[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005052204A1 - 高強度高靭性マグネシウム合金及びその製造方法 - Google Patents

高強度高靭性マグネシウム合金及びその製造方法 Download PDF

Info

Publication number
WO2005052204A1
WO2005052204A1 PCT/JP2004/017617 JP2004017617W WO2005052204A1 WO 2005052204 A1 WO2005052204 A1 WO 2005052204A1 JP 2004017617 W JP2004017617 W JP 2004017617W WO 2005052204 A1 WO2005052204 A1 WO 2005052204A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
strength
toughness
total
plastic
Prior art date
Application number
PCT/JP2004/017617
Other languages
English (en)
French (fr)
Inventor
Yoshihito Kawamura
Michiaki Yamasaki
Original Assignee
Yoshihito Kawamura
Michiaki Yamasaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshihito Kawamura, Michiaki Yamasaki filed Critical Yoshihito Kawamura
Priority to KR1020067010106A priority Critical patent/KR101225530B1/ko
Priority to US10/579,971 priority patent/US20070102072A1/en
Priority to EP04819459.1A priority patent/EP1690954B1/en
Priority to JP2005515824A priority patent/JP3940154B2/ja
Priority to CN2004800346894A priority patent/CN1886528B/zh
Publication of WO2005052204A1 publication Critical patent/WO2005052204A1/ja
Priority to US14/489,844 priority patent/US20150013854A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49991Combined with rolling

Definitions

  • the present invention relates to a high-strength high-toughness magnesium alloy and a method for producing the same, and more particularly, to a high-strength high-toughness magnesium alloy and a high-strength high-toughness magnesium alloy having high strength and high toughness by containing a specific rare earth element in a specific ratio. It relates to a manufacturing method.
  • Magnesium alloys have the recyclability and, in the end, have housings for mobile phones and notebook PCs! /, Which are rapidly spreading as automotive parts.
  • Magnesium alloys are required to have high strength and high toughness for use in these applications.
  • Various studies have been made on the production of high-strength, high-toughness magnesium alloys in terms of materials and manufacturing methods.
  • the rapid solidification powder metallurgy (RS-PZM) method was developed to promote nanocrystallization, and a magnesium alloy with a strength of about 400MPa, which is about twice as large as that of the forging material, has been obtained.
  • magnesium alloys there are Mg—A1 system, Mg—A1—Zn system, Mg—Th—Zn system, Mg—Th—Zn—Zr system, Mg—Zn—Zr system, and Mg—Zn—Zr—RE. (Rare earth element) based alloys are known! Sufficient strength cannot be obtained even when magnesium alloys having these compositions are manufactured by a forging method. When the magnesium alloy having the above composition is manufactured by the RS-PZM method, the strength is higher than when manufactured by the sintering method, but the strength is still insufficient, and even if the strength is sufficient, the toughness (ductility) is insufficient. It is difficult to use in applications that require high strength and high toughness.
  • Patent Documents 1, 2, and 3 As a magnesium alloy having such high strength and high toughness, an Mg-Zn-RE (rare earth element) alloy has been proposed (for example, Patent Documents 1, 2, and 3).
  • Patent Document 1 Japanese Patent No. 3238516 (FIG. 1)
  • Patent Document 2 Japanese Patent No. 2807374
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-256370 (Claims, Examples) Disclosure of the invention
  • Patent Documents 1 and 2 state that high strength and high toughness are obtained, but there are few alloys that have practically achieved both strength and toughness. Further, at present, applications of magnesium alloys are expanding, and conventional strength and toughness are insufficient, and magnesium alloys having higher strength and toughness are demanded.
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a high-strength high-toughness magnesium alloy having a strength and a toughness which are practically applicable to both applications of an expanded magnesium alloy.
  • An object of the present invention is to provide an alloy and a manufacturing method thereof.
  • the high-strength and high-toughness magnesium alloy according to the present invention contains a atomic% of Zn and contains at least one element selected from the group consisting of Dy, Ho and Er.
  • a total of b atom% is contained and the balance is made of Mg, and a and b satisfy the following formulas (1)-(3).
  • Dy, Ho, and Er are rare earth elements that form a crystal structure of a long-period laminated structure phase in a magnesium alloy structure.
  • the high-strength and high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, and contains a total of b atomic% of at least one element selected from the group consisting of Dy, Ho and Er,
  • the balance consists of Mg, and a and b satisfy the following equations (1)-(3).
  • the high-strength high-toughness magnesium alloy is obtained by subjecting a magnesium alloy structure to plastic working.
  • the high-strength and high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, and contains a total of b atomic% of at least one element selected from the group consisting of Dy, Ho and Er, The remainder consists of Mg, and a and b form a magnesium alloy structure that satisfies the following formulas (1)-(3). It has a hcp structure magnesium phase and a long-period laminated structure phase at room temperature.
  • the high-strength high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, and contains a total of b atomic% of at least one element selected from the group consisting of Dy, Ho and Er, The remainder consists of Mg, and a and b form a magnesium alloy structure that satisfies the following formulas (1)-(3). It has a hcp structure magnesium phase and a long-period laminated structure phase at room temperature.
  • the high-strength high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, and contains a total of b atomic% of at least one element selected from the group consisting of Dy, Ho and Er, The remainder consists of Mg, and a and b form a magnesium alloy structure that satisfies the following formulas (1)-(3), and perform plastic working on the magnesium alloy structure to form a plastic work product.
  • the plastically processed product after the heat treatment is characterized by having a magnesium structure phase and a long-period laminated structure phase at room temperature.
  • the high-strength and high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, and contains a total of b atomic% of at least one element selected from the group consisting of Dy, Ho and Er, The remainder consists of Mg, and a and b form a magnesium alloy structure that satisfies the following formulas (1)-(3), and perform plastic working on the magnesium alloy structure to form a plastic work product.
  • the plastically processed product after the heat treatment is characterized by having a magnesium structure phase and a long-period laminated structure phase at room temperature.
  • the average grain size of the long-period laminated structure phase is 0.2 ⁇ m or more, and a plurality of random grain boundaries exist in the crystal grains of the long-period laminated structure phase. It is preferable that the average grain size of the crystal grains specified by the formula is 0.05 ⁇ m or more.
  • the dislocation density of the long-period laminated structure phase is at least one order of magnitude lower than the dislocation density of the hep structure magnesium phase.
  • the volume fraction of crystal grains of the long-period laminated structural phase is 5% or more.
  • Precipitate group force consisting of a compound of Mg and a rare earth element, a compound of Mg and Zn, a compound of Zn and a rare earth element, and a compound of a compound of Mg and Zn and a rare earth element, having at least one type of precipitate selected. Is preferred,.
  • the total volume fraction of the at least one precipitate is preferably more than 0% and 40% or less.
  • the plastic working includes rolling, extrusion, ECAE, drawing force, forging, pressing, rolling, bending, FSW processing, and a repetition of these. It is preferable to perform at least one.
  • the plastic working is performed on the high-strength high-toughness magnesium alloy according to the present invention. It is preferable that the total strain amount at the time of bending is 15 or less.
  • the total strain amount when the plastic working is performed is 10 or less.
  • the Mg contains Y, Z or Gd in total of y atomic%, and y satisfies the following formulas (4) and (5).
  • the Mg contains at least one element selected from the group consisting of Yb, Tb, Sm and Nd in a total of c atom%.
  • C preferably satisfy the following equations (4) and (5).
  • At least one element selected from the group consisting of La, Ce, Pr, Eu, and Mm force is added to the Mg by c atom% in total.
  • c preferably satisfies the following formulas (4) and (5).
  • Mm misch metal
  • Ce and La rare earth elements mainly composed of Ce and La
  • Sm and Nd rare earth elements
  • This is the residue after the refining, and its composition depends on the composition of the ore before refining.
  • the Mg contains at least one element selected from the group consisting of Yb, Tb, Sm and Nd in a total of c atom%, and La, Ce, Pr , Eu and Mm force
  • the at least one selected element is contained in a total of d atomic%, and c and d preferably satisfy the following formulas (4)-(6).
  • the high-strength, high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, contains at least one element selected from the group consisting of Dy, Ho and Er in a total of b atomic%, with the balance being Mg A and b satisfy the following formulas (1)-(3).
  • the high-strength and high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, and contains a total of b atomic% of at least one element selected from the group consisting of Dy, Ho and Er,
  • the balance consists of Mg, and a and b satisfy the following equations (1)-(3).
  • the high-strength and high-toughness magnesium alloy is obtained by cutting a magnesium alloy structure and then performing plastic kneading.
  • the high-strength and high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, and contains a total of b atomic% of at least one element selected from the group consisting of Dy, Ho and Er, The remainder consists of Mg, and a and b form a magnesium alloy structure that satisfies the following formulas (1)-(3), and cut the magnesium alloy structure to form a chip-shaped structure.
  • the plastic work product solidified by plastic molder at room temperature! Further, it has a hep structure magnesium phase and a long-period laminated structure phase.
  • the high-strength high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, and contains a total of b atomic% of at least one element selected from the group consisting of Dy, Ho and Er, Rest Is composed of Mg, and a and b form a magnesium alloy structure that satisfies the following formulas (1)-(3).
  • a chip-shaped structure is formed.
  • the plastic workpiece solidified by the plastic mold is at room temperature! Further, it has a hep structure magnesium phase and a long-period laminated structure phase.
  • the high-strength high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, and contains a total of b atomic% of at least one element selected from the group consisting of Dy, Ho and Er, The remainder consists of Mg, and a and b form a magnesium alloy structure that satisfies the following formulas (1)-(3), and cut the magnesium alloy structure to form a chip-shaped structure.
  • a plastic processed product obtained by solidifying the plastic processed product by plastic working and heat-treating the plastic processed product at room temperature must have a magnesium phase with a hep structure and a long-period laminated structure phase. It is characterized by.
  • the high-strength and high-toughness magnesium alloy according to the present invention contains Zn at a% by atom, and contains at least one element selected from the group consisting of Dy, Ho and Er in a total of b atom%, The remainder consists of Mg, and a and b form a magnesium alloy structure that satisfies the following formulas (1)-(3), and cut the magnesium alloy structure to form a chip-shaped structure.
  • a plastic processed product obtained by solidifying the plastic processed product by plastic working and heat-treating the plastic processed product at room temperature must have a magnesium phase with a hep structure and a long-period laminated structure phase. It is characterized.
  • the hep structure mug is used.
  • the average particle size of the nesium phase is preferably at least 0.1 ⁇ m.
  • the dislocation density of the long-period laminated structure phase is at least one order of magnitude lower than the dislocation density of the hep structure magnesium phase.
  • the volume fraction of crystal grains of the long-period laminated structure phase is 5% or more.
  • the plastic workpiece is
  • Precipitate group force consisting of a compound of Mg and a rare earth element, a compound of Mg and Zn, a compound of Zn and a rare earth element, and a compound of a compound of Mg and Zn and a rare earth element, having at least one type of precipitate selected. Is preferred,.
  • the total volume fraction of the at least one precipitate is preferably more than 0% and 40% or less.
  • the plastic working includes at least one of rolling, extrusion, ECAE, drawing force, forging, pressing, rolling, bending, FSW processing, and repeating these processes. It is preferable to do one.
  • the total strain amount when the plastic working is performed is 15 or less. Further, in the high-strength and high-toughness magnesium alloy according to the present invention, the total amount of strain when performing the plastic kneading is preferably 10 or less.
  • the Mg contains Y and Z or Gd in total of y atomic%, and y satisfies the following formulas (4) and (5). It is also possible.
  • the Mg contains at least one element selected from the group consisting of Yb, Tb, Sm and Nd in a total of c atom%.
  • C preferably satisfy the following equations (4) and (5).
  • At least one element selected from the group consisting of La, Ce, Pr, Eu and Mm force is added to the Mg by c atom% in total.
  • c preferably satisfies the following formulas (4) and (5).
  • the Mg contains at least one element selected from the group consisting of Yb, Tb, Sm and Nd in a total of c atomic%. , La, Ce, Pr, Eu, and Mm forces. At least one selected element is contained in a total of d atomic%, and c and d preferably satisfy the following formulas (4)-(6): .
  • the above Mg is added to Al, Th, Ca, Si, Mn, Zr, Ti, Hf, Nb, Ag, Sr, Sc, B, and C. , Sn, Au, Ba, Ge, Bi, Ga, In, Ir, Li, Pd, Sb, and at least one element selected from the group force of V. More than 0 atomic% and 2.5 atomic% or less in total It can also be contained.
  • the method for producing a high-strength, high-toughness magnesium alloy according to the present invention includes the following: a) contains at least one element selected from the group consisting of Dy, Ho, and Er; A and b are steps of producing a magnesium alloy structure satisfying the following formulas (1)-(3):
  • a process for producing a plastic cast product by subjecting the magnesium alloy to a plastic process comprising:
  • the homogenizing heat treatment may be performed on the magnesium alloy product between the step of producing the magnesium alloy product and the step of producing the plastic casing. May be added.
  • the heat treatment conditions at this time are preferably a temperature of 400 ° C. to 550 ° C. and a processing time of 1 minute to 1500 minutes.
  • a step of performing a heat treatment on the plastic workpiece may be added after the step of producing the plastic workpiece.
  • the heat treatment conditions at this time are preferably a temperature of 150 ° C. to 450 ° C. and a processing time of 1 minute to 1500 minutes.
  • the method for producing a high-strength and high-toughness magnesium alloy according to the present invention includes a method for manufacturing a high-strength, high-toughness magnesium alloy that includes a atomic% of Zn and a total of at least one element selected from the group consisting of Dy, Ho and Er forces.
  • a and b are steps of producing a magnesium alloy structure satisfying the following formulas (1)-(3):
  • a process for producing a plastic cast product by subjecting the magnesium alloy to a plastic process comprising:
  • the magnesium alloy structure has a hep structure magnesium phase and a long-period laminated structure phase.
  • the Mg includes a total of at least one element selected from the group consisting of Yb, Tb, Sm and Nd.
  • And c can also satisfy the following formulas (4) and (5).
  • the Mg may be at least one element selected from the group consisting of La, Ce, Pr, Eu, Mm and Gd. To It contains c atom% in total, and c can satisfy the following formulas (4) and (5).
  • the Mg may include at least one element selected from the group consisting of Yb, Tb, Sm and Nd. And contains at least one element selected from the group consisting of La, Ce, Pr, Eu, Mm and Gd in a total of d atom%, and c and d are represented by the following formula (4) It is also possible to satisfy 6).
  • the method for producing a high-strength, high-toughness magnesium alloy according to the present invention includes the following: a) contains at least one atomic element selected from the group consisting of Dy, Ho, and Er; A and b are steps of producing a magnesium alloy structure satisfying the following formulas (1)-(3):
  • the method for producing a high-strength, high-toughness magnesium alloy according to the present invention includes: a) containing at least atomic% of Zn; and b) containing at least one element selected from the group consisting of Dy, Ho, and Er forces in total; A and b are steps of forming a magnesium alloy structure satisfying the following formulas (1)-(3):
  • the magnesium alloy structure has a hep structure magnesium phase and a long-period laminated structure phase.
  • the Mg may include at least one element selected from the group consisting of Yb, Tb, Sm and Nd.
  • And c may satisfy the following formulas (4) and (5).
  • the Mg may be at least one element selected from the group consisting of La, Ce, Pr, Eu, Mm and Gd. Is contained in a total of c atom%, and c can satisfy the following formulas (4) and (5).
  • the Mg may include at least one element selected from the group consisting of Yb, Tb, Sm and Nd. And contains at least one element selected from the group consisting of La, Ce, Pr, Eu, Mm and Gd in a total of d atom%, and c and d are represented by the following formula (4) It is also possible to satisfy 6).
  • Al, Th, Ca, Si Mn, Zr, Ti, Hf, Nb, Ag, Sr, Sc At least one element selected from the group consisting of, B, C, Sn, Au, Ba, Ge, Bi, Ga, In, Ir, Li, Pd, Sb, and V in total exceeding 0 atomic% 2.5 Atomic% or less can be contained.
  • the plastic karoe may be rolled, extruded, ECAE, drawn out, forged, pressed, rolled, bent, FSW It is also possible to carry out at least one of processing and repetition of these. That is, the plastic working can be performed alone or in combination of rolling, extrusion, ECAE, pulling force, forging, pressing, rolling, bending, and FSW.
  • the total amount of strain when performing the plastic strain is preferably 15 or less, and more preferably the total amount of strain. Is less than or equal to 10. Further, it is preferable that the amount of strain per one time when performing the above-mentioned plastic force be 0.0002 or more and 4.6 or less.
  • the total strain means a total strain that is not canceled by heat treatment such as annealing. In other words, the strain canceled by performing the heat treatment during the manufacturing process is not counted in the total strain.
  • the chip material After solidification, rolling, extrusion, ECAE, drawing, forging, pressing, rolling, bending, FSW, etc. may be applied. Further, before the final solidification and molding, the chip material can be subjected to various kinds of plastic kneading, such as ball milling, repeated forging, and stamping mill.
  • the method for producing a high-strength and high-toughness magnesium alloy according to the present invention may further include a step of performing a heat treatment on the plastic workpiece after the step of producing the plastic workpiece. It is. Thereby, the hardness and the yield strength of the plastic workpiece after the heat treatment can be further improved as compared with those before the heat treatment.
  • the condition of the heat treatment is preferably 200 ° C or more and less than 500 ° C and 10 minutes or more and less than 24 hours.
  • the transition density of the hep structure magnesium phase in the magnesium alloy after the plastic force kneading is determined by the long-period laminated structure phase. Is preferably one digit or more larger than the dislocation density.
  • a magnesium alloy having both high strength and toughness is a Mg-Zn-RE (rare earth element) system, and the rare earth element has a group force of Y, Dy, Ho and Er forces. It is a magnesium alloy that is an element, and unlike conventional technologies, has a high strength that is unprecedented at a low content of less than 5.0 atomic% of zinc and less than 5.0 atomic% of rare earth elements. And high toughness were obtained.
  • the strength of a wrought alloy in which a long-period laminated structural phase is formed is high strength, high ductility, and high toughness by heat treatment after or after plastic working. .
  • a chip-shaped structure is formed by cutting a structure alloy in which a long-period laminated structure is formed, and the structure is subjected to plastic working, or is subjected to a heat treatment after the plastic working to form a chip-shaped structure.
  • an alloy composition that forms a long-period laminated structure is cut into a chip shape, and provides high strength, high ductility, and high toughness after plastic working or plastic working heat treatment.
  • the curved or bent long-period laminated structural phase contains random grain boundaries. It is considered that the strength of the magnesium alloy is increased by the random grain boundaries, and grain boundary slip at high temperatures is suppressed, and high strength is obtained at high temperatures.
  • the magnesium alloy having a high density of dislocations in the magnesium phase of the hep structure enhances the strength of the magnesium alloy, and the low dislocation density of the long-period stacking structure phase improves the ductility and strength of the magnesium alloy. It is thought to be done.
  • the dislocation density of the long-period stacked structure phase is preferably at least one order of magnitude smaller than the dislocation density of the hep structure magnesium phase.
  • the magnesium alloy according to Embodiment 1 of the present invention is basically a ternary or more alloy containing Mg, Zn and a rare earth element, wherein the rare earth element is selected from the group consisting of Dy, Ho and Er or Two or more elements.
  • composition range of this magnesium alloy is the range surrounded by the line AB-CD-E shown in FIG. That is, if the content of zinc is a atomic% and the content of one or more rare earth elements is b atomic% in total, a and b satisfy the following formulas (1)-(3).
  • the magnesium alloy in which the rare earth element is one or more elements selected from the group force of Dy, Ho and Er forces, the magnesium alloy further contains Y and Z or Gd in a total of y atomic%. And y preferably satisfies the following equations (4) and (5).
  • the toughness tends to decrease particularly. Further, when the content of one or more rare earth elements is 5 atomic% or more in total, the toughness (or ductility) tends to be particularly reduced.
  • the content of zinc is less than 0.2 atomic%, or the content of rare earth elements is 0.2 If the content is less than%, at least one of strength and toughness becomes insufficient. Therefore, the lower limit of the content of zinc is set to 0.2 atomic%, and the lower limit of the total content of rare earth elements is set to 0.2 atomic%.
  • the increase in strength and toughness becomes remarkable when zinc is 0.2 to 1.5 atomic%.
  • the zinc content is around 0.2 atomic%, the strength tends to decrease as the content of the rare earth element decreases, but even in this range, the strength and toughness are higher than before. Therefore, the range of the content of zinc in the magnesium alloy of the present embodiment is the widest range of 0.2 atomic% to 5.0 atomic%.
  • the components other than the zinc and the rare earth element having the contents in the above-described range are magnesium, but a small amount of impurities that do not affect the alloy characteristics. May be contained.
  • composition range of the magnesium alloy in the case where the rare earth element is one or more elements selected from the group forces of Dy, Ho and Er forces is defined as satisfying the above formulas (1)-(3). However, the composition range more preferably satisfies the following formulas (1 ′) and (3 ′).
  • the magnesium alloy according to Embodiment 2 of the present invention is basically a quaternary or more alloy containing Mg, Zn and a rare earth element, and the rare earth element is selected from the group consisting of Dy, Ho and Er1 or
  • the fourth element is one or more elements selected from the group consisting of Yb, Tb, Sm, and Nd.
  • composition range of this magnesium alloy is such that the content of zinc is a atomic%, the content of one or more rare earth elements is b atomic% in total, and the total content of one or more fourth elements is Assuming that the amount is c atomic%, a, b and c satisfy the following formulas (1)-(5).
  • the reason why the total content of rare earth elements is 0.2 atomic% or more is the same as in the first embodiment.
  • the reason why the upper limit of the content of the fourth element is 3.0 atomic% is that the solid solubility limit of the fourth element is low. Further, the reason for containing the fourth element is that it has an effect of refining crystal grains and an effect of precipitating an intermetallic compound.
  • the Mg-Zn-RE-based magnesium alloy of the present embodiment may also contain a certain amount of impurities without affecting alloy properties.
  • composition range of the magnesium alloy when the rare earth element is one or more elements selected from the group forces of Dy, Ho and Er forces is defined as satisfying the above formulas (1)-(5). However, the composition range more preferably satisfies the following formulas (1 ′) and (5 ′).
  • the magnesium alloy according to Embodiment 3 of the present invention is basically a quaternary or more alloy containing Mg, Zn and a rare earth element, and the rare earth element is selected from the group consisting of Dy, Ho and Er1 or
  • the fourth element is one or more elements selected from the group consisting of La, Ce, Pr, Eu, Mm and Gd.
  • Mm (mish metal) is a mixture or alloy of a plurality of rare earth elements mainly composed of Ce and La, and is a residue after fine removal of useful rare earth elements such as Sm and Nd.
  • the composition of the ore depends on the composition of the ore before refining.
  • composition range of the magnesium alloy according to the present embodiment is such that the content of Zn is a atomic%, the content of one or more rare earth elements is b atomic%, and the content of one or more fourth elements is Contained Assuming that the total amount is c atomic%, a, b and c satisfy the following formulas (1)-(5).
  • the reason why the content of zinc is 5 atom% or less, the reason why the content of one or more rare earth elements is 5 atom% or less in total, and the content of zinc is 0.2 atom% or more is the same as in the first embodiment.
  • the main reason for setting the upper limit of the content of the fourth element to 3.0 atomic% is that there is almost no solid solubility limit of the fourth element. Further, the reason for including the fourth element is that it has an effect of refining crystal grains and an effect of precipitating an intermetallic compound.
  • the Mg-Zn-RE-based magnesium alloy of the present embodiment may also contain a certain amount of impurities without affecting alloy properties.
  • composition range of the magnesium alloy when the rare earth element is one or more elements selected from the group forces of Dy, Ho and Er forces is defined as satisfying the above formulas (1)-(5). However, the composition range more preferably satisfies the following formulas (1 ′) and (5 ′).
  • the magnesium alloy according to Embodiment 4 of the present invention is basically a five-element or more alloy containing Mg, Zn, and a rare earth element, and the rare earth element is selected from the group consisting of Dy, Ho, and Er.
  • the fourth element is one or more elements selected from the group consisting of Yb, Tb, Sm and Nd; and the fifth element is La, Ce, Pr, Eu, Mm And Gd force are also group forces.
  • composition range of this magnesium alloy is such that the content of Zn is a atomic%, the total content of one or more rare earth elements is b atomic%, and the content of one or more fourth elements is If the total is c atomic% and the content of one or more fifth elements is d atomic%, a, b, c and d satisfy the following formula (1)-(6).
  • the reason why the total content of the rare earth element, the fourth element and the fifth element is set to 6.0 atomic% or less is that if the total content exceeds 6%, the weight increases, the raw material cost increases, and the toughness further decreases. is there.
  • the reason that the total content of the rare earth element, the fourth element and the fifth element is set to 0.2 atomic% or more is that if the total content is less than 0.2 atomic%, the strength becomes insufficient.
  • the reason why the fourth element and the fifth element are contained is that they have an effect of making crystal grains fine and an effect of precipitating an intermetallic compound.
  • the Mg-Zn-RE-based magnesium alloy of the present embodiment may also contain a certain amount of impurities without affecting alloy properties.
  • the composition range of the magnesium alloy satisfies the above formula (1)-(6).
  • the composition range more preferably satisfies the following formulas (1 ′) and (6 ′).
  • the magnesium alloy according to the fifth embodiment of the present invention includes a magnesium alloy obtained by adding Me to the composition of the first to fourth embodiments.
  • Me is Al, Th, Ca, Si, Mn, Zr, Ti, Hf, Nb, Ag, Sr, Sc, B, C, Sn, Au, Ba, Ge, Bi, Ga, In, Ir, Li , Pd, Sb and V forces are also at least one element selected.
  • the content of this Me should be more than 0 atomic% and 2.5 atomic% or less.
  • Me is added, other properties can be improved while maintaining high strength and toughness. For example, it is effective for corrosion resistance and crystal grain refinement.
  • Embodiment 11 A magnesium alloy having a composition of any one of Embodiments 5 to 5 is melted to produce a magnesium alloy structure.
  • the cooling rate during fabrication is 1000 KZ seconds or less, more preferably 100 KZ seconds or less.
  • Various processes can be used as the manufacturing process, for example, high-pressure manufacturing, roll casting, inclined plate manufacturing, continuous manufacturing, thixo molding, die casting, and the like can be used.
  • a magnesium alloy structure cut into a predetermined shape may be used.
  • the magnesium alloy product may be subjected to a homogenizing heat treatment.
  • the heat treatment conditions at this time are preferably a temperature of 400 ° C. to 550 ° C. and a treatment time of 1 minute to 1500 minutes (or 24 hours).
  • the magnesium alloy structure is subjected to plastic kneading.
  • plastic kneading examples include extrusion, ECAE (equa channd-angular-extrusion) processing, rolling, drawing and forging, FSW (friction stir welding), pressing, rolling, Bending, repeating these methods.
  • the extrusion temperature be 250 ° C or more and 500 ° C or less, and the cross-sectional reduction rate by extrusion be 5% or more.
  • the ECAE processing method is a method in which the longitudinal direction of the sample is rotated by 90 ° for each pass in order to introduce uniform strain into the sample. Specifically, a magnesium alloy structure, which is a molding material, is forced into the molding hole of the molding die having an L-shaped molding hole in cross-section, and the L-shaped molding hole is formed. ° The magnesium alloy is bent at ⁇ This is a method of applying a stress to a structure to obtain a molded body having excellent strength and toughness.
  • the number of ECAE passes is preferably 1 to 8 passes. More preferably, 3-5 passes.
  • the temperature at the time of ECAE calorie is preferably 250 ° C or more and 500 ° C or less.
  • the rolling temperature is 250 ° C or more and 500 ° C or less, and the rolling reduction is 5% or more.
  • the temperature at which the drawing kneading is performed is 250 ° C or more.
  • the cross-sectional reduction rate of the drawing force is 5% or more.
  • the temperature at the time of performing the forging kneading is 250 ° C. or more and 500 ° C. or less, and the processing rate of the forging kneading is 5% or more.
  • the plastic kneading performed on the magnesium alloy structure has a strain amount of 0.002 or more per cycle.
  • the total strain is not more than 6 and the total strain is not more than 15. In the plastic working, it is more preferable that the amount of strain per operation is 0.002 or more and 4.6 or less and the total amount of strain is 10 or less.
  • the distortion amount of the extrusion force was 0.92Z times when the extrusion ratio was 2.5, 1.39Z times when the extrusion ratio was S4, and 2. when the extrusion ratio was 10.
  • the extrusion ratio is S20, the extrusion ratio is 2.995Z times, when the extrusion ratio is 50, it is 3.91Z times, and when the extrusion ratio is 100, the extrusion ratio is 4.61 / times. 6. 90Z times when the value is 1000.
  • a plastic kamune product obtained by subjecting a magnesium alloy structure to plastic kamnet has a crystal structure of a hep structure magnesium phase and a long-period lamination structure phase at room temperature.
  • the volume fraction of crystal grains having a periodic laminated structure phase is 5% or more (more preferably 10% or more), the average particle size of the hep structure magnesium phase is 2 m or more, and Has an average particle size of 0.2 m or more.
  • the transition density of the shim phase is at least one order of magnitude higher than the dislocation density of the parts other than the random grain boundaries in the long-period stacked structure phase.
  • the plastic force is selected from a compound of Mg and a rare earth element, a compound of Mg and Zn, a compound of Zn and a rare earth element, and a precipitate group force which is also a compound force of Mg, Zn and a rare earth element. It may have at least one kind of precipitate.
  • the total volume fraction of the precipitate is preferably more than 0% and 40% or less.
  • the plastic material has hep-Mg. Both the Pickers hardness and the yield strength of the plastic kneaded product after the plastic working are increased as compared with the structure before the plastic kneading.
  • the plastic worked product may be subjected to a heat treatment.
  • the heat treatment is preferably performed at a temperature of 200 ° C. or more and less than 500 ° C., and a heat treatment time of 10 minutes to 1500 minutes (or 24 hours).
  • the reason why the heat treatment temperature is lower than 500 ° C is that if the heat treatment temperature is higher than 500 ° C, the amount of strain applied by the plastic casing is canceled.
  • both the Vickers hardness and the yield strength of the plastic workpiece after the heat treatment are higher than those of the plastic workpiece before the heat treatment.
  • the plastic workpiece after heat treatment similarly to before heat treatment, has a crystal structure of the hep structure magnesium phase and the long-period laminated structure phase at room temperature, and the volume fraction of crystal grains having this long-period laminated structure is The average particle size of the hep structure magnesium phase is 2 m or more, and the average particle size of the long-period laminated structure phase is 0.2 m or more.
  • a plurality of random grain boundaries exist in the crystal grains of the long-period laminated structure phase, and the average grain size of the crystal grains defined by the random grain boundaries is 0.05 / zm or more.
  • the dislocation density of the hep structure magnesium phase is at least one order of magnitude higher than the dislocation density of parts other than the random grain boundaries in the long-period stacked structure phase.
  • the plastic force is selected from a compound of Mg and a rare earth element, a compound of Mg and Zn, a compound of Zn and a rare earth element, and a precipitate group force which is also a compound force of Mg and Zn and a rare earth element. at least It may have one kind of precipitate.
  • the total volume fraction of the precipitate is preferably more than 0% and 40% or less.
  • the magnesium alloy is practically used in both strength and toughness for expanded applications, for example, as a high-tech alloy requiring high performance in both strength and toughness.
  • the present invention can provide a high-strength and high-toughness magnesium alloy at a level to be provided and a method for producing the same.
  • the magnesium alloy according to Embodiment 7 of the present invention is applied to a plurality of chip-shaped structures having a size of several mm or less, which are formed by cutting a structure, and basically includes Mg, Zn, and a rare earth element.
  • the alloy is a ternary or quaternary or higher alloy, and the rare earth element is one or more elements selected from the group force of Dy, Ho and Er forces.
  • composition range of this magnesium alloy is the range surrounded by the line AB-CD-E shown in FIG. That is, if the content of zinc is a atomic% and the content of one or more rare earth elements is b atomic% in total, a and b satisfy the following formulas (1)-(3).
  • the magnesium alloy contains Y, Z, or Gd in total of y atomic%.
  • y preferably satisfies the following equations (4) and (5).
  • the toughness tends to decrease particularly. Further, when the content of one or more rare earth elements is 5 atomic% or more in total, the toughness (or ductility) tends to be particularly reduced.
  • the lower limit of the zinc content is 0.1 atomic%
  • the lower limit of the total rare earth element content is 0.1 atomic%.
  • the lower limits of the zinc content and the total content of the rare earth elements can be made as low as 1Z2 as compared with the first embodiment, because the present invention is applied to a chip-shaped structure.
  • the increase in strength and toughness becomes remarkable at 0.5 to 1.5 atomic% of zinc.
  • the zinc content is around 0.5 atomic%, the strength tends to decrease as the rare earth element content decreases, but even in this range, the strength and toughness are higher than before. Therefore, the range of the content of zinc in the magnesium alloy of the present embodiment is the largest, being from 0.1 atomic% to 5.0 atomic%.
  • the components other than the zinc and the rare earth element having the contents in the above-described range are magnesium, but a small amount of impurities that do not affect the alloy properties. May be contained.
  • composition range of the magnesium alloy when the rare earth element is one or more elements selected from the group force of Dy, Ho and Er forces is assumed to satisfy the above formulas (1)-(3). However, the composition range more preferably satisfies the following formulas (1 ′) and (3 ′).
  • the magnesium alloy according to the eighth embodiment of the present invention is applied to a plurality of chip-shaped structures having a size of several mm square or less, which are formed by cutting a structure, and basically includes Mg, Zn, and a rare earth element.
  • a rare earth element is one or more elements selected from the group consisting of Dy, Ho and Er
  • a fourth element is a group consisting of Yb, Tb, Sm and Nd Force One or more elements selected.
  • composition range of the magnesium alloy according to the present embodiment is as follows: the content of zinc is a atomic%; the content of one or more rare earth elements is b atomic% in total; If the total element content is c atomic%, a, b, and c satisfy the following formulas (1)-(5).
  • the Mg-Zn-RE-based magnesium alloy of the present embodiment may also contain a certain amount of impurities without affecting alloy properties.
  • composition range of the magnesium alloy when the rare earth element is one or more elements selected from the group force of Dy, Ho and Er forces is assumed to satisfy the above formulas (1)-(3). However, the composition range more preferably satisfies the following formulas (1 ′) and (3 ′).
  • the magnesium alloy according to the ninth embodiment of the present invention is applied to a plurality of chip-shaped structures having a size of several mm square or less formed by cutting a structure, and basically includes Mg, Zn and a rare earth element.
  • composition range of the magnesium alloy according to the present embodiment is such that the content of Zn is a atom%, the content of one or more rare earth elements is b atom% in total, and the content of one or more fourth If the total content of elements is c atomic%, a, b and c satisfy the following formulas (1)-(5).
  • the reason why the content of zinc is 5 atomic% or less, the content of one or more rare earth elements is The reason why the total content is 5 atomic% or less, the reason why the zinc content is 0.1 atomic% or more, and the reason why the rare earth element content is 0.1 atomic% or more are the same as in Embodiment 7. It is. Further, the reason why the upper limit of the content of the fourth element is set to 3.0 atomic% is also a force that has almost no solid solubility limit of the fourth element. Further, the reason for including the fourth element is that it has an effect of making crystal grains fine and an effect of precipitating an intermetallic compound.
  • the Mg-Zn-RE-based magnesium alloy of the present embodiment may contain a certain amount of impurities without affecting alloy properties.
  • composition range of the magnesium alloy when the rare earth element is one or more elements selected from the group force of Dy, Ho and Er forces is assumed to satisfy the above formulas (1)-(3). However, the composition range more preferably satisfies the following formulas (1 ′) and (3 ′).
  • the magnesium alloy according to the tenth embodiment of the present invention is applied to a plurality of chip-shaped structures having a size of several mm square or less, which are formed by cutting a structure, and basically includes Mg, Zn, and a rare earth element. Alloy containing at least five elements, the rare earth element is one or more elements selected from the group consisting of Dy, Ho and Er, and the fourth element is selected from Yb, Tb, Sm, Nd and Gd.
  • the group power is also one or more elements selected, and the fifth element is one or more elements selected from the group consisting of La, Ce, Pr, Eu and Mm.
  • composition range of the magnesium alloy according to the present embodiment is such that the content of Zn is a atomic%, the content of one or more rare earth elements is b atomic% in total, and the content of one or more If the total content of elements is c atomic% and the total content of one or more fifth elements is d atomic%, then a, b, c and d are given by the following formulas (1)-(4). Will be satisfied.
  • the Mg-Zn-RE-based magnesium alloy of the present embodiment may contain a certain amount of impurities without affecting alloy properties.
  • composition range of the magnesium alloy when the rare earth element is one or more elements selected from the group force of Dy, Ho and Er forces is assumed to satisfy the above formulas (1)-(3). However, the composition range more preferably satisfies the following formulas (1 ′) and (3 ′).
  • the magnesium alloy according to Embodiment 11 of the present invention includes a magnesium alloy obtained by adding Me to the composition of Embodiments 7-10.
  • Me is Al, Th, Ca, Si, Mn, Zr, Ti, Hf, Nb, Ag, Sr, Sc, B, C, Sn, Au, Ba, Ge, Bi, Ga, In, Ir, Li, Group power consisting of Pd, Sb and V At least one element selected.
  • the content of Me should be more than 0 atomic% and not more than 2.5 atomic%.
  • Me By adding Me, other properties can be improved while maintaining high strength and toughness. For example, it is effective for corrosion resistance and crystal grain refinement.
  • a method for manufacturing a magnesium alloy according to Embodiment 12 of the present invention will be described.
  • a magnesium alloy having a compositional power according to Embodiments 7-11 is melted to produce a magnesium alloy structure.
  • the cooling rate during fabrication is 1000 KZ seconds or less, more preferably 100 KZ seconds or less.
  • As the magnesium alloy product a product cut into a predetermined shape from an ingot is used.
  • the magnesium alloy product may be subjected to a homogenizing heat treatment.
  • Heat treatment at this time
  • the processing conditions are preferably a temperature of 400 ° C. to 550 ° C. and a processing time of 1 minute to 1500 minutes (or 24 hours).
  • the chip-shaped structure may be preformed using a compression or plastic working method and subjected to a uniform heat treatment.
  • the heat treatment conditions at this time are preferably a temperature of 400 ° C. to 550 ° C. and a processing time of 1 minute to 1500 minutes (or 24 hours).
  • the preformed product may be subjected to a heat treatment at a temperature of 150 ° C. to 450 ° C. for 1 minute to 1500 minutes (or 24 hours).
  • Chip-shaped structures are generally used, for example, as raw materials for thixotropic molds.
  • a mixture of chip-shaped structures and ceramic particles is preformed by compression or plastic working methods, and then homogenized. Chemical heat treatment may be performed. Further, before the chip-shaped structure is preformed, additional strong strain processing may be performed.
  • the tip-shaped structure is subjected to plastic working to solidify and form the chip-shaped structure.
  • plastic working various methods can be used as in the case of the sixth embodiment.
  • a mechanical caring such as a ball mill, a stamp mill, a high-energy ball mill or a bulk mechanical processing such as a bulk mechanical carving may be added.
  • the plastic mash may be further mashed.
  • the magnesium alloy structure may be combined with intermetallic compound particles, ceramic particles, fibers, or the like, or the above-described cut material may be mixed with ceramic particles, fibers, or the like.
  • the plastic kamen obtained by performing the plastic kamen in this manner has a crystal structure of a hep structure magnesium phase and a long-period laminated structure phase at room temperature. At least a part of the long-period laminated structural phase is curved or bent. Both the Vickers hardness and the yield strength of the plastic katen after the plastic kaen are increased as compared to the structure before the plastic working.
  • the total distortion amount when plastic working is performed on the chip-shaped structure is 15 or less. Further, the more preferable total strain amount is 10 or less. Further, it is preferable that the amount of strain per one time in performing the plastic working is 0.002 or more and 4.6 or less.
  • the total strain here is a total strain which is not canceled by heat treatment such as annealing, and means a total strain when plastic working is performed after preforming a chip-shaped structure.
  • the strain canceled by the heat treatment during the manufacturing process is not counted in the total strain, and the strain before the chip shape or the preform is not counted in the total strain! /.
  • Heat treatment may be performed on the plastic workpiece after the plastic processing on the chip-shaped structure.
  • the heat treatment is preferably performed at a temperature of 200 ° C. or more and less than 500 ° C., and a heat treatment time of 10 minutes to 1500 minutes (or 24 hours).
  • the reason why the heat treatment temperature is lower than 500 ° C. is that if the heat treatment temperature is 500 ° C. or more, the amount of strain obtained by the plastic kneading is canceled.
  • the plastic processed product after the heat treatment has the crystal structure of the hep structure magnesium phase and the long-period laminated structure phase at room temperature, as in the case before the heat treatment. At least a part of the long-period laminated structural phase is curved or bent.
  • the structure is refined by cutting the structure to produce a chip-shaped structure, so that the strength is higher and the ductility is higher than in the sixth embodiment. It becomes possible to produce a high-toughness plastic work product or the like. Further, the magnesium alloy according to the present embodiment can obtain high strength and high toughness characteristics even with a lower concentration of zinc and rare earth elements as compared with the magnesium alloy according to Embodiments 16 to 16. .
  • Example 1 a ternary magnesium alloy of 97 atomic% Mg—1 atomic% Zn—2 atomic% Dy is used.
  • a ternary magnesium alloy of 97 atomic% Mg-1 atomic% Zn-2 atomic% Ho is used.
  • a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% Er is used.
  • Example 4 a quaternary magnesium alloy of 96.5 at% Mg—1 at% Zn—1 at% Y—1.5 at% Dy is used.
  • Example 5 a quaternary magnesium alloy of 96.5 at% Mg—1 at% Zn—1 at% Y—1.5 at% Er is used.
  • Each of the magnesium alloys of Examples 4 and 5 is a composite to which a rare earth element forming a long-period laminated structure is added in a complex manner.
  • Example 6 a quaternary magnesium alloy of 96.5 at% Mg—1 at% Zn—1.5 at% Y—1 at% Dy is used.
  • Example 7 a quaternary magnesium alloy of 96.5 at% Mg—1 at% Zn—1.5 at% Y—1 at% Er is used.
  • Comparative Example 1 a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% La is used.
  • Comparative Example 2 a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% Yb is used.
  • Comparative Example 3 a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% Ce is used.
  • Comparative Example 4 a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% Pr is used.
  • Comparative Example 6 a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% Sm is used. In Comparative Example 7, a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% Eu is used.
  • a binary magnesium alloy of 98 at% Mg—2 at% Y is used.
  • ingots having the respective compositions of Example 117, Comparative Example 119 and Reference Example were prepared by high-frequency melting in an Ar gas atmosphere, and cut into a shape of ⁇ 10 ⁇ 60 mm from these ingots.
  • the structure of the cut-out ⁇ material was observed by SEM and XRD.
  • Figures 1 to 7 show photographs of these crystal structures.
  • FIG. 1 shows photographs of the crystal structures of Comparative Examples 1 and 2.
  • FIG. 2 shows photographs of the crystal structures of Examples 13 to 13.
  • FIG. 3 shows a photograph of the crystal structure of Example 4.
  • FIG. 4 shows a photograph of the crystal structure of Example 5.
  • FIG. 5 shows photographs of the crystal structures of Examples 6 and 7.
  • FIG. 6 shows a photograph of the crystal structure of Comparative Example 3-9.
  • FIG. 7 shows a photograph of the crystal structure of the reference example.
  • the magnesium alloy of Example 17 has a long-period laminated crystal structure.
  • the magnesium alloys of Comparative Example 119 and Reference Example did not have a long-period laminated crystal structure.
  • Example 17 The crystal structure forces of Example 17 and Comparative Example 119 were confirmed as follows.
  • a long-period laminated structure is formed when RE is Dy, Ho, or Er, whereas RE forces La, Ce, Pr, Nd, Sm, Eu, Gd, and Yb
  • Gd has a slightly different behavior from La, Ce, Pr, Nd, Sm, Eu, and Yb, and a long-period laminated structure is not formed with single addition of Gd (Zn is required), but a long-period laminated structure.
  • Dy, Ho, and Er which are elements that form, a long-period laminated structure can be formed even at 2.5 atomic%.
  • the crystal grain size of the composite material of Comparative Example 1 was about 10 to 30 ⁇ m, and the crystal grain size of the composite material of Comparative Example 2 was about 30 to 100 m.
  • the crystal grain size was 20-60 m, and in each case, a large amount of crystallization was observed at the grain boundaries. In the crystal structure of the composite material of Comparative Example 2, fine precipitates were present in the grains.
  • the preforms of Comparative Example 1 and Comparative Example 2 were evaluated by a Vickers hardness test.
  • the Pickers hardness of the prefabricated material of Comparative Example 1 was 75 Hv
  • the Pickers hardness of the prefabricated material of Comparative Example 2 was 69 Hv.
  • ECAE processing was performed at 400 ° C. on each of the structural members of Comparative Examples 1 and 2.
  • the ECAE processing method used a method in which the longitudinal direction of the sample was rotated by 90 degrees for each pass in order to introduce uniform strain into the sample, and the number of noses was four and eight.
  • the processing speed at this time is constant at 2 mmZ seconds.
  • the sample subjected to ECAE was evaluated by the Pickers hardness test.
  • the Vickers hardness of the sample after the four ECAE treatments was 82 Hv for the sample of Comparative Example 1 and 76 Hv for the sample of Comparative Example 2, and was about 10% higher than that of the structure before ECAE. Improvement was seen.
  • the hardness of the sample that had been subjected to eight times of ECAE was almost the same as that of the sample that had been subjected to four times of ECAE.
  • the sample subjected to ECAE processing was evaluated by a tensile test. Tensile tests were performed in parallel for the extrusion direction under the conditions of an initial strain rate 5 X 10- 4 Z seconds. Regarding the tensile properties of the sample that had been subjected to the four ECAE treatments, the sample of Comparative Example 12 exhibited a yield stress of 200 MPa or less and an elongation of 2-3%.
  • the preform After preparing a ternary magnesium alloy preform having the composition shown in Table 13 and subjecting the preform to a heat treatment at 500 ° C for 10 hours, the preform is shown in Table 13
  • the extrusion force was adjusted at the extrusion temperature and the extrusion ratio.
  • the extruded material after the extruding was subjected to a tensile test at a test temperature shown in Table 13 to measure 0.2% strength (yield strength), tensile strength, and elongation.
  • the hardness (Pickers hardness) of the extruded material was also measured. Tables 13 to 13 show the measurement results.
  • FIG. 1 is a photograph showing the crystal structures of the structural materials of Example 1, Comparative Example 1 and Comparative Example 2.
  • FIG. 2 is a photograph showing a crystal structure of an artificial material of each of Examples 2-4.
  • FIG. 3 is a photograph showing a crystal structure of a fabricated material of Example 5.
  • FIG. 4 is a photograph showing a crystal structure of an artificial material of Example 6.
  • FIG. 5 is a photograph showing a crystal structure of an artificial material of Example 7 8;
  • FIG. 6 is a photograph showing the crystal structure of each of the fabricated materials of Comparative Examples 3-9.
  • FIG. 7 is a photograph showing a crystal structure of a fabricated material of a reference example.
  • FIG. 8 is a diagram showing a composition range of a magnesium alloy according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram showing a composition range of a magnesium alloy according to a seventh embodiment of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Extrusion Of Metal (AREA)
  • Continuous Casting (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

【課題】 マグネシウム合金の拡大した用途に対して強度及び靭性ともに実用に供するレベルにある高強度高靭性マグネシウム合金及びその製造方法を提供する。 【解決手段】 本発明に係る高強度高靭性マグネシウム合金は、Znをa原子%含有し、Dy、Ho及びErからなる群から選択される少なくとも1種の元素を合計でb原子%含有し、残部がMgから成り、aとbは下記式(1)~(3)を満たすマグネシウム合金鋳造物を作り、前記マグネシウム合金鋳造物に塑性加工を行った後の塑性加工物は、常温においてhcp構造マグネシウム相及び長周期積層構造相を有することを特徴とする。  (1)0.2≦a≦5.0  (2)0.2≦b≦5.0  (3)0.5a−0.5≦b

Description

明 細 書
高強度高靭性マグネシウム合金及びその製造方法
技術分野
[0001] 本発明は、高強度高靭性マグネシウム合金及びその製造方法に関し、より詳細に は特定の希土類元素を特定割合で含有することにより高強度高靭性を達成した高強 度高靭性マグネシウム合金及びその製造方法に関する。
背景技術
[0002] マグネシウム合金は、そのリサイクル性とぁ 、まって、携帯電話やノート型パソコンの 筐体ある!/、は自動車用部品として急速に普及し始めて 、る。
これらの用途に使用するためにはマグネシウム合金に高強度と高靭性が要求され る。高強度高靭性マグネシウム合金の製造のために従来から材料面及び製法面から 種々検討されている。
製法面では、ナノ結晶化の促進のために、急冷凝固粉末冶金 (RS - PZM)法が 開発され、铸造材の約 2倍の 400MPa程度の強度のマグネシウム合金が得られるよ うになつた。
[0003] マグネシウム合金として、 Mg— A1系、 Mg— A1— Zn系、 Mg— Th— Zn系、 Mg— Th— Z n— Zr系、 Mg— Zn— Zr系、 Mg— Zn— Zr— RE (希土類元素)系等の成分系の合金が 知られて!/ヽる。これらの組成を有するマグネシウム合金を铸造法で製造しても十分な 強度が得られな ヽ。前記組成を有するマグネシウム合金を前記 RS— PZM法で製造 すると铸造法で製造する場合より高強度にはなるが依然として強度が不十分であつ たり、強度が十分でも靭性 (延性)が不十分で、高強度及び高靭性を要求される用途 には使用し難 、と 、う欠点があった。
これらの高強度及び高靭性を有するマグネシウム合金として、 Mg-Zn-RE (希土 類元素)系合金が提案されている (例えば特許文献 1、 2及び 3)。
[0004] 特許文献 1 :特許 3238516号公報(図 1)
特許文献 2:特許 2807374号公報
特許文献 3:特開 2002— 256370号公報 (特許請求の範囲、実施例) 発明の開示
発明が解決しょうとする課題
[0005] しかしながら、従来の Mg— Zn— RE系合金では、例えばアモルファス状の合金材料 を熱処理し、微細結晶化して高強度のマグネシウム合金を得ている。そして前記ァモ ルファス状の合金材料を得るためには相当量の亜鉛と希土類元素が必要であると ヽ う先入観があり、亜鉛と希土類元素を比較的多量に含有するマグネシウム合金が使 用されている。
[0006] 特許文献 1及び 2では高強度及び高靭性が得られたと記載されているが、実際に 強度及び靭性ともに実用に供するレベルに達している合金は殆ど無い。更に現在で はマグネシウム合金の用途が拡大して、従来の強度及び靭性では不十分で、より以 上の強度及び靭性を有するマグネシウム合金が要請されている。
[0007] 本発明は上記のような事情を考慮してなされたものであり、その目的は、マグネシゥ ム合金の拡大した用途に対して強度及び靭性ともに実用に供するレベルにある高強 度高靭性マグネシウム合金及びその製造方法を提供することにある。
課題を解決するための手段
[0008] 上記課題を解決するため、本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及び Erからなる群カゝら選択される少なくとも 1種の元素を合 計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすことを特 徴とする。
(1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0
(3) 0. 5a— 0. 5≤b
尚、前記 Dy、 Ho及び Erそれぞれは、マグネシウム合金铸造物に長周期積層構造 相の結晶組織を形成する希土類元素である。
[0009] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及 び Erからなる群から選択される少なくとも 1種の元素を合計で b原子%含有し、残部 が Mgから成り、 aと bは下記式(1)一 (3)を満たすことを特徴とする。
(1) 0. 2≤a≤3. 0 (2) 0. 2≤b≤5. 0
(3) 2a-3≤b
また、前記高強度高靭性マグネシウム合金がマグネシウム合金铸造物に塑性加工 を行ったものであることが好まし 、。
[0010] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及 び Erからなる群から選択される少なくとも 1種の元素を合計で b原子%含有し、残部 が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造物を作り、前 記マグネシウム合金铸造物に塑性カ卩ェを行った後の塑性カ卩ェ物は、常温にお!、て h cp構造マグネシウム相及び長周期積層構造相を有することを特徴とする。
(1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[0011] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及 び Erからなる群から選択される少なくとも 1種の元素を合計で b原子%含有し、残部 が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造物を作り、前 記マグネシウム合金铸造物に塑性カ卩ェを行った後の塑性カ卩ェ物は、常温にお!、て h cp構造マグネシウム相及び長周期積層構造相を有することを特徴とする。
(1) 0. 2≤a≤3. 0
(2) 0. 2≤b≤5. 0
(3) 2a-3≤b
[0012] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及 び Erからなる群から選択される少なくとも 1種の元素を合計で b原子%含有し、残部 が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造物を作り、前 記マグネシウム合金铸造物に塑性加工を行って塑性加工物を作り、前記塑性加工 物に熱処理を行った後の塑性加工物は、常温にお!、て hep構造マグネシウム相及 び長周期積層構造相を有することを特徴とする。
(1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0 (3) 0. 5a— 0. 5≤b
[0013] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及 び Erからなる群から選択される少なくとも 1種の元素を合計で b原子%含有し、残部 が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造物を作り、前 記マグネシウム合金铸造物に塑性加工を行って塑性加工物を作り、前記塑性加工 物に熱処理を行った後の塑性加工物は、常温にお!、て hep構造マグネシウム相及 び長周期積層構造相を有することを特徴とする。
(1) 0. 2≤a≤3. 0
(2) 0. 2≤b≤5. 0
(3) 2a-3≤b
[0014] また、前記長周期積層構造相の平均粒径は 0. 2 μ m以上であり、前記長周期積層 構造相の結晶粒内には複数のランダム粒界が存在し、前記ランダム粒界で規定され る結晶粒の平均粒径は 0. 05 μ m以上であることが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記 hep構造マグ ネシゥム相の転位密度に比べて前記長周期積層構造相の転位密度が少なくとも 1桁 小さいことが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記長周期積層構 造相の結晶粒の体積分率が 5%以上であることが好ましい。
[0015] また、本発明に係る高強度高靭性マグネシウム合金にお!、て、前記塑性加工物は
Mgと希土類元素の化合物、 Mgと Znの化合物、 Znと希土類元素の化合物及び Mg と Znと希土類元素の化合物力 なる析出物群力 選択される少なくとも 1種類の析出 物を有して 、ることが好まし 、。
[0016] また、本発明に係る高強度高靭性マグネシウム合金において、前記少なくとも 1種 類の析出物の合計体積分率は 0%超 40%以下であることが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記塑性加工は、 圧延、押出し、 ECAE、引抜力卩ェ、鍛造、プレス、転造、曲げ、 FSW加工及びこれら の繰り返しカ卩ェのうち少なくとも一つを行うものであることが好ましい。
[0017] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記塑性加工を行 つた際の総歪量は 15以下であることが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記塑性加工を行 つた際の総歪量は 10以下であることがより好ましい。
[0018] 請求項 16
また、本発明に係る高強度高靭性マグネシウム合金において、前記 Mgに Yおよび Zまたは Gdを合計で y原子%含有し、 yは下記式 (4)及び(5)を満たすことが好まし い。
(4) 0≤y≤4. 8
(5) 0. 2≤b+y≤5. 0
[0019] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに Yb、 Tb 、 Sm及び Ndからなる群力 選択される少なくとも 1種の元素を合計で c原子%含有し 、 cは下記式 (4)及び(5)を満たすことが好ま 、。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[0020] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに La、 Ce、 Pr、 Eu及び Mm力 なる群力 選択される少なくとも 1種の元素を合計で c原子%含 有し、 cは下記式 (4)及び(5)を満たすことが好ま 、。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[0021] 尚、 Mm (ミッシュメタル)とは、 Ce及び Laを主成分とする複数の希土類元素の混合 物又は合金であり、鉱石カゝら有用な希土類元素である Smや Ndなどを精鍊除去した 後の残渣であり、その組成は精鍊前の鉱石の組成に依存する。
[0022] 請求項 19
また、本発明に係る高強度高靭性マグネシウム合金において、前記 Mgに Yb、 Tb 、 Sm及び Ndからなる群力 選択される少なくとも 1種の元素を合計で c原子%含有し 、 La、 Ce、 Pr、 Eu及び Mm力 なる群力 選択される少なくとも 1種の元素を合計で d原子%含有し、 c及び dは下記式 (4)一 (6)を満たすことが好ま 、。
(4) 0≤c≤3. 0 (5) 0≤d≤3. 0
(6) 0. 2≤b + c + d≤6. 0
[0023] 請求項 20
本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及 び Erからなる群から選択される少なくとも 1種の元素を合計で b原子%含有し、残部 が Mgから成り、 aと bは下記式(1)一 (3)を満たすことを特徴とする。
(1) 0. l≤a≤5. 0
(2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[0024] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及 び Erからなる群から選択される少なくとも 1種の元素を合計で b原子%含有し、残部 が Mgから成り、 aと bは下記式(1)一 (3)を満たすことを特徴とする。
(1) 0. l≤a≤3. 0
(2) 0. l≤b≤5. 0
(3) 2a-3≤b
また、前記高強度高靭性マグネシウム合金がマグネシウム合金铸造物を切削した 後に塑性カ卩ェを行ったものであることが好ましい。
[0025] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及 び Erからなる群から選択される少なくとも 1種の元素を合計で b原子%含有し、残部 が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造物を作り、前 記マグネシウム合金铸造物を切削することによってチップ形状の铸造物を作り、前記 铸造物を塑性カ卩ェにより固化した塑性加工物は、常温にお!ヽて hep構造マグネシゥ ム相及び長周期積層構造相を有することを特徴とする。
(1) 0. l≤a≤5. 0
(2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[0026] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及 び Erからなる群から選択される少なくとも 1種の元素を合計で b原子%含有し、残部 が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造物を作り、前 記マグネシウム合金铸造物を切削することによってチップ形状の铸造物を作り、前記 铸造物を塑性カ卩ェにより固化した塑性加工物は、常温にお!ヽて hep構造マグネシゥ ム相及び長周期積層構造相を有することを特徴とする。
(1) 0. l≤a≤3. 0
(2) 0. l≤b≤5. 0
(3) 2a-3≤b
[0027] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及 び Erからなる群から選択される少なくとも 1種の元素を合計で b原子%含有し、残部 が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造物を作り、前 記マグネシウム合金铸造物を切削することによってチップ形状の铸造物を作り、前記 铸造物を塑性加工により固化した塑性加工物を作り、前記塑性加工物に熱処理を行 つた後の塑性カ卩ェ物は、常温にお!、て hep構造マグネシウム相及び長周期積層構 造相を有することを特徴とする。
(1) 0. l≤a≤5. 0
(2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[0028] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Dy、 Ho及 び Erからなる群から選択される少なくとも 1種の元素を合計で b原子%含有し、残部 が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造物を作り、前 記マグネシウム合金铸造物を切削することによってチップ形状の铸造物を作り、前記 铸造物を塑性加工により固化した塑性加工物を作り、前記塑性加工物に熱処理を行 つた後の塑性カ卩ェ物は、常温にお!、て hep構造マグネシウム相及び長周期積層構 造相を有することを特徴とする。
(1) 0. l≤a≤3. 0
(2) 0. l≤b≤5. 0
(3) 2a-3≤b
[0029] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 hep構造マグ ネシゥム相の平均粒径は 0. 1 μ m以上であることが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記 hep構造マグ ネシゥム相の転位密度に比べて前記長周期積層構造相の転位密度が少なくとも 1桁 小さいことが好ましい。
[0030] また、本発明に係る高強度高靭性マグネシウム合金において、前記長周期積層構 造相の結晶粒の体積分率が 5%以上であることが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記塑性加工物は
Mgと希土類元素の化合物、 Mgと Znの化合物、 Znと希土類元素の化合物及び Mg と Znと希土類元素の化合物力 なる析出物群力 選択される少なくとも 1種類の析出 物を有して 、ることが好まし 、。
[0031] また、本発明に係る高強度高靭性マグネシウム合金において、前記少なくとも 1種 類の析出物の合計体積分率は 0%超 40%以下であることが好ましい。
本発明に係る高強度高靭性マグネシウム合金において、前記塑性加工は、圧延、 押出し、 ECAE、引抜力卩ェ、鍛造、プレス、転造、曲げ、 FSW加工及びこれらの繰り 返しカ卩ェのうち少なくとも一つを行うものであることが好ましい。
[0032] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記塑性加工を行 つた際の総歪量は 15以下であることが好ましい。また、本発明に係る高強度高靭性 マグネシウム合金において、前記塑性カ卩ェを行った際の総歪量は 10以下であること 力 り好ましい。
[0033] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに Yおよび Zまたは Gdを合計で y原子%含有し、 yは下記式 (4)及び (5)を満たすことも可能で ある。
(4) 0≤y≤4. 9
(5) 0. l≤b+y≤5. 0
[0034] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに Yb、 Tb 、 Sm及び Ndからなる群力 選択される少なくとも 1種の元素を合計で c原子%含有し 、 cは下記式 (4)及び(5)を満たすことが好ま 、。
(4) 0≤c≤3. 0 (5) 0. l≤b + c≤6. 0
[0035] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに La、 Ce、 Pr、 Eu及び Mm力 なる群力 選択される少なくとも 1種の元素を合計で c原子%含 有し、 cは下記式 (4)及び(5)を満たすことが好ま 、。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[0036] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに Yb、 Tb 、 Sm及び Ndからなる群力 選択される少なくとも 1種の元素を合計で c原子%含有し 、 La、 Ce、 Pr、 Eu及び Mm力 なる群力 選択される少なくとも 1種の元素を合計で d原子%含有し、 c及び dは下記式 (4)一 (6)を満たすことが好ま 、。
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. l≤b + c + d≤6. 0
[0037] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに Al、 Th、 Ca、 Si、 Mn、 Zr、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge、 Bi、 Ga、 In 、 Ir、 Li、 Pd、 Sb及び V力もなる群力も選択される少なくとも 1種の元素を合計で 0原 子%超 2. 5原子%以下含有することも可能である。
[0038] 本発明に係る高強度高靭性マグネシウム合金の製造方法は、 Znを a原子%含有し 、 Dy、 Ho及び Er力 なる群力 選択される少なくとも 1種の元素を合計で b原子%含 有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造 物を作る工程と、
前記マグネシウム合金に塑性カ卩ェを行うことにより塑性カ卩ェ物を作る工程と、 を具備することを特徴とする高強度高靭性マグネシウム合金の製造方法。
(1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[0039] 上記の本発明に係る高強度高靭性マグネシウム合金の製造方法によれば、マグネ シゥム合金铸造物に塑性加工を行うことにより、塑性加工後の塑性加工物の硬さ及 び降伏強度を塑性加工前の铸造物に比べて向上させることができる。 また、本発明に係る高強度高靭性マグネシウム合金の製造方法においては、前記 マグネシウム合金铸造物を作る工程と前記塑性カ卩ェ物を作る工程の間に、前記マグ ネシゥム合金铸造物に均質化熱処理を施す工程を追加しても良い。この際の熱処理 条件は、温度が 400°C— 550°C、処理時間が 1分一 1500分であることが好ましい。 また、本発明に係る高強度高靭性マグネシウム合金の製造方法においては、前記 塑性加工物を作る工程の後に、前記塑性加工物に熱処理を施す工程を追加しても 良い。この際の熱処理条件は、温度が 150°C— 450°C、処理時間が 1分一 1500分 であることが好ましい。
[0040] 本発明に係る高強度高靭性マグネシウム合金の製造方法は、 Znを a原子%含有し 、 Dy、 Ho及び Er力 なる群力 選択される少なくとも 1種の元素を合計で b原子%含 有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造 物を作る工程と、
前記マグネシウム合金に塑性カ卩ェを行うことにより塑性カ卩ェ物を作る工程と、 を具備することを特徴とする高強度高靭性マグネシウム合金の製造方法。
(1) 0. 2≤a≤3. 0
(2) 0. 2≤b≤5. 0
(3) 2a-3≤b
また、本発明に係る高強度高靭性マグネシウム合金の製造方法において、前記マ グネシゥム合金铸造物は hep構造マグネシウム相及び長周期積層構造相を有するこ とが好ましい。
[0041] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに Yb、 Tb、 Sm及び Ndからなる群カゝら選択される少なくとも 1種の元素を合計で c 原子%含有し、 cは下記式 (4)及び(5)を満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[0042] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群から選択される少なくとも 1種の元素を 合計で c原子%含有し、 cは下記式 (4)及び (5)を満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[0043] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに Yb、 Tb、 Sm及び Ndからなる群カゝら選択される少なくとも 1種の元素を合計で c 原子%含有し、 La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群から選択される少なくとも 1 種の元素を合計で d原子%含有し、 c及び dは下記式 (4)一 (6)を満たすことも可能 である。
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. 2≤b + c + d≤6. 0
[0044] 本発明に係る高強度高靭性マグネシウム合金の製造方法は、 Znを a原子%含有し 、 Dy、 Ho及び Er力 なる群力 選択される少なくとも 1種の元素を合計で b原子%含 有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造 物を作る工程と、
前記マグネシウム合金を切削することによってチップ形状の切削物を作る工程と、 前記切削物に塑性加工による固化を行うことにより塑性加工物を作る工程と、 を具備することを特徴とする高強度高靭性マグネシウム合金の製造方法。
(1) 0. l≤a≤5. 0
(2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[0045] 本発明に係る高強度高靭性マグネシウム合金の製造方法は、 Znを a原子%含有し 、 Dy、 Ho及び Er力 なる群力 選択される少なくとも 1種の元素を合計で b原子%含 有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金铸造 物を作る工程と、
前記マグネシウム合金を切削することによってチップ形状の切削物を作る工程と、 前記切削物に塑性加工による固化を行うことにより塑性加工物を作る工程と、 を具備することを特徴とする高強度高靭性マグネシウム合金の製造方法。 (1) 0. l≤a≤3. 0
(2) 0. l≤b≤5. 0
(3) 2a-3≤b
また、本発明に係る高強度高靭性マグネシウム合金の製造方法において、前記マ グネシゥム合金铸造物は hep構造マグネシウム相及び長周期積層構造相を有するこ とが好ましい。
[0046] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに Yb、 Tb、 Sm及び Ndからなる群カゝら選択される少なくとも 1種の元素を合計で c 原子%含有し、 cは下記式 (4)及び(5)を満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[0047] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群から選択される少なくとも 1種の元素を 合計で c原子%含有し、 cは下記式 (4)及び (5)を満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[0048] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに Yb、 Tb、 Sm及び Ndからなる群カゝら選択される少なくとも 1種の元素を合計で c 原子%含有し、 La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群から選択される少なくとも 1 種の元素を合計で d原子%含有し、 c及び dは下記式 (4)一 (6)を満たすことも可能 である。
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. l≤b + c + d≤6. 0
[0049] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに Al、 Th、 Ca、 Siゝ Mn、 Zr、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge 、 Bi、 Ga、 In、 Ir、 Li、 Pd、 Sb及び Vからなる群から選択される少なくとも 1種の元素 を合計で 0原子%超 2. 5原子%以下含有することも可能である。 [0050] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記塑 性カロェは、圧延、押出し、 ECAE、引抜力卩ェ、鍛造、プレス、転造、曲げ、 FSW加工 及びこれらの繰り返しカ卩ェのうち少なくとも一つを行うものであることも可能である。つ まり、前記塑性加工は、圧延、押出し、 ECAE、引抜力卩ェ、鍛造、プレス、転造、曲げ 、 FSW加ェのうち単独でも組み合わせでも可能である。
[0051] また、本発明に係る高強度高靭性マグネシウム合金の製造方法において、前記塑 性力卩ェを行う際の総歪量は 15以下であることが好ましぐまた、より好ましい総歪量は 10以下である。また、前記塑'性力卩ェを行う際の 1回あたりの歪量は 0. 002以上 4. 6 以下であることが好ましい。
[0052] 尚、総歪量とは、焼鈍しなどの熱処理によってキャンセルされない総歪量を意味す る。つまり、製造工程の途中で熱処理を行ってキャンセルされた歪については総歪量 にカウントされない。
[0053] 但し、チップ形状の切削物を作る工程を行う高強度高靭性マグネシウム合金の場 合は、最終的に固化成形に供するものを作った後に塑性加工を行った際の総歪量 を意味する。つまり、最終的に固化成形に供するものを作るまでの歪量については 総歪量にカウントされない。前記最終的に固化成形に供するものとは、チップ材の接 合性が悪ぐ引張強度が 200MPa以下のものを指す。また、チップ材の固化成形は、 押出、圧延、鍛造、プレス、 ECAEなどを用いたものである。固化成形後には、圧延、 押出、 ECAE、引き抜き、鍛造、プレス、転造、曲げ、 FSWなどを適用しても良い。ま た、最終的な固化成形前に、チップ材をボールミル、繰り返し鍛造、スタンビングミル 、など種々の塑性カ卩ェをカ卩えることもできる。
[0054] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記塑 性加工物を作る工程の後に、前記塑性加工物に熱処理を行う工程をさらに具備する ことも可能である。これにより、熱処理後の塑性加工物の硬さ及び降伏強度を熱処理 前に比べてさらに向上させることができる。
[0055] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記熱 処理の条件は、 200°C以上 500°C未満で 10分以上 24時間未満であることが好まし い。 [0056] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記塑 性力卩ェを行った後のマグネシウム合金における hep構造マグネシウム相の転移密度 は長周期積層構造相の転位密度に比べて 1桁以上大きいことが好ましい。
発明の効果
[0057] 以上説明したように本発明によれば、マグネシウム合金の拡大した用途に対して強 度及び靭性ともに実用に供するレベルにある高強度高靭性マグネシウム合金及びそ の製造方法を提供することができる。
発明を実施するための形態
[0058] 以下、本発明の実施の形態について説明する。
本発明者は、基本に立ち返り、 2元マグネシウム合金カゝら始めて合金の強度及び靭 性を検討し、更にその検討を多元マグネシウム合金まで拡大した。その結果、強度及 び靭性とも高 ヽレベルで有するマグネシウム合金は Mg— Zn— RE (希土類元素)系で あり、希土類元素が Y、 Dy、 Ho及び Er力 なる群力 選択される少なくとも 1種の元 素であるマグネシウム合金であり、更に従来技術とは異なり亜鉛の含有量が 5. 0原 子%以下で希土類元素の含有量が 5. 0原子%以下という低含有量において従来に ない高強度及び高靭性が得られることを見出した。
[0059] 長周期積層構造相が形成される铸造合金は、塑性加工後あるいは塑性加工後に 熱処理を施すことによって、高強度 ·高延性.高靭性のマグネシウム合金が得られるこ とが分力ゝつた。また、長周期積層構造が形成されて、塑性加工後あるいは塑性加工 熱処理後に高強度 ·高延性 ·高靭性が得られる合金組成を見出した。
[0060] また、長周期積層構造が形成される铸造合金を切削することによってチップ形状の 铸造物を作り、この铸造物に塑性加工を行い、あるいは塑性加工後に熱処理を施す ことによって、チップ形状に切削する工程を行わない場合に比べて、より高強度'高 延性 ·高靭性のマグネシウム合金が得られることが分力つた。また、長周期積層構造 が形成されて、チップ形状に切削し、塑性加工後あるいは塑性加工熱処理後に高強 度 ·高延性,高靭性が得られる合金組成を見出した。
[0061] 長周期積層構造相を有する金属を塑性加工することによって長周期積層構造相の 少なくとも一部を湾曲又は屈曲させることができる。それにより高強度 ·高延性 *高靭 性の金属が得られることを見出した。
[0062] また、湾曲又は屈曲した長周期積層構造相にはランダム粒界が含まれている。この ランダム粒界によってマグネシウム合金が高強度化され、高温での粒界すべりが抑 制されると考えられ、高温で高強度が得られる。
[0063] また、 hep構造マグネシウム相に高密度の転位を含むことによりマグネシウム合金が 高強度化され、長周期積層構造相の転位密度が低いことによりマグネシウム合金の 延性の向上と高強度化が実現されると考えられる。前記長周期積層構造相の転位密 度は前記 hep構造マグネシウム相の転位密度に比べて少なくとも 1桁小さいことが好 ましい。
[0064] (実施の形態 1)
本発明の実施の形態 1によるマグネシウム合金は、基本的に Mg、 Zn及び希土類 元素を含む 3元以上の合金であり、希土類元素は、 Dy、 Ho及び Erからなる群から選 択される 1又は 2以上の元素である。
[0065] このマグネシウム合金の組成範囲は、図 8に示す A— B— C D— Eの線で囲む範囲 である。すなわち、亜鉛の含有量を a原子%とし、 1又は 2以上の希土類元素の含有 量を合計で b原子%とすると、 aと bは下記式(1)一 (3)を満たすものとなる。
(1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[0066] また、希土類元素が Dy、 Ho及び Er力 なる群力 選択される 1又は 2以上の元素 である場合のマグネシウム合金においては、さらに、 Yおよび Zまたは Gdを合計で y 原子%含有しても良く、 yは下記式 (4)及び (5)を満たすことが好ま 、。
(4) 0≤y≤4. 8
(5) 0. 2≤b+y≤5. 0
[0067] 亜鉛の含有量が 5原子%以上であると、特に靭性 (又は延性)が低下する傾向があ る力らである。また 1又は 2以上の希土類元素の含有量が合計で 5原子%以上である と、特に靭性 (又は延性)が低下する傾向があるからである。
[0068] また亜鉛の含有量が 0. 2原子%未満、又は希土類元素の含有量が合計で 0. 2原 子%未満であると強度及び靭性の少なくともいずれかが不十分になる。従って、亜鉛 の含有量の下限を 0. 2原子%とし、希土類元素の合計含有量の下限を 0. 2原子% とする。
[0069] 強度及び靭性の増大は亜鉛が 0. 2-1. 5原子%において顕著になる。亜鉛含有 量が 0. 2原子%付近において希土類元素含有量が少なくなると強度が低下する傾 向があるが、その範囲の場合でも従来よりも高強度及び高靭性を示す。従って、本実 施の形態のマグネシウム合金における亜鉛の含有量の範囲は最も広くて 0. 2原子% 以上 5. 0原子%以下である。
[0070] 本実施の形態の Mg— Zn— RE系マグネシウム合金では、前述した範囲の含有量を 有する亜鉛と希土類元素以外の成分がマグネシウムとなるが、合金特性に影響を与 えな 、程度の不純物を含有しても良 、。
また、前記希土類元素が Dy、 Ho及び Er力 なる群力 選択される 1又は 2以上の 元素である場合のマグネシウム合金の組成範囲を前記式(1)一 (3)を満たすものとし て 、るが、より好まし 、組成範囲としては下記式(1 ' )一(3 ' )を満たすものである。
(1,)0. 2≤a≤3. 0
(2' ) 0. 2≤b≤5. 0
(3' ) 2a-3≤b
[0071] (実施の形態 2)
本発明の実施の形態 2によるマグネシウム合金は、基本的に Mg、 Zn及び希土類 元素を含む 4元以上の合金であり、希土類元素は、 Dy、 Ho及び Erからなる群から選 択される 1又は 2以上の元素であり、第 4元素は、 Yb、 Tb、 Sm及び Ndからなる群か ら選択される 1又は 2以上の元素である。
[0072] このマグネシウム合金の組成範囲は、亜鉛の含有量を a原子%とし、 1又は 2以上の 希土類元素の含有量を合計で b原子%とし、 1又は 2以上の第 4元素の合計含有量 を c原子%とすると、 a、 b及び cは下記式(1)一(5)を満たすものとなる。
(1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0
(3) 0. 5a— 0. 5≤b (4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[0073] 亜鉛の含有量を 5原子%以下とする理由、 1又は 2以上の希土類元素の含有量が 合計で 5原子%以下とする理由、亜鉛の含有量が 0. 2原子%以上とする理由、希土 類元素の含有量が合計で 0. 2原子%以上とする理由は、実施の形態 1と同様である 。また、第 4元素の含有量の上限を 3. 0原子%とした理由は、第 4元素の固溶限が低 いからである。また、第 4元素を含有させる理由は、結晶粒を微細化させる効果があ ること、金属間化合物を析出させる効果があることによる。
[0074] 本実施の形態の Mg— Zn— RE系マグネシウム合金においても、合金特性に影響を 与えな 、程度の不純物を含有しても良 、。
また、前記希土類元素が Dy、 Ho及び Er力 なる群力 選択される 1又は 2以上の 元素である場合のマグネシウム合金の組成範囲を前記式(1)一 (5)を満たすものとし て 、るが、より好まし 、組成範囲としては下記式(1 ' )一(5 ' )を満たすものである。
(1,)0. 2≤a≤3. 0
(2' ) 0. 2≤b≤5. 0
(3' ) 2a-3≤b
(4,)0≤c≤3. 0
(5,)0. 2≤b + c≤6. 0
[0075] (実施の形態 3)
本発明の実施の形態 3によるマグネシウム合金は、基本的に Mg、 Zn及び希土類 元素を含む 4元以上の合金であり、希土類元素は、 Dy、 Ho及び Erからなる群から選 択される 1又は 2以上の元素であり、第 4元素は、 La、 Ce、 Pr、 Eu、 Mm及び Gdから なる群力も選択される 1又は 2以上の元素である。尚、 Mm (ミッシュメタル)とは、 Ce 及び Laを主成分とする複数の希土類元素の混合物又は合金であり、鉱石力 有用 な希土類元素である Smや Ndなどを精鍊除去した後の残渣であり、その組成は精鍊 前の鉱石の組成に依存するものである。
[0076] 本実施の形態によるマグネシウム合金の組成範囲は、 Znの含有量を a原子%とし、 1又は 2以上の希土類元素の含有量を b原子%とし、 1又は 2以上の第 4元素の含有 量を合計で c原子%とすると、 a、 b及び cは下記式(1)一(5)を満たすものとなる。
(1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0
(3) 0. 5a— 0. 5≤b
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[0077] 亜鉛の含有量を 5原子%以下とする理由、 1又は 2以上の希土類元素の含有量が 合計で 5原子%以下とする理由、亜鉛の含有量が 0. 2原子%以上とする理由、希土 類元素の含有量が合計で 0. 2原子%以上とする理由は、実施の形態 1と同様である 。また、第 4元素の含有量の上限を 3. 0原子%とした主な理由は、第 4元素の固溶限 が殆ど無いからである。また、第 4元素を含有させる理由は、結晶粒を微細化させる 効果があること、金属間化合物を析出させる効果があることによる。
[0078] 本実施の形態の Mg— Zn— RE系マグネシウム合金においても、合金特性に影響を 与えな 、程度の不純物を含有しても良 、。
また、前記希土類元素が Dy、 Ho及び Er力 なる群力 選択される 1又は 2以上の 元素である場合のマグネシウム合金の組成範囲を前記式(1)一 (5)を満たすものとし て 、るが、より好まし 、組成範囲としては下記式(1 ' )一(5 ' )を満たすものである。
(1,)0. 2≤a≤3. 0
(2' ) 0. 2≤b≤5. 0
(3 ' ) 2a-3≤b
(4,)0≤c≤3. 0
(5,)0. 2≤b + c≤6. 0
[0079] (実施の形態 4)
本発明の実施の形態 4によるマグネシウム合金は、基本的に Mg、 Zn及び希土類 元素を含む 5元以上の合金であり、希土類元素は、 Dy、 Ho及び Erからなる群から選 択される 1又は 2以上の元素であり、第 4元素は、 Yb、 Tb、 Sm及び Ndからなる群か ら選択される 1又は 2以上の元素であり、第 5元素は、 La、 Ce、 Pr、 Eu、 Mm及び Gd 力もなる群力 選択される 1又は 2以上の元素である。 [0080] このマグネシウム合金の組成範囲は、 Znの含有量を a原子%とし、 1又は 2以上の 希土類元素の合計含有量を b原子%とし、 1又は 2以上の第 4元素の含有量を合計 で c原子%とし、 1又は 2以上の第 5元素の含有量を合計で d原子%とすると、 a、 b、 c 及び dは下記式(1)一 (6)を満たすものとなる。
(1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0
(3) 0. 5a— 0. 5≤b
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. 2≤b + c + d≤6. 0
[0081] 希土類元素、第 4元素及び第 5元素の合計含有量を 6. 0原子%以下とする理由は 、 6%を超えると重くなり、原料コストが高くなり、さらに靭性が低下するからである。希 土類元素、第 4元素及び第 5元素の合計含有量を 0. 2原子%以上とする理由は、 0 . 2原子%未満とすると強度が不十分となるからである。また、第 4元素、第 5元素を 含有させる理由は、結晶粒を微細化させる効果があること、金属間化合物を析出させ る効果があることによる。
[0082] 本実施の形態の Mg— Zn— RE系マグネシウム合金においても、合金特性に影響を 与えな 、程度の不純物を含有しても良 、。
また、前記希土類元素が Dy、 Ho及び Er力 なる群力 選択される 1又は 2以上の 元素である場合のマグネシウム合金の組成範囲を前記式(1)一 (6)を満たすものとし て 、るが、より好まし 、組成範囲としては下記式(1 ' )一(6 ' )を満たすものである。
(1,)0. 2≤a≤3. 0
(2' ) 0. 2≤b≤5. 0
(3 ' ) 2a-3≤b
(4,)0≤c≤3. 0
(5,)0≤d≤3. 0
(6 ' ) 0. 2≤b + c + d≤6. 0
[0083] (実施の形態 5) 本発明の実施の形態 5によるマグネシウム合金としては、実施の形態 1一 4の組成 に Meをカ卩えたマグネシウム合金が挙げられる。但し、 Meは Al、 Th、 Ca、 Si、 Mn、 Z r、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge、 Bi、 Ga、 In、 Ir、 Li、 Pd、 Sb 及び V力もなる群力 選択される少なくとも 1種の元素である。この Meの含有量は 0 原子%超 2. 5原子%以下とする。 Meを添加すると、高強度高靭性を維持したまま、 他の性質を改善することができる。例えば、耐食性や結晶粒微細化などに効果があ る。
[0084] (実施の形態 6)
本発明の実施の形態 6によるマグネシウム合金の製造方法について説明する。 実施の形態 1一 5のいずれかの組成カゝらなるマグネシウム合金を溶解して铸造し、 マグネシウム合金铸造物を作る。铸造時の冷却速度は 1000KZ秒以下であり、より 好ましくは 100KZ秒以下である。铸造プロセスとしては、種々のプロセスを用いるこ とが可能であり、例えば、高圧铸造、ロールキャスト、傾斜板铸造、連続铸造、チクソ モールディング、ダイカストなどを用いることが可能である。また、マグネシウム合金铸 造物を所定形状に切り出したものを用いてもょ 、。
次いで、マグネシウム合金铸造物に均質ィ匕熱処理を施しても良い。この際の熱処 理条件は、温度が 400°C— 550°C、処理時間が 1分一 1500分 (又は 24時間)とする ことが好ましい。
[0085] 次に、前記マグネシウム合金铸造物に塑性カ卩ェを行う。この塑性カ卩ェの方法として は、例えば押出し、 ECAE(equa卜 channd- angular- extrusion)加工法、圧延、引抜及 び鍛造、 FSW(friction stir welding;摩擦撹拌溶接)加工、プレス、転造、曲げ、これら の繰り返しカ卩ェなどを用いる。
押出しによる塑性カ卩ェを行う場合は、押出し温度を 250°C以上 500°C以下とし、押 出しによる断面減少率を 5%以上とすることが好ましい。
[0086] ECAE加工法は、試料に均一なひずみを導入するためにパス毎に試料長手方向 を 90° ずつ回転させる方法である。具体的には、断面形状が L字状の成形孔を形成 した成形用ダイの前記成形孔に、成形用材料であるマグネシウム合金铸造物を強制 的に進入させて、特に L状成形孔の 90° に曲げられた部分で前記マグネシウム合金 铸造物に応力を加えて強度及び靭性が優れた成形体を得る方法である。 ECAEの パス回数としては 1一 8パスが好ましい。より好ましくは 3— 5パスである。 ECAEのカロ ェ時の温度は 250°C以上 500°C以下が好ましい。
[0087] 圧延による塑性カ卩ェを行う場合は、圧延温度を 250°C以上 500°C以下とし、圧下 率を 5%以上とすることが好ま U、。
[0088] 引抜カ卩ェによる塑性カ卩ェを行う場合は、引抜力卩ェを行う際の温度が 250°C以上 50
0°C以下、前記引抜力卩ェの断面減少率が 5%以上であることが好ましい。
鍛造による塑性カ卩ェを行う場合は、鍛造力卩ェを行う際の温度が 250°C以上 500°C 以下、前記鍛造力卩ェの加工率が 5%以上であることが好ましい。
[0089] 前記マグネシウム合金铸造物に行う塑性カ卩ェは、 1回あたりの歪量が 0. 002以上 4
. 6以下であって総歪量が 15以下であることが好ましい。また、前記塑性加工は、 1回 あたりの歪量が 0. 002以上 4. 6以下であって総歪量が 10以下であることがより好ま しい。
[0090] 尚、 ECAE加工の歪量は 0. 95-1. 15Z回であり、例えば ECAE加工を 16回行 つた場合の総歪量は 0. 95 X 16 = 15. 2となり、 ECAE加工を 8回行った場合の総 歪量は 0. 95 X 8 = 7. 6となる。
また、押出し力卩ェの歪量は、押出し比が 2. 5の場合が 0. 92Z回であり、押出し比 力 S4の場合が 1. 39Z回であり、押出し比が 10の場合が 2. 30Z回であり、押出し比 力 S20の場合が 2. 995Z回であり、押出し比が 50の場合が 3. 91Z回であり、押出し 比が 100の場合が 4. 61/回であり、押出し比が 1000の場合が 6. 90Z回である。
[0091] 上記のようにマグネシウム合金铸造物に塑性カ卩ェを行った塑性カ卩ェ物は、常温に ぉ ヽて hep構造マグネシウム相及び長周期積層構造相の結晶組織を有し、この長周 期積層構造相を持つ結晶粒の体積分率は 5%以上 (より好ましくは 10%以上)となり 、前記 hep構造マグネシウム相の平均粒径は 2 m以上であり、前記長周期積層構 造相の平均粒径は 0. 2 m以上である。この長周期積層構造相の結晶粒内には複 数のランダム粒界が存在し、このランダム粒界で規定される結晶粒の平均粒径は 0. 05 /z m以上である。ランダム粒界においては転移密度が大きいが、長周期積層構造 相におけるランダム粒界以外の部分の転位密度は小さい。従って、 hep構造マグネ シゥム相の転移密度は、長周期積層構造相におけるランダム粒界以外の部分の転 位密度に比べて 1桁以上大きい。
[0092] 前記長周期積層構造相の少なくとも一部は湾曲又は屈曲している。また、前記塑 性力卩ェ物は、 Mgと希土類元素の化合物、 Mgと Znの化合物、 Znと希土類元素の化 合物及び Mgと Znと希土類元素の化合物力もなる析出物群力も選択される少なくとも 1種類の析出物を有していても良い。前記析出物の合計体積分率は 0%超 40%以 下であることが好ましい。また、前記塑性カ卩ェ物は hep— Mgを有する。前記塑性加工 を行った後の塑性カ卩ェ物については、塑性カ卩ェを行う前の铸造物に比べてピッカー ス硬度及び降伏強度がともに上昇する。
[0093] 前記マグネシウム合金铸造物に塑性加工を行った後の塑性加工物に熱処理を施 しても良い。この熱処理条件は、温度が 200°C以上 500°C未満、熱処理時間が 10分 一 1500分 (又は 24時間)とすることが好ましい。熱処理温度を 500°C未満とするのは 、 500°C以上とすると、塑性カ卩ェによって加えられた歪量がキャンセルされてしまうか らである。
[0094] この熱処理を行った後の塑性加工物については、熱処理を行う前の塑性加工物に 比べてビッカース硬度及び降伏強度がともに上昇する。また、熱処理後の塑性加工 物にも熱処理前と同様に、常温において hep構造マグネシウム相及び長周期積層構 造相の結晶組織を有し、この長周期積層構造を持つ結晶粒の体積分率は 5%以上( より好ましくは 10%以上)となり、前記 hep構造マグネシウム相の平均粒径は 2 m以 上であり、前記長周期積層構造相の平均粒径は 0. 2 m以上である。この長周期積 層構造相の結晶粒内には複数のランダム粒界が存在し、このランダム粒界で規定さ れる結晶粒の平均粒径は 0. 05 /z m以上である。ランダム粒界においては転移密度 が大きいが、長周期積層構造相におけるランダム粒界以外の部分の転位密度は小 さい。従って、 hep構造マグネシウム相の転移密度は、長周期積層構造相におけるラ ンダム粒界以外の部分の転位密度に比べて 1桁以上大きい。
[0095] 前記長周期積層構造相の少なくとも一部は湾曲又は屈曲している。また、前記塑 性力卩ェ物は、 Mgと希土類元素の化合物、 Mgと Znの化合物、 Znと希土類元素の化 合物及び Mgと Znと希土類元素の化合物力もなる析出物群力も選択される少なくとも 1種類の析出物を有していても良い。前記析出物の合計体積分率は 0%超 40%以 下であることが好ましい。
[0096] 上記実施の形態 1一 6によれば、マグネシウム合金の拡大した用途、例えば強度及 び靭性共に高性能が要求されるハイテク用合金としての用途に対して、強度及び靭 性ともに実用に供するレベルにある高強度高靭性マグネシウム合金及びその製造方 法を提供することができる。
[0097] (実施の形態 7)
本発明の実施の形態 7によるマグネシウム合金は、铸造物を切削することによって 作られた複数の数 mm角以下のチップ形状铸造物に適用するものであり、基本的に Mg、 Zn及び希土類元素を含む 3元又は 4元以上の合金であり、希土類元素は、 Dy 、 Ho及び Er力 なる群力 選択される 1又は 2以上の元素である。
[0098] このマグネシウム合金の組成範囲は、図 9に示す A— B— C D— Eの線で囲む範囲 である。すなわち、亜鉛の含有量を a原子%とし、 1又は 2以上の希土類元素の含有 量を合計で b原子%とすると、 aと bは下記式(1)一 (3)を満たすものとなる。
(1) 0. l≤a≤5. 0
(2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[0099] また、希土類元素が Dy、 Ho及び Er力 なる群力 選択される 1又は 2以上の元素 である場合のマグネシウム合金にぉ ヽては、 Yおよび Zまたは Gdを合計で y原子% 含有しても良く、 yは下記式 (4)及び (5)を満たすことが好ま 、。
(4) 0≤y≤4. 9
(5) 0. l≤b+y≤5. 0
[0100] 亜鉛の含有量が 5原子%以上であると、特に靭性 (又は延性)が低下する傾向があ る力らである。また 1又は 2以上の希土類元素の含有量が合計で 5原子%以上である と、特に靭性 (又は延性)が低下する傾向があるからである。
[0101] また亜鉛の含有量が 0. 1原子%未満、又は希土類元素の含有量が合計で 0. 1原 子%未満であると強度及び靭性の少なくともいずれかが不十分になる。従って、亜鉛 の含有量の下限を 0. 1原子%とし、希土類元素の合計含有量の下限を 0. 1原子% とする。このように亜鉛の含有量及び希土類元素の合計含有量それぞれの下限を実 施の形態 1に比べて 1Z2と低くできるのは、チップ形状铸造物に適用するからである
[0102] 強度及び靭性の増大は亜鉛が 0. 5-1. 5原子%において顕著になる。亜鉛含有 量が 0. 5原子%付近において希土類元素含有量が少なくなると強度が低下する傾 向があるが、その範囲の場合でも従来よりも高強度及び高靭性を示す。従って、本実 施の形態のマグネシウム合金における亜鉛の含有量の範囲は最も広くて 0. 1原子% 以上 5. 0原子%以下である。
[0103] 本実施の形態の Mg— Zn— RE系マグネシウム合金では、前述した範囲の含有量を 有する亜鉛と希土類元素以外の成分がマグネシウムとなるが、合金特性に影響を与 えな 、程度の不純物を含有しても良 、。
また、前記希土類元素が Dy、 Ho及び Er力 なる群力 選択される 1又は 2以上の 元素である場合のマグネシウム合金の組成範囲を前記式(1)一 (3)を満たすものとし て 、るが、より好まし 、組成範囲としては下記式(1 ' )一(3 ' )を満たすものである。
(1,)0. l≤a≤3. 0
(2' ) 0. l≤b≤5. 0
(3' ) 2a-3≤b
[0104] (実施の形態 8)
本発明の実施の形態 8によるマグネシウム合金は、铸造物を切削することによって 作られた複数の数 mm角以下のチップ形状铸造物に適用するものであり、基本的に Mg、 Zn及び希土類元素を含む 4元以上の合金であり、希土類元素は、 Dy、 Ho及 び Erからなる群から選択される 1又は 2以上の元素であり、第 4元素は、 Yb、 Tb、 Sm 及び Ndからなる群力 選択される 1又は 2以上の元素である。
[0105] 本実施の形態によるマグネシウム合金の組成範囲は、亜鉛の含有量を a原子%とし 、 1又は 2以上の希土類元素の含有量を合計で b原子%とし、 1又は 2以上の第 4元 素の含有量を合計で c原子%とすると、 a、 b及び cは下記式(1)一(5)を満たすものと なる。
(1) 0. l≤a≤5. 0 (2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[0106] 本実施の形態の Mg— Zn— RE系マグネシウム合金においても、合金特性に影響を 与えな 、程度の不純物を含有しても良 、。
また、前記希土類元素が Dy、 Ho及び Er力 なる群力 選択される 1又は 2以上の 元素である場合のマグネシウム合金の組成範囲を前記式(1)一 (3)を満たすものとし て 、るが、より好まし 、組成範囲としては下記式(1 ' )一(3 ' )を満たすものである。
(1,)0. l≤a≤3. 0
(2' ) 0. l≤b≤5. 0
(3' ) 2a-3≤b
[0107] (実施の形態 9)
本発明の実施の形態 9によるマグネシウム合金は、铸造物を切削することによって 作られた複数の数 mm角以下のチップ形状铸造物に適用するものであり、基本的に Mg、 Zn及び希土類元素を含む 4元又は 5元以上の合金であり、希土類元素は、 Dy 、 Ho及び Er力もなる群力も選択される 1又は 2以上の元素であり、第 4元素は、 La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群から選択される 1又は 2以上の元素である。
[0108] 本実施の形態によるマグネシウム合金の組成範囲は、 Znの含有量を a原子%とし、 1又は 2以上の希土類元素の含有量を合計で b原子%とし、 1又は 2以上の第 4元素 の含有量を合計で c原子%とすると、 a、 b及び cは下記式(1)一(5)を満たすものとな る。
(1) 0. l≤a≤5. 0
(2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[0109] 亜鉛の含有量を 5原子%以下とする理由、 1又は 2以上の希土類元素の含有量が 合計で 5原子%以下とする理由、亜鉛の含有量を 0. 1原子%以上とする理由、希土 類元素の含有量を 0. 1原子%以上とする理由は、実施の形態 7と同様である。また、 第 4元素の含有量の上限を 3. 0原子%とした理由は、第 4元素の固溶限が殆ど無い 力もである。また、第 4元素を含有させる理由は、結晶粒を微細化させる効果があるこ と、金属間化合物を析出させる効果があることによる。
[0110] 本実施の形態の Mg— Zn— RE系マグネシウム合金にぉ 、ても、合金特性に影響を 与えな 、程度の不純物を含有しても良 、。
また、前記希土類元素が Dy、 Ho及び Er力 なる群力 選択される 1又は 2以上の 元素である場合のマグネシウム合金の組成範囲を前記式(1)一 (3)を満たすものとし て 、るが、より好まし 、組成範囲としては下記式(1 ' )一(3 ' )を満たすものである。
(1,)0. l≤a≤3. 0
(2' ) 0. l≤b≤5. 0
(3' ) 2a-3≤b
[0111] (実施の形態 10)
本発明の実施の形態 10によるマグネシウム合金は、铸造物を切削することによって 作られた複数の数 mm角以下のチップ形状铸造物に適用するものであり、基本的に Mg、 Zn及び希土類元素を含む 5元以上の合金であり、希土類元素は、 Dy、 Ho及 び Erからなる群から選択される 1又は 2以上の元素であり、第 4元素は、 Yb、 Tb、 Sm 、 Nd及び Gdからなる群力も選択される 1又は 2以上の元素であり、第 5元素は、 La、 Ce、 Pr、 Eu及び Mmからなる群から選択される 1又は 2以上の元素である。
[0112] 本実施の形態によるマグネシウム合金の組成範囲は、 Znの含有量を a原子%とし、 1又は 2以上の希土類元素の含有量を合計で b原子%とし、 1又は 2以上の第 4元素 の含有量を合計で c原子%とし、 1又は 2以上の第 5元素の含有量を合計で d原子% とすると、 a、 b、 c及び dは下記式(1)一(4)を満たすものとなる。
(1) 0. l≤a≤5. 0
(2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
(4) 0≤c≤3. 0 (5) 0≤d≤3. 0
(6) 0. l≤b + c + d≤6. 0
[0113] 希土類元素、第 4元素及び第 5元素の合計含有量を 6. 0原子%未満とする理由、 希土類元素、第 4元素及び第 5元素の合計含有量を 0. 1原子%超とする理由は、実 施の形態 4と同様である。
[0114] 本実施の形態の Mg— Zn— RE系マグネシウム合金にぉ 、ても、合金特性に影響を 与えな 、程度の不純物を含有しても良 、。
また、前記希土類元素が Dy、 Ho及び Er力 なる群力 選択される 1又は 2以上の 元素である場合のマグネシウム合金の組成範囲を前記式(1)一 (3)を満たすものとし て 、るが、より好まし 、組成範囲としては下記式(1 ' )一(3 ' )を満たすものである。
(1,)0. l≤a≤3. 0
(2' ) 0. l≤b≤5. 0
(3' ) 2a-3≤b
[0115] (実施の形態 11)
本発明の実施の形態 11によるマグネシウム合金としては、実施の形態 7— 10の組 成に Meをカ卩えたマグネシウム合金が挙げられる。但し、 Meは Al、 Th、 Ca、 Si、 Mn 、 Zr、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge、 Bi、 Ga、 In、 Ir、 Li、 Pd、 Sb及び Vからなる群力 選択される少なくとも 1種の元素である。この Meの含有量は 0原子%超 2. 5原子%以下とする。 Meを添加すると、高強度高靭性を維持したまま 、他の性質を改善することができる。例えば、耐食性や結晶粒微細化などに効果があ る。
[0116] (実施の形態 12)
本発明の実施の形態 12によるマグネシウム合金の製造方法について説明する。 実施の形態 7— 11の 、ずれかの組成力 なるマグネシウム合金を溶解して铸造し、 マグネシウム合金铸造物を作る。铸造時の冷却速度は 1000KZ秒以下であり、より 好ましくは 100KZ秒以下である。このマグネシウム合金铸造物としては、インゴットか ら所定形状に切り出したものを用いる。
[0117] 次いで、マグネシウム合金铸造物に均質ィ匕熱処理を施しても良い。この際の熱処 理条件は、温度が 400°C— 550°C、処理時間が 1分一 1500分 (又は 24時間)とする ことが好ましい。
次いで、このマグネシウム合金铸造物を切削することによって複数の数 mm角以下 のチップ形状铸造物を作製する。
[0118] 次いで、チップ形状铸造物を圧縮又は塑性加工法的手段を用いて予備成形し、均 質化熱処理を施しても良い。この際の熱処理条件は、温度が 400°C— 550°C、処理 時間が 1分一 1500分 (又は 24時間)とすることが好ましい。また、前記予備成形した 成形物に、 150°C— 450°Cの温度で 1分一 1500分(又は 24時間)の熱処理を施し ても良い。
チップ形状の铸造物は例えばチクソ一モールドの原料に一般的に用いられている 尚、チップ形状铸造物とセラミック粒子とを混合したものを圧縮又は塑性加工法的 手段を用いて予備成形し、均質化熱処理を施しても良い。また、チップ形状铸造物を 予備成形する前に、付加的に強歪加工を施しても良い。
[0119] 次に、前記チップ形状铸造物に塑性加工を行うことにより、チップ形状铸造物を固 化成形する。この塑性加工の方法としては、実施の形態 6の場合と同様に種々の方 法を用いることができる。尚、このチップ形状铸造物を固化成形する前に、ボールミル やスタンプミル、高エネルギーボールミルなどのメカ-カルァロイング、あるいはバル クメカ-カルァロイングなどの繰り返しカ卩ェ処理を加えても良い。また、固化成形後に 、さらに塑性カ卩ェゃブラストカ卩ェをカ卩えても良い。また、前記マグネシウム合金铸造 物を金属間化合物粒子あるいはセラミック粒子や繊維などと複合ィ匕しても良いし、前 記切削物をセラミック粒子や繊維などと混合しても良い。
[0120] このように塑性カ卩ェを行った塑性カ卩ェ物は、常温において hep構造マグネシウム相 及び長周期積層構造相の結晶組織を有する。この長周期積層構造相の少なくとも一 部は湾曲又は屈曲して 、る。前記塑性カ卩ェを行った後の塑性カ卩ェ物にっ 、ては、 塑性加工を行う前の铸造物に比べてビッカース硬度及び降伏強度がともに上昇する
[0121] 前記チップ形状铸造物に塑性加工を行う際の総歪量は 15以下であることが好まし ぐまた、より好ましい総歪量は 10以下である。また、前記塑性加工を行う際の 1回あ たりの歪量は 0. 002以上 4. 6以下であることが好ましい。
尚、ここでいう総歪量とは、焼鈍しなどの熱処理によってキャンセルされない総歪量 であって、チップ形状铸造物を予備成形した後に塑性加工を行った際の総歪量を意 味する。つまり、製造工程の途中で熱処理を行ってキャンセルされた歪については総 歪量にカウントされず、また、チップ形状铸造物を予備成形するまでの歪量について は総歪量にカウントされな!/、。
[0122] 前記チップ形状铸造物に塑性加工を行った後の塑性加工物に熱処理を施しても 良い。この熱処理条件は、温度が 200°C以上 500°C未満、熱処理時間が 10分一 15 00分 (又は 24時間)とすることが好ましい。熱処理温度を 500°C未満とするのは、 50 0°C以上とすると、塑性カ卩ェによってカ卩えられた歪量がキャンセルされてしまうからで ある。
この熱処理を行った後の塑性カ卩ェ物については、熱処理を行う前の塑性カ卩ェ物に 比べてビッカース硬度及び降伏強度がともに上昇する。また、熱処理後の塑性加工 物にも熱処理前と同様に、常温において hep構造マグネシウム相及び長周期積層構 造相の結晶組織を有する。この長周期積層構造相の少なくとも一部が湾曲又は屈曲 している。
[0123] 上記実施の形態 12では、铸造物を切削することによってチップ形状铸造物を作製 することにより、組織が微細化するので、実施の形態 6に比べてよりより高強度'高延 性 ·高靭性の塑性加工物などを作製することが可能となる。また、本実施の形態によ るマグネシウム合金は実施の形態 1一 6によるマグネシウム合金に比べて亜鉛及び希 土類元素がより低濃度であっても高強度及び高靭性の特性を得ることができる。
[0124] 上記実施の形態 7— 12によれば、マグネシウム合金の拡大した用途、例えば強度 及び靭性共に高性能が要求されるハイテク用合金としての用途に対して、強度及び 靭性ともに実用に供するレベルにある高強度高靭性マグネシウム合金及びその製造 方法を提供することができる。
実施例
[0125] 以下、実施例について説明する。 [0126] 実施例 1では、 97原子%Mg— 1原子%Zn— 2原子%Dyの 3元系マグネシウム合金 を用いる。
実施例 2では、 97原子%Mg— 1原子%Zn— 2原子%Hoの 3元系マグネシウム合金 を用いる。
実施例 3では、 97原子%Mg— 1原子%Zn— 2原子%Erの 3元系マグネシウム合金 を用いる。
[0127] 実施例 4では、 96. 5原子%Mg— 1原子%Zn— 1原子%Y— 1. 5原子%Dyの 4元 系マグネシウム合金を用いる。
実施例 5では、 96. 5原子%Mg— 1原子%Zn— 1原子%Y— 1. 5原子%Erの 4元系 マグネシウム合金を用いる。
実施例 4及び 5それぞれのマグネシウム合金は、長周期積層構造を形成する希土 類元素を複合的に添加したものである。
[0128] 実施例 6では、 96. 5原子%Mg— 1原子%Zn— 1. 5原子%Y— 1原子%Dyの 4元 系マグネシウム合金を用いる。
実施例 7では、 96. 5原子%Mg— 1原子%Zn— 1. 5原子%Y— 1原子%Erの 4元系 マグネシウム合金を用いる。
[0129] 比較例 1では、 97原子%Mg— 1原子%Zn— 2原子%Laの 3元系マグネシウム合金 を用いる。
比較例 2では、 97原子%Mg— 1原子%Zn— 2原子%Ybの 3元系マグネシウム合金 を用いる。
[0130] 比較例 3では、 97原子%Mg— 1原子%Zn— 2原子%Ceの 3元系マグネシウム合金 を用いる。
比較例 4では、 97原子%Mg— 1原子%Zn— 2原子%Prの 3元系マグネシウム合金 を用いる。
比較例 5では、 97原子%Mg— 1原子%Zn— 2原子%Ndの 3元系マグネシウム合金 を用いる。
比較例 6では、 97原子%Mg— 1原子%Zn— 2原子%Smの 3元系マグネシウム合金 を用いる。 比較例 7では、 97原子%Mg— 1原子%Zn— 2原子%Euの 3元系マグネシウム合金 を用いる。
比較例 8では、 97原子%Mg— 1原子%Zn— 2原子%Tmの 3元系マグネシウム合 金を用いる。
比較例 9では、 97原子%Mg— 1原子%Zn— 2原子%Luの 3元系マグネシウム合金 を用いる。
[0131] 参考例としては、 98原子%Mg— 2原子%Yの 2元系マグネシウム合金を用いる。
[0132] (铸造材の組織観察)
まず、 Arガス雰囲気中で高周波溶解によって実施例 1一 7、比較例 1一 9及び参考 例それぞれの組成のインゴットを作製し、これらのインゴットから φ 10 X 60mmの形 状に切り出す。この切り出した铸造材の組織観察を SEM、 XRDによって行った。こ れらの結晶組織の写真を図 1一図 7に示す。
[0133] 図 1には、比較例 1、 2それぞれの結晶組織の写真が示されている。図 2には、実施 例 1一 3の結晶組織の写真が示されている。図 3には、実施例 4の結晶組織の写真が 示されている。図 4には、実施例 5の結晶組織の写真が示されている。図 5には、実 施例 6、 7の結晶組織の写真が示されている。図 6には、比較例 3— 9の結晶組織の 写真が示されている。図 7には、参考例の結晶組織の写真が示されている。
[0134] 図 1一図 5に示すように、実施例 1一 7のマグネシウム合金には長周期積層構造の 結晶組織が形成されている。これに対し、図 1、図 6及び図 7に示すように、比較例 1 一 9及び参考例それぞれのマグネシウム合金は長周期積層構造の結晶組織が形成 されていない。
[0135] 実施例 1一 7及び比較例 1一 9それぞれの結晶組織力 以下のことが確認された。
Mg— Zn— RE3元系铸造合金では、 REが Dy、 Ho、 Erの場合に長周期積層構造 が形成されるのに対し、 RE力La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Ybの場合は長周期 積層構造が形成されない。 Gdは、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Ybと少し挙動が異な つており、 Gdの単独添カ卩 (Znは必須)では長周期積層構造は形成されないが、長周 期積層構造を形成する元素である Dy、 Ho、 Erとの複合添加では 2. 5原子%でも長 周期積層構造が形成される。 また、 Yb、 Tb、 Sm、 Nd及び Gdは、 Mg— Zn—RE (RE = Dyゝ Ho、 Er)に添カ卩する 場合には、 5. 0原子%以下なら、長周期積層構造の形成を妨げない。また、 La、 Ce 、 Pr、 Eu及び Mmは、 Mg— Zn— RE (RE = Dyゝ Ho、 Er)に添カ卩する場合には、 5. 0 原子%以下なら、長周期積層構造の形成を妨げない。
[0136] 比較例 1の铸造材の結晶粒径は 10— 30 μ m程度であり、比較例 2の铸造材の結 晶粒径は 30— 100 m程度であり、実施例 1の铸造材の結晶粒径は 20— 60 mで あり、いずれも粒界に多量の晶出物が観察された。また、比較例 2の铸造材の結晶組 織では粒内に微細な析出物が存在していた。
[0137] (铸造材のビッカース硬度試験)
比較例 1及び比較例 2それぞれの铸造材をビッカース硬度試験により評価した。比 較例 1の铸造材のピツカース硬度は 75Hvであり、比較例 2の铸造材のピツカース硬 度は 69Hvであった。
[0138] (ECAE加工)
上記比較例 1、 2それぞれの铸造材に 400°Cで ECAE加工を施した。 ECAE加工 法は、試料に均一なひずみを導入するためにパス毎に試料長手方向を 90度ずつ回 転させる方法を用いて、ノ ス回数を 4回及び 8回で行った。この際の加工速度は 2m mZ秒の一定である。
[0139] (EC AE加工材のピツカース硬度試験)
ECAE加ェを施した試料をピツカース硬度試験により評価した。 4回の ECAE加ェ 後の試料のビッカース硬度は、比較例 1の試料が 82Hv、比較例 2の試料が 76Hvで あり、 ECAEカ卩ェ前の铸造材と比較して 10%程度の硬さの向上が見られた。 8回の ECAEカ卩ェをした試料では、 4回の ECAEカ卩ェをした試料とほとんど硬さに変化はな かった。
[0140] (ECAE力卩工材の結晶組織)
ECAE力卩ェを施した試料の組織観察を SEM、 XRDによって行った。比較例 1、 2 の加工材では粒界に存在していた晶出物が数/ z mオーダーに分断され、微細に均 一分散していた。 8回の ECAE加工をした試料では、 4回の ECAE加工をした試料と ほとんど糸且織に変化はな力つた。 [0141] (ECAE加工材の引張試験)
ECAE加工を施した試料を引張試験により評価した。引張試験は、押出し方向に 対して平行に初期ひずみ速度 5 X 10— 4Z秒の条件で行った。 4回の ECAEカ卩ェをし た試料の引張特性については、比較例 1 2の試料では 200MPa以下の降伏応力と 2— 3 %の伸びを示した。
[0142] (実施例 8— 44の铸造合金の押出し後の機械的特性)
表 1一 3に示す組成を有する 3元系のマグネシウム合金の铸造材を作製し、その铸 造材に 500°C、 10時間の熱処理を行った後、その铸造材に表 1一 3に示す押出し温 度及び押出し比で押出し力卩ェを行った。この押出しカ卩ェ後の押出し材を、表 1一 3に 示す試験温度で引張試験により 0. 2%耐カ(降伏強度)、引張強さ、伸びを測定した 。また、押出し材の硬さ(ピッカース硬度)についても測定した。これらの測定結果を 表 1一 3に示している。
[0143] [表 1]
Figure imgf000035_0001
[0144] [表 2]
Figure imgf000036_0001
Figure imgf000036_0002
[0146] 種々の組成の铸造材を種々の押出し温度で、押出し比 10、押出し速度 2. 5mm/ 秒で押出し加工を行った後の室温、 200°Cにおける引張試験及び硬さ試験の結果 を示している。
[0147] 尚、本発明は上述した実施の形態及び実施例に限定されるものではなぐ本発明 の主旨を逸脱しない範囲内で種々変更して実施することが可能である。
図面の簡単な説明
[0148] [図 1]実施例 1、比較例 1及び比較例 2それぞれの铸造材の結晶組織を示す写真で ある。
[図 2]実施例 2— 4それぞれの铸造材の結晶組織を示す写真である。
[図 3]実施例 5の铸造材の結晶組織を示す写真である。
[図 4]実施例 6の铸造材の結晶組織を示す写真である。
[図 5]実施例 7 8それぞれの铸造材の結晶組織を示す写真である。
[図 6]比較例 3— 9それぞれの铸造材の結晶組織を示す写真である。
[図 7]参考例の铸造材の結晶組織を示す写真である。
[図 8]本発明の実施の形態 1によるマグネシウム合金の組成範囲を示す図である。
[図 9]本発明の実施の形態 7によるマグネシウム合金の組成範囲を示す図である。

Claims

請求の範囲
Znを a原子%含有し、 Dy、 Ho及び Erからなる群力 選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすこ とを特徴とする高強度高靭性マグネシウム合金。
(1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0
(3) 0. 5a— 0. 5≤b
Znを a原子%含有し、 Dy、 Ho及び Erからなる群力 選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすこ とを特徴とする高強度高靭性マグネシウム合金。
(1) 0. 2≤a≤3. 0
(2) 0. 2≤b≤5. 0
(3) 2a-3≤b
請求項 1又は 2にお 、て、前記高強度高靭性マグネシウム合金がマグネシウム合金 铸造物に塑性加工を行ったものであることを特徴とする高強度高靭性マグネシウム 合金。
Znを a原子%含有し、 Dy、 Ho及び Erからなる群力 選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作り、前記マグネシウム合金铸造物に塑性カ卩ェを行った 後の塑性加工物は、常温にお!、て hep構造マグネシウム相及び長周期積層構造相 を有することを特徴とする高強度高靭性マグネシウム合金。
(1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0
(3) 0. 5a— 0. 5≤b
Znを a原子%含有し、 Dy、 Ho及び Erからなる群力 選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作り、前記マグネシウム合金铸造物に塑性カ卩ェを行った 後の塑性加工物は、常温にお!、て hep構造マグネシウム相及び長周期積層構造相 を有することを特徴とする高強度高靭性マグネシウム合金。
(1) 0. 2≤a≤3. 0
(2) 0. 2≤b≤5. 0
(3) 2a-3≤b
[6] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作り、前記マグネシウム合金铸造物に塑性カ卩ェを行って 塑性加工物を作り、前記塑性加工物に熱処理を行った後の塑性加工物は、常温に おいて hep構造マグネシウム相及び長周期積層構造相を有することを特徴とする高 強度高靭性マグネシウム合金。
(1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[7] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作り、前記マグネシウム合金铸造物に塑性カ卩ェを行って 塑性加工物を作り、前記塑性加工物に熱処理を行った後の塑性加工物は、常温に おいて hep構造マグネシウム相及び長周期積層構造相を有することを特徴とする高 強度高靭性マグネシウム合金。
(1) 0. 2≤a≤3. 0
(2) 0. 2≤b≤5. 0
(3) 2a-3≤b
[8]
Figure imgf000038_0001
、て、前記 hep構造マグネシウム相の転位密 度に比べて前記長周期積層構造相の転位密度が少なくとも 1桁小さいことを特徴と する高強度高靭性マグネシウム合金。
[9]
Figure imgf000038_0002
、て、前記長周期積層構造相の結晶粒の体 積分率が 5%以上である高強度高靭性マグネシウム合金。
[10] 請求項 4乃至 9のいずれか一項において、前記塑性加工物は Mgと希土類元素の 化合物、 Mgと Znの化合物、 Znと希土類元素の化合物及び Mgと Znと希土類元素の 化合物からなる析出物群力 選択される少なくとも 1種類の析出物を有していることを 特徴とする高強度高靭性マグネシウム合金。
[11] 請求項 10において、前記少なくとも 1種類の析出物の合計体積分率は 0%超 40% 以下である高強度高靭性マグネシウム合金。
[12] 請求項 4乃至 11のいずれか一項において、前記塑性加工は、圧延、押出し、 ECA
E、引抜加工、鍛造、プレス、転造、曲げ、 FSW加工及びこれらの繰り返しカ卩ェのう ち少なくとも一つを行うものである高強度高靭性マグネシウム合金。
[13] 請求項 4乃至 12のいずれか一項において、前記塑性加工を行った際の総歪量は
15以下である高強度高靭性マグネシウム合金。
[14] 請求項 4乃至 12のいずれか一項において、前記塑性加工を行った際の総歪量は
10以下である高強度高靭性マグネシウム合金。
[15] 請求項 1乃至 14のいずれか一項において、前記 Mgに Yおよび Zまたは Gdを合計 で y原子%含有し、 yは下記式 (4)及び (5)を満たすことを特徴とする高強度高靭性 マグネシウム合金。
(4) 0≤y≤4. 8
(5) 0. 2≤b+y≤5. 0
[16] 請求項 1乃至 15のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndからな る群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4)及 び (5)を満たすことを特徴とする高強度高靭性マグネシウム合金。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[17] 請求項 1乃至 15のいずれか一項において、前記 Mgに La、 Ce、 Pr、 Eu及び Mm 力 なる群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4)及び (5)を満たすことを特徴とする高強度高靭性マグネシウム合金。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[18] 請求項 1乃至 15のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndからな る群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 La、 Ce、 Pr、 Eu 及び Mm力 なる群力 選択される少なくとも 1種の元素を合計で d原子%含有し、 c 及び dは下記式 (4)一 (6)を満たすことを特徴とする高強度高靭性マグネシウム合金
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. 2≤b + c + d≤6. 0
[19] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすこ とを特徴とする高強度高靭性マグネシウム合金。
(1) 0. l≤a≤5. 0
(2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[20] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすこ とを特徴とする高強度高靭性マグネシウム合金。
(1) 0. l≤a≤3. 0
(2) 0. l≤b≤5. 0
(3) 2a-3≤b
[21] 請求項 19又は 20において、前記高強度高靭性マグネシウム合金がマグネシウム 合金铸造物を切削した後に塑性加工を行ったものであることを特徴とする高強度高 靭性マグネシウム合金。
[22] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作り、前記マグネシウム合金铸造物を切削することによつ てチップ形状の铸造物を作り、前記铸造物を塑性加工により固化した塑性加工物は 、常温にお!ヽて hep構造マグネシウム相及び長周期積層構造相を有することを特徴 とする高強度高靭性マグネシウム合金。 (1) 0. l≤a≤5. 0
(2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[23] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作り、前記マグネシウム合金铸造物を切削することによつ てチップ形状の铸造物を作り、前記铸造物を塑性加工により固化した塑性加工物は 、常温にお!ヽて hep構造マグネシウム相及び長周期積層構造相を有することを特徴 とする高強度高靭性マグネシウム合金。
(1) 0. l≤a≤3. 0
(2) 0. l≤b≤5. 0
(3) 2a-3≤b
[24] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作り、前記マグネシウム合金铸造物を切削することによつ てチップ形状の铸造物を作り、前記铸造物を塑性加工により固化した塑性加工物を 作り、前記塑性カ卩ェ物に熱処理を行った後の塑性カ卩ェ物は、常温において hep構 造マグネシウム相及び長周期積層構造相を有することを特徴とする高強度高靭性マ グネシゥム合金。
(1) 0. l≤a≤5. 0
(2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[25] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作り、前記マグネシウム合金铸造物を切削することによつ てチップ形状の铸造物を作り、前記铸造物を塑性加工により固化した塑性加工物を 作り、前記塑性カ卩ェ物に熱処理を行った後の塑性カ卩ェ物は、常温において hep構 造マグネシウム相及び長周期積層構造相を有することを特徴とする高強度高靭性マ グネシゥム合金。
(1) 0. l≤a≤3. 0
(2) 0. l≤b≤5. 0
(3) 2a-3≤b
[26]
Figure imgf000042_0001
、て、前記 hep構造マグネシウム相の平均 粒径は 0. 1 μ m以上であることを特徴とする高強度高靭性マグネシウム合金。
[27] 請求項 22乃至 26の 、ずれか一項にお 、て、前記 hep構造マグネシウム相の転位 密度に比べて前記長周期積層構造相の転位密度が少なくとも 1桁小さいことを特徴 とする高強度高靭性マグネシウム合金。
[28] 請求項 22乃至 27の 、ずれか一項にお 、て、前記長周期積層構造相の結晶粒の 体積分率が 5%以上である高強度高靭性マグネシウム合金。
[29] 請求項 22乃至 28のいずれか一項において、前記塑性加工物は Mgと希土類元素 の化合物、 Mgと Znの化合物、 Znと希土類元素の化合物及び Mgと Znと希土類元素 の化合物力 なる析出物群力 選択される少なくとも 1種類の析出物を有していること を特徴とする高強度高靭性マグネシウム合金。
[30] 請求項 29において、前記少なくとも 1種類の析出物の合計体積分率は 0%超 40% 以下である高強度高靭性マグネシウム合金。
[31] 請求項 22乃至 30のいずれか一項において、前記塑性加工は、圧延、押出し、 EC
AE、引抜加工、鍛造、プレス、転造、曲げ、 FSW加工及びこれらの繰り返しカ卩ェのう ち少なくとも一つを行うものである高強度高靭性マグネシウム合金。
[32] 請求項 22乃至 31のいずれか一項において、前記塑性加工を行った際の総歪量 は 15以下である高強度高靭性マグネシウム合金。
[33] 請求項 22乃至 31のいずれか一項において、前記塑性加工を行った際の総歪量 は 10以下である高強度高靭性マグネシウム合金。
[34] 請求項 19乃至 33のいずれか一項において、前記 Mgに Yおよび Zまたは Gdを合 計で y原子%含有し、 yは下記式 (4)及び (5)を満たすことを特徴とする高強度高靭
'性マグネシウム合金。
(4) 0≤v≤4. 9 (5) 0. l≤b+y≤5. 0
[35] 請求項 19乃至 34のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndから なる群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4) 及び (5)を満たすことを特徴とする高強度高靭性マグネシウム合金。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[36] 請求項 19乃至 34のいずれか一項において、前記 Mgに La、 Ce、 Pr、 Eu及び Mm 力 なる群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4)及び (5)を満たすことを特徴とする高強度高靭性マグネシウム合金。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[37] 請求項 19乃至 34のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndから なる群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 La、 Ce、 Pr、 E u及び Mmからなる群から選択される少なくとも 1種の元素を合計で d原子%含有し、 c及び dは下記式 (4)一 (6)を満たすことを特徴とする高強度高靭性マグネシウム合 金。
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. l≤b + c + d≤6. 0
[38] 請求項 1乃至 37のいずれか一項において、前記 Mgに Al、 Th、 Ca、 Si、 Mn、 Zr、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge、 Bi、 Ga、 In、 Ir、 Li、 Pd、 Sb及 び V力 なる群力 選択される少なくとも 1種の元素を合計で 0原子%超 2. 5原子% 以下含有する高強度高靭性マグネシウム合金。
[39] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作る工程と、
前記マグネシウム合金に塑性カ卩ェを行うことにより塑性カ卩ェ物を作る工程と、 を具備することを特徴とする高強度高靭性マグネシウム合金の製造方法。 (1) 0. 2≤a≤5. 0
(2) 0. 2≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[40] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作る工程と、
前記マグネシウム合金に塑性カ卩ェを行うことにより塑性カ卩ェ物を作る工程と、 を具備することを特徴とする高強度高靭性マグネシウム合金の製造方法。
(1) 0. 2≤a≤3. 0
(2) 0. 2≤b≤5. 0
(3) 2a-3≤b
[41] 請求項 39又は 40において、前記マグネシウム合金铸造物は hep構造マグネシウム 相及び長周期積層構造相を有することを特徴とする高強度高靭性マグネシウム合金 の製造方法。
[42] 請求項 30乃至 41のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndから なる群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4) 及び (5)を満たすことを特徴とする高強度高靭性マグネシウム合金の製造方法。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[43] 請求項 40乃至 42の!、ずれか一項にお 、て、前記 Mgに La、 Ce、 Pr、 Eu、 Mm及 び Gdからなる群力も選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下 記式 (4)及び (5)を満たすことを特徴とする高強度高靭性マグネシウム合金の製造 方法。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[44] 請求項 39乃至 41のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndから なる群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 La、 Ce、 Pr、 E u、 Mm及び Gdからなる群から選択される少なくとも 1種の元素を合計で d原子%含 有し、 c及び dは下記式 (4)一 (6)を満たすことを特徴とする高強度高靭性マグネシゥ ム合金の製造方法。
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. 2≤b + c + d≤6. 0
[45] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作る工程と、
前記マグネシウム合金を切削することによってチップ形状の切削物を作る工程と、 前記切削物に塑性加工による固化を行うことにより塑性加工物を作る工程と、 を具備することを特徴とする高強度高靭性マグネシウム合金の製造方法。
(1) 0. l≤a≤5. 0
(2) 0. l≤b≤5. 0
(3) 0. 5a— 0. 5≤b
[46] Znを a原子%含有し、 Dy、 Ho及び Erからなる群から選択される少なくとも 1種の元 素を合計で b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たす マグネシウム合金铸造物を作る工程と、
前記マグネシウム合金を切削することによってチップ形状の切削物を作る工程と、 前記切削物に塑性加工による固化を行うことにより塑性加工物を作る工程と、 を具備することを特徴とする高強度高靭性マグネシウム合金の製造方法。
(1) 0. l≤a≤3. 0
(2) 0. l≤b≤5. 0
(3) 2a-3≤b
[47] 請求項 46又は 47において、前記マグネシウム合金铸造物は hep構造マグネシウム 相及び長周期積層構造相を有することを特徴とする高強度高靭性マグネシウム合金 の製造方法。
[48] 請求項 45乃至 47のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndから なる群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4) 及び (5)を満たすことを特徴とする高強度高靭性マグネシウム合金の製造方法。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[49] 請求項 45乃至 47の!、ずれか一項にお 、て、前記 Mgに La、 Ce、 Pr、 Eu、 Mm及 び Gdからなる群力も選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下 記式 (4)及び (5)を満たすことを特徴とする高強度高靭性マグネシウム合金の製造 方法。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[50] 請求項 45乃至 47のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndから なる群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 La、 Ce、 Pr、 E u、 Mm及び Gdからなる群から選択される少なくとも 1種の元素を合計で d原子%含 有し、 c及び dは下記式 (4)一 (6)を満たすことを特徴とする高強度高靭性マグネシゥ ム合金の製造方法。
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. l≤b + c + d≤6. 0
[51] 請求項 39乃至 50の!、ずれか一項にお 、て、前記 Mgに Al、 Th、 Ca、 Si、 Mn、 Zr 、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge、 Bi、 Ga、 In、 Ir、 Li、 Pd、 Sb 及び V力 なる群力 選択される少なくとも 1種の元素を合計で 0原子%超 2. 5原子 %以下含有することを特徴とする高強度高靭性マグネシウム合金の製造方法。
[52] 請求項 39乃至 51のいずれか一項において、前記塑性加工は、圧延、押出し、 EC AE、引抜加工、鍛造、プレス、転造、曲げ、 FSW加工及びこれらの繰り返しカ卩ェのう ち少なくとも一つを行うものである高強度高靭性マグネシウム合金の製造方法。
[53] 請求項 39乃至 52のいずれか一項において、前記塑性加工を行う際の総歪量は 1 5以下である高強度高靭性マグネシウム合金。
[54] 請求項 39乃至 52のいずれか一項において、前記塑性加工を行う際の総歪量は 1 0以下である高強度高靭性マグネシウム合金。 [55] 請求項 39乃至 54のいずれか一項において、前記塑性カ卩ェ物を作る工程の後に、 前記塑性加工物に熱処理を行う工程をさらに具備する高強度高靭性マグネシウム合 金の製造方法。
[56] 請求項 55において、前記熱処理の条件は、 200°C以上 500°C未満で 10分以上 2 4時間未満であることを特徴とする高強度高靭性マグネシウム合金の製造方法。
[57] 請求項 39乃至 56のいずれか一項において、前記塑性カ卩ェを行った後のマグネシ ゥム合金における hep構造マグネシウム相の転移密度は長周期積層構造相の転位 密度に比べて 1桁以上大きいことを特徴とする高強度高靭性マグネシウム合金の製 造方法。
PCT/JP2004/017617 2003-11-26 2004-11-26 高強度高靭性マグネシウム合金及びその製造方法 WO2005052204A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020067010106A KR101225530B1 (ko) 2003-11-26 2004-11-26 고강도 고인성 마그네슘 합금 및 그 제조방법
US10/579,971 US20070102072A1 (en) 2003-11-26 2004-11-26 High strength and high toughness magnesium alloy and method of producing the same
EP04819459.1A EP1690954B1 (en) 2003-11-26 2004-11-26 High strength and high toughness magnesium alloy and method for production thereof
JP2005515824A JP3940154B2 (ja) 2003-11-26 2004-11-26 高強度高靭性マグネシウム合金及びその製造方法
CN2004800346894A CN1886528B (zh) 2003-11-26 2004-11-26 高强度高韧性镁合金及其制造方法
US14/489,844 US20150013854A1 (en) 2003-11-26 2014-09-18 High strength and high toughness magnesium alloy and method of producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-395905 2003-11-26
JP2003395905 2003-11-26
JP2004096344 2004-03-29
JP2004-096344 2004-03-29
JP2004-287912 2004-09-30
JP2004287912 2004-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/579,971 A-371-Of-International US20070102072A1 (en) 2003-11-26 2004-11-26 High strength and high toughness magnesium alloy and method of producing the same
US14/489,844 Division US20150013854A1 (en) 2003-11-26 2014-09-18 High strength and high toughness magnesium alloy and method of producing the same

Publications (1)

Publication Number Publication Date
WO2005052204A1 true WO2005052204A1 (ja) 2005-06-09

Family

ID=34636962

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/017617 WO2005052204A1 (ja) 2003-11-26 2004-11-26 高強度高靭性マグネシウム合金及びその製造方法
PCT/JP2004/017616 WO2005052203A1 (ja) 2003-11-26 2004-11-26 高強度高靭性マグネシウム合金及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017616 WO2005052203A1 (ja) 2003-11-26 2004-11-26 高強度高靭性マグネシウム合金及びその製造方法

Country Status (7)

Country Link
US (4) US20070125464A1 (ja)
EP (2) EP1690954B1 (ja)
JP (2) JP3940154B2 (ja)
KR (2) KR101225530B1 (ja)
CN (1) CN101705404A (ja)
ES (1) ES2458559T3 (ja)
WO (2) WO2005052204A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006036033A1 (ja) * 2004-09-30 2006-04-06 Yoshihito Kawamura 高強度高靭性金属及びその製造方法
JP2006348349A (ja) * 2005-06-16 2006-12-28 Katsuyoshi Kondo マグネシウム合金粉体原料、高耐力マグネシウム合金、マグネシウム合金粉体原料の製造方法および高耐力マグネシウム合金の製造方法
FR2904005A1 (fr) * 2006-07-20 2008-01-25 Hispano Suiza Sa Procede de fabrication de pieces forgees a chaud en alliage de magnesium.
EP1925684A2 (en) 2006-11-21 2008-05-28 Kabushiki Kaisha Kobe Seiko Sho Magnesium alloy material and production thereof
JP2009208099A (ja) * 2008-03-03 2009-09-17 Doshisha 高靭性軽合金材料及びその製造方法
KR20120123187A (ko) 2011-04-19 2012-11-08 가부시키가이샤 고베 세이코쇼 마그네슘 합금재 및 엔진 부품
US8394211B2 (en) 2006-03-20 2013-03-12 Kobe Steel, Ltd. Magnesium alloy material and method for manufacturing same
CN114540686A (zh) * 2022-04-28 2022-05-27 北京理工大学 一种多元微合金化高强高模双相镁锂合金及其制备方法
CN115323204A (zh) * 2022-09-18 2022-11-11 山东天元重工有限公司 一种轻轨车多功能轻量化侧墙外镁合金板及其制备方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200643188A (en) * 2005-05-26 2006-12-16 Cast Centre Pty Ltd Hpdc magnesium alloy
JP4700488B2 (ja) * 2005-12-26 2011-06-15 本田技研工業株式会社 耐熱マグネシウム合金
WO2007111342A1 (ja) 2006-03-20 2007-10-04 National University Corporation Kumamoto University 高強度高靭性マグネシウム合金及びその製造方法
GB0617970D0 (en) * 2006-09-13 2006-10-18 Magnesium Elektron Ltd Magnesium gadolinium alloys
JP5175470B2 (ja) * 2006-11-30 2013-04-03 株式会社神戸製鋼所 マグネシウム合金材およびその製造方法
JP2008231536A (ja) * 2007-03-22 2008-10-02 Honda Motor Co Ltd マグネシウム合金及びマグネシウム合金部材の製造方法
JP5252583B2 (ja) * 2007-03-26 2013-07-31 トヨタ自動車株式会社 Mg合金およびその製造方法
KR100860091B1 (ko) * 2007-04-05 2008-09-25 주식회사 지알로이테크놀로지 축비가 감소된 마그네슘 합금 및 그 마그네슘 합금의 판재제조방법
JP2010047777A (ja) * 2007-05-09 2010-03-04 National Institute For Materials Science Mg基合金
CN100436624C (zh) * 2007-06-22 2008-11-26 西安工业大学 高强耐热变形镁合金
JP5201500B2 (ja) * 2007-09-18 2013-06-05 株式会社神戸製鋼所 マグネシウム合金材およびその製造方法
CN100532605C (zh) * 2007-12-06 2009-08-26 中国科学院长春应用化学研究所 一种镁-锌-钪合金及其制备方法
JP2009149952A (ja) * 2007-12-21 2009-07-09 Honda Motor Co Ltd 耐熱性マグネシウム合金及びその製造方法
CN101215661B (zh) * 2008-01-07 2011-05-25 吉林大学 一种强韧易变形镁合金
US20110192500A1 (en) * 2008-06-06 2011-08-11 Synthes Usa, Llc Resorbable magnesium alloy
WO2010044320A1 (ja) * 2008-10-15 2010-04-22 国立大学法人 熊本大学 マグネシウム合金及びその製造方法
JP5458290B2 (ja) * 2009-03-02 2014-04-02 国立大学法人 熊本大学 マグネシウム合金
JP5531274B2 (ja) * 2009-03-27 2014-06-25 国立大学法人 熊本大学 高強度マグネシウム合金
JP5558841B2 (ja) * 2010-01-08 2014-07-23 本田技研工業株式会社 鋳造用マグネシウム合金及びマグネシウム鋳造体の製造方法
CN101781730A (zh) * 2010-03-22 2010-07-21 北京工业大学 一种低成本耐热镁合金及其制备方法
CN104762543B (zh) 2010-03-31 2019-05-10 国立大学法人熊本大学 镁合金板材的制造方法
JP6035645B2 (ja) * 2012-02-20 2016-11-30 国立大学法人 熊本大学 マグネシウム合金材の製造方法
CN105408508A (zh) 2013-04-15 2016-03-16 国立大学法人熊本大学 阻燃镁合金及其制造方法
CN103255329B (zh) * 2013-05-07 2015-08-26 宝山钢铁股份有限公司 一种低成本细晶弱织构镁合金薄板及其制造方法
CN103938045B (zh) * 2014-04-30 2016-04-06 东北大学 一种含钙变形镁合金及其棒材制备方法
CN104018049B (zh) * 2014-06-04 2016-11-02 北京工业大学 一种超塑性镁合金及其制备方法
CN104451303A (zh) * 2014-12-03 2015-03-25 东南大学 一种生物医用镁合金及其丝材的制备方法和应用
CN104388784A (zh) * 2014-12-15 2015-03-04 春兴精工(常熟)有限公司 用于制备高抗拉强度镁合金的方法
CN104388783A (zh) * 2014-12-15 2015-03-04 春兴精工(常熟)有限公司 用于制备高屈服强度镁合金的方法
CN106048348A (zh) * 2015-04-15 2016-10-26 丁永新 生物相容性较好的医用镁基合金材料的制备方法
JP6594663B2 (ja) 2015-05-27 2019-10-23 本田技研工業株式会社 耐熱性マグネシウム鋳造合金とその製造方法
WO2017024222A1 (en) 2015-08-06 2017-02-09 Dana Heavy Vehicle Systems Group, Llc Control and supply valve assembly for a tire pressure management system
DE112016003594T5 (de) 2015-08-06 2018-05-30 Dana Heavy Vehicle Systems Group, Llc Kanalventilbaugruppe für ein Reifendruckmanagementsystem
US10214059B2 (en) 2015-10-16 2019-02-26 Dana Heavy Vehicle Systems Group, Llc Tire pressure management system and method of decreasing tire pressure
CN105349861B (zh) * 2015-11-24 2017-07-07 北京工业大学 一种可快速轧制成形的镁金属板材及其轧制方法
CN105568096B (zh) * 2015-11-25 2017-09-26 山东银光钰源轻金属精密成型有限公司 一种镁合金半连铸浇铸工艺
CN105483484B (zh) * 2016-02-04 2017-04-05 哈尔滨工业大学(威海) 制造各向同性高强度变形镁合金的方法
CN106350720B (zh) * 2016-10-17 2017-12-22 南京镐极信息技术有限公司 含铪耐热铸造镁合金及其制备方法
CN106498252B (zh) * 2016-10-27 2018-04-13 江苏理工学院 一种高强度镁‑钕‑锌‑锆‑锂合金及其制备方法
CN107201473A (zh) * 2017-06-07 2017-09-26 深圳市威富通讯技术有限公司 一种镁合金及其制备方法、腔体滤波器
CN109355539B (zh) * 2018-11-01 2020-11-03 贵州航天风华精密设备有限公司 一种高性能镁合金
CN109182861A (zh) 2018-11-08 2019-01-11 中信戴卡股份有限公司 一种塑性变形镁合金及其制备方法
CN109182860A (zh) * 2018-11-08 2019-01-11 中信戴卡股份有限公司 一种高强韧镁合金及制备方法
CN109628812B (zh) * 2019-01-29 2020-11-03 吉林大学 一种低合金高性能超塑性镁合金及其制备方法
US20200354818A1 (en) * 2019-05-10 2020-11-12 Terves, Llc High Strength Microalloyed Magnesium Alloy
PL3975942T3 (pl) 2019-06-03 2024-11-25 Fort Wayne Metals Research Products, Llc Wchłanialne stopy na bazie magnezu
CN110983137B (zh) * 2019-12-31 2021-11-09 哈尔滨工程大学 一种长周期堆垛有序相中孪晶增强的高阻尼镁锂合金及其制备方法
CN113005378B (zh) * 2021-03-03 2021-11-19 赣南师范大学 一种含Ag的Mg-Sm系稀土镁合金热处理工艺
CN113278857B (zh) * 2021-04-02 2022-06-28 中国兵器科学研究院宁波分院 一种高强韧镁合金及其制备方法
CN113444944B (zh) * 2021-06-30 2022-02-22 赣州虔博新材料科技有限公司 低成本高强高延展性稀土镁合金及其制备方法
CN114836664B (zh) * 2022-04-23 2023-04-14 中国兵器装备集团西南技术工程研究所 一种高强高塑耐热镁合金构件及其制备方法
WO2024075854A1 (ja) * 2022-10-07 2024-04-11 国立大学法人 熊本大学 マグネシウム合金及びその製造方法
CN115519116B (zh) * 2022-10-21 2024-07-23 安徽智磁新材料科技有限公司 一种高生物相容性镁基非晶合金粉末及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256370A (ja) * 2001-03-05 2002-09-11 Japan Science & Technology Corp 高強度高延性Mg基合金
JP2003096549A (ja) * 2001-09-25 2003-04-03 Kenji Azuma 機械的性質及び衝撃延性に優れた合金及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1075010A (en) * 1963-11-15 1967-07-12 Magnesium Elektron Ltd Improvements in or relating to magnesium base alloys
US3414407A (en) * 1966-04-26 1968-12-03 Revere Copper & Brass Inc Aluminum-zinc-magnesium alloy
JPS55128351A (en) * 1979-03-27 1980-10-04 Hitachi Zosen Corp Casting mold material for continuous casting equipment
JPH04131350A (ja) * 1990-09-21 1992-05-06 Sugitani Kinzoku Kogyo Kk 凝固温度範囲の狭い鋳造用マグネシウム合金
US5149496A (en) * 1991-02-04 1992-09-22 Allied-Signal Inc. Method of making high strength, high stiffness, magnesium base metal alloy composites
EP0503880B1 (en) * 1991-03-14 1997-10-01 Tsuyoshi Masumoto Amorphous magnesium alloy and method for producing the same
US5552110A (en) * 1991-07-26 1996-09-03 Toyota Jidosha Kabushiki Kaisha Heat resistant magnesium alloy
JP2807374B2 (ja) * 1992-04-30 1998-10-08 ワイケイケイ株式会社 高強度マグネシウム基合金およびその集成固化材
JP3238516B2 (ja) * 1993-03-15 2001-12-17 健 増本 高強度マグネシウム合金及びその製造方法
DE69423335T2 (de) * 1993-12-17 2000-11-30 Mazda Motor Corp., Hiroshima Plastisch-verformbarer Gusswerkstoff aus Magnesium-Legierung aus dieser Legierung hergestellte Werkstücke sowie Verfahren zur Herstellung
JPH10140304A (ja) * 1996-11-01 1998-05-26 Toyota Central Res & Dev Lab Inc マグネシウム合金の熱処理方法
IT1316715B1 (it) * 2000-03-03 2003-04-24 A M T Robotics S R L Procedimento per la realizzazione di tubi metallici e relativaapparecchiatura
WO2002066696A1 (fr) 2001-01-26 2002-08-29 Tohoku Techno Arch Co., Ltd. Alliage de magnesium a haute resistance
KR20020078936A (ko) * 2001-04-11 2002-10-19 학교법인연세대학교 열간 성형성이 우수한 준결정상 강화 마그네슘계 합금
US7879162B2 (en) * 2008-04-18 2011-02-01 United Technologies Corporation High strength aluminum alloys with L12 precipitates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256370A (ja) * 2001-03-05 2002-09-11 Japan Science & Technology Corp 高強度高延性Mg基合金
JP2003096549A (ja) * 2001-09-25 2003-04-03 Kenji Azuma 機械的性質及び衝撃延性に優れた合金及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
E. ABE, ACTA MERIALIA, vol. 50, 2002, pages 3945 - 3857
MORISAKA H. ET AL: "Kyusoku Gyoko Mg-Zn-RE no Soshiki to Kikaiteki Seishitsu ni Oyobosu Zn to RE no Koka ----- Effects of Zn and RE on structure and mechanical properties in rapidly solidified Mg-Zn-RE alloys", THE JAPAN INSTITUTE OF LIGHT METALS TAIKAI KOEN GAIYO, vol. 104, 20 April 2003 (2003-04-20), pages 233 - 234, XP002987595 *
See also references of EP1690954A4 *
Y. KAWAMURA, MATERIALS SCIENCE FORUM, vol. 419-422, 2003, pages 751 - 756

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816224A4 (en) * 2004-09-30 2010-09-29 Yoshihito Kawamura HIGH HARDNESS AND HIGH STRENGTH METAL AND METHOD FOR MANUFACTURING THE SAME
WO2006036033A1 (ja) * 2004-09-30 2006-04-06 Yoshihito Kawamura 高強度高靭性金属及びその製造方法
JP2006348349A (ja) * 2005-06-16 2006-12-28 Katsuyoshi Kondo マグネシウム合金粉体原料、高耐力マグネシウム合金、マグネシウム合金粉体原料の製造方法および高耐力マグネシウム合金の製造方法
US8394211B2 (en) 2006-03-20 2013-03-12 Kobe Steel, Ltd. Magnesium alloy material and method for manufacturing same
WO2008009825A3 (fr) * 2006-07-20 2009-01-29 Hispano Suiza Sa Procede de fabrication de pieces forgees a chaud en alliage de magnesium
US8142578B2 (en) 2006-07-20 2012-03-27 Hispano Suiza Process for manufacturing hot-forged parts made of a magnesium alloy
FR2904005A1 (fr) * 2006-07-20 2008-01-25 Hispano Suiza Sa Procede de fabrication de pieces forgees a chaud en alliage de magnesium.
EP1925684A2 (en) 2006-11-21 2008-05-28 Kabushiki Kaisha Kobe Seiko Sho Magnesium alloy material and production thereof
US9562277B2 (en) 2006-11-21 2017-02-07 Kobe Steel, Ltd. Magnesium alloy material and production process thereof
JP2009208099A (ja) * 2008-03-03 2009-09-17 Doshisha 高靭性軽合金材料及びその製造方法
KR20120123187A (ko) 2011-04-19 2012-11-08 가부시키가이샤 고베 세이코쇼 마그네슘 합금재 및 엔진 부품
CN114540686A (zh) * 2022-04-28 2022-05-27 北京理工大学 一种多元微合金化高强高模双相镁锂合金及其制备方法
CN115323204A (zh) * 2022-09-18 2022-11-11 山东天元重工有限公司 一种轻轨车多功能轻量化侧墙外镁合金板及其制备方法

Also Published As

Publication number Publication date
KR101225530B1 (ko) 2013-01-23
ES2458559T3 (es) 2014-05-06
JPWO2005052203A1 (ja) 2007-12-06
US10184165B2 (en) 2019-01-22
JP3905115B2 (ja) 2007-04-18
KR20060123192A (ko) 2006-12-01
EP1688509B1 (en) 2014-01-15
EP1690954A4 (en) 2008-07-09
WO2005052203A1 (ja) 2005-06-09
KR20060100450A (ko) 2006-09-20
US20070125464A1 (en) 2007-06-07
CN101705404A (zh) 2010-05-12
EP1690954A1 (en) 2006-08-16
KR101245203B1 (ko) 2013-03-19
EP1690954B1 (en) 2014-10-08
JP3940154B2 (ja) 2007-07-04
JPWO2005052204A1 (ja) 2007-12-06
US20150020931A1 (en) 2015-01-22
EP1688509A1 (en) 2006-08-09
US20150013854A1 (en) 2015-01-15
EP1688509A4 (en) 2008-07-09
US20070102072A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
WO2005052204A1 (ja) 高強度高靭性マグネシウム合金及びその製造方法
JP4139841B2 (ja) 鋳造物及びマグネシウム合金の製造方法
EP1770180B1 (en) High toughness magnesium-base alloy, drive component using same, and method for producing high toughness magnesium-base alloy material
JP5239022B2 (ja) 高強度高靭性マグネシウム合金及びその製造方法
JP5089945B2 (ja) 高耐食性を有する高強度マグネシウム合金
WO2014171548A1 (ja) 難燃マグネシウム合金及びその製造方法
WO2002083964A1 (en) Quasi-crystalline phase hardened magnesium alloy with excellent hot formability and method for preparing the same
JP2012197515A (ja) 高耐食性を有する高強度マグネシウム合金及びその製造方法
JP2008075183A (ja) 高強度高靭性金属及びその製造方法
WO2004085689A1 (ja) 高強度高靭性マグネシウム合金及びその製造方法
CN1886528B (zh) 高强度高韧性镁合金及其制造方法
JP2865499B2 (ja) 超塑性アルミニウム基合金材料及び超塑性合金材料の製造方法
JP2000080407A (ja) 成形品の製造方法
EP2412834B1 (en) Mg ALLOY MEMBER
JP2019202532A (ja) 硬質・軟質積層構造材料及びその製造方法
JPH05302138A (ja) アルミニウム基合金集成固化材並びにその製造方法
JPH08232034A (ja) 超塑性アルミニウム合金材料およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034689.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515824

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007102072

Country of ref document: US

Ref document number: 10579971

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067010106

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004819459

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004819459

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067010106

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10579971

Country of ref document: US