[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006033291A1 - 副生アルコール類の工業的分離装置 - Google Patents

副生アルコール類の工業的分離装置 Download PDF

Info

Publication number
WO2006033291A1
WO2006033291A1 PCT/JP2005/017117 JP2005017117W WO2006033291A1 WO 2006033291 A1 WO2006033291 A1 WO 2006033291A1 JP 2005017117 W JP2005017117 W JP 2005017117W WO 2006033291 A1 WO2006033291 A1 WO 2006033291A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohols
distillation column
mass
carbonate
product
Prior art date
Application number
PCT/JP2005/017117
Other languages
English (en)
French (fr)
Inventor
Shinsuke Fukuoka
Hironori Miyaji
Hiroshi Hachiya
Kazuhiko Matsuzaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Publication of WO2006033291A1 publication Critical patent/WO2006033291A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an industrial separation apparatus for by-product alcohols. More specifically, alcohols by-produced when aromatic carbonates are continuously produced on an industrial scale of 1 ton or more per hour by transesterification of dialkyl carbonate and aromatic monohydroxy compound.
  • the present invention relates to an industrial separation apparatus for separating alcohols.
  • Aromatic carbonate is important as a raw material for producing aromatic polycarbonate, which is the most demanding engineering plastic, without using toxic phosgene.
  • a method for producing aromatic carbonates a method based on a reaction between an aromatic monohydroxy compound and phosgene has been known for a long time, and various methods have been studied recently.
  • Aromatic carbonates produced by this method contain chlorine-based impurities that are difficult to separate, and cannot be used as a raw material for aromatic polycarbonate, for example, where high purity is required.
  • Patent Document 1 Japanese Patent Laid-Open No. 54-48732 (West German Patent Publication) 736063, U.S. Pat. No. 4,252,737)
  • Patent Document 2 JP-A-58-185536 U.S. Pat. No. 410464)
  • Patent Document 3-1 Examples of JP-A-56-123948 (US Pat. No. 4,182,726)); Patent Documents 3-2; Examples of JP-A-56-25138; Patent Documents 3-3: Examples of JP-A-60-169444 (US Pat. No. 4,554,110); Patent Document 3-4: JP-A-60-169445 (US Pat. No. 4,552,704) Examples; Patent Document 3 5: Example of JP-A-60-173016 (US Pat. No.
  • Patent Document 3-6 Example of JP-A-61-172852; Patent Document 3 — 7: Examples of JP-A 61-29 1545; Patent Document 3-8: Examples of JP-A 62-277345).
  • the inventors of the present invention continuously supply dialkyl carbonate and aromatic hydroxy compound to a multistage distillation column, continuously react in the column in the presence of a catalyst, and have a low boiling point containing alcohol as a by-product.
  • a reactive distillation method in which components are continuously extracted by distillation and a component containing the generated alkylaryl carbonate is extracted from the lower part of the column Patent Document 4: Japanese Patent Laid-Open No. 3-291257).
  • Patent Document 8 Italian Patent No. 01255746
  • Patent Document 9 JP-A-6-9506
  • Patent Document 10 Japanese Patent Laid-Open No. 6-41022 (European Patent 0572870, US Patent No. 5362901)
  • Patent Document 11 Japanese Patent Laid-Open No. 6-157424 (European Patent) No. 0582931, U.S. Pat. No.
  • Patent Document 12 JP-A-6-184058 (European Patent 0582930, US Pat. No. 5344954); Patent Document 13: JP-A-7 — Publication No. 304713; Patent Document 14: Japanese Patent Laid-Open No. 9-40616; Patent Document 15 : JP-A-9-59225; Patent Document 16: JP-A-9-110805; Patent Document 17: JP-A-9-165357; Patent Document 18: JP-A-9-173819; Patent Document 19- 1: JP-A-9-176094; Patent Document 19-2: JP-A 2000-191596; Patent Document 19-3: JP-A 2000-191597; Patent Document 20: JP-A-9-194436 (European Patent No.
  • Patent Document 21 International Publication No. 00Z1872 0 (US Pat. No. 6093842)
  • Patent Document 22-1 Japanese Patent Laid-Open No. 2001-64234
  • Patent Document 22-2 JP 2001-64235 A
  • Patent Document 23 International Publication No. 02Z 40439 (US Pat. No. 6,596,894, US Pat. No. 6596895, US Pat. No. 660 0061)).
  • the gas in the gas phase part is extracted using a method of extracting the gas in the phase part, separating the gas in the distillation column after heat exchange (Patent Document 24: JP-A-2003-113144) or the same reactor, After this is heat-exchanged and liquidized, the pressure in the gas phase part of the reactor A high-pressure distillation separation method (Patent Document 25: Japanese Patent Laid-Open No. 2003-155264) has been proposed.
  • Patent Document 25 Japanese Patent Laid-Open No. 2003-155264
  • the purpose of these methods is to separate the gas components when they are reacted using the continuous stirring tank as described above as a reactor in an energy-saving manner.
  • Patent Document 25 a reactive distillation method
  • the composition of the low-boiling point reaction mixture containing by-product alcohols produced by the above is greatly different from the separation of alcohols from the low-boiling point reaction mixture by the reactive distillation method at a predetermined concentration.
  • a method of distilling a liquid containing about 10 to 74% by mass of methanol at about 30 gZhr from the top of a distillation column installed at the top of a tank reactor Patent Document 26: JP-A-6-157410) is also proposed. ing.
  • these patent documents are of small laboratory scale, or are there! /, Which are just a comparative calculation of the amount of energy required for distillation, both on an industrial scale. There is no specific description or suggestion regarding separation.
  • the alcohol produced as a by-product usually has a lower boiling point than the aromatic force-bonate present in the reaction system.
  • These compounds are continuously extracted from the upper column of the reactive distillation column as a low-boiling reaction mixture containing, for example, raw material dialkyl carbonate and aromatic hydroxy compound, by-product alkylaryl ether and the like. Since this transesterification reaction is an equilibrium reaction with a very small equilibrium constant, by-product alcohols inhibit this reaction, so the low-boiling-point reaction mixture contains a low alcohol content component and alcohols. For industrial implementation, it is important to separate and recover from the main components efficiently and stably for a long period of time.
  • Patent Document 14 Tower top while extracting carbonate Extractive distillation method for extracting methanol from the reactor
  • Patent Document 19 distillation at atmospheric pressure to obtain a mixture consisting of about 70% by mass of methanol and about 30% by mass of dimethyl carbonate
  • Patent Document 20 To obtain a mixture consisting of 64.5% by mass of methanol and 35.5% by mass of dimethyl carbonate
  • Patent Document 15 This is a method (Patent Document 15).
  • Patent Document 19 When the reactive distillation method is used, the maximum force is 2 weeks (Patent Document 19), and the others are 10 days (Patent Document 15) and the time until steady state (Patent Documents 14 and 27). It is very short, and does not give any disclosure or suggestion of an industrial separation method that performs distillation operations stably for a long period of several thousand hours, for example, 5,000 hours. In this way, when aromatic carbonates are produced industrially by reactive distillation, specific methods and equipment relating to industrial methods for efficiently and stably separating large amounts of by-produced alcohols over a long period of time. No specific disclosure or suggestion has been made so far.
  • the problem to be solved by the present invention is that when an aromatic carbonate is continuously produced on an industrial scale of 1 ton or more per hour by a transesterification reaction between a dialkyl carbonate and an aromatic monohydroxy compound.
  • Another object of the present invention is to provide an industrial separation apparatus for separating alcohols from a low boiling point reaction mixture containing alcohols as a by-product. Means for solving the problem [0011] As a result of repeated studies to solve the above-mentioned problems and to find out a specific industrial separation apparatus capable of efficiently and stably separating a large amount of by-product alcohols for a long time, the present invention has been achieved. did.
  • Alcohols produced as a by-product in the continuous production of aromatic carbonates on an industrial scale of 1 ton or more per hour by transesterification of dialkyl carbonates with aromatic monohydroxy compounds A low boiling point reaction mixture containing alcohol with a length L (cm), an inner diameter D (cm), and an internal number of stages n that satisfy the following formulas (1) to (8): Recovery part with internal, length L (cm), inner diameter D (cm), inside
  • An industrial separation apparatus for by-product alcohols characterized in that:
  • the soot-exchange reaction is carried out by a reactive distillation method, and the low boiling point reaction mixture is mixed with a top component having a concentration of the alcohols of 90% by mass or more and an alcohol content of 0.2% by mass or less.
  • the amount of alcohols separated into a tower bottom component and separated as the tower top component is 200 kg or more per hour, according to any one of the preceding items 1 to 7, Industrial separation equipment for by-product alcohols,
  • the content of the alcohol in the column bottom component is 0.1% by mass or less with respect to 100% by mass of the column bottom component, any one of the items 8 to 10 above Industrial separation apparatus for by-product alcohols as described in
  • the industrial separation apparatus is used in the case of continuously producing aromatic carbonates on an industrial scale of 1 ton or more per hour by transesterification reaction between a dialkyl carbonate and an aromatic monohydroxy compound.
  • the alcohols can be stably and efficiently separated for a long time from the low boiling point reaction mixture containing the resulting alcohols.
  • the amount of alcohol separated as the top component is more than 200kg per hour, It can be easily separated into a column top component having an alcohol content of 90% by mass or more and a column bottom component having an alcohol content of 0.2% by mass or less.
  • the dialkyl carbonate used in the present invention is represented by the general formula (9).
  • R 1 represents an alkyl group having 1 to 10 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, or an aralkyl group having 6 to 10 carbon atoms.
  • alkyl groups, alicyclic groups, and aralkyl groups may be substituted with other substituents such as a lower alkyl group, lower alkoxy group, cyan group, halogen, etc., or unsaturated. Have a bond.
  • dialkyl carbonate having R 1 examples include dimethyl carbonate, jetyl carbonate, dipropyl carbonate (each isomer), diaryl carbonate, dibutenyl carbonate (each isomer), and dibutyl.
  • R 1 is preferably a dialkyl carbonate composed of an alkyl group having 4 or less carbon atoms not containing a halogen, particularly preferably! / Is dimethyl carbonate, which is preferably used in the present invention.
  • dialkyl carbonates are preferred among the preferred dialkyl carbonates, more preferred are dialkyl carbonates produced in a state substantially free of halogen! /, For example, alkylene carbonates substantially free of halogen. Alcohol power substantially free of halogen and halogen is also produced.
  • the aromatic monohydroxy compound used in the present invention is represented by the following general formula (10), and if the hydroxyl group is directly bonded to the aromatic group, It can be anything.
  • Ar 1 represents an aromatic group having 5 to 30 carbon atoms.
  • aromatic monohydroxy compounds having Ar 1 include phenol; talesol (each isomer), xylenol (each isomer), trimethylphenol (each isomer), tetramethylphenol (each isomer), Ethylphenol (each isomer), Propylphenol (each isomer), Butylphenol (each isomer), Jetylphenol (each isomer), Methylethylphenol (each isomer), Methylpropylphenol (each Isomers), dipropylphenol (each isomer), methylbutylphenol (each isomer), pentylphenol (each isomer), hexylphenol (each isomer), cyclohexylphenol (each isomer), etc.
  • alkylphenols various alcohols such as methoxyphenol (each isomer) and ethoxyphenol (each isomer) Phenols; arylalkylphenols such as phenolpropylphenol (each isomer); naphthol (each isomer) and various substituted naphthols; hydroxypyridine (each isomer), hydroxycoumarin (each isomer), Heteroaromatic monohydroxy compounds such as hydroxyquinoline (each isomer) are used.
  • aromatic monohydroxy compounds those that are preferably used in the present invention are aromatic monohydroxy compounds in which Ar 1 also has an aromatic group having 6 to 10 carbon atoms. Preference is given to phenol.
  • aromatic monohydroxy compounds those preferably used in the present invention are It is substantially free of rogen.
  • the reaction for producing an aromatic carbonate and by-producing alcohols is represented by the following formulas (11, 12).
  • the reaction formula (11) The reaction is mainly occurring.
  • the molar ratio of the dialkyl carbonate and the aromatic monohydroxy compound used in the transesterification reaction of the present invention is required to be 0.5 to 3 in terms of molar ratio. Outside this range, the remaining unreacted raw material increases with respect to the predetermined production amount of the target aromatic carbonate, which is not efficient and requires a lot of energy to recover them. In this sense, this mono ktti is more preferably 0.8 to 2.5 force, and more preferably ⁇ ⁇ , 1.0 to 2.0.
  • the transesterification reaction of the present invention is a method capable of continuously producing an aromatic carbonate at a production rate of 1 ton or more per hour and producing a low boiling point reaction mixture containing by-produced alcohols. Any method can be used, but the reaction distillation method is particularly preferred.
  • the aromatic carbonate produced in the present invention is an alkyl aryl carbonate, diaryl carbonate, or a mixture thereof obtained by transesterification of a dialkyl carbonate and an aromatic monohydroxy compound. In this ester exchange reaction, one or two alkoxy groups of the dialkyl carbonate were exchanged with the aryloxy group of the aromatic monohydroxy compound to remove alcohols (formulas 11 and 12).
  • Alkylaryl carbonate A reaction that converts to diaryl carbonate and dialkyl carbonate by a disproportionation reaction (Equation 13), which is an ester exchange reaction between two molecules, may be included.
  • alkylaryl carbonate is mainly obtained.
  • This alkylaryl carbonate is further subjected to ester exchange reaction with an aromatic monohydroxy compound, or disproportionation reaction (formula 13 ) Can be used to make a gear reel carbonate.
  • This diaryl carbonate was completely free of halogen. Therefore, it is important as a raw material when industrially producing polycarbonate by the transesterification method.
  • a small amount of alkyl aryl ether is usually produced as a reaction byproduct.
  • the dialkyl carbonate and aromatic monohydroxy compound used as raw materials in the transesterification reaction of the present invention may have high purity, but may contain other compounds. .
  • it may contain compounds and reaction byproducts produced in this step and z or other steps.
  • these raw materials include dialkyl carbonates and aromatic monohydroxy compounds that are newly introduced into the reaction system, as well as those recovered from this step and Z or other steps. And are preferred.
  • the industrial separation apparatus of the present invention the low boiling point reaction mixture withdrawn from the upper part of the reactor is continuously distilled and separated, so that the component having a low alcohol content is used as a raw material for the transesterification reaction. It can be reused, and this is a particularly preferred method.
  • the transesterification reaction of the present invention is usually carried out in the presence of a known catalyst.
  • these catalysts may be solid catalysts fixed in a multistage distillation column that performs reactive distillation, or may be soluble catalysts that are dissolved in the reaction system. May be.
  • these catalyst components reacted with organic compounds present in the reaction system, such as aliphatic alcohols, aromatic monohydroxy compounds, alkyl aryl carbonates, diaryl carbonates, dialkyl carbonates and the like. It may be a product, or it may have been heat-treated with raw materials and products prior to the reaction!
  • catalysts in this sense include, for example, PbO, Pb (OH), Pb (0
  • the continuous multi-stage steaming is performed.
  • Any method may be used in which the catalyst is present in the distillation column (hereinafter referred to as “continuous multistage distillation column A”).
  • continuous multistage distillation column A When the catalyst is in a solid state insoluble in the reaction solution, Multi-stage distillation column There are methods such as installing in the column in column A, or fixing it in the column by installing it in a packed form. Further, in the case of a catalyst that dissolves in the raw material or the reaction solution, it is preferable to supply it into the upper force distillation column from the middle part of the distillation column A.
  • the catalyst solution dissolved in the raw material or the reaction solution may be introduced together with the raw material, or the catalyst solution may be introduced from an inlet different from the raw material.
  • the amount of catalyst used in the present invention is usually expressed as a ratio with respect to the total weight of the raw material, which varies depending on the type of catalyst used, the type of raw material and its ratio, reaction temperature and reaction pressure, and other reaction conditions 0.0001 to 30% by mass, preferably 0.005 to 10% by mass, more preferably 0.001 to 1% by mass.
  • FIG. 1 is a schematic diagram showing an example of a continuous multi-stage distillation column A that performs reactive distillation, which is a preferred reaction method for performing a transesterification reaction of the present invention.
  • the continuous multistage distillation column A used as the reactive distillation column is long in the production amount of 1 ton or more of at least one aromatic carbonate per hour. Any material can be used as long as it can be stably produced over a period of time.
  • a length L (cm) that satisfies the conditions of the following formulas (14) to (19) and an inner diameter D (cm ), And has an internal structure (for example, tray 6) with an internal stage number n, and a gas outlet 1 with an inner diameter d (cm) at the top of the tower or near the top of the tower, a tower at or near the bottom of the tower.
  • top of the tower or near the top of the tower means a portion of about 0.25 L downward from the top of the tower, and the term “bottom of the tower or near the bottom of the tower” It means the part up to about 0.25L from the bottom of the tower. “L” is as defined above.
  • continuous multistage distillation column A that simultaneously satisfies the formulas (14) to (19) as a reactive distillation column, 1 ton or more per hour from a dialkyl carbonate and an aromatic monohydroxy compound, usually 1 to :
  • aromatic carbonates have high selectivity and high productivity. For example, 2000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more Can be manufactured.
  • the transesterification reaction carried out in the present invention is carried out continuously, and the reaction time is considered to correspond to the average residence time of the reaction liquid in the reactor. It varies depending on the amount supplied, the type and amount of the catalyst, the reaction conditions, etc. In the case of the reactive distillation method, it varies depending on the internal shape of the distillation column, the number of stages, the distillation conditions, etc. 0.05 to 5 hours, more preferably 0.1 to 3 hours.
  • the reaction temperature varies depending on the type of raw material compound used and the type and amount of the catalyst, but is usually 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. If the reaction temperature is high, side reactions are liable to occur.
  • reaction temperature is 130 to 280. C, more preferably 150-260. C, more preferably 180-250. C range.
  • the reaction pressure varies depending on the type and composition of the raw materials used, the reaction temperature, etc. 1S reduced pressure, normal pressure, or pressurized pressure is usually 0.1-2 X 10 7 Pa, preferably Is carried out in the range of 10 5 to: L0 7 Pa, more preferably 2 ⁇ 10 5 to 5 ⁇ 10 6 .
  • a low-boiling point reaction containing alcohols produced by continuously supplying a raw material dialkyl carbonate and an aromatic monohydroxy compound to a reactor in which a catalyst exists.
  • Aromatic carbonates are continuously produced by continuously withdrawing the mixture in gaseous form from the upper part of the reactor and continuously withdrawing the high boiling point reaction mixture containing the aromatic carbonates in liquid form from the lower part of the tower.
  • a reactive distillation system in which the reactor is a continuous multistage distillation column A is preferred.
  • the raw material is continuously fed into the continuous multistage distillation column A in which a catalyst is present, Simultaneous reaction and distillation
  • the low boiling point reaction mixture (hereinafter referred to as “A”) containing the generated alcohols is
  • the aromatic carbonate is continuously withdrawn in a gaseous state, and a high boiling point reaction mixture containing aromatic carbonates (hereinafter referred to as “A”) is continuously withdrawn in liquid form from the bottom of the column.
  • A a high boiling point reaction mixture containing aromatic carbonates
  • the amount of the low boiling point reaction mixture (A) continuously withdrawn from the reactor depends on the raw material composition and amount, the reactive distillation conditions, and the reaction.
  • the force varies depending on the response rate, selectivity, etc. Usually, it is 10 tons Zhr or more and 1000 tons Zhr or less.
  • the composition of the low boiling point reaction mixture (A) to be separated has reaction conditions! /,
  • the low boiling point reaction mixture (A) is usually used as a by-product alcohol 1.5 to 100% by mass.
  • FIG. 2 is a schematic diagram showing an example of a continuous multistage distillation column (hereinafter referred to as “continuous multistage distillation column B”) which is an industrial separation apparatus for by-product alcohols of the present invention.
  • the present invention provides a separation apparatus suitable for efficiently distilling and separating the low boiling point reaction mixture having such a composition containing by-product alcohol on an industrial scale, and the separation apparatus comprises: A recovery section SS having an internal length (for example, tray 7) having a length L (cm), an inner diameter D (cm), and an internal number n (for example, tray 7) satisfying the formulas (1) to (8), and a length L (cm), inner diameter D (cm), and n steps inside
  • a recovery section SS having an internal length (for example, tray 7) having a length L (cm), an inner diameter D (cm), and an internal number n (for example, tray 7) satisfying the formulas (1) to (8), and a length L (cm), inner diameter D (cm), and n steps
  • FIG. 2 A distillation column consisting of a concentrating section ES with two internals (eg, tray 8) is required.
  • Reference numerals 1 to 4 in FIG. 2 denote the same members as in FIG.
  • L (cm) force is less than 00, the separation efficiency of the recovery unit will decrease, and the target separation efficiency will not be achieved.To reduce the equipment cost while ensuring the target separation efficiency, L should be It is necessary to make it smaller.
  • a more preferable range of L (cm) is 800 ⁇ L ⁇ 2500, and more preferably 1 000 ⁇ L ⁇ 2000.
  • D (cm) is smaller than 100, the target distillation amount cannot be achieved, and D must be smaller than 500 in order to reduce the equipment cost while achieving the target distillation amount. is there.
  • a more preferable range of D (cm) is 120 ⁇ D ⁇ 400, and more preferably 150 ⁇ D ⁇ 300.
  • L ZD When it is less than L ZD or greater than 30, long-term stable operation becomes difficult.
  • a more preferred range of L / ⁇ is 5 ⁇ L ZD ⁇ 20, more preferably 7 ⁇ L / ⁇ ⁇ 15.
  • n is less than 10, the separation efficiency of the recovery unit is lowered, so that the target separation efficiency cannot be achieved.
  • n is less than 40. It is necessary to drill.
  • a more preferable range of n is 13 ⁇ n ⁇ 25, and more preferably 15 ⁇ n ⁇ 20.
  • L (cm) is less than 700, the separation efficiency of the concentrating part is lowered, so that the desired separation effect is achieved.
  • the range is 1500 ⁇ L ⁇ 3500, more preferably 2000 ⁇ L ⁇ 3000.
  • D (cm) is less than 50, the target distillation amount cannot be achieved, and the target distillation amount cannot be achieved.
  • the preferred range of D (cm) is 70 ⁇ D ⁇ 200, more preferably 80 ⁇ D ⁇ 15
  • the range of new L / 15 is 15 ⁇ L ZD ⁇ 30, more preferably 20 ⁇ L / ⁇ ⁇
  • n is less than 35, the separation efficiency of the concentrating part decreases, and the target separation efficiency is achieved.
  • n is less than 100.
  • n is greater than 100, the pressure difference between the top and bottom of the tower is large.
  • n 40 ⁇ n
  • the continuous multistage distillation column B used for industrial separation of by-product alcohols of the present invention is a distillation having a tray and Z or a packing as an internal in a recovery part SS and a concentrating part ES.
  • a tower is preferred.
  • the term “internal” as used in the present invention means a portion where gas-liquid contact is actually performed in a distillation column.
  • a tray for example, a foam tray, a perforated plate tray, a valve tray, a counterflow tray, a super flack tray, a max flutter tray, etc.
  • Irregular packing such as Nolenore Sad Nore, Interlocks Saddle, Dixon Packing, McMahon Packing, Helical Pack, etc. I like it.
  • a multistage distillation column having both a tray part and a packed part can also be used.
  • the term “internal plate number n” used in the present invention means the number of trays in the case of trays, and the theoretical plate number in the case of packing. Therefore, in the case of a continuous multistage distillation column having both a tray part and a packed part, n is the sum of the number of trays and the number of theoretical plates.
  • the internals of the recovery section SS and the concentration section ES of the continuous multistage distillation column B are trays. It was also found that a perforated plate tray having a perforated plate portion and a downcomer portion is particularly excellent in terms of function and equipment costs. It has also been found that it is preferred that the perforated plate tray has 100-: LOOO holes per area lm 2 of the perforated plate portion! More preferably! / The number of fistulas is 120-900 per lm 2 of the area, and more preferably 150-800. It has also been found that the cross-sectional area per hole of the perforated plate lay is preferably 0.5 to 5 cm 2 .
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and further preferably 0.9 to 3 cm 2 . Further, when the perforated plate tray has 100 to: LOOO holes per area lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.5 to 5 cm 2 , It has been found to be particularly preferred.
  • the ester exchange reaction of the present invention is carried out by the reactive distillation method, it is preferable to use the above-mentioned internal also for the continuous multistage distillation column A used as the reactive distillation column, and particularly the formulas (11) and (12).
  • a tray for a reactive distillation column that mainly performs the reaction of (3) and an internal tray and a regular packing for a reactive distillation column that mainly performs the reaction of the formula (13).
  • a low boiling point reaction mixture of a transesterification reaction containing by-product alcohols may be supplied in a gaseous state into the continuous multistage distillation column B.
  • the heat of the low boiling point reaction mixture usually extracted in the form of gas can be used for heating other substances, for example, the raw material of the transesterification supplied to the reactor. This is a particularly preferable method.
  • the low boiling point reaction mixture supplied to the continuous multistage distillation column B becomes gaseous, gas-liquid mixed, or liquid. Further, the position where the low boiling point reaction mixture is fed into the continuous multistage distillation column B is between the recovery unit SS and the concentrating unit ES.
  • the continuous multistage distillation column B preferably has a reboiler for heating the distillate and a reflux device.
  • a by-product is produced when an aromatic carbonate is continuously produced on an industrial scale of 1 ton Zhr or more by a transesterification reaction between a dialkyl carbonate as a raw material and an aromatic monohydroxy compound.
  • the low-boiling point reaction mixture containing alcohols is usually provided with an industrial distillation apparatus that separates 10 to LO 00 tons Zhr.
  • the concentration power of the alcohols is 90% by mass or more, preferably Is 95% by mass or more, more preferably 97% or more of the top component (hereinafter referred to as “B”) and the alcohol content is 0.2% by mass.
  • % Preferably 0.1% by mass or less, more preferably 0.07% by mass or less of the bottom component (hereinafter referred to as “B”) for stable and efficient separation over a long period of time. Is possible.
  • the amount of alcohol separated as the top component (B) is reduced to 200k.
  • gZhr or more, preferably 500 kgZhr or more, more preferably 1 to 20 tons Zhr.
  • the column top component (B) contains 90% by-product alcohols.
  • the tower top component (B) is used as a dialkyl carbonate production raw material.
  • dialkyl carbonate a method using a carbonylation reaction of alcohols and a method using an alcohololysis reaction of alkylene carbonate are industrially carried out. Any reaction
  • the alcohololysis reaction of alkylene carbonate is an equilibrium reaction, it is preferable to use a raw material having a high alcohol concentration. It is a preferred method to use the top component (B) as a raw material for this reaction. In this case, the top of the tower
  • the alcohol concentration in component (B) is 95% by mass or more, more preferably 97% by mass or more.
  • the bottom component (B) is mixed with the low boiling point reaction mixture.
  • the component power of the column top component (B) is extracted from the component of the product, and the column bottom component (B) 10
  • the content of by-product alcohols is 0.2% by mass or less, preferably 0.1% by mass or less with respect to 0% by mass.
  • the main components are a dialkyl carbonate and an aromatic monohydroxy compound. And a small amount of by-produced alkyl aryl ether and a small amount of aromatic strength bonates. Therefore, this bottom component B is transesterified.
  • the distillation conditions of the continuous multistage distillation column B are such that the column bottom temperature is 150 to 300 ° C., preferably 170 to 270 °. C, more preferably 190 to 250 ° C., and the top pressure is 2 ⁇ 10 5 to 5 ⁇ 10 6 Pa, preferably 4 ⁇ 10 5 to 3 ⁇ 10 6 Pa, more preferably 6 ⁇ 10 5 to 2 X 10 6 Pa and the reflux specific force is 0.1 to 20, preferably 0.5 to 15, and more preferably 1.0 to 10.
  • the long-term stable operation in the present invention refers to a steady state based on operating conditions where there is no flooding or piping clogging or erosion for 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more. While the operation can be continued and the predetermined separation efficiency is maintained, a predetermined amount of by-product alcohol of 200 kgZhr or more is distilled and separated as the top component (B).
  • the material constituting the continuous multistage distillation column, internal, piping, etc. of the present invention is preferably mainly carbon steel, stainless steel or the like.
  • Examples 3 to 7 are examples for showing the performance of the industrial separation apparatus of the present invention.
  • the composition of the mixture was measured by gas chromatography, and the halogen was measured by ion chromatography.
  • the catalyst is Pb (OPh) so that the reaction solution is about 70 ppm.
  • the amount of methyl phenyl carbonate produced per hour was 8.3 tons (excluding the amount introduced into distillation column A, the actual amount produced was 7.5 tons Zhr), and the production of diphenyl carbonate per hour Production was found to be 0.22 tons.
  • the combined selectivity of methyl phenol carbonate and diphenyl carbonate with respect to the reacted phenol was 99%.
  • a long-term continuous operation was performed under these conditions. After 500 hours, 2000 hours, 4000 hours, 5000 hours, 6000 hours, the production volume per hour is methylphenol carbonate. 8.3, 8.3, 8.3 8.3 centimeters, 8.3 centimeters, and the production per hour of diphenyl carbonate is 0.22 centimeters, 0.22 centimeters, 0.22 centimeters, 0.22 centimeters. 0.22%, and the combined selectivity of methyl and diphenyl carbonate is 99%, 99%, 99%, 99%, 99%, 99%, 99%, which is very stable. It was. In addition, the produced aromatic carbonate did not substantially contain halogen (lppb or less).
  • the low boiling point reaction mixture (A) has a liquid temperature near the inlet 31 provided between the recovery part and the concentration part of the continuous multistage distillation column B.
  • the distillation column B After being brought to a close temperature, the distillation column B was continuously supplied from the inlet 31. Meanwhile, fresh dimethyl carbonate was continuously introduced from the inlet 41 at the bottom of the distillation column B at 2.53 tons Zhr.
  • the distillation column B is continuously distilled and separated at a column bottom temperature of 226 ° C, a column top temperature of 155 ° C, and a reflux ratio of 3, and a low boiling point mixture (B) is discharged from the outlet 39 to 1.73 tons Zh
  • the high boiling point mixture (B) is continuously extracted from the extraction port 35 to 86 tons Zhr. It was.
  • the high boiling point mixture (B) has a methanol content of 0.1% by mass or less.
  • the composition was the same as that of the raw material 2 of the continuous multistage distillation column A, and this was recycled and reused as the raw material 2.
  • composition of the low boiling point mixture (B) is 97% by mass of methanol and 3% by mass of dimethyl carbonate.
  • the amount of methanol continuously distilled off was 1.68 tons Zhr.
  • the low boiling point mixture (B) is reacted with ethylene carbonate to give dimethyl carbonate and ethyl acetate.
  • continuous multistage distillation column B was performed in accordance with the continuous operation of continuous multistage distillation column A, but the separation efficiencies after 500 hours, 2000 hours, 4000 hours, 5000 hours, and 6000 hours were the same as in the initial stage. It was stable.
  • the raw material 2 consisting of methanol 0.1 wt% was continuously introduced from the lower inlet 11 of the distillation column A at a flow rate of 86.6 tons Zhr.
  • the raw material contained substantially no halogen (less than the limit of detection by ion chromatography, lppb or less).
  • the catalyst is Pb (OPh), and the distillation column A is adjusted so as to have about lOOppm in the reaction solution.
  • a long-term continuous operation was performed under these conditions. After 500 hours, 1000 hours, and 2000 hours, the production volume per hour is 1,8 tons, 11.8 tons, and 11.8 tons of methylphenol carbonate, and per hour of diphenyl carbonate.
  • the production rate is 0.6 tons, 0.6 tons, and 0.6 tons, and the combined selectivity of methylphenol carbonate and diphenol carbonate is 98%, 98%, 98%, which is very It was stable.
  • the produced aromatic strength boronate was substantially free of halogen (lppb or less).
  • the low-boiling point reaction mixture (A) continuously extracted in gaseous form from the top of the continuous multistage distillation column A is heated to 161 ° C by using the heat to heat the raw material 1 in the heat exchange ⁇ 27. Reduced
  • the low boiling point reaction mixture (A) is a liquid near the inlet 31 provided between the recovery part and the concentration part of the continuous multistage distillation column B.
  • distillation column B After being brought to a temperature close to the temperature, it was continuously supplied to the distillation column B from the inlet 31. On the other hand, fresh dimethyl carbonate was continuously introduced into the distillation column B at 3.98 ton Zhr from the inlet 51 in the fourth stage of the lower part of the concentration section.
  • the distillation column B is continuously distilled and separated at a column bottom temperature of 213 ° C, a column top temperature of 138 ° C, and a reflux ratio of 2.89, and a low boiling point mixture (B) is formed.
  • the high boiling point mixture (B) has a methanol content.
  • composition of the low boiling point mixture (B) is 93.3 mass% methanol, dimethyl carbonate 6.7.
  • the low boiling point mixture (B) is reacted with ethylene carbonate to form dimethyl carbonate and
  • continuous multi-stage distillation column B was performed in accordance with the continuous operation of continuous multi-stage distillation column A, but the separation efficiency after 500 hours, 1000 hours, and 2000 hours was the same as in the initial stage, and it moved stably. .
  • reaction mixture (A) was subjected to heat exchange 27 in the same manner as in Example 1 and the same continuous mixture as in Example 3 was obtained.
  • the mixture (B) was continuously withdrawn from the outlet 35 at 80.83 ton Zhr.
  • the high boiling point mixture (B) has a methanol content of 0.1% by mass or less, which is a reactive distillation.
  • composition of the low boiling point mixture (B) is 99% by mass of methanol and 1% by mass of dimethyl carbonate.
  • the amount of methanol continuously distilled off was 1.18 tons Zhr.
  • the low boiling point mixture (B) is reacted with ethylene carbonate to give dimethyl carbonate and ethyl acetate.
  • continuous multi-stage distillation column B was performed in accordance with the continuous operation of continuous multi-stage distillation column A, but the separation efficiency after 500 hours, 1000 hours, and 2000 hours was the same as in the initial stage, and it moved stably. .
  • Reactive distillation was performed in the same manner using the same continuous multi-stage distillation column A as in Example 3, Tower top withdrawal 26 Methanol 2.8% by mass, dimethyl carbonate 61.0% by weight, phenol 26.4 wt 0/0, ⁇ - Sole 9.6 mass 0/0, Mechirufue - Le carbonate 0.2 wt%
  • a low boiling point reaction mixture (A) consisting of was extracted at 57.45 ton Zhr.
  • reaction mixture (A) was subjected to heat exchange 27 in the same manner as in Example 1 and the same continuous mixture as in Example 3 was obtained.
  • the point mixture (B) was continuously withdrawn from the outlet 35 at 58.2 tons Zhr.
  • the high boiling point mixture (B) has a methanol content of 0.08% by mass
  • composition of the low boiling point mixture (B) is 94.9% by mass of methanol, dimethyl carbonate 5.1.
  • the amount of methanol continuously distilled off was 1.6 tons Zhr.
  • the low boiling point mixture (B) is reacted with ethylene carbonate to form dimethyl carbonate and ester.
  • continuous multistage distillation column B was performed in accordance with the continuous operation of continuous multistage distillation column A, but the separation efficiency after 500 hours and 1000 hours was the same as the initial stage and remained stable.
  • reaction mixture (A) was subjected to heat exchange 27 in the same manner as in Example 1 and the same continuous mixture as in Example 3 was obtained.
  • the high boiling point mixture (B) has a methanol content of 0.
  • composition of the low-boiling mixture (B) is 93.3 mass% methanol, dimethyl carbonate 6.7.
  • continuous multi-stage distillation column B was performed in accordance with the continuous operation of continuous multi-stage distillation column A, but the separation efficiency after 500 hours, 1000 hours, and 2000 hours was the same as in the initial stage, and it moved stably. .
  • the present invention relates to alcohols produced as a by-product when an aromatic carbonate is continuously produced on an industrial scale of 1 ton or more per hour by a transesterification reaction between a dialkyl carbonate and an aromatic monohydroxy compound.
  • the low boiling point reaction mixture containing alcohol can be suitably used as an industrial separation apparatus for separating alcohols.
  • FIG. 1 is a schematic diagram showing an example of a continuous multistage distillation column A that performs reactive distillation, which is a preferred reaction system for performing the transesterification reaction of the present invention.
  • An internal (for example, tray 6) with n stages is installed inside.
  • FIG. 2 is a schematic view showing an example of a continuous multistage distillation column which is an industrial separation apparatus for by-product alcohols of the present invention. Internal is installed inside. Internally, the collection unit (for example, tray 7) has n stages and the concentration unit (for example, tray 8) has n.
  • FIG. 3 is a schematic diagram showing a connection between reactive distillation and an apparatus for performing distillation separation of by-product alcohols of the present invention.
  • 1 Gas outlet
  • 2 Liquid outlet
  • 3 Inlet
  • 5 End plate
  • 6, 7, 8 Tray
  • SS Recovery section
  • ES Concentration section
  • L Continuous multistage distillation column A Length (cm)
  • D inner diameter of continuous multistage distillation column A (cm)
  • d inner diameter of gas outlet of continuous multistage distillation column A (cm)
  • d continuous multistage
  • Diameter (cm), D Inner diameter of concentrating part of continuous multistage distillation column B (cm), 10, 11, 20, 21, 31, 41,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 本発明が解決しようとする課題は、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とを、触媒を存在させた反応蒸留塔内でエステル交換反応に付し、芳香族カーボネートを1時間あたり1トン以上の工業的規模で製造する際に副生するアルコール類を含む大量の低沸点反応混合物から、該アルコール類を効率的に長時間安定的に分離できる具体的な工業的分離装置を提供することにある。上記の課題を解決する副生アルコールの工業的分離装置として、特定の構造を有する連続多段蒸留塔が提供される                                  

Description

明 細 書
副生アルコール類の工業的分離装置
技術分野
[0001] 本発明は、副生アルコール類の工業的分離装置に関する。さらに詳しくは、ジアル キルカーボネートと芳香族モノヒドロキシィ匕合物とのエステル交換反応によって芳香 族カーボネート類を 1時間あたり 1トン以上の工業的規模で連続的に製造する際に副 生するアルコール類を含む低沸点反応混合物力 アルコール類を分離するための 工業的分離装置に関する。
背景技術
[0002] 芳香族カーボネートは、最も需要の多いエンジニアリングプラスチックである芳香族 ポリカーボネートを、有毒なホスゲンを用いな 、で製造するための原料として重要で ある。芳香族カーボネートの製法として、芳香族モノヒドロキシィ匕合物とホスゲンとの 反応による方法が古くから知られており、最近も種々検討されている力 この方法は ホスゲン使用の問題にカ卩え、この方法によって製造された芳香族カーボネートには 分離が困難な塩素系不純物が存在しており、高純度が要求される用途、たとえば、 芳香族ポリカーボネートの原料として用いることはできな 、。
[0003] 一方、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応 による芳香族カーボネートの製造方法も知られている。し力しながら、これらのエステ ル交換反応は全て平衡反応であって、しカゝもその平衡が原系に極端に偏って ヽるこ とに加えて反応速度が遅いことから、この方法によって芳香族カーボネート類を工業 的に大量に製造するのは多大な困難を伴っていた。そのため、触媒の開発に加え、 反応方式を工夫することによって平衡をできるだけ生成系側にずらし、芳香族カーボ ネート類の収率を向上させる試みが数多くなされている。たとえば、ジメチルカーボネ ートとフエノールの反応において、副生してくるメタノールを共沸形成剤とともに共沸 によって留去する方法 (特許文献 1 :特開昭 54— 48732号公報 (西独特許公開公報 第 736063号、米国特許第 4252737号明細書))、副生してくるメタノールをモレキ ユラ一シーブで吸着させて除去する方法 (特許文献 2:特開昭 58 - 185536号公報 ( 米国特許第 410464号明細書))が提案されている。また、反応器の上部に蒸留塔を 設けた装置によって、反応で副生してくるアルコール類を反応混合物から分離させな がら同時に蒸発してくる未反応原料との蒸留分離を行う方法も提案されている (特許 文献 3— 1 :特開昭 56— 123948号公報 (米国特許第 4182726号明細書)の実施 例;特許文献 3— 2;特開昭 56— 25138号公報の実施例;特許文献 3— 3:特開昭 6 0— 169444号公報 (米国特許第 4554110号明細書)の実施例;特許文献 3—4:特 開昭 60— 169445号公報 (米国特許第 4552704号明細書)の実施例;特許文献 3 5:特開昭 60— 173016号公報 (米国特許第 4609501号明細書)の実施例;特許 文献 3— 6:特開昭 61— 172852号公報の実施例;特許文献 3— 7:特開昭 61— 29 1545号公報の実施例;特許文献 3 - 8:特開昭 62— 277345号公報の実施例)。 本発明者等はジアルキルカーボネートと芳香族ヒドロキシィ匕合物を連続的に多段 蒸留塔に供給し、触媒を存在させた該塔内で連続的に反応させ、副生するアルコー ルを含む低沸点成分を蒸留によって連続的に抜き出すと共に、生成したアルキルァ リールカーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 4:特開 平 3— 291257号公報)、アルキルァリールカーボネートを連続的に多段蒸留塔に供 給し、触媒を存在させた該塔内で連続的に反応させ、副生するジアルキルカーボネ ートを含む低沸成分を蒸留によって連続的に抜き出すと共に生成したジァリール力 ーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 5:特開平 4 93 58号公報)、これらの反応を 2基の連続多段蒸留塔を用いて行い、副生するジアル キルカーボネートを効率的にリサイクルさせながらジァリールカーボネートを連続的に 製造する反応蒸留法 (特許文献 6:特開平 4 211038号公報)、ジアルキルカーボ ネートと芳香族ヒドロキシィ匕合物等を連続的に多段蒸留塔に供給し、塔内を流下す る液を蒸留塔の途中段および Zまたは最下段に設けられたサイド抜き出し口より抜き 出し、蒸留塔の外部に設けられた反応器へ導入して反応させた後に該抜き出し口の ある段よりも上部の段に設けられた循環用導入口へ導入することによって、該反応器 内と該蒸留塔内の両方で反応を行う反応蒸留法 (特許文献 7—1 :特開平 4— 2245 47号公報;特許文献 7— 2:特開平 4 230242号公報;特許文献 7— 3:特開平 4 235951号公報)等、これらのエステル交換反応を連続多段蒸留塔内で反応と蒸留 分離とを同時に行う方式を開発し、これらのエステル交換反応に対して反応蒸留方 式が有用であることを世界で初めて開示した。
[0005] 本発明者等が提案したこれらの反応蒸留法は、芳香族カーボネート類を効率よぐ かつ連続的に製造することを可能とする初めてのものであり、その後これらの開示を ベースとする同様な反応蒸留方式が数多く提案されるようになった (特許文献 8 :イタ リア特許第 01255746号公報;特許文献 9:特開平 6 - 9506号公報(欧州特許 056 0159号明細書、米国特許第 5282965号明細書);特許文献 10 :特開平 6— 4102 2号公報 (欧州特許 0572870号明細書、米国特許第 5362901号明細書);特許文 献 11 :特開平 6— 157424号公報 (欧州特許 0582931号明細書、米国特許第 533 4742号明細書);特許文献 12 :特開平 6— 184058号公報(欧州特許 0582930号 明細書、米国特許第 5344954号明細書);特許文献 13 :特開平 7— 304713号公 報;特許文献 14:特開平 9—40616号公報;特許文献 15:特開平 9 - 59225号公報 ;特許文献 16 :特開平 9— 110805号公報;特許文献 17 :特開平 9— 165357号公 報;特許文献 18:特開平 9 - 173819号公報;特許文献 19 - 1:特開平 9 - 176094 号公報;特許文献 19 - 2:特開 2000 - 191596号公報;特許文献 19 - 3:特開 200 0—191597号公報;特許文献 20 :特開平 9— 194436号公報(欧州特許 0785184 号明細書、米国特許第 5705673号明細書);特許文献 21 :国際公開第 00Z1872 0公報 (米国特許第 6093842号明細書);特許文献 22— 1 :特開 2001— 64234号 公報;特許文献 22 - 2:特開 2001— 64235号公報;特許文献 23:国際公開第 02Z 40439公報(米国特許第 6596894号、米国特許第 6596895号、米国特許第 660 0061号明細書))。
[0006] 一方、ジメチルカーボネートとフエノールとのエステル交換反応によって副生するメ タノール類を含む反応混合物から該アルコール類を分離する方法にっ 、ても 、くつ かの提案がなされている。たとえば、液相部が複数の反応区画に分割されており、反 応液が各区画を順次経て反応器力 流出するようになって!/、る反応器を用いて上記 の反応を行い、気相部のガスを抜き出し、これを熱交換させた後、蒸留塔で分離する 方法 (特許文献 24:特開平 2003— 113144号公報)や、同じ反応器を用いて気相 部のガスを抜き出し、これを熱交換させて液ィ匕した後、反応器の気相部の圧力よりも 高!、圧力で蒸留分離する方法 (特許文献 25:特開平 2003 - 155264号公報)が提 案されている。し力しながら、これらの方法の目的は、反応器として上述のような連続 式撹拌槽を用いて反応させたときのガス成分を、省エネルギー的に分離することであ つて、しかもこの反応方式によるガス成分の組成は、たとえば、ジメチルカーボネート 98. 1質量0 /0、メタノール 1. 4質量0 /0、フエノール、メチルフエ-ルカーボネート等 0. 5質量% (特許文献 25)であり、反応蒸留方式によって生成する副生アルコール類を 含む低沸点反応混合物の組成とは大きく異なっており、反応蒸留方式による低沸点 反応混合物からアルコール類を所定の濃度で分離することとは自ず力 異なって 、 る。槽型反応器の上部に設置した蒸留塔の塔頂から、メタノールを約 10〜74質量% 含む液を 30gZhr程度で留出させる方法 (特許文献 26 :特開平 6— 157410号公報 )も提案されている。し力しながら、これらの特許文献は、少量の実験室的規模のもの であるか、ある!/、は単なる蒸留に必要なエネルギー量の比較計算を行ったものであり 、いずれも工業的規模で分離することに関する具体的な記載や示唆が全くない。
[0007] ジアルキルカーボネートと芳香族ヒドロキシィ匕合物とのエステル交換反応を反応蒸 留方式で行う場合、副生するアルコール類は、通常、反応系内に存在する芳香族力 ーボネートよりも低沸点の化合物、たとえば、原料のジアルキルカーボネートおよび 芳香族ヒドロキシィヒ合物、副生物のアルキルァリールエーテル等を含む低沸点反応 混合物として反応蒸留塔の上部カゝら連続的に抜出されている。このエステル交換反 応は平衡定数の非常に小さい平衡反応であることから、副生アルコール類はこの反 応を阻害するのでこの低沸点反応混合物からアルコール類の含有量の少ない成分 とアルコ一ル類を主とする成分とに効率的に長期間安定的に連続的に分離 ·回収す ることが工業的に実施する際には重要となってくる。
[0008] 反応蒸留方式によるジメチルカーボネートとフエノールとのエステル交換反応によつ て塔上部力 抜き出されるメタノール類とジメチルカーボネートを含む低沸点反応混 合物を蒸留によって分離する方法についてもいくつかの提案がなされている。それら は、抽出剤としてシユウ酸ジメチルを用いてジメチルカーボネートを抽出しながら塔頂 からメタノールを抜き出す抽出蒸留法 (特許文献 27 :特開平 7— 101908公報)、抽 出剤としてエチレンカーボネートを用いてジメチルカーボネートを抽出しながら塔頂 からメタノールを抜き出す抽出蒸留法 (特許文献 14)、常圧で蒸留し塔頂からメタノ ール約 70質量%、ジメチルカーボネート約 30質量%からなる混合物を得る方法 (特 許文献 19)、塔頂からメタノール 64. 5質量%、ジメチルカーボネート 35. 5質量%か らなる混合物を得る方法 (特許文献 20)、塔頂力もメタノール 60〜40質量%、ジメチ ルカーボネート 40〜60質量%からなる混合物を得る方法 (特許文献 15)である。
[0009] し力しながら、抽出蒸留法では大量の抽出剤を使用しなければならず、抽出後、こ れらの抽出剤とジメチルカーボネートをさらに分離する必要があり、他の方法では、 塔頂抜き出し液中のメタノール含有量が 80質量%未満と低濃度であり、これをジメチ ルカーボネート製造原料として用いる場合は好ましくない。また、これらの特許文献に 記載されているのは、数 lOOgZhr以下のメタノールの分離回収法であり、最大量を 記載している特許文献 20でさえ、処理されているメタノールの量は約 0. 9kgZhrで ある。さらに、これらの特許文献におけるメタノール類の蒸留分離を行っている連続 時間は、反応蒸留法ではな!、反応方式を用いて!、る特許文献 29の場合が最長であ るが高々 720時間である。反応蒸留方式を用いている場合は最長でもわず力 2週間 (特許文献 19)であり、他は 10日間 (特許文献 15)や、定常状態になるまでの時間( 特許文献 14、 27)であり、非常に短いものであって、数 1000時間、たとえば 5000時 間もの長期間安定的に蒸留操作を行う工業的な分離方法の開示や示唆を与えるも のではない。このように、反応蒸留法によって芳香族カーボネートを工業的に製造す る際に、大量に副生するアルコール類を効率的に長期間安定的に分離する工業的 な方法に関する具体的な方法や装置の具体的な開示や示唆は、これまで全くなされ ていなかった。
発明の開示
発明が解決しょうとする課題
[0010] 本発明が解決しょうとする課題は、ジアルキルカーボネートと芳香族モノヒドロキシ 化合物とのエステル交換反応によって芳香族カーボネート類を 1時間あたり 1トン以 上の工業的規模で連続的に製造する際に副生するアルコール類を含む低沸点反応 混合物からアルコール類を分離するための工業的分離装置を提供することにある。 課題を解決するための手段 [0011] 上記の課題を解決し、大量に副生するアルコール類を、効率的に長時間安定的に 分離できる具体的な工業的分離装置を見出すべき検討を重ねた結果、本発明に到 達した。
[0012] すなわち、本発明では、
1.ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とのエステル交換反応によ つて芳香族カーボネート類を 1時間あたり 1トン以上の工業的規模で連続的に製造す る際に副生するアルコール類を含む低沸点反応混合物力 アルコール類を分離す るための装置であって、下記式(1)〜(8)を満足する長さ L (cm) ,内径 D (cm) ,内 部に段数 nをもつインターナルを有する回収部と、長さ L (cm) ,内径 D (cm) ,内
1 2 2 部に段数 nをもつインターナルを有する濃縮部力 なる連続多段蒸留塔であることを
2
特徴とする副生アルコール類の工業的分離装置;
500 < L ≤ 3000 (1)
1 式
100 < D ≤ 500 式 (2)
1
2 < L /Ό ≤ 30 式 (3)
1 1
10 < n ≤ 40 式 (4)
1
700 < L ≤ 5000 式 (5)
2
50 < D ≤ 400 式 (6)
2
10 < L /Ό ≤ 50 式 (7)
2 2
35 < n ≤ 100 式 (8)、
2.該連続多段蒸留塔の L、D、L ZD、n、L、D、L ZD、nがそれぞれ、 80
1 1 1 1 1 2 2 2 2 2
0≤L ≤2500, 120≤D ≤400、 5≤L /Ό ≤20, 13≤n≤25, 1500≤ L ≤3500、 70≤D ≤200, 15≤L /Ό ≤30, 40≤n≤70, L ≤ L ,
2 2 2 2 2 1 2
D ≤ D、
2 1
であることを特徴とする、前項 1記載の副生アルコール類の工業的分離装置、
3.該連続多段蒸留塔の回収部および濃縮部のインターナルが、それぞれトレイおよ び Zまたは充填物であることを特徴とする、前項 1または 2に記載の副生アルコール 類の工業的分離装置、
4.該連続多段蒸留塔の回収部および濃縮部のインターナルが、それぞれトレイであ ることを特徴とする、前項 3記載の副生アルコール類の工業的分離装置、
5.該トレイが多孔板部とダウンカマー部を有する多孔板トレイであることを特徴とする 、前項 4記載の副生アルコール類の工業的分離装置、
6.該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LOOO個の孔を有している ことを特徴とする、前項 5記載の副生アルコール類の工業的分離装置、
7.該多孔板トレイの孔 1個あたりの断面積が、 0. 5〜5cm2であることを特徴とする、 前項 5または 6に記載の副生アルコール類の工業的分離装置、
8.該ヱステル交換反応を反応蒸留方式で行い、該低沸点反応混合物を該アルコー ル類の濃度が 90質量%以上の塔頂成分と、アルコール類の含有量が 0. 2質量%以 下の塔底成分に分離し、且つ、該塔頂成分として分離されるアルコール類の量が、 1 時間あたり 200kg以上であることを特徴とする、前項 1ないし 7のうち何れか一項に記 載の副生アルコール類の工業的分離装置、
9.該塔頂成分中の該アルコール類の濃度が、該塔頂成分 100質量%に対して、 95 質量%以上であることを特徴とする、前項 8記載の副生アルコール類の工業的分離 装置、
10.該塔頂成分中の該アルコール類の濃度が、該塔頂成分 100質量%に対して、 9 7質量%以上であることを特徴とする、前項 8記載の副生アルコール類の工業的分離 装置、
11.該塔底成分中の該アルコール類の含有量が、該塔底成分 100質量%に対して 、 0. 1質量%以下あることを特徴とする、前項 8ないし 10のうち何れか一項に記載の 副生アルコール類の工業的分離装置、
を提供する。
発明の効果
本発明の工業的分離装置は、ジアルキルカーボネートと芳香族モノヒドロキシィ匕合 物とのエステル交換反応によって芳香族カーボネート類を 1時間あたり 1トン以上の 工業的規模で連続的に製造する際に副生するアルコール類を含む低沸点反応混合 物から、該アルコール類を長期間安定的に効率的に分離することができる。そして、 塔頂成分として分離されるアルコール類の量が、 1時間あたり 200kg以上の規模で、 アルコール類の含有量が 90質量%以上の塔頂成分と、アルコール類の含有量が 0. 2質量%以下の塔底成分とに、容易に分離することができる。
発明を実施するための最良の形態
[0014] 以下、本発明について具体的に説明する。
本発明で用いられるジアルキルカーボネートとは、一般式(9)で表されるものである
R'OCOOR1 (9)
ここで、 R1は炭素数 1〜10のアルキル基、炭素数 3〜10の脂環族基、炭素数 6〜1 0のアラールキル基を表す。このようならとしては、たとえば、メチル、ェチル、プロピ ル (各異性体)、ァリル、ブチル (各異性体)、ブテニル (各異性体)、ペンチル (各異 性体)、へキシル (各異性体)、ヘプチル (各異性体)、ォクチル (各異性体)、ノニル ( 各異性体)、デシル(各異性体)、シクロへキシルメチル等のアルキル基;シクロプロピ ル、シクロブチル、シクロペンチル、シクロへキシル、シクロへプチル等の脂環族基; ベンジル、フ ネチル(各異性体)、フ ニルプロピル(各異性体)、フ 二ルブチル( 各異性体)、メチルベンジル (各異性体)等のアラールキル基が挙げられる。なお、こ れらのアルキル基、脂環族基、アラールキル基において、他の置換基、たとえば、低 級アルキル基、低級アルコキシ基、シァノ基、ハロゲン等で置換されていてもよいし、 不飽和結合を有して 、てもよ 、。
[0015] このような R1を有するジアルキルカーボネートとしては、たとえば、ジメチルカーボネ ート、ジェチルカーボネート、ジプロピルカーボネート(各異性体)、ジァリルカーボネ ート、ジブテニルカーボネート(各異性体)、ジブチルカーボネート (各異性体)、ジぺ ンチルカーボネート(各異性体)、ジへキシルカーボネート(各異性体)、ジヘプチル カーボネート (各異性体)、ジォクチルカーボネート(各異性体)、ジノニルカーボネー ト(各異性体)、ジデシルカーボネート (各異性体)、ジシクロペンチルカーボネート、 ジシクロへキシノレカーボネート、ジシクロへプチノレカーボネート、ジベンジノレカーボネ ート、ジフエネチルカーボネート(各異性体)、ジ(フエ-ルプロピル)カーボネート(各 異性体)、ジ(フエ-ルブチル)カーボネート(各異性体)、ジ(クロ口ベンジル)カーボ ネート (各異性体)、ジ (メトキシベンジル)カーボネート (各異性体)、ジ (メトキシメチル )カーボネート、ジ (メトキシェチル)カーボネート (各異性体)、ジ (クロロェチル)カー ボネート (各異性体)、ジ (シァノエチル)カーボネート (各異性体)等が挙げられる。
[0016] これらの中で、本発明において好ましく用いられるのは、 R1がハロゲンを含まない炭 素数 4以下のアルキル基からなるジアルキルカーボネートであり、特に好まし!/、のは ジメチルカーボネートである。また、好ましいジアルキルカーボネートのなかで、さらに 好ま 、のは、ハロゲンを実質的に含まな!/、状態で製造されたジアルキルカーボネ ートであって、たとえば、ハロゲンを実質的に含まないアルキレンカーボネートとハロ ゲンを実質的に含まないアルコール力も製造されたものである。
[0017] 本発明で用いられる芳香族モノヒドロキシィ匕合物とは、下記一般式(10)で表される ものであり、芳香族基に直接ヒドロキシル基が結合しているものであれば、どの様なも のであってもよい。
Ar'OH (10)
ここで Ar1は炭素数 5〜30の芳香族基を表す。このような Ar1を有する芳香族モノヒ ドロキシ化合物としては、たとえば、フエノール;タレゾール(各異性体)、キシレノール (各異性体)、トリメチルフ ノール (各異性体)、テトラメチルフ ノール (各異性体)、 ェチルフ ノール(各異性体)、プロピルフ ノール(各異性体)、ブチルフ ノール( 各異性体)、ジェチルフヱノール (各異性体)、メチルェチルフエノール (各異性体)、 メチルプロピルフエノール(各異性体)、ジプロピルフエノール(各異性体)、メチルブ チルフヱノール(各異性体)、ペンチルフヱノール(各異性体)、へキシルフヱノール( 各異性体)、シクロへキシルフェノール(各異性体)等の各種アルキルフエノール類;メ トキシフヱノール (各異性体)、エトキシフヱノール (各異性体)等の各種アルコキシフ ェノール類;フエ-ルプロピルフエノール(各異性体)等のァリールアルキルフエノール 類;ナフトール (各異性体)および各種置換ナフトール類;ヒドロキシピリジン (各異性 体)、ヒドロキシクマリン (各異性体)、ヒドロキシキノリン (各異性体)等のへテロ芳香族 モノヒドロキシィ匕合物類等が用いられる。これらの芳香族モノヒドロキシィ匕合物の中で 、本発明において好ましく用いられるのは、 Ar1が炭素数 6から 10の芳香族基力もな る芳香族モノヒドロキシィ匕合物であり、特に好ましいのはフエノールである。また、これ らの芳香族モノヒドロキシィ匕合物の中で、本発明において好ましく用いられるのは、ハ ロゲンを実質的に含まないものである。
[0018] 本発明のエステル交換反応で、芳香族カーボネートを生成し、アルコール類を副 生する反応は、下記式(11、 12)で表されるが、本発明においては反応式(11)の反 応が主として起こっている。
R'OCOOR1 + Ar'OH → Ar'OCOOR1 + R'OH (11)
Ar^COOR^ Ar'OH → Ar'OCOOAr1 +Ι^ΟΗ (12)
[0019] 本発明のエステル交換反応で用いられるジアルキルカーボネートと芳香族モノヒド ロキシ化合物の量比はモル比で、 0. 5〜3であることが必要である。この範囲外では 、 目的とする芳香族カーボネートの所定生産量に対して、残存する未反応の原料が 多くなり、効率的でないし、またそれらを回収するために多くのエネルギーを要する。 この意味で、このモノ kttiま、 0. 8〜2. 5力より好ましく、さらに好まし ヽの ίま、 1. 0〜2 . 0である。
[0020] 本発明のエステル交換反応は、 1時間あたり 1トン以上の生産量で芳香族カーボネ ートが連続的に製造でき、副生するアルコール類を含む低沸点反応混合物が製造 できる方法であればどのような方法でもよ 、が、特に好ま 、のは反応蒸留方式であ る。本発明において製造される芳香族カーボネートとは、ジアルキルカーボネートと 芳香族モノヒドロキシィ匕合物とがエステル交換反応によって得られるアルキルァリー ルカーボネート、ジァリールカーボネート、およびこれらの混合物のことである。このェ ステル交換反応においては、ジアルキルカーボネートの 1つまたは 2つのアルコキシ 基が芳香族モノヒドロキシィ匕合物のァリーロキシ基と交換されアルコール類を離脱す る反応(式 11、 12)と、生成したアルキルァリールカーボネート 2分子間のエステル交 換反応である不均化反応(式 13)によってジァリールカーボネートとジアルキルカー ボネートに変換される反応が含まれて ヽる。
2Ar1OCOOR1 → Ar'OCOOAr1 + R'OCOOR1 (13)
[0021] 本発明のエステル交換反応では、主としてアルキルァリールカーボネートが得られ るが、このアルキルァリールカーボネートをさらに芳香族モノヒドロキシ化合物とエステ ル交換反応をさせるか、不均化反応 (式 13)をさせることによって、ジァリールカーボ ネートとすることができる。このジァリールカーボネートは、ハロゲンを全く含まないた め、エステル交換法でポリカーボネートを工業的に製造するときの原料として重要で ある。なお、本発明のエステル交換反応では、通常、少量のアルキルァリールエーテ ルが反応副生物として生成する。
[0022] 本発明のエステル交換反応で原料として用いられるジアルキルカーボネートと芳香 族モノヒドロキシィ匕合物はそれぞれ純度の高 、ものであっても 、が、他の化合物を 含むものであってもよい。たとえば、この工程および zまたは他の工程で生成するィ匕 合物や反応副生物を含むものであってもよい。工業的に実施する場合、これらの原 料として、新規に反応系に導入されるジアルキルカーボネートと芳香族モノヒドロキシ 化合物に加え、この工程および Zまたは他の工程から回収されたものをも使用するこ とが好ましい。本発明の工業的分離装置を使うことによって、反応器の上部から抜き 出される低沸点反応混合物を連続的に蒸留分離することによって、アルコール類の 含有量の少な 、成分をエステル交換反応の原料として再使用することができ、このこ とは特に好まし 、方法である。
[0023] 本発明のエステル交換反応は、通常、公知の触媒の存在下に行われる。たとえば 、エステル交換反応を反応蒸留方式で行う場合には、これらの触媒は反応蒸留を行 う多段蒸留塔内に固定された固体触媒であってもいいし、反応系に溶解する可溶性 触媒であってもよい。もちろん、これらの触媒成分が反応系中に存在する有機化合 物、たとえば、脂肪族アルコール類、芳香族モノヒドロキシ化合物類、アルキルァリー ルカーボネート類、ジァリールカーボネート類、ジアルキルカーボネート類等と反応し たものであっても良いし、反応に先立って原料や生成物で加熱処理されたものであ つてもよ!ヽ。本発明のエステル交換反応を反応系に溶解する可溶性触媒で実施する 場合は、これらの触媒は、反応条件において反応液への溶解度の高いものであるこ とが好ましい。この意味で好ましい触媒としては、たとえば、 PbO、 Pb (OH)、 Pb (0
2
Ph) ; TiCl、 Ti (OMe) 、 (MeO)Ti(OPh) 、(MeO) Ti(OPh) 、(MeO) Ti (0
2 4 4 3 2 2 3
Ph)、Ti (OPh) ; SnCl、 Sn (OPh)、: Bu SnO、 Bu Sn (OPh) ; FeCl、Fe (OH)
4 4 4 2 2 2 3 3
、 Fe (OPh)等、またはこれらをフエノールまたは反応液等で処理したもの等が挙げ
3
られる。
[0024] 本発明にお ヽて、エステル交換反応を反応蒸留方式で行う場合に該連続多段蒸 留塔 (以下、「連続多段蒸留塔 A」という。)内に触媒を存在させる方法はどのようなも のであってもよいが、触媒が反応液に不溶解性の固体状の場合は、連続多段蒸留 塔 A内の段に設置する、充填物状にして設置するなどによって塔内に固定させる方 法などがある。また、原料や反応液に溶解する触媒の場合は、該蒸留塔 Aの中間部 より上部力 蒸留塔内に供給することが好ましい。この場合、原料または反応液に溶 解させた触媒液を原料と一緒に導入してもよ 、し、原料とは別の導入口からこの触媒 液を導入してもよい。本発明で用いる触媒の量は、使用する触媒の種類、原料の種 類やその量比、反応温度並びに反応圧力などの反応条件の違いによっても異なる 力 原料の合計重量に対する割合で表して、通常、 0. 0001〜30質量%、好ましく は 0. 005〜10質量%、より好ましくは 0. 001〜1質量%で使用される。
図 1は、本発明のエステル交換反応を行う好ま ヽ反応方式である反応蒸留を行う 連続多段蒸留塔 Aの例を示す概略図である。本発明にお ヽてエステル交換反応を 反応蒸留方式で行う場合には、反応蒸留塔として用いられる連続多段蒸留塔 Aは、 少なくとも一つの芳香族カーボネートを 1時間あたり 1トン以上の生産量で長期間安 定的に製造できるものであればどのようなものであってもよいが、たとえば、下記式(1 4)〜(19)の条件を満足する長さ L (cm)、内径 D (cm)、内部に段数 nをもつインター ナル (たとえば、トレイ 6)を有する構造をしており、塔頂部またはそれに近い塔の上部 に内径 d (cm)のガス抜出し口 1、塔底部またはそれに近い塔の下部に内径 d (cm)
1 2 の液抜出し口 2、該ガス抜出し口より下部であって塔の上部および Zまたは中間部に 1つ以上の導入口 3、該液抜出し口より上部であって塔の下部に 1つ以上の導入口 4 を有する連続多段蒸留塔 Aが特に好ま 、。
なお、本発明で用いる用語「塔頂部またはそれに近い塔の上部」とは、塔頂部から 下方に約 0. 25Lまでの部分を意味し、用語「塔底部またはそれに近い塔の下部」と は、塔底部から上方に約 0. 25Lまでの部分を意味する。また、「L」は、前述の定義と おりである。
1500 ≤ L ≤ 8000 式(14)
100 ≤ D ≤ 2000 式(15)
2 ≤ L/D ≤ 40 式(16) 20 ≤ n ≤ 120 式(17)
5 ≤ D/d ≤ 30 式(18)
3 ≤ D/d ≤ 20 式(19)
2
式(14)〜(19)を同時に満足する連続多段蒸留塔 Aを反応蒸留塔として用いるこ とによって、ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とから 1時間あたり 1トン以上、通常 1〜: LOOトン Zhrの工業的規模で、芳香族カーボネート類が高選択 率'高生産性で、たとえば、 2000時間以上、好ましくは 3000時間以上、さらに好まし くは 5000時間以上の長期間、安定的に製造できる。
[0026] 本発明で行われるエステル交換反応は連続的に行われるがその反応時間は反応 器内での反応液の平均滞留時間に相当すると考えられるが、これは反応器の種類 や形状、原料供給量、触媒の種類や量、反応条件などによって異なり、反応蒸留方 式の場合は蒸留塔のインターナルの形状や段数、蒸留条件などによっても異なるが 、通常 0. 01〜10時間、好ましくは 0. 05〜5時間、より好ましくは 0. 1〜3時間である 。反応温度は、用いる原料化合物の種類や触媒の種類や量によって異なるが、通常 100〜350°Cである。反応速度を高めるためには反応温度を高くすることが好ま 、 力 反応温度が高いと副反応も起こりやすくなり、たとえば、アルキルァリールエーテ ルなどの副生が増えるので好ましくない。このような意味で、好ましい反応温度は 13 0〜280。C、より好ましくは 150〜260。C、さらに好ましくは、 180〜250。Cの範囲で ある。また反応圧力は、用いる原料ィ匕合物の種類や組成、反応温度などにより異なる 1S 減圧、常圧、加圧のいずれであってもよぐ通常、 0. 1〜2 X 107Pa、好ましくは 1 05〜: L07Pa、より好ましくは 2 X 105〜5 X 106の範囲で行われる。
[0027] 本発明のエステル交換反応を実施する場合、原料であるジアルキルカーボネートと 芳香族モノヒドロキシ化合物とを触媒が存在する反応器に連続的に供給し、生成す るアルコール類を含む低沸点反応混合物を反応器上部よりガス状で連続的に抜出 し、芳香族カーボネート類を含む高沸点反応混合物を塔下部より液状で連続的に抜 出すことにより芳香族カーボネート類が連続的に製造される。本発明の場合、反応器 が連続多段蒸留塔 Aである反応蒸留方式が好ましいが、このときは原料を触媒が存 在する該連続多段蒸留塔 A内に連続的に供給し、該塔内で反応と蒸留を同時に行 い、生成するアルコール類を含む低沸点反応混合物(以下、「A」という。)を塔上部
T
よりガス状で連続的に抜出し、芳香族カーボネート類を含む高沸点反応混合物 (以 下、「A」という。)を塔下部より液状で連続的に抜出すことにより芳香族カーボネート
B
類が連続的に製造される。
[0028] 1トン Zhr以上で芳香族カーボネート類を製造する場合、アルコール類は、通常、 約 200kgZhr以上副生する。この副生アルコール類は反応系に存在する、芳香族 カーボネートよりも低沸点の化合物、たとえば、未反応原料、副生アルキルァリール エーテルなどと共に低沸点反応混合物 (A )として、反応器の上部から連続的に抜き
T
出される。もちろん該低沸点反応混合物 (A )中に芳香族カーボネートおよびそれよ
T
りも沸点の高 ヽ化合物が少量含まれて ヽてもよ ヽ。本発明にお ヽて反応器から連続 的に抜出される低沸点反応混合物 (A )の量は、原料組成や量、反応蒸留条件、反
T
応率、選択率等によって異なる力 通常、 10トン Zhr以上で 1000トン Zhr以下であ る。
[0029] 本発明にお 、て分離すべき該低沸点反応混合物 (A )の組成は、反応条件ある!/、
T
は連続多段蒸留塔 Aの反応蒸留条件やリサイクルされる原料組成等によって異なる 力 該低沸点反応混合物 (A ) 100質量%に対して、通常、副生アルコール 1. 5〜
T
10質量0 /0、ジアルキルカーボネート 50〜85質量0 /0、芳香族モノヒドロキシ化合物 10 〜40質量%、副生物であるアルキルァリールエーテル 0. 5〜10質量%、芳香族力 ーボネート 0〜5質量%、その他 0〜3質量%である。
[0030] 図 2は、本発明の副生アルコール類の工業的分離装置である連続多段蒸留塔 (以 下、「連続多段蒸留塔 B」という。)の例を示す概略図である。本発明は副生アルコー ルを含むこのような組成を有する該低沸点反応混合物を工業的規模で効率的に蒸 留分離するのに適した分離装置を提供するものであって、該分離装置は、式(1)〜( 8)を満足する長さ L (cm) ,内径 D (cm) ,内部に段数 nをもつインターナル (たとえ ば、トレイ 7)を有する回収部 SSと、長さ L (cm) ,内径 D (cm) ,内部に段数 nをも
2 2 2 つインターナル (たとえば、トレイ 8)を有する濃縮部 ESからなる蒸留塔であることが必 要である。なお、図 2中の参照番号 1ないし 4は、図 1と同一の部材を示す。
500 ≤ L ≤ 3000 式(1) 100 D ≤ 500 式 (2)
1
2 L /D ≤ 30 式 (3)
1 1
10 n ≤ 40 式 (4)
1
700 L ≤ 5000 式 (5)
2
50 D ≤ 400 式 (6)
2
10 L /D ≤ 50 式 (7)
2 2
35 n ≤ 100 式 (8)
このような連続多段蒸留塔 Bを用いることによって、上記の目的が容易に達成でき ることが容易に達成できることが明らかになった。この分離装置が副生アルコール類 の工業的分離装置として、このような優れた効果を理由は明らかではないが、式(1) 〜(8)の条件が組み合わさった時にもたらされる複合効果のためであると推定される
[0031] なお、各々の要因の好ましい範囲は下記に示される。 L (cm)力 00より小さいと、 回収部の分離効率が低下するため目的とする分離効率を達成できないし、目的の分 離効率を確保しつつ設備費を低下させるには、 Lを 3000より小さくすることが必要で ある。より好ましい L (cm)の範囲は、 800≤L ≤2500 であり、さらに好ましくは、 1 000≤L ≤2000 である。
[0032] D (cm)が 100よりも小さいと、目的とする蒸留量を達成できないし、目的の蒸留量 を達成しつつ設備費を低下させるには、 Dを 500より小さくすることが必要である。よ り好ましい D (cm)の範囲は、 120≤D ≤400 であり、さらに好ましくは、 150≤D ≤300 である。
[0033] L ZDカ^より小さい時や 30より大きい時は長期安定運転が困難となる。より好ま しい L /Όの範囲は、 5≤L ZD ≤20 であり、さらに好ましくは、 7≤L /Ό ≤15 である。
[0034] nが 10より小さいと回収部の分離効率が低下するため目的とする分離効率を達成 できないし、目的の分離効率を確保しつつ設備費を低下させるには、 nを 40よりも小 さくすることが必要である。より好ましい nの範囲は、 13≤n ≤25 であり、さらに好ま しくは、 15≤n ≤20 である。 [0035] L (cm)が 700より小さいと、濃縮部の分離効率が低下するため目的とする分離効
2
率を達成できないし、目的の分離効率を確保しつつ設備費を低下させるには、 Lを 5
2
000より小さくすることが必要である。 Lが 5000よりも大きいと塔の上下における圧力
2
差が大きくなりすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度 を高くしなければならないため、副反応が起こりやすくなる。より好ましい L (cm)の範
2 囲は、 1500≤L ≤3500 であり、さらに好ましくは、 2000≤L ≤3000 である。
2 2
[0036] D (cm)が 50よりも小さいと、目的とする蒸留量を達成できないし、目的の蒸留量を
2
達成しつつ設備費を低下させるには、 Dを 400より小さくすることが必要である。より
2
好ましい D (cm)の範囲は、 70≤D ≤200 であり、さらに好ましくは、 80≤D ≤15
2 2 2
0 である。
[0037] L /Όが 10より小さい時や 50より大きい時は長期安定運転が困難となる。より好ま
2 2
しい L /Όの範囲は、 15≤L ZD ≤30 であり、さらに好ましくは、 20≤L /Ό ≤
2 2 2 2 2 2
28 である。
[0038] nが 35より小さいと濃縮部の分離効率が低下するため目的とする分離効率を達成
2
できないし、目的の分離効率を確保しつつ設備費を低下させるには、 nを 100よりも
2
小さくすることが必要である。 nが 100よりも大きいと塔の上下における圧力差が大き
2
くなりすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度を高くしな ければならないため、副反応が起こりやすくなる。より好ましい nの範囲は、 40≤n
2 2
≤70 であり、さらに好ましくは、 45≤n≤65 である。
2
[0039] また、連続多段蒸留塔 Aにお 、ては、 L、 D、 LZD、 n、 D/d、 D/d 力 それぞ
1 2
れ、 2000≤L≤ 6000、 150≤D≤1000, 3≤L/D≤30, 30≤n≤100, 8 ≤D/d ≤25、 5≤D/d ≤ 18の場合が好ましくは、さらに好ましくは、 2500≤L
1 2
≤5000、 200≤D≤800, 5≤L/D≤15, 40≤n≤90, 10≤D/d ≤25、 7≤D/d ≤ 15の場合である。また、 Lとしの関係、および Dと Dの関係は、分離
2 1 2 1 2
すべき該低沸点反応混合物 (A )の量、およびアルコール類の濃度等によって異な
T
るが、通常、 L ≤L、 D ≤D であることが好ましい。
1 2 2 1
[0040] 本発明の副生アルコール類の工業的分離に用いる連続多段蒸留塔 Bは、回収部 S Sおよび濃縮部 ESに、インターナルとしてトレイおよび Zまたは充填物を有する蒸留 塔であることが好ましい。本発明でいうインターナルとは、蒸留塔において実際に気 液の接触を行わせる部分のことを意味する。このようなトレイとしては、たとえば、泡鍾 トレイ、多孔板トレイ、バルブトレイ、向流トレイ、スーパーフラックトレイ、マックスフラッ タトレイ等が好ましぐ充填物としては、ラシヒリング、レッシングリング、ポールリング、 ベノレノレサドノレ、インタロックスサドル、ディクソンパッキング、マクマホンパッキング、へ リパック等の不規則充填物やメラパック、ジェムパック、テクノバック、フレキシパック、 スルザ一パッキング、グッドロールパッキング、グリッチグリッド等の規則充填物が好ま しい。トレイ部と充填物の充填された部分とを合わせ持つ多段蒸留塔も用いることが できる。なお、本発明で用いる用語「インターナルの段数 n」とは、トレイの場合は、トレ ィの数を意味し、充填物の場合は、理論段数を意味する。したがって、トレイ部と充填 物の充填された部分とを合わせ持つ連続多段蒸留塔の場合、 nはトレイの数と、理論 段数の合計である。
本発明においては、連続多段蒸留塔 Bの回収部 SSおよび濃縮部 ESのインターナ ルが、それぞれトレイである場合が特に好ましい。また、該トレイが多孔板部とダウン カマー部を有する多孔板トレイが機能と設備費との関係で特に優れていることが見出 された。そして、該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LOOO個の孔 を有して!/ヽることが好ま ヽことも見出された。より好まし!/ヽ孔数は該面積 lm2あたり 1 20〜900個であり、さらに好ましくは、 150〜800個である。また、該多孔板卜レイの 孔 1個あたりの断面積が 0. 5〜5cm2であることが好ましいことも見出された。より好ま しい孔 1個あたりの断面積は、 0. 7〜4cm2であり、さらに好ましくは 0. 9〜3cm2であ る。さらには、該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LOOO個の孔を 有しており、且つ、孔 1個あたりの断面積が 0. 5〜5cm2である場合、特に好ましいこ とが見出された。連続多段蒸留塔 Bに上記の条件を付加することによって、本発明の 課題が、より容易に達成されることが判明したのである。さら〖こ、本発明のエステル交 換反応を反応蒸留方式で行う場合は、反応蒸留塔として用いる連続多段蒸留塔 Aに も上記のインターナルを用いることが好ましく、特に式( 11)および( 12)の反応を主と して行う反応蒸留塔にはトレイを、式(13)の反応を主として行う反応蒸留塔にはトレ ィと規則充填物をインターナルとすることが好ましい。 [0042] 本発明の分離装置を用いて連続分離を行う際、副生アルコール類を含むエステル 交換反応の低沸点反応混合物を連続多段蒸留塔 B内にガス状で供給してもよ ヽし、 液状で供給してもよいが、通常ガス状で抜き出される該低沸点反応混合物の熱を他 の物質の加熱、たとえば、反応器に供給されるエステル交換反応の原料の加熱に使 うことは特に好ましい方法である。この場合、熱交換の程度によって、連続多段蒸留 塔 Bに供給される該低沸点反応混合物は、ガス状、気液混合状、液状となる。また、 該低沸点反応混合物を連続多段蒸留塔 B内に供給する位置は、回収部 SSと濃縮 部 ESの間である。連続多段蒸留塔 Bは、蒸留物の加熱のためのリボイラーと、還流 装置を有することが好ましい。
[0043] 本発明では、原料であるジアルキルカーボネートと芳香族モノヒドロキシィ匕合物の エステル交換反応で芳香族カーボネート類を 1トン Zhr以上の工業的規模で連続的 に製造する際に副生するアルコール類を含む低沸点反応混合物は、通常、 10〜: LO 00トン Zhrを分離する工業的蒸留装置が提供されるが、この蒸留装置では該アルコ ール類の濃度力 90質量%以上、好ましくは 95質量%以上、さらに好ましくは 97% 以上である塔頂成分 (以下、「B」という。)と、該アルコール類の含有量が、 0. 2質量
T
%以下、好ましくは 0. 1質量%以下、さらに好ましくは 0. 07質量%以下の塔底成分 ( 以下、「B」という。)と、に長時間安定的に効率的な分離を行うことが可能である。ま
B
た、この分離装置では、塔頂成分 (B )として分離されるアルコール類の量を、 200k
T
gZhr以上、好ましくは 500kgZhr以上、より好ましくは 1〜20トン Zhrにすることが できる。
[0044] 本発明で分離操作を実施した場合、塔頂成分 (B )は、副生アルコール類を 90質
T
量%以上含有するが残りの成分の全部または大部分は、通常、ジアルキルカーボネ ートである。したがって、該塔頂成分 (B )はジアルキルカーボネート製造原料として
T
用いることが好ましい。ジアルキルカーボネートの製造方法としては、アルコール類の カルボ-ル化反応を用いる方法と、アルキレンカーボネートの加アルコール分解反 応を用いる方法が工業的に実施されているが、該塔頂成分 (B )はいずれの反応の
T
原料としても用いることができる。アルキレンカーボネートの加アルコール分解反応は 平衡反応であるので、アルコール濃度の高い原料を用いることが好ましいので、該塔 頂成分 (B )を、この反応の原料とすることは好ましい方法である。この場合、該塔頂
T
成分 (B )中のアルコール濃度が 95質量%以上、さらに好ましくは 97質量%以上の
T
ものを原料とすることが特に好まし 、。
[0045] また、本発明で分離操作を実施した場合、塔底成分 (B )は、該低沸点反応混合
B
物の成分から該塔頂成分 (B )を抜出した成分力 なっており、該塔底成分 (B ) 10
T B
0質量%に対して、副生アルコール類を 0. 2質量%以下、好ましくは 0. 1質量%以 下含有するものであって、通常、主成分はジアルキルカーボネートと芳香族モノヒドロ キシ化合物であって、少量の副生アルキルァリールエーテルおよび少量の芳香族力 ーボネート類を含有するものである。したがって、この塔底成分 Bをエステル交換反
B
応の原料として循環再使用することは特に好ま 、方法である。
[0046] 本発明の分離装置を用いて、副生アルコール類の連続蒸留分離を行う場合、連続 多段蒸留塔 Bの蒸留条件は、塔底温度が 150〜300°C、好ましくは 170〜270°C、 さらに好ましくは 190〜250°Cであり、塔頂圧力が 2 X 105〜5 X 106Pa、好ましくは 4 X 105〜3 X 106Pa、さらに好ましくは 6 X 105〜2 X 106Paであり、還流比力 0. 1〜 20、好ましくは 0. 5〜15、さらに好ましくは 1. 0〜10である。
[0047] 本発明でいう長期安定運転とは、 1000時間以上、好ましくは 3000時間以上、さら に好ましくは 5000時間以上、フラッデイングや配管のつまりやエロージョンがなぐ運 転条件に基づいた定常状態で運転が継続でき、所定の分離効率を維持しながら、塔 頂成分 (B )として、 200kgZhr以上の所定量の副生アルコール類が蒸留分離され
T
ていることを意味する。
[0048] 本発明の連続多段蒸留塔、インターナル、配管等を構成する材料は、主に炭素鋼 、ステンレススチールなどが好ましい。
実施例
[0049] 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例 に限定されるものではない。なお、実施例 3〜7は本発明の工業的分離装置の性能 を示すための例である。混合物の組成はガスクロマトグラフィー法で測定し、ハロゲン はイオンクロマトグラフィーで測定した。
[0050] [実施例 1] 図 2に示される Ι^ = 1700«η、 180cm, L^ O^ = 9. 4、 16、 L2 = 2500 cm、 D = 100cm, L /Ό = 25、 n = 55 であり、インターナルが回収部、濃縮部
2 2 2 2
ともに多孔板トレイ (孔 1個あたりの断面積 =約 1. 3cm2,孔数 =約 550個/ m2)であ る連続多段蒸留塔が提供される。
[0051] [実施例 2]
図 2に示される L = 1200cm, D = 180cm, L /Ό =4. 6、 η = 18、 L = 2800 cm、 D = 160cm, L /Ό = 17. 5、 n = 58 であり、インターナルが回収部、濃縮
2 2 2 2
部ともに多孔板トレイ (孔 1個あたりの断面積 =約 1. 2cm2,孔数 =約 650個/ m2)で ある連続多段蒸留塔が提供される。
[0052] [実施例 3]
<反応蒸留塔 >
図 1に示されるような L = 3300cm、 D = 500cm, L/D=6. 6、 n=80、 D/d = 17, D/d = 9 である連続多段蒸留塔 Aをエステル交換反応の反応蒸留塔として
2
用いた。なお、この実施例では、インターナルとして、孔 1個あたりの断面積 =約 1. 5 cm2、孔数 =約 250個/ m2を有する多孔板トレイを用いた。
<反応蒸留と低沸点反応混合物力 副生メタノールの分離 >
図 1に示される連続多段蒸留塔 Aと図 2に示される実施例 1の連続多段蒸留塔 Bを 図 3に示されるように接続された装置を用いて反応蒸留と副生メタノールの分離を行 つた。ジメチルカーボネート 44質量0 /0、フエノール 49質量0 /0、ァ-ソール 5. 7質量0 /0 、メチルフヱ-ルカーボネート 1質量%、メタノール 0. 3質量%、力 なる原料 1を連 続多段蒸留塔 Aの上部導入口 21から液状で 80. 8トン Zhrの流量で連続的に導入 した。なお、原料 1は導入口 20から導入され、熱交 で該蒸留塔 Aの上部から ガス状で抜出される低沸点反応混合物 (A )の熱で加熱された上で導入口 21に送ら
T
れた。一方、ジメチルカーボネート 76質量0 /0、フエノール 19. 5質量0 /0、ァ-ソール 4 . 4質量%、メチルフエ-ルカーボネート 0. 1質量%、からなる原料 2を該蒸留塔 Aの 下部導入口 11から 86トン Zhrの流量で連続的に導入した。連続多段蒸留塔 Aに導 入された原料のモル比は、ジメチルカーボネート Zフエノール = 1. 87であった。この 原料にはハロゲンは実質的に含まれていなかった (イオンクロマトグラフィーでの検出 限界外で lppb以下)。触媒は Pb (OPh) として、反応液中に約 70ppmとなるように
2
該蒸留塔 Aの上部の導入口 10から導入された。該蒸留塔 Aの塔底部の温度が 233 °Cで、塔頂部の圧力が 9. 6 X 105Paの条件下で連続的に反応蒸留が行われた。 24 時間後には安定的な定常運転が達成できた。該蒸留塔 Aの塔底部に接続された抜 出し口 25力 82. 3トン Zhrで連続的に抜出された液には、メチルフエ-ルカーボネ ートが 10. 1質量0 /0、ジフエ-ルカーボネートが 0. 27質量%含まれていた。メチルフ ェニルカーボネートの 1時間あたりの生産量は 8. 3トン (蒸留塔 Aに導入された量を 除いた実質の生成量は、 7. 5トン Zhr)、ジフエ-ルカーボネートの 1時間あたりの生 産量は 0. 22トンであることがわかった。反応したフエノールに対して、メチルフエ-ル カーボネートとジフエニルカーボネートを合わせた選択率は 99%であった。
[0053] この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後の 1時間あたりの生産量は、メチルフエ-ルカーボネー 卜力 8. 3卜ン、 8. 3卜ン、 8. 3卜ン、 8. 3卜ン、 8. 3卜ンであり、ジフエ-ルカーボネー卜 の 1時間あたりの生産量は 0. 22卜ン、 0. 22卜ン、 0. 22卜ン、 0. 22卜ン、 0. 22卜ンで あり、メチルフエ-ルカーボネートとジフエ-ルカーボネートを合わせた選択率は 99 %、 99%、 99%、 99%、 99%、 99%、であり、非常に安定していた。また、製造され た芳香族カーボネートには、ハロゲンは実質的に含まれていな力つた(lppb以下)。
[0054] 連続多段蒸留塔 Aの塔頂からガス状で連続的に抜出された低沸点反応混合物 (A
)は、熱交^^ 27でその熱を上記原料 1の加熱に使うことによって 170°Cまで低下さ
T
せた。 85. 2トン Zhrで抜出された該低沸点反応混合物 (A )の組成は、メタノール 2
T
質量0 /0、ジメチルカーボネート 74質量0 /0、フエノール 19. 5質量0 /0、ァ-ソール 4. 4 質量%、メチルフエ-ルカーボネート 0. 1質量%であった。該低沸点反応混合物 (A )は連続多段蒸留塔 Bの回収部と濃縮部の間に設けられた導入口 31付近の液温に
T
近い温度にされた上で該導入口 31から連続的に該蒸留塔 Bに供給された。一方、フ レッシュなジメチルカーボネートが 2. 53トン Zhrで該蒸留塔 Bの下部の導入口 41か ら連続的に導入された。該蒸留塔 Bは塔底温度 226°C、塔頂温度 155°C、還流比 3 で連続的に蒸留分離が行われ、低沸点混合物 (B )が抜出し口 39から 1. 73トン Zh
T
rで、高沸点混合物 (B )が抜出し口 35から 86トン Zhrでそれぞれ連続的に抜出さ れた。該高沸点混合物 (B )はメタノールの含有量が 0. 1質量%以下であり、その組
B
成は上記連続多段蒸留塔 Aの原料 2の組成と同じであり、これは原料 2として循環再 使用された。
[0055] 該低沸点混合物(B )の組成はメタノール 97質量%、ジメチルカーボネート 3質量
T
%であった。連続的に蒸留分離されたメタノールの量は 1. 68トン Zhrであった。該 低沸点混合物(B )はエチレンカーボネートと反応させてジメチルカーボネートとェチ
T
レングリコールを製造するための原料として用いられた。
連続多段蒸留塔 Bの運転は、連続多段蒸留塔 Aの連続運転にあわせて行ったが、 500時間後、 2000時間後、 4000時間後、 5000時間後、 6000時間後の分離効率 は初期と同様であり、安定に推移した。
[0056] [実施例 4]
実施例 3と同じ連続多段蒸留塔 Aおよび連続多段蒸留塔 Bを用いて、下記の条件 で反応蒸留と副生メタノールの分離を行った。
<反応蒸留 >
ジメチルカーボネート 33. 3質量0 /0、フエノール 58. 8質量0 /0、ァ-ソール 6. 8質量 %、メチルフエ-ルカーボネート 0. 9質量%、メタノール 0. 2質量%、力 なる原料 1 を導入口 20から熱交換器 27を経て連続多段蒸留塔 Aの上部導入口 21から液状で 86. 2トン Zhrの流量で連続的に導入した。一方、ジメチルカーボネート 64. 4質量 %、フエノール 33. 8質量0 /0、ァ-ソール 1. 3質量0 /0、メチルフエ-ルカーボネート 0 . 4質量%、メタノール 0. 1質量%からなる原料 2を該蒸留塔 Aの下部導入口 11から 86. 6トン Zhrの流量で連続的に導入した。連続多段蒸留塔 Aに導入された原料の モル比は、ジメチルカーボネート/フエノール = 1. 1であった。この原料にはハロゲ ンは実質的に含まれていな力つた (イオンクロマトグラフィーでの検出限界外で lppb 以下)。触媒は Pb (OPh) として、反応液中に約 lOOppmとなるように該蒸留塔 Aの
2
上部導入口 10から導入された。該蒸留塔 Aの塔底部の温度が 230°Cで、塔頂部の 圧力が 6. 5 X 105Paの条件下で連続的に反応蒸留が行われた。 24時間後には安 定的な定常運転が達成できた。該蒸留塔 Aの塔底部に接続された抜出し口 25から 8 8トン Zhrで連続的に抜出された液には、メチルフエニルカーボネートが 13. 4質量 %、ジフエ-ルカーボネートが 0. 7質量%含まれていた。メチルフエ-ルカーボネー トの 1時間あたりの生産量は 11. 8トン (蒸留塔 Aに導入された量を除いた実質の生 成量は 10. 7トン Zhr)、ジフエ-ルカーボネートの 1時間あたりの生産量は 0. 6トン であることがわかった。反応したフエノールに対して、メチルフエ-ルカーボネートとジ フエ-ルカーボネートを合わせた選択率は 98%であった。
[0057] この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 の 1時間あたりの生産量は、メチルフエ-ルカーボネー卜力 11. 8トン、 11. 8トン、 1 1. 8トンであり、ジフエニルカーボネートの 1時間あたりの生産量は 0. 6トン、 0. 6トン 、 0. 6トンであり、メチルフエ-ルカーボネートとジフエ-ルカーボネートを合わせた選 択率は 98%、 98%、 98%であり、非常に安定していた。また、製造された芳香族力 ーボネートには、ハロゲンは実質的に含まれていなかった(lppb以下)。
[0058] <低沸点反応混合物 (A )から副生メタノールの分離 >
T
連続多段蒸留塔 Aの塔頂からガス状で連続的に抜出された低沸点反応混合物 (A )は、熱交^^ 27でその熱を上記原料 1の加熱に使うことによって 161°Cまで低下さ
T
せた。 85. 4トン Zhrで抜出された該低沸点反応混合物 (A )の組成は、メタノール 3
T
. 1質量0 /0、ジメチルカーボネート 61質量0 /0、フエノール 34. 3質量0 /0、ァ-ソール 1 . 2質量%、メチルフエ-ルカーボネート 0. 2質量%であった。該低沸点反応混合物 (A )は連続多段蒸留塔 Bの回収部と濃縮部の間に設けられた導入口 31付近の液
T
温に近い温度にされた上で該導入口 31から連続的に該蒸留塔 Bに供給された。一 方、フレッシュなジメチルカーボネートが濃縮部の下力 4段目の導入口 51から 3. 9 8トン Zhrで該蒸留塔 Bに連続的に導入された。該蒸留塔 Bは塔底温度 213°C、塔 頂温度 138°C、還流比 2. 89で連続的に蒸留分離が行われ、低沸点混合物 (B )が
T
抜出し口 39から 2. 78トン Zhrで、高沸点混合物(B )が抜出し口 35から 86. 6トン
B
Zhrでそれぞれ連続的に抜出された。該高沸点混合物 (B )はメタノールの含有量
B
が 0. 1質量%以下であり、その組成は上記連続多段蒸留塔 Aの原料 2の組成とほぼ 同じであり、これは原料 2として循環再使用された。
[0059] 該低沸点混合物(B )の組成はメタノール 93. 3質量%、ジメチルカーボネート 6. 7
T
質量%であった。連続的に蒸留分離されたメタノールの量は 2. 59トン Zhrであった 。該低沸点混合物(B )はエチレンカーボネートと反応させてジメチルカーボネートと
T
エチレングリコールを製造するための原料として用いられた。
連続多段蒸留塔 Bの運転は、連続多段蒸留塔 Aの連続運転にあわせて行ったが、 500時間後、 1000時間後、 2000時間後の分離効率は初期と同様であり、安定に推 移した。
[0060] [実施例 5]
実施例 3と同じ連続多段蒸留塔 Aを用いて同様な方法により反応蒸留が行われ、 塔上部抜出し口 26からメタノール 1. 5質量%、ジメチルカーボネート 81. 9質量%、 フエノール 12. 4質量0 /0、ァ-ソール 3. 9質量0 /0、メチルフエ-ルカーボネート 0. 3 質量%からなる低沸点反応混合物 (A )が 80. 26トン Zhrで抜出された。該低沸点
T
反応混合物 (A )は実施例 1と同様にして熱交翻 27を経て、実施例 3と同じ連続多
T
段蒸留塔 Bの回収部と濃縮部の間の導入口 31から連続的に供給され、一方、ジメチ ルカーボネート 99質量%、メタノール 1質量%からなるフレッシュ原料が濃縮部の下 カゝら 4段目の導入口 51から 1. 76トン Zhrで該蒸留塔 Bに連続的に導入された。該 蒸留塔 Bにおいて塔底温度 219°C、塔頂温度 151°C、還流比 6. 74で連続的に蒸 留分離が行われ、低沸点混合物 (B )が抜出し口 39から 1. 19トン Zhrで、高沸点
T
混合物(B )が抜出し口 35から 80. 83トン Zhrでそれぞれ連続的に抜出された。該
B
高沸点混合物 (B )はメタノールの含有量が 0. 1質量%以下であり、これは反応蒸留
B
の原料として上記連続多段蒸留塔 Aで循環再使用された。
[0061] 該低沸点混合物(B )の組成はメタノール 99質量%、ジメチルカーボネート 1質量
T
%であった。連続的に蒸留分離されたメタノールの量は 1. 18トン Zhrであった。該 低沸点混合物(B )はエチレンカーボネートと反応させてジメチルカーボネートとェチ
T
レングリコールを製造するための原料として用いられた。
連続多段蒸留塔 Bの運転は、連続多段蒸留塔 Aの連続運転にあわせて行ったが、 500時間後、 1000時間後、 2000時間後の分離効率は初期と同様であり、安定に推 移した。
[0062] [実施例 6]
実施例 3と同じ連続多段蒸留塔 Aを用いて同様な方法により反応蒸留が行われ、 塔上部抜出し口 26からメタノール 2. 8質量%、ジメチルカーボネート 61. 0質量%、 フエノール 26. 4質量0 /0、ァ-ソール 9. 6質量0 /0、メチルフエ-ルカーボネート 0. 2 質量%からなる低沸点反応混合物 (A )が 57. 45トン Zhrで抜出された。該低沸点
T
反応混合物 (A )は実施例 1と同様にして熱交翻 27を経て、実施例 3と同じ連続多
T
段蒸留塔 Bの回収部と濃縮部の間の導入口 31から連続的に供給され、一方、ジメチ ルカーボネート 99. 7質量%、メタノール 0. 3質量%カ なるフレッシュ原料が濃縮 部の下力 4段目の導入口 51から 2. 44トン Zhrで該蒸留塔 Bに連続的に導入され た。該蒸留塔 Bにおいて塔底温度 215°C、塔頂温度 138°C、還流比 4. 4で連続的に 蒸留分離が行われ、低沸点混合物 (B )が抜出し口 39から 1. 69トン Zhrで、高沸
T
点混合物(B )が抜出し口 35から 58. 2トン Zhrでそれぞれ連続的に抜出された。該
B
高沸点混合物(B )はメタノールの含有量が 0. 08質量%であり、これは反応蒸留の
B
原料として上記連続多段蒸留塔 Aで循環再使用された。
[0063] 該低沸点混合物(B )の組成はメタノール 94. 9質量%、ジメチルカーボネート 5. 1
T
質量%であった。連続的に蒸留分離されたメタノールの量は 1. 6トン Zhrであった。 該低沸点混合物(B )はエチレンカーボネートと反応させてジメチルカーボネートとェ
T
チレングリコールを製造するための原料として用いられた。
連続多段蒸留塔 Bの運転は、連続多段蒸留塔 Aの連続運転にあわせて行ったが、 500時間後、 1000時間後の分離効率は初期と同様であり、安定に推移した。
[0064] [実施例 7]
実施例 3と同じ連続多段蒸留塔 Aを用いて同様な方法により反応蒸留が行われ、 塔上部抜出し口 26からメタノール 3. 0質量%、ジメチルカーボネート 62. 8質量%、 フエノール 28. 0質量0 /0、ァ-ソール 6. 1質量0 /0、メチルフエ-ルカーボネート 0. 1 質量%からなる低沸点反応混合物 (A )が 57. 11トン Zhrで抜出された。該低沸点
T
反応混合物 (A )は実施例 1と同様にして熱交翻 27を経て、実施例 3と同じ連続多
T
段蒸留塔 Bの回収部と濃縮部の間の導入口 31から連続的に供給され、一方、フレツ シュなジメチルカーボネートが濃縮部の下力も 4段目の導入口 51から 2. 8トン Zhrで 該蒸留塔 Bに連続的に導入された。該蒸留塔 Bにおいて塔底温度 213°C、塔頂温 度 138°C、還流比 2. 89で連続的に蒸留分離が行われ、低沸点混合物 (B )が抜出 し口 39から 1. 84トン Zhrで、高沸点混合物(B )が抜出し口 35から 58. 07トン Zhr
B
でそれぞれ連続的に抜出された。該高沸点混合物 (B )はメタノールの含有量が 0.
B
09質量%であり、これは反応蒸留の原料として上記連続多段蒸留塔 Aで循環再使 用された。
[0065] 該低沸点混合物(B )の組成はメタノール 93. 3質量%、ジメチルカーボネート 6. 7
T
質量%であった。連続的に蒸留分離されたメタノールの量は 1. 72トン Zhrであった 。該低沸点混合物(B )はエチレンカーボネートと反応させてジメチルカーボネートと
T
エチレングリコールを製造するための原料として用いられた。
連続多段蒸留塔 Bの運転は、連続多段蒸留塔 Aの連続運転にあわせて行ったが、 500時間後、 1000時間後、 2000時間後の分離効率は初期と同様であり、安定に推 移した。
産業上の利用可能性
[0066] 本発明は、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換 反応によって芳香族カーボネート類を 1時間あたり 1トン以上の工業的規模で連続的 に製造する際に副生するアルコール類を含む低沸点反応混合物力 アルコール類 を分離するための工業的分離装置として好適に利用できる。
図面の簡単な説明
[0067] [図 1]本発明のエステル交換反応を行う好ましい反応方式である反応蒸留を行う連続 多段蒸留塔 Aの例を示す概略図である。内部には段数 nを有するインターナル (たと えば、トレイ 6)が設置されている。
[図 2]本発明の副生アルコール類の工業的分離装置である連続多段蒸留塔の例を 示す概略図である。内部にはインターナルが設置されている。インターナルは回収部 (たとえば、トレイ 7)が段数 nで、濃縮部(たとえば、トレイ 8)が nである。
1 2
[図 3]反応蒸留と本発明の副生アルコール類の蒸留分離を行う装置とを接続した概 略図である。 1 :ガス抜出し口、 2 :液抜出し口、 3, 4 :導入口、 5 :鏡板部、 6, 7, 8 :ト レイ、 SS :回収部、 ES :濃縮部、 L:連続多段蒸留塔 Aの長さ(cm)、 D :連続多段蒸 留塔 Aの内径 (cm)、 d:連続多段蒸留塔 Aのガス抜出し口内径 (cm)、d:連続多
1 2 段蒸留塔 Aの液抜出し口内径 (cm)、 L:連続多段蒸留塔 Bの回収部の長さ(cm)、 L:連続多段蒸留塔 Bの濃縮部の長さ(cm)、D:連続多段蒸留塔 Bの回収部の内
2 1
径 (cm)、D:連続多段蒸留塔 Bの濃縮部の内径 (cm)、 10, 11, 20, 21, 31, 41,
2
51:導入口、 22, 25, 32, 35, 39:液抜出し口、 26, 36:ガス抜出し口、 24, 34, 3 8:導入口、 23, 33, 27, 37:熱交翻

Claims

請求の範囲
ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応によつ て芳香族カーボネート類を 1時間あたり 1トン以上の工業的規模で連続的に製造する 際に副生するアルコール類を含む低沸点反応混合物力 アルコール類を分離する ための装置であって、下記式(1)〜(8)を満足する長さ L (cm) ,内径 D (cm) ,内 部に段数 nをもつインターナルを有する回収部と、長さ L (cm) ,内径 D (cm) ,内
1 2 2 部に段数 nをもつインターナルを有する濃縮部力 なる連続多段蒸留塔であることを
2
特徴とする副生アルコール類の工業的分離装置;
500 < L ≤ 3000
1 式 (1)
100 < D ≤ 500 式 (2)
1
2 < L /Ό ≤ 30 式 (3)
1 1
10 < n ≤ 40 式 (4)
1
700 < L ≤ 5000 式 (5)
2
50 < D ≤ 400 式 (6)
2
10 < L /Ό ≤ 50 式 (7)
2 2
35 < n ≤ 100 式 (8)。
[2] 該連続多段蒸留塔の L 、 D 、 L ZD 、 n 、 L 、 D 、 L ZD 、 nがそれぞれ、 800
1 1 1 1 1 2 2 2 2 2
≤L ≤2500, 120≤D ≤400、 5≤L /Ό ≤20, 13≤n≤25, 1500≤L ≤3500、 70≤D ≤200, 15≤L /Ό ≤30, 40≤n≤70, L ≤ L , D
2 2 2 2 1 2
≤ D 、
2 1
であることを特徴とする、請求項 1記載の副生アルコール類の工業的分離装置。
[3] 該連続多段蒸留塔の回収部および濃縮部のインターナルが、それぞれトレイおよ び Zまたは充填物であることを特徴とする、請求項 1または 2に記載の副生アルコー ル類の工業的分離装置。
[4] 該連続多段蒸留塔の回収部および濃縮部のインターナルが、それぞれトレイであ ることを特徴とする、請求項 3記載の副生アルコール類の工業的分離装置。
[5] 該トレイが多孔板部とダウンカマー部を有する多孔板トレイであることを特徴とする、 請求項 4記載の副生アルコール類の工業的分離装置。
[6] 該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: L000個の孔を有しているこ とを特徴とする、請求項 5記載の副生アルコール類の工業的分離装置。
[7] 該多孔板トレイの孔 1個あたりの断面積が、 0. 5〜5cm2であることを特徴とする、請 求項 5または 6に記載の副生アルコール類の工業的分離装置。
[8] 該ヱステル交換反応を反応蒸留方式で行!ヽ、該低沸点反応混合物を該アルコー ル類の濃度が 90質量%以上の塔頂成分と、該アルコール類の含有量が 0. 2質量% 以下の塔底成分に分離し、且つ、該塔頂成分として分離されるアルコール類の量が 、 1時間あたり 200kg以上であることを特徴とする、請求項 1ないし 7のうち何れか一 項に記載の副生アルコール類の工業的分離装置。
[9] 該塔頂成分中の該アルコール類の濃度が、該塔頂成分 100質量%に対して、 95 質量%以上であることを特徴とする、請求項 8記載の副生アルコール類の工業的分 離装置。
[10] 該塔頂成分中の該アルコール類の濃度が、該塔頂成分 100質量%に対して、 97 質量%以上であることを特徴とする、請求項 8記載の副生アルコール類の工業的分 離装置。
[11] 該塔底成分中の該アルコール類の含有量が、該塔底成分 100質量%に対して、 0 . 1質量%以下あることを特徴とする、請求項 8ないし 10のうち何れか一項に記載の 副生アルコール類の工業的分離装置。
PCT/JP2005/017117 2004-09-21 2005-09-16 副生アルコール類の工業的分離装置 WO2006033291A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004273313A JP2007326782A (ja) 2004-09-21 2004-09-21 副生アルコール類の工業的分離装置
JP2004-273313 2004-09-21

Publications (1)

Publication Number Publication Date
WO2006033291A1 true WO2006033291A1 (ja) 2006-03-30

Family

ID=36090051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017117 WO2006033291A1 (ja) 2004-09-21 2005-09-16 副生アルコール類の工業的分離装置

Country Status (2)

Country Link
JP (1) JP2007326782A (ja)
WO (1) WO2006033291A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029514A1 (de) 2008-06-21 2009-12-24 Bayer Materialscience Ag Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
EP2239249A1 (de) 2009-04-08 2010-10-13 Bayer MaterialScience AG Verfahren zur Herstellung von Diaryl- oder Alkylarylcarbonaten aus Dialkylcarbonaten
DE102010042937A1 (de) 2010-10-08 2012-04-12 Bayer Materialscience Aktiengesellschaft Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
EP2650278A1 (de) 2012-04-11 2013-10-16 Bayer MaterialScience AG Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110805A (ja) * 1995-10-17 1997-04-28 Mitsubishi Chem Corp ジアリールカーボネート製造方法
JPH09176094A (ja) * 1995-12-27 1997-07-08 Jiemu P C Kk 芳香族カーボネートの連続的製造方法
JP2001064235A (ja) * 1999-08-27 2001-03-13 Chiyoda Corp ジアリールカーボネートの製造方法
JP2003516376A (ja) * 1999-12-08 2003-05-13 ゼネラル・エレクトリック・カンパニイ ジアリールカーボネートの連続生産法及び装置
JP2004323384A (ja) * 2003-04-22 2004-11-18 Mitsubishi Gas Chem Co Inc ジアリールカーボネートの連続的製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110805A (ja) * 1995-10-17 1997-04-28 Mitsubishi Chem Corp ジアリールカーボネート製造方法
JPH09176094A (ja) * 1995-12-27 1997-07-08 Jiemu P C Kk 芳香族カーボネートの連続的製造方法
JP2001064235A (ja) * 1999-08-27 2001-03-13 Chiyoda Corp ジアリールカーボネートの製造方法
JP2003516376A (ja) * 1999-12-08 2003-05-13 ゼネラル・エレクトリック・カンパニイ ジアリールカーボネートの連続生産法及び装置
JP2004323384A (ja) * 2003-04-22 2004-11-18 Mitsubishi Gas Chem Co Inc ジアリールカーボネートの連続的製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029514A1 (de) 2008-06-21 2009-12-24 Bayer Materialscience Ag Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
US9040732B2 (en) 2008-06-21 2015-05-26 Bayer Materialscience Ag Process for preparing diaryl carbonates from dialkyl carbonates
EP2239249A1 (de) 2009-04-08 2010-10-13 Bayer MaterialScience AG Verfahren zur Herstellung von Diaryl- oder Alkylarylcarbonaten aus Dialkylcarbonaten
DE102009016853A1 (de) 2009-04-08 2010-10-14 Bayer Materialscience Ag Verfahren zur Herstellung von Diaryl- oder Alkylarylcarbonaten aus Dialkylcarbonaten
US8952189B2 (en) 2009-04-08 2015-02-10 Bayer Materialscience Ag Process for preparing diaryl carbonates or alkyl aryl carbonates from dialkyl carbonates
DE102010042937A1 (de) 2010-10-08 2012-04-12 Bayer Materialscience Aktiengesellschaft Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
EP2457891A1 (de) 2010-10-08 2012-05-30 Bayer MaterialScience AG Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
US8304509B2 (en) 2010-10-08 2012-11-06 Bayer Intellectual Property Gmbh Process for preparing diaryl carbonates from dialkyl carbonates
EP2650278A1 (de) 2012-04-11 2013-10-16 Bayer MaterialScience AG Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten

Also Published As

Publication number Publication date
JP2007326782A (ja) 2007-12-20

Similar Documents

Publication Publication Date Title
US20090287012A1 (en) Process for production of high-purity diaryl carbonate
US7812189B2 (en) Industrial process for production of high-purity diphenyl carbonate
JP4174540B2 (ja) 副生アルコール類の工業的分離方法
JP4224103B2 (ja) 芳香族カーボネート類を工業的に製造する方法
JP4224510B2 (ja) 芳香族カーボネート類の工業的製造法
WO2006006588A1 (ja) 芳香族カーボネート類を工業的に製造する方法
JP4224511B2 (ja) 芳香族カーボネート類を工業的に製造する方法
JP4174541B2 (ja) 副生アルコール類を工業的に分離する方法
JP4192195B2 (ja) 芳香族カーボネートの工業的製造方法
JP4229395B2 (ja) 芳香族カーボネートの工業的製造方法
JP4236205B2 (ja) 高純度ジフェニルカーボネートの工業的製造法
JP4292211B2 (ja) 高純度ジアリールカーボネートの工業的製造方法
WO2006033291A1 (ja) 副生アルコール類の工業的分離装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP