01-20 阿塞勒隆制药公司 GDF catches and erythropoietin receptor activator use in conjunction are to increase hematocrit level
CN105561295A (en) * 2009-08-13 2016-05-11 阿塞勒隆制药公司 Combined use of GDF traps and erythropoietin receptor activators to increase red blood cell levels
EP3838919A1 (en) 2009-08-13 2021-06-23 Acceleron Pharma Inc. Combined use of gdf traps and erythropoietin receptor activators to increase red blood cell levels
AU2010315245B2 (en) * 2009-11-03 2016-11-03 Acceleron Pharma Inc. Methods for treating fatty liver disease
WO2011056896A1 (en) 2009-11-03 2011-05-12 Acceleron Pharma Inc. Methods for treating fatty liver disease
EP3818988A1 (en) 2009-11-03 2021-05-12 Acceleron Pharma Inc. Methods for treating fatty liver disease
EP3260130A2 (en) 2009-11-03 2017-12-27 Acceleron Pharma Inc. Methods for treating fatty liver disease
AU2010322011B2 (en) * 2009-11-17 2016-03-31 Acceleron Pharma Inc. ActRIIB proteins and variants and uses therefore relating to utrophin induction for muscular dystrophy therapy
AU2016204287B2 (en) * 2009-11-17 2018-03-01 Acceleron Pharma Inc. ActRIIB proteins and variants and uses therefore relating to utrophin induction for muscular dystrophy therapy
WO2011063018A1 (en) 2009-11-17 2011-05-26 Acceleron Pharma Inc. Actriib proteins and variants and uses therefore relating to utrophin induction for muscular dystrophy therapy
US9617319B2 (en) 2009-11-17 2017-04-11 Acceleron Pharma Inc. ActRIIB proteins and variants and uses therefore relating to utrophin induction for muscular dystrophy therapy
EP3332796A1 (en) 2009-11-17 2018-06-13 Acceleron Pharma Inc. Actriib proteins and variants and uses therefore relating to utrophin induction for muscular dystrophy therapy
US10968262B2 (en) 2009-11-17 2021-04-06 Acceleron Pharma Inc. Methods of increasing sarcolemmal utrophin
US8999343B2 (en) 2010-08-16 2015-04-07 Amgen Inc. Antibodies that bind myostatin, compositions and methods
US9493556B2 (en) 2010-11-08 2016-11-15 Acceleron Pharma Inc. Actriia binding agents and uses thereof
WO2013059347A1 (en) 2011-10-17 2013-04-25 Acceleron Pharma, Inc. Methods and compositions for treating ineffective erythropoiesis
EP3875104A1 (en) 2011-10-17 2021-09-08 Acceleron Pharma Inc. Compositions for treating myelofibrosis
EP3520805A1 (en) 2011-10-17 2019-08-07 Acceleron Pharma Inc. Compositions for treating myelofibrosis
US10195249B2 (en) 2012-11-02 2019-02-05 Celgene Corporation Activin-ActRII antagonists and uses for treating bone and other disorders
US11541070B2 (en) 2013-02-01 2023-01-03 Atara Biotherapeutics, Inc. Administration of an anti-activin-A compound to a subject
US10260068B2 (en) * 2014-03-31 2019-04-16 Sumitomo Dainippon Pharma Co., Ltd. Prophylactic agent and therapeutic agent for fibrodysplasia ossificans progressiva
WO2015161220A1 (en) 2014-04-18 2015-10-22 Acceleron Pharma, Inc. Methods for increasing red blood cell levels and treating sickle-cell disease
EP3808778A1 (en) 2014-04-18 2021-04-21 Acceleron Pharma Inc. Methods for increasing red blood cell levels and treating sickle-cell disease
US10487144B2 (en) 2014-06-13 2019-11-26 Acceleron Pharma Inc. Methods for treating ulcers in a hemoglobinopathy anemia with a soluble actRIIB polypeptide
WO2015192111A1 (en) 2014-06-13 2015-12-17 Acceleron Pharma, Inc. Methods and compositions for treating ulcers
US9850298B2 (en) 2014-06-13 2017-12-26 Acceleron Pharma Inc. Methods for treating ulcers in thalassemia syndrome with an ActRIIB polypeptide
US11260107B2 (en) 2014-06-13 2022-03-01 Acceleron Pharma Inc. Methods and compositions for treating ulcers
US11813308B2 (en) 2014-10-09 2023-11-14 Celgene Corporation Treatment of cardiovascular disease using ActRII ligand traps
WO2016090188A1 (en) 2014-12-03 2016-06-09 Acceleron Pharma Inc. Methods for treating myelodysplastic syndromes and sideroblastic anemias
US11471510B2 (en) 2014-12-03 2022-10-18 Celgene Corporation Activin-ActRII antagonists and uses for treating anemia
US11292826B2 (en) 2015-04-22 2022-04-05 Biogen Ma Inc. Hybrid ActRIIB ligand trap proteins for treating muscle wasting diseases
RU2733492C2 (en) * 2015-04-22 2020-10-02 Байоджен Ма Инк. Novel hybrid actriib ligand trap proteins for treating diseases associated with muscular atrophy
US10913782B2 (en) 2015-04-22 2021-02-09 Biogen Ma Inc. Hybrid ActRIIB ligand trap proteins for treating muscle wasting diseases
US11932677B2 (en) 2015-04-22 2024-03-19 Alivegen Inc. Hybrid ActRIIB ligand trap proteins for treating muscle wasting diseases
WO2017079591A2 (en) 2015-11-04 2017-05-11 Acceleron Pharma Inc. Methods for increasing red blood cell levels and treating ineffective erythropoiesis
WO2017091706A1 (en) 2015-11-23 2017-06-01 Acceleron Pharma Inc. Methods for treating eye disorders
EP3928784A1 (en) 2016-07-15 2021-12-29 Acceleron Pharma Inc. Compositions comprising actriia polypeptides for use in treating pulmonary hypertension
WO2018013936A1 (en) 2016-07-15 2018-01-18 Acceleron Pharma Inc. Compositions and methods for treating pulmonary hypertension
WO2018022762A1 (en) 2016-07-27 2018-02-01 Acceleron Pharma Inc. Methods and compositions for treating myelofibrosis
CN109293763A (en) * 2018-10-26 2019-02-01 中国农业科学院特产研究所 Mink activin B albumen and its preparation and application

Also Published As

Publication number Publication date
US9284364B2 (en) 2016-03-15
EP1943273B1 (en) 2012-04-18
CA2627200C (en) 2013-09-10
JP2009513162A (en) 2009-04-02
JP5349966B2 (en) 2013-11-20
US20070117130A1 (en) 2007-05-24
EP1943273A1 (en) 2008-07-16
CA2627200A1 (en) 2007-05-10
US20110281796A1 (en) 2011-11-17
US8614292B2 (en) 2013-12-24
US8067562B2 (en) 2011-11-29
JP2014195469A (en) 2014-10-16
ES2385581T3 (en) 2012-07-26
AU2006308614B2 (en) 2011-11-17
US20140088008A1 (en) 2014-03-27
AU2006308614A1 (en) 2007-05-10
JP2013027391A (en) 2013-02-07
US20160152683A1 (en) 2016-06-02
JP6072731B2 (en) 2017-02-01
JP2016187361A (en) 2016-11-04
ATE554101T1 (en) 2012-05-15

Similar Documents

Publication Publication Date Title
EP1943273B1 (en) Novel activin receptor and uses thereof
US20230295267A1 (en) Stabilized receptor polypeptides and uses thereof
EP2132314B1 (en) Variant activin receptor polypeptides and uses thereof
AU2014210609B2 (en) Novel activin receptor and uses thereof
AU2016210719B2 (en) Variants of activin IIB receptor polypeptides and uses thereof
AU2016238960A1 (en) Novel activin receptor and uses thereof
MX2008005638A (en) Novel activin receptor and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2627200

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/005638

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2008539077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006827481

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006308614

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006308614

Country of ref document: AU

Date of ref document: 20061101

Kind code of ref document: A