WO2006079213A1 - Induction plasma synthesis of nanopowders - Google Patents
Induction plasma synthesis of nanopowders Download PDFInfo
- Publication number
- WO2006079213A1 WO2006079213A1 PCT/CA2006/000110 CA2006000110W WO2006079213A1 WO 2006079213 A1 WO2006079213 A1 WO 2006079213A1 CA 2006000110 W CA2006000110 W CA 2006000110W WO 2006079213 A1 WO2006079213 A1 WO 2006079213A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma
- reactant
- quench gas
- nanopowder
- wall section
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G17/00—Compounds of germanium
- C01G17/02—Germanium dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/087—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J19/088—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/12—Making metallic powder or suspensions thereof using physical processes starting from gaseous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/20—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
- C01B13/22—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides
- C01B13/30—Removal and cooling of the oxide-containing suspension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/991—Boron carbide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G1/00—Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G1/00—Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
- C01G1/02—Oxides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/30—Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0871—Heating or cooling of the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0875—Gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0877—Liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0879—Solid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Definitions
- the present invention relates to the plasma synthesis of nanopowders using induction plasma technology. More specifically, but not exclusively, the present invention relates to a process for the synthesis of nanopowders of various materials such as metals, alloys, ceramics and composites by induction plasma technology, using organometallic compounds, chlorides, bromides, fluorides, iodides, nitrites, nitrates, oxalates and carbonates as precursors.
- High temperature plasma processing routes are based on the concept of heating the reactant precursors (in solid, liquid or vapor/gaseous form), to relatively high temperatures followed by rapid cooling of the reaction products through their mixing with a cold gas stream as in the "high intensity turbulent quench technique” or through their contacting with a cold surface on which the nanoparticles form and deposit.
- the use of a "highly turbulent gas quench zone” has been previously described by Boulos et al. in U.S. 20050217421 and U.S. 20030143153 as filed on March 25, 2005 and December 6, 2002 respectively.
- a common objective to all of these processes is the desire to closely control the particle morphology, the particle size distribution, and the agglomeration of the powders obtained.
- a drawback of the use of traditional "cold-surface” condensation techniques is that the nature and the temperature of the condensation surface changes with the build-up of the condensed nanopowder layer.
- the method calls upon a condensation procedure involving an indirect cooling step and a direct cooling step.
- the indirect cooling step involves a cooling surface whereas the direct cooling step involves the injection of a cooling gas directly onto the vapor.
- the use of a cooling surface suffers from the drawback of particle build-up on the condensation surface.
- the present invention refers to a number of documents, the content of which is herein incorporated by reference in their entirety.
- the present invention relates to the plasma synthesis of powders calling upon an induction plasma apparatus comprising an induction plasma torch and a quenching chamber in which a renewable "gaseous cold front" is generated, through the injection of a quench gas, and on which the gaseous reactants/reaction products nucleate.
- the nucleation generates a nanopowder which is rapidly transported to a collection chamber by the moving cold front. It was surprisingly discovered that by generating a renewable gaseous cold front for nucleating (i.e. condensing) the reactants/reaction products present in the plasma flow, excellent control of the morphology and particle size distribution of the resulting nanopowder could be achieved.
- the use of the renewable gaseous cold front offers a close control over particle agglomeration.
- the present invention relates to a process for synthesizing a nanopowder comprising feeding a reactant material into a plasma torch in which is generated a plasma flow having a temperature sufficiently high to yield a superheated vapour of the material; transporting the vapour by means of the plasma flow into a quenching zone; injecting a cold quench gas into the plasma flow in the quenching zone to form a renewable gaseous cold front; and forming a nanopowder at the interface between the renewable gaseous cold front and the plasma flow.
- the present invention also relates to an apparatus for synthesizing nanopowders comprising a plasma torch to generate a plasma flow and to produce a superheated vapour from reactant material supplied to the plasma torch in the plasma flow; and a quenching chamber mounted to the plasma torch downstream therefrom and in fluid communication with said plasma torch to receive the superheated vapour from the plasma torch, the quenching chamber being structured to receive a quench gas and to generate from said quench gas a renewable gaseous cold front to rapidly cool the superheated vapour, yielding nanopowder.
- FIG. 1 is a schematic cross-sectional elevation view of an induction plasma assembly in accordance with the present invention
- FIG. 2 is a schematic cross-sectional elevation view of an induction plasma assembly of FIG. 1 without reactor component ;
- FIG. 3 is an illustration of the temperature isocontours in the induction plasma assembly of FIG.1 using an Ar/H 2 plasma gas [65kW; 3MHz] for (3A) a quench gas (Ar) flow rate of 400 slpm and (3B) a quench gas (Ar) flow rate of 800 slpm, respectively;
- FIG. 4 is an illustration of the stream lines in the induction plasma assembly of FIG.1 using an Ar/H 2 plasma gas [65kW; 3MHz] for (4A) a quench gas (Ar) flow rate of 400 slpm and (4B) a quench gas (Ar) flow rate of 800 slpm, respectively;
- FIG. 5 is graph illustrating temperature profiles along the centerline of the induction plasma torch/reactor sections (5A, 5B) and in the radial direction at different axial locations within the reactor/quench sections of the induction plasma assembly of FIG.1 (5C, 5D) using an Ar/H 2 plasma gas [65kW; 3MHz] for a quench gas (Ar) flow rate of 400 slpm (5A, 5C) and a quench gas (Ar) flow rate of 800 slpm, respectively (5B, 5D);
- Ar Ar/H 2 plasma gas
- FIG. 6 is an illustration of the "gaseous cold front" showing the quench gas concentration isocontours in the quench section of the induction plasma assembly of FIG.1 using an Ar/H 2 plasma gas [65kW; 3MHz] for (6A) a quench gas (Ar) flow rate of 400 slpm and (6B) a quench gas (Ar) flow rate of 800 slpm, respectively;
- FIG. 7 is an illustration of the reaction product cooling rate isocontours (darker areas are representative of cooling rates in the range of 10 5 to 10 6 K/s) in the quench section of the induction plasma assembly of FIG.1 using an Ar/H 2 plasma gas [65kW; 3MHz] for (7A) a quench gas (Ar) flow rate of 400 slpm and (7B) a quench gas (Ar) flow rate of 800 slpm, respectively;
- FIG. 8 is a graph showing the particle size distribution for an aluminum nanopowder as obtained using the induction plasma assembly of FIG.1 using an Ar/H 2 plasma gas [65kW; 3MHz];
- FIG. 9 is a graph showing the particle size distribution for a nickel nanopowder as obtained using the induction plasma assembly of FIG.1 using an Ar/H 2 plasma gas [65kW; 3MHz];
- FIG. 10 is a graph showing the particle size distribution for a tungsten nanopowder as obtained using the induction plasma assembly of FIG.1 using an Ar/H 2 plasma gas [65kW; 3MHz];
- FIG. 11 is an illustration of the quench gas flow within the quench section of the induction plasma assembly of FIG.1 ;
- FIG. 12 is a graph showing the mean particle size (12A) and the specific surface area (12B) of a nanometric nickel powder as produced by a process according to the present invention as a function of the quench gas (Ar) flow rate;
- FIG. 13 is a graph showing the mean particle size (13A) and the specific surface area (13B) of a nanometric cupric oxide (CuO) powder as produced by the process of the present invention (starting with micrometric-sized copper powder) as a function of the quench gas (Ar/0 2 ) flow rate;
- CuO nanometric cupric oxide
- FIG. 15 is a graph showing the mean particle size (15A) and the specific surface area (15B) of a nanometric germanium dioxide (GeO 2 ) powder as produced by the process of the present invention (starting with liquid GeCI 4 ) as a function of the quench gas (Ar/O 2 ) flow rate.
- a nanometric germanium dioxide (GeO 2 ) powder as produced by the process of the present invention (starting with liquid GeCI 4 ) as a function of the quench gas (Ar/O 2 ) flow rate.
- the term "about” is used to indicate that a value includes an inherent variation of error for the device or the method being employed to determine the value.
- the present invention relates to a novel process for the plasma synthesis of nanopowders using induction plasma technology and calling upon a renewable "gaseous cold front", for example a laminar "gaseous cold front" which serves to rapidly quench the reactants/reaction products present in the plasma flow.
- the gaseous cold front may be generated in a quenching chamber comprising a porous metal or ceramic wall through which is uniformly injected a cold quench gas.
- the gaseous cold front may be generated in a quenching chamber comprising a perforated refractory wall.
- FIG. 1 shows an illustrative embodiment of the induction plasma assembly, generally identified by the reference 10.
- the induction plasma assembly 10 of FIG. 1 comprises an upper section consisting of an inductively coupled radio frequency (rf) plasma torch 12 in which the reactants are substantially axially introduced at the feed upper end of the torch 12 and dispersed into the center of the plasma flow using techniques well known to those of ordinary skill in the art.
- a reactor 14, mounted to a quenching chamber 16 is affixed to the lower end of the plasma torch 12, generally coaxial with the induction plasma assembly 10 between the plasma torch 12 and the quenching chamber 16.
- the induction plasma assembly 10 further comprises a collection chamber 18 coaxially mounted to the lower end of the quenching chamber 16.
- the plasma torch 12, the reactor 14, the quenching chamber 16 and the collection chamber are in fluid communication with each other.
- the plasma is generated using any suitable gas that will ionize when subject to a high frequency electromagnetic field, such as a radio frequency field. It is believed to be within the skill of an expert in the art to select a suitable gas.
- Suitable inductively coupled radio frequency (rf) plasma torches are disclosed in U.S. Patent No. 6,919,527 issued to Boulos et al. on July 19, 2005.
- Other suitable plasma torches as contemplated by the process of the present invention include high performance induction plasma torches such as the one disclosed in U.S. Patent No. 5,200,595 issued to Boulos et a/, on April 6, 1993.
- the reactant feed may be in the form of fine solid particles, liquid droplets or in the vapor/gaseous phase.
- the reactant upon entering the plasma flow, is melted and vaporized forming a vapor cloud which is superheated to a reaction temperature.
- the heat load on the plasma is substantially limited to that required to heat up the liquid droplets to the vaporization temperature and superheating the vapor to a reaction temperature.
- the heat load on the plasma is substantially limited to that required to superheat the gaseous feed to the reaction temperature.
- the plasma flow axially delivers the vapor cloud to the reactor 14 in which it may be further mixed with other components present in the vapor/gaseous phase.
- a further component may be an oxidizing agent such as oxygen, a carburizing agent such as methane or acetylene, or a nitrating agent such as ammonia.
- the other components may be concomitantly introduced into the plasma torch 12 with the reactant feed, or introduced in the reactor section 14, or in the quench section 16, using techniques well known to those of ordinary skill in the art.
- the plasma flow carries the reactants/reaction products emerging from the plasma torch 12 into a reactor 14 in fluid communication therewith.
- the reactor 14 may be a high temperature graphite/refractory lined reactor. It is believed to be within the skill of an expert in the art to select other suitable reactors and reactor configurations.
- the reactor 14 allows for any reaction to be completed.
- the superheated feed exits the plasma torch 12 at a reaction temperature and is carried by the plasma flow into the reactor 14 where it is mixed and reacted with other components.
- the quenching chamber 16 may comprise a porous metal or ceramic wall section 17 through which a cold quench gas and/or reactants are injected.
- the quenching chamber 16 may comprise a perforated or slotted refractory wall section through which the cold quench gas and/or reactants may be injected. It is believed to be within the skill of an expert in the art to determine and select other suitable quenching chamber configurations.
- the injection of the cold quench gas, mixed with or without other reactants generates a mobile and continuously renewable laminar "gaseous cold front" on which the gaseous reactants/reaction products condense.
- Such a condensation results in a nucleation of reactants/reaction products generating a nanopowder.
- the "gaseous cold front" is renewable since it is in movement; the movement being imparted by the continuous injection of cold quench gas and by the movement of the plasma flow.
- the physical separation of the reaction section (i.e. the plasma torch 12 and/or the reactor 14) and the quench section (quenching chamber 16) provides for a better means of controlling the location of the condensation front over which nanopowder formation occurs.
- the gaseous cold front is further illustrated in FIGS. 3, 4, 6 and 7. In an embodiment of the present invention, argon was used as the quench gas. It is believed to be within the skill of an expert in the art to determine and select other suitable quench gases.
- the quench rate to which the gaseous reactants/reaction products are exposed will depend on the temperature of the quench gas and its flow rate.
- the flow rate of the quench gas also affects the position of the cold front within the quenching chamber 16 and the manner in which the cold front interacts with the hot flow of plasma gases emerging from the reactor 14 and comprising the reactants/reaction products.
- the nanopowder is carried away on the mobile cold front into the collection chamber 18.
- the plasma gases will also be at significantly lower temperatures, due to their interaction with the cold front, upon reaching the collection chamber 18.
- the process according to the present invention involves the concept of a renewable "gaseous cold front" as an effective means of controlling the uniformity and particle size distribution of the produced nanopowder. Furthermore, the possibility for condensed nanoparticle agglomeration is significantly reduced since the nanopowder is rapidly evacuated, substantially upon its formation, from the quenching chamber 16 to the collection chamber 18 by the gaseous cold front at present comprised of plasma gases and the quench gas. Moreover, by using a high volume quench gas flow rate, it is possible to maintain the generated nanopowder in dilute suspension while it is being evacuated from the quenching chamber 16 into the collection chamber 18.
- FIGS. 3 and 4 Typical temperature and flow fields as observed in the plasma torch 12, the reactor 14 and the quenching chamber 16 respectively, are illustrated in FIGS. 3 and 4 for quench gas flow rates of 400 and 800 standard liters per minute (slpm). These figures clearly demonstrate the constricting effect of the "gaseous cold front" on the hot plasma gas stream. The more intense the gaseous cold front, the greater the constricting effect. Moreover, as may be observed from FIGS.
- an increase in the quench gas flow rate results in a significant increase in the thickness of the cold boundary layer and a gradual displacement of the cold front toward the center of the plasma flow. Furthermore, the increase in the thickness of the cold boundary layer is accompanied by the development of steep temperature gradients at the interface of the cold front and the plasma flow, where the nucleation of the reactants/reaction products takes place. While not shown in these figures, changing the length of the reactor, combined with a close control of the quench gas flow rate offers tangible means of controlling the position of the cold front in the reactor assembly and accordingly the exact moment at which the reactants/reaction products are subjected to rapid cooling.
- the reactants/reaction products are substantially immediately exposed to the cold front following their vaporization in the plasma torch 12.
- the plasma gas was composed of an argon/hydrogen mixture (80%vol /20%vol) whereas the gaseous cold front was created using argon which was injected through the porous metal wall of the quenching chamber 16.
- FIG. 6 A typical "gaseous cold front" and the associated quench gas concentration isocontours as observed in the quenching chamber 16 is illustrated in FIG. 6. Furthermore, typical isocontours of reaction product cooling rate, as produced when the hot plasma gases comprising the reaction products collide with the gaseous cold front, are illustrated in FIG. 7. These figures illustrate a substantially uniform, renewable and mobile cooling gas front across which the reaction products are exposed to high cooling rates in the order of about 10 5 to about 10 6 K/s. Such a gaseous cold front allows for particle nucleation to occur at the interface with the hot plasma gases and the formation of a nanopowder having a substantially uniform particle size distribution, representative examples of which are illustrated in FIGS. 8-10.
- the process of the present invention offers the additional advantages of being compact, scalable and simple to operate. Moreover, the reactor assembly 10 can be readily modified depending on the needs and type of nanopowder to be produced. Vapor, liquid or solid precursors may be used in the process according to the present invention with the produced nanopowder being either of identical or different chemical composition as that of the precursor. In the case wherein the produced nanopowder is of identical chemical composition, the process is limited to the vaporization and condensation of the feed generating nanoparticles thereof. In the case wherein the produced nanopowder is of different chemical composition, the feed was reacted with a second reactant which can be either injected in the plasma torch 12 or introduced in the reactor 14.
- the quench gas may react with the vaporized feed in which case it serves a dual function.
- the reactor 14 can be removed such that the plasma feed comprising the gaseous reactants or alternatively the gaseous reactants/reaction products, are brought directly into the quenching chamber 16.
- the feed material is to be chemically modified, a non-limiting example of which is oxidation, the presence of the reactor might be required. It is believed to be within the skill of an expert to select an appropriate reactor assembly depending on the type of nanopowder to be produced.
- An argon/hydrogen induction plasma flow is generated using a 50 mm internal diameter induction plasma torch with an oscillator frequency of 3 MHz, a plasma plate power of 65 kW, and a reactor pressure of approximately 500 Torr.
- Different metals in the form of a micron-sized metallic powder, were axially injected into the center of the plasma discharge and vaporized.
- the hot plasma gases comprising the vaporized metal emerge from the reactor, they are intercepted by the gaseous cold front which is created by means of injecting argon through the porous walls of the quenching chamber.
- the Specific Surface Area is expressed in terms of m 2 /g of collected powder.
- the mean particle diameter of the collected powder can be calculated assuming a spherical particle shape having an equivalent surface area to volume ratio.
- the particle size distributions, obtained by light scattering analysis using a Malvern MastersizerTM instrument are illustrated in FIGS. 8-10 respectively.
- Table 1 Examples of metallic nanopowders as obtained using the process of the present invention.
- Plasma sheath 18 Ar + 82 O 2 (slpm); Plasma central: 30Ar (slpm); Injection probe: SA953; Atomization gas: 8O 2 (slpm); Reactor pressure: 80 kPa.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Plasma & Fusion (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- General Health & Medical Sciences (AREA)
- Composite Materials (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Carbon And Carbon Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007552475A JP5133065B2 (en) | 2005-01-28 | 2006-01-27 | Inductive plasma synthesis of nanopowder |
CN2006800073966A CN101160166B (en) | 2005-01-28 | 2006-01-27 | Induction plasma synthesis of nanopowders |
EP06705084A EP1843834B1 (en) | 2005-01-28 | 2006-01-27 | Induction plasma synthesis of nanopowders |
PL06705084T PL1843834T3 (en) | 2005-01-28 | 2006-01-27 | Induction plasma synthesis of nanopowders |
KR1020077019604A KR101129610B1 (en) | 2005-01-28 | 2006-01-27 | Induction Plasma Synthesis of Nanopowders |
CA2595872A CA2595872C (en) | 2005-01-28 | 2006-01-27 | Induction plasma synthesis of nanopowders |
AT06705084T ATE509693T1 (en) | 2005-01-28 | 2006-01-27 | INDUCTION PLASMA SYNTHESIS OF NANOPOWDERS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64742705P | 2005-01-28 | 2005-01-28 | |
US60/647,427 | 2005-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006079213A1 true WO2006079213A1 (en) | 2006-08-03 |
Family
ID=36740004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2006/000110 WO2006079213A1 (en) | 2005-01-28 | 2006-01-27 | Induction plasma synthesis of nanopowders |
Country Status (10)
Country | Link |
---|---|
US (1) | US8013269B2 (en) |
EP (1) | EP1843834B1 (en) |
JP (1) | JP5133065B2 (en) |
KR (1) | KR101129610B1 (en) |
CN (1) | CN101160166B (en) |
AT (1) | ATE509693T1 (en) |
CA (1) | CA2595872C (en) |
ES (1) | ES2366917T3 (en) |
PL (1) | PL1843834T3 (en) |
WO (1) | WO2006079213A1 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008095197A (en) * | 2006-10-11 | 2008-04-24 | Samsung Electro Mech Co Ltd | Method for surface modification of non-dispersible metal nanoparticle, metal nanoparticle for inkjet and conductive nanoink |
WO2008140786A1 (en) * | 2007-05-11 | 2008-11-20 | Sdc Materials, Inc. | Method and apparatus for making uniform and ultrasmall nanoparticles |
JP2010510950A (en) * | 2006-12-01 | 2010-04-08 | ユミコア ソシエテ アノニム | Method for producing nano-sized powder |
US7717001B2 (en) | 2004-10-08 | 2010-05-18 | Sdc Materials, Inc. | Apparatus for and method of sampling and collecting powders flowing in a gas stream |
USD627900S1 (en) | 2008-05-07 | 2010-11-23 | SDCmaterials, Inc. | Glove box |
US20110209578A1 (en) * | 2010-02-26 | 2011-09-01 | Kuniaki Ara | Nanoparticle manufacturing device and nanoparticle manufacturing method and method of manufacturing nanoparticle-dispersed liquid alkali metal |
WO2012028695A2 (en) | 2010-09-01 | 2012-03-08 | Facultes Universitaires Notre-Dame De La Paix | Method for depositing nanoparticles on substrates |
US8470112B1 (en) | 2009-12-15 | 2013-06-25 | SDCmaterials, Inc. | Workflow for novel composite materials |
US8481449B1 (en) | 2007-10-15 | 2013-07-09 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US8545652B1 (en) | 2009-12-15 | 2013-10-01 | SDCmaterials, Inc. | Impact resistant material |
US8557727B2 (en) | 2009-12-15 | 2013-10-15 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US8668803B1 (en) | 2009-12-15 | 2014-03-11 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US8679433B2 (en) | 2011-08-19 | 2014-03-25 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US8803025B2 (en) | 2009-12-15 | 2014-08-12 | SDCmaterials, Inc. | Non-plugging D.C. plasma gun |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9427732B2 (en) | 2013-10-22 | 2016-08-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9517448B2 (en) | 2013-10-22 | 2016-12-13 | SDCmaterials, Inc. | Compositions of lean NOx trap (LNT) systems and methods of making and using same |
US9586179B2 (en) | 2013-07-25 | 2017-03-07 | SDCmaterials, Inc. | Washcoats and coated substrates for catalytic converters and methods of making and using same |
US9687811B2 (en) | 2014-03-21 | 2017-06-27 | SDCmaterials, Inc. | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
EP3366647A1 (en) | 2017-02-23 | 2018-08-29 | Rhodia Operations | Plasma synthesis of particles comprising a chalcogenide comprising a rare earth element |
EP3564001A1 (en) * | 2013-03-18 | 2019-11-06 | Amastan Technologies LLC | Method for the production of multiphase composite materials using microwave plasma process |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1885652A4 (en) * | 2005-05-03 | 2010-02-24 | Nanocomp Technologies Inc | Carbon composite materials and methods of manufacturing same |
EP1926846A4 (en) | 2005-07-28 | 2010-12-15 | Nanocomp Technologies Inc | Systems and methods for formation and harvesting of nanofibrous materials |
US7615097B2 (en) * | 2005-10-13 | 2009-11-10 | Plasma Processes, Inc. | Nano powders, components and coatings by plasma technique |
US8859931B2 (en) | 2006-03-08 | 2014-10-14 | Tekna Plasma Systems Inc. | Plasma synthesis of nanopowders |
US20100314788A1 (en) * | 2006-08-18 | 2010-12-16 | Cheng-Hung Hung | Production of Ultrafine Particles in a Plasma System Having Controlled Pressure Zones |
US7803295B2 (en) * | 2006-11-02 | 2010-09-28 | Quantumsphere, Inc | Method and apparatus for forming nano-particles |
US8748785B2 (en) * | 2007-01-18 | 2014-06-10 | Amastan Llc | Microwave plasma apparatus and method for materials processing |
WO2008112710A1 (en) * | 2007-03-12 | 2008-09-18 | Nitto Denko Corporation | Nanoscale phosphor particles with high quantum efficiency and method for synthesizing the same |
US9061913B2 (en) * | 2007-06-15 | 2015-06-23 | Nanocomp Technologies, Inc. | Injector apparatus and methods for production of nanostructures |
US9236669B2 (en) * | 2007-08-07 | 2016-01-12 | Nanocomp Technologies, Inc. | Electrically and thermally non-metallic conductive nanostructure-based adapters |
EP2179453A1 (en) * | 2007-08-14 | 2010-04-28 | Nanocomp Technologies, Inc. | Nanostructured material-based thermoelectric generators |
US9630162B1 (en) * | 2007-10-09 | 2017-04-25 | University Of Louisville Research Foundation, Inc. | Reactor and method for production of nanostructures |
US8333839B2 (en) | 2007-12-27 | 2012-12-18 | Synos Technology, Inc. | Vapor deposition reactor |
EP2107862B1 (en) | 2008-04-03 | 2015-09-02 | Maicom Quarz GmbH | Method and device for handling dispersion materials |
EP2279522B1 (en) | 2008-05-07 | 2017-01-25 | Nanocomp Technologies, Inc. | Nanostructure-based heating devices and method of use |
JP5674642B2 (en) | 2008-05-07 | 2015-02-25 | ナノコンプ テクノロジーズ インコーポレイテッド | Carbon nanotube based coaxial electrical cable and wire harness |
US8029595B2 (en) * | 2008-06-02 | 2011-10-04 | Nitto Denko Corporation | Method and apparatus of producing nanoparticles using nebulized droplet |
US8470718B2 (en) | 2008-08-13 | 2013-06-25 | Synos Technology, Inc. | Vapor deposition reactor for forming thin film |
KR101067503B1 (en) * | 2008-08-20 | 2011-09-27 | 시너스 테크놀리지, 인코포레이티드 | Plasma reactor with injector |
US8851012B2 (en) | 2008-09-17 | 2014-10-07 | Veeco Ald Inc. | Vapor deposition reactor using plasma and method for forming thin film using the same |
JP5094668B2 (en) * | 2008-09-30 | 2012-12-12 | 株式会社日清製粉グループ本社 | Method for producing Ni-W alloy fine particles and method for producing Ni-W alloy fine particles |
CN101439403B (en) * | 2008-12-25 | 2010-07-28 | 中国兵器工业第五二研究所 | Earlier stage treatment process of raw material powder for preparing induction plasma capacitor level nano tantalum powder |
US8871628B2 (en) | 2009-01-21 | 2014-10-28 | Veeco Ald Inc. | Electrode structure, device comprising the same and method for forming electrode structure |
WO2010095901A2 (en) | 2009-02-23 | 2010-08-26 | Synos Technology, Inc. | Method for forming thin film using radicals generated by plasma |
JP5823375B2 (en) * | 2009-03-24 | 2015-11-25 | テクナ・プラズマ・システムズ・インコーポレーテッド | Plasma reactor and nanopowder synthesis process |
CN102449111B (en) * | 2009-06-01 | 2014-12-24 | 日东电工株式会社 | Luminescent ceramic and light-emitting device using the same |
US8206672B2 (en) * | 2009-07-10 | 2012-06-26 | Nitto Denko Corporation | Production of phase-pure ceramic garnet particles |
US8354593B2 (en) * | 2009-07-10 | 2013-01-15 | Nanocomp Technologies, Inc. | Hybrid conductors and method of making same |
FI20096162A0 (en) * | 2009-11-10 | 2009-11-10 | Valtion Teknillinen | Process for the preparation of nanoparticles |
US8697479B2 (en) | 2009-11-19 | 2014-04-15 | Nitto Denko Corporation | Method for producing nanoparticles |
JP2011179023A (en) * | 2010-02-26 | 2011-09-15 | Japan Atomic Energy Agency | Nanoparticle manufacturing device and nanoparticle manufacturing method |
US8722171B2 (en) | 2011-01-04 | 2014-05-13 | Nanocomp Technologies, Inc. | Nanotube-based insulators |
US8840958B2 (en) | 2011-02-14 | 2014-09-23 | Veeco Ald Inc. | Combined injection module for sequentially injecting source precursor and reactant precursor |
US8877300B2 (en) | 2011-02-16 | 2014-11-04 | Veeco Ald Inc. | Atomic layer deposition using radicals of gas mixture |
US9163310B2 (en) | 2011-02-18 | 2015-10-20 | Veeco Ald Inc. | Enhanced deposition of layer on substrate using radicals |
CN102378461B (en) * | 2011-09-29 | 2013-02-27 | 北京航空航天大学 | An annular uniform airflow powder supply device |
US20130089490A1 (en) * | 2011-10-11 | 2013-04-11 | Wener FILTVEDT | Method and device |
RU2468989C1 (en) * | 2011-11-25 | 2012-12-10 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) | Method to produce nanoparticles |
US10477665B2 (en) * | 2012-04-13 | 2019-11-12 | Amastan Technologies Inc. | Microwave plasma torch generating laminar flow for materials processing |
US20140263181A1 (en) | 2013-03-15 | 2014-09-18 | Jaeyoung Park | Method and apparatus for generating highly repetitive pulsed plasmas |
DE102013205225A1 (en) | 2013-03-25 | 2014-09-25 | Wacker Chemie Ag | Production of silicon-containing nano- and micrometer-scale particles |
WO2014204561A1 (en) | 2013-06-17 | 2014-12-24 | Nanocomp Technologies, Inc. | Exfoliating-dispersing agents for nanotubes, bundles and fibers |
CN105324337B (en) * | 2013-06-21 | 2017-05-17 | 日清工程株式会社 | Process for producing fine cuprous oxide particles, fine cuprous oxide particles, and process for producing conductor film |
JP6016729B2 (en) * | 2013-08-02 | 2016-10-26 | 東邦チタニウム株式会社 | Metal powder manufacturing method and manufacturing apparatus |
KR102268457B1 (en) * | 2014-06-05 | 2021-06-22 | 닛신 엔지니어링 가부시키가이샤 | Metal composite oxide particles and method for producing same |
JP6821575B2 (en) | 2015-02-03 | 2021-01-27 | ナノコンプ テクノロジーズ,インク. | Carbon Nanotube Structures and Methods for Their Formation |
WO2017021808A1 (en) * | 2015-07-31 | 2017-02-09 | Agilent Technologies, Inc. | Chambers for microwave plasma generation |
CN105618771A (en) * | 2016-01-29 | 2016-06-01 | 苏州英纳特纳米科技有限公司 | Radio frequency plasma preparation method and device for micro spherical titanium powder |
US10581082B2 (en) | 2016-11-15 | 2020-03-03 | Nanocomp Technologies, Inc. | Systems and methods for making structures defined by CNT pulp networks |
US11279836B2 (en) | 2017-01-09 | 2022-03-22 | Nanocomp Technologies, Inc. | Intumescent nanostructured materials and methods of manufacturing same |
US11749798B2 (en) | 2017-03-03 | 2023-09-05 | Hydro-Quebec | Nanoparticles comprising a core covered with a passivation layer, process for manufacture and uses thereof |
US10763165B2 (en) | 2017-04-18 | 2020-09-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Conductive powder formation method, device for forming conductive powder, and method of forming semiconductor device |
US11358113B2 (en) | 2017-08-08 | 2022-06-14 | H Quest Vanguard, Inc. | Non-thermal micro-plasma conversion of hydrocarbons |
US9987611B1 (en) | 2017-08-08 | 2018-06-05 | H Quest Vanguard, Inc. | Non-thermal plasma conversion of hydrocarbons |
US10434490B2 (en) | 2017-08-08 | 2019-10-08 | H Quest Vanguard, Inc. | Microwave-induced non-thermal plasma conversion of hydrocarbons |
US11358869B2 (en) | 2017-08-08 | 2022-06-14 | H Quest Vanguard, Inc. | Methods and systems for microwave assisted production of graphitic materials |
CN112601607B (en) * | 2018-09-03 | 2023-03-24 | 国立大学法人金泽大学 | Fine particle manufacturing device and fine particle manufacturing method |
CN110255532A (en) * | 2019-07-06 | 2019-09-20 | 金雪莉 | A kind of magnanimity prepares the method and device of carbon silicon nano material |
CN110143583A (en) * | 2019-07-06 | 2019-08-20 | 金雪莉 | A kind of magnanimity prepares the method and device of carbon nanomaterial |
CN110156022A (en) * | 2019-07-06 | 2019-08-23 | 金雪莉 | A kind of magnanimity prepares the method and device of silicon nano material |
KR20220111252A (en) | 2019-10-09 | 2022-08-09 | 테크나 플라즈마 시스템 인코포레이티드 | Nano-sized powder advanced material, its manufacturing method and its use method |
CN111331148B (en) * | 2020-04-14 | 2022-09-20 | 中天智能装备有限公司 | ICP plasma cooling system |
CN113737001A (en) * | 2021-09-14 | 2021-12-03 | 淮安中顺环保科技有限公司 | Method for preparing nano copper material by recycling waste circuit board |
CN115594506A (en) * | 2022-10-26 | 2023-01-13 | 兰溪泛翌精细陶瓷有限公司(Cn) | Method for rapidly producing sphere-like boron carbide ceramic powder |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1474003A (en) | 1965-01-18 | 1967-03-24 | British Titan Products | Process for obtaining oxides of metals or metalloids |
WO2001046067A1 (en) | 1999-12-21 | 2001-06-28 | Bechtel Bwxt Idaho, Llc | Hydrogen and elemental carbon production from natural gas and other hydrocarbons |
US6379419B1 (en) | 1998-08-18 | 2002-04-30 | Noranda Inc. | Method and transferred arc plasma system for production of fine and ultrafine powders |
CA2445169A1 (en) | 2001-04-24 | 2002-10-31 | Tekna Plasma Systems Inc. | Plasma synthesis of titanium dioxide nanopowder and powder doping and surface modification process |
WO2004056461A2 (en) | 2002-12-17 | 2004-07-08 | E.I. Du Pont De Nemours And Company | Method of producing nanoparticles using a evaporation-condensation process with a reaction chamber plasma reactor system |
CA2481152A1 (en) * | 2003-09-11 | 2005-03-11 | E.I. Du Pont De Nemours And Company | Plasma synthesis of metal oxide nanoparticles |
US6919527B2 (en) | 2001-10-05 | 2005-07-19 | Tekna Plasma Systems, Inc. | Multi-coil induction plasma torch for solid state power supply |
CA2512317A1 (en) | 2004-07-20 | 2006-01-20 | E.I. Dupont De Nemours And Company | Process for making metal oxide nanoparticles |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3668108A (en) * | 1966-11-15 | 1972-06-06 | Hercules Inc | Solids arc reactor apparatus and method |
JPS61150050U (en) * | 1985-03-06 | 1986-09-17 | ||
JPS62207802A (en) * | 1986-03-10 | 1987-09-12 | Hitachi Ltd | Apparatus for forming ultrafine particle |
JPH059075Y2 (en) * | 1987-01-27 | 1993-03-05 | ||
GB8711359D0 (en) * | 1987-05-14 | 1987-06-17 | Shell Int Research | Cooling hot produced gas |
JPH0459903A (en) * | 1990-06-28 | 1992-02-26 | Tdk Corp | Manufacture of ferromagnetic super fine particles, ferromagnetic super fine particles for fixing physiologically active material and physiologically active material fixing ferromagnetic super fine particles |
JPH04147923A (en) * | 1990-10-08 | 1992-05-21 | Mitsubishi Heavy Ind Ltd | Production of globular particle |
US5200595A (en) * | 1991-04-12 | 1993-04-06 | Universite De Sherbrooke | High performance induction plasma torch with a water-cooled ceramic confinement tube |
DE9116615U1 (en) * | 1991-08-09 | 1993-04-08 | Eci European Chemical Industries Ltd., Castleblayney | Device for generating foam |
US5460701A (en) * | 1993-07-27 | 1995-10-24 | Nanophase Technologies Corporation | Method of making nanostructured materials |
US5749937A (en) * | 1995-03-14 | 1998-05-12 | Lockheed Idaho Technologies Company | Fast quench reactor and method |
US5788738A (en) * | 1996-09-03 | 1998-08-04 | Nanomaterials Research Corporation | Method of producing nanoscale powders by quenching of vapors |
US6832735B2 (en) * | 2002-01-03 | 2004-12-21 | Nanoproducts Corporation | Post-processed nanoscale powders and method for such post-processing |
JP3895527B2 (en) * | 1999-08-31 | 2007-03-22 | 株式会社日本触媒 | Catalytic gas phase oxidation method |
US6398125B1 (en) * | 2001-02-10 | 2002-06-04 | Nanotek Instruments, Inc. | Process and apparatus for the production of nanometer-sized powders |
US6994837B2 (en) * | 2001-04-24 | 2006-02-07 | Tekna Plasma Systems, Inc. | Plasma synthesis of metal oxide nanopowder and apparatus therefor |
KR100483886B1 (en) * | 2002-05-17 | 2005-04-20 | (주)엔피씨 | Plasma reaction apparatus |
TWI233321B (en) * | 2004-02-20 | 2005-05-21 | Ind Tech Res Inst | Method for producing nano oxide powder using D.C. plasma thermo-reaction |
-
2006
- 2006-01-27 KR KR1020077019604A patent/KR101129610B1/en active IP Right Grant
- 2006-01-27 ES ES06705084T patent/ES2366917T3/en active Active
- 2006-01-27 AT AT06705084T patent/ATE509693T1/en active
- 2006-01-27 PL PL06705084T patent/PL1843834T3/en unknown
- 2006-01-27 CA CA2595872A patent/CA2595872C/en active Active
- 2006-01-27 US US11/341,211 patent/US8013269B2/en active Active
- 2006-01-27 EP EP06705084A patent/EP1843834B1/en active Active
- 2006-01-27 WO PCT/CA2006/000110 patent/WO2006079213A1/en active Application Filing
- 2006-01-27 JP JP2007552475A patent/JP5133065B2/en active Active
- 2006-01-27 CN CN2006800073966A patent/CN101160166B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1474003A (en) | 1965-01-18 | 1967-03-24 | British Titan Products | Process for obtaining oxides of metals or metalloids |
US6379419B1 (en) | 1998-08-18 | 2002-04-30 | Noranda Inc. | Method and transferred arc plasma system for production of fine and ultrafine powders |
WO2001046067A1 (en) | 1999-12-21 | 2001-06-28 | Bechtel Bwxt Idaho, Llc | Hydrogen and elemental carbon production from natural gas and other hydrocarbons |
CA2445169A1 (en) | 2001-04-24 | 2002-10-31 | Tekna Plasma Systems Inc. | Plasma synthesis of titanium dioxide nanopowder and powder doping and surface modification process |
US6919527B2 (en) | 2001-10-05 | 2005-07-19 | Tekna Plasma Systems, Inc. | Multi-coil induction plasma torch for solid state power supply |
WO2004056461A2 (en) | 2002-12-17 | 2004-07-08 | E.I. Du Pont De Nemours And Company | Method of producing nanoparticles using a evaporation-condensation process with a reaction chamber plasma reactor system |
CA2481152A1 (en) * | 2003-09-11 | 2005-03-11 | E.I. Du Pont De Nemours And Company | Plasma synthesis of metal oxide nanoparticles |
CA2512317A1 (en) | 2004-07-20 | 2006-01-20 | E.I. Dupont De Nemours And Company | Process for making metal oxide nanoparticles |
Non-Patent Citations (2)
Title |
---|
GIRSHICK ET AL., PLASMA CHEM. AND PLASMA PROCESSING, vol. 9, no. 3, 1989, pages 355 - 369 |
OKUYAMA ET AL., AICHE JOURNAL, vol. 32, no. 12, 1986, pages 2010 - 2019 |
Cited By (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7717001B2 (en) | 2004-10-08 | 2010-05-18 | Sdc Materials, Inc. | Apparatus for and method of sampling and collecting powders flowing in a gas stream |
US9719727B2 (en) | 2005-04-19 | 2017-08-01 | SDCmaterials, Inc. | Fluid recirculation system for use in vapor phase particle production system |
US9023754B2 (en) | 2005-04-19 | 2015-05-05 | SDCmaterials, Inc. | Nano-skeletal catalyst |
US9132404B2 (en) | 2005-04-19 | 2015-09-15 | SDCmaterials, Inc. | Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction |
US9180423B2 (en) | 2005-04-19 | 2015-11-10 | SDCmaterials, Inc. | Highly turbulent quench chamber |
US9216398B2 (en) | 2005-04-19 | 2015-12-22 | SDCmaterials, Inc. | Method and apparatus for making uniform and ultrasmall nanoparticles |
US9599405B2 (en) | 2005-04-19 | 2017-03-21 | SDCmaterials, Inc. | Highly turbulent quench chamber |
JP2008095197A (en) * | 2006-10-11 | 2008-04-24 | Samsung Electro Mech Co Ltd | Method for surface modification of non-dispersible metal nanoparticle, metal nanoparticle for inkjet and conductive nanoink |
JP2010510950A (en) * | 2006-12-01 | 2010-04-08 | ユミコア ソシエテ アノニム | Method for producing nano-sized powder |
US7905942B1 (en) | 2007-05-11 | 2011-03-15 | SDCmaterials, Inc. | Microwave purification process |
US8956574B2 (en) | 2007-05-11 | 2015-02-17 | SDCmaterials, Inc. | Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction |
US8051724B1 (en) | 2007-05-11 | 2011-11-08 | SDCmaterials, Inc. | Long cool-down tube with air input joints |
US8076258B1 (en) | 2007-05-11 | 2011-12-13 | SDCmaterials, Inc. | Method and apparatus for making recyclable catalysts |
US8906316B2 (en) | 2007-05-11 | 2014-12-09 | SDCmaterials, Inc. | Fluid recirculation system for use in vapor phase particle production system |
US8142619B2 (en) * | 2007-05-11 | 2012-03-27 | Sdc Materials Inc. | Shape of cone and air input annulus |
US7897127B2 (en) | 2007-05-11 | 2011-03-01 | SDCmaterials, Inc. | Collecting particles from a fluid stream via thermophoresis |
US8893651B1 (en) | 2007-05-11 | 2014-11-25 | SDCmaterials, Inc. | Plasma-arc vaporization chamber with wide bore |
JP2014240077A (en) * | 2007-05-11 | 2014-12-25 | エスディーシーマテリアルズ, インコーポレイテッド | Compression chamber, particle production system and adjustment method |
JP2010526663A (en) * | 2007-05-11 | 2010-08-05 | エスディーシー マテリアルズ インコーポレイテッド | Compression chamber, particle production system and adjustment method |
US8524631B2 (en) | 2007-05-11 | 2013-09-03 | SDCmaterials, Inc. | Nano-skeletal catalyst |
WO2008140786A1 (en) * | 2007-05-11 | 2008-11-20 | Sdc Materials, Inc. | Method and apparatus for making uniform and ultrasmall nanoparticles |
US7678419B2 (en) | 2007-05-11 | 2010-03-16 | Sdc Materials, Inc. | Formation of catalytic regions within porous structures using supercritical phase processing |
JP2010526662A (en) * | 2007-05-11 | 2010-08-05 | エスディーシー マテリアルズ インコーポレイテッド | Particle production system and particle generation method |
US8604398B1 (en) | 2007-05-11 | 2013-12-10 | SDCmaterials, Inc. | Microwave purification process |
JP2014061518A (en) * | 2007-05-11 | 2014-04-10 | Sdc Materials Inc | Quench chamber, apparatus for condensing and method for cooling |
US8663571B2 (en) | 2007-05-11 | 2014-03-04 | SDCmaterials, Inc. | Method and apparatus for making uniform and ultrasmall nanoparticles |
US8507401B1 (en) | 2007-10-15 | 2013-08-13 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US9302260B2 (en) | 2007-10-15 | 2016-04-05 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US9186663B2 (en) | 2007-10-15 | 2015-11-17 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US9592492B2 (en) | 2007-10-15 | 2017-03-14 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US8759248B2 (en) | 2007-10-15 | 2014-06-24 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US8575059B1 (en) | 2007-10-15 | 2013-11-05 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US9597662B2 (en) | 2007-10-15 | 2017-03-21 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US9089840B2 (en) | 2007-10-15 | 2015-07-28 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US8507402B1 (en) | 2007-10-15 | 2013-08-13 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US9737878B2 (en) | 2007-10-15 | 2017-08-22 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US8481449B1 (en) | 2007-10-15 | 2013-07-09 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
USD627900S1 (en) | 2008-05-07 | 2010-11-23 | SDCmaterials, Inc. | Glove box |
US8545652B1 (en) | 2009-12-15 | 2013-10-01 | SDCmaterials, Inc. | Impact resistant material |
US8557727B2 (en) | 2009-12-15 | 2013-10-15 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US8877357B1 (en) | 2009-12-15 | 2014-11-04 | SDCmaterials, Inc. | Impact resistant material |
US8932514B1 (en) | 2009-12-15 | 2015-01-13 | SDCmaterials, Inc. | Fracture toughness of glass |
US8865611B2 (en) | 2009-12-15 | 2014-10-21 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US8470112B1 (en) | 2009-12-15 | 2013-06-25 | SDCmaterials, Inc. | Workflow for novel composite materials |
US8992820B1 (en) | 2009-12-15 | 2015-03-31 | SDCmaterials, Inc. | Fracture toughness of ceramics |
US8859035B1 (en) | 2009-12-15 | 2014-10-14 | SDCmaterials, Inc. | Powder treatment for enhanced flowability |
US9039916B1 (en) | 2009-12-15 | 2015-05-26 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying for copper copper-oxide |
US8828328B1 (en) | 2009-12-15 | 2014-09-09 | SDCmaterails, Inc. | Methods and apparatuses for nano-materials powder treatment and preservation |
US9090475B1 (en) | 2009-12-15 | 2015-07-28 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying for silicon SiO2 |
US9119309B1 (en) | 2009-12-15 | 2015-08-25 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US8821786B1 (en) | 2009-12-15 | 2014-09-02 | SDCmaterials, Inc. | Method of forming oxide dispersion strengthened alloys |
US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US8906498B1 (en) | 2009-12-15 | 2014-12-09 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US8803025B2 (en) | 2009-12-15 | 2014-08-12 | SDCmaterials, Inc. | Non-plugging D.C. plasma gun |
US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US8668803B1 (en) | 2009-12-15 | 2014-03-11 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US9533289B2 (en) | 2009-12-15 | 2017-01-03 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US9522388B2 (en) | 2009-12-15 | 2016-12-20 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US9308524B2 (en) | 2009-12-15 | 2016-04-12 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US9332636B2 (en) | 2009-12-15 | 2016-05-03 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US20110209578A1 (en) * | 2010-02-26 | 2011-09-01 | Kuniaki Ara | Nanoparticle manufacturing device and nanoparticle manufacturing method and method of manufacturing nanoparticle-dispersed liquid alkali metal |
WO2012028695A2 (en) | 2010-09-01 | 2012-03-08 | Facultes Universitaires Notre-Dame De La Paix | Method for depositing nanoparticles on substrates |
US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US9433938B2 (en) | 2011-02-23 | 2016-09-06 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PTPD catalysts |
US9216406B2 (en) | 2011-02-23 | 2015-12-22 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US8679433B2 (en) | 2011-08-19 | 2014-03-25 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US9498751B2 (en) | 2011-08-19 | 2016-11-22 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US8969237B2 (en) | 2011-08-19 | 2015-03-03 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US9533299B2 (en) | 2012-11-21 | 2017-01-03 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
EP3564001A1 (en) * | 2013-03-18 | 2019-11-06 | Amastan Technologies LLC | Method for the production of multiphase composite materials using microwave plasma process |
US9586179B2 (en) | 2013-07-25 | 2017-03-07 | SDCmaterials, Inc. | Washcoats and coated substrates for catalytic converters and methods of making and using same |
US9517448B2 (en) | 2013-10-22 | 2016-12-13 | SDCmaterials, Inc. | Compositions of lean NOx trap (LNT) systems and methods of making and using same |
US9427732B2 (en) | 2013-10-22 | 2016-08-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US9950316B2 (en) | 2013-10-22 | 2018-04-24 | Umicore Ag & Co. Kg | Catalyst design for heavy-duty diesel combustion engines |
US9566568B2 (en) | 2013-10-22 | 2017-02-14 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US9687811B2 (en) | 2014-03-21 | 2017-06-27 | SDCmaterials, Inc. | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US10086356B2 (en) | 2014-03-21 | 2018-10-02 | Umicore Ag & Co. Kg | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US10413880B2 (en) | 2014-03-21 | 2019-09-17 | Umicore Ag & Co. Kg | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
EP3366647A1 (en) | 2017-02-23 | 2018-08-29 | Rhodia Operations | Plasma synthesis of particles comprising a chalcogenide comprising a rare earth element |
WO2018154020A1 (en) | 2017-02-23 | 2018-08-30 | Rhodia Operations | Plasma synthesis of particles comprising a chalcogenide comprising a rare earth element |
Also Published As
Publication number | Publication date |
---|---|
KR20070101360A (en) | 2007-10-16 |
KR101129610B1 (en) | 2012-05-15 |
US20070029291A1 (en) | 2007-02-08 |
CN101160166A (en) | 2008-04-09 |
ES2366917T3 (en) | 2011-10-26 |
EP1843834A4 (en) | 2008-02-27 |
EP1843834B1 (en) | 2011-05-18 |
CA2595872C (en) | 2011-07-12 |
PL1843834T3 (en) | 2011-11-30 |
CA2595872A1 (en) | 2006-08-03 |
ATE509693T1 (en) | 2011-06-15 |
US8013269B2 (en) | 2011-09-06 |
CN101160166B (en) | 2011-02-09 |
EP1843834A1 (en) | 2007-10-17 |
JP2008528259A (en) | 2008-07-31 |
JP5133065B2 (en) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2595872C (en) | Induction plasma synthesis of nanopowders | |
CA2581806C (en) | Plasma synthesis of nanopowders | |
CA2654013C (en) | Method for producing metal nanopowders by decomposition of metal carbonyl using an induction plasma torch | |
US20120027955A1 (en) | Reactor and method for production of nanostructures | |
KR100594562B1 (en) | Method for producing fine powder and ultra fine powder and transported arc plasma system for them | |
US5407458A (en) | Fine-particle metal powders | |
US5403375A (en) | Fine-particle metal powders | |
US9630162B1 (en) | Reactor and method for production of nanostructures | |
US20050118090A1 (en) | Plasma synthesis of hollow nanostructures | |
EP2099712A2 (en) | Production of high purity ultrafine metal carbide particles | |
Kakati et al. | Synthesis of titanium oxide and titanium nitride nano-particles with narrow size distribution by supersonic thermal plasma expansion | |
RU2349424C1 (en) | Method of powder receiving on basis of tungsten carbide | |
Cheng et al. | Synthesis of niobium boride nanoparticle by RF thermal plasma | |
RU2434807C1 (en) | Method of producing nanopowder of carbon-element systems | |
Bouyer et al. | Thermal plasma processing of nanostructured Si-based ceramic materials | |
RU2821525C1 (en) | METHOD OF PRODUCING COMPOSITE NANOPOWDER ZrB2 - SiC | |
JP2023553897A (en) | Boron nitride nanotubes and methods for producing the same | |
Samokhin et al. | Characteristics of heat and mass transfer to the wall of a confined-jet plasma flow reactor in the processes of nanopowder preparation from metals and their compounds | |
RU2638471C2 (en) | Method for producing powder of titanium carbonitride | |
RU104001U1 (en) | PLASCHEMICAL INSTALLATION FOR SYNTHESIS OF NANOPARTICLES | |
Cheng et al. | RF thermal plasma synthesis of core-shell structured metal boride nanoparticle | |
Gl et al. | Continuous Synthesis ofNanocarbons using an Induction Plasma Reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2595872 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007552475 Country of ref document: JP Ref document number: 2006705084 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2850/KOLNP/2007 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077019604 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200680007396.6 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2006705084 Country of ref document: EP |