WO2007052697A1 - ポリアルキレンエーテルグリコール及びその製造方法 - Google Patents
ポリアルキレンエーテルグリコール及びその製造方法 Download PDFInfo
- Publication number
- WO2007052697A1 WO2007052697A1 PCT/JP2006/321854 JP2006321854W WO2007052697A1 WO 2007052697 A1 WO2007052697 A1 WO 2007052697A1 JP 2006321854 W JP2006321854 W JP 2006321854W WO 2007052697 A1 WO2007052697 A1 WO 2007052697A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ether glycol
- reaction
- polyalkylene ether
- propanediol
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4825—Polyethers containing two hydroxy groups
Definitions
- the present invention relates to a polyalkylene ether glycol and a method for producing the same.
- the polyalkylene ether glycol of the present invention comprises a homopolymer or copolymer of 1,3 propanediol.
- Polyether polyols are polyols that have a wide range of uses, including raw materials for soft segments such as elastic fibers, thermoplastic elastomers, and thermosetting elastomers.
- polyalkylene ether glycols such as polyethylene glycol, poly (1,2-propanediol) (commonly referred to as polypropylene glycol), and polytetramethylene ether alcohol are known.
- poly (1,2-propanediol) commonly referred to as polypropylene glycol
- polytetramethylene ether alcohol are known.
- poly (1,2-propanediol) commonly referred to as polypropylene glycol
- polytetramethylene ether alcohol polytetramethylene ether alcohol
- 2-propanediol is widely used because it is liquid at room temperature, easy to handle and inexpensive.
- poly (1, 2 propanediol) usually has a terminal hydroxyl group mainly of a secondary hydroxyl group, it is less reactive than other polyols having a terminal hydroxyl group.
- polyether polyols since it has a methyl group in the side chain, physical properties such as strength may be inferior to those of other linear polyols, and polyether polyols with better physical properties are desired depending on the application. Therefore, in recent years, polytrimethylene ether glycol has attracted attention as a polyether polyol having only a primary hydroxyl group and a low melting point.
- a polycondensation catalyst is used, and 1, 3 propanediol, an oligomer of 1,3 propanediol having a degree of polymerization of 2 to 9, a prepolymer or a mixture thereof Force A method involving the polycondensation of selected 1,3 propanediol raw materials to form polytrimethylene ether glycol at less than 1 atm, with a number average molecular weight greater than 1,500, unsaturated less than 20 meqZkg Polytrimethylene ether glycol (specifically, polytrimethylene ether glycol having a number average molecular weight of 2,360 and an unsaturation of 12.5 meqZkg). Further, a copolymer of polytrimethylene ether glycol is also mentioned (for example, see Patent Document 1).
- poly 2-methyl 1,3-propylene ether glycol has been proposed as an analog of polytrimethylene ether glycol, and a number average molecular weight of 515 has been obtained by ring-opening polymerization of 3-methyloxetane. Force The amount of unsaturated end groups is well documented (see, for example, Patent Document 2).
- Patent Document 1 US Patent Application Publication No. 2002Z0007043 (Japanese translations of PCT publication No. 20003-517071)
- Patent Document 2 JP-A-58-126828
- the present invention has been made in view of the above circumstances, and the object thereof is a novel polyalkylene ether glycol improved so as to exhibit a sufficient reaction rate when used as a polyol raw material, and a process for producing the same. Is to provide. Means for solving the problem
- the present inventor has conducted extensive studies considering that polytrimethylene ether glycol (or a copolymer thereof) is used as a raw material for polyols in the production of various polymers having a wide range of intrinsic viscosities (IV). As a result, the following new findings were obtained. That is, the reaction rate during the production of the polymer is critically deteriorated depending on the amount of unsaturated end groups per unit weight, and the amount of unsaturated end groups having such a critical significance is the number average molecular weight. It depends on.
- the above-described reaction treatment is performed within a necessary range in consideration of the number average molecular weight.
- the physical properties of the polyalkylene ether glycol obtained by the above production reaction are not impaired at all.
- the present invention has been completed based on the above findings, and the first gist thereof is a polyalkylene ether glycol having a repeating unit force represented by the following chemical formula (I) or the following chemical formula: the content of the repeating unit represented by the formula (I) is a polyalkylene ether glycol is 50 mole 0/0 or more, per unit weight of the unsaturated end group amount Y (meq / g) satisfies the following formula (1) It exists in the polyalkylene ether glycol characterized by satisfy
- the content of the repeating unit represented by the formula (I) is a polyalkylene ether glycol is 50 mole 0/0 or more, per unit weight of the unsaturated end group amount Y (meq / g) satisfies the following formula (1) It exists in the polyalkylene ether glycol characterized by satisfy
- the second gist of the present invention is 1,3-propanediol, having a polymerization degree of 2-9
- the above alkylene diol raw material ( ⁇ ) is subjected to a dehydration condensation reaction, and the resulting polyalkylene ether glycol is treated in the presence of a metal selected from the group of groups 4 to 12 of the periodic table or a catalyst containing the compound.
- a metal selected from the group of groups 4 to 12 of the periodic table or a catalyst containing the compound.
- FIG. 1 Graph showing the relationship between the reaction rate (vs. rate) and the amount of terminal aryl groups per unit weight.
- FIG. 2 1 H— before and after the aryl end reduction reaction described in Example 1 NMR chart
- FIG. 3 is a graph showing the relationship between reaction rate (vs. rate) and the amount of terminal allyl groups per unit weight.
- the polytrimethylene ether glycol of the present invention includes two types, one of which is a polyalkylene ether glycol (polytrimethylene ether glycol) having a repeating unit force represented by the chemical formula (I).
- a polyalkylene ether glycol polytrimethylene ether glycol having a repeating unit force represented by the chemical formula (I).
- the content of the repeating unit of represented by the formula (I) is a polyalkylene ether glycol is 50 mole 0/0 or more (a copolymer of Poritorimechire emissions ether glycol).
- the polyalkylene ether glycol of the present invention is characterized in that the unsaturated terminal group amount Y (meqZg) per unit weight satisfies the condition of the above formula (1).
- the meqZg representing the amount of unsaturated end groups Y in the present invention is an index representing how many unsaturated end groups are present per unit weight of polytrimethylene ether glycol.
- the mathematical formula (1) means that the unsaturated terminal group amount Y increases with a certain ratio (slope) with respect to the number average molecular weight X. According to the research by the present inventors, this proportionality expression becomes clear for the first time that the unsaturated end group Y and the number average molecular weight X are in a proportional relationship, and the relationship between X and Y can be expressed by a linear equation. It became possible. Specifically, a linear equation can be derived by the following method.
- the critical point of the unsaturated end group amount Y at which the reaction rate changes rapidly decreases is clarified, and polytrimethylene ether glycol showing such a critical point (the vertical axis represents the unsaturated end group amount Y and the horizontal axis). Is the number average molecular weight X). Looking at the trend of this plot, the amount of unsaturated end groups Y increases in proportion to the number average molecular weight X. Therefore, it is possible to calculate the slope and intercept of the linear formula from the plotted points and derive a specific mathematical formula. Specifically, it is as shown in FIG.
- Fig. 1 was obtained when the polyester-acid reaction was performed using polytrimethylene ether glycol (number average molecular weight 2133) having different unsaturated terminal group amount Y (meqZg) per unit weight as a raw material.
- Unsaturated end group amount Critical points are recognized at about 0.005 (meqZg) and about 0.009 (meqZg), respectively. In other words, the rate of the polyester-ion reaction decreases rapidly depending on the amount of unsaturated end groups per unit weight, particularly 0.009 (meqZg). Similarly, there is a critical point for the number average molecular weight of 3138.
- the slope and intercept were calculated from the molecular weight X of polytrimethylene ether glycol and the unsaturated end group amount Y (meqZg) at each critical point in each example. Furthermore, since the same effect was proved with the unsaturated terminal group amount Y (meqZg) in the range below the specific formula, the specific range of the formula (1) was derived.
- the polytrimethylene monoterdaricol in the present invention is one in which the amount of unsaturated end groups Y (meq / g) is extremely reduced. In particular, the amount of unsaturated end groups Y (meqZg) satisfies the above formula (1).
- polytrimethylene ether glycol when used as a raw material, the polymerization rate of the elastomer can be remarkably improved and the physical properties can be remarkably improved.
- the object of the present invention can be achieved by using polytrimethylene ether glycol satisfying the range of the formula (1).
- the unsaturated end group amount Y (meqZg) per unit weight preferably satisfies the following formula (2), and more preferably satisfies the following formula (3). .
- the unsaturated terminal group in the present invention is typically a terminal aryl group, but is not limited to a terminal aryl group.
- unsaturated terminal groups other than terminal aryl groups are typically a terminal aryl group, but is not limited to a terminal aryl group.
- a terminal propyl group When combined, a terminal propyl group may be detected as a terminal other than the hydroxyl group.
- the terminal propyl group is very small compared to the terminal aryl group, and the reaction conditions. It is possible to reduce to below the detection limit of NMR by selecting the matter.
- the number average molecular weight X is usually 250 to 10,000, preferably 800 to 5,000, more preferably 1,300 to 4,000, particularly preferably 1,800 to 3,500. is there. If the number average molecular weight X is too large, the viscosity will be too high and handling will be difficult, the reactivity will be low and the elastomer manufacturing process will tend to take too much time, and if it is too small, There is a tendency that characteristics such as elasticity and softness as an elastomer are not fully exhibited.
- the molecular weight distribution (weight average molecular weight Z number average molecular weight) is usually 1 to 4, preferably 1 to 2.5, and the Hazen color number is usually 200 or less, preferably 100 or less, more preferably 50 or less, particularly preferably. Is 30 or less, most preferably 20 or less.
- the type of repeating unit other than the repeating unit represented by the chemical formula (I) is not limited as long as it is a unit derived from alkylene ether glycol.
- a unit derived from 2-methyl-1,3-propanediol or 2,2-dimethyl-1,3-propanediol is particularly preferred.
- the proportion of the repeating unit represented by the chemical formula (I) is preferably 70 mol% or more, more preferably 80 mol% or more, and the upper limit is usually 99 mol%.
- Examples of the method for producing the polyalkylene ether glycol of the present invention include methods by dehydration condensation of alkylene diol, ring-opening polymerization of cyclic ether, and reaction between alcohol and cyclic ether.
- JP-A-59-189120 and JP-A-2 Reference can be made to the descriptions in Japanese Patent No. 248426 and Japanese Patent Laid-Open No. 2003-147073.
- a method by dehydration condensation of an alkylene diol described later is particularly recommended.
- the production method of the present invention includes two steps of a production reaction of a polyalkylene ether glycol and a treatment for reducing unsaturated end groups of the polymer obtained by the production reaction. These two steps may be performed simultaneously.
- the raw material is selected from the group consisting of 1,3 propanediol, oligomers of 1,3 propanediol having a degree of polymerization of 2 to 9, prepolymers, or mixtures thereof.
- Puropanjioru material (a), or, the one, the content of 3-propanediol starting material to use alkylene diol starting material is 50 mol 0/0 or (B).
- a copolymer of polytrimethylene ether glycol is obtained from the alkylene diol raw material (B).
- Examples of copolymer components include ethylene glycol, 2-methyl-1,3 propanediol, 2,2 dimethyl-1,3 propanediol, 1,4 butanediol, 1,5 pentanediol, 1,6 hexanediol, 1,7
- An alkylene ether glycol having two primary hydroxyl groups such as heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10 decanediol, 1,4-cyclohexanedimethanol can be suitably used.
- trifunctional or higher functional glycols such as trimethylolethane, trimethylolpropane and pentaerythritol, or oligomers of these glycols can be used in combination.
- 2-methyl-1,3 propanediol or 2,2 dimethyl-1,3 propanediol is preferred.
- the content of 1,3 propanediol raw material is preferably 70 mol% or more, more preferably 80 mol% or more, and the upper limit is usually 99 mol%. It is. If the amount of 1,3 propanediol is too small, the softness and thermal stability of the polymer that can obtain the copolymer power of polytrimethylene ether glycol tends to deteriorate.
- the oligomers, prepolymers and the like in the 1,3-propanediol raw material (A) are prepared by the method described in the above-mentioned US Patent Application Publication No. 2002 0007043 (Japanese Patent Publication No. 20003-517071). I can do it. In other words, in the present invention, the dehydration condensation reaction can be performed in multiple stages as in the above prior art.
- the dehydration condensation reaction can be performed according to a known method, and may be either a batch system or a continuous system.
- a raw material and a catalyst an acid and a metal compound selected from the group consisting of Group 4 and Group 13
- a reactor may be charged into a reactor and reacted under stirring.
- the raw material and the catalyst are continuously supplied from one end of a reaction apparatus in which a large number of stirring tanks are connected in series or a flow-type reaction apparatus, and the inside of the apparatus is moved in a piston flow or a manner close to this.
- a method of continuously extracting the reaction solution from the other end can be used.
- the reaction temperature is usually 120 to 250. C, preferably 140-200. C, more preferably 155-175 ° C. If the reaction temperature is too high, the amount of terminal unsaturated groups tends to increase, and the polymer tends to be colored easily. If it is too low, a sufficient polymerization reaction rate tends to be not obtained.
- the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon.
- the reaction pressure is arbitrary as long as the reaction system is maintained in a liquid phase, and usually atmospheric pressure conditions are employed. If desired, the reaction may be carried out under reduced pressure or an inert gas may be circulated through the reaction system in order to promote elimination of water produced by the reaction from the reaction system.
- the reaction time varies depending on the amount of catalyst used, the reaction temperature, the yield and physical properties of the produced polymer, and is usually 0.5 to 50 hours, preferably 1 to 20 hours.
- the reaction is usually carried out without a solvent, but a solvent can be used if desired.
- the solvent may be appropriately selected from organic solvents used for usual organic synthesis reactions.
- Separation and recovery of the produced polymer from the reaction system can be performed by a conventional method.
- an acid acting as a heterogeneous catalyst is used as the catalyst, first, the acid suspended in the reaction solution is removed by filtration or centrifugation. Next, the low-boiling oligomers and organic bases are removed by distillation or extraction with water to obtain the target polymer.
- an acid that acts as a homogeneous catalyst first add water to the reaction solution to form a polymer layer, acid, organic A water layer containing a base and an oligomer is separated.
- the polymer since a part of the polymer forms an acid and an ester used as a catalyst, after adding water to the reaction solution, it is heated to hydrolyze the ester to make a force layer. At this time, an organic solvent having an affinity for both the polymer and water can be used together with water. If the polymer is highly viscous and the operability of the layer separation is not good, it is preferable to use an organic solvent that has an affinity for the polymer and can easily separate the polymer by distillation. The polymer phase obtained by layering is distilled to distill off the remaining water and organic solvent to obtain the desired polymer. If acid remains in the polymer phase obtained by phase separation, it can be washed with water or an aqueous alkaline solution or treated with a base such as calcium hydroxide or calcium to remove the acid. And then subject to force distillation.
- a base such as calcium hydroxide or calcium
- the storage temperature is usually ⁇ 20 to 70 ° C., preferably 0 to 50 ° C., more preferably 10 to 40 ° C. If the storage temperature is too high, decomposition and coloring of the polymer may be accelerated, and if it is too low, a large force device is required, which is preferable.
- the number average molecular weight X of the polymer obtained by the dehydration condensation reaction can be adjusted by the type of catalyst used, the amount of catalyst, the polymerization temperature, and the polymerization reaction time, and the ranges thereof are as described above.
- a catalyst containing at least one metal or a compound thereof selected from group 4 to 12 in the periodic table is also selected. It is important to treat the polymer obtained in the presence of.
- a hydrogen donor for example, formic acid, for example, a polyether (specifically, a polyether containing an oxypropylene unit from which propylene oxide is also derived)
- a method of treating with a hydrocracking catalyst JP-A-4-227926
- a method of contacting with an isomerization catalyst then separating the isomerization catalyst, and contacting with an acid catalyst
- the method for reducing unsaturated end groups is not a method directly related to polytrimethylene ether glycol and its copolymer, but has the following problems. That is, in the case of the above-mentioned method, a part of the terminal hydroxyl group is formed by the hydrogen donor. Because of the high possibility of tellurization, even if it is applied to polytrimethylene ether glycol and its copolymer, even if the unsaturated group at the terminal is reduced, another non-reactive terminal is generated. In the case of the latter method, the process is complicated, and it is not efficient and economical.
- the reduction of unsaturated end groups of polytrimethylene ether glycol and its copolymer found by the present inventors is at least a group force of groups 4 to 12 of the periodic table is also selected. Since it is carried out in the presence of a catalyst containing one metal or its compound and does not require a hydrogen donor, it avoids the above problems and efficiently and economically reduces the amount of unsaturated end groups. It can be reduced to.
- Metals for which the group force of the periodic table group 4 to 12 is also selected include, for example, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganone, rhenium, iron, ruthenium, osmium, Examples include cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, zinc, cadmium, and mercury.
- a preferred metal is a metal selected from Group 6: L 1 group, and specific examples thereof include chromium, molybdenum, tungsten, manganese, rhenium, iron, ruthenium, osmium, cobalt, Examples include rhodium, iridium, nickel, iron ⁇ radium, platinum, copper, silver, and gold.
- a more preferable metal is a metal having a group strength of 8 to: LO group selected, and specific examples thereof include iron, ruthenium, osmium, connort, rhodium, iridium, nickel, no ⁇ radium, and platinum. It is done. Particularly preferred metals are rhodium, palladium, ruthenium or platinum, and palladium is most suitable from the viewpoint of availability and price.
- the form of the metal or metal compound is particularly limited as long as it has a function as a catalyst for reducing unsaturated end groups of polytrimethylene ether glycol and its copolymer (also referred to as a metal catalyst in the present invention). However, it can usually be used in the form of an alloy with one or more other metals, in the form of a salt, or in the form of a coordination compound. Further, a metal and a compound containing Z or metal can be supported on a carrier. Examples of the carrier include activated carbon, alumina, silica, zeolite, clay, activated clay and the like.
- a compound containing a metal in the II-valent state is selected as a catalyst at the time of addition to the reaction system. It is also possible.
- the loading amount when a metal and Z or a compound containing metal are supported on the carrier is not particularly limited, but is usually 0.1 to 50% by weight, preferably 0.5 to 20% by weight, more preferably, based on the carrier. 1 to 10% by weight.
- embodiments of the metal catalyst include finely divided metal palladium, supported metal palladium catalyst, for example, palladium on carbon, palladium on alumina, palladium on silica, and the like.
- the catalyst should be added separately and the complex formed as a salt.
- the catalyst is used in an amount sufficient to increase the rate of reduction of unsaturated end groups so that it can be measured.
- the catalyst concentration is preferably such that the reaction proceeds to the desired ratio in a time that is practical in industrialization, for example, usually 24 hours or less, preferably 10 hours or less, more preferably 5 hours or less!
- the amount used is appropriately selected according to the type of the catalyst, but is based on the dry base relative to the weight of polytrimethylene ether glycol and its copolymer.
- the proportion of the metal catalyst (excluding the support) is usually from 0.0001 to LO weight%, preferably from 0.001 to 1 weight%, more preferably from 0.005 to 0.25 weight%.
- the metal catalyst may be a complex catalyst or a metal salt such as tetrakis (triphenylphosphine) palladium (0), palladium (II) acetate, palladium (II) chloride, palladium (II) bis (triphenylphosphine).
- a metal salt such as tetrakis (triphenylphosphine) palladium (0), palladium (II) acetate, palladium (II) chloride, palladium (II) bis (triphenylphosphine).
- the amount used is appropriately selected according to the type of polytrimethylene ether glycol and its It is usually 0.001 to 10% by weight, preferably 0.001 to 5% by weight, more preferably 0.005 to 1% by weight, based on the weight of the copolymer.
- polyalkylene about 0.5 weight relative to ether glycol 0/0, preferably 1 by weight%, more preferably It is preferred that a 10% by weight excess) of water be present in the reaction system.
- the amount of water in practical treatment is usually 1 to 50 parts by weight, preferably 5 to 30 parts by weight, and more preferably 10 to 20 parts by weight with respect to 100 parts by weight of the polyalkylene ether glycol.
- the upper limit of the desaturation temperature is selected as a range force of a temperature lower than the decomposition temperature (T) of the polyalkylene ether glycol, and is usually T-20 ° C, preferably T-120 ° C, more preferably T 200 ° C temperature is adopted.
- the lower limit of the desaturation temperature is usually 25 ° C, preferably 50 ° C.
- the decomposition temperature is the temperature measured by DSC.
- the specific upper limit of the temperature is usually 200 ° C., preferably 150 ° C., more preferably 120 ° C., and particularly preferably 110 ° C.
- the desaturation treatment may be performed in the presence of a solvent.
- the solvent include methanol, ethanol, propanol, butanol, water, tetrahydrofuran, toluene, and acetone.
- the amount of the solvent is not particularly limited, but the upper limit is usually 10 times by weight, preferably 2 times by weight with respect to the polyalkylene ether glycol.
- the desaturation treatment may be either a batch type or a continuous type. Examples of the continuous method include a method in which a raw material such as polyalkylene ether glycol Z water Z solvent is continuously supplied to a column type reactor filled with a metal catalyst.
- the catalyst for the desaturation treatment can be recycled after separation from the reaction solution after the reaction.
- a separation method in the case of a batch type, for example, a method of separating the catalyst by filtration, centrifugation or the like can be mentioned. It may also be effective to wash the catalyst used with a suitable solvent.
- the washing solvent include methanol, ethanol, propanol, butanol, tetrahydrofuran, ethyl ether, propyl ether, butynoether, water, ethyl acetate, 1,3 propanediol, toluene, acetone and the like.
- the activity of the catalyst can be recovered to some extent by washing at an appropriate temperature using these solvents.
- the reduction rate of the terminal unsaturated groups of the polyalkylene ether glycol by the above desaturation treatment is usually 20% or more, preferably 50% or more, and more preferably 75% or more. Then, a polyalkylene ether glycol satisfying the formula (1) defined in the present invention is obtained.
- a method for producing a polyether ester copolymer using the polyalkylene ether glycol of the present invention as a raw material for example, a conventional method for producing a copolyester can be employed. Specifically, in the presence of a catalyst, a diester compound of an aromatic dicarboxylic acid, an excess amount of aliphatic and Z or cycloaliphatic diol and the polyalkylene ether glycol of the present invention are subjected to a transesterification reaction, and subsequently obtained.
- an aromatic dicarboxylic acid and an aliphatic and Z or alicyclic diol and the polyalkylene ether glycol of the present invention are esterified, followed by A method in which the obtained reaction product is polycondensed under reduced pressure, a short-chain polyester (for example, polybutylene terephthalate) is prepared in advance, and another aromatic dicarboxylic acid and the polyalkylene ether glycol of the present invention are added to the polycondensation.
- a short-chain polyester for example, polybutylene terephthalate
- another aromatic dicarboxylic acid and the polyalkylene ether glycol of the present invention are added to the polycondensation.
- a method of transesterifying by adding another copolymer polyester using a twin screw extruder or the like may be employed.
- tetraalkyl titanate typified by tetra (isopropoxy) titanate, tetra (n-butoxy) titanate, tetraalkyl titanate and alkylene glycol Reaction products, partial hydrolyzates of tetraalkyl titanates, metal salts of titanium hexaalkoxides, titanium carboxylates, titanium compounds, and other mono-n-butyl monohydroxy tins
- Monoalkyltin compounds such as oxide, mono-n-butyltin triacetate, mono-n-butyltin monooctylate, mono-n-butyltin monoacetate, di-n-butyltin oxide, di-n-butyltin diacetate, diphenol Zuoxide, diphenol tin diacete
- dialkyl (or dialyl) tin compounds such as di-butyltin dio
- Mg, Pb, Zr, Metal compounds such as Zn, Sb, Ge, and P are also useful.
- These catalysts may be used in combination of two or more. In particular, when used alone, tetraalkyl titanate is preferred. When used in combination, tetraalkyl titanate and magnesium acetate are preferred. Further, the above catalyst may be added at the start of the transesterification or esterification reaction and then added again at the copolymerization reaction.
- the amount of the catalyst to be used is generally 0.001 to 0.5% by weight, preferably 0.003 to 0.2% by weight, based on the produced polyether ester copolymer. If the amount of the catalyst used is too small, the reaction will not proceed easily and the productivity will deteriorate, and if it is too large, the resulting polyether ester copolymer will be colored or the surface appearance of the copolymer molded product will be uneven. May be evil.
- polycarboxylic acid, polyfunctional hydroxy compound, oxyacid or the like may be copolymerized as a part of dicarboxylic acid diol.
- the polyfunctional component acts effectively as a viscosity-increasing component, and its content in the copolymer is usually 3 mol% or less. If the polyfunctional component content exceeds 3 mol%, the resulting polyether ester copolymer may gel.
- polyfunctional component examples include trimellitic acid, trimesic acid, pyromellitic acid, benzophenone tetracarboxylic acid, butanetetracarboxylic acid, glycerin, trimethylolpropane, pentaerythritol, and esters and acids thereof. And anhydrides.
- reaction conditions for producing the polyetherester copolymer can be used as the reaction conditions for producing the polyetherester copolymer.
- the reaction temperature of the transesterification reaction or esterification reaction is usually 120 to 250 ° C, preferably 140 to 240 ° C, and the reaction time is usually 1 to 5 hours.
- the latter polycondensation reaction is usually carried out under a reduced pressure of 10 torr or less, the reaction temperature is usually 200 to 280 ° C, preferably 220 to 270 ° C, and the reaction time is usually 1 to 6 hours.
- the polyether ester copolymer obtained as described above is maintained at a temperature equal to or higher than the melting point, and sequentially subjected to molding such as discharge from a reaction can and pelletizing.
- the pellets obtained here may be further subjected to solid phase polymerization if necessary.
- Liester ester copolymer has many terminal unsaturated groups and has higher solution viscosity and lower terminal carboxy group concentration compared to polyether ester copolymer produced from polyalkylene ether glycol. Have a good color tone.
- the polyalkylene ether glycol of the present invention is also useful as a raw material for polyurethane resin.
- Polyurethane resin is produced by a conventional method mainly from a compound having an active hydrogen group typified by a polyol and a polyisocyanate.
- the polyalkylene monoterdaricol of the present invention can be easily introduced into a polyurethane resin by reaction with a polyisocyanate as one of active hydrogen compounds.
- the polyalkylene ether glycol of the present invention can be used in combination with other polyols.
- Polyols that can be used in combination include polytetramethylene ether glycol, polyethylene glycolol, polypropylene glycol, polytrimethylene ether glycol, ethylene oxide and propylene oxide or ethylene oxide and tetrahydrofuran or propylene oxide and tetrahydrofuran.
- Polyether polyols such as copolymers; adipic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, succinic acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, superic acid, azelaic acid, Carboxylic acids such as sebacic acid, dimer acid, trimellitic acid and pyromellitic acid, their anhydrides, ester compounds, or cyclic esters such as ⁇ -force prolataton and y-valerolataton Terui ⁇ product polyester polyols obtained by the reaction; ho Sugen, methyl carbonate, Echiru include polycarbonate polyols obtained by reacting an organic carbonate and ethylene carbonate, such as carbonate phenyl.
- Polyolefin polyols such as hydroxyl group-containing polybutadiene, hydrogenated hydroxyl group-containing polybutadiene, hydroxyl group-containing polyisoprene, hydrogenated hydroxyl group-containing polyisoprene, hydroxyl group-containing chlorinated polypropylene, hydroxyl group-containing chlorinated polyethylene; castor oil polyol, silk Animal and vegetable oil-based polyols such as hive mouth-in; epoxy-modified polyols obtained by addition reaction of alkanolamines such as diisopropanolamine and diethanolamine to bisphenol A type epoxy resin and novolak phenol type epoxy resin; Acrylic polyols obtained by polymerizing acrylic monomers having an alcoholic hydroxyl group such as hydroxy esters of methacrylic acid; dimer acid polyols; hydrogenated dimers A monoacid polyol etc.
- compounds having an active hydrogen group such as a mercapto group, primary or secondary amino group, carboxyl group, silanol group can be used in combination.
- the amount of these other polyols used is usually 50 mol% or less, preferably 20 mol% or less, as a proportion of the total polyol.
- chain extender for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3 propanediol, 1,2 butanediol, 1,3 butane Diol, 1,4 Butanediol, 2,3 Butanediol, 3-Methyl-1,5 Pentanediol, Neopentyl Glycol, 2-Methyl-1,3 Propanediol, 2-Methyl-2 Pill 1,3 Propanediol, 2 Butyl-2-ethyl-1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-2,4-pentanediol, 2,2,4 trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexane Diol, 2, 5 Dimethyl-2,
- chain extenders compounds having two or more amino groups
- fragrances such as 2, 4 1 or 2, 6-tolylenediamine, xylylenediamine, 4, 4'-diphenylmethanediamine, and the like.
- IPDA 1-amino-3 aminomethyl-3, 5, 5 -Tri
- a chain terminator having one active hydrogen group can be used to control the molecular weight of the polyurethane resin.
- the chain terminator include aliphatic monoamines such as ethanol, propanol, butanol and hexanol, and aliphatic monoamines such as jetylamine having amino groups, dibutylamine, monoethanolamine and diethanolamine.
- polyisocyanate examples include 2,4 mono- or 2,6 tolylene diisocyanate, xylylene diisocyanate, 4,4'-diphenyl-nomethane diisocyanate (MDI), paraffin.
- MDI 4,4'-diphenyl-nomethane diisocyanate
- Aromatic diisocyanates such as enylene diisocyanate, 1, 5 naphthalene diisocyanate, and tolidine diisocyanate; having aromatic rings such as a,, ⁇ ', ⁇ ' -tetramethylxylylene diisocyanate Aliphatic diisocyanate; methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, 2, 2, 4 or 2, 4, 4 trimethylhexamethylene diisocyanate, 1, 6 hexamethylene diisocyanate Aliphatic diisocyanates such as isocyanates; 1,4-cyclohexane diisocyanate, methylcyclohexane diisocyanate (hydrogenated TDI), 1 isocyanate 3 Isocyanate methyl-3,5,5 Trimethylcyclohexane (IPDI) 4,4'-dicyclohexylmethane diisocyanate, isopyridene dicyclohe
- polyisocyanates in which a part of the NCO group of the polyisocyanate is modified to urethane, urea, burette, allophanate, carpositimide, oxazolidone, amide, imide, etc.
- Polyisocyanates containing the body can also be used.
- polyurethane resin made of the polyalkylene ether glycol of the present invention as a raw material for use in high-performance polyurethane elastomers such as polyurethane elastic fibers and synthetic leather, the following examples are given as combinations of raw materials.
- the polymer of the present invention having a molecular weight of 500 to 5000 is used.
- Alkylene ether glycol, other active hydrogen compound components ethylene diamine, propylene diamine, hexane diamine, xylylene diamine, 2-methylolene, 1,5-pentane diamine at least one compound selected, chain At least one compound selected as a group extender such as 1,4-butanediol, 1,3-propanediol as an extender, 4,4'-dimethanemethane diisocyanate or 2,4 as diisocyanate 4—or 2,6-tolylene diisocyanate.
- a known method can be adopted as a method for producing the above-mentioned polyurethane resin.
- a polyisocyanate component and a polyol component can be reacted in a single step, or a prepolymer is prepared in advance by reacting with a polyisocyanate component and a polyol component at a reaction equivalent ratio of 0.1 to 10.0. Then, a polyisocyanate component or an active hydrogen compound component (polyhydric alcohol, amine compound, etc.) can be added thereto and reacted.
- the reaction may be carried out in a Balta state without using a solvent, and may be either a batch type or a continuous type.
- an organic solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ethers such as dioxane and tetrahydrofuran; hydrocarbons such as hexane and cyclohexane; Aromatic hydrocarbons such as toluene and xylene: Esters such as ethyl acetate and butyl acetate; Halogenated hydrocarbons such as chlorobenzene, tricrene, and parkrene; Dimethyl sulfoxide, N-methyl-2-pyrrolidone, dimethylformamide, dimethyl And aprotic polar solvents such as acetamide. When producing a polyurethane urea chain-extended with diamine, dimethylformamide or dimethylacetamide is preferred from the viewpoint of solubility.
- ketones such as acetone, methyl ethyl ketone, methyl isobutyl
- reaction equivalent ratio of the NCOZ active hydrogen group is usually 0.50 to L50, preferably 0.8 to 1.2.
- the hard segment content in the polyurethane resin is usually a value calculated by the formula shown in “PJ Flory, Journal of the American Chemical Society, 58 ,, pages 1877-1885 (1936;)”. 2-50%.
- the reaction temperature is usually 0 to 250 ° C. This temperature varies depending on the presence or absence of a solvent, the reactivity of raw materials used, reaction equipment, and the like.
- the reaction may be performed while degassing under reduced pressure.
- a catalyst, a stabilizer, etc. can also be used in the case of reaction as needed.
- the catalyst include triethylamine, tributylamine, dibutyltin dilaurate, stannous octylate, acetic acid, phosphoric acid, sulfuric acid, hydrochloric acid, sulfonic acid, and the like.
- the stabilizer examples include 2, 6 Examples thereof include dibutyl-4-methylphenol, distearyl thiodipropionate, di'betanaphthylphenol-diamine, tri (dinoylphenol) phosphite and the like.
- the obtained polyurethane elastomer is produced into a target product by a general molding method such as dry spinning, wet spinning, melt spinning, casting, injection molding, extrusion molding, and calendar molding.
- the polyurethane resin using the polyalkylene ether glycol of the present invention as a raw material can be used in various applications, and exhibits excellent performance particularly when used as an elastic fiber.
- preferred production conditions for producing a polyurethane urea resin for elastic fibers are exemplified.
- the added amount of monool such as BuOH or hexanol is usually 500 to 5000 ppm with respect to the polyalkylene ether glycol.
- a cooled prepolymer solution and an aliphatic diamine having a methylene chain length of 6 or less such as propandamine, ethylenediamine, 2-methinoleyl 1,5-pentanediamine, hexanediamine), or aromatic diamine (xylylenediamine, etc.)
- chain extension by reacting with DMAc or amine solution dissolved in DMF.
- Aliphatic diamines with too long methylene chain length When used in, the physical properties of the polyurethane elastic fiber may deteriorate.
- the reaction is stopped by adding a DMAc or DMF solution of an aliphatic monoamine such as jetylamine, dibutylamine, monoethanolamine, or diethanolamine.
- an aliphatic monoamine such as jetylamine, dibutylamine, monoethanolamine, or diethanolamine.
- monoamine and diamine may be mixed in advance, and the chain extension reaction and the chain termination reaction may proceed simultaneously.
- the chain extension reaction may be performed by adding a prepolymer solution to the diamine solution or by adding the diamine solution to the prepolymer solution. Let it react continuously.
- An antioxidant can be added at any time during or after the production of the polyetherester copolymer or polyurethane resin.
- the polyether ester copolymer particularly when the polyalkylene ether glycol of the present invention is exposed to a high temperature, for example, at the time of entering the copolymerization reaction, the deterioration of the acidity of the polyalkylene ether glycol of the present invention is reduced.
- antioxidants include, for example, phosphoric acid, phosphorous acid aliphatic, aromatic or alkyl group-substituted aromatic ester; hypophosphorous acid derivative, phenylphosphonic acid, phenylphosphinic acid, diphenylphosphonic acid, poly Phosphorus compounds such as phosphonates, dialkylpentaerythritol diphosphites, dialkylbisphenol A diphosphites; phenolic derivatives such as hindered phenolic compounds; And compounds containing iodo such as acid esters; tin compounds such as tin malate and dibutyltin monooxide. Two or more of these may be used in combination.
- the addition amount of the antioxidant is usually from 0.001 to 3 parts by weight, preferably from 0.01 to 2 parts by weight, based on 100 parts by weight of the polyetherester copolymer and polyurethane resin.
- the amount of antioxidant added is too small, the effect of the acid-depressing agent is manifested 1, and when it is too large, the resulting polyether ester copolymer is colored or the surface appearance of the molded copolymer product is There is a case where it makes a bad habit.
- Examples of the components include silica, talc, my strength, titanium dioxide, alumina, calcium carbonate, calcium silicate, clay, kaolin, diatomaceous earth, asbestos, barium sulfate, aluminum sulfate, calcium sulfate.
- Foaming agents Crosslinking agents such as epoxy compounds and isocyanate compounds; Viscosity modifiers such as process oil, silicone oil and silicone resin; various conductive materials.
- the polyalkylene ether glycol of the present invention comprises a polyester copolymer such as a thermoplastic polyether ester elastomer (TPEE), a polyether ester elastic fiber, a polyether ester film, a thermoplastic polyurethane elastomer (TPU). ), Thermosetting polyurethane elastomer (TSU), polyurethane elastic fiber, polyurethane urea fiber, synthetic leather 'artificial leather', etc., it can be suitably used as a polyol raw material for various copolymers.
- TPEE thermoplastic polyether ester elastomer
- TPU thermoplastic polyurethane elastomer
- TSU Thermosetting polyurethane elastomer
- polyurethane elastic fiber polyurethane urea fiber
- synthetic leather 'artificial leather' synthetic leather 'artificial leather'
- Number average molecular weight (Mn) [58 X (3.4 to 3.7 p pm methylene peak integrated value) / (3.8 p pm terminal methylene peak side integral value)] + 18
- a reactor equipped with a nitrogen inlet and a decompression port was charged with 40.2 parts of dimethyl terephthalate, 25.0 parts of 1,4 butanediol, and 109.0 parts of polytrimethylene ether glycol (B). 107 parts (lOOppmZ polymer as Ti metal) were dissolved in 1,4-butanediol and prepared. After substituting under reduced pressure, the temperature was increased from 150 ° C to 230 ° C over 3 hours under nitrogen to conduct a transesterification reaction.
- Table 2 shows the polymerization time and the relative polymerization rate of the obtained polyetherester copolymer. It was.
- the polymerization reaction rate was expressed by the following formula by increasing the torque per unit time during stirring at 12 rpm.
- Example 1 The polytrimethylene ether glycols ( ⁇ ) and ( ⁇ ) obtained in Example 1 were mixed at a predetermined ratio to prepare four types of polytrimethylene ether glycols having different terminal aryl group amounts per unit weight. Each polytrimethylene ether glycol was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 1 “5% rhodium carbon powder” (manufactured by NE Chemcat, Lot No. 317-80360, water-containing product (water content 51.46 wt. %)) was used instead 0. 206 g (0. 5 wt 0/0 as a dry product with respect to polytrimethylene ether glycol) was carried out the same reaction as in Example 1.
- the concentration of the terminal aryl group of the obtained polytrimethylene ether teraricol was below the detection limit of NMR.
- the concentration of the terminal 1 probe group was below the detection limit of NMR.
- Example 1 except for using 10% of activated carbon (powder, manufactured by Kanto Yigaku Co., Ltd.) instead of “5% palladium carbon powder” in the case of unsaturated end group reduction reaction, Example 1 The reaction was carried out in the same manner as above. The concentration of the terminal aryl group of the obtained polytrimethylene ether glycol was 0.0156 meqZg as measured by NMR, which was different from that before the unsaturated end group reducing reaction.
- Example 1 when the unsaturated terminal reducing reaction, as a catalyst "2% platinum carbon powder" (NE Chemcat Co., Lot No. 117- 91360, water-containing product (water content 52.71 wt 0/0)) 12 . except for using 69 g (3 wt 0/0 as a dry product with respect to polytrimethylene ether glycol) was carried out the same reaction as in example 1.
- the concentration of the terminal aryl group of the obtained polytrimethylene ether dialicol was 0.0049 meqZg.
- the concentration of the terminal 1-probe group was below the detection limit of NMR.
- a catalyst used in the unsaturated end reducing reaction was prepared in the following manner. Demineralized water was added to a palladium nitrate aqueous solution (manufactured by NE Chemcat) to prepare a palladium solution containing 1.67% by weight as palladium metal. In an eggplant-shaped flask, 60 cc of this solution and 2 Og of silica gel (“Silysia 540” manufactured by Fuji Silysia Chemical Co., Ltd.) were placed, and water was distilled off with an evaporator to support palladium on the silica gel.
- This catalyst precursor is filled into a Pyrex (registered trademark) glass tube, dried at 150 ° C for 2 hours under a nitrogen stream, and further subjected to a reduction treatment at 400 ° C for 2 hours under a hydrogen stream. Then, the mixture was cooled to obtain 5 wt% palladium silica powder.
- Pyrex registered trademark
- Example 1 in the unsaturated end reducing reaction, 2.00 g of the above-mentioned "5 wt% palladium silica powder" as a catalyst (1 wt% relative to polytrimethylene ether glycol) %) was used, and the reaction was carried out in the same manner as in Example 1.
- the concentration of the terminal aryl group of the obtained polytrimethylene monoterdaricol was 0.0035 meqZg.
- the concentration of the terminal 1 propenyl group was below the detection limit of NMR.
- the catalyst was filtered off with a filter equipped with a 0.2 mPTFE membrane filter.
- the filtrate was concentrated by an evaporator and dried at 120 ° C. and 4 mmHg while nitrogen publishing.
- the results are shown in Run 6 of Table 2. In this way, the activity of the catalyst can be restored to some extent by washing with an appropriate solvent.
- Example 1 except that the reaction time after reaching the reaction start point (170 ° C) of the dehydration condensation reaction was changed to 17 hours, and the reflux time of hydrolysis of sulfate ester was changed to 24 hours.
- the same operation as in Example 1 was carried out to obtain polytrimethylene ether glycol (C) having a number average molecular weight of 3138 and a terminal aryl group concentration of 0.0193 meqZg.
- the polytrimethylene terdaricol (C) was subjected to the same unsaturated end group reduction reaction as in Example 1.
- the concentration of the terminal aryl group of the obtained polytrimethylene ether glycol (D) was below the detection limit of NMR.
- the concentration of the terminal 1 probe group was also below the detection limit of NMR.
- the relative polymerization rate was determined in the same manner as in Example 1 except that polytrimethylene ether glycol (D) was used as a raw material in Example 1. The results are shown in Table 3.
- Example 9 The polytrimethylene ether glycols (C) and (D) obtained in Example 9 were mixed at a predetermined ratio, and four types of polytrimethylene ether glycols having different terminal aryl groups per unit weight were mixed. Recall was prepared. Each polytrimethylene ether glycol was evaluated in the same manner as in Example 1. The results are shown in Table 3.
- FIG. 3 is a graph similar to FIG. 1 showing the relationship between the reaction rate (vs. speed) and the amount of terminal aryl groups per unit weight, and is a graph based on the results of Table 3.
- Example 2 While supplying nitrogen with INLZmin to the same four-necked flask as in Example 1, 500 g of 1,3-propanediol was charged. To this was added 0.348 g of sodium carbonate, and 6.78 g of 95 wt% concentrated sulfuric acid was gradually added while stirring. This flask was immersed in an oil bath and heated, and the liquid temperature in the flask reached 163 ° C in about 1 hour. The time when the liquid temperature in the flask reached 163 ° C was taken as the reaction start point, and then the reaction was continued for 12 hours while maintaining the liquid temperature at 162-164 ° C. Next, after hydrolysis with sulfate ester, the same operation as in Example 1 was performed.
- polytrimethylene ether glycol (E) having a number average molecular weight of 1125 and a terminal aryl group concentration of 0. OlOOmeqZg was obtained.
- the concentration of the terminal 1 probe group was below the detection limit of NMR.
- the polytrimethylene terdaricol (E) was subjected to the same unsaturated end group reduction reaction as in Example 1.
- the concentration of the terminal aryl group of the obtained polytrimethylene ether glycol (F) was below the detection limit of NMR.
- the concentration of the terminal 1 probe group is also N
- the relative polymerization rate was determined in the same manner as in Example 1, except that L was used in Example 1 and polytrimethylene ether glycol (E) was used as a raw material. The results are shown in Table 4.
- each polytrimethylene ether glycol was evaluated in the same manner as in Example 1. The results are shown in Table 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyethers (AREA)
Abstract
ポリオール原料として使用した際に十分な反応速度を呈する様に改良された新規なポリアルキレンエーテルグリコールを提供する。
以下の化学式(I)で表される繰り返し単位から成るポリアルキレンエーテルグリコール又は以下の化学式(I)で表される繰り返し単位の含有量が50モル%以上であるポリアルキレンエーテルグリコールであって、単位重量当りの不飽和末端基量Y(meq/g)が下記式(1)の条件を満たすポリアルキレンエーテルグリコール。
【化1】 -(CH2-CH2-CH2-O)- (I) 【数1】 Y≦
1.69 × 10-6X + 0.0055 (1) ( Xは数平均分子量を示す。)
Description
ポリアルキレンエーテルグリコール及びその製造方法 技術分野
[0001] 本発明はポリアルキレンエーテルグリコール及びその製造方法に関する。本発明の ポリアルキレンエーテルグリコールは 1 , 3 プロパンジオールのホモポリマー又はコ ポリマーから成る。
背景技術
[0002] ポリエーテルポリオールは、弾性繊維、熱可塑性エラストマ一、熱硬化性エラストマ 一等のソフトセグメントの原料をはじめ、広範囲な用途を有するポリオールである。代 表的なポリエーテルポリオールとしては、ポリエチレングリコール、ポリ(1 , 2—プロパ ンジオール)(通称ポリプロピレングリコールと呼ばれている)、ポリテトラメチレンエー テルダリコール等のポリアルキレンエーテルグリコールが知られている。特に、ポリ(1
, 2—プロパンジオール)は、室温で液状であって取り扱いが容易であり、かつ安価な ので広く使用されている。
[0003] し力しながら、ポリ(1, 2 プロパンジオール)は、通常、末端の水酸基が主に 2級 水酸基であるため、末端に 1級水酸基を有する他のポリオールに比べて反応性が劣 る。また、メチル基を側鎖に持っため、他の直鎖状のポリオールに比べて強度などの 物性が劣る場合があり、用途によってはより良い物性のポリエーテルポリオールが望 まれている。そこで、近年、 1級水酸基のみを有しており、かつ融点も低いポリエーテ ルポリオールとして、ポリトリメチレンエーテルグリコールが注目を浴びている。
[0004] ポリトリメチレンエーテルグリコールの製造方法として、重縮合触媒を使用し、 1, 3 プロパンジオール、 2〜9の重合度を有する 1, 3 プロパンジオールのオリゴマー 、プレボリマー若しくはこれらの混合物力 成る群力 選択される 1, 3 プロパンジォ ール原料を重縮合させ、 1気圧未満でポリトリメチレンエーテルグリコールを形成する ことを含む方法が提案され、 1, 500を超える数平均分子量、 20meqZkg未満の不 飽和度を有するポリトリメチレンエーテルグリコール (具体的には、数平均分子量 2, 3 60、不飽和度 12. 5meqZkgのポリトリメチレンエーテルグリコール)が得られており
、ポリトリメチレンエーテルグリコールのコポリマーについても言及されている(例えば 特許文献 1参照)。
[0005] また、ポリトリメチレンエーテルグリコールの類縁物質として、ポリ 2—メチル 1, 3- プロピレンエーテルグリコールが提案され、 3—メチルォキセタンの開環重合により、 数平均分子量 515のものが得られている力 不飽和末端基量については十分に言 及されて ヽな ヽ (例えば特許文献 2参照)。
[0006] 特許文献 1:米国特許出願公開第 2002Z0007043号明細書 (特表 20003— 5170 71号公報)
特許文献 2:特開昭 58 - 126828号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、本発明者らの検討によれば、上記の様なポリトリメチレンエーテルダリ コール (又はそのコポリマー)を使用してウレタン化反応やポリエステルィ匕反応を実施 した場合、重合速度が低下して生産性が悪くなつたり、分子量が一定以上に上がら ずにポリマー製品として十分な性能が得られないとの問題が見出された。
[0008] 本発明は、上記実情に鑑みなされたものであり、その目的は、ポリオール原料として 使用した際に十分な反応速度を呈する様に改良された新規なポリアルキレンエーテ ルグリコール及びその製造方法を提供することにある。 課題を解決するための手段
[0009] 本発明者は、ポリトリメチレンエーテルグリコール(又はそのコポリマー)はポリオール 原料として各種の広範囲に亘る固有粘度 (IV)のポリマーの製造に使用されることを 考慮して鋭意検討を重ねた結果、次の様な新規な知見を得た。すなわち、上記ポリ マーの製造時の反応速度は単位重量当りの不飽和末端基量に依存して臨界的に 悪化し、しかも、斯かる臨界的な意義を有する不飽和末端基量は数平均分子量によ つて異なる。そして、ポリアルキレンエーテルグリコールの製造反応後の特定の反応 処理により不飽和末端基の低減ィ匕を図ることが可能であるが、数平均分子量を考慮 して必要な範囲で上記の反応処理を行うことが可能であり、上記の製造反応で得ら れたポリアルキレンエーテルグリコールの物性は何ら損なわれない。
[0010] 本発明は、上記知見に基づき完成されたものであり、その第 1の要旨は、以下のィ匕 学式 (I)で表される繰り返し単位力 成るポリアルキレンエーテルグリコール又は以下 の化学式 (I)で表される繰り返し単位の含有量が 50モル0 /0以上であるポリアルキレン エーテルグリコールであって、単位重量当りの不飽和末端基量 Y(meq/g)が下記 式(1)の条件を満たすことを特徴とするポリアルキレンエーテルグリコールに存する。
[0011] [化 1]
- ( C H 2 C H 2— C H 2— 0 ) - ( I )
[0012] [数 1]
Y≤ 1 . 6 9 X 1 0 - 6 Χ + 0 . 0 0 5 5 ( 1 )
(Xは数平均分子量を示す。 )
[0013] そして、本発明の第 2の要旨は、 1, 3—プロパンジオール、 2〜9の重合度を有する
1, 3—プロパンジオールのオリゴマー、プレポリマー若しくはこれらの混合物力 成る 群から選択される 1, 3—プロパンジオール原料 (Α)、または、当該 1, 3—プロパンジ オール原料の含有量が 50モル%以上であるアルキレンジオール原料(Β)を脱水縮 合反応させ、得られたポリアルキレンエーテルグリコールを周期表 4〜 12族の群から 選択される金属またはその化合物を含む触媒の存在下に処理することを特徴とする 、ポリアルキレンエーテルグリコールの製造方法に存する。
発明の効果
[0014] 本発明によれば、ポリオール原料として使用した際にウレタンィ匕反応やポリエステ ル化反応において十分な反応速度を呈する様に改良された新規なポリアルキレンェ 一テルダリコール及びその製造方法が提供される。 図面の簡単な説明
[0015] [図 1]反応速度湘対速度)と単位重量当りの末端ァリル基量との関係を示すグラフ [図 2]実施例 1に記載のァリル末端低減反応前と反応後の1 H— NMRチャート
[図 3]反応速度湘対速度)と単位重量当りの末端ァリル基量との関係を示すグラフ 発明を実施するための最良の形態
[0016] 以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要
件の説明は、本発明の実施態様の一例 (代表例)であり、これらの内容に特定はされ ない。
[0017] 先ず、本発明のポリアルキレンエーテルグリコールについて説明する。本発明のポ リトリメチレンエーテルグリコールは 2つのタイプを包含し、その 1つは、前記の化学式 (I)で表される繰り返し単位力も成るポリアルキレンエーテルグリコール (ポリトリメチレ ンエーテルグリコール)であり、他の 1つは、前記の化学式 (I)で表される繰り返し単 位の含有量が 50モル0 /0以上であるポリアルキレンエーテルグリコール (ポリトリメチレ ンエーテルグリコールのコポリマー)である。
[0018] 本発明のポリアルキレンエーテルグリコールの特徴は、単位重量当りの不飽和末端 基量 Y(meqZg)が前記式(1)の条件を満たすことにある。
[0019] 本発明でいう不飽和末端基量 Yを表す meqZgとは、ポリトリメチレンエーテルグリコ ールの単位重量当たりの不飽和末端基がどれくらい存在するかを表す指標である。 前記数式(1)は、数平均分子量 Xに対して不飽和末端基量 Yが一定の割合 (傾き) で増加することを意味する。この比例式は、本発明者らの研究により、不飽和末端基 量 Yと数平均分子量 Xは比例関係にあることが初めて明ら力となり、 Xと Yの関係を直 線式で表すことが可能になったのである。具体的には以下の方法により、直線式を導 き出すことが可能である。
[0020] 先ず、反応速度が急減に変化する不飽和末端基量 Yの臨界点を明らかとし、この 様な臨界点を示すポリトリメチレンエーテルグリコール (縦軸を不飽和末端基量 Yと横 軸を数平均分子量 Xとする)をプロットする。このプロットの傾向を見ると、数平均分子 量 Xに比例して不飽和末端基量 Yが増加している。そこで、プロットした点から直線式 の傾きと切片を算出し、特定の数式を導き出すことが可能となる。具体的には、次に 説明する図 1に示す通りである。
[0021] 図 1は、原料として単位重量当りの不飽和末端基量 Y(meqZg)が異なるポリトリメ チレンエーテルグリコール (数平均分子量 2133)を使用してポリエステルイ匕反応を行 つた際に得られた反応速度湘対速度)と単位重量当りの不飽和末端基量 Yとの関 係を示すグラフ(後述の実施例 1及び 2並びに比較例 1〜3における「ポリトリメチレン エーテルグリコールの評価方法」の結果に基づくグラフ)である。不飽和末端基量が
約 0. 005 (meqZg)と約 0. 009 (meqZg)の点にそれぞれ臨界点が認められる。す なわち、ポリエステルィ匕反応の速度は、単位重量当りの不飽和末端基量に依存して 低下する力 特に 0. 009 (meqZg)の点で急激に低下している。同様に数平均分子 量 3138にも臨界点が存在する。
[0022] そこで、各実施例におけるポリトリメチレンエーテルグリコールの分子量 Xと臨界点 の不飽和末端基量 Y(meqZg)から傾きと切片を算出した。更に、その特定の数式 以下の範囲である不飽和末端基量 Y(meqZg)でも同様の効果が立証されたことか ら、前記式(1)の特定の範囲を導き出した。つまり、本発明におけるポリトリメチレンェ 一テルダリコールは、不飽和末端基量 Y (meq/g)が極めて低減されたものであり、 特に不飽和末端基量 Y(meqZg)が前記式(1)を満たすポリトリメチレンエーテルグ リコールを原料とした際に、エラストマ一の重合速度の著しい向上、物性の著しい向 上が可能となることを見出した。この前記式(1)の範囲を満足するポリトリメチレンエー テルグリコールを使用することにより、本発明の目的を達成できる。
[0023] 本発明においては、単位重量当りの不飽和末端基量 Y(meqZg)は、下記式(2) の条件を満たすことが好ましく、下記式 (3)の条件を満たすことが更に好ま 、。
[0024] [数 2]
Y≤ 1 - 6 9 X 1 0 - 6 Χ + 0 . 0 0 1 4 ( 2 )
Y≤ l . 6 9 X 1 0 - 6 Χ— 0 . 0 0 0 8 5 ( 3 )
(Xは数平均分子量を示す。 )
[0025] 因みに、水酸基の数は 1分子当り 2個であるから、例えば、数平均分子量 (Μη) = 2 000のポリトリメチレンエーテルグリコールの場合は、 lmeqZgの水酸基をもつことに なる。従って、 0. OlmeqZgの不飽和末端をもっていることは全末端水酸基の 1%が 封止されて 、ると 、うことを意味する。
[0026] 本発明でいう不飽和末端基とは、末端ァリル基が代表的なものであるが、末端ァリ ル基に限定されない。なお、末端ァリル基とは、具体的には末端 2—プロべ-ル基( CH =CH— CH—)である。末端ァリル基以外の不飽和末端基としては 1—プロべ
2 2
ニル基(CH— CH二 CH— )が考えられる。なお、 1, 3—プロパンジオールを脱水縮
3
合すると、水酸基以外の末端として末端プロピル基が検出される場合がある。しかし ながら、末端プロピル基は、末端ァリル基に比べて非常に少量であり、また、反応条
件の選択により NMRの検出限界以下まで低減することが可能である。
[0027] また、数平均分子量 Xは、通常 250〜10, 000、好ましくは 800〜5, 000、更に好 ましくは 1, 300〜4, 000、特に好ましくは 1, 800〜3, 500である。数平均分子量 X が大き過ぎる場合は、粘度が高くなり過ぎ取り扱いが難しくなつたり、反応性が低くな りエラストマ一の製造工程で時間が掛カり過ぎたりする傾向があり、小さ過ぎる場合は 、エラストマ一としての弾性やソフト性などの特徴が十分に発揮されなくなる傾向があ る。分子量分布 (重量平均分子量 Z数平均分子量)は、通常 1〜4、好ましくは 1〜2 . 5であり、ハーゼン色数は、通常 200以下、好ましくは 100以下、更に好ましくは 50 以下、特に好ましくは 30以下、最も好ましくは 20以下である。
[0028] 上記式(1)を満足する X, Yの具体的な範囲としては、通常、(X, Y) = (250, 0. 0 059)、 (10000, 0. 0224)、 (10000, 0)、 (250, 0)の 4点の座標で囲まれる範囲 であり、好ましくは、(X, Y) = (800, 0. 0069)、 (5000, 0. 0140)、 (5000, 0)、 ( 800, 0)であり、更に好ましくは、 (X, Y) = (1300, 0. 0077)、 (4000, 0. 0123)、 (4000, 0)、 (1300, 0)であり、特に好ましくは、 (X, Υ) = (1800, 0. 0085)、 (35 00, 0. 0114)、 (3500, 0)、 (1800, 0)である。また、これらの範囲の中でもより好 ましく ίま、 Χ=800〜5000で Υの値力0. 0069以下の範囲にあるちのであり、更に好 ましく ίま、 = 130〜4000で¥の値カ0. 0077以下であり、特に好ましく ίま、 Χ= 180 0〜3500で Υの値力 . 0085以下で表される範囲である。
[0029] 本発明のポリトリメチレンエーテルグリコールのコポリマーにおいて、前記化学式 (I) で表される繰り返し単位以外の繰り返し単位は、アルキレンエーテルグリコールから 誘導される単位である限り、その種類は制限されないが、 2—メチルー 1, 3—プロパ ンジオール又は 2, 2—ジメチルー 1, 3—プロパンジオールより誘導される単位が特 に好ましい。また、本発明のポリトリメチレンエーテルグリコールのコポリマーにおいて 、前記化学式 (I)で表される繰り返し単位の割合は、好ましくは 70モル%以上、更に 好ましくは 80モル%以上であり、その上限は通常 99モル%である。
[0030] 本発明のポリアルキレンエーテルグリコールの製造方法としては、例えば、アルキレ ンジオールの脱水縮合、環状エーテルの開環重合、アルコールと環状エーテルとの 反応による方法が挙げられる。具体的には、特開昭 59— 189120号公報、特開平 2
248426号公報、特開 2003— 147073号公報の記載を参照することが出来る。 本発明においては、特に、後述するアルキレンジオールの脱水縮合による方法が推 奨される。
[0031] 次に、本発明のポリアルキレンエーテルグリコールの製造方法について説明する。
本発明の製造方法は、ポリアルキレンエーテルグリコールの製造反応と当該製造反 応で得られたポリマーの不飽和末端基の低減ィ匕を図る処理との 2ステップを包含する 。これらの 2ステップは同時に行ってもよい。
[0032] 脱水縮合反応においては、原料として、 1, 3 プロパンジオール、 2〜9の重合度 を有する 1, 3 プロパンジオールのオリゴマー、プレボリマー若しくはこれらの混合 物から成る群から選択される 1, 3 プロパンジォール原料 (A)、または、当該 1, 3— プロパンジオール原料の含有量が 50モル0 /0以上であるアルキレンジオール原料(B )を使用する。
[0033] アルキレンジオール原料(B)からはポリトリメチレンエーテルグリコールのコポリマー が得られる。共重合成分としては、エチレングリコール、 2—メチルー 1, 3 プロパン ジオール、 2, 2 ジメチルー 1, 3 プロパンジオール、 1, 4 ブタンジオール, 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 1, 7 ヘプタンジオール、 1, 8—ォ クタンジオール、 1, 9ーノナンジオール、 1, 10 デカンジオール、 1, 4ーシクロへキ サンジメタノール等の 2個の 1級水酸基を有するアルキレンエーテルグリコールを適 宜使用することが出来る。また、トリメチロールェタン、トリメチロールプロパン、ペンタ エリスリトール等の 3官能以上のグリコール又はこれらのグリコールのオリゴマーを併 用することも出来る。
[0034] 上記の中では、 2—メチルー 1, 3 プロパンジオール又は 2, 2 ジメチルー 1, 3 プロパンジオールが好まし 、。
[0035] ポリトリメチレンエーテルグリコールのコポリマーの製造においては、 1, 3 プロパン ジオール原料の含有量は、好ましくは 70モル%以上、更に好ましくは 80モル%以上 であり、その上限は通常 99モル%である。 1, 3 プロパンジオールが少な過ぎる場 合は、ポリトリメチレンエーテルグリコールのコポリマー力も得られるポリマーのソフト性 や熱安定性が悪くなつたりする傾向がある。
[0036] なお、 1, 3—プロパンジオール原料 (A)におけるオリゴマー、プレボリマー等は、前 述の米国特許出願公開第2002 0007043号明細書(特表20003— 517071号 公報)に記載の方法で調製することが出来る。換言すれば、本発明においては、上 記の先行技術と同様に、多段階に脱水縮合反応を行うことが出来る。
[0037] 本発明において、脱水縮合反応は公知の方法に従って行うことが出来、回分方式 または連続方式の何れであってもよ 、。
[0038] 回分方式の場合には、反応器に原料および触媒 (酸と 4族および 13族から成る群 から選ばれる金属の化合物)とを仕込み、攪拌下に反応させればよい。連続反応の 場合には、例えば多数の攪拌槽を直列にした反応装置や流通式反応装置の一端か ら原料と触媒を連続的に供給し、装置内をピストンフローないしはこれに近い態様で 移動させ、他端から反応液を連続的に抜き出す方法を使用することが出来る。
[0039] 反応温度は、通常 120〜250。C、好ましくは 140〜200。C、更に好ましくは 155〜1 75°Cである。反応温度が高過ぎる場合は、末端不飽和基の量が多くなつたり、ポリマ 一が着色し易くなる傾向があり、低過ぎる場合は、十分な重合反応速度が得られなく なる傾向がある。
[0040] 反応は、窒素やアルゴン等の不活性ガス雰囲気下で行うのが好ま 、。反応圧力 は、反応系が液相に保持される限り任意であり、通常は常圧条件が採用される。所望 ならば反応により生成した水の反応系からの脱離を促進するため、反応を減圧下で 行ったり、反応系に不活性ガスを流通させてもよい。
[0041] 反応時間は、触媒の使用量、反応温度、生成ポリマーの収率や物性などにより異 なるが、通常 0. 5〜50時間、好ましくは 1〜20時間である。なお、反応は通常は無 溶媒で行うが、所望ならば溶媒を使用することも出来る。溶媒は、常用の有機合成反 応に使用する有機溶媒から適宜選択して使用すればよい。
[0042] 生成ポリマーの反応系からの分離 ·回収は常法により行うことが出来る。触媒として 不均一系触媒として作用する酸を使用した場合は、先ず、濾過や遠心分離により反 応液カも懸濁している酸を除去する。次いで、蒸留または水などの抽出により低沸点 のオリゴマーや有機塩基を除去し、目的とするポリマーを取得する。均一系触媒とし て作用する酸を使用した場合は、先ず、反応液に水を加えてポリマー層と、酸、有機
塩基およびオリゴマー等を含む水層とを分層させる。なお、ポリマーの一部は触媒と して使用した酸とエステルを形成しているため、反応液に水を加えた後、加熱してェ ステルを加水分解して力 分層させる。この際、ポリマー及び水の双方に親和性のあ る有機溶媒を水と一緒に使用することも可能である。また、ポリマーが高粘度で分層 の操作性がよくない場合は、ポリマーに親和性があり、かつ蒸留によりポリマーカも容 易に分離し得る有機溶媒を使用するのも好まし 、。分層により取得したポリマー相は 蒸留して残存する水や有機溶媒を留去し、目的とするポリマーを取得する。なお、分 層により取得したポリマー相に酸が残存している場合には、水やアルカリ水溶液で洗 浄したり、水酸ィ匕カルシウム等の塩基で処理して残存して 、る酸を除去して力 蒸留 に供する。
[0043] 得られたポリマーを保存する場合は、通常、不活性ガス雰囲気にて保存する。保存 温度は、通常— 20〜70°C、好ましくは 0〜50°C、更に好ましくは 10〜40°Cである。 保存温度が高過ぎる場合はポリマーの分解や着色が促進される場合があり、低過ぎ る場合は大掛力りな装置が必要となり好ましくな 、。
[0044] 脱水縮合反応で得られるポリマーの数平均分子量 Xは、使用する触媒の種類、触 媒量、重合温度、重合反応時間により調整することが出来、その範囲は前述の通りで ある。
[0045] 本発明においては、上記で得られたポリマーの不飽和末端基の低減ィ匕を図るため 、周期表 4〜 12族の群力も選択される少なくとも 1種の金属またはその化合物を含む 触媒の存在下に得られたポリマーを処理することが重要である。
[0046] 従来、不飽和末端基の低減方法に関し、ポリエーテル (具体的にはプロピレンォキ シドカも誘導されるォキシプロピレン単位を含むポリエーテル)につ 、てではあるが、 水素供与体 (例えば蟻酸など)及び水添分解触媒で処理する方法 (特開平 4— 227 926号公報)、異性化触媒と接触させて後、異性化触媒分離し、酸触媒と接触させる 方法が知られている(国際公開 98Z15590号パンフレット)。
[0047] 上記の不飽和末端基の低減方法は、ポリトリメチレンエーテルグリコール及びその コポリマーに直接関係した方法ではないが、カロえて次の様な問題がある。すなわち、 上記の前者の方法の場合は、水素供与体により、末端の水酸基の一部が蟻酸エス
テルィ匕する可能性が高いため、仮にポリトリメチレンエーテルグリコール及びそのコポ リマーに適用して末端の不飽和基が低減されたとしても別の非反応性末端を生じる ことになり、更に、上記の後者の方法の場合は、工程が複雑であり、効率的、経済的 ではない。
[0048] これに対し、本発明者らによって見出されたポリトリメチレンエーテルグリコール及び そのコポリマーの不飽和末端基の低減ィ匕は、周期表 4〜 12族の群力も選択される少 なくとも 1種の金属またはその化合物を含む触媒の存在下に行われ、水素供与体を 必要としないため、上記の様な問題を回避し、効率的且つ経済的に、不飽和末端基 を著しく少ない量にまで低減することが出来る。
[0049] 周期表 4〜12族の群力も選択される金属としては、例えば、チタン、ジルコニウム、 ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガ ン、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パ ラジウム、白金、銅、銀、金、亜鉛、カドミウム、水銀などが挙げられる。本発明におい て、好ましい金属は 6〜: L 1族の群力 選択される金属であり、その具体例としては、ク ロム、モリブデン、タングステン、マンガン、レニウム、鉄、ルテニウム、オスミウム、コバ ルト、ロジウム、イリジウム、ニッケル、ノ《ラジウム、白金、銅、銀、金が挙げられる。本 発明において、更に好ましい金属は 8〜: LO族の群力も選択される金属であり、その 具体例としては、鉄、ルテニウム、オスミウム、コノルト、ロジウム、イリジウム、ニッケル 、 ノ《ラジウム、白金が挙げられる。特に好ましい金属は、ロジウム、パラジウム、ルテ- ゥム又は白金であり、入手の容易性や価格面からパラジウムが最適である。
[0050] 金属または金属化合物は、ポリトリメチレンエーテルグリコール及びそのコポリマー の不飽和末端基の低減をする触媒として機能を有するもの (本発明では金属触媒と も表記する)であれば特に形態は限定されないが、通常、 1種類以上の他の金属との 合金の形態、塩の形態、配位化合物の形態にして使用することが出来る。更に、金 属および Zまたは金属を含む化合物は担体に担持させることも出来る。担体としては 、例えば、活性炭、アルミナ、シリカ、ゼォライト、粘土、活性白土などが挙げられる。 金属の電子状態としては反応時に 0価の状態で反応系中に存在していればよぐ反 応系に加える時点では例えば II価の状態の金属を含む化合物を触媒として選択する
ことも可能である。金属および Zまたは金属を含む化合物を担体に担持する場合の 担持量は、特に制限されないが、担体に対し、通常 0. 1〜50重量%、好ましくは 0. 5〜20重量%、更に好ましくは 1〜10重量%である。
[0051] ノラジウムを例に挙げると、金属触媒の態様としては、微粉金属パラジウム、担持金 属パラジウム触媒、例えば、炭素上のパラジウム、アルミナ担持パラジウム、シリカ担 持パラジウム等が挙げられる。そのほかに、テトラキス(トリフエ-ルホスフィン)パラジ ゥム(0)、パラジウム(II)アセテート、パラジウム(II)クロリド、パラジウム(II)ビス(トリフ ェニノレホスフィン)クロリド、ビス(ペンタンジォナト)パラジウム(0)、パラジウム(II)ビス (ベンゾニトリル)等が挙げられる。触媒は別々に添加してその結果錯体ゃ塩を形成 させてちょい。
[0052] 触媒は、不飽和末端基の低減速度を測定できるほど増加させるのに十分な量で使 用される。工業化で実用可能な時間、例えば、通常 24時間以下、好ましくは 10時間 以下、更に好ましくは 5時間以下で反応が所望の割合まで進行する様な触媒濃度が 好まし!/ヽ。金属触媒を担体に担持して使用する場合および微粉金属触媒として使用 する場合の使用量は、その種類に応じて適宜選択されるが、ポリトリメチレンエーテル グリコール及びそのコポリマーの重量に対するドライベース基準の金属触媒 (担体を 除く)の割合として、通常 0. 0001〜: LO重量%、好ましくは 0. 001〜1重量%、更に 好ましくは 0. 005〜0. 25重量%である。また、金属触媒を錯体触媒や金属塩、例 えば、テトラキス(トリフエ-ルホスフィン)パラジウム(0)、パラジウム(II)アセテート、パ ラジウム(II)クロリド、パラジウム(II)ビス(トリフエ-ルホスフィン)クロリド、ビス(ペンタ ンジォナト)パラジウム (Π)、パラジウム (Π)ビス (ベンゾ-トリル)等として使用する場合 の使用量は、その種類に応じて適宜選択される力 ポリトリメチレンエーテルグリコー ル及びそのコポリマーの重量に対し、通常 0. 001〜10重量%、好ましくは 0. 001〜 5重量%、更に好ましくは 0. 005〜1重量%である。
[0053] 本発明において、ポリアルキレンエーテルグリコールの金属触媒の存在下での処 理による不飽和末端基の低減化 (脱不飽和処理)は次の様に行われると推定される 。すなわち、ァリル末端から内部に 2重結合が移動して 1 プロぺニル基末端が形成 され、これが水と反応してプロピオンアルデヒドを脱離すると共に水酸基末端が形成
される。脱不飽和処理に必要な水は、金属触媒に含有されている水を使用すること が可能である。例えば、パラジウム担持活性炭は一般に 50%程度の含水品として巿 販されている。し力しながら、 1 プロぺニル基末端を加水分解するのに必要な量以 上(例えばポリアルキレンエーテルグリコールに対して約 0. 5重量0 /0、好ましくは 1重 量%、更に好ましくは 10重量%過剰量)の水分が反応系中に存在していることが好 ましい。実用的な処理における水の量は、ポリアルキレンエーテルグリコール 100重 量部に対し、通常 1〜50重量部、好ましくは 5〜30重量部、更に好ましくは 10〜20 重量部である。
[0054] 脱不飽和処理温度の上限は、ポリアルキレンエーテルグリコールの分解温度 (T)よ り低い温度の範囲力も選択され、通常 T— 20°C、好ましくは T— 120°C、更に好ましく は T 200°Cの温度が採用される。また、脱不飽和処理温度の下限は、通常 25°C、 好ましくは 50°Cである。反応温度が高い場合には加圧で脱不飽和処理を行うことも 可能である。分解温度は DSCによって測定される温度である。また、具体的な温度 の上限としては、通常 200°C、好ましくは 150°C、更に好ましくは 120°C、特に好まし くは 110°Cである。
[0055] 脱不飽和処理は溶媒の存在下で行うことも可能である。溶媒としては、例えば、メタ ノール、エタノール、プロパノール、ブタノール、水、テトラヒドロフラン、トルエン、ァセ トン等が挙げられる。溶媒の量は特に制限されないが、その上限は、ポリアルキレン エーテルグリコール対し、通常 10重量倍、好ましくは 2重量倍である。脱不飽和処理 は、回分式または連続式の何れの形式であってもよい。連続式としては、例えば、金 属触媒を充填したカラム型反応器に、ポリアルキレンエーテルグリコール Z水 Z溶媒 などの原料を連続的に供給する方法が挙げられる。
[0056] 脱不飽和処理の触媒は、反応後に反応液と分離した後に、リサイクルすることも可 能である。分離の方法としては、バッチ式の場合、例えば、ろ過、遠心分離などにより 触媒を分離する方法が挙げられる。また、使用触媒を適当な溶媒で洗浄することも有 効である場合がある。洗浄溶媒としては、例えば、メタノール、エタノール、プロパノー ル、ブタノール、テトラヒドロフラン、ェチルエーテル、プロピルエーテル、ブチノレエー テル、水、酢酸ェチル、 1, 3 プロパンジオール、トルエン、アセトン等が挙げられる
。固定床反応器の場合には、これらの溶媒を使用して適当な温度で洗浄すること〖こ より触媒の活性をある程度回復させることが可能である。
[0057] 上記の脱不飽和処理によるポリアルキレンエーテルグリコールの末端不飽和基の 低減化率は、通常 20%以上、好ましくは 50以上%、更に好ましくは 75%以上低減 である。そして、本発明で定義されている前記式(1)を満たすポリアルキレンエーテ ルグリコールが得られる。
[0058] 本発明のポリアルキレンエーテルグリコールを原料とするポリエーテルエステル共 重合体の製造方法としては、例えば、従来の共重合ポリエステルの製造方法を採用 することが出来る。具体的には、触媒の存在下、芳香族ジカルボン酸のジエステル化 合物、過剰量の脂肪族および Zまたは脂環式ジオール及び本発明のポリアルキレン エーテルグリコールをエステル交換反応させ、続ヽて得られた反応生成物を減圧下 で重縮合する方法、触媒の存在下、芳香族ジカルボン酸と脂肪族および Zまたは脂 環式ジオール及び本発明のポリアルキレンエーテルグリコールをエステル化反応さ せ、続いて得られた反応生成物を減圧下で重縮合する方法、予め短鎖ポリエステル (例えばポリブチレンテレフタレート)を調製し、これに他の芳香族ジカルボン酸と本 発明のポリアルキレンエーテルグリコールを加えて重縮合する方法が挙げられる。こ の際、二軸押出機などを使用し、他の共重合ポリエステルを添加してエステル交換す る方法を採用してもよい。
[0059] 上記のエステル交換反応またはエステル化反応に共通の触媒として、例えば、テト ラ (イソプロボキシ)チタネート、テトラ (n—ブトキシ)チタネートに代表されるテトラアル キルチタネート、これらテトラアルキルチタネートとアルキレングリコールとの反応生成 物、テトラアルキルチタネートの部分加水分解物、チタニウムへキサアルコキサイドの 金属塩、チタンのカルボン酸塩、チタ-ル化合物などの Ti系触媒の他、モノー n—ブ チルモノヒドロキシスズオキサイド、モノ一 n—ブチルスズトリアセテート、モノ一 n—ブ チルスズモノォクチレート、モノー n—ブチルスズモノアセテート等のモノアルキルスズ 化合物、ジ n—ブチルスズオキサイド、ジ n—ブチルスズジアセテート、ジフエ- ルスズオキサイド、ジフエ-ルスズジアセテート、ジー n—ブチルスズジォクチレート等 のジアルキル(またはジァリール)スズィ匕合物などが挙げられる。更に、 Mg、 Pb、 Zr、
Zn、 Sb、 Ge、 P等の金属化合物も有用である。これらの触媒は、 2種以上組み合わ せて使用してもよい。特に単独で使用する場合は、テトラアルキルチタネートが好適 である。また、組み合わせて使用する場合にはテトラアルキルチタネートと酢酸マグネ シゥムが好ましい。また、上記の触媒はエステル交換またはエステルイ匕反応開始時 に添加した後、共重合反応時に再び添加してもしなくてもよい。
[0060] 触媒の使用量は、生成するポリエーテルエステル共重合体に対し、通常 0. 001〜 0. 5重量%、好ましくは 0. 003-0. 2重量%である。触媒の使用量が少な過ぎる場 合は反応が進行し難く生産性が悪くなり、多過ぎる場合は、生成するポリエーテルエ ステル共重合体が着色したり、共重合体成形品の表面外観がブッ等により悪ィヒする 場合がある。
[0061] また、ジカルボン酸ゃジオールの一部としてポリカルボン酸や多官能ヒドロキシ化合 物、ォキシ酸などが共重合されていてもよい。多官能成分は高粘度化成分として有 効に作用し、その共重合体中の含有量は通常 3モル%以下である。多他官能成分の 含有量が 3モル%を超える場合は、生成するポリエーテルエステル共重合体がゲル 化する場合がある。上記の多官能成分としては、例えば、トリメリット酸、トリメシン酸、 ピロメリット酸、ベンゾフエノンテトラカルボン酸、ブタンテトラカルボン酸、グリセリン、ト リメチロールプロパン、ペンタエリスリトール、及び、それらのエステル、酸無水物など が挙げられる。
[0062] ポリエーテルエステル共重合体を製造する際の反応条件は、公知の常用条件を使 用することが出来る。例えば、エステル交換反応またはエステル化反応の反応温度 は、通常 120〜250°C、好ましくは 140〜240°Cであり、反応時間は通常 1〜5時間 である。また、後段の重縮合反応は通常 lOtorr以下の減圧下で行われ、反応温度 は、通常 200〜280°C、好ましくは 220〜270°Cであり、反応時間は通常 1〜6時間 である。
[0063] 上記の様にして得られたポリエーテルエステル共重合体は、融点以上の温度で保 持され、順次、反応缶から吐出、ペレタイジング等の成形が行われる。なお、ここで得 られたペレットは、必要に応じ、更に固相重合してもよい。
[0064] 末端不飽和基が少な!/、本発明のポリアルキレンエーテルグリコールより製造したポ
リエ一テルエステル共重合体は、従来の末端不飽和基が多 、ポリアルキレンエーテ ルグリコールより製造したポリエーテルエステル共重合体と比較し、溶液粘度が高ぐ 末端カルボシキル基の濃度が低ぐ良好な色調を有する。
[0065] また、本発明のポリアルキレンエーテルグリコールはポリウレタン榭脂の原料としても 有用である。ポリウレタン榭脂は、主としてポリオールに代表される活性水素基を有す る化合物とポリイソシァネートとから常法により製造される。本発明のポリアルキレンェ 一テルダリコールは、活性水素化合物の 1つとして、ポリイソシァネートとの反応により 、ポリウレタン榭脂中に容易に導入することが出来る。
[0066] 本発明のポリアルキレンエーテルグリコールは、他のポリオールと併用することも可 能である。併用できるポリオールとしては、ポリテトラメチレンエーテルグリコール、ポリ エチレングリコーノレ、ポリプロピレングリコール、ポリトリメチレンエーテルグリコール、 エチレンォキシドとプロピレンォキシド又はエチレンォキシドとテトラヒドロフラン又はプ ロピレンォキシドとテトラヒドロフランカ 得られるランダム又はブロック共重合体などの ポリエーテルポリオール類;アジピン酸、フタル酸、イソフタル酸、テレフタル酸、マレ イン酸、フマル酸、コハク酸、シユウ酸、マロン酸、グルタル酸、ピメリン酸、スペリン酸 、ァゼライン酸、セバシン酸、ダイマー酸、トリメリット酸、ピロメリット酸などのカルボン 酸類、これらの酸無水物、エステル化合物、または、 ε—力プロラタトン、 y—バレロ ラタトン等の環状エステルイ匕合物と反応させて得られるポリエステルポリオール類;ホ スゲン、炭酸メチル、炭酸ェチル、炭酸フエニルの様な有機炭酸エステルやエチレン カーボネートと反応させて得られるポリカーボネートポリオール等が挙げられる。
[0067] また、水酸基含有ポリブタジエン、水素添加の水酸基含有ポリブタジエン、水酸基 含有ポリイソプレン、水素添加の水酸基含有ポリイソプレン、水酸基含有塩素化ポリ プロピレン、水酸基含有塩素化ポリエチレン等のポリオレフインポリオール;ひまし油 ポリオール、絹フイブ口イン等の動植物油系ポリオール;ジイソプロパノールァミン、ジ エタノールァミン等のアルカノールァミンをビスフエノール A型エポキシ榭脂、ノボラッ クフエノール型エポキシ榭脂に付加反応させて得られるエポキシ変性ポリオール;メタ クリル酸のヒドロキシエステル等アルコール性水酸基を有するアクリルモノマーをビ- ル重合させて得られるアクリルポリオール;ダイマー酸系ポリオール;水素添加ダイマ
一酸ポリオール等が挙げられる。また、その他にも、メルカプト基、 1級または 2級アミ ノ基、カルボキシル基、シラノール基などの活性水素基を有する化合物も併用するこ とが出来る。これらの他のポリオールの使用量は、全ポリオール中の割合として、通 常 50モル%以下、好ましくは 20モル%以下である。
[0068] ポリウレタン榭脂の製造の際、活性水素化合物として、鎖延長剤と呼ばれる少なくと も 2個の活性水素基を有する分子量 500以下の化合物を併用すると、ポリウレタンェ ラストマーのゴム弾性が向上するので好ましい。
[0069] 上記の鎖延長剤として、例えば、エチレングリコール、ジエチレングリコール、トリエ チレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコ ール、 1, 3 プロパンジオール、 1, 2 ブタンジオール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、 2, 3 ブタンジオール、 3—メチルー 1, 5 ペンタンジオール、 ネオペンチルグリコール、 2—メチルー 1, 3 プロパンジオール、 2—メチルー 2 プ 口ピル 1, 3 プロパンジオール、 2 ブチルー 2 ェチルー 1, 3 プロパンジォー ル、 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 2—メチルー 2, 4 ペンタ ンジオール、 2, 2, 4 トリメチルー 1, 3 ペンタンジオール、 2 ェチルー 1, 3 へ キサンジオール、 2, 5 ジメチルー 2, 5 へキサンジオール、 2 ブチルー 2 へキ シルー 1, 3 プロパンジオール、 1, 8 オクタンジオール、 2—メチルー 1, 8 オタ タンジオール、 1, 9ーノナンジオール等の脂肪族グリコール;ビスヒドロキシメチルシ クロへキサン等の脂環族グリコール;キシリレングリコール、ビスヒドロキシエトキシベン ゼン等の芳香環を有するグリコール;水などが挙げられる。
[0070] 他の鎖延長剤(2個以上アミノ基を有する化合物)としては、例えば、 2, 4一又は 2, 6—トリレンジァミン、キシリレンジァミン、 4, 4' —ジフエ-ルメタンジァミン等の芳香 族ジァミン;エチレンジァミン、 1, 2 プロピレンジァミン、 1, 6 へキサンジァミン、 2 , 2 ジメチノレ一 1, 3 プロノ ンジァミン、 2—メチノレ一 1, 5 ペンタンジァミン、 1, 3 —ジァミノペンタン、 2, 2, 4 又は 2, 4, 4 トリメチルへキサンジァミン、 2 ブチル 2 ェチノレー 1, 5 ペンタンジァミン、 1, 8 オクタンジァミン、 1, 9ーノナンジアミ ン、 1, 10 デカンジァミン等の脂肪族ジァミン; 1—アミノー 3 アミノメチルー 3, 5, 5 -トリメチルシクロへキサン(IPDA)、4, 4' -ジシクロへキシルメタンジァミン(水
添 MDA)、イソプロピリデンシクロへキシル 4, 4' —ジァミン、 1, 4 ジアミノシクロ へキサン、 1, 3 ビスアミノメチルシクロへキサン等の脂環族ジァミン等が挙げられる
[0071] また、ポリウレタン榭脂の製造の際、必要に応じ、ポリウレタン榭脂の分子量を制御 するため、 1個の活性水素基を持つ鎖停止剤を使用することが出来る。鎖停止剤とし ては、エタノール、プロパノール、ブタノール、へキサノール等の脂肪族モノオール、 アミノ基を有するジェチルァミン、ジブチルァミン、モノエタノールァミン、ジエタノール ァミン等の脂肪族モノアミンが例示される。
[0072] ポリイソシァネートとしては、例えば、 2, 4一又は 2, 6 トリレンジイソシァネート、キ シリレンジイソシァネート、 4, 4' ージフエ-ノレメタンジイソシァネート(MDI)、パラフ ェニレンジイソシァネート、 1, 5 ナフタレンジイソシァネート、トリジンジイソシァネー ト等の芳香族ジイソシァネート; a , , α ' , α ' ーテトラメチルキシリレンジイソシァ ネート等の芳香環を有する脂肪族ジイソシァネート;メチレンジイソシァネート、プロピ レンジイソシァネート、リジンジイソシァネート、 2, 2, 4 又は 2, 4, 4 トリメチルへキ サメチレンジイソシァネート、 1, 6 へキサメチレンジイソシァネート等の脂肪族ジイソ シァネート; 1, 4ーシクロへキサンジイソシァネート、メチルシクロへキサンジイソシァ ネート(水添 TDI)、 1 イソシァネート 3 イソシァネートメチルー 3, 5, 5 トリメチ ルシクロへキサン(IPDI)、 4, 4' —ジシクロへキシルメタンジイソシァネート、イソプ 口ピリデンジシクロへキシルー 4, 4' ージイソシァネート等の脂環族ジイソシァネート 等が挙げられる。
[0073] また、上記の他、ポリイソシァネートの NCO基の一部をウレタン、ゥレア、ビュレット、 ァロファネート、カルポジイミド、ォキサゾリドン、アミド、イミド等に変成したポリイソシァ ネート、多核体には前記以外の異性体を含有して 、るポリイソシァネートも使用し得 る。
[0074] ポリウレタン弾性繊維や合成皮革等の高性能ポリウレタンエラストマ一用途に本発 明のポリアルキレンエーテルグリコールを原料としたポリウレタン榭脂を使用する場合 は、原料の組み合わせとして以下の例が挙げられる。
[0075] すなわち、活性水素化合物成分の 1つとして、分子量 500〜5000の本発明のポリ
アルキレンエーテルグリコール、他の活性水素化合物成分として、エチレンジァミン、 プロピレンジァミン、へキサンジァミン、キシリレンジァミン、 2—メチノレ、 1, 5—ペンタ ンジァミンの群力 選択される少なくとも 1種の化合物、鎖延長剤として、 1, 4ーブタ ンジオール、 1, 3—プロパンジオール等の群力 選択される少なくとも 1種の化合物 、ポリイソシァネートとして、 4, 4' ージフエ-ルメタンジイソシァネート又は 2, 4—若 しくは 2, 6—トリレンジイソシァネートである。
[0076] 上記のポリウレタン榭脂の製造方法としては公知の方法を採用することが出来る。
例えば、ポリイソシァネート成分とポリオール成分を 1段階で反応させることも出来るし 、予め、反応当量比 0. 10〜10. 00でポリイソシァネート成分とポリオール成分と反 応させてプレボリマーを調製し、次いで、これにポリイソシァネート成分または活性水 素化合物成分 (多価アルコール、アミンィ匕合物など)を加えて反応させることも出来る 。反応は、溶剤を使用せず、バルタ状態で行ってもよぐ反応形式は、回分式または 連続式の何れでもよい。
[0077] また、有機溶剤の存在下に行うことも出来る。使用される溶剤としては、例えば、ァ セトン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン等のケトン類; ジォキサン、テトラヒドロフラン等のエーテル類;へキサン、シクロへキサン等の炭化水 素類;トルエン、キシレン等の芳香族炭化水素類:酢酸ェチル、酢酸ブチル等のエス テル類;クロルベンゼン、トリクレン、パークレン等のハロゲン化炭化水素類;ジメチル スルホキシド、 N—メチルー 2—ピロリドン、ジメチルホルムアミド、ジメチルァセトアミド 等の非プロトン性極性溶媒などが挙げられる。ジァミンで鎖延長させたポリウレタンゥ レアを製造する場合は、溶解性の観点から、ジメチルホルムアミド又はジメチルァセト アミドが好ましい。
[0078] また、 NCOZ活性水素基の反応当量比は、通常 0. 50〜: L 50、好ましくは 0. 8〜 1. 2である。また、ポリウレタン榭脂中のハードセグメント含有率は、「P. J. Flory、Jo urnal of the American Chemical Society, 58卷、 1877— 1885頁(1936 ;)」に示された式により計算される値として、通常 2〜50%である。
[0079] 反応温度は通常 0〜250°Cである力 この温度は、溶剤の有無、使用原料の反応 性、反応設備などにより異なる。また、反応は、減圧下に脱泡しながら行ってもよい。
また、反応の際、必要に応じ、触媒、安定剤などを使用することも出来る。触媒として は、例えば、トリェチルァミン、トリブチルァミン、ジブチル錫ジラウレ—ト、ォクチル酸 第一錫、酢酸、燐酸、硫酸、塩酸、スルホン酸などが挙げられ、安定剤としては、例え ば、 2, 6 ジブチルー 4 メチルフエノール、ジステアリルチオジプロピオネート、ジ' ベータナフチルフエ-レンジァミン、トリ(ジノユルフェ-ル)フォスファイト等が挙げら れる。得られたポリウレタンエラストマ一は、乾式紡糸、湿式紡糸、溶融紡糸、注型、 射出成形、押出成形、カレンダー成形など、一般的な成形加工方法で目的の製品 に製造される。
[0080] 本発明のポリアルキレンエーテルグリコールを原料とするポリウレタン榭脂は各種用 途に利用可能であるが、特に、弾性繊維用として利用した場合に優れた性能を発現 する。以下に、弾性繊維用のポリウレタンウレァ榭脂を製造する場合の好ましい製造 条件を例示する。
[0081] 先ず、 MDIと分子量 500〜5000の本発明のポリアルキレンエーテルグリコールを NCO/OH= l . 5〜2. 0で反応させ、末端 NCO基のプレポリマーを調製する。この 際、必要応じて、 BuOH、へキサノール等のモノオールを添加してもよぐその添カロ 量は、ポリアルキレンエーテルグリコールに対し、通常 500〜5000ppmである。また、 この際、溶剤を使用せず、バルタ状態で反応させるのが副反応が起き難いので好ま しい。
[0082] 次!、で、ジメチルァセトアミド(DMAc)、ジメチルホルムアミド(DMF)等の非プロト ン性極性溶媒に上記のプレボリマーを溶解した後、通常 0〜30°C、好ましくは 0〜: LO °Cに冷却する。この際、プレボリマー溶液温度が高過ぎる場合は、次工程の鎖延長 反応時に反応が速過ぎ、不均一反応となり、ゲル化などの異常反応が発生する可能 性がある。またプレボリマー溶液温度が低過ぎる場合は、プレボリマーが析出して反 応が良好に進行しない場合がある。
[0083] 次 、で、冷却したプレボリマー溶液と、メチレン鎖長 6以下の脂肪族ジァミン (プロパ ンジァミン、エチレンジァミン、 2—メチノレー 1, 5 ペンタンジァミン、へキサンジァミン 等)又は芳香族ジァミン (キシリレンジアミン等)と、 DMAc又はは DMFに溶解させた ァミン溶液とを反応させ鎖延長する。メチレン鎖長が長すぎる脂肪族ジァミンを単独
で使用した場合は、ポリウレタン弾性繊維の物性が低下することがある。
[0084] 鎖延長反応終了後、ジェチルァミン、ジブチルァミン、モノエタノールァミン、ジエタ ノールァミン等の脂肪族モノアミンの DMAc又は DMF溶液を添カ卩して反応を停止さ せる。この際、予めモノアミンとジァミンとを混合し、鎖延長反応と鎖停止反応を同時 に進行させてもよい。
[0085] なお、上記の鎖延長反応は、ジァミン溶液にプレボリマー溶液を添カ卩しても、プレボ リマー溶液にジァミン溶液を添加してもよぐまた、 2液の定量吐出混合装置を使用し て連続的に反応させてもょ ヽ。
[0086] 前記のポリエーテルエステル共重合体やポリウレタン榭脂の製造中または製造後 の任意の時期に、酸化防止剤を加えることが出来る。ポリエーテルエステル共重合体 の製造の場合、特に本発明のポリアルキレンエーテルグリコールが高温に曝される時 点、例えば共重合反応に入る時点で、本発明のポリアルキレンエーテルグリコールの 酸ィ匕劣化を防止するために、共重合反応を阻害せず、また、触媒の機能を損なわな Vヽ酸ィ匕防止剤をカ卩えることが好まし 、。
[0087] 上記の酸化防止剤としては、例えば、燐酸、亜燐酸の脂肪族、芳香族またはアルキ ル基置換芳香族エステル;次亜燐酸誘導体、フエニルホスホン酸、フエニルホスフィ ン酸、ジフエ-ルホスホン酸、ポリホスホネート、ジアルキルペンタエリスリトールジホス ファイト、ジアルキルビスフエノール Aジホスフアイト等のリン化合物;ヒンダードフエノ ール化合物などのフエノール系誘導体;チォエーテル系、ジチォ酸塩系、メルカプト ベンズイミダゾール系、チォカルバ-リド系、チォジプロピオン酸エステル等のィォゥ を含む化合物;スズマレート、ジブチルスズモノォキシド等のスズ系化合物などが挙 げられる。これらは 2種以上組み合わせて使用してもよい。
[0088] 酸化防止剤の添加量は、ポリエーテルエステル共重合体やポリウレタン榭脂 100重 量部に対し、通常 0. 001〜3重量部、好ましくは 0. 01〜2重量部である。酸化防止 剤の添加量が少な過ぎる場合は酸ィ匕防止剤の効果が発現し 1 、多過ぎる場合は、 生成するポリエーテルエステル共重合体が着色したり、共重合体成形品の表面外観 がブッ等により悪ィ匕する場合がある。
[0089] また、本発明にお 、ては、必要に応じ、本発明の目的および効果を損なわな!/ヽ範
囲で、ポリエーテルエステル共重合体やポリウレタン榭脂に対して任意の成分を配合 することが出来る。
[0090] 上記の成分としては、例えば、シリカ、タルク、マイ力、二酸化チタン、アルミナ、炭 酸カルシウム、ケィ酸カルシウム、クレー、カオリン、ケイソゥ土、アスベスト、硫酸バリ ゥム、硫酸アルミニウム、硫酸カルシウム、塩基性炭酸マグネシウム、二硫化モリブデ ン、グラフアイト、ガラス繊維、炭素繊維などの充填剤や補強材;ステアリン酸亜鉛や ステアリン酸ビスアマイドの様な離型剤ないしは滑剤;カーボンブラック、群青、酸ィ匕 チタン、亜鉛華、べんがら、紺青、ァゾ顔料、ニトロ顔料、レーキ顔料、フタロシアニン 顔料などの染顔料;オタタブロモジフエ-ル、テトラブロモビスフエノールポリカーボネ ート等の難燃化剤;ヒンダードアミン系化合物などの光安定剤;ベンゾトリァゾールイ匕 合物などの紫外線吸収剤;炭酸ナトリウム等の無機塩;クェン酸ナトリウム等の有機塩
(発泡剤);エポキシィ匕合物やイソシァネートイ匕合物などの架橋剤;プロセスオイル、シ リコーンオイル、シリコーン榭脂などの粘度調整剤;各種導電材などが挙げられる。
[0091] 本発明のポリアルキレンエーテルグリコールは、熱可塑性ポリエーテルエステルエ ラストマー(TPEE)、ポリエーテルエステル系弾性繊維、ポリエーテルエステル系フィ ルム等のポリエステル共重合体、熱可塑性ポリウレタンエラストマ一(TPU)、熱硬化 性ポリウレタンエラストマ一 (TSU)、ポリウレタン系弾性繊維、ポリウレタンウレァ系弹 性繊維、合成皮革 '人工皮革、等の種々の共重合体向けのポリオール原料として好 適に使用することが出来るが、特に、弾性繊維に使用した場合は、常温 Z低温での 弾性回復率の温度依存性が小さい。従って、スポーツ、アウター用途など、低温での 特性が要求される分野において好適に使用でき、更に、低温において良好なヒート セット特性を有する。
実施例
[0092] 次に、本発明を実施例により更に具体的に説明する力 本発明はその要旨を超え ない限り、以下の実施例の記載に限定されるものではない。なお、以下において、「 部」とあるのは「重量部」を表す。
[0093] <分子量および末端不飽和基濃度の計算 >
ポリエーテルグリコールの数平均分子量およびァリル末端の濃度は核磁気共鳴法(
NMR)により測定した。具体的には、クロ口ホルム— d(ALDRICH社製「TMS」0.0 3vZv%に試料 50〜60mgを溶解させ、 ¾ - NMR (BRUKER^ AVANCE400 (400MHz))により分析した。測定は、パルス繰り返し時間 5秒 (AQ =4秒、 Dl = l 秒、 30° ノ レス)で、 128又は 256回の積算を行った。
[0094] [数 3]
数平均分子量 (Mn) = [58 X (3. 4〜3. 7 p pmのメチレンピーク積分値) / (3. 8 p pmの末端水酸基横のメチレンピークの積分値) ] + 18
[0095] [数 4]
末端ァリル基の濃度 (me Q/g) =4000 X (5. 8~6. O ppmのァリル プロトンの積分値) Z (3. 8 p pmの末端水酸基横のメチレンピークの積分値) /Mn
[0096] ただし、 5.8〜6. Oppmのシグナルに別のピークが重なる場合は、 5.2〜5.3pp mのァリルプロトンの積分値を使用した。
[0097] [数 5]
末端 1一プロぺニル基の濃度 (me q/g) =400 OX (6. 2 p pmのビニル プロトンの積分値 + 5. 9 p p mのビエルプロトンの積分値) Z ( 3. 8 p p mの メチレンの積分値) /Mn
[0098] 実施例 1:
< 1 , 3—プロパンジオールの脱水縮合反応 >
蒸留管、窒素導入管、水銀温度計および攪拌機を備えた lOOOmLの四つロフラス コに INLZminで窒素を供給しながら 1, 3—プロパンジオール 500gを仕込んだ。こ れに炭酸ナトリウム 0.348gを仕込んだ後、攪拌しつつ徐々に 95重量%濃硫酸 6.7 8gを添カ卩した。このフラスコをオイルバス中に浸して加熱し、約 1.5時間でフラスコ内 液温を 170°Cに到達させた。フラスコ内液温が 170°Cになった時点を反応開始点と し、以後、液温を 170〜172°Cに保持して 11時間反応させた。反応により生成した水 は窒素に同伴させて留去した。
[0099] 室温まで放冷された反応液を脱塩水 500gが入った 2Lの四つ口フラスコに移し、 8 時間還流させて硫酸エステルの加水分解を行った。水酸ィ匕カルシウム 5.84gを加え て、 70°Cにて 2時間攪拌して中和した後、オイルバスで加熱しながら窒素パブリング して水の大部分を留去し、次いで、トルエンをカ卩えて共沸脱水を行った。加圧ろ過に
て固形物をろ別した後、エバポレーターでトルエンを留去した。更に、 120°Cにて 2時 間、 5mmHgの減圧下でポリエーテルの乾燥を行い、ポリトリメチレンエーテルグリコ ール (A)を得た。 NMRより求めた数平均分子量は 2133、末端ァリル基の濃度は 0. 0156meqZgであった。なお、末端 1 プロぺニル基の濃度は、 NMRの検出限界 以下であった。
[0100] <不飽和末端基低減反応 >
四つ口フラスコに「5%パラジウム担持活性炭」(NEケムキャット社製、 Eタイプ、含 水品(含水率 54. 76重量0 /0)、Lot No. 217— 0404140) 2. 21g (ポリ卜リメチレン エーテルグリコールに対して乾燥品として 0. 5重量%)、水 30. Og、イソプロピルアル コール 30. 0g、ポリトリメチレンエーテルグリコール 200. Ogを加え、還流カロ熱を行つ た。このときの内温は約 90°Cであった。 4時間還流加熱した後、室温まで冷却し、メタ ノール 200ccを加えて有機層を希釈した後、 0. 2 mの PTFEメンブレンフィルター を使用し、加圧ろ過にて触媒をろ別した。エバポレーターにより、ろ液から水およびァ ルコールの大部分を留去し、更に、 120°C、 5mmHgにて 1時間乾燥を行った。得ら れたポリトリメチレンエーテルグリコール (B)の末端ァリル基の濃度は NMRの検出限 界以下であった。末端 1 プロぺニル基の濃度も NMRの検出限界以下であった。不 飽和末端基低減反応前と反応後の1 H— NMRチャートを図 2に示した。
[0101] くポリオール原料としてのポリトリメチレンエーテルグリコールの評価方法 >
窒素導入口、減圧口を供えた反応器にジメチルテレフタレート 40. 2部、 1, 4 ブ タンジォール 25. 0部、ポリトリメチレンエーテルグリコール(B) 109. 0部を仕込み、 そこにテトラプチノレチタネート 0. 107部(Ti金属として、 lOOppmZポリマー)を 1, 4 —ブタンジオールに溶解してカ卩えた。減圧置換後、窒素下で 150°Cから 230°Cまで 3 時間かけて昇温し、エステル交換反応を行った。その後、テトラブチルチタネート 0. 160部 (Ti金属として 150ppmZポリマー)、酸化防止剤(チバガイギ一社製「ィルガ ノックス 1330」) 0. 27部を 1, 4 ブタンジオールに混合して添カ卩した。続いて、 90分 かけて徐々に減圧し、同時に所定の重合温度 245°Cまで昇温した。以降、 0. 07kP aを保持し、所定の攪拌トルクに到達した時点で反応を終了し、内容物を取り出した。
[0102] 重合時間、得られたポリエーテルエステル共重合体の相対重合速度を表 2に示し
た。重合反応速度は、 12rpmで攪拌時の単位時間当りのトルクの上昇により下記式 、 した。
[0103] [数 6]
相対重合速度 = 粘度 時間 = トルク/ 時間 =Δ攪拌モーターにかかる電圧/^!時間
[0104] 実施例 2及び 3並びに比較例 1及び 2:
実施例 1で得られたポリトリメチレンエーテルグリコール (Α)及び (Β)を所定の割合 で混合し、単位重量当りの末端ァリル基量の異なる 4種のポリトリメチレンエーテルグ リコール調製した。そして、実施例 1と同様の方法で各ポリトリメチレンエーテルグリコ ールの評価を行った。結果を表 1に示す。
[0105] [表 1]
[0106] 表 1から次のことが明らかである。すなわち、単位重量当りの不飽和末端基量 Y(m eq/g)が前記式(1)の条件を満たさないポリトリメチレンエーテルグリコールを使用し た比較例 1及び 2の場合は、相対反応速度が十分に上がらず、生産性が大幅に低下 している。一方、単位重量当りの不飽和末端基量 Y(meqZg)が前記式(1)の条件 を満たすポリトリメチレンエーテルグリコールを使用した実施例 1〜3の場合は、比較 例 1及び 2に比べて大きく反応速度が上がって 、る。
[0107] 実施例 4 :
実施例 1において、不飽和末端基低減反応の際、触媒として「5%ロジウムカーボン 粉末」(NEケムキャット社製、 Lot No. 317— 80360、含水品(含水率 51. 46重量
%) ) 0. 206g (ポリトリメチレンエーテルグリコールに対して乾燥品として 0. 5重量0 /0) を使用した以外は、実施例 1と同様に反応を実施した。得られたポリトリメチレンエー テルダリコールの末端ァリル基の濃度は NMRの検出限界以下であった。なお、末端 1 プロべ-ル基の濃度は、 NMRの検出限界以下であった。
[0108] 比較例 3 :
実施例 1において、不飽和末端基低減反応の際、「5%パラジウムカーボン粉末」の 代わりに、活性炭素 (粉末、関東ィ匕学株式会社製) 0. 10gを使用した以外は、実施 例 1と同様に反応を実施した。得られたポリトリメチレンエーテルグリコールの末端ァリ ル基の濃度は NMRの測定値で 0. 0156meqZgであり、不飽和末端基低減反応前 と変わりな力つた。
[0109] 実施例 5 :
実施例 1において、不飽和末端低減反応の際、触媒として「2%白金カーボン粉末 」(NEケムキャット社製、 Lot No. 117— 91360、含水品(含水率 52. 71重量0 /0) ) 12. 69g (ポリトリメチレンエーテルグリコールに対して乾燥品として 3重量0 /0)を使用 した以外は、実施例 1と同様に反応を実施した。得られたポリトリメチレンエーテルダリ コールの末端ァリル基の濃度は 0. 0044meqZgであった。なお、末端 1—プロべ- ル基の濃度は、 NMRの検出限界以下であった。
[0110] 実施例 6 :
先ず、次の要領で不飽和末端低減反応の際に使用する触媒を調製した。硝酸パラ ジゥム水溶液 (NEケムキャット製)に脱塩水を加え、パラジウム金属として 1. 67重量 %を含むパラジウム溶液を調製した。ナス型フラスコに、この溶液 60ccとシリカゲル 2 Og (富士シリシァ化学製「サイリシァ 540」)をカ卩え、エバポレーターで水を留去しシリ 力ゲルにパラジウムを担持させた。この触媒前駆体をパイレックス (登録商標)製ガラ ス管に充填し、窒素気流下 150°Cで 2時間乾燥し、更に、水素気流下 400°Cで 2時 間の還元処理を行ない、窒素気流に切り替えた後に冷却し、 5重量%パラジウムシリ 力粉末を得た。
[0111] 次いで、実施例 1において、不飽和末端低減反応の際、触媒として上記の「5重量 %パラジウムシリカ粉末」 2. 00g (ポリトリメチレンエーテルグリコールに対して 1重量
%)を使用した以外は、実施例 1と同様に反応を実施した。得られたポリトリメチレンェ 一テルダリコールの末端ァリル基の濃度は 0. 0037meqZgであった。なお、末端 1 プロぺニル基の濃度は、 NMRの検出限界以下であった。
[0112] 実施例 7 :
メカ-カル攪拌翼および還流管をセットした 1L四つ口フラスコに、 5重量0 /0Pdカー ボン粉末(NEケムキャット社製、 Eタイプ、含水品水分 54. 76重量%、 Lot No. 21 7-0404140) 4. 42g (理論乾燥重量 2. 00g)、脱塩水 60g、イソプロピルアルコー ル 60gを仕込み、オイルバスにより、 15分間還流加熱した。続いて、ポリトリメチレンェ 一テルグリコール (A) 400gを投入し、更に還流加熱を行った (液内温 90°C)。 1. 3 時間後に NMR測定用に反応液約 0. 5gをサンプリングした。 6時間還流加熱後、 50 °Cまで冷却し、メタノール 200ccを投入した。 0. 2 mポリテトラフルォロエチレン(P TFE)メンブレンフィルターをセットした 1. 5Lジャケット付加圧ろ過器を使用して触媒 をろ別した。触媒はメタノール約 lOOccにて洗浄後、窒素気流下で粗乾燥を行い、 次回の反応に使用した。ろ液はエバポレーターで濃縮後、窒素パブリングを行いな がら、 120°C、 4mmHgで乾燥を行った。本操作を 5回繰り返した。反応結果を表 2の Runl〜5に示した。触媒は繰り返し使用可能であることが分かる。
[0113] 実施例 8 :
200ccフラスコに実施例 7の 5回目の反応で使用した回収触媒のうち 0. 61gを取り 出し、イソプロピルアルコール lOOccをカ卩え、 1時間還流加熱した後、加圧濾過器 (0 . 2 μ mPTFEメンブレンフィルター)で濾過した。この操作を 2回行 、し、 2回目洗浄 後に触媒全量を 200ccフラスコに移した。この洗浄触媒の入ったフラスコにイソプロピ ルアルコール 15gと水 15gをカ卩え、 30分間還流加熱を行った。更に、ポリトリメチレン エーテルグリコール (A) 100gをカ卩えて還流加熱を行った。還流加熱後、 50°Cまで冷 却し、メタノール 50ccを投入した。 0. 2 mPTFEメンブレンフィルターをセットしたろ 過器で触媒をろ別した。ろ液はエバポレーターで濃縮後、窒素パブリングしながら、 1 20°C、 4mmHgで乾燥した。結果を表 2の Run6に示した。この様に触媒は適当な溶 媒で洗浄することにより、活性をある程度復活させることが出来る。
[0114] [表 2]
(不飽和末端基低減触媒の繰り返し反応および洗浄後の使用結果)
P 0 3 G :ポリ トリメチレンエーテルグリコール
[0115] 実施例 9 :
< 1 , 3 プロパンジオールの脱水縮合反応 >
実施例 1において、脱水縮合反応の反応開始点(170°C)に達した以後の反応時 間を 17時間に変更し、硫酸エステルの加水分解の還流時間を 24時間に変更した以 外は、実施例 1と同様に操作し、数平均分子量 3138、末端ァリル基の濃度 0. 0193 meqZgのポリトリメチレンエーテルグリコール(C)を得た。
[0116] <不飽和末端基低減反応 >
実施例 1におけるのと同様の不飽和末端基低減反応に上記のポリトリメチレンエー テルダリコール (C)を供した。得られたポリトリメチレンエーテルグリコール (D)の末端 ァリル基の濃度は NMRの検出限界以下であった。末端 1 プロべ-ル基の濃度も N MRの検出限界以下であった。
[0117] くポリオール原料としてのポリトリメチレンエーテルグリコールの評価方法 >
実施例 1において、原料としてポリトリメチレンエーテルグリコール (D)を使用した以 外は、実施例 1と同様に操作し、相対重合速度を求めた。結果を表 3に示す。
[0118] 実施例 10及び 11並びに比較例 3及び 4:
実施例 9で得られたポリトリメチレンエーテルグリコール (C)及び (D)を所定の割合 で混合し、単位重量当りの末端ァリル基量の異なる 4種のポリトリメチレンエーテルグ
リコール調製した。そして、実施例 1と同様の方法で各ポリトリメチレンエーテルグリコ ールの評価を行った。結果を表 3に示す。
[0119] [表 3]
[0120] 表 3から次のことが明らかである。すなわち、単位重量当りの不飽和末端基量 Y(m eq/g)が前記式(1)の条件を満たさないポリトリメチレンエーテルグリコールを使用し た比較例 3及び 4の場合は、相対反応速度が十分に上がらず、生産性が大幅に低下 している。一方、単位重量当りの不飽和末端基量 Y(meqZg)が前記式(1)の条件 を満たすポリトリメチレンエーテルグリコールを使用した実施例 9〜: L1の場合は、比較 例 3及び 4に比べて大きく反応速度が上がっている。斯カる結果は、前述の表 1に示 す結果と同じである。
[0121] 図 3は、反応速度湘対速度)と単位重量当りの末端ァリル基量との関係を示す図 1 と同様のグラフであり、表 3の結果に基づくグラフである。
[0122] 実施例 12:
< 1 , 3—プロパンジオールの脱水縮合反応 >
実施例 1と同様の四つ口フラスコに INLZminで窒素を供給しながら 1 , 3—プロパ ンジオール 500gを仕込んだ。これに炭酸ナトリウム 0. 348gを仕込んだ後、攪拌しつ っ徐々に 95重量%濃硫酸 6. 78gを添加した。このフラスコをオイルバス中に浸して 加熱し、約 1時間でフラスコ内液温を 163°Cに到達させた。フラスコ内液温が 163°C になった時点を反応開始点とし、以後、液温を 162〜164°Cに保持して 12時間反応 させた。次いで、硫酸エステルにて加水分解を行った後は、実施例 1と同様の操作を
行い、数平均分子量 1125、末端ァリル基の濃度 0. OlOOmeqZgのポリトリメチレン エーテルグリコール (E)を得た。なお、末端 1 プロべ-ル基の濃度は、 NMRの検 出限界以下であった。
[0123] <不飽和末端基低減反応 >
実施例 1におけるのと同様の不飽和末端基低減反応に上記のポリトリメチレンエー テルダリコール (E)を供した。得られたポリトリメチレンエーテルグリコール (F)の末端 ァリル基の濃度は NMRの検出限界以下であった。末端 1 プロべ-ル基の濃度も N
MRの検出限界以下であった。
[0124] くポリオール原料としてのポリトリメチレンエーテルグリコールの評価方法 >
実施例 1にお L、て、原料としてポリトリメチレンエーテルグリコール (E)を使用した以 外は、実施例 1と同様に操作し、相対重合速度を求めた。結果を表 4に示す。
[0125] 比較例 5 :
実施例 12で得られたポリトリメチレンエーテルグリコール (E)を使用し、実施例 1と 同様の方法で各ポリトリメチレンエーテルグリコールの評価を行った。結果を表 4に示 す。
[0126] [表 4]
[0127] 表 4から次のことが明らかである。すなわち、単位重量当りの不飽和末端基量 Y(m eq/g)が前記式(1)の条件を満たさないポリトリメチレンエーテルグリコールを使用し た比較例 5の場合は、相対反応速度が十分に上がらず、生産性が大幅に低下してい る。一方、単位重量当りの不飽和末端基量 Y(meqZg)が前記式(1)の条件を満た すポリトリメチレンエーテルグリコールを使用した実施例 12の場合は、比較例 5に比 ベて大きく反応速度が上がっている。斯カる結果は、前述の表 1に示す結果と同じで
οε
W8而 900Zdf/ェ:) d .69ZS0/.00Z OAV
Claims
[数 1]
Y≤ 1. 69X 10-6 Χ + 0. 0055 (1)
(Xは数平均分子量を示す。 )
[2] 数平均分子量 Xが 250〜10, 000である請求項 1に記載のポリアルキレンエーテル グリコーノレ。
[3] 化学式 (I)で表される繰り返し単位の含有量が 50モル%以上であるポリアルキレン エーテルグリコールにおいて、化学式 (I)で表される繰り返し単位以外の繰り返し単 位が、 2—メチルー 1, 3—プロパンジオール又は 2, 2—ジメチルー 1, 3—プロパンジ オールより誘導される単位である請求項 1又は 2に記載のポリアルキレンエーテルダリ
^一ノレ ο
[4] アルキレンエーテルグリコールの脱水縮合反応を経由して得られる請求項 1〜3の 何れかに記載のポリアルキレンエーテルグリコール。
[5] 1, 3—プロパンジオール、 2〜9の重合度を有する 1, 3—プロパンジオールのオリ ゴマー、プレボリマー若しくはこれらの混合物から成る群力 選択される 1, 3—プロパ ンジオール原料 (Α)、または、当該 1, 3—プロパンジオール原料の含有量が 50モル %以上であるアルキレンジオール原料 (Β)を脱水縮合反応させ、得られたポリアルキ レンエーテルグリコールを周期表 4〜 12族の群から選択される少なくとも 1種の金属 またはその化合物を含む触媒の存在下に処理することを特徴とする、ポリアルキレン エーテルグリコールの製造方法。
[6] 金属または金属化合物が担体に担持されている触媒を使用する請求項 5に記載の
製造方法。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-319804 | 2005-11-02 | ||
JP2005319804 | 2005-11-02 | ||
JP2006-012273 | 2006-01-20 | ||
JP2006012273 | 2006-01-20 | ||
JP2006-199308 | 2006-07-21 | ||
JP2006199308 | 2006-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007052697A1 true WO2007052697A1 (ja) | 2007-05-10 |
Family
ID=38005850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/321854 WO2007052697A1 (ja) | 2005-11-02 | 2006-11-01 | ポリアルキレンエーテルグリコール及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007052697A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2483328A2 (en) * | 2009-09-30 | 2012-08-08 | E. I. Du Pont De Nemours And Company | Polytrimethylene ether glycol or copolymers thereof having improved color and processes for their preparation |
CN106589344A (zh) * | 2016-12-01 | 2017-04-26 | 浙江皇马科技股份有限公司 | 一种不饱和聚醚的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04227926A (ja) * | 1990-05-23 | 1992-08-18 | Dow Chem Co:The | ポリエーテルの不飽和を低減させるための方法およびその方法で得られた低不飽和ポリエーテル |
JPH04506226A (ja) * | 1989-06-16 | 1992-10-29 | ザ ダウ ケミカル カンパニー | エラストマーのポリウレタン又はポリウレタン―ウレアポリマーの製造方法及びこれにより製造されるポリウレタン |
JPH08507827A (ja) * | 1993-12-09 | 1996-08-20 | サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク | 水素化によるポリ(オキシアルキレン)系タ−ポリマー生成方法 |
JP2003517082A (ja) * | 1999-12-17 | 2003-05-20 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ポリトリメチレンエーテルグリコールの調製のための連続的な方法 |
JP2003517071A (ja) * | 1999-12-17 | 2003-05-20 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ポリトリメチレンエーテルグリコールおよびそのコポリマーの生成 |
JP2004182974A (ja) * | 2002-11-22 | 2004-07-02 | Mitsubishi Chemicals Corp | ポリエーテルポリオールの製造方法 |
WO2006001482A1 (ja) * | 2004-06-29 | 2006-01-05 | Mitsubishi Chemical Corporation | ポリエーテルポリオールの製造方法 |
WO2006121111A1 (ja) * | 2005-05-13 | 2006-11-16 | Mitsubishi Chemical Corporation | ポリエーテルポリオールの製造方法 |
-
2006
- 2006-11-01 WO PCT/JP2006/321854 patent/WO2007052697A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04506226A (ja) * | 1989-06-16 | 1992-10-29 | ザ ダウ ケミカル カンパニー | エラストマーのポリウレタン又はポリウレタン―ウレアポリマーの製造方法及びこれにより製造されるポリウレタン |
JPH04227926A (ja) * | 1990-05-23 | 1992-08-18 | Dow Chem Co:The | ポリエーテルの不飽和を低減させるための方法およびその方法で得られた低不飽和ポリエーテル |
JPH08507827A (ja) * | 1993-12-09 | 1996-08-20 | サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク | 水素化によるポリ(オキシアルキレン)系タ−ポリマー生成方法 |
JP2003517082A (ja) * | 1999-12-17 | 2003-05-20 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ポリトリメチレンエーテルグリコールの調製のための連続的な方法 |
JP2003517071A (ja) * | 1999-12-17 | 2003-05-20 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ポリトリメチレンエーテルグリコールおよびそのコポリマーの生成 |
JP2004182974A (ja) * | 2002-11-22 | 2004-07-02 | Mitsubishi Chemicals Corp | ポリエーテルポリオールの製造方法 |
WO2006001482A1 (ja) * | 2004-06-29 | 2006-01-05 | Mitsubishi Chemical Corporation | ポリエーテルポリオールの製造方法 |
WO2006121111A1 (ja) * | 2005-05-13 | 2006-11-16 | Mitsubishi Chemical Corporation | ポリエーテルポリオールの製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2483328A2 (en) * | 2009-09-30 | 2012-08-08 | E. I. Du Pont De Nemours And Company | Polytrimethylene ether glycol or copolymers thereof having improved color and processes for their preparation |
EP2483328A4 (en) * | 2009-09-30 | 2014-09-24 | Du Pont | POLYTRIMETHYLENETHERGLYCOL OR COPOLYMERS THEREOF WITH IMPROVED COLOR AND METHOD FOR THE PRODUCTION THEREOF |
CN106589344A (zh) * | 2016-12-01 | 2017-04-26 | 浙江皇马科技股份有限公司 | 一种不饱和聚醚的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4246783B2 (ja) | ポリウレタンの製造方法及びそれから得られたポリウレタンの用途 | |
TW564252B (en) | Polycarbonate diol | |
TWI278468B (en) | Copolycarbonate diol and thermoplastic polyurethane obtained therefrom | |
US9018334B2 (en) | Polycarbonate polyols and polyurethanes made therefrom | |
JP6252070B2 (ja) | ポリカーボネートジオール | |
KR102544387B1 (ko) | 투명 경질 열가소성 폴리우레탄의 제조 방법 | |
TWI786300B (zh) | 交聯性聚氨酯樹脂組合物用多元醇及交聯性聚氨酯樹脂 | |
KR101006001B1 (ko) | 디페닐메탄 디이소시아네이트의 신규한 중합체알로파네이트, 상기 중합체 알로파네이트의 예비중합체,및 중합체 알로파네이트 및 그의 예비중합체의 제조 방법 | |
WO2007052697A1 (ja) | ポリアルキレンエーテルグリコール及びその製造方法 | |
JPH07149883A (ja) | ラクトン系ポリエステルポリエーテルポリオールの製造方法及びそれを用いたポリウレタン樹脂 | |
JP2008248137A (ja) | ポリウレタン樹脂組成物及びその製造方法 | |
JPH10292037A (ja) | ポリカーボネート | |
EP2074159B1 (en) | Process for the preparation of polyester polyols | |
EP3950775B1 (en) | Polyalkylene ether glycol composition and polyurethane production method using same | |
JPH10251369A (ja) | ポリウレタン樹脂の製造方法 | |
JP7520728B2 (ja) | 透明な硬質熱可塑性ポリウレタン | |
US6211324B1 (en) | Hydrophobic polyurethane elastomer | |
JP2008045098A (ja) | ポリアルキレンエーテルグリコール及びその製造方法 | |
JP5121085B2 (ja) | ラクトン系ポリオールの製造方法およびそれを用いたポリウレタン樹脂 | |
US10584198B2 (en) | Polyesters, polyurethanes, elastomers, processes for manufacturing polyesters and processes for manufacturing polyurethanes | |
KR950011895B1 (ko) | 폴리우레탄 수지 조성물 | |
JP2006176704A (ja) | 反応性安定化ポリカーボネートポリオールの製造方法及び反応性安定化ポリカーボネートポリオールを用いたポリウレタン樹脂 | |
JP2004002738A (ja) | ポリウレタン樹脂 | |
JP2005133030A (ja) | ポリウレタンエラストマー | |
JP2004059880A (ja) | シアノ基を有するポリエーテルグリコール化合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06822783 Country of ref document: EP Kind code of ref document: A1 |