[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006100321A1 - Procedimiento para la fabricación de tableros de piedra artificial con resina de metacrilato para exteriores mediante el sistema de vibro-compresión al vacío - Google Patents

Procedimiento para la fabricación de tableros de piedra artificial con resina de metacrilato para exteriores mediante el sistema de vibro-compresión al vacío Download PDF

Info

Publication number
WO2006100321A1
WO2006100321A1 PCT/ES2005/000152 ES2005000152W WO2006100321A1 WO 2006100321 A1 WO2006100321 A1 WO 2006100321A1 ES 2005000152 W ES2005000152 W ES 2005000152W WO 2006100321 A1 WO2006100321 A1 WO 2006100321A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
artificial stone
especially suitable
outdoor use
use according
Prior art date
Application number
PCT/ES2005/000152
Other languages
English (en)
French (fr)
Inventor
Juan Cruz
Original Assignee
Cosentino, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosentino, S.A. filed Critical Cosentino, S.A.
Priority to CN2005800495499A priority Critical patent/CN101166699B/zh
Priority to BRPI0520323-6A priority patent/BRPI0520323A2/pt
Priority to MX2007011655A priority patent/MX2007011655A/es
Priority to US11/886,897 priority patent/US20100063193A1/en
Priority to EP20050717226 priority patent/EP1878712A1/en
Priority to JP2008502428A priority patent/JP2008534314A/ja
Priority to CA 2605549 priority patent/CA2605549A1/en
Priority to PCT/ES2005/000152 priority patent/WO2006100321A1/es
Priority to AU2005329662A priority patent/AU2005329662A1/en
Publication of WO2006100321A1 publication Critical patent/WO2006100321A1/es
Priority to US13/038,956 priority patent/US20110207849A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/242Moulding mineral aggregates bonded with resin, e.g. resin concrete
    • B29C67/243Moulding mineral aggregates bonded with resin, e.g. resin concrete for making articles of definite length
    • B29C67/244Moulding mineral aggregates bonded with resin, e.g. resin concrete for making articles of definite length by vibrating the composition before or during moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/54Substitutes for natural stone, artistic materials or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a process for manufacturing boards especially suitable for outdoor use, based on artificial stone bound only with liquid resin of methacrylate type, whose main application is its placement outside: facades, stairs and exterior floors, and the like , and can also be used indoors, both in kitchens and bathrooms as stairs and floors.
  • Patent ES 2 009 685 A (Roberto Dalla Valle, of October 1, 1989) describes a procedure for obtaining artificial stones for flooring and cladding, which comprises a crushing phase of marble materials, a kneading phase of this material together with various substances and polymerizable resin (polyester), a phase of molding of the paste obtained, by vibro-compression under vacuum, and a polymerization phase for the hardening of the resin, characterized by the fact that in the kneading marble intervenes of any type crushed with a maximum granulometry of 7 mm, and siliceous sand that has undergone a strong heating.
  • EP 0 521 286 A (Frank Martiny, of January 7, 1993) describes a coating containing binder, which is rectified on its surface and is composed of a mixture of binder material, supplementary materials as well as of additional glass characterized in that the glass elements are flogged, being able to be in the form of granules and be of different colors which gives the coating a chromatic effect. Additionally, the mixture may also contain metallic elements, such as brass or copper, which are reflective with the incidence of light.
  • JP 06-218829 (Mitsubishi Rayon Co. Ltd., of August 9, 1994) describes a process of mixing 85-95% by weight of natural stone with an acrylic binder resin.
  • a mold is filled with this mixture that is subjected to vibration under vacuum.
  • the mold hardens at room temperature or with heat and at least one of the faces is polished.
  • the purpose is to obtain an improved product with respect to abrasion, scratch resistance and time with an artificial mixture that has the appearance of natural stone.
  • the synthetic resin used is a mixture of an acrylic monomer, an acrylic polymer and an ester of a polyfunctional acrylic monomer, giving a long list of possibilities for each of the three resin components.
  • US Patent 5,800,752 (Charlebois Technologies Inc., of September 1,
  • a process and apparatus for the manufacture of a polymeric compound product which includes the steps of distributing a predetermined amount of a filler mixture with polymeric binder in the mold; characterized by curing the mixture through the simultaneous application of heat, pressure and vibration for a sufficient time to: a) form a hardened polymer film around the filler and polymeric binder mixture; b) minimize boiling and evaporation of the polymeric binder; and c) evenly distributing the filling in the mold, so that the product of polymeric compound formed is substantially free of empty spaces.
  • the objective of the invention is to achieve a shorter process, in a single stage and by which the gathering and cracking of the products obtained are reduced.
  • US Patent 6,387,985 B (Steven P. Wilkinson et al., Of May 14, 2002) describes a composition for surface materials comprising a) from 5% to 15% of an acrylic resin in which the degree of crosslinking is controlled by the addition of 0.5% to 10%, by weight, of an acrylic trifunctional monomer, and b) of 85% to 95% of a filler material formed by crushed natural stone.
  • the acrylic resin comprises (i) 20 to 65 parts of an ethylenically unsaturated monomer; (ii) 5 to 65 parts of an acrylic oligomer; (iii) 15 to 30 parts of an acrylic polymer; (iv) 1 to 5 parts of a trifunctional acrylic monomer; (v) 1 to 2 parts of a peroxide as initiator; (vi) 0.01 to 20 parts of pigments; and (vii) 1 to 2 parts of a silane as a binding agent.
  • Said composition supposes an improvement in impact resistance against polyester compositions of the prior art.
  • the product marketed as SILESTONE formed by a natural quartz agglomerate and pigmented glass and bound with polyester resin, is based on the patent ES 2 187 313 A (of the authors of the present application, of June 1, 2003) describes a procedure for manufacturing artificial stone planks especially applicable to decoration that starts from a mixture of crushed grains of different granulometry of silicas, crystals, granites, quartz, ferrosiliceous and / or other materials such as plastics, marbles and metals, with polyester resins in condition liquid containing pigments, cobalt accelerator and catalyst that acts with heat.
  • the procedure begins in the storage tanks where the polyester resin is mixed at room temperature in a pre-accelerated liquid state and the mixed granulometry crushed mixture, which passes to the mixer and once the mixture is homogenized, by means of a conveyor belt to the pressing area where the necessary mass is distributed to form the board, which passes to the vacuum vibro-compression press and from there they go to the catalysis oven whose temperature is about 85 ° C for approximately 25 minutes.
  • the plank follows the traditional procedure of calibration, polishing and / or cutting.
  • the invention is a process for manufacturing artificial stone boards especially suitable for outdoor use, comprising a crushing phase of the different materials with varied granulometry that form the load, another phase containing the resin with the catalyst, the accelerator, the binder or silane and optionally the dye and an ultraviolet light absorber compatible with the resin, as well as some antioxidant; the mixing of said phases until the materials are homogenized with the resin; a phase of molding and compaction of the paste obtained by vibro-compression under vacuum, and a hardening phase by polymerization of the resin by means of heating; ending with a cooling and polishing phase, characterized by the fact that the polymerizable resin consists solely of liquid methacrylate resin.
  • the invention also includes the boards obtained by said method.
  • variable granulometry materials can be used, which are part of the load, among others, marble, dolomite, opaque quartz, crystalline quartz, silica, crystal, mirror, cristobalite, granite, feldspar, basalt, ferrosiliceous, etc., that is, mineral materials found in nature, provided they are compatible with methacrylate resin.
  • Other loading materials can also be used, in the same grain size as the materials indicated above, such as colored plastics, metals, wood, graphite, etc.
  • the part of the load that is used to obtain a specific decorative effect can be mixed intimately with the rest of the similar grain size load or it can be placed on the surface later.
  • the materials mentioned are part of the composition with the following granulometry: a) 10% to 60% of the filler, of micronized or crushed powder, with granulometry comprised of 0.1 Omm to 0.60mm; b) 1% to 80% of the load, crushing with granulometry between
  • Methacrylate resin is a transparent material, which acts as a cement that strongly cohes the rest of the components.
  • the curing of the resin is carried out by raising the temperature of the mold in a progressive and controlled way. The process ends with a high temperature cure that minimizes possible surface faults and ensures the properties of the product, obtaining boards very resistant to ultraviolet rays.
  • the liquid methacrylate resin is present in the composition object of the invention between 6% and 20% by weight in the total of the mixture.
  • Said liquid methacrylate resin may have a viscosity between 200 and 2000 centipoise.
  • TYPE A or it may be a mixture of 90-99% of a methacrylate resin of viscosity of said TYPE A and 1-10% of a methacrylate resin of viscosity less than 200 centipoise (TYPE B).
  • TYPE A resin polymethyl methacrylate, methyl methacrylate or 2,2-ethylenedioxydiethyl dimethacrylate can be used and as type B, for example, propylidenetrimethyl trimethacrylate can be used.
  • the following ingredients are added to said phase of the liquid methacrylate resin before mixing it with the filler: a) 0.5% to 5% on the weight of the resin, of one or more catalysts or initiators of polymerization.
  • the catalyst can be any compound that produces free radicals, known in the state of the art. Peroxides and peroxy di carbonates are preferred.
  • They can be powdered (for example, dilauryl peroxide or di- (4-tert-butyl-cyclohexyl) peroxydicarbonate) or a mixture of both, or liquid (for example, tert-butyl perbenzoate or ter-peroxy-2-ethylhexanoate -butyl or a mixture of both) b) 0.05% to 0.5% on the weight of the resin, of a polymerization accelerator, using a cobalt compound derived from caprylic acid, such as cobalt octoate at 6% c) 0.5% to 5% on the weight of the resin, of a binder that is the cohesion agent between the resin and the mixed grain sizes of the mixture.
  • a polymerization accelerator using a cobalt compound derived from caprylic acid, such as cobalt octoate at 6% c) 0.5% to 5% on the weight of the resin, of a binder that is the cohesion agent between the resin
  • Said binder can be an organofunctional silane since silanes are agents that act on the surface of two dissimilar phases, functioning as a union between them.
  • the preferred silane for this invention is gamma-methacryloxypropyltrimethoxysilane, although they may be other organosilane esters.
  • benzotriazoles and benzophenones can be used, for example, 2-benzotriazol-2-yl-4-6-di-tert-butylphenol, the 2- (2H-Benzotriazol-2-yl) -6-dodecyl-4-methyl-phenol, and 2-hydroxy-4- (octal-oxy) -phenyl methanone.
  • dyes that can be micronized solid pigments with granulometry of less than 0.7 mm
  • inorganic pigments for example oxides can be used in the present invention iron (red, yellow, brown and black), chromium oxide (green), carbon black (UV stabilizing black), titanium dioxide (white) and the like, such as organic pigments, for example, phthalocyanines (blue and green ), azo (red) and bisazo (yellow) compounds.
  • Liquid dyes similar to solids dissolved in a vehicle compatible with the resin to be used, such as diallyl phthalate, methacrylate monomer or the same resin to be used can also be used.
  • Preferred compositions Preferred compositions for artificial stone boards, especially suitable for outdoor use, manufactured according to the process of the invention comprise:
  • micronized silica (quartz) 10-40% crushed silica (quartz) 0, l-0.60mm 10-40% crushed silica (quartz) 0.61-1.20mm 1-80% methacrylate resin * 6- twenty%
  • the mixture contains: Catalyst 0.5-5%
  • TYPE A micronized silica (quartz) 25% crushed silica (quartz) 0, l-0.60mm 20% crushed silica (quartz) 0.61-l, 20mm 45% methacrylate resin * (95% TYPE A + 5% TYPE B 10%
  • TYPE B micronized silica (quartz) 25% crushed mirror 0, l-0.60mm 20% crushed mirror 0.61-l, 20mm 15% crushed mirror l, 21-3.00mm 30% methacrylate resin * (100% TYPE A) 10% * contains (on the weight of the resin): tert-butyl peroxy-2-ethylhexanoate 1% tert-butyl perbenzoate 1% gamma-methacryloxypropyltrimethoxysilane 1% cobalt octoate 0 , 1% 2- (2H-benzotriazol-2-yl) -6-dodecyl-4-methylphenol ... 0.5% titanium dioxide (liquid) 6% red dye (liquid) 2% yellow dye (liquid) 3 %
  • very diverse boards can be manufactured, including cubic blocks of, for example, 150cm x 150cm x lOOcm (width x length x height). He Preferred size, depending on your application is between 60cm x 60cm and 300cm x 150cm surface with thicknesses from 0.5cm to 10cm.
  • mixers are planetary, circular.
  • the process begins with the weight of the mineral loads of the different crushed and are led to the mixers. Once in the mixers, mix for 60 seconds. Regardless, from a resin storage tank the resin is weighed in independent weights, as many as mixers are to be used, to which the appropriate additives and dyes for each mixer are added.
  • the resin already weighed and prepared with all its additives and color is added to each mixer, mixing everything for 10 to 15 minutes.
  • the catalysts if they are liquid, are added to the resin at room temperature and if they are solid, after the resin has been heated to 40-50 0 C.
  • the mixture After homogenization of the mixture, it is distributed in the frames to make the boards of the desired measures.
  • a vacuum vibro-compaction press which is the one that is responsible for compressing the material and compacting it, for which, first it makes the vacuum by taking out the air and then pressing the material by vibro-compression with a power of 6 kg / cm 2 , the whole process lasting about 2 to 3 minutes.
  • a catalysis oven to harden.
  • the oven temperature should be between 70 0 C and 110 0 C.
  • the heating process must be very controlled to avoid the formation of pores on the surface of the resin once polymerized.
  • the heat transfer is carried out by heating hollow plates with diathermic oil, which compress the compacted table at the same time as they transmit heat to it to harden.
  • the residence time of each board in the oven is 30 to 60 minutes, after which it is taken out of the oven and stored for 24 to 48 hours to cool.
  • the board thus finished is compact and uniform on all its faces, that is, the edge has the same uniformity as the upper or lower faces. It is then treated in the same way as a conventional marble or granite, that is, it is calibrated, polished and cut to the desired measurements.
  • Examples 1 and 2 describe the manufacturing process of the embodiments representing the invention for obtaining boards especially suitable for outdoor use with methacrylate resin.
  • Artificial stone boards specially manufactured for the exterior are manufactured according to the following procedure corresponding to Formulation Type A: 250 kg of silica micronized (quartz) are mixed; 200 kg of crushed silica (quartz) of granulometry between 0, lmm and 0.60mm, and 450 kg of crushed silica (quartz) of granulometry between 0.6 lmm and l, 20mm, the mixture being divided between three circular planetary mixers. To each of which a dye is added, to the first 100Og of pigment of black iron oxide powder, to the second 500 g of pigment of carbon black powder and to the third 3000g of pigment of green chromium oxide in powder, performing an initial mixture for 30 seconds.
  • a total of 95 kg of METHYL METHYLRYLATE (TYPE A resin) and 5 kg of PROPILIDENTRIMETHYL TRIMETHACRYLATE (TYPE B resin) are mixed, adding 1000 g of the silane (gamma-methacryloxypropyltrimethoxysilane); 100 g of cobalt octoate; 1000 g of di (4-tert-butyl-cyclohexyl) peroxydicarbonate; 1000 g of tert-butyl perbenzoate; and 500 g of 2-benzotriazol-2-yl-4-6-di-tert-butylphenol, the mixture being distributed according to the load of the mixers used.
  • silane gamma-methacryloxypropyltrimethoxysilane
  • cobalt octoate 1000 g of di (4-tert-butyl-cyclohexyl) peroxydicarbonate
  • Resin fillers with additives pour into their corresponding mixer and mix for 15 minutes.
  • a homogenizer whose purpose is that the material is distributed in its discharge from the mixers homogeneously, layer by layer without any prevailing over the rest, being uniformly distributed and defined all mixing colors manufactured in planetary mixers.
  • the mixture is distributed on boards of 308 cm x 139 cm and a thickness of 2 cm, which pass to the press where the vacuum is made and are compressed at 6 kg / cm 2 compacted by vibro-compression. This process takes 2.5 minutes. Then the boards are passed to the catalysis oven which is 80 0 C, where they remain 30 minutes, after passing the cooling area, where after 40 hours , they were calibrated, polished and cut by conventional methods.
  • Example 2 Example 2
  • 250 kg of silica micronized (quartz) are mixed; 200 kg of granulometry mirror crushing between 0, lmm and 0.60mm, and 150 kg of granulometry mirror crushing between 0.61mm and l, 20mm and 300kg of granulometry mirror crushing between l, 21mm and 3.00mm , the mixture being distributed between three circular planetary mixers, a premix being made for 30 seconds.
  • a total of 100 kg of METHYL METHYLLATE (TYPE A resin) are mixed, adding 1000 g of the silane (gamma-methacryloxypropyltryrnethoxysilane); 100 g of cobalt octoate; 1000 g of peroxy-2-ethylhexanoate tert-butyl; 1000 g of tert-butyl perbenzoate; and 500 g of 2- 2- (2H-benzotriazol-2-yl) -6-dodecyl-4-methylphenol, mixing for 30 seconds.
  • silane gamma-methacryloxypropyltryrnethoxysilane
  • cobalt octoate 1000 g of peroxy-2-ethylhexanoate tert-butyl
  • 1000 g of tert-butyl perbenzoate 1000 g
  • the whole assembly, layer on layer, is discharged on a homogenizer (Ring) whose purpose is that the material is distributed in its discharge from the mixers homogeneously, layer by layer without any prevailing over the rest, being uniformly distributed and defined all mixing colors manufactured in planetary mixers.
  • a homogenizer Ring
  • the mixture is distributed in boards of 308 cm x 139 cm and a thickness of 2 cm, which pass to the press where the vacuum is made and are compressed at 6k g / cm 2 compacted by vibro-compression. This process takes 2 minutes. Then the boards are passed to the catalysis oven which is at 77 0 C, where they remain 30 minutes, after passing the cooling area, where after 36 hours , they were calibrated, polished and cut by conventional methods.
  • Panels similar to those of examples 1 and 2 have been manufactured but using two different polyester resins. Since the resins are different, different catalysts have been used and in the comparative examples the ultraviolet radiation absorber has not been added.
  • example 1 The procedure of example 1 has been repeated with the proviso that 100 kg of SYNOLITE 0561 polyester resin (DSM-BASF) of viscosity 250-400 centipoise have been used, using 1000 g of TRIGONOX (AZKO NOBEL), as catalyst and Catalyst oven temperature was 85 ° C, the boards remaining 25 minutes in said oven.
  • SYNOLITE 0561 polyester resin DSM-BASF
  • TRIGONOX AZKO NOBEL
  • Example 2 The procedure of Example 2 has been repeated with the proviso that 100 kg of 2191-L ESTRATIL polyester resin (REPOSA NORSODYNE) of viscosity between 250-400 centipoise have been used, using 1000 g of TRIGONOX (AZKO) NOBEL), as catalyst.
  • the temperature of the catalysis oven was also 85 ° C, the boards remaining 25 minutes in said oven.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior que comprende las fases de: trituración de los distintos materiales con granulometría variada que forman la carga, contener la resina con el catalizador y opcionalmente el colorante, mezcla de las anteriores hasta la homogeneización de los materiales con la resina, una fase de moldeo y compactación de la pasta obtenida por vibro-compresión al vacío, y una fase de endurecimiento por polimerización de la resina por medio de calentamiento, terminando con una fase de enfriamiento y pulido.

Description

PROCEDIMIENTO PARA LA FABRICACIÓN DE TABLEROS DE PIEDRA
ARTIFICIAL CON RESINA DE METACRILATO PARA EXTERIORES
MEDIANTE EL SISTEMA DE VIBRO-COMPRESIÓN AL VACÍO
Sector de la técnica
La presente invención se refiere a un procedimiento para fabricar tableros especialmente aptos para el exterior, a base de piedra artificial ligada únicamente con resina líquida de tipo metacrilato, cuya aplicación principal es su colocación en el exterior: fachadas, escaleras y suelos exteriores, y similares, pudiendo utilizarse también en interiores, tanto en cocinas y baños como escaleras y suelos.
Estado de la técnica
El procedimiento comercializado por Bretón S.p.A (Italia) que desarrolló la tecnología denominada "Bretón Stone" está descrito en la patente US 4,698,010 (Marcello Toncelli, 6 de octubre de 1987) en la que agregados de un material de partícula variable se mezclan con un ligante (orgánico o inorgánico), y después de que dicha mezcla se ha homogeneizado se pasa a un molde que a su vez es transferido al interior de una prensa donde se somete a presión y vibración bajo vacío endureciéndose la mezcla que da como resultado bloques que se pueden cortar en otros de menores dimensiones.
La patente ES 2 009 685 A (Roberto Dalla Valle, de 1 de octubre de 1989) describe un procedimiento para la obtención de piedras artificiales para pavimentos y revestimientos, que comprende una fase de trituración de materiales marmóreos, una fase de amasado de este material junto con sustancias diversas y resina polimerizable (poliéster), una fase de moldeo de la pasta obtenida, por vibro-compresión bajo vacío, y una fase de polimerización para el endurecimiento de la resina, caracterizado por el hecho de que en el amasado interviene mármol de cualquier tipo triturado con una granulometría máxima de 7 mm, y arena silícea que ha sufrido un fuerte calentamiento. La patente EP 0 521 286 A (Frank Martiny, de 7 de enero de 1993) describe un revestimiento conteniendo aglomerante, el cual está rectificado en su superficie y que se compone de una mezcla de material aglomerante, de materias suplementarias así como de vidrios adicionales caracterizado porque los elementos de vidrio están azogados, pudiendo estar en forma de granulado y ser de distintos colores lo que confiere al revestimiento un efecto cromático. Adicionalmente, la mezcla también puede contener elementos metálicos, como por ejemplo, de latón o cobre, que son reflectantes con la incidencia de la luz.
La patente JP 06-218829 (Mitsubishi Rayón Co.Ltd., de 9 de agosto de 1994) describe un procedimiento de mezclado de 85-95% en peso de piedra natural con una resina ligante acrílica. Un molde se rellena con esta mezcla que se somete a vibración bajo vacío. El molde se endurece a temperatura ambiente o con calor y se pule al menos una de las caras. El propósito es obtener un producto mejorado respecto a la abrasión, la resistencia a los arañazos y al tiempo con una mezcla artificial que tenga la apariencia de piedra natural. La resina sintética utilizada es una mezcla de un monómero acrílico, un polímero acrílico y un éster de un monómero acrílico polifuncional, dando una larga lista de posibilidades para cada uno de los tres componentes de la resina. La patente US 5,800,752 (Charlebois Technologies Inc., de 1 de septiembre de
1998) describe un procedimiento y aparato para la fabricación de un producto de compuesto polimérico, que incluye las etapas de distribución de una cantidad predeterminada de una mezcla de relleno con ligante polimérico en el molde; caracterizado por el curado de la mezcla a través de la aplicación simultánea de calor, presión y vibración durante un tiempo suficiente para: a) formar una película de polímero endurecido alrededor de la mezcla de relleno y ligante polimérico; b) minimizar la ebullición y la evaporación del ligante polimérico; y c) distribuir uniformemente el relleno en el molde, de manera que el producto de compuesto polimérico formado esté substancialmente libre de espacios vacíos. En el ejemplo describe una composición que contiene éster de vinilo (polímero) y metacrilato de metilo (monómero). El objetivo de la invención es lograr un procedimiento más corto, en una sola etapa y por el cual se reduzcan el fruncimiento y agrietamiento de los productos obtenidos.
La patente US 6,387,985 B, (Steven P. Wilkinson et al., de 14 de mayo de 2002) describe una composición para materiales de superficie que comprende a) del 5% al 15% de una resina acrílica en la que el grado de entrecruzamiento está controlado por la adición de 0,5% al 10%, en peso, de un monómero trifuncional acrílico, y b) del 85% al 95% de un material de relleno formado por piedra natural triturada. La resina acrílica comprende (i) 20 a 65 partes de un monómero etilénicamente insaturado; (ii) 5 a 65 partes de un oligómero acrílico; (iii) 15 a 30 partes de un polímero acrílico; (iv) 1 a 5 partes de un monómero acrílico trifuncional; (v) 1 a 2 partes de un peróxido como iniciador; (vi) 0,01 a 20 partes de pigmentos; y (vii) 1 a 2 partes de un silano como agente ligante . Dicha composición supone una mejora de resistencia al impacto frente a las composiciones con poliéster del estado de la técnica.
El producto comercializado como SILESTONE, formado por un aglomerado de cuarzo natural y cristal pigmentado y ligado con resina de poliéster, está basado en la patente ES 2 187 313 A (de los autores de la presente solicitud, de 1 de junio de 2003) describe un procedimiento para fabricar tablones de piedra artificial especialmente aplicables a decoración que parte de una mezcla de triturados de distinta granulometría de sílices, cristales, granitos, cuarzo, ferrosilíceo y/u otros materiales como plásticos, mármoles y metales, con resinas de poliéster en estado líquido conteniendo pigmentos, acelerador de cobalto y catalizador que actúa con calor. El procedimiento se inicia en los tanques de almacenaje donde se mezcla a temperatura ambiente la resina de poliéster en estado líquido preacelerada y la mezcla de triturados de granulometría variada, que pasan a la mezcladora y una vez homogeneizada la mezcla, por medio de una cinta transportadora a la zona de prensado donde se distribuye la masa necesaria para formar el tablero, la cual pasa a la prensa de vibro-compresión al vacío y de ahí van al horno de catálisis cuya temperatura es de unos 85°C durante aproximadamente 25 minutos. Después de enfriado el tablón sigue el procedimiento tradicional de calibrado, pulido y/o cortado.
Explicación de la invención
La invención es un procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior que comprende, una fase de trituración de los distintos materiales con granulometría variada que forman la carga, otra fase que contiene la resina con el catalizador, el acelerador, el ligante o silano y opcionalmente el colorante y un absorbente de luz ultravioleta compatible con la resina, así como algún antioxidante; la mezcla de dichas fases hasta la homogeneización de los materiales con la resina; una fase de moldeo y compactación de la pasta obtenida por vibro-compresión al vacío, y una fase de endurecimiento por polimerización de la resina por medio de calentamiento; terminando con una fase de enfriamiento y pulido, caracterizado por el hecho de que la resina polimerizable está constituida únicamente por resina líquida de metacrilato. La invención también incluye los tableros obtenidos por dicho procedimiento.
Descripción detallada y modo de realización preferido de la invención
La utilización de material de piedra, ya sea natural o artificial, triturada y mezclada con una sustancia ligante, seguida de compactación en una prensa de vibro- compresión bajo vacío es un proceso común a varias invenciones para la obtención de tableros, generalmente para interiores. Como sustancia ligante se han utilizado resinas de poliéster o epoxi principalmente, siendo Wilkinson (véase el estado de la técnica anterior) el que emplea una mezcla de resina acrílica compuesta de monómero acrílico, oligómero acrílico, y polímero acrílico junto con un monómero acrílico trifuncional, siendo la concentración de éste último el que controla la polimerización. Así con las cantidades adecuadas de dichos ingredientes en la mezcla de resina acrílica se consigue un tablero que posee propiedades mejoradas de resistencia al impacto respecto a las composiciones tradicionales con resinas de poliéster, fenólicas, epoxi, etc.
Los autores de la presente invención, ante los problemas de los tableros del estado de la técnica para aplicaciones exteriores, y ante la demanda de estos productos para su colocación en fachadas, suelos y escaleras exteriores, considerando que España es un país con un número elevado de horas de sol tanto en verano como en invierno, han intentado solucionar los problemas mencionados. Como resultado, los autores de la presente solicitud han encontrado sorprendentemente que al limitar la resina líquida únicamente a metacrilato, los tableros resultantes poseen una menor degradación con el tiempo en el exterior y especialmente mucha mayor resistencia a los rayos solares, que los tableros fabricados con resina de poliéster o mezclas, manteniendo un coeficiente de flexión, resistencia al rayado y resistencia al impacto comparable a aquellos. El proceso de fabricación es similar a la patente ES 2187313, ya mencionada, la cual se basa en que el ligante utilizado es resina de poliéster, cambiando algunos detalles para adaptar el proceso a la naturaleza de la resina de metacrilato. A continuación se describen las distintas fases y el procedimiento: Fase de la carga
Para obtener los tableros para exteriores objeto de la invención se pueden utilizar materiales de granulometría variable, que forman parte de la carga, entre otros, mármol, dolomita, cuarzo opaco, cuarzo cristalino, sílice, cristal, espejo, cristobalita, granito, feldespato, basalto, ferrosilíceo, etc, es decir, materiales minerales que se encuentran en la naturaleza, siempre que sean compatibles con la resina de metacrilato. También se pueden utilizar otros materiales de carga, en la misma granulometría que los materiales indicados anteriormente, tales como plásticos de colores, metales, maderas, grafito, etc.
La parte de la carga que se utiliza para obtener un efecto decorativo específico se puede mezclar íntimamente con el resto de la carga de granulometría similar o se puede situar en la superficie después.
Los materiales mencionados forman parte de la composición con la granulometría siguiente: a) 10% al 60% de la carga, de polvo micronizado o triturado, con granulometría comprendida de 0,1 Omm a 0,60mm; b) 1% al 80% de la carga, de triturado con granulometría comprendida entre
0,6 lmm y l,20mm; y opcionalmente, c) 10% al 50% de la carga, de triturado con granulometría comprendida entre
1,21 mm y 15 mm.
El porcentaje de cada granulometría depende de la utilización del tablero a obtener, variando dichos porcentajes según el colorido y efecto visual que se quiera conseguir. Fase de la resina
La resina de metacrilato es un material transparente, que actúa como un cemento que cohesiona fuertemente el resto de los componentes. El curado de la resina se realiza elevando la temperatura del molde de forma progresiva y controlada. El proceso finaliza con un curado a alta temperatura que minimiza los posibles fallos de la superficie y asegura las propiedades del producto, obteniéndose tableros muy resistentes a los rayos ultravioleta.
La resina líquida de metacrilato se halla presente en la composición objeto de la invención entre el 6 % y el 20 % en peso en el total de la mezcla. Dicha resina líquida de metacrilato puede tener una viscosidad comprendida entre 200 y 2000 centipoises
(TIPO A) o puede ser una mezcla de 90-99% de una resina de metacrilato de viscosidad de dicho TIPO A y 1-10% de una resina de metacrilato de viscosidad menor de 200 centipoises (TIPO B). Como resina TIPO A se puede utilizar polimetil metacrilato, metacrilato de metilo o dimetacrilato de 2,2-etilendioxidietilo y como tipo B, se puede utilizar por ejemplo, el trimetacrilato de propilidentrimetilo.
A dicha fase de la resina líquida de metacrilato se le añade antes de mezclarla con la carga los siguientes ingredientes: a) 0,5% al 5% sobre el peso de la resina, de uno o más catalizadores o iniciadores de la polimerización. El catalizador puede ser cualquier compuesto que produzca radicales libres, conocidos del estado de la técnica. Los peróxidos y peroxi di carbonates son los preferidos. Pueden ser en polvo (por ejemplo, peróxido de dilaurilo o peroxidicarbonato de di-(4-ter-butil-ciclohexilo) o una mezcla de ambos, o líquido (por ejemplo, perbenzoato de ter-butilo o peroxi-2- etilhexanoato de ter-butilo o una mezcla de ambos) b) 0,05% al 0,5% sobre el peso de la resina, de un acelerador de la polimerización, utilizándose un compuesto de cobalto derivado del ácido caprílico, como por ejemplo el octoato de cobalto al 6%. c) 0,5% al 5% sobre el peso de la resina, de un ligante que es el agente de cohesión entre la resina y las cargas de granulometría variada de la mezcla. Dicho ligante puede ser un silano organofuncional ya que los silanos son agentes que actúan sobre la superficie de dos fases disimiles, funcionando como unión entre ambas. El silano preferido para esta invención es el gamma- metacriloxipropiltrimetoxisilano, aunque pueden ser otros esteres organosilanos. d) 0,1% al 2% sobre el peso de la resina, de agentes absorbentes de radiaciones ultravioleta y antioxidantes, que sean compatibles con la resina. Como agentes absorbentes de radiaciones ultravioleta se pueden utilizar benzotriazoles y benzofenonas, como por ejemplo, el 2-benzotriazol-2-il-4-6-di-ter-butilfenol, el 2-(2H-benzotriazol-2-il)-6-dodecil-4-metil-fenol, y el 2-hidroxi-4-(octal-oxi)- fenil metanona. e) 0,05% al 10% sobre el peso de la resina, de uno o más colorantes que pueden ser pigmentos sólidos micronizados con granulometría inferior a 0,7 mm, pudiendo utilizarse en la presente invención tanto pigmentos inorgánicos, por ejemplo, óxidos de hierro (rojos, amarillos, marrones y negros), óxido de cromo (verdes), negro de humo (negro estabilizador de UV), dióxido de titanio (blanco) y similares, como pigmentos orgánicos, por ejemplo, ftalocianinas (azules y verdes), compuestos azo (rojos) y bisazo (amarillos). También se pueden utilizar colorantes líquidos, similar a los sólidos disueltos en un vehículo compatible con la resina a utilizar, como por ejemplo, el dialilftalato, monómero de metacrilato o bien la misma resina que se va a utilizar.
Composiciones preferidas Las composiciones preferidas para los tableros de piedra artificial, especialmente aptos para el exterior, fabricados según el procedimiento de la invención comprenden:
micronizado de sílice (cuarzo) 10-40 % triturado de sílice (cuarzo) 0,l-0,60mm 10-40% triturado de sílice (cuarzo) 0,61 - 1 ,20mm 1-80% resina de metacrilato* 6-20%
* la resina puede ser : TIPO A (100%)
TIPO A (90-99%) + TIPO B (1-10%) Además, sobre el peso de la resina, la mezcla contiene: Catalizador 0,5-5%
Acelerador 0,05-0,5%
Ligante 0,5-5%
Absorbentes de las radiaciones U.V 0,1-2%
Colorante 0,05-10%
Dos formulaciones especialmente preferidas serían la FORMULACIÓN TIPO A: micronizado de sílice (cuarzo) 25% triturado de sílice (cuarzo) 0,l-0,60mm 20% triturado de sílice (cuarzo) 0,61-l,20mm 45% resina de metacrilato*(95%TIPO A + 5% TIPO B 10%
* contiene (sobre el peso de la resina): peroxidicarbonato de di(4-ter-butil-ciclohexilo)...1 % perbenzoato de ter-butilo 1% gamma-metacriloxipropiltrimetoxisilano 1 % octoato de cobalto 0,1%
2-benzotriazol-2-il-4-6-di-ter-butilfenol 0,5% pigmento de óxido de hierro negro (polvo) 1 % pigmento de negro de humo (polvo) 0,5% pigmento de óxido de cromo verde (polvo) 3%
Y la FORMULACIÓN TIPO B: micronizado de sílice (cuarzo) 25% triturado de espejo 0,l-0,60mm 20% triturado de espejo 0,61-l ,20mm 15% triturado de espejo l,21-3,00mm 30% resina de metacrilato*( 100% TIPO A) 10% *contiene (sobre el peso de la resina): peroxi-2-etilhexanoato de ter-butilo 1% perbenzoato de ter-butilo 1% gamma-metacriloxipropiltrimetoxisilano 1 % octoato de cobalto 0,1% 2-(2H-benzotriazol-2-il)-6-dodecil-4-metilfenol...0,5% dióxido de titanio (líquido) 6% colorante rojo (líquido) 2% colorante amarillo (líquido) 3%
Proceso
Con el proceso de la invención se pueden fabricar tableros muy diversos, incluso bloques cúbicos de, por ejemplo, 150cm x 150cm x lOOcm (ancho x largo x alto). El tamaño preferido, dependiendo de su aplicación está comprendido entre 60cm x 60cm y 300cm x 150cm de superficie con espesores de 0,5cm a lOcm.
Para realizar las mezclas se utilizan tantas mezcladoras como colores distintos se necesiten para la obtención del color final dependiendo del efecto que se quiera conseguir. Dichas mezcladoras son de tipo planetario, circular.
El proceso comienza con el peso de las cargas minerales de los distintos triturados y se conducen a las mezcladoras. Una vez en las mezcladoras, se mezclan durante 60 segundos. Independientemente, desde un tanque de almacenamiento de resinas se pesa la resina en pesos independientes, tantos como mezcladoras se vayan a utilizar, a los cuales se les añade los aditivos y colorantes adecuados para cada mezcladora.
Una vez mezclados los distintos triturados en las mezcladoras, se les añade a cada mezcladora la resina ya pesada y preparada con todos sus aditivos y color, mezclándose todo durante 10 a 15 minutos.
Los catalizadores, si son liquidos se añaden a la resina a temperatura ambiente y si son sólidos, después de que la resina se haya calentado a 40 - 50 0C.
Una vez realizada la mezcla en cada mezcladora, se descarga todo el material de las mezcladoras, capa sobre capa, sobre una homogenizadora (Anillo) cuya finalidad es que el material se distribuya en su descarga desde las mezcladoras homogéneamente, capa a capa sin que predomine ninguno sobre el resto, quedando distribuidos uniformemente y definidos todos los colores de mezcla fabricados en las mezcladoras planetarias.
Después de realizada la homogeneización de la mezcla, ésta se distribuye en los marcos para realizar los tableros de las medidas deseadas. Una vez acoplada la mezcla en el molde se conduce a una prensa de vibro-compactación al vacío, que es la que se encarga de comprimir el material y compactarlo, para lo cual, primero hace el vacío sacando el aire y seguidamente va prensando el material por vibro-compresión con una potencia de 6 kg/cm2, durando todo el proceso unos 2 a 3 minutos. Una vez que el tablero ha sido comprimido se pasa a un horno de catálisis para que se endurezca. La temperatura del horno debe estar entre 700C y 1100C. Debido a que la resina de metacrilato no polimeriza de una forma uniforme, a diferencia de las resinas de poliéster y epoxi, y de que forma espuma al polimerizar, el proceso de calentamiento debe estar muy controlado para evitar la formación de poros en la superficie de la resina una vez polimerizada. Así, la transmisión de calor se realiza calentando unas chapas huecas con aceite diatérmico, las cuales comprimen la tabla compactada al mismo tiempo que le transmiten el calor para que endurezca.
El tiempo de permanencia de cada tablero en el horno es de 30 a 60 minutos, al cabo del cual se saca del horno y se almacena durante 24 a 48 horas para que se enfríe.
El tablero así terminado es compacto y uniforme en todas sus caras, es decir, el canto tiene la misma uniformidad que las caras superior o inferior. A continuación se trata de la misma forma que un mármol o granito convencional, es decir, se calibra, se pule y se corta a las medidas deseadas.
Los Ejemplos 1 y 2 describen el procedimiento de fabricación de las realizaciones que representan la invención para la obtención de tableros especialmente aptos para el exterior con resina de metacrilato.
Ejemplo 1
Se fabrican tableros de piedra artificial especialmente aptos para el exterior según el procedimiento siguiente correspondiente a la Formulación tipo A: Se mezclan 250 kg de micronizado de sílice (cuarzo); 200 kg de triturado de sílice (cuarzo) de granulometría entre 0,lmm y 0,60mm, y 450 kg de triturado de sílice (cuarzo) de granulometría entre 0,6 lmm y l,20mm, repartiéndose la mezcla entre tres mezcladoras planetarias circulares. A cada una de las cuales se añade un colorante, a la primera 100Og de pigmento de óxido de hierro negro en polvo, a la segunda 500 g de pigmento de negro de humo en polvo y a la tercera 3000g de pigmento de óxido de cromo verde en polvo, realizándose una mezcla inicial durante 30 segundos.
En otros tanques, tantos como mezcladoras se utilicen, se mezclan un total de 95 kg de METACRILATO DE METILO (resina TIPO A) y 5 kg de TRIMETACRILATO DE PROPILIDENTRIMETILO (resina TIPO B), añadiéndose 1000 g del silano (gamma-metacriloxipropiltrimetoxisilano); 100 g de octoato de cobalto; 1000 g de peroxidicarbonato de di(4-ter-butil-ciclohexilo); 1000 g de perbenzoato de ter-butilo; y 500 g de 2-benzotriazol-2-il-4-6-di-ter-butilfenol, repartiéndose la mezcla en función de la carga de las mezcladoras utilizadas.
Las cargas de resina con los aditivos, se vierte en su mezcladora correspondiente y se mezcla durante 15 minutos. Una vez realizada la mezcla en cada mezcladora, se descarga todo el conjunto, capa sobre capa, sobre una homogeneizadora (Anillo) cuya finalidad es que el material se distribuya en su descarga desde las mezcladoras homogéneamente, capa a capa sin que predomine ninguno sobre el resto, quedando distribuidos uniformemente y definidos todos los colores de mezcla fabricados en las mezcladoras planetarias. La mezcla se distribuye en tableros de 308 cm x 139 cm y un espesor de 2 cm, los cuales pasan a la prensa donde se efectúa el vacío y se comprimen a 6 kg/cm2 compactándose por vibro-compresión. Este proceso dura 2,5 minutos. A continuación los tableros pasan al horno de catálisis, que está a 800C, donde permanecen 30 minutos, pasando después a la zona de enfriado, donde después de 40 horas se calibraron, pulieron y cortaron por métodos convencionales. Ejemplo 2
Se fabrican tableros de piedra artificial especialmente aptos para el exterior según el procedimiento siguiente correspondiente a la Formulación tipo B:
Se mezclan 250 kg de micronizado de sílice (cuarzo); 200 kg de triturado de espejo de granulometría entre 0,lmm y 0,60mm, y 150 kg de triturado de espejo de granulometría entre 0,61mm y l,20mm y 300 kg de triturado de espejo de granulometría entre l,21mm y 3,00mm, repartiéndose la mezcla entre tres mezcladoras planetarias circulares, realizándose una premezcla durante 30 segundos.
En otros tanques, tantos como mezcladoras a utilizar, se mezclan un total de 100 kg de METACRILATO DE METILO (resina TIPO A), añadiéndose 1000 g del silano (gamma-metacriloxipropiltrirnetoxisilano); 100 g de octoato de cobalto; 1000 g de peroxi-2-etilhexanoatode ter-butilo; 1000 g de perbenzoato de ter-butilo; y 500 g de 2- 2-(2H-benzotriazol-2-il)-6-dodecil-4-metilfenol, mezclándose durante 30 segundos. Posteriormente se añaden 6 kg de dióxido de titanio líquido, 2 kg colorante rojo líquido, y 3 kg de colorante amarillo líquido, mezclándose otros 30 segundos, repartiéndose la mezcla en función de las mezcladoras a utilizar y de la carga de triturados. Las cargas de resina con los aditivos, se vierte proporcionalmente en cada una de las mezcladoras y se mezcla durante 15 minutos.
Una vez realizada la mezcla en cada mezcladora, se descarga todo el conjunto, capa sobre capa, sobre una homogenizadora (Anillo) cuya finalidad es que el material se distribuya en su descarga desde las mezcladoras homogéneamente, capa a capa sin que predomine ninguno sobre el resto, quedando distribuidos uniformemente y definidos todos los colores de mezcla fabricados en las mezcladoras planetarias.
La mezcla se distribuye en tableros de 308 cm x 139 cm y un espesor de 2 cm, los cuales pasan a la prensa donde se efectúa el vacío y se comprimen a 6k g/cm2 compactándose por vibro-compresión. Este proceso dura 2 minutos. A continuación los tableros pasan al horno de catálisis, que está a 770C, donde permanecen 30 minutos, pasando después a la zona de enfriado, donde después de 36 horas se calibraron, pulieron y cortaron por métodos convencionales.
Ejemplos comparativos
Se han fabricado tableros similares a los de los ejemplos 1 y 2 pero utilizando dos resinas distintas de poliéster. Al ser las resinas distintas se han utilizado distintos catalizadores y en los ejemplos comparativos no se ha añadido el absorbente de radiaciones ultravioleta.
Ejemplo comparativo 1
Se ha repetido el procedimiento del ejemplo 1 con la salvedad de que se han utilizado 100 kg de resina de poliéster SYNOLITE 0561 (DSM-BASF) de viscosidad 250-400 centipoises, utilizándose 1000 g de TRIGONOX (AZKO NOBEL), como catalizador y la temperatura del horno de catálisis fue de 85°C, permaneciendo los tableros 25 minutos en dicho horno.
Ejemplo comparativo 2 Se ha repetido el procedimiento del ejemplo 2 con la salvedad de que se han utilizado 100 kg de resina de poliéster ESTRATIL 2191 -L (REPOSA NORSODYNE) de viscosidad entre 250-400 centipoises, utilizándose 1000 g de TRIGONOX (AZKO NOBEL), como catalizador. La temperatura del horno de catálisis fue igualmente de 85°C, permaneciendo los tableros 25 minutos en dicho horno.
Resultados
Se sometieron 20 tableros resultantes de cada uno de los ejemplos 1 y 2 y ejemplos comparativos 1 y 2 a las mismas pruebas para comparar sus características mecánicas, obteniéndose valores muy parecidos para la resistencia a la flexión, resistencia a la compresión y resistencia a la rotura por impacto. Cuando se sometieron a un envejecimiento acelerado en una máquina Q. V. con lámparas ultravioleta UVB-313, se observaron diferencias, tanto en los colores claros (los tableros con resina de poliéster amarilleaban a partir de las 50 horas de exposición, mientras los de metacrilato duraban hasta 3000 horas de exposición sin cambios) como en los oscuros (los tableros con resina de poliéster perdían el color a partir de las 120 horas de exposición, mientras los de metacrilato duraban hasta 700 horas de exposición sin cambio, empezando a palidecer un poco entonces hasta las 2000 horas). Los resultados se pueden observar en la Tabla 1.
Tabla 1
Figure imgf000014_0001
*la irradiación se continuó hasta 3000 horas y nunca llegó a apreciarse el amarilleamiento. ** la irradiación se continuó hasta 2000 horas y en los tableros de metacrilato se aprecia un poco de pérdida de color a partir de las 700 horas.
Para realizar una extrapolación a la luz solar, 100 horas de exposición en este tipo de máquina equivaldría a 2 años de exposición a la luz solar en el exterior. Por lo tanto, la degradación del tablero con resina de poliéster comenzaría a partir de 1 año en los colores claros y algo más de 2 años en los colores oscuros. Comparativamente en los tableros cubiertos con la resina de metacrilato, la degradación se empezaría a apreciar a los 14 años en los colores oscuros, durando al menos 30 años los de los colores claros.

Claims

REIVINDICACIONES
1. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior que comprende, una fase de trituración de los distintos materiales con granulometría variada que forman la carga, otra fase que contiene la resina con el catalizador y opcionalmente el colorante, la mezcla de dichas fases hasta la homogeneización de los materiales con la resina, una fase de moldeo y compactación de la pasta obtenida por vibro-compresión al vacío, y una fase de endurecimiento por polimerización de la resina por medio de calentamiento, terminando con una fase de enfriamiento y pulido, caracterizado por el hecho de que la resina polimerizable está constituida únicamente por resina líquida de metacrilato.
2. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según la reivindicación 1 , caracterizado porque la resina líquida de metacrilato se halla presente entre el 6 % y el 20 %.
3. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 y 2, caracterizado porque la resina líquida de metacrilato tiene una viscosidad comprendida entre 200 y 2000 centipoises (TIPO A), como por ejemplo, polimetil metacrilato, metacrilato de metilo o dimetacrilato de 2,2-etilendioxidietilo.
4. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 y 2, caracterizado porque la resina líquida de metacrilato es una mezcla de 90-99% de una resina de metacrilato de viscosidad comprendida entre 200 y 2000 centipoises (TIPO A) y 1-10% de una resina de metacrilato de viscosidad menor de 200 centipoises (TIPO B), como por ejemplo, el trimetacrilato de propilidentrimetilo.
5. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 4, caracterizado porque los materiales de granulometría variable que forman parte de la carga pueden ser, entre otros, mármol, dolomita cuarzo opaco, cuarzo cristalino, sílice, cristal, espejo, cristobalita, granito, feldespato, basalto, ferrosiliceo, etc, siempre que sean compatibles con la resina de metacrilato.
6. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 5, caracterizado porque los materiales de la reivindicación anterior forman parte de la composición con la granulometría siguiente: a) del 10% al 60% de la carga, de polvo micronizado o triturado, con granulometría comprendida de 0,10 mm a 0,60 mm; b) del 1% al 80% de la carga, triturado con granulometría comprendida entre 0,61 mm y 1,2 mm; y opcionalmente c) del 10% al 50% del triturado con granulometría comprendida entre 1,21 mm y 15 mm.
7. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 6, caracterizado porque también se pueden utilizar otros materiales de carga, en la misma granulometría y en las mismas cantidades que las indicadas anteriormente, tales como plásticos de colores, metales, maderas , grafito, etc.
8. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 7, caracterizado porque la mezcla comprende colorantes y/o pigmentos sólidos micronizados, con granulometría inferior a 0,7 mm. Dichos pigmentos pueden ser inorgánicos (como por ejemplo, óxidos de hierro y similares) u orgánicos (como por ejemplo, ftalocianinas), estando presentes en cantidades comprendidas entre 0,05 % y 10 % del peso de la resina.
9. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 7, caracterizado porque la mezcla comprende colorantes líquidos inorgánicos u orgánicos, disueltos en un vehículo compatible con la resina a utilizar (por ejemplo, dialilftalato, monómero de metacrilato o la misma resina a utilizar en la mezcla).
10. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 9, caracterizado porque contiene un ligante de cohesión entre la resina y las cargas de granulometría variada de la mezcla.
1 1. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 10, caracterizado porque dicho ligante es un silano órgano funcional, por ejemplo, el gamma- metacriloxipropiltrimetoxisilano.
12. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 11, caracterizado porque la mezcla de la resina de metacrilato contiene uno o varios catalizadores, opcionalmente absorbentes de rayos ultravioleta y/o antioxidantes.
13. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 12, caracterizado porque los catalizadores están presentes del 0,5 % al 5 % del peso de la resina, y los absorbentes de rayos ultravioleta y antioxidantes cuando están presentes lo están en cantidades del 0,1 % al 2 % del peso de la resina.
14 . Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 13, caracterizado porque la mezcla contiene un catalizador para el endurecimiento de la resina, el cual se añade a la resina.
15. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 14, caracterizado porque dicho catalizador puede ser en polvo (por ejemplo, tipo peróxido de dilauril o tipo peróxido de di carbonates) o líquido (por ejemplo, tipo perbenzoato de ter-butilo o peroxi-2-etilhexanoato de ter-butilo), estando dicho endurecedor presente en cantidades de 0,5 % al 5 % del peso de la resina.
16. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 15, caracterizado porque la mezcla contiene un acelerador de la polimerización, el cual se añade a la resina.
17. Procedimiento para fabricar tableros de piedra artificial especialmente aptos para el exterior según las reivindicaciones 1 a 16, caracterizado porque dicho acelerador es un compuesto de cobalto, como por ejemplo el octoato de cobalto, en cantidades del 0,05 % al 0,5 %
18. Tableros de piedra artificial especialmente aptos para el exterior fabricados según el procedimiento de las reivindicaciones 1 a 17, caracterizados porque comprenden: micronizado de sílice (cuarzo) 10-40 % triturado de sílice (cuarzo) 0,l-0,60mm 10-40% triturado de sílice (cuarzo) 0,61-l,20mm 1-80% resina de metacrilato* 6-20%
*la resina puede ser : TIPO A (100%)
TIPO A (90-99%) + TIPO B (1-10%) Además, sobre el peso de la resina, la mezcla contiene:
Catalizador 0,5-5% Acelerador 0,05-0,5%
Ligante 0,5-5%
Absorbentes de radiaciones U. V 0,1-2%
Colorante 0,05-10%
19. Tableros de piedra artificial especialmente aptos para el exterior fabricados según la reivindicación 18, caracterizados porque comprenden: micronizado de sílice (cuarzo) 25% triturado de sílice (cuarzo) 0,l-0,60mm 20% triturado de sílice (cuarzo) 0,61-1 , 20mm 45% resina de metacrilato*(95%TIPO A + 5% TIPO B) 10% *contiene (sobre el peso de la resina): peroxidicarbonato de di(4-ter-butil-ciclohexilo) 1% perbenzoato de ter-butilo 1 % metacriloxipropiltrimetoxisilano 1% octoato de cobalto 0.1% 2-benzotriazol-2-il-4-6-di-ter-butilfenol 0,5% pigmento de óxido de hierro negro (polvo) 1 % pigmento de negro de humo (polvo) 0,5% pigmento de óxido de cromo verde (polvo) 3%
20. Tableros de piedra artificial especialmente aptos para el exterior fabricados según la reivindicación 18, caracterizados porque comprenden: micronizado de sílice (cuarzo) 25% triturado de espejo 0,l-0,60mm 20% triturado de espejo 0,61-l,20mm 15% triturado de espejo l,21-3,00mm 30% resina de metacrilato*(100% TIPO A) 10%
*contiene (sobre el peso de la resina): peroxi-2-etilhexanoato de ter-butilo 1% perbenzoato de ter-butilo 1% metacriloxipropiltrimetoxisilano 1% octoato de cobalto 0,1 %
2-(2H-benzotriazol-2-il)-6-dodecil-4-metilfenol...0,5% dióxido de titanio (líquido) 6% colorante rojo (líquido) 2% colorante amarillo (líquido) 3%
PCT/ES2005/000152 2005-03-22 2005-03-22 Procedimiento para la fabricación de tableros de piedra artificial con resina de metacrilato para exteriores mediante el sistema de vibro-compresión al vacío WO2006100321A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN2005800495499A CN101166699B (zh) 2005-03-22 2005-03-22 在真空系统下通过振动压缩制造具有甲基丙烯酸酯树脂的室外人造石板的方法
BRPI0520323-6A BRPI0520323A2 (pt) 2005-03-22 2005-03-22 processo para a manufatura de placas de pedras artificiais especialmente apropriadas para uso ao ar livre e placas de pedras artificiais especialmente apropriadas para uso ao ar livre assim obtidas
MX2007011655A MX2007011655A (es) 2005-03-22 2005-03-22 Procedimiento para la fabricacion de tableros de piedra artificial con resina de metacrilato para exteriores mediante el sistema de vidrio-compresion al vacio.
US11/886,897 US20100063193A1 (en) 2005-03-22 2005-03-22 Process for manufacturing outdoor artificial stone boards with methacrylate resin by means of the vibro-compression under vacuum system
EP20050717226 EP1878712A1 (en) 2005-03-22 2005-03-22 Method of producing artificial stone slabs with methacrylate resin for external use by means of vibro-compression under vacuum
JP2008502428A JP2008534314A (ja) 2005-03-22 2005-03-22 真空下において、振動・圧縮を用いてメタクリレート樹脂を含む屋外用の人工石板を製造するための方法
CA 2605549 CA2605549A1 (en) 2005-03-22 2005-03-22 Method of producing artificial stone slabs with methacrylate resin for external use by means of vibro-compression under vacuum
PCT/ES2005/000152 WO2006100321A1 (es) 2005-03-22 2005-03-22 Procedimiento para la fabricación de tableros de piedra artificial con resina de metacrilato para exteriores mediante el sistema de vibro-compresión al vacío
AU2005329662A AU2005329662A1 (en) 2005-03-22 2005-03-22 Method of producing artificial stone slabs with methacrylate resin for external use by means of vibro-compression under vacuum
US13/038,956 US20110207849A1 (en) 2005-03-22 2011-03-02 Process for manufacturing outdoor artificial stone boards with methacrylate resin by means of the vibro-compression under vacuum system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2005/000152 WO2006100321A1 (es) 2005-03-22 2005-03-22 Procedimiento para la fabricación de tableros de piedra artificial con resina de metacrilato para exteriores mediante el sistema de vibro-compresión al vacío

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/038,956 Division US20110207849A1 (en) 2005-03-22 2011-03-02 Process for manufacturing outdoor artificial stone boards with methacrylate resin by means of the vibro-compression under vacuum system

Publications (1)

Publication Number Publication Date
WO2006100321A1 true WO2006100321A1 (es) 2006-09-28

Family

ID=37023384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000152 WO2006100321A1 (es) 2005-03-22 2005-03-22 Procedimiento para la fabricación de tableros de piedra artificial con resina de metacrilato para exteriores mediante el sistema de vibro-compresión al vacío

Country Status (9)

Country Link
US (2) US20100063193A1 (es)
EP (1) EP1878712A1 (es)
JP (1) JP2008534314A (es)
CN (1) CN101166699B (es)
AU (1) AU2005329662A1 (es)
BR (1) BRPI0520323A2 (es)
CA (1) CA2605549A1 (es)
MX (1) MX2007011655A (es)
WO (1) WO2006100321A1 (es)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003804A1 (de) 2007-07-04 2009-01-08 Wacker Chemie Ag Herstellung von kompositwerkstoff aus anorganisches material und organischem polymer
WO2011012732A1 (es) 2009-07-27 2011-02-03 Cosentino, S.A. Procedimiento para la fabricación de productos aglomerados pétreos no planos
CN101927520B (zh) * 2009-06-22 2012-05-30 上海贝诺装饰新材料有限公司 一种连续化生产人造石台面的方法
CN110092610A (zh) * 2019-05-24 2019-08-06 武汉工程大学 利用铝箔腐蚀形成的高铝盐泥制备人造石的方法
CN110668732A (zh) * 2019-10-24 2020-01-10 广东河源住方高分子材料有限公司 一种超白细颗粒石英石板材及其成型方法
US10981293B2 (en) 2015-01-30 2021-04-20 Cambria Company Llc Processed slabs, and systems and methods related thereto
US10981346B2 (en) 2014-08-19 2021-04-20 Cambria Company Llc Processed slabs, and systems and methods related thereto
WO2021190751A1 (de) 2020-03-26 2021-09-30 Wacker Chemie Ag Kunststeinzusammensetzung mit alpha-silan als haftvermittler
WO2021190753A1 (de) 2020-03-26 2021-09-30 Wacker Chemie Ag Kunststeinzusammensetzung mit silankondensationsprodukt als haftvermittler
US12030260B1 (en) 2020-01-02 2024-07-09 Cambria Company Llc Stone slabs, systems, and methods

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ595452A (en) * 2009-03-18 2013-04-26 Cosentino Sa Board, panel or slab formed by stone agglomerate containing an organic binder of vegetable origin
CN101633198B (zh) * 2009-06-19 2012-03-07 万峰石材科技有限公司 仿大理石条纹图案人造石的制备方法及其产品
DE102010063563A1 (de) * 2010-12-20 2012-06-21 Evonik Degussa Gmbh Zusammensetzung mit verbesserter Witterungsstabilität der Farbe von Baustoffen und Verfahren zu deren Herstellung
BR112014027827A2 (pt) * 2012-05-10 2017-06-27 Vero Ind Ip Pty Ltd composição de revestimento e método de aplicação da mesma
AU2014203799B2 (en) * 2012-05-10 2014-08-07 Vero Industries Ip Pty Ltd A Surface Composition and Method of Application Thereof
CN103917146B (zh) 2012-10-25 2017-03-15 科勒公司 工程复合材料和由其生产的产品
CN105189069A (zh) * 2013-01-11 2015-12-23 科森蒂诺研究与开发有限公司 具有不同岩体的层制成的纹理的人造石的瓷砖和/或石板
DE102013217220A1 (de) 2013-08-28 2015-03-05 Wacker Chemie Ag Härtbare Organopolysiloxanzusammensetzungen
DE102013217221A1 (de) 2013-08-28 2015-03-05 Wacker Chemie Ag Vernetzbare Massen auf der Basis von Organosiliciumverbindungen und daraus hergestellte Formkörper
WO2015091318A1 (de) 2013-12-19 2015-06-25 Evonik Industries Ag Hochsiedendes reaktives bindemittel zur herstellung von künstlichen steinen
GB201604077D0 (en) 2016-03-09 2016-04-20 Lucite Int Uk Ltd A composition for synthetic stone
FR3060011B1 (fr) * 2016-12-08 2020-06-26 Arkema France Agent de durcissement pour durcir une resine de polymere
GB2568050A (en) 2017-11-01 2019-05-08 Caesarstone Ltd Compositions comprising an acrylic polymer and processes of preparing the same
EP3486227A1 (en) 2017-11-20 2019-05-22 Cosentino Research and Development, S.L Process for the functionalization of natural or artificial stone
WO2020076254A1 (en) * 2018-10-09 2020-04-16 Peker Yuzey Tasarimlari Sanayi Ve Ticaret Anonim Sirketi A composite stone slab having marble appearance
PL3805176T3 (pl) * 2019-10-08 2022-02-07 Cosentino Research & Development, S.L. Wyrób ze sztucznego konglomeratu kamiennego zawierający granulki skalenia
EP3889121A1 (en) 2020-04-03 2021-10-06 Perspex International Limited Composition for synthetic stone and stone manufactured thereof
KR102358049B1 (ko) * 2020-04-22 2022-01-28 이창윤 일라이트 실리카 혼합 석판 및 그 제조방법
KR102716868B1 (ko) * 2020-11-27 2024-10-14 (주)엘엑스하우시스 높은 광투과도를 갖는 인조대리석
IT202000031514A1 (it) * 2020-12-18 2022-06-18 Breton Spa Resina per la produzione di manufatti in materiale conglomerato
BE1030709B1 (nl) * 2022-07-12 2024-02-12 Lqf Holding Naadloos decoratief bekledingssysteem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847865A (en) * 1972-04-28 1974-11-12 Du Pont Use of alumina trihydrate in a polymethyl methacrylate article
EP0599586A1 (en) * 1992-11-20 1994-06-01 Doppel Co., Ltd. A high density artificial stone
EP1048631A1 (en) * 1998-01-16 2000-11-02 Doppel Co. Ltd. Non-slip artificial stone
ES2187313A1 (es) * 1999-09-01 2003-06-01 Cosentino Sa Procedimiento para fabricar tablones de piedra artificial especialmente aplicables a decoracion.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1181570B (it) * 1984-09-14 1987-09-30 Marcello Toncelli Procedimento per la formazione di blocchi di materiali qualsiasi mediante l'azione contemporanea di vibrapioni,compressione e vuoto destinati al taglio in lastre ed apparecchiature adatte a realizzare il procedimento stesso
US5244941A (en) * 1989-11-02 1993-09-14 Ralph Wilson Plastics Company Artificial stone compositions, process of producing the same, and apparatus employed in the production thereof
JP3397857B2 (ja) * 1992-10-23 2003-04-21 三菱レイヨン株式会社 人造石の製法
US5800752A (en) * 1996-01-11 1998-09-01 Charlebois Technologies Inc. Process for manufacture of polymer composite products
JP2000326345A (ja) * 1999-05-19 2000-11-28 Mitsubishi Rayon Co Ltd 人工大理石板の製造方法
US6387985B1 (en) * 2000-12-14 2002-05-14 E. I. Du Pont De Nemours And Company Acrylic based formulation for improved temperature and impact performance employing crushed natural stone
KR100521621B1 (ko) * 2002-12-24 2005-10-12 주식회사 엘지화학 인조대리석의 연속성형방법 및 그 장치
KR100528236B1 (ko) * 2003-07-29 2005-11-15 주식회사 엘지화학 폐품을 재활용한 인조대리석 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847865A (en) * 1972-04-28 1974-11-12 Du Pont Use of alumina trihydrate in a polymethyl methacrylate article
EP0599586A1 (en) * 1992-11-20 1994-06-01 Doppel Co., Ltd. A high density artificial stone
EP1048631A1 (en) * 1998-01-16 2000-11-02 Doppel Co. Ltd. Non-slip artificial stone
ES2187313A1 (es) * 1999-09-01 2003-06-01 Cosentino Sa Procedimiento para fabricar tablones de piedra artificial especialmente aplicables a decoracion.

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003804A1 (de) 2007-07-04 2009-01-08 Wacker Chemie Ag Herstellung von kompositwerkstoff aus anorganisches material und organischem polymer
DE102007030959A1 (de) 2007-07-04 2009-01-08 Wacker Chemie Ag Herstellung von Kompositwerkstoffen aus anorganisches Material und organischem Polymer
US8039539B2 (en) 2007-07-04 2011-10-18 Wacker Chemie Ag Production of a composite comprising inorganic material and organic polymer
CN101927520B (zh) * 2009-06-22 2012-05-30 上海贝诺装饰新材料有限公司 一种连续化生产人造石台面的方法
WO2011012732A1 (es) 2009-07-27 2011-02-03 Cosentino, S.A. Procedimiento para la fabricación de productos aglomerados pétreos no planos
US10981346B2 (en) 2014-08-19 2021-04-20 Cambria Company Llc Processed slabs, and systems and methods related thereto
US11498298B2 (en) 2014-08-19 2022-11-15 Cambria Company Llc Synthetic molded slabs, and systems and methods related thereto
US11845235B2 (en) 2014-08-19 2023-12-19 Cambria Company Llc Synthetic molded slabs, and systems and methods related thereto
US10981293B2 (en) 2015-01-30 2021-04-20 Cambria Company Llc Processed slabs, and systems and methods related thereto
US11529752B2 (en) 2015-01-30 2022-12-20 Cambria Company Llc Processed slabs, and systems and methods related thereto
US11845198B2 (en) 2015-01-30 2023-12-19 Cambria Company Llc Processed slabs, and systems and methods related thereto
CN110092610A (zh) * 2019-05-24 2019-08-06 武汉工程大学 利用铝箔腐蚀形成的高铝盐泥制备人造石的方法
CN110668732A (zh) * 2019-10-24 2020-01-10 广东河源住方高分子材料有限公司 一种超白细颗粒石英石板材及其成型方法
US12030260B1 (en) 2020-01-02 2024-07-09 Cambria Company Llc Stone slabs, systems, and methods
WO2021190751A1 (de) 2020-03-26 2021-09-30 Wacker Chemie Ag Kunststeinzusammensetzung mit alpha-silan als haftvermittler
WO2021190753A1 (de) 2020-03-26 2021-09-30 Wacker Chemie Ag Kunststeinzusammensetzung mit silankondensationsprodukt als haftvermittler

Also Published As

Publication number Publication date
JP2008534314A (ja) 2008-08-28
CN101166699A (zh) 2008-04-23
CA2605549A1 (en) 2006-09-28
CN101166699B (zh) 2013-07-24
US20110207849A1 (en) 2011-08-25
US20100063193A1 (en) 2010-03-11
AU2005329662A1 (en) 2006-09-28
BRPI0520323A2 (pt) 2009-05-05
EP1878712A1 (en) 2008-01-16
MX2007011655A (es) 2008-04-08

Similar Documents

Publication Publication Date Title
WO2006100321A1 (es) Procedimiento para la fabricación de tableros de piedra artificial con resina de metacrilato para exteriores mediante el sistema de vibro-compresión al vacío
AU2013372534B2 (en) Artificial stone tile and/or slabs having veins made by strati of different masses
RU2418677C2 (ru) Искусственный камень
KR100796437B1 (ko) 투명칩을 이용하여 석영효과를 구현한 인조대리석 및 이의제조방법
JP2015525840A5 (es)
KR100815472B1 (ko) 항균성 및 샌딩성이 우수한 인조대리석용 조성물
US20120280178A1 (en) Photoluminescent granulate and method for production thereof
WO2006134179A2 (es) Procedimiento para la fabricaciòn de tableros de piedra artificial y resina polimerizable con efecto veteado mediante el sistema de vibro-compresiòn al vacio
JP5594964B2 (ja) 高透光性の合成石、その製造方法および使用
JP2022051853A (ja) 合成石のための組成物
US20080296795A1 (en) Process to create decorative pattern in engineered stone
JP2008133156A (ja) セメント組成物、セメントペーストおよび美麗粒子の固定方法
JP2008523202A (ja) 黄土を含んだ複合固体表面成形品
JP3225180B2 (ja) 石目調人工大理石
JPH06219800A (ja) 人造石および人造石用バインダー樹脂
US8679623B2 (en) Cast polymer and recycled glass composite article
JP3682155B2 (ja) 雲母片含有樹脂の粉砕物からなる人工大理石用模様材、及びこれを用いた人工大理石
US11708292B1 (en) Glass/quartz composite surface
JP3590244B2 (ja) 雲母片含有重合性組成物、雲母片含有樹脂、およびこれを用いた人工大理石
JP3682160B2 (ja) ガラスフレーク片含有樹脂硬化物、及びこれを用いた人工大理石
KR100396834B1 (ko) 열경화성 불포화 폴리에스테르 수지 조성물
KR20060064834A (ko) 옥을 함유한 인조대리석용 조성물
JPH05330883A (ja) 加飾成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/011655

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008502428

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005329662

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2605549

Country of ref document: CA

Ref document number: 2005717226

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 200580049549.9

Country of ref document: CN

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005329662

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005717226

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11886897

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0520323

Country of ref document: BR

Kind code of ref document: A2