WO2005070885A1 - Bis bicyclic amides as vanilloid receptor ligands and their use in treatments of inflammatory and neuropatic pain - Google Patents
Bis bicyclic amides as vanilloid receptor ligands and their use in treatments of inflammatory and neuropatic pain Download PDFInfo
- Publication number
- WO2005070885A1 WO2005070885A1 PCT/US2005/002056 US2005002056W WO2005070885A1 WO 2005070885 A1 WO2005070885 A1 WO 2005070885A1 US 2005002056 W US2005002056 W US 2005002056W WO 2005070885 A1 WO2005070885 A1 WO 2005070885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkylor
- alkylnr
- substituted
- alkyl
- halo
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/02—Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/06—Anti-spasmodics, e.g. drugs for colics, esophagic dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/02—Nasal agents, e.g. decongestants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/10—Drugs for disorders of the urinary system of the bladder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/04—Antipruritics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/08—Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/38—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D235/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
- C07D235/02—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
- C07D235/04—Benzimidazoles; Hydrogenated benzimidazoles
- C07D235/06—Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/68—Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
- C07D277/82—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D319/10—1,4-Dioxanes; Hydrogenated 1,4-dioxanes
- C07D319/14—1,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems
- C07D319/16—1,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D319/18—Ethylenedioxybenzenes, not substituted on the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D319/10—1,4-Dioxanes; Hydrogenated 1,4-dioxanes
- C07D319/14—1,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems
- C07D319/16—1,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D319/20—1,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring with substituents attached to the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D407/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
- C07D407/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
- C07D407/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
Definitions
- NR1 is a non-selective cation channel which is 10 activated or sensitized by a series of different stimuli including capsaicin and resiniferatoxin (exogenous activators), heat & acid stimulation and products of lipid bilayer metabolism, anandamide (Premkumar et al., 2000, Szabo et al., 2000, Gauldie et al., 2001, Olah et al., 2001) and lipoxygenase metabolites (Hwang et al., 2000).
- NR1 is highly expressed in primary sensory neurons (Caterina et al., 15 1997) in rats, mice and humans (Onozawa et al., 2000, Mezey et al., 2000, Helliwell et al., 1998, Cortright et al., 2001). These sensory neurons innervate many visceral organs including the dermis, bones, bladder, gastrointestinal tract and lungs; NR1 is also expressed in other neuronal and non-neuronal tissues including but not limited to, C ⁇ S nuclei, kidney, stomach and T-cells ( ⁇ ozawa et 20 al., 2001, Yiangou et al., 2001, Birder et al., 2001).
- Presumably expression in these various cells and organs may contribute to their basic properties such as cellular signaling and cell division.
- experimentation with capsaicin indicated the presence of a capsaicin sensitive receptor, which could increase the 25 activity of sensory neurons in humans, rats and mice (Holzer, 1991; Dray, 1992, Szallasi and Blumberg 1996, 1999).
- the result of acute activation by capsaicin in humans was pain at injection site and in other species increased behavioral sensitivity to sensory stimuli (Szallasi and Blumberg, 1999).
- Capsaicin application to the skin in humans causes a painful reaction characterized not only 30 by the perception of heat and pain at the site of administration but also by a wider area of hyperalgesia and allodynia, two characteristic symptoms of the human condition of neuropathic pain (Holzer, 1991). Taken together, it seems likely that increased activity of NR1 plays a significant role in the establishment and maintenance of pain conditions. Topical or intradermal injection of capsaicin has also been shown to produce localized vasodilation and edema production (Szallasi and Blumberg 1999, Singh et al., 2001). This evidence indicates that capsaicin through it's activation of NR1 can regulate afferent and efferent function of sensory nerves.
- NR1 gene knockout mice have been shown to reduce sensory sensitivity to thermal and acid stimuli (Caterina et al., 2000)). This supports the concept that NR1 contributes not only to generation of pain responses (i.e. via thermal, acid or capsaicin stimuli) but also to the maintenance of basal activity of sensory nerves. This evidence agrees with studies demonstrating capsaicin sensitive nerve involvement in disease. Primary sensory nerves in humans and other species can be made inactive by continued capsaicin stimulation.
- Caterina M.J, Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., and Julius, D, (1997).
- the capsaicin receptor a heat-activated ion channel in the pain pathway. Nature 389: 816-824.
- Caterina-MJ Leffler-A. Malmberg-AB. Martin- WJ. Trafton-J. Petersen-Zeitz
- NR1 at acidic pH in dorsal root ganglia neurons and cells ectopically expressing
- the present invention comprises a new class of compounds useful in the treatment of diseases, such as vanilloid-receptor-mediated diseases and other maladies, such as inflammatory or neuropathic pain and diseases involving sensory nerve function such as asthma, rheumatoid arthritis, osteoarthritis, inflammatory bowel disorders, urinary incontinence, migraine and psoriasis.
- diseases such as vanilloid-receptor-mediated diseases and other maladies, such as inflammatory or neuropathic pain and diseases involving sensory nerve function such as asthma, rheumatoid arthritis, osteoarthritis, inflammatory bowel disorders, urinary incontinence, migraine and psoriasis.
- the compounds of the invention are useful for the treatment of acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed- vascular and non- vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, burns, allergic skin reactions, pruritus, vitiligo, general gastrointestinal disorders, gastric ulceration, duodenal ulcers, diarrhea, gastric lesions induced by
- the invention also comprises pharmaceutical compositions comprising the compounds, methods for the treatment of vanilloid-receptor-mediated diseases, such as inflammatory or neuropathic pain, asthma, rheumatoid arthritis, osteoarthritis, inflammatory bowel disorders, urinary incontinence, migraine and psoriasis diseases, using the compounds and compositions of the invention, and intermediates and processes useful for the preparation of the compounds of the invention.
- vanilloid-receptor-mediated diseases such as inflammatory or neuropathic pain, asthma, rheumatoid arthritis, osteoarthritis, inflammatory bowel disorders, urinary incontinence, migraine and psoriasis diseases.
- the compounds of the invention are represented by the following general structure:
- bicyclic ring is not thieno[2,3-b]pyridin-2-yl
- R 2 is a saturated, partially saturated or unsaturated 9- or 10-membered bicyclic ring containing 0, 1, 2 or 3 N atoms and 0, 1 or 2 atoms selected from O and S, and the bicyclic ring contains at least one N, O or S atom, and when the bicyclic ring is a 10-membered bicyclic ring then the ring containing the connecting atom where R 2 is attached to the general structure must have at least one N atom, and wherein the ring is substituted by 0, 1 or 2 oxo groups; wherein the bicyclic ring is substituted by 0, 1, 2 or 3 substituents selected from R e , C ⁇ -4 haloalkyl, halo, cyano, nitro, -C(
- R e is independently at each instance C 1-6 alkyl substituted by 0, 1, 2 or 3 substituents independently selected from R d and additionally substituted by 0 or 1 substituents selected from R g ;
- R is independently at each instance a saturated, partially saturated or unsaturated 5-, 6- or 7-membered monocyclic or 6-, 7-, 8-, 9-, 10- or
- Another aspect of the invention relates to a method of treating acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed-vascular and non-vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, burns, allergic skin reactions, pruritus, vitiligo, general gastrointestinal disorders, gastric ulceration, duodenal ulcers, diarrhea, gastric lesions induced by necrot
- Another aspect of the invention relates to a pharmaceutical composition
- a pharmaceutical composition comprising a compound according to any of the above embodiments and a pharmaceutically-acceptable diluent or carrier.
- Another aspect of the invention relates to the use of a compound according to any of the above embodiments as a medicament.
- Another aspect of the invention relates to the use of a compound according to any of the above embodiments in the manufacture of a medicament for the treatment of acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed-vascular and non-vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, bums, allergic skin reactions, pruritus, vitiligo, general gastrointestinal disorders, gastric
- C ⁇ _ ⁇ alkyl means an alkyl group comprising a minimum of and a maximum of ⁇ carbon atoms in a branched, cyclical or linear relationship or any combination of the three, wherein and ⁇ represent integers.
- the alkyl groups described in this section may also contain one or two double or triple bonds. Examples of . 6 alkyl include, but are not limited to the following:
- Benzo group alone or in combination, means the divalent radical C.
- Halo or halogen means a halogen atoms selected from F, Cl, Br and I.
- Cv-whaloalkyl means an alkyl group, as described above, wherein any number— at least one— of the hydrogen atoms attached to the alkyl chain are replaced by F, Cl, Br or I.
- Heterocycle means a ring comprising at least one carbon atom and at least one other atom selected from N, O and S. Examples of heterocycles that may be found in the claims include, but are not limited to, the following:
- “Available nitrogen atoms” are those nitrogen atoms that are part of a heterocycle and are joined by two single bonds (e.g. piperidine), leaving an external bond available for substitution by, for example, H or CH 3 .
- “Pharmaceutically-acceptable salt” means a salt prepared by conventional means, and are well known by those skilled in the art.
- the "pharmacologically acceptable salts” include basic salts of inorganic and organic acids, including but not limited to hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, malic acid, acetic acid, oxalic acid, tartaric acid, citric acid, lactic acid, fumaric acid, succinic acid, maleic acid, salicylic acid, benzoic acid, phenylacetic acid, mandelic acid and the like.
- suitable pharmaceutically acceptable cation pairs for the carboxy group are well known to those skilled in the art and include alkaline, alkaline earth, ammonium, quaternary ammonium cations and the like.
- pharmaceutically acceptable salts see infra and Berge et al., J. Pharm. Sci. 66:1 (1977).
- “Saturated or unsaturated” includes substituents saturated with hydrogens, substituents completely unsaturated with hydrogens and substituents partially saturated with hydrogens.
- leaving group generally refers to groups readily displaceable by a nucleophile, such as an amine, a thiol or an alcohol nucleophile. Such leaving groups are well known in the art. Examples of such leaving groups include, but are not limited to, N-hydroxysuccinimide, N-hydroxybenzotriazole, halides, triflates, tosylates and the like. Preferred leaving groups are indicated herein where appropriate.
- Protecting group generally refers to groups well known in the art which are used to prevent selected reactive groups, such as carboxy, amino, hydroxy, mercapto and the like, from undergoing undesired reactions, such as nucleophilic, electrophilic, oxidation, reduction and the like. Preferred protecting groups are indicated herein where appropriate. Examples of amino protecting groups include, but are not limited to, aralkyl, substituted aralkyl, cycloalkenylalkyl and substituted cycloalkenyl alkyl, allyl, substituted allyl, acyl, alkoxycarbonyl, aralkoxycarbonyl, silyl and the like.
- aralkyl examples include, but are not limited to, benzyl, ortho- methylbenzyl, trityl and benzhydryl, which can be optionally substituted with halogen, alkyl, alkoxy, hydroxy, nitro, acylamino, acyl and the like, and salts, such as phosphonium and ammonium salts.
- aryl groups include phenyl, naphthyl, indanyl, anthracenyl, 9-(9-phenylfluorenyl), phenanthrenyl, durenyl and the like.
- cycloalkenylalkyl or substituted cycloalkylenylalkyl radicals preferably have 6-10 carbon atoms, include, but are not limited to, cyclohexenyl methyl and the like.
- Suitable acyl, alkoxycarbonyl and aralkoxycarbonyl groups include benzyloxycarbonyl, t-butoxycarbonyl, iso-butoxycarbonyl, benzoyl, substituted benzoyl, butyryl, acetyl, trifluoroacetyl, trichloro acetyl, phthaloyl and the like.
- a mixture of protecting groups can be used to protect the same amino group, such as a primary amino group can be protected by both an aralkyl group and an aralkoxycarbonyl group.
- Amino protecting groups can also form a heterocyclic ring with the nitrogen to which they are attached, for example, l,2-bis(methylene)benzene, phthalimidyl, succinimidyl, maleimidyl and the like and where these heterocyclic groups can further include adjoining aryl and cycloalkyl rings.
- the heterocyclic groups can be mono-, di- or tri- substituted, such as nitrophthalimidyl.
- Amino groups may also be protected against undesired reactions, such as oxidation, through the formation of an addition salt, such as hydrochloride, toluenesulfonic acid, trifluoroacetic acid and the like.
- an addition salt such as hydrochloride, toluenesulfonic acid, trifluoroacetic acid and the like.
- Many of the amino protecting groups are also suitable for protecting carboxy, hydroxy and mercapto groups.
- aralkyl groups For example, aralkyl groups.
- Alkyl groups are also suitable groups for protecting hydroxy and mercapto groups, such as tert-butyl.
- Silyl protecting groups are silicon atoms optionally substituted by one or more alkyl, aryl and aralkyl groups.
- Suitable silyl protecting groups include, but are not limited to, trimethylsilyl, triethylsilyl, triisopropylsilyl, tert- butyldimethylsilyl, dimethylphenylsilyl, l,2-bis(dimethylsilyl)benzene, l,2-bis(dimethylsilyl)ethane and diphenylmethylsilyl.
- Silylation of an amino groups provide mono- or di-silylamino groups. Silylation of aminoalcohol compounds can lead to a N,N,O-trisilyl derivative.
- silyl function from a silyl ether function is readily accomplished by treatment with, for example, a metal hydroxide or ammonium fluoride reagent, either as a discrete reaction step or in situ during a reaction with the alcohol group.
- Suitable silylating agents are, for example, trimethylsilyl chloride, tert-butyl-dimethylsilyl chloride, phenyldimethylsilyl chloride, diphenylmethyl silyl chloride or their combination products with imidazole or DMF.
- Methods of preparation of these amine derivatives from corresponding amino acids, amino acid amides or amino acid esters are also well known to those skilled in the art of organic chemistry including amino acid amino acid ester or aminoalcohol chemistry.
- Protecting groups are removed under conditions which will not affect the remaining portion of the molecule. These methods are well known in the art and include acid hydrolysis, hydrogenolysis and the like.
- a preferred method involves removal of a protecting group, such as removal of a benzyloxycarbonyl group by hydrogenolysis utilizing palladium on carbon in a suitable solvent system such as an alcohol, acetic acid, and the like or mixtures thereof.
- a t- butoxycarbonyl protecting group can be removed utilizing an inorganic or organic acid, such as HC1 or trifluoroacetic acid, in a suitable solvent system, such as dioxane or methylene chloride.
- a suitable solvent system such as dioxane or methylene chloride.
- the resulting amino salt can readily be neutralized to yield the free amine.
- Carboxy protecting group such as methyl, ethyl, benzyl, tert-butyl, 4-methoxyphenylmethyl and. the like, can be removed under hydrolysis and hydrogenolysis conditions well known to those skilled in the art.
- Prodrugs of the compounds of this invention are also contemplated by this invention.
- a prodrug is an active or inactive compound that is modified chemically through in vivo physiological action, such as hydrolysis, metabolism and the like, into a compound of this invention following administration of the prodrug to a patient.
- prodrugs are well known by those skilled in the art.
- Examples of a masked carboxylate anion include a variety of esters, such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p-methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl).
- Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bungaard J. Med. Chem. 2503 (1989)). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N- acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)).
- 6-Bromo-naphthalene-2-carboxylic acid (2-amino-benzothiazol-4-yl)-amide was prepared analogous to the procedure described for Example 1(b). 6-Bromo- naphthalene-2-carbonyl chloride, Example 1(a), (127 mg, 0.47 mmol) reacted with benzothiazole-2,4-diamine (77 mg, 0.47 mmol, prepared according to the procedure described in WO03099284) to give the title compound as an amorphous solid.
- IVIS ESI, pos. ion.
- m/z 400 (M+l).
- 6-Bromo-naphthalene-2-carboxylic acid (2-acetylamino-benzothiazol-4-yl)-amide was prepared analogous to the procedure described for Example 1(b). 6-Bromo- naphthalene-2-carbonyl chloride, Example 1(a), (98 mg, 0.36 mmol) reacted with N-(4- amino-benzothiazol-2-yl)-acetamide (50 mg, 0.24 mmol, prepared according to the procedure described in WO03099284) to give the title compound as a solid. Mp 241.6 °C. MS (ESI, pos. ion.) m/z: 441 (M+l). Example 5
- 6-Bromo-naphthalene-2-carboxylic acid (lH-ben ⁇ oimida ⁇ ol-5-yl)-amide.
- This material was prepared analogous to the procedure described for Example 1(b).
- 6-Bromo- naphthalene-2-carbonyl chloride, Example 1(a) reacted with lH-benzoimidazol-5- ylamine (TimTec) to give the title compound as an amorphous solid.
- 6-Bromo-naphthalene-2-carboxylic acid quinolin-3-ylamide This material was prepared analogous to the procedure described for Example 1(b). 6-Bromo-naphthalene-2-carbonyl chloride, Example 1(a), reacted with 3-aminoquinoline (Aldrich) to give the title compound as a green amorphous solid. MS (ESI, pos. ion.) m/z: 377 (M+l).
- tert-Butylarnine (0.21 mL, 2 mmol, Aldrich) was added dropwise to a solution of l,3-dioxo-l,3-dihydro- isobenzofuran-5-carboxylic acid (2,3-dihydro-benzo[ 1 ,4]dioxin-6-yl)-amide (0.65 g, 2 mmol) in glacial AcOH (3 mL) and DMSO (1 mL) with stirring at room temperature. The mixture was stirred at room temperature for 1 h and heated at 110 °C with stirring under nitrogen atmosphere for 18 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (50 mL), washed with satd.
- 6-Bromo-naphthalene-2-carboxylic acid (2,3-dihydro-benzo [ 1 ,4] dioxin-6-yl)- amide was prepared analogous to the procedure described for Example 10(c). 6-Bromo-naphthalene-2-carboxylic acid (0.5 g, 2 mmol, Lancaster) reacted with l,4-benzodioxan-6-amine (0.332 g, 2.2 mmol, Aldrich) to give the title compound as a light-yellow solid. Mp 222.7 °C. MS (ESI, pos. ion) m/z: 384 (M+l).
- DRG dorsal root ganglia
- the DRG were then dissociated into single cell suspension using a papain dissociation system (Worthington Biochemical Corp., Freehold, NJ).
- the dissociated cells were pelleted at 200 x g for 5 min and re-suspended in EBSS containing 1 mg/ml ovomucoid inhibitor, 1 mg/ml ovalbumin and 0.005% DNase.
- Cell suspension was centrifuged through a gradient solution containing 10 mg/ml ovomucoid inhibitor, 10 mg/ml ovalbumin at 200 x g for 6 min to remove cell debris; and filtered through a 88- ⁇ m nylon mesh (Fisher Scientific, Pittsburgh, PA) to remove any clumps.
- Cell number was determined with a hemocytometer and cells were seeded into poly-omithine 100 ⁇ g/ml (Sigma) and mouse laminin 1 ⁇ g/ml (Life Technologies)-coated 96-well plates at 10 x 10 3 cells/well in complete medium.
- the complete medium consists of minimal essential medium (MEM) and Ham's F12, 1:1, penicillin (100 U/ml), and streptomycin (100 ⁇ g/ml), and nerve growth factor (lOng/ml), 10% heat inactivated horse serum (Life Technologies). The cultures were kept at 37 °C, 5% CO 2 and 100% humidity.
- Capsaicin Antagonist Assay E-19 DRG cells at 5 days in culture are incubated with serial concentrations of VR1 antagonists, in HBSS (Hanks buffered saline solution supplemented with BSA O.lmg/ml and 1 mM Hepes at pH 7.4) for 15 min, 37 °C. Cells are then challenged with a NR1 agonist, capsaicin 200 nM, in activation buffer containing O.lmg/ml BSA, 15 mM Hepes, pH 7.4, and 10 ⁇ Ci/ml 45 Ca 2+ (Amersham) in Ham's F12 for 2 min at 37 °C.
- Acid Antagonist Assay Compounds are pre-incubated with E-19 DRG cells for 2 minutes prior to addition of Calcium-45 in 30mM Hepes/Mes buffer (Final Assay pH 5) and then left for an additional 2 minutes prior to compound washout. Final 45Ca (Amersham CES3-2mCi) at 10 ⁇ Ci/mL.
- Agonist Assay Compounds are incubated with E-19 DRG cells for 2 minutes in the presence of Calcium-45 prior to compound washout. Final 45 Ca 2+
- Compounds may be assayed using Chinese Hamster Ovary cell lines stably expressing either human VR1 or rat VR1 under a CMN promoter.
- Cells can be cultured in Growth Medium, routinely passaged at 70% confluency using trypsin and plated in the assay plate 24 hours prior to compound evaluation.
- Possible Growth Medium DMEM, high glucose (Gibco 11965-084). 10% Dialyzed serum (Hyclone SH30079.03).
- IX ⁇ on-Essential Amino Acids (Gibco 11140-050).
- IX Glutamine-Pen-Strep (Gibco 10378-016). Geneticin, 450 ⁇ g/mL (Gibco 10131-035).
- Compounds can be diluted in 100% DMSO and tested for activity over several log units of concentration [40 ⁇ M-2pM]. Compounds may be further diluted in HBSS buffer (pH 7.4) 0.1 mg/mL BSA, prior to evaluation. Final DMSO concentration in assay would be 0.5%.
- Each assay plate can be controlled with a buffer only and a known antagonist compound (either capsazepine or one of the described VR1 antagonists).
- Activation of NR1 can be achieved in these cellular assays using either a capsaicin stimulus (ranging from 0.1-l ⁇ M) or by an acid stimulus (addition of 30mM Hepes/Mes buffered at pH 4.1).
- Capsaicin Antagonist Assay Compounds may be pre-incubated with cells (expressing either human or rat VR1) for 2 minutes prior to addition of Calcium- 45 and Capsaicin and then left for an additional 2 minutes prior to compound washout. Capsaicin (0.5nM) can be added in HAM's F12, 0.1 mg/mL BSA, 15 mM Hepes at pH 7.4. Final 45 Ca (Amersham CES3-2mCi) at lO ⁇ Ci/mL.
- Acid Antagonist Assay Compounds can be pre-incubated with cells (expressing either human or rat VR1) for 2 minutes prior to addition of Calcium-45 in 30mM Hepes/Mes buffer (Final Assay pH 5) and then left for an additional 2 minutes prior to compound washout. Final 45 Ca (Amersham CES3-2mCi) at 10/ Ci/mL.
- Agonist Assay Compounds can be incubated with cells (expressing either human or rat NR1) for 2 minutes in the presence of Calcium-45 prior to compound washout. Final 45 Ca (Amersham CES3-2mCi) at lO Ci/mL.
- Assay plates can be washed using an ELX405 plate washer (Bio-Tek Instruments Inc.) immediately after functional assay. One can wash 3 X with PBS Mg2 + /Ca 2+ free, 0.1 mg/mL BSA, aspirating between washes. Plates may be read using a MicroBeta Jet (Wallac Inc.). Compound activity may then calculated using appropriate computational algorithms. Useful nucleic acid sequences and proteins may be found in U.S. Patent ⁇ os. 6,335,180, 6, 406,908 and 6,239,267, herein incorporated by reference in their entirety.
- vanilloid-receptor-diseases such as acute, inflammatory and neuropathic pain, dental pain, general headache, migraine, cluster headache, mixed- vascular and non- vascular syndromes, tension headache, general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, inflammatory pain and associated hyperalgesia and allodynia, neuropathic pain and associated hyperalgesia and allodynia, diabetic neuropathy pain, causalgia, sympathetically maintained pain, deafferentation syndromes, asthma, epithelial tissue damage or dysfunction, herpes simplex, disturbances of visceral motility at respiratory, genitourinary, gastrointestinal or vascular regions, wounds, bu s, allergic skin reactions, pruritus, vitiligo, general gastrointestinal disorders, gastric ulceration, duodenal ulcers, diarrhea, gas
- parenteral as used herein includes, subcutaneous, intravenous, intramuscular, intrastemal, infusion techniques or intraperitoneally. Treatment of diseases and disorders herein is intended to also include the prophylactic administration of a compound of the invention, a pharmaceutical salt thereof, or a pharmaceutical composition of either to a subject (i.e., an animal, preferably a mammal, most preferably a human) believed to be in need of preventative treatment, such as, for example, pain, inflammation and the like.
- a subject i.e., an animal, preferably a mammal, most preferably a human
- the dosage regimen for treating vanilloid-receptor-mediated diseases, cancer, and/or hyperglycemia with the compounds of this invention and/or compositions of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods. Dosage levels of the order from about 0.01 mg to 30 mg per kilogram of body weight per day, preferably from about 0.1 mg to 10 mg/kg, more preferably from about 0.25 mg to 1 mg/kg are useful for all methods of use disclosed herein.
- the pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals.
- the pharmaceutical composition may be in the form of, for example, a capsule, a tablet, a suspension, or liquid.
- the pharmaceutical composition is preferably made in the form of a dosage unit containing a given amount of the active ingredient.
- these may contain an amount of active ingredient from about 1 to 2000 mg, preferably from about 1 to 500 mg, more preferably from about 5 to 150 mg.
- a suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
- the active ingredient may also be administered by injection as a composition with suitable carriers including saline, dextrose, or water.
- suitable carriers including saline, dextrose, or water.
- the daily parenteral dosage regimen will be from about 0.1 to about 30 mg/kg of total body weight, preferably from about 0.1 to about 10 mg/kg, and more preferably from about 0.25 mg to 1 mg/kg.
- injectable preparations such as sterile injectable aqueous or oleaginous suspensions, may be formulated according to the known are using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3- butanediol.
- Suitable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed, including synthetic mono- or diglycerides.
- fatty acids such as oleic acid find use in the preparation of injectables.
- Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
- a suitable topical dose of active ingredient of a compound of the invention is 0.1 mg to 150 mg administered one to four, preferably one or two times daily.
- the active ingredient may comprise from 0.001% to 10% w/w, e.g., from 1% to 2% by weight of the formulation, although it may comprise as much as 10% w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation.
- Formulations suitable for topical administration include liquid or semi- liquid preparations suitable for penetration through the skin (e.g. , liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.
- the compounds of this invention are ordinarily combined with one or more adjuvants appropriate for the indicated route of administration.
- the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, stearic acid, talc, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, acacia, gelatin, sodium alginate, polyvinyl-pyrrolidine, and/or polyvinyl alcohol, and tableted or encapsulated for conventional administration.
- the compounds of this invention may be dissolved in saline, water, polyethylene glycol, propylene glycol, ethanol, com oil, peanut oil, cottonseed oil, sesame oil, tragacanth gum, and/or various buffers.
- Other adjuvants and modes of administration are well known in the pharmaceutical art.
- the carrier or diluent may include time delay material, such as glyceryl monostearate or glyceryl distearate alone or with a wax, or other materials well known in the art.
- the pharmaceutical compositions may be made up in a solid form (including granules, powders or suppositories) or in a liquid form (e.g., solutions, suspensions, or emulsions).
- the pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc.
- Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules.
- the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch.
- Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
- the dosage forms may also comprise buffering agents.
- Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting, sweetening, flavoring, and perfuming agents.
- Compounds of the present invention can possess one or more asymmetric carbon atoms and are thus capable of existing in the form of optical isomers as well as in the form of racemic or non-racemic mixtures thereof.
- optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes, e.g., by formation of diastereoisomeric salts, by treatment with an optically active acid or base.
- appropriate acids are tartaric, diacetyltartaric, dibenzoyltartaric, ditoluoyltartaric, and camphorsulfonic acid and then separation of the mixture of diastereoisomers by crystallization followed by liberation of the optically active bases from these salts.
- a different process for separation of optical isomers involves the use of a chiral chromatography column optimally chosen to maximize the separation of the enantiomers.
- Still another available method involves synthesis of covalent diastereoisomeric molecules by reacting compounds of the invention with an optically pure acid in an activated form or an optically pure isocyanate.
- the synthesized diastereoisomers can be separated by conventional means such as chromatography, distillation, crystallization or sublimation, and then hydrolyzed to deliver the enantiomerically pure compound.
- the optically active compounds of the invention can likewise be obtained by using active starting materials. These isomers may be in the form of a free acid, a free base, an ester or a salt.
- the compounds of this invention may exist as isomers, that is compounds of the same molecular formula but in which the atoms, relative to one another, are arranged differently.
- the alkylene substituents of the compounds of this invention are normally and preferably arranged and inserted into the molecules as indicated in the definitions for each of these groups, being read from left to right.
- substituents are reversed in orientation relative to the other atoms in the molecule. That is, the substituent to be inserted may be the same as that noted above except that it is inserted into the molecule in the reverse orientation.
- substituent to be inserted may be the same as that noted above except that it is inserted into the molecule in the reverse orientation.
- the compounds of the present invention can be used in the form of salts derived from inorganic or organic acids.
- the salts include, but are not limited to, the following: acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methansulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, palmoate, pectinate, persulfate, 2-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thio
- the basic nitrogen- containing groups can be quatemized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others. Water or oil-soluble or dispersible products are thereby obtained.
- lower alkyl halides such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides
- dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates
- long chain halides such as
- Other examples include salts with alkali metals or alkaline earth metals, such as sodium, potassium, calcium or magnesium or with organic bases.
- pharmaceutically acceptable esters of a carboxylic acid or hydroxyl containing group including a metabolically labile ester or a prodrug form of a compound of this invention.
- a metabolically labile ester is one which may produce, for example, an increase in blood levels and prolong the efficacy of the corresponding non-esterified form of the compound.
- a prodrug form is one which is not in an active form of the molecule as administered but which becomes therapeutically active after some in vivo activity or biotransformation, such as metabolism, for example, enzymatic or hydrolytic cleavage.
- Examples of a masked carboxylate anion include a variety of esters, such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p- methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl).
- esters such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p- methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl).
- Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bungaard J. Med. Chem. 2503 (1989)). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N- acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)). Hydroxy groups have been masked as esters and ethers.
- EP 039,051 (Sloan and Little, 4/11/81) discloses Mannich-base hydroxamic acid prodrugs, their preparation and use.
- Esters of a compound of this invention may include, for example, the methyl, ethyl, propyl, and butyl esters, as well as other suitable esters formed between an acidic moiety and a hydroxyl containing moiety.
- Metabolically labile esters may include, for example, methoxymethyl, ethoxymethyl, iso-propoxymethyl, -methoxyethyl, groups such as ⁇ -
- ((C ⁇ -C 4 )alkyloxy)ethyl for example, methoxyethyl, ethoxyethyl, propoxyethyl, iso-propoxyethyl, etc.; 2-oxo-l,3-dioxolen-4-ylmethyl groups, such as 5-methyl- 2-oxo-l, 3, dioxolen-4-ylmethyl, etc.; C C 3 alkylthiomethyl groups, for example, methylthiomethyl, ethylthiomethyl, isopropylthiomethyl, etc.; acyloxymethyl groups, for example, pivaloyloxymethyl, ⁇ -acetoxymethyl, etc.; ethoxycarbonyl- 1-methyl; or ⁇ -acyloxy- ⁇ -substituted methyl groups, for example ⁇ -acetoxyethyl.
- the compounds of the invention may exist as crystalline solids which can be crystallized from common solvents such as ethanol, N,N-dimethyl- formamide, water, or the like.
- crystalline forms of the compounds of the invention may exist as polymorphs, solvates and/or hydrates of the parent compounds or their pharmaceutically acceptable salts. All of such forms likewise are to be construed as falling within the scope of the invention.
- the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more compounds of the invention or other agents.
- the therapeutic agents can be formulated as separate compositions that are given at the same time or different times, or the therapeutic agents can be given as a single composition.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dermatology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Pulmonology (AREA)
- Pain & Pain Management (AREA)
- Virology (AREA)
- Diabetes (AREA)
- Endocrinology (AREA)
- Immunology (AREA)
- Urology & Nephrology (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Otolaryngology (AREA)
- Communicable Diseases (AREA)
- Molecular Biology (AREA)
- Psychiatry (AREA)
- Ophthalmology & Optometry (AREA)
- Obesity (AREA)
- Biotechnology (AREA)
- Hematology (AREA)
- Emergency Medicine (AREA)
- Physical Education & Sports Medicine (AREA)
- Oncology (AREA)
- Reproductive Health (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05711838A EP1725529A1 (en) | 2004-01-23 | 2005-01-21 | Bis bicyclic amides as vanilloid receptor ligands and their use in treatments of inflammatory and neuropatic pain |
AU2005206561A AU2005206561A1 (en) | 2004-01-23 | 2005-01-21 | Vanilloid receptor ligands and their use in treatments |
CA002553966A CA2553966A1 (en) | 2004-01-23 | 2005-01-21 | Vanilloid receptor ligands and their use in treatments |
JP2006551329A JP2007526910A (en) | 2004-01-23 | 2005-01-21 | Bisbicyclic amides as vanilloid receptor ligands and their use in the treatment of inflammatory and neuropathic pain |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53870004P | 2004-01-23 | 2004-01-23 | |
US60/538,700 | 2004-01-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005070885A1 true WO2005070885A1 (en) | 2005-08-04 |
Family
ID=34807213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/002056 WO2005070885A1 (en) | 2004-01-23 | 2005-01-21 | Bis bicyclic amides as vanilloid receptor ligands and their use in treatments of inflammatory and neuropatic pain |
Country Status (6)
Country | Link |
---|---|
US (1) | US7553848B2 (en) |
EP (1) | EP1725529A1 (en) |
JP (1) | JP2007526910A (en) |
AU (1) | AU2005206561A1 (en) |
CA (1) | CA2553966A1 (en) |
WO (1) | WO2005070885A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006063178A2 (en) * | 2004-12-07 | 2006-06-15 | Abbott Laboratories | Thienopyridyl compounds that inhibit vanilloid receptor subtype 1 (vr1) and uses thereof |
WO2008032204A1 (en) * | 2006-09-15 | 2008-03-20 | Pfizer Japan Inc. | Substituted pyridylmethyl bicyclocarboxyamide compounds |
WO2008050199A2 (en) | 2006-10-23 | 2008-05-02 | Pfizer Japan Inc. | Substituted phenylmethyl bicyclocarboxyamide compounds |
WO2008091021A1 (en) | 2007-01-24 | 2008-07-31 | Mochida Pharmaceutical Co., Ltd. | Heterocyclidene-n-(aryl)acetamide derivative |
JP2009531365A (en) * | 2006-03-30 | 2009-09-03 | ノバルティス アクチエンゲゼルシャフト | Ceramide kinase regulation |
JP2009542798A (en) * | 2006-07-11 | 2009-12-03 | ファイザー株式会社 | Substituted N-bicyclic alkyl bicyclic carboxamide compounds |
US7906508B2 (en) | 2005-12-28 | 2011-03-15 | Japan Tobacco Inc. | 3,4-dihydrobenzoxazine compounds and inhibitors of vanilloid receptor subtype 1 (VRI) activity |
US7910751B2 (en) | 2005-07-22 | 2011-03-22 | Mochida Pharmaceutical Co., Ltd. | Heterocyclidene acetamide derivative |
US8008292B2 (en) | 2004-07-15 | 2011-08-30 | Japan Tobacco Inc. | Condensed benzamide compounds and inhibitors of vanilloid receptor subtype 1 (VR1) activity |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4422034B2 (en) * | 2002-12-06 | 2010-02-24 | バイエル・ヘルスケア・アクチェンゲゼルシャフト | Tetrahydro-naphthalene derivatives |
CA2508845C (en) * | 2002-12-09 | 2012-02-21 | Bayer Healthcare Ag | Tetrahydro-naphthalene derivatives as vanilloid receptor antagonists |
US20060035939A1 (en) * | 2004-07-14 | 2006-02-16 | Japan Tobacco Inc. | 3-Aminobenzamide compounds and inhibitors of vanilloid receptor subtype 1 (VR1) activity |
EP2091944B1 (en) * | 2006-11-17 | 2011-05-18 | Pfizer Inc. | Substituted bicyclocarboxyamide compounds |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2468457A (en) * | 1947-09-16 | 1949-04-26 | American Cyanamid Co | Water-insoluble azo dyestuffs |
EP0002747A1 (en) * | 1977-12-30 | 1979-07-11 | Hoechst Aktiengesellschaft | New crystal modification of 5-(2'-hydroxy-3-naphthoyl-amino)-benzimidazolone-(2), processes for its preparation and its use |
WO2003049702A2 (en) * | 2001-12-10 | 2003-06-19 | Amgen Inc. | Vanilloid receptor ligands and their use in treatments |
WO2004069792A2 (en) * | 2003-02-03 | 2004-08-19 | Janssen Pharmaceutica N.V. | Quinoline-derived amide modulators of vanilloid vr1 receptor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1202415B (en) * | 1961-02-27 | 1965-10-07 | Bayer Ag | Process for the production of reactive dyes |
DE1216460B (en) * | 1961-04-01 | 1966-05-12 | Hoechst Ag | Process for the preparation of water-insoluble monoazo dyes |
JPS6394248A (en) * | 1986-10-08 | 1988-04-25 | Canon Inc | Electrophotographic sensitive body |
-
2005
- 2005-01-21 AU AU2005206561A patent/AU2005206561A1/en not_active Abandoned
- 2005-01-21 US US11/041,169 patent/US7553848B2/en not_active Expired - Fee Related
- 2005-01-21 JP JP2006551329A patent/JP2007526910A/en not_active Withdrawn
- 2005-01-21 EP EP05711838A patent/EP1725529A1/en not_active Withdrawn
- 2005-01-21 CA CA002553966A patent/CA2553966A1/en not_active Abandoned
- 2005-01-21 WO PCT/US2005/002056 patent/WO2005070885A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2468457A (en) * | 1947-09-16 | 1949-04-26 | American Cyanamid Co | Water-insoluble azo dyestuffs |
EP0002747A1 (en) * | 1977-12-30 | 1979-07-11 | Hoechst Aktiengesellschaft | New crystal modification of 5-(2'-hydroxy-3-naphthoyl-amino)-benzimidazolone-(2), processes for its preparation and its use |
WO2003049702A2 (en) * | 2001-12-10 | 2003-06-19 | Amgen Inc. | Vanilloid receptor ligands and their use in treatments |
WO2004069792A2 (en) * | 2003-02-03 | 2004-08-19 | Janssen Pharmaceutica N.V. | Quinoline-derived amide modulators of vanilloid vr1 receptor |
Non-Patent Citations (11)
Title |
---|
BOGER D L ET AL: "PARALELL SYNTHESIS AND EVALUATION OF 132 (+)-1,2,-9,9A-TETRAHYDROCYCL OPROPAÄCÜBENZÄEÜINDOL-4-ONE (CBI) ANALOGUES OF CC-1065 AND THE DUOCARMYCINS DEFINING THE CONTRIBUTION OF THE DNA-BINDING DOMAIN", JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY. EASTON, US, vol. 66, 2001, pages 6654 - 6661, XP001120085, ISSN: 0022-3263 * |
BOGER D L ET AL: "TOTAL SYNTHESIS OF DISTAMYCIN A AND 2640 ANALOGUES: A SOLUTION-PHASE COMBINATORIAL APPROACH TO THE DISCOVERY OF NEW, BIOACTIVE DNA BINDING AGENTS AND DEVELOPMENT OF A RAPID, HIGH-THROUGHPUT SCREEN FOR DETERMINING RELATIVE DNA BINDING AFFINITY OR DNA BINDING SEQUENCE SELECTIVITY", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, vol. 122, no. 27, 2000, pages 6382 - 6394, XP002181404, ISSN: 0002-7863 * |
C.V. WILSON: "The So-Called "Anthraquinonediimines"; Symmetrical Trisubstituted Triazines", J.AM.CHEM.SOC., vol. 70, no. 5, May 1948 (1948-05-01), pages 1901 - 1903, XP002327076 * |
DATABASE BEILSTEIN [online] 16 May 2000 (2000-05-16), XP002327061, Database accession no. BRN: 8425662 * |
DATABASE BEILSTEIN [online] 28 November 1988 (1988-11-28), XP002327062, Database accession no. BRN: 554286 * |
DATABASE BEILSTEIN [online] 29 November 1988 (1988-11-29), XP002327060, Database accession no. BRN: 1026422 * |
KAMEL ET AL., J.PRAKT.CHEM., vol. 31, 1966, pages 100 - 105 * |
KIM KYUNGJIN, LE KANG, SYNT. LETT., vol. 12, 1999, pages 1957 - 1959 * |
P.A.S. SMITH AND E. LEON: "The Thermal Breakdown of Diaryltetrazoles", J.AM.CHEM.SOC., vol. 80, no. 17, 5 September 1958 (1958-09-05), pages 4647 - 4654, XP002327075 * |
PUCHKOV A.A., BEZBORODOV B.V., J.ORG.CHEM.USSR (ENGL. TRANSL.), vol. 13, 1977, pages 756 - 760 * |
WARPEHOSKI M A ET AL: "STEREOELECTRONIC FACTORS INFLUENCING THE BIOLOGICAL ACTIVITY AND DNA INTERACTION OF SYNTHETIC ANTITUMOR AGENTS MODELED ON CC-1065", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 31, 1988, pages 590 - 603, XP002244516, ISSN: 0022-2623 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8008292B2 (en) | 2004-07-15 | 2011-08-30 | Japan Tobacco Inc. | Condensed benzamide compounds and inhibitors of vanilloid receptor subtype 1 (VR1) activity |
WO2006063178A3 (en) * | 2004-12-07 | 2006-08-24 | Abbott Lab | Thienopyridyl compounds that inhibit vanilloid receptor subtype 1 (vr1) and uses thereof |
US8501769B2 (en) | 2004-12-07 | 2013-08-06 | Abbvie Inc. | Thienopyridyl compounds that inhibit vanilloid receptor subtype 1 (VR1) and uses thereof |
WO2006063178A2 (en) * | 2004-12-07 | 2006-06-15 | Abbott Laboratories | Thienopyridyl compounds that inhibit vanilloid receptor subtype 1 (vr1) and uses thereof |
US7875627B2 (en) | 2004-12-07 | 2011-01-25 | Abbott Laboratories | Thienopyridyl compounds that inhibit vanilloid receptor subtype 1 (VR1) and uses thereof |
US8383839B2 (en) | 2005-07-22 | 2013-02-26 | Mochida Pharmaceutical Co., Ltd. | Heterocyclidene acetamide derivative |
US7910751B2 (en) | 2005-07-22 | 2011-03-22 | Mochida Pharmaceutical Co., Ltd. | Heterocyclidene acetamide derivative |
US7906508B2 (en) | 2005-12-28 | 2011-03-15 | Japan Tobacco Inc. | 3,4-dihydrobenzoxazine compounds and inhibitors of vanilloid receptor subtype 1 (VRI) activity |
JP2009531365A (en) * | 2006-03-30 | 2009-09-03 | ノバルティス アクチエンゲゼルシャフト | Ceramide kinase regulation |
US8134004B2 (en) | 2006-07-11 | 2012-03-13 | Pfizer Inc. | Substituted N-bicyclicalkyl bicycliccarboxyamide compounds |
JP2009542798A (en) * | 2006-07-11 | 2009-12-03 | ファイザー株式会社 | Substituted N-bicyclic alkyl bicyclic carboxamide compounds |
JP2010503657A (en) * | 2006-09-15 | 2010-02-04 | ファイザー株式会社 | Substituted pyridylmethylbicyclocarboxamide compounds |
US8178558B2 (en) | 2006-09-15 | 2012-05-15 | Pfizer Inc. | Substituted pyridylmethyl bicycliccarboxyamide compounds |
WO2008032204A1 (en) * | 2006-09-15 | 2008-03-20 | Pfizer Japan Inc. | Substituted pyridylmethyl bicyclocarboxyamide compounds |
US8158650B2 (en) | 2006-10-23 | 2012-04-17 | Pfizer Inc. | Substituted phenylmethyl bicyclocarboxyamide compounds |
WO2008050199A2 (en) | 2006-10-23 | 2008-05-02 | Pfizer Japan Inc. | Substituted phenylmethyl bicyclocarboxyamide compounds |
WO2008091021A1 (en) | 2007-01-24 | 2008-07-31 | Mochida Pharmaceutical Co., Ltd. | Heterocyclidene-n-(aryl)acetamide derivative |
Also Published As
Publication number | Publication date |
---|---|
EP1725529A1 (en) | 2006-11-29 |
US7553848B2 (en) | 2009-06-30 |
JP2007526910A (en) | 2007-09-20 |
AU2005206561A1 (en) | 2005-08-04 |
US20050165046A1 (en) | 2005-07-28 |
CA2553966A1 (en) | 2005-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7429608B2 (en) | Benzo[d]imidazol analogs as vanilloid receptor ligands and their use in treatments | |
US20050165015A1 (en) | Vanilloid receptor ligands and their use in treatments | |
US7544803B2 (en) | Vanilloid receptor ligands and their use in treatments | |
US20050165032A1 (en) | Vanilloid receptor ligands and their use in treatments | |
US8227469B2 (en) | Vanilloid receptor ligands and their use in treatments | |
US20040157845A1 (en) | Vanilloid receptor ligands and their use in treatments | |
US7390907B2 (en) | Vanilloid receptor ligands and their use in treatments | |
EP1720868B1 (en) | Pyrimidine derivatives for use as vanilloid receptor ligands and their use in the treatment of pain | |
US20060235036A1 (en) | Vanilloid receptor ligands and their use in treatments | |
US7709501B2 (en) | Vanilloid receptor ligands and their use in treatments | |
US20050165028A1 (en) | Vanilloid receptor ligands and their use in treatments | |
US7553848B2 (en) | Vanilloid receptor ligands and their use in treatments | |
US7314933B2 (en) | Vanilloid receptor ligands and their use in treatments | |
MXPA06008168A (en) | Bis bicyclic amides as vanilloid receptor ligands and their use in treatments of inflammatory and neuropatic pain | |
EP1780211A2 (en) | Vanilloid receptor ligands and their use in treatments | |
EP1818333A1 (en) | Vanilloid receptor ligands and their use in treatments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2006/008168 Country of ref document: MX Ref document number: 2005711838 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2553966 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005206561 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006551329 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2005206561 Country of ref document: AU Date of ref document: 20050121 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005206561 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005711838 Country of ref document: EP |