[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005049714A2 - Metal polymer composite , a method for its extrusion and shaped articles made therefrom - Google Patents

Metal polymer composite , a method for its extrusion and shaped articles made therefrom Download PDF

Info

Publication number
WO2005049714A2
WO2005049714A2 PCT/US2004/037931 US2004037931W WO2005049714A2 WO 2005049714 A2 WO2005049714 A2 WO 2005049714A2 US 2004037931 W US2004037931 W US 2004037931W WO 2005049714 A2 WO2005049714 A2 WO 2005049714A2
Authority
WO
WIPO (PCT)
Prior art keywords
composite
metal
particulate
polymer
microns
Prior art date
Application number
PCT/US2004/037931
Other languages
French (fr)
Other versions
WO2005049714A3 (en
Inventor
Kurt E. Heikkila
Original Assignee
Wild River Consulting Group, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020067011547A priority Critical patent/KR101060411B1/en
Priority to EP04810911.0A priority patent/EP1689811B1/en
Priority to ES04810911T priority patent/ES2716941T3/en
Priority to EP10182673.3A priority patent/EP2261278B1/en
Priority to EP10182628.7A priority patent/EP2270085B1/en
Priority to BRPI0416565-9A priority patent/BRPI0416565A/en
Priority to CN2004800373463A priority patent/CN1902271B/en
Priority to JP2006539937A priority patent/JP2007516320A/en
Application filed by Wild River Consulting Group, Llc filed Critical Wild River Consulting Group, Llc
Priority to MXPA06005515A priority patent/MXPA06005515A/en
Priority to PL04810911T priority patent/PL1689811T3/en
Priority to PL10182628T priority patent/PL2270085T3/en
Priority to BR122014029746-7A priority patent/BR122014029746B1/en
Priority to CA2546109A priority patent/CA2546109C/en
Priority to PL10182673T priority patent/PL2261278T3/en
Publication of WO2005049714A2 publication Critical patent/WO2005049714A2/en
Publication of WO2005049714A3 publication Critical patent/WO2005049714A3/en
Priority to ZA200604047A priority patent/ZA200604047B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K95/00Sinkers for angling
    • A01K95/005Sinkers not containing lead
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
    • F42B12/745Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body the core being made of plastics; Compounds or blends of plastics and other materials, e.g. fillers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B7/00Shotgun ammunition
    • F42B7/02Cartridges, i.e. cases with propellant charge and missile
    • F42B7/04Cartridges, i.e. cases with propellant charge and missile of pellet type
    • F42B7/046Pellets or shot therefor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/22Hinges, pivots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof

Definitions

  • the invention relates to a method of extruding an extrudable enhanced property metal polymer composite by novel interactions of the components.
  • the method can be used to extrude the composite material into useful shapes.
  • the extruded high density metal polymer composite materials are not simple admixtures, but obtain enhanced chemical, electrical and mechanical properties from an extrusion of a unique combination of a metal particulate and polymer material matrix that optimizes the properties of the composite through blending the combined polymer and metal materials.
  • lead offers the required density, penetrating force and malleability to achieve great accuracy and minimum gun barrel wear.
  • Lead has been a primary choice for both hunting and military applications. Lead has well known toxic drawbacks in pellet and projectile end uses. Many jurisdictions in the United States and elsewhere have seriously considered bans on the sale and use of lead shot and lead sinkers due to increasing concentrations of lead in lakes and resulting mortality in natural populations.
  • Composite materials have been suggested as a replacement for lead and other high-density materials. Composite materials have been made for many years by combining generally two dissimilar materials to obtain beneficial properties from both. A true composite is unique because the interaction of the materials provides the best properties of both components. Many types of composite materials are known and are not simple admixtures. Generally, the art recognizes that combining metals of certain types and at proportions that form an alloy provides unique properties in metal/metal alloy materials. Metal/ceramic composites have been made typically involving combining metal particulate or fiber with clay materials that can be fired into a metal/ceramic composite.
  • thermoplastic or thermoset polymer phase with a reinforcing powder or fiber produces a range of filled materials and, under the correct conditions, can form a true polymer composite.
  • a filler material typically comprises inorganic materials that act as either pigments or extenders for the polymer systems.
  • a vast variety of fiber-reinforced composites have been made typically to obtain fiber reinforcement properties to improve the mechanical properties of the polymer in a unique composite.
  • Metal polymer admixtures in which a finely divided metallic material, a metal powder or fiber is dispersed in a polymer have been suggested.
  • One subset of filled polymer materials is metal polymer admixtures in which a metallic material, a metal particulate or fiber is dispersed in a polymer.
  • the vast majority of these materials are admixtures and are not true composites. Admixtures are typically easily separable into the constituent parts and display the properties of the components. A true composite resists separation and displays enhanced properties of the input materials. A true composite does not display the properties of the individual components.
  • Tarlow, U.S. Patent No. 3,895,143 teaches a sheet material comprising elastomer latex that includes dispersed inorganic fibers and finely divided metallic particles. Bruner et al., U.S. Patent No.
  • Patent Nos. 6,048,379 and 6,517,774 disclose an attempt to produce tungsten polymer composite materials.
  • the patent disclosures combine tungsten powder having a particle size less than 10 microns, optionally with other components and a polymer or a metal fiber.
  • the materials sold by the Bray et al. assignee and the materials disclosed in the patent do not attain a density greater than 10.0 gm-cni "3 . While a substantial amount of work has been done regarding composite materials generally, high density metal composite materials have not been obtained having a density greater than 10 grams-cm "3 . Increasing the density of these materials introduces unique mechanical properties into the composite and, when used, obtains properties that are not present in the lower density composite materials.
  • the invention relates to an extrusion method and an extrudable metal polymer composite material having improved properties with respect to prior art materials.
  • the material of the invention through a selection of metal particle size distribution, polymer and processing conditions, attains improved density or other properties through minimization of the polymer filled excluded volume of the composite.
  • the novel viscoelastic properties make the materials useful in a variety of uses not filled by composites and provides a material easily made and formed into useful shapes.
  • density and polymer viscoelasticity measured as elongation are useful properties and useful predictive parameters of a true composite in this technology.
  • the packing of the selected particle size and distribution and the selection of the particulate or mixed metal particulate will obtain the enhanced properties.
  • density can be used as a predictor of the other useful property enhancement.
  • the invention relates to an extruded enhanced metal polymer composite material having improved properties with respect to prior art materials.
  • Single metal and mixed metal composites can be tailored for increasing a variety of properties including but not limited to density, color, magnetism, thermal conductivity, electrical conductivity and other physical properties.
  • the use of compositions further comprising a interfacial modifier demonstrates improved utilization of material properties and improved performance such as elongation and other properties.
  • Preferred composites can be combined with one or more polymers of a given molecular weight distribution and one or more metal particulates with a given distribution to obtain unique composites.
  • the metal polymer composites of the invention can be extruded into a high-density material comprising a high-density metal particulate of defined particle size and size distribution, a polymer, and optionally a interfacial modifier material.
  • a selected metal particulate having a specified particle size and size distribution is selected with a polymer with a molecular weight distribution to form an improved composite.
  • Such particles can have a defined circularity that promotes maximum property development.
  • a metal particulate and fluoropolymer composite achieves the stated properties.
  • an interfacial modifier is used to ensure that the proportions of metal particulate and polymer obtain the minimum excluded volume filled with polymer, the highest particulate packing densities, the maximize polymer composite material properties and obtain the maximum utilization of materials.
  • the high-density materials of the invention can contain pigments or otlier ingredients to modify the visual appearance of the materials.
  • Mixed metal particulate, bimetallic e.g.
  • WC WC
  • alloy metal composites can be used to tailor properties for specific uses. These properties include but are not limited to density, thermal properties such as conductivity, magnetic properties, electrical properties such as conductivity, color, etc. These materials and combination of materials can be used as solid-state electrochemical (e.g. battery) and semiconductor structures. Preferred higher density metal polymer materials can also be combined with one or more polymers and one or more metal particulate to obtain unique composites.
  • a secondary metal can be combined with a metal of high density.
  • a composite can comprise a variety of different combinations of metals and polymers.
  • the metal particulate can contain two metal particulates of different metals, each metal having a relatively high density. In another embodiment, the metal particulate can comprise a metal particulate of high density and a secondary metal.
  • Other useful metals of this disclosure relates to a metal that, by itself, cannot achieve a density greater than 10 in the composite material, but can provide useful properties to the composite as a whole. Such properties can include electrical properties, magnetic properties, physical properties, including heat conductivity, acoustical shielding, etc. Examples of such secondary metals include, but not limited to, iron, copper, nickel, cobalt, bismuth, tin, cadmium and zinc.
  • the materials of the invention permit the design engineers the flexibility to tailor the composite to end-uses and avoid the use of toxic or radioactive materials unless desired. Lead or depleted uranium are no longer needed in their typical applications now that the dense composites of the invention are available.
  • the composites of the invention can be used successfully with desired properties engineered into the material.
  • the metal polymer composites of the invention can provide enhanced polymer composite properties.
  • One important material comprises a composite having a density greater than 10 gm-cm " or higher, typically greater than 11.7 gm-cm " , greater than 12.5 gm-cm " or greater than 16.0 gm-cm "3 .
  • the composite comprises a high-density metal particulate, a polymer, and optionally an interfacial modifier material.
  • compositions of the invention can also contain other additives such as a visual indicator, fluorescent marker, dye or pigment at an amount of at least about 0.01 to 5 wt%.
  • the composites of the invention comprise about 47 to 90 volume-% metal, 0.5 to 15 wt.- % polymer, 10 to 53 volume-% polymer in the composite.
  • density we rely on density as an important property that can be tailored in the composite but other useful properties can be designed into the composite.
  • Enhanced property metal polymer composites can be made by melt forming, preferable extruding, an extrudable composite. In the composite, the metal particulate is obtained at the highest possible packing by a careful selection of particle size and size distribution.
  • the excluded volume in the particulate are substantially completely occupied by the polymer without reducing the composite density.
  • packing the particulate and combining the particulate with just sufficient polymer such that only the excluded volume (the space left after packing the particle distribution) of the particulate is filled can optimize the high density of the composite material.
  • a metal particulate, or metal particulate blend is selected having an absolute density of metal greater than about 4 grams-cm "3 , greater than 7 grams-cm "3 , greater than 10 grams-cm "3 and often greater than 16 gm-cm "3 .
  • the particulate has a selected particle size and size distribution that is combined with a polymer selected for compatibility and increased density and processability.
  • a composite is defined as a combination of two or more substances intermingled with various percentages of composition, in which each component retains its essential original properties.
  • a controlled combination of separate materials results in properties that is superior to those of its constituents, hi a simple admixture the mixed material have little interaction and little property enhancement.
  • One of the materials is chosen to increase stiffness, strength or density.
  • Atoms and molecules can form bonds with other atoms or molecules using a number of mechanisms. Such bonding can occur between the electron cloud of an atom or molecular surfaces including molecular- molecular interactions, atom-molecular interactions and atom-atom interactions. Each bonding mechanism involves characteristic forces and dimensions between the atomic centers even in molecular molecular interactions.
  • the important aspect of such bonding force is strength, the variation of bonding strength over distance and directionality.
  • the major forces in such bonding include ionic bonding, covalent bonding and the van der Waals' (VDW) types of bonding.
  • Ionic radii and bonding occur in ionic species such as Na + Cl " , Li'T". Such ionic species form ionic bonds between the atomic centers. Such bonding is substantial, often substantially greater than 100 kJ-mol "1 often greater than 250 kJ-mol "1 . Further, the interatomic distance for ionic radii tend to be small and on the order of 1-3 A. Covalent bonding results from the overlap of electron clouds surrounding atoms forming a direct covalent bond between atomic centers.
  • the covalent bond strengths are substantial, are roughly equivalent to ionic bonding and tend to have somewhat smaller interatomic distances.
  • the varied types of van der Waals' forces are different than covalent and ionic bonding. These van der Waals' forces tend to be forces between molecules, not between atomic centers.
  • the van der Waals' forces are typically divided into three types of forces including dipole-dipole forces, dispersion forces and hydrogen bonding. Dipole-dipole forces are a van der Waals' force arising from temporary or permanent variations in the amount or distribution of charge on a molecule.
  • VDW I-ondon forces increase with increasing size and there is no limit to the size of molecules, these forces can become rather large In general, however, they are very weak
  • Dipole structures arise by the separation of charges on a molecule creating a generally or partially positive and a generally or partially negative opposite end. The forces arise from electrostatic interaction between the molecule negative and positive regions. Hydrogen bonding is a dipole-dipole interaction between a hydrogen atom and an electronegative region in a molecule, typically comprising an oxygen, fluorine, nitrogen or other relatively electronegative (compared to H) site. These atoms attain a dipole negative charge attracting a dipole-dipole interaction with a hydrogen atom having a positive charge. Dispersion force is the van der Waals' force existing between substantially non-polar uncharged molecules. While this force occurs in non-polar molecules, the force arises from the movement of electrons within the molecule.
  • the non-polar molecule attains a small but meaningful instantaneous charge as electron movement causes a temporary change in the polarization of the molecule.
  • These minor fluctuations in charge result in the dispersion portion of the van der Waals' force.
  • Such VDW forces because of the nature of the dipole or the fluctuating polarization of the molecule, tend to be low in bond strength, typically 50 kJ mol "1 or less. Further, the range at which the force becomes attractive is also substantially greater than ionic or covalent bonding and tends to be about 1.5-10 A.
  • van der Waals composite materials of this invention we have found that the unique combination of metal particles, the varying particle size of the metal component, the interfacially modification of the interaction between the particulate and the polymer, result in the creation of a unique van der Waals' bonding.
  • the van der Waals' forces arise between metal atoms/crystals in the particulate and are created by the combination of particle size, polymer and interfacial modifiers in the metal/polymer composite.
  • materials that are characterized as "composite” have merely comprised a polymer filled with particulate with little or no van der Waals' interaction between the particulate filler material.
  • the interaction between the selection of particle size, distribution, and polymer, and optional interfacial modifier enables the particulate to achieve an intermolecular distance that creates a substantial van der Waals' bond strength.
  • the prior art materials having little viscoelastic properties do not achieve a true composite structure. This leads us to conclude that this intermolecular distance is not attained in the prior art.
  • the term "molecule" can be used to relate to a particle of metal, a particle comprising metal crystal or an amorphous metal aggregate, other molecular or atomic units or sub-units of metal or metal mixtures, hi the composites of the invention, the van der Waals' forces occur between collections of metal atoms that act as "molecules" in the form of crystals or other metal atom aggregates.
  • the composite of the invention is characterized by a composite having intermolecular forces between metal particulates that are in the range of van der Waals' strength, i.e., between about 5 and about 30 kJ-mol "1 and a bond dimension of 3-10 A.
  • the metal particulate in the composite of the invention has a range of particle sizes such that about at least 5 wt.-% of particulate in the range of about 10 to 70 microns and about at least 5 wt.-% of particulate in the range of about 70 to 250 microns, and a polymer, the composite having a van der Waals' dispersion bond strength between molecules in adjacent particles of less than about 4 kJ-mol "1 and a bond dimension of 1.4 to 1.9 A or less than about 2 kJ-mol "1 and the van der Waals' bond dimension is about 1.5 to 1.8 A.
  • Most composites have two constituent materials: a binder or matrix, and reinforcement. The reinforcement is usually much stronger and stiffer than the matrix, and gives the composite its good properties.
  • the matrix holds the reinforcements in an orderly high density pattern. Because the reinforcements may be discontinuous, the matrix may also help to transfer load among the reinforcements. Processing can aids in the mixing and filling of the reinforcement metal. To aid in the mixture, an interfacial modifier can help to overcome the forces that prevent the matrix from forming a substantially continuous phase of the composite. Composites canbe made with certain polymers with little or no modifier. The composite properties arise from the intimate association obtained by use of careful processing and manufacture.
  • An interfacial modifier is an organic material that provides an exterior coating on the particulate promoting the close association of polymer and particulate. The modifier is used in an amount of about 0.005 to 3 wt.% or about 0.02 to 2 wt.-%.
  • metal relates to metal in an oxidation state, approximately 0, with up to 25 wt.-% or about 0.001 to 10 wt.-% as an oxide or a metal or non-metal contaminant, not in association with ionic, covalent or chelating (complexing) agents.
  • the term "particulate” typically refers to a material made into a product having a particle size greater than 10 microns (a particle size greater than about 10 microns means that a small portion of the particulate is less than 10 microns, in fact, less than 10 wt.-% of the particulate and often less than 5 wt.-% of the particulate is less than 10 microns.
  • a particulate is chosen containing at least some particulate in the size range of 10 to 100 microns and 100 to 4000 microns. In a packed state, this particulate has an excluded volume of about 13 to 60%.
  • the particulate sources can comprise two three or more particulates, in a blend of metals of differing chemical and physical nature.
  • the composite materials of the invention are manufactured using melt extrusion processing (compression and injection molding can also be used) and are also utilized in product formation using melt processing.
  • melt extrusion processing compression and injection molding can also be used
  • melt processing Typically, in the manufacturing of the high density materials of the invention, a finely divided metal material of correctly selected particle size and size distribution is combined under conditions of heat and temperature with a typically thermoplastic polymer material, are processed until the material attains a maximum density.
  • the density can be at least 4 gm-cm " , greater than 7 gm-cm " , greater than 11 gm-cm " , preferably greater than 13 gm-cm " , more preferably greater than 16 gm-cm " with improved mechanical, electrical, magnetic or catalytic properties indicating true composite formation.
  • These materials and combination of materials can be used as solid state electrochemical (e.g. battery) and semiconductor structures.
  • the metal or the thermoplastic polymer can be blended with a interfacially modifying (interfacial modifier) agents and the modified materials can then be melt processed into the material.
  • the interfacial modifier can make the surface of the particulate more compatible with the polymer.
  • the material can be extruded directly into a final product or into a pellet, chip, wafer or other easily processed production raw material.
  • the final product or intermediate chip or pellet can be made extrusion-processing techniques.
  • the manufactured composite can be obtained in appropriate amounts, subjected to heat and pressure, typically in extruder equipment and then either injection 'molded, compression molded or extruded into an appropriate useful shape having the correct amount of materials in the appropriate physical configuration.
  • a pigment or other dye material can be added to the processing equipment.
  • This material is that an inorganic dye or pigment can be co-processed resulting in a material that needs no exterior painting or coating to obtain an attractive or decorative appearance.
  • the pigments can be included in the polymer blend, can be uniformly distributed throughout the material and can result in a surface that cannot chip, scar or lose its decorative appearance.
  • One useful pigment material comprises titanium dioxide (TiO ). This material is extremely non-toxic, is a bright white, finely divided metallic particulate that can be easily combined with either metal particulates and/or polymer composites to enhance the density of the composite material and to provide a white hue to the ultimate composite material.
  • a bimetallic blend or a blend of three or more metal particulates can, obtain important composite properties from the blended metals in a polymer composite structure.
  • a tungsten composite or other high density metal can be blended with a second metal that provides to the relatively stable, non-toxic tungsten material, additional properties including a low degree of radiation in the form of alpha, beta or gamma particles, a low degree of desired cytotoxicity, a change in appearance or other beneficial properties.
  • One advantage of a bimetallic composite is obtained by careful selection of proportions resulting in a tailored density for a particular end use.
  • a copper/tungsten composite can be produced having a theoretical density, for example, with a fluoropolymer or fluorocarbon that can range from 7 gm-cm "3 through 11.4 gm-cm "3 .
  • a tantalum/tungsten composite can be produced having a theoretical density, for example, with a fluoropolymer or that can range from 11 gm-cm "3 through 12.2 gm-cm "3 .
  • an iridium/tungsten composite can be manufactured that, with a fluoropolymer or fluoropolymer elastomer, can have a density that ranges from about 12 gm-cm "3 to about 13.2 gm-cm "3 .
  • Such composites each can have unique or special properties.
  • the extrudable material having high density that can be extruded into useful shapes include a material having a composite density of about 4 to 17 gm-cm "3 , preferably about 6 to 16 gm-cm "3 , at an extruded shear rate, in common processing equipment that ranges from about 10 sec "1 to about 500 sec "1 , preferably about 10 to about 250 sec "1 at a temperature of greater than about 100°C or about 150 to 180°C.
  • the storage modulus of the composite (G') ranges from about 1200 to about 14,000 MPa, preferably from about 3000 to about 7000 MPa and a tensile modulus of at least 70 MPa.
  • the extrudable material of the invention relates to the existence of an elastic-plastic deformation and its Poisson ratio.
  • the extruded materials of the invention display an elastic plastic deformation. Under a stress that causes the extrudate to elongate, the structure deforms in an elastic mode until it reaches a limit after which it deforms in a plastic mode until it reaches its limit and fails structurally. This property is shown as the elongation at break in which the material elongates under stress by at least 10% before reaching a limit and breaking under continued stress.
  • the preferred material has a Poisson ratio typically greater than 0.3 and preferably about 0.35 to about 0.65. Such a Poisson ratio indicates that it can be extruded with little elastic relaxation during processing.
  • Figure 1 is a molded article made from the material of the invention.
  • the stent is an example of an article with a flexible structure that obtains utility from the metal polymer composite of the invention.
  • Figures 2-4 are extruded structures having interlocking members that cooperate to form an open and a closed aspect.
  • Figures 5-11 show data demonstrating the viscoelastic properties of the invention and the adaptability of the technology to form desired properties in the materials
  • Figures 12-14 are extruded structures having interlocking members that cooperate to form an open and a closed aspect.
  • Figures 15 - 17 are graphic representations of extrusion data showing the material of the invention can be extruded at useful conditions of rate, temperature and pressure
  • the invention relates to an extrusion process and an extruded metal polymer composite material having enhanced or improved properties with respect to prior art materials.
  • Single metal and mixed metal composites can be tailored for novel properties including density, color, magnetism, thermal conductivity, electrical conductivity and other physical properties.
  • the use of compositions further comprising an interfacial modifier demonstrates improved utilization of material properties and improved performance.
  • Preferred composites can be combined with one or more polymers of a given molecular weight distribution and one or more metal particulates with a given distribution to obtain unique composites.
  • the invention relates to a family of composite materials having composite characteristics that exceed the density and greatly improves viscoelastic properties of prior art metal composites.
  • the materials can be used in applications requiring high-density properties, viscoelastic character, malleability, ductility, formability and extrusion molding properties.
  • the invention specifically provides high-density materials comprising a high-density metal particulate or particulate blends, a polymer phase and when needed, an interfacial modifier that permits the polymer and metal particulate to interact to form a composite with desired nature and degree of properties and to attain the maximum density possible.
  • Such materials obtain physical properties in excess of prior art materials including density, storage modulus color, magnetism, thermal conductivity, electrical conductivity and other physical property improvements without toxicity or residual radiation characteristic of lead or depleted uranium, respectively unless needed in a specific application.
  • the materials of the invention permits the design engineer the flexibility to tailor the composite to end uses and avoid the use of toxic or radioactive materials unless desired. Lead or depleted uranium are no longer needed in their typical applications.
  • the composite materials of the invention combine a metal particulate at a maximum tap density leaving a excluded volume and a polymer material substantially occupying the excluded volume, but no more to obtain the highest possible density from the composite composition. Tap density (ASTM B527-93) relates to how well the material is packed. Packing affects the excluded volume and a volume component that is included in the density calculation. The particle size and size distribution of the particulate appears to be important in attaining the highest density composite materials of the invention. We have found that the minimum useful particle size of the particulate is about 10 microns.
  • the metal particulate contain at least an effective amount of at least one particulate having a particle size greater than 10 microns (less than 10 wt.-% often less than 5 wt.-% of the particulate is less than 10 microns).
  • the size distribution should include a broad range.
  • This distribution can be normal, Gaussian, log normal or skew normal but must include the desired range of particle sizes.
  • a true composite is obtained by carefully processing the combined polymer and polymer particulate until properties are developed and density reaches a level showing that using an interfacial modifier promotes composite formation fills the excluded volume results in enhanced property development and high density.
  • the regular, essentially spherical, character of the preferred particles of the invention can be defined by the roughness or roundness of the particle and by its aspect ratio. The aspect ratio of the particles should be less than 1:1.5 and should reflect a substantially circular cross section or spherical particle.
  • the circularity, roundness or roughness of the particle can be measured by a microscopic inspection of the particles in which an automated or manual measurement of roughness can be calculated, h such a measurement, the perimeter of a representative selection of the particulate is selected and the area of the particle cross section is also measured.
  • An ideal spherical particle has a roundness characteristic of about 12.6. This roundness characteristic is unitless parameter of less than about 20, often about 13 to 18.
  • Metal and finely divided metal compositions that can be used in the composites of the invention include, but are not limited to, titanium, chromium, iron, nickel, molybdenum, tin tungsten, cobalt, copper, zinc, cadmium, bismuth, uranium, osmium, iridium, platinum, rhenium, gold, neptunium, plutonium and tantalum.
  • An advantage is that non-toxic or non-radioactive materials can be used as a substitute for lead and depleted uranium where needed.
  • Another advantage of the invention is the ability to create bimetallic or higher composites that use two or more metal materials that cannot naturally form an alloy.
  • a variety of properties can be tailored through a careful selection of metal or a combination of metals and polymer and the toxicity or radioactivity of the materials can be designed into the materials as desired.
  • a blend of two, three or more metals in particulate form can, obtain important composite properties from both metals in a polymer composite structure.
  • a tungsten composite or other high density metal particulate can be blended with a second metal particulate that provides to the relatively stable, non-toxic tungsten material, additional properties including a low degree of radiation in the form of alpha, beta or gamma particles, a low degree of desired cytotoxicity, a change in appearance or other beneficial properties.
  • a bimetallic composite is obtained by careful selection of proportions resulting in a tailored density for a particular end use.
  • a tantalum/tungsten composite can be produced having a theoretical density, for example, with a fluoropolymer or fluoropolymer elastomer that can range from 11 gm-cm "3 through 12.2 gm-cm "3 .
  • a iridium tungsten composite can be manufactured that, with a fluoropolymer or fluoropolymer elastomer, can have a density that ranges from about 12 gm-cm "3 to about 13.2 gm-cm "3 .
  • Such composites each can have unique or special properties.
  • the extrudable composite materials of the invention combine a finely divided metal or metal particulate at a maximum packing density leaving an excluded volume and a polymer material substantially occupying the excluded volume, but no more to obtain the highest possible density from the composite composition.
  • the composite can contain about 50 to 96 or about 80 to 96 vol.-% metal particulate.
  • a variety of metal particulates in the correct size and distribution can be used with density greater than 4, greater than 8, greater than 10 or greater than 13 gm-cm "3 .
  • the important parameters of the metal particulate material include the fact that no more than 5 wt.-% of the metal particulate is less than 10 microns in diameter. Further, this distribution can be described by Table A, the metal particle having a substantial proportion of particulate falling in the range of 10 to 50 microns, a substantial proportion of a particulate falling in the range of 50 to 350 microns and a substantial proportion of a particulate falling in the range of 350 to l 2400 microns. By a substantial proportion, we mean at least 10 wt.-% of the particulate.
  • a more preferred particulate range is as follows: 10 wt.-% 10 to 50 microns, 15 wt.-% 50 to 350 microns, 75 wt.-% 350 to 2400 microns
  • the most preferred particulate range is as follows: 5 wt.-% 10 to 70 microns, 10 wt.-% 70 to 90 microns, 15 wt.-% 90 to 500 microns, 70 wt.-% 500 to 4000 microns.
  • a number of metal particles can be used in the compositions of the invention. The following are examples of useful metals. Titanium has a symbol Ti, an atomic weight of 47.867 and common valence of 2, 3, 4 (mostly tetravalent).
  • the metal is in Group IVB (4) It is the ninth most abundant element in earth's crust; 0.63% by wt. Reviews: Gmelin's, Titanium (8th ed.) 41 (1951); Everhart, Titanium and Titanium Alloys (Reihhold, New York, 1954); Brophy et al, Titanium Cisco's, London, 1956); Barksdale, Titanium, Its Occurrence, Chemistry and Technology (Ronald Press, New York, 2nd ed, 1966); Clark, "Titanium” in Comprehensive Inorganic Chemistry vol. 3, J. C. Bailar, Jr. et al, Eds.
  • the metal is a dark gray, lustrous metal with a mp 1677°, a bp 3277°, and a specific heat (25°) of 5.98 cal/g-atom °C.
  • the metal forms alloys with aluminum, chromium, cobalt, copper, iron, lead, nickel, tin.
  • the metal can be used as an alloy with copper and iron in titanium bronze, as addition to steel to impart great tensile strength and to aluminum to impart resistance to attack by aqueous salt and by organic acids.
  • Chromium has a symbol Cr, an atomic weight and number of 51.9961 and 24 and common valences of 1-6.
  • Chromium is a steel-gray, lustrous metal; body-centered cubic structure; hard as corundum and less fusible than platinum.
  • Chromium exhibits a mp of 1903 ⁇ 10°, a bp of 2642°, a d20 of 7.14, a heat capacity (25°) of 5.58 cal/mol/deg C°, a heat of fusion of 3.5 kcal/mol, a heat of vaporization of 81.7 kcal/mol (at bp), a d 0 of 7.19 a specific heat (25° C) of 23.9 J/mol/deg K and a heat of fusion of 14.6 kJ/mol. Chromium is resistant to common corroding agents, is acid resistant, (i.e.) and reacts with dil HC1, H2SO4 but not with HNO3.
  • Chromium is useful in chrome steel or chrome-nickel-steel alloys (stainless steel), nonferrous alloys and heat resistant bricks for refractory furnaces. To greatly increase strength, hardness and resistance of metals to abrasion, corrosion and oxidation.
  • Iron has a symbol Fe, an atomic weight of 55.845, exhibits common valences of 2 and 3 and is in Group VIII(8). Iron is the second most abundant metal in earth's crust after aluminum. See the comprehensive reviews: Feldmann, Schenck in Ullmanns Encyklopddie der Technischen Chemie vol. 6 (M ⁇ nchen-Berlin, 1955) pp 261-407; Nicholls in Comprehensive Inorganic Chemistry vol. 3, J. C. Bailar, Jr.
  • Iron is a silvery-white or gray, soft, ductile, malleable, somewhat magnetic metal. Holds magnetism only after hardening (as alloy steel, e.g., Alnico). Stable in dry air but readily oxidizes in moist air, forming rust. In powder form it is black to gray and can be alloyed with C, Mn, Cr, Ni, and other elements to form steels.
  • Nickel has a symbol Ni, an atomic weight of 58.6934, a common valence 2 and is in Group VIII(10). Nickel's abundance in earth's crust is 99 ppm. See the comprehensive reviews in Gmelin's, Nickel (8th ed.) 57, 5 vols, about 3500 pp (1965-1967); Nicholls in Comprehensive Inorganic Chemistry vol. 3, J. C. Bailar, Jr. et al, Eds. (Pergamon Press, Oxford, 1973) pp 1109-1161; J. K. Tien, T. E. Howson in Kirk-Othmer Encyclopedia of Chemical Technology vol.
  • Nickel is a lustrous white, hard, ferromagnetic metal with face-centered cubic crystals having a mp 1453° and a bp (calc) 2732°. Nickel is stable in air at ordinary temp; burns in oxygen, forming NiO, is not affected by water and decomposes steam at a red heat. Nickel is slowly attacked by dil hydrochloric or sulfuric acid, is readily attacked by nitric acid but is not attacked by fused alkali hydroxides.
  • Nickel can be used for nickel-plating, for various alloys such as Monel metal, stainless steels, heat resistant steels, heat and corrosion resistant alloys, nickel-chrome resistance wire and in alloys for electronic and space applications.
  • Molybdenum has a symbol Mo an at. wt 95.94, common valences 2,3,4,5,6 and is in Group VIB(6). Molybdenum has an occurrence in the earth's crust of about 1-1.5 ppm. See review of molybdenum in RoUinson, "Chromium, Molybdenum and Tungsten” in Comprehensive Inorganic Chemistry vol. 3, J. C. Bailar Jr. et al, Eds. (Pergamon Press, Oxford, 1973) pp 622-623, 700-742; R.
  • Molybdenum is a dark-gray or black powder with metallic luster or coherent mass of silver-white color; body-centered cubic structure with a mp 2622° (Worthing) , a bp -4825° a d of 10.28 and a spec heat 5.68 cal/g- atom/deg. Molebdenum is stable at ordinary temp, is oxidized to the trioxide at a red heat and slowly oxidized by steam.
  • Molybdenum is not attacked by water, by dil acids or by conc'd hydrochloric acid and is practically insoluble in alkali hydroxides or fused alkalis.
  • the metal reacts with nitric acid, hot concentrated sulfuric acid, fused potassium chlorate or nitrate.
  • the metal can be used in the form of ferromolybdenum for manufacturing special steels for tools, boiler plate, rifle barrels, propeller shafts, electrical contacts, spark plugs, x-ray tubes and nonferrous alloys.
  • the metal can be used in colloidal form as lubricant additive. Tin has a symbol of Sn and at.
  • Tin has an occurrence in earth's crust of 6x10-4 %.
  • the metal of commerce is about 99.8% pure. See the Monograph: C. L. Mantell, Tin: Its Mining, Production, Technology and Applications (Reinhold, New York, 1949) and W. Germain et al, in Kirk-Othmer Encyclopedia of Chemical Technology vol. 23 (Wiley-Interscience, New York, 3rd ed., 1983) pp 18-42.
  • Tin is a silver-white, lustrous, soft, very malleable and ductile metal that is easily powdered. The metal is available in the form of bars, foil, powder, shot, etc.
  • Tungsten has an atomic weight of 183.84; an atomic number of 74 and is in Group VJJ3(6).
  • Naturally occurring isotopes are 180 (0.135%); 182 (26.4%); 183 (14.4%); 184 (30.6%); 186 (28.4%); artificial radioactive isotopes are 173-179; 181; 185; 187-189.
  • Tungsten was discovered by C. W. Scheele in 11781 and isolated in 1783 by J. J. and F.
  • Tungsten is a steel-gray to tin-white metal having in crystal form, a body centered cubic structure.
  • Tungsten is stable in dry air at ordinary temperatures, but forms the trioxide at red heat, is not attacked by water, but is oxidized to the dioxide by steam.
  • Particulate tungsten can be pyrophoric under the right conditions and is slowly sol in fused potassium hydroxide or sodium carbonate in presence of air; is soluble in a fused mixture of NaOH and nitrate. Tungsten is attacked by fluorine at room temperature; by chlorine at 250-300°C giving the hexachloride in absence of air, and the trioxide and oxychloride in the presence of air. In summary the melting point is 3410°C, the boiling point is
  • Uranium (U) has an atomic weight of 238.0289 (characteristic naturally occurring isotopic mixture); an atomic number of 92 with no stable nuclides. Naturally occurring isotopes are 238 (99.275%); 235 (0.718%); 234 (0.005%); artificial radioactive isotopes are 226-233; 236; 237; 239; 240. Uranium comprises about 2.1 ppm of the earth's crust. Main uranium ores of commercial interest are carnotite, pitchblende, tobernite and autunite.
  • Uranium is a silver-white, lustrous, radioactive metal that is both malleable and ductile, and tarnishes rapidly in air forming a layer of dark-colored oxide.
  • Heat of vaporization is 446.7 kJ/mol; heat of fusion is 19.7 kJ/mol; heat of sublimation is 487.9 kJ/mol.
  • Finely divided uranium metal and some uranium compounds may ignite spontaneously in air or oxygen and are rapidly soluble in aqueous HC1.
  • Naturally occurring isotopes are 184 (0.02%); 186 (1.6%); 187 (1.6%); 188 (13.3%); 189 (16.1%); 190 (26.4%); 192 (41.0%).
  • Artificial radioactive isotopes are 181-183; 185; 191; 193-195.
  • Osmium comprises about 0.001 ppm of the earth's crust and is found in the mineral osmiridium and in all platinum ores.
  • d 4 20 22.61 With a density of d 4 20 22.61, it has been long believed to be the densest element.
  • X-ray data has shown it to be slightly less dense than iridium with a melting point of about 2700°C, boiling point of about 5500°C, a density of d 4 20 22.61, specific heat (0°C) 0.0309 cal/g/°C and hardness 7.0 on Mohs' scale.
  • Osmium is stable in cold air and, when finely divided, is slowly oxidized by air even at ordinary temperature to form tetroxide. Osmium is attacked by fluorine above 100°C, by dry chlorine on heating, but not attacked by bromine or iodine.
  • Osmium is attacked by aqua regia, by oxidizing acids over a long period of time, but barely affected by HC1, H 2 SO 4 .
  • Osmium burns in vapor of phosphorus to form a phosphide, in vapor of sulfur to form a sulfide.
  • Osmium is also attacked by molten alkali hydrosulfates, by potassium hydroxide and oxidizing agents. Finely divided osmium absorbs a considerable amount of hydrogen, hi summary, osmium has a melting point of about 2700°C, a boiling point of about 5500°C and a density Iridium ( ⁇ r) has an atomic weight of 192.217 and an atomic number of 77.
  • Naturally occurring isotopes are 191 (38.5%); 193 (61.5%) and artificial radioactive isotopes are 182-191; 194-198. It comprises about 0.001 ppm of the earth's crust.
  • Iridium was discovered by Tennant. It occurs in nature in the metallic state, usually as a natural alloy with osmium (osmiridium) and found in small quantities alloyed with native platinum (platinum mineral) or with native gold. Recovery and purification from osmiridium are found in Deville, Debray, Ann. Chim. Phys. 61, 84 (1861); from the platinum mineral: Wichers, J. Res. Nat. Bur. Stand. 10, 819 (1933).
  • Iridium is a silver- white, very hard metal; face-centered cubic lattice with a melting point of 2450°C, boiling point of about 4500°C with a density of d 4 20 22.65, specific heat of 0.0307 cal/g/°C, Mohs' hardness of 6.5 and has the highest specific gravity of all elements. Pure iridium is not attacked by any acids including aqua regia and only slightly by fused (non-oxidizing) alkalis. It is superficially oxidized on heating in the air, is attacked by fluorine and chlorine at a red heat, attacked by potassium sulfate or by a mixture of potassium hydroxide and nitrate on fusion, attacked by lead, zinc or tin.
  • the powdered metal is oxidized by air or oxygen at a red heat to the dioxide, IrO 2 , but on further heating the dioxide dissociates into its constituents.
  • iridium has a melting point of 2450°C, a boiling point of about 4500°C and a density of d 4 20 22.65.
  • Platinum (Pt) has an atomic weight of 195.078, an atomic number of 78 and is in Group VIII(10).
  • Naturally occurring isotopes are 190 (0.01%); 192 (0.8%); 194 (32.9%; 195 (33.8%); 196 (25.2%); 198 (7.2%); 190 is radioactive: T> /2 6.9 x 10 11 years.
  • Platinum is a silver-gray, lustrous, malleable and ductile metal; face-centered cubic structure; prepared in the form of a black powder (platinum black) and as spongy masses (platinum sponge). Platinum has a melting point of 1773.5 ⁇ 1°C; Roeser et al., Nat Bur. Stand. J. Res.
  • Platinum is not affected by water or by single mineral acids, reacts with boiling aqua regia with formation of chloroplatinic acid, and also with molten alkali cycanides. It is attacked by halogens, by fusion with caustic alkalis, alkali metrates, alkali peroxides, by arsenates and phosphates in the presence of reducing agents, in summary, platinum has a melting point of 1773.5 ⁇ 1°C; Roeser et al, Nat. Bur. Stand. J. Res. 6, 1119 (1931), boiling point about 3827°C and a density of 21.447 (calcd).
  • Gold has an atomic weight of 196.96655; an atomic number of 79 and is in Group IB(11). Naturally occurring isotope 197; artificial isotopes (mass numbers) are 177-179, 181, 183, 185-196, 198-203. Gold comprises 0.005 of the earth's crust. Gold is probably the first pure metal known to man. It occurs in nature in its native form and in minute quantities in almost all rocks and in seawater. Gold ores including calavarite (AuTe 2 ), sylvanite [(Ag,Au)Te 2 ], petzite [(Ag,Au) 2 Te].
  • Gold is a yellow, soft metal; face-centered cubic structure; and when prepared by volatilization or precipitation methods, deep violet, purple, or ruby powder, melting point of 1064.76°C; boiling point of 2700°C with a density of 19.3; Moh's hardness of 2.5-3.0; Brinell hardness of 18.5. Gold is extremely inactive; not attacked by acids, air or oxygen; superficially attacked by aq halogens at room temperature; reacts with aqua regia, with mixtures containing chlorides, bromides or iodides if they can generate nascent halogens, with many oxidizing mixtures especially those containing halogens, alkali cyanides, solutions of thiocyanates and double cyanides.
  • Rhenium has an atomic weight of 186.207; an atomic number of 75 and is in Group VHB(7).
  • Naturally occurring isotopes are 185 (37.07%); 187 (62.93%), the latter is radioactive, T> /2 ⁇ 10 ⁇ years; artificial radioactive isotopes are 177-184; 186; 188-192.
  • Rhenium comprises about 0.001 ppm of the earth's crust. It occurs in gadolinite, molybdenite, columbite, rare earth minerals, and some sulfide ores. Rhenium was discovered by Nodack et al, Naturwiss.
  • Rhenium has hexagonal close- packed crystals, black to silver-gray; has a density of d 21.02; melting point of 3180°C; boiling point of 5900°C (estimated); specific heat of 0-20°C 0.03263 cal/g/°C; specific electrical resistance of 0.21 x 10 "4 ohm/cm at 20°C; Brinell hardness of 250; latent heat of vaporization of 152 kcal/mol and reacts with oxidizing acids, nitric and concentrated sulfuric acid, but not with HC1.
  • Rhenium has a melting point of 3180°C, boiling point of 5900°C (estimated) and density of 21.02.
  • Neptunium (Np) has an atomic number of 93. It is the first man-made transuranium element with no stable nuclides.
  • Known isotopes are 227-242.
  • the discovery of isotope 239 (T ⁇ /2 2.355 days, alpha-decay, relative atomic mass of 239.0529) can be found in E. McMillan, P. Abelson, Phys. Rev.
  • Neptunium is a silvery metal; develops a thin oxide layer upon exposure to air for short periods. Reacts with air at high temperatures to form NpO 2 with an extrapolated boiling point of 4174°C Neptunium has been obtained in its five oxidation states in solution; the most stable is the pentavalent state.
  • Tetravalent Neptunium is readily oxidized to the hexavalent state by permanganate in the cold, or by strong oxidizing agents; on electrolytic reduction in an atmosphere of nitrogen, the trivalent form is obtained.
  • Neptunium has a melting point of 637°C; a boiling point of 4174°C and a density of d 20.45; d 19.36.
  • Plutonium (Pu) has an atomic number of 94 with no stable nuclides.
  • Known isotopes (mass numbers) are 232-246.
  • the longest-lived known isotopes are Pu (T. /2 3.76 x 10 5 years, relative atomic mass 242.0587), 244 (T 2 8.26 x 10 7 years, relative atomic mass 244.0642).
  • isotopes are 238 Pu (T> /2 87.74 years, relative atomic mass 238.0496); 239 Pu (T ⁇ /2 2.41 x 10 4 years; relative atomic mass 239.0522).
  • Plutonium comprises 10 "22 % of the earth's crust.
  • the discovery of isotope 238 Pu is found in G.T. Seaborg et al., Phys. Rev. 69, 366, 367 (1946); of isotope 239 Pu in J.W. Kennedy et al., ibid 70 555 (1946).
  • Solution of 239 Pu from pitchblende is found in G.T. Saborg, M.L. Perlman, J. Am. Chem. Soc. 70, 1571 (1948).
  • Tantalum (Ta) has an atomic weight of 180.9479; atomic number of 73 and is in Group VB(5). Naturally occurring isotopes are 181 (99.9877%); 180 (0.0123%), T. /2 > 10 12 years; artificial radioactive isotopes are 172-179; 182-186.
  • Tantalum occurs almost invariably with niobium, but less abundant than niobium. It is found in the minerals columbite, q.v., tantalite ([(Fe,Mn)(Ta,Nb) 2 O 6 ] and microlite [(Na,Ca) 2 Ta 2 O 6 (O,OH,F)]. Tantalum was discovered by Edeberg in 1802; first obtained pure by Bolton in Z. Elektrochem. 11, 45 (1905). Preparation is found in Schoeller, Powell, J. Chem. Soc. 119, 1927 (1921). Reviews: G.L. Miller,
  • Tantalum is a gray, very hard, malleable, ductile metal that can be readily drawn in fine wires; has a melting point of 2996°C; a boiling point of 5429°C, a density of d 16.69; specific heat 0°C: 0.036 cal/g/°C; electrical resistivity (18°C): 12.4 ⁇ ohm-cm; insoluble in water; very resistant to chemical attack; not attacked by acids other than hydrofluoric and not attacked by aqueous alkalis; slowly attacked by fused alkalis. It reacts with fluorine, chlorine and oxygen only on heating and at high temperatures absorbs several hundred times its volume of hydrogen; combines with nitrogen, with carbon.
  • Tantalum has a melting point of 2996°C, boiling point of 5429°C and a density of d 16.69.
  • a large variety of polymer materials can be used in the composite materials of the invention.
  • a polymer is a general term covering either a thermoset or a thermoplastic.
  • polymer materials useful in the invention include both condensation polymeric materials and vinyl polymeric materials. Included are both vinyl and condensation polymer blends, and polymeric alloys thereof.
  • Vinyl polymers are typically manufactured by the polymerization of monomers having an ethylenically unsaturated olefinic group.
  • Condensation polymers are typically prepared by a condensation polymerization reaction which is typically considered to be a stepwise chemical reaction in which two or more molecules combined, often but not necessarily accompanied by the separation of water or some other simple, typically volatile substance. Such polymers can be formed in a process called polycondensation.
  • the polymer has a density of at least 0.94 gm-cm "3 , however, polymers having a density of 0.96 to 2 gm-cm "3 and preferably greater than 0.98 to 1.9 gm-cm "3 are useful to increase density, Preferred polymers can have a useful high density typically greater than 1 gm-cm "3 often greater than 1.5 gm-cm "3 and also greater than 1.7 gm-cm "3 .
  • Vinyl polymers include polyethylene, polypropylene, polybutylene, acrylonitrile-butadiene-styrene (ABS), polybutylene copolymers, polyacetyl polymers, polyacrylic polymers, homopolymers or copolymers comprising vinyl chloride, vinylidene chloride, fluorocarbon copolymers, etc.
  • Condensation polymers include nylon, phenoxy polymers, polyarylether such as polyphenylether, polyphenylsulfide materials; polycarbonate materials, chlorinated polyether polymers, polyethersulfone polymers, polyphenylene oxide polymers, polysulfone polymers, polyimide polymers, thermoplastic urethane elastomers, polyester (i.e.
  • Condensation polymers that can be used in the composite materials of the invention include polyamides, polyamide-imide polymers, polyarylsulfones, polycarbonate, polybutylene terephthalate, polybutylene naphthalate, polyetherimides, polyethersulfones, polyethylene terephthalate, thermoplastic polyimides, polyphenylene ether blends, polyphenylene sulfide, polysulfones, thermoplastic polyurethanes and others.
  • Preferred condensation engineering polymers include polycarbonate materials, polyphenyleneoxide materials, and polyester materials including polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polybutylene naphthalate materials.
  • Polycarbonates can be made with phthalate monomers introduced into the polymerization extruder to improve properties such as heat resistance, further Irifunctional materials can also be used to increase melt strength or extrusion blow molded materials.
  • Polycarbonates can often be used as a versatile blending material as a component with other commercial polymers in the manufacture of alloys.
  • Polycarbonates can be combined with polyethylene terephthalate acrylonitrile- butadiene-styrene polymers, styrene maleic anhydride polymers and others.
  • Preferred alloys comprise a styrene copolymer and a polycarbonate.
  • Preferred melt for the polycarbonate materials should be indices between 0.5 and 30, preferably between 1 and 20 gms/10 min.
  • polyester condensation polymer materials including polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, etc. can be useful in the composites of the invention.
  • Polyethylene terephthalate and polybutylene terephthalate are high performance condensation polymer materials.
  • Such polymers often made by a copolymerization between a diol (ethylene glycol, 1,4-butane diol) with dimethyl terephthalate.
  • the polymerization mixture is heated to high temperature resulting in the transesterification reaction releasing methanol and resulting in the formation of the engineering plastic.
  • polyethylene naphthalate and polybutylene naphthalate materials can be made by copolymerizing as above using as an acid source, a naphthalene dicarboxyhc acid.
  • the naphthalate thermoplastics have a higher Tg and higher stability at high temperature compared to the terephthalate materials.
  • all these polyester materials are useful in the composite materials of the invention. Such materials have a preferred molecular weight characterized by melt flow properties.
  • Useful polyester materials have a viscosity at 265°C of about 500-2000 cP, preferably about 800-1300 cP.
  • Polyphenylene oxide materials are engineering thermoplastics that are useful at temperature ranges as high as 330°C Polyphenylene oxide has excellent mechanical properties, dimensional stability, and dielectric characteristics. Commonly, phenylene oxides are manufactured and sold as polymer alloys or blends when combined with other polymers or fiber. Polyphenylene oxide typically comprises a homopolymer of 2,6-dimethyl-l -phenol. The polymer commonly known as ⁇ oly(oxy-(2,6-dimethyl-l,4-phenylene)). Polyphenylene is often used as an alloy or blend with a polyamide, typically nylon 6-6, alloys with polystyrene or high impact styrene and others.
  • a preferred melt index (ASTM 1238) for the polyphenylene oxide material useful in the invention typically ranges from about 1 to 20, preferably about 5 to 10 gm/10 min.
  • the melt viscosity is about 1000 at 265°C
  • Another class of thermoplastic include styrenic copolymers.
  • the term styrenic copolymer indicates that styrene is copolymerized with a second vinyl monomer resulting in a vinyl polymer.
  • Such materials contain at least a 5 mol-% styrene and the balance being 1 or more other vinyl monomers.
  • An important class of these materials are styrene acrylonitrile (SAN) polymers.
  • SAN polymers are random amorphous linear copolymers produced by copolymerizing styrene acrylonitrile and optionally other monomers. Emulsion, suspension and continuous mass polymerization techniques have been used. SAN copolymers possess transparency, excellent thermal properties, good chemical resistance and hardness. These polymers are also characterized by their rigidity, dimensional stability and load bearing capability. Olefin modified SAN's (OS A polymer materials) and acrylic styrene acrylonitriles (ASA polymer materials) are known. These materials are somewhat softer than unmodified SAN's and are ductile, opaque, two phased terpolymers that have surprisingly improved weatherability.
  • OS A polymer materials Olefin modified SAN's
  • ASA polymer materials acrylic styrene acrylonitriles
  • ASA polymers are random amorphous terpolymers produced either by mass copolymerization or by graft copolymerization. In mass copolymerization, an acrylic monomer styrene and acrylonitrile are combined to form a heteric terpolymer. In an alternative preparation technique, styrene acrylonitrile oligomers and monomers can be grafted to an acrylic elastomer backbone. Such materials are characterized as outdoor weatherable and UV resistant products that proyide excellent accommodation of color stability property retention and property stability with exterior exposure. These materials can also be blended or alloyed with a variety of other polymers including polyvinyl chloride, polycarbonate, polymethyl methacrylate and others. An important class of styrene copolymers includes the acrylonitrile-butadiene-styrene monomers. These polymers are very versatile family of engineering thermoplastics produced by copolymerizing the three monomers.
  • Each monomer provides an important property to the final terpolymer material.
  • the final material has excellent heat resistance, chemical resistance and surface hardness combined with processability, rigidity and strength.
  • the polymers are also tough and impact resistant.
  • the styrene copolymer family of polymers have a melt index that ranges from about 0.5 to 25, preferably about 0.5 to 20.
  • An important class of engineering polymers that can be used in the composites of the invention include acrylic polymers. Acrylics comprise a broad array of polymers and copolymers in which the major monomeric constituents are an ester acrylate or methacrylate. These polymers are often provided in the form of hard, clear sheet or pellets. Acrylic monomers polymerized by free radical processes initiated by typically peroxides, azo compounds or radiant energy.
  • Pellets made for polymer grade applications are typically made either in bulk (continuous solution polymerization), followed by extrusion and pelleting or continuously by polymerization in an extruder in which unconverted monomer is removed under reduced pressure and recovered for recycling.
  • Acrylic plastics are commonly made by using methyl acrylate, methylmethacrylate, higher alkyl acrylates and other copolymerizable vinyl monomers.
  • Preferred acrylic polymer materials useful in the composites of the invention has a melt index of about 0.5 to 50, preferably about 1 to 30 gm/10 min.
  • the primary requirement for the substantially thermoplastic engineering polymer material is that it retains sufficient thermoplastic properties such as viscosity and stability, to permit melt blending with a metal particulate, permit formation of linear extrudate pellets, and to permit the composition material or pellet to be extruded or injection molded in a thermoplastic process forming the useful product.
  • Engineering polymer and polymer alloys are available from a number of manufacturers including B.F. Goodrich, General Electric, Dow, and E. I. duPont.
  • Vinyl polymers include a acrylonitrile; polymer of alpha-olefins such as ethylene, propylene, etc.; chlorinated monomers such as vinyl chloride, vinylidene dichloride, acrylate monomers such as acrylic acid, methylacrylate, methylmethacrylate, acrylamide, hydroxyethyl acrylate, and others; styrenic monomers such as styrene, alphamethyl styrene, vinyl toluene, etc.; vinyl acetate; and other commonly available ethylenically unsaturated monomer compositions.
  • Polymer blends or polymer alloys can be useful in manufacturing the pellet or linear extrudate of the invention.
  • Such alloys typically comprise two miscible polymers blended to form a uniform composition.
  • Scientific and commercial progress in the area of polymer blends has lead to the realization that important physical property improvements can be made not by developing new polymer material but by forming miscible polymer blends or alloys.
  • a polymer alloy at equilibrium comprises a mixture of two amorphous polymers existing as a single phase of intimately mixed segments of the two macro molecular components.
  • Miscible amorphous polymers form glasses upon sufficient cooling and a homogeneous or miscible polymer blend may exhibit a single, composition dependent glass transition temperature (Tg).
  • Tg composition dependent glass transition temperature
  • Immiscible or non-alloyed blend of polymers typically displays two or more glass transition temperatures associated with immiscible polymer phases.
  • the properties of polymer alloys reflect a composition weighted average of properties possessed by the components.
  • the property dependence on composition varies in a complex way with a particular property, the nature of the components (glassy, rubbery or semi-crystalline), the thermodynamic state of the blend, and its mechanical state whether molecules and phases are oriented.
  • Polyester polymers are manufactured by the reaction of a dibasic acid with a glycol.
  • Dibasic acids used in polyester production include phthalic anhydride, isophthalic acid, maleic acid and adipic acid. The phthalic acid provides stiffness, hardness and temperature resistance; maleic acid provides vinyl saturation to accommodate free radical cure; and adipic acid provides flexibility and ductility to the cured polymer.
  • polyesters are manufactured with a styrene concentration or other monomer concentration producing polymer having an uncured viscosity of 200-1,000 mPa.s(cP). Specialty polymers may have a viscosity that ranges from about 20 cP to 2,000 cP.
  • Unsaturated polyester polymers are typically cured by free radical initiators commonly produced using peroxide materials. Wide varieties of peroxide initiators are available and are commonly used. The peroxide initiators thermally decompose forming free radical initiating species.
  • Phenolic polymers can also be used in the manufacture of the structural members of the invention. Phenolic polymers typically comprise a phenol- formaldehyde polymer. Such polymers are inherently fire resistant, heat resistant and are low in cost. Phenolic polymers are typically formulated by blending phenol and less than a stoichiometric amount of formaldehyde. These materials are condensed with an acid catalyst resulting in a thermoplastic intermediate polymer called NOVOLAK.
  • polymers are oligomeric species terminated by phenolic groups. In the presence of a curing agent and optional heat, the oligomeric species cure to form a very high molecular weight thermoset polymer.
  • Curing agents for novalaks are typically aldehyde compounds or methylene (-CH 2 -) donors.
  • Aldehydic curing agents include paraformaldehyde, hexamethylenetetraamine, formaldehyde, propionaldehyde, glyoxal and hexamethylmethoxy melamine.
  • the fluoropolymers useful in this invention are polymers made with monomers containing one or more atoms of fluorine, or copolymers of two or more of such monomers.
  • fluorinated monomers useful in these polymers or copolymers include tetrafluoroethylene (TFE), hexafluoropropylene(HFP), vinylidene fluoride (VDF), perfluoroalkylvinyl ethers such as perfluoro-(n-propyl- vinyl) ether (PPVE) or perfluoromethylvinylether (PMVE).
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • VDF vinylidene fluoride
  • PPVE perfluoro-(n-propyl- vinyl) ether
  • PMVE perfluoromethylvinylether
  • Other copolymerizable olefinic monomers including non-fluorinated monomers, may also be present.
  • Such copolymers include those containing at least 50 mole percent of vinylidene fluoride copolymerized with at least one comonomer selected from the group consisting of tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, hexafluoropropene, vinyl fluoride, pentafluoropropene, and any other monomer that readily copolymerizes with vinylidene fluoride.
  • comonomer selected from the group consisting of tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, hexafluoropropene, vinyl fluoride, pentafluoropropene, and any other monomer that readily copolymerizes with vinylidene fluoride.
  • Preferred copolymers are those composed of from at least about 70 and up to 99 mole percent vinylidene fluoride, and correspondingly from about 1 to 30 percent tetrafluoroethylene, such as disclosed in British Patent No. 827,308; and about 70 to 99 percent vinylidene fluoride and 1 to 30 percent hexafluoropropene (see for example, U.S. Patent No. 3,178,399); and about 70 to 99 mole percent vinylidene fluoride and 1 to 30 percent trifluoroethylene.
  • Terpolymers of vinylidene fluoride, trifluoroethylene and tetrafluoroethylene such as described in U.S. Patent No.
  • 2,968,649 and terpolymers of vinylidene fluoride, trifluoroethylene and tetrafluoroethylene are also representative of the class of vinylidene fluoride copolymers which are useful in this invention.
  • Such materials are commercially available under the KYNAR trademark from Arkema Group located in King of Prussia, PA or under the DYNEON trademark from Dyneon LLC of Oakdale, MN. Fluorocarbon elastomer materials can also be used in the composite materials of the invention.
  • Fluoropolymer Fluoropolymers contain VF2 and HFP monomers and optionally TFE and have a density greater than 1.8 gm-cm "3 and fluoropolymers exhibit good resistance to most oils, chemicals, solvents, and halogenated hydrocarbons, and an excellent resistance to ozone, oxygen, and weathering.
  • Their useful application temperature range is -40°C to 300°C Fluoroelastomer examples include those described in detail in Lentz, U.S. Pat. No. 4,257,699, as well as those described in Eddy et al., U.S. Pat. No. 5,017,432 and Ferguson et al., U.S. Pat. No. 5,061 ,965.
  • Latex fluoropolymers are available in the form of the polymers comprising the PFA, FEP, ETFE, The, THV and PVDF monomers. This class of latex materials can act as an interfacial modifier or in a bulk polymer state. Fluorinated poly(meth)acrylates can generally be prepared by free radical polymerization either neat or in solvent, using radical initiators well known to those skilled in the art.
  • fluorinated (meth)acrylate monomers include alkyl (meth)acrylates, substituted alkyl (meth)acrylates, (meth)acrylic acid, (meth)acrylamides, styrenes, vinyl halides, and vinyl esters.
  • the fluoropolymers can comprise polar constituents. Such polar groups or polar group containing monomers may be anionic, nonionic, cationic, or amphoteric.
  • the more commonly employed polar groups or polar group- containing organic radicals include organic acids, particularly carboxylic acid, sulfonic acid and phosphonic acid; carboxylate salts, sulfonates, phosphonates, phosphate esters, ammonium salts, amines, amides, alkyl amides, alkyl aryl amides, imides, sulfonamides, hydroxymethyl, thiols, esters, silanes, and polyoxyalkylenes, as well as other organic radicals such as alkylene or arylene substituted with one or more of such polar groups.
  • the latex fluoropolymers described herein are typically aqueous dispersed solids but solvent materials can be used.
  • the fluoropolymer can be combined with various solvents to form emulsion, solution or dispersion in a liquid form.
  • Dispersions of fluoropolymers can be prepared using conventional emulsion polymerization techniques, such as described in U.S. Patent Nos. 4,418,186; 5,214,106; 5,639,838; 5,696,216 or Modern Fluoropolymers, Edited by John Scheirs, 1997 (particularly pp. 71-101 and 597-614) as well as assignees' copending patent application Serial No. 01/03195, filed January 31, 2001.
  • the liquid forms can be further diluted in order to deliver the desired concentration.
  • aqueous emulsions, solutions, and dispersions are preferred, up to about 50% of a cosolvent such as methanol, isopropanol, or methyl perfluorobutyl ether may be added.
  • a cosolvent such as methanol, isopropanol, or methyl perfluorobutyl ether
  • the aqueous emulsions, solutions, and dispersions comprise less than about 30% cosolvent, more preferably less than about 10% cosolvent, and most preferably the aqueous emulsions, solutions, and dispersions are substantially free of cosolvent.
  • the metal particulate can be coupled to the polymer phase depending on the nature of the polymer phase, the filler, the particulate surface chemistry and any pigment process aid or additive present in the composite material.
  • Interfacial modifying chemistries are capable of modifying the surface of the particulate by coordination bonding, Van der Waals forces, covalent bonding, or a combination of all three.
  • the surface of the particle behaves as a particle of the non-reacted end of the interfacial modifier. These organics reduce the friction between particles preventing gouging and allowing for greater freedom of movement between particles. These phenomena allow the applied shaping force to reach deeper into the form resulting in a more uniform pressure gradient. This achieves closer packing (note highest Van der Waals occurs at 5 Angstrom or less) in the bulk and higher physical properties.
  • the use of a sufficient amount of the interfacial modifier that is sufficient to modify the surface characteristic of the metal but not displace polymer is an important compounding characteristic.
  • Stearic acid and derivatives or compounds thereof, modify the composites of the invention modify the composites of the invention, stearic acid performs a interfacial modifying function to result in the formation of a stearic layer on the surface of the metal particle reducing the intermolecular forces, improving the tendency of the polymer to wet the particulate particle, and resulting in increased composite density.
  • silane interfacial modifiers improve physical properties of the composites by forming chemical bonds between the metal particle and the continuous polymer phase, or by modifying the surface energy of the inorganic metal particulate matching the surface energy of the polymer at the particle polymer interface.
  • Silane coupling agents useful in the invention include but are not limited to compounds of the following structure:
  • X represents a hydrolyzable group comprising alkoxy-, acyloxy-, halo- or amino- depending on the surface chemistry of the metal particulate and the reaction mechanism. Coupling is maximized as the number of chemical bonds between the particulate surface and polymer is maximized.
  • dipodal silanes such as bis(triethoxysilyl) ethane are chosen.
  • R represents the non-hydrolyzable organic group of the silane compound.
  • the R group may be chemically bonded to the polymer phase or as desired to remain unreactive if non-bonded interfacial modifier can be applied.
  • the reaction proceeds through the addition of free radicals to the polymer. These free radicals can be added either through heat, light or in the form of peroxide catalysts or promoters and similar reactive systems. Selection of the R group additionally is made through a consideration of polymer used in the composite.
  • Thermosetting polymers can be used to chemically bond the silane to the polymer phase if a thermoset polymer is selected.
  • the reactive groups in the thermoset can include methacrylyl, styryl, or other unsaturated or organic materials.
  • Thermoplastic materials with reactive sites can be used to increase the reactivity between the polymer phase and the metal particulate.
  • Such thermoplastics having reactive sites in either the backbone or groups pendant to the polymer backbone include polyvinylchloride, polyphenylene sulfite, acrylic homopolymers, maleic anhydride containing polymers, acrylic materials, vinyl acetate polymers, diene containing copolymers such as 1,3 -butadiene, 1,4-pentadiene, halogen or chlorosulfonyl modified polymers or other polymers that can react with the composite systems of the invention.
  • Condensation polymeric thermoplastics can be used including polyamides, polyesters, polycarbonates, fluoropolymers, polysulfones and similar polymer materials by reacting end groups with silanes having aminoalkyl, chloroalkyl, isocyanato or similar functional groups.
  • Polyolefin materials including polyethylene and polypropylene can be coupled to the metal particulate using silanes such as alkyl silanes or amino silanes having a substantial aliphatic substituent.
  • Chemical bonding to polyethylene can be achieved using a vinyl silane and reacting the metal particulate with the vinyl silane followed by compounding the modified metal particulate with the polymer phase in the presence of a peroxide catalyst or promoter such as dicumyl peroxide or bis(t-butylperoxy) materials.
  • Chemical bonding to polypropylene or a polyethylene can be achieved when the reactive materials of sulfonyl azide compound.
  • the filler is reacted with a silylsosulfonylazide and then combined with the polymer at an elevated temperature.
  • the polymer material preferably has a polarity that is matches the interfacial modifier.
  • the interfacial modifier material is selected such that it is a material that associates with the metal particle surface and presents a surface that is compatible with the polymer filling the excluded volume.
  • the metal particulate can be coupled to the polymer phase depending on the nature of the polymer phase, the filler, the particulate surface chemistry and any pigment process aid or additive present in the composite material.
  • the mechanism used to couple metal particulate to polymer include solvation, chelation, coordination bonding (ligand formation), etc.
  • Titanate or zirconate coupling agents can be used. Such agents have the following formula: (RO) rn -Ti-(O-X-R'-Y) n (RO) m -Zr-(O-X-R'-Y) n
  • titanate chemistries provide superior bonds to transition metals and the lanthanide series. Titanates provide antioxidant properties and can modify or control cure chemistry. Zirconate provides excellent bond strength but maximizes curing, reduces formation of off color in formulated thermoplastic materials. A useful zirconate material is neopentyl(diallyl)oxy-tri(dioctyl)phosphato-zirconate.
  • Interfacial modifier may also be reacted with the metal particulate in aprotic solvent such as toluene, tefrahydrofuran, mineral spirits or other such known solvents.
  • aprotic solvent such as toluene, tefrahydrofuran, mineral spirits or other such known solvents.
  • the metal polymer composites of the invention can be used in a variety of embodiments including projectiles, high density sheeting with attachment means such as adherent coatings, fishing lures, fishing weights, automobile weights, vehicle tire wheel weights with attachment clips, radiation shielding, golf club components, sporting equipment, gyroscopic ballast, cellular phone vibrating weights or laboratory weight noise and vibration barriers, or other embodiments that require high density material with moldability, ductility, and dimensional stability.
  • the high density materials of the present invention and all its embodiments are suitable for numerous processing methods.
  • An embodiment of the present invention is a flexible or malleable composite that could be used in projectiles including shot gun pellets and other ammunition, stints for heart or artery applications, or radiation shielding garments.
  • An example composite with these characteristics might include a combination of tungsten, a fluoropolymer as the binder, and a zirconate interfacial modifier.
  • the end use product could be the result of an extrusion or injection molded part.
  • Yet another embodiment of the present invention is a high output production, high density composite that could be used in fishing lures or weights, or cellular phone shielding or internal vibratory mechanisms.
  • An example composite with these characteristics might include a combination of tungsten, polyvinyl chloride as the binder, and an alkaline metal stearate or a stearate amide interfacial modifier.
  • the end use product could be the result of an extrusion or injection molded part.
  • Yet another embodiment of the present invention is a low output production, high cure time, and high density composite that could be used in automobile or truck pneumatic tire wheel weights or other ballasts, or other products that could be produced in bulk forms.
  • An example composite with these characteristics might include a combination of tungsten, polyester as the binder, and a zirconate interfacial modifier.
  • the end use product could be the result of injection molding, or bulk molding parts.
  • Yet another embodiment of the present invention is a high output production, high density composite that could be used for fishing lures and automobile or truck pneumatic tire wheel weights.
  • An example composite with these characteristics might include a combination of tungsten, polystyrene as a binder and a zirconate interfacial modifier.
  • the end use product could be the result of injection molding, or bulk molding parts.
  • additional processing methods are, but not limited to; Injection, compression molding, thermoset and thermoplastic extrusion, centrifugal molding, rotational molding, blow molding, casting, calendaring, liquid fill thermoset molding or filament winding to form a variety of shapes in conjunction with sequential compounding.
  • Yet another embodiment of the invention includes colorization of the resulting composites where color is important for identification or as dictated by the end use requirements. Color additives are typically less than 1% of the resulting composite by weight and volume fraction.
  • the metal polymer particle size and shape distribution must be selected to obtain packing characteristics, combined with the appropriate polymer and then extruded at appropriate conditions.
  • the metal particulate and the polymer are intimately mixed.
  • the interfacial modifier is commonly added to the blended material or can be added to the metal particulate before combining the modified metal with the polymeric material.
  • Solvent blending can be used to introduce the polymer and metal particulate if necessary.
  • the blended composite material can then be extruded under conditions of shear, temperature and time to obtain maximized density and other composite polymeric characteristics.
  • the preferred equipment for mixing and extruding the composition is an industrial extruder device such as those obtainable from Brabender or Cincinnati Millicron. Once the materials are mixed under appropriate conditions of shear, temperature and time, the properties of the composite are maximized in density, storage modulus, etc.
  • the resulting polymer material can be extruded in the form of a pellet, chip or other raw material for further processing or can be extruded into a finally useful shape.
  • the metal particulate preferably containing a interfacial modifying material, is placed in a volumetric hopper to proportion the particulate into the extruder. The polymer material is similarly input into the system.
  • the amounts of particulate and polymer are gauged to ensure the composite material contains the appropriate proportions on a weight or preferably volumetric basis.
  • the material is blended on input and introduced into an extrusion device, preferably a single or twin screw extruder.
  • an extrusion device preferably a single or twin screw extruder.
  • Such a device typically has a mixing section, a transport section and a melt section. Each section has a desired heat profile resulting in appropriate blending and interfacial modification.
  • the following example was performed to illustrate the invention in extruded composite materials. The following information illustrates the typical condition and composite composition.
  • the high density metal polymer composite materials having the desired physical properties can be manufactured as follows.
  • the surface of the metal particulate is initially prepared, the interfacial modifier is reacted with the prepared particle material, and the resulting product is isolated and then combined with the continuous polymer phase to affect a reaction between the metal particulate and the polymer.
  • the composite material is prepared, it is then formed into the desired shape of the end use material.
  • Solution processing is an alternative that provides solvent recovery during materials processing.
  • the materials can also be dry-blended without solvent. Blending systems such as ribbon blenders obtained from Drais Systems, high intensity dry blenders available from Littleford Brothers and Henschel are possible. Further melt blending using Banbury, Farrell single screw or twin screw compounders is also useful.
  • liquid ingredients are generally charged to a processing unit first, followed by polymer, metal particulate and rapid agitation. Once all materials are added a vacuum can be applied to remove residual air and solvent and liquids the mixing is continued until the product is uniform and high in density with good mechanical properties. Dry blending is useful due to advantages in cost, however certain embodiments can be compositionally unstable due to differences in particle size.
  • the composite can be made by first introducing the polymer , combimng the polymer stabilizers, if necessary, at a temperature from about ambient to about 60°C with the polymer, blending a metal particulate (modified if necessary) with the stabilized polymer, blending other process aids, colorants, indicators or lubricants followed by mixing in hot mix transfer to storage, packaging or end use manufacture.
  • friterfacially modified materials can be made with solvent techniques that use an effective amount of solvent to initiate formation of a composite. When interfacial modification is substantially complete, the solvent can be stripped.
  • Such solvent processes are conducted as follows: 1) Solvating the interfacial modifier or polymer or both; 2) Mixing the metal particulate and modifier into a bulk phase or polymer master batch: and 3) Devolatilizing the composition in the presence of heat & vacuum above the Tg of the polymer
  • a process that can be used involves a twin screw compounding as follows. 1. Add metal and raise temperature to remove surface water (barrel 1). 2. Add interfacial modifier to twin screw when metal is at temperature (barrel 3). 3. Disperse/distribute interfacial modifier on metal particulate. 4. Maintain reaction temperature to completion. 5. Vent reaction by-products (barrel 6). 6.
  • the present invention also includes a breadth of processing methods, resulting physical and chemical properties, and end-use applications.
  • the following materials exemplify the invention.
  • the materials can all be made into useful composites and shapes.
  • the metal polymer composites of the invention can be used in a variety of embodiments including projectiles, fishing lures, fishing weights, automobile weights, radiation shielding, golf club components, sporting equipment, gyroscopic ballast, cellular phone vibrating weights or laboratory weight noise and vibration barriers, or other embodiments that require high density material, with varying combinations of moldability, ductility, and dimensional stability, thermal conductivity, electrical conductivity, magnetism, and are non toxic.
  • the high density materials of the present invention and all its embodiments are suitable for numerous processing methods.
  • An embodiment of the present invention is a flexible or malleable composite that could be used in projectiles including shot gun pellets and other ammunition, stents for heart or artery applications, radiation shielding garments, or extruded and coextruded line for multiple applications including string line and fishing line.
  • An example composite with these characteristics might include a combination of tungsten, a fluoropolymer as the binder, and a zirconate interfacial modifier.
  • the end use product could be the result of an extrusion or injection molded part.
  • An example composite with these characteristics might include a combination of tungsten, polyester as the binder, and a zirconate interfacial modifier.
  • the end use product could be the result of injection molding, or bulk molding parts.
  • Yet another embodiment of the present invention is a high output production, high density composite that could be used for fishing lures, vehicle pneumatic tire wheel weights, crankshaft and driveshaft weights and aircraft balancing weights.
  • the wheel weight comprises attachment means and an article of mass of the composite of the invention.
  • the weight can be attached with conventional clips or adhered to the wheel with an adhesive.
  • An example composite with these characteristics might include a combination of tungsten, polystyrene as a binder and a zirconate interfacial modifier.
  • the end use product could be the result of injection molding, or bulk molding parts.
  • additional processing methods are, but not limited to; molding, compression molding, thermoset and thermoplastic extrusion, centrifugal molding, rotational molding, blow molding, casting, calendaring, liquid fill thermoset molding or filament winding to form a variety of shapes in conjunction with sequential compounding.
  • Yet another embodiment of the invention includes the magnetic composition of the resulting composites where a magnetic component is added for identification or as dictated by the end use requirements. Magnetic additives are typically 0.1% to 5% of the resulting composite by weight and volume fraction.
  • Yet another embodiment of the invention includes colorization of the resulting composites where color is important for identification or as dictated by the end use requirements.
  • Color additives are typically less than 1% of the resulting composite by weight and volume fraction.
  • Composite materials of the invention can be used in a projectile in the form of a shotgun pellet or a shaped round. Shotgun pellets are typically spherical particulates having a dimension of about 0.7 to about 3 millimeters and are generally spherical, but can have a puckered or dimpled surface.
  • Projectiles useful in the invention typically comprise a substantial proportion of the high density composite of the invention.
  • the projectile can comprise an extruded rod, in a jacketed or unjacketed form. The jacket can surround the composite or can leave a portion (leading end or following end) exposed.
  • the composite can be manufactured in a variety of modes to form a projectile.
  • the projectile can comprise about 0.1 grams to as much as 2 kilograms of the composite of the invention at least partially surrounded by a metal jacket.
  • Such projectiles can have an tapered open leading end, an open closed end, or both, or can be entirely enclosed by the jacket.
  • the jacket can include other components such as explosives, metal tips, or other inserts to alter the center of aerodynamic pressure or the center of gravity or the center of mass of the projectile forward of or to the rear of the dimensional center.
  • Such projectiles made from composites of the invention comprising tungsten, iron or other non-toxic metal comprise a "green" bullet or projectile that deteriorates after use into a non-toxic material, compatible with aquatic plant and animal life. The elastic properties of the material render the projectile particularly useful.
  • the projectile can deliver substantial inertia or kinetic energy to the target due to its high density, but also upon contact, can deform elastically causing the jacket to expand as would be the case in lead projectiles.
  • the jacket will expand as expected, but the elastic material will spring back substantially to its initial dimensions.
  • the round, or projectile can be engineered such that the center of aerodynamic pressure and the center of gravity or mass can be adjusted forward of or to the rear of the dimensional center to improve the aerodynamic capability of the round.
  • Such rounds can be made to fly in a more stable trajectory avoiding deviation from the desired trajectory that can reduce accuracy.
  • the materials of the invention can, due to its stability, be fired at a higher firing rate with reduced weapon heating due to a reduced spin rate.
  • the center of gravity is placed well before the center of aerodynamic pressure and narrowly stabilizing the spinning round in its trajectory to the target.
  • the present invention represents a breadth of raw material combinations including; metals, polymers, interfacial modifiers, other additives, all with varying particle sizes, weight fractions, and volume fractions.
  • the present invention also includes a breadth of processing methods, resulting physical and chemical properties, and end- use applications.
  • the following materials exemplify the invention. The materials can all be formed, molded, extruded or otherwise made into useful composites and shapes.
  • the experiment consisted of three main areas of focus: density, melt flow, tensile strength and elongation.
  • Density measurements were taken by creating samples using an apparatus assembled by Wild River Consulting, which mainly consisted of a metallurgical press fitted with a load cell, and a 1 l A inch cylindrical die modified with a 0.1 inch diameter hole in the lower ram. Samples created by these instruments were assumed to be perfectly cylindrical, and therefore measuring the diameter, length, and mass yielded the density of the sample.
  • melt flow index MFI
  • the die extruded samples were also tested for tensile elongation. Each sample was trimmed to 4 inches in length, and ⁇ inch from each end was marked. The sample was fixed in the machines grips, where the l A inch marked the point depth the sample was inserted into the grip. The test began and upon completion the sample was removed. Two formulations were tested in the experiment using Alldyne C-60 Tungsten and Dyneon THV220A fluoropolymer. The first formulation was designed to achieve a density of 10.8 g/cc. The second formulation was designed to achieve the density of 11.4 g/cc. Table 1 gives the weight percentages used to create the samples for both formulations. Four interfacial modifiers were tested in the experiment.
  • the first interfacial modifier was a Zirconate coupling agent — NZ 12.
  • the second and third modifiers were Titanate coupling agents — KR238J and LICA 09.
  • the last interfacial modifier was a Silane-SIA0591.0.
  • the tungsten particulate is first treated with the interfacial modifier. This is done by dissolving the desired amount of the interfacial modifier in a 250 ml beaker containing 50 ml of solvent (usually isopropyl, or some other, alcohol) and then adding 100 grams of tungsten particulate into the beaker. The resulting slurry is then heated at 100°C until the mixture can no longer be stirred and most of the solvent has been driven off.
  • solvent usually isopropyl, or some other, alcohol
  • the beaker containing the tungsten particulate and interfacial modifier is then placed in a forced air oven for 30 minutes at 100°C
  • the treated tungsten is then added to a 100 ml beaker containing a solution of THV220A dissolved in acetone.
  • the mixture is then heated to 30°C and continuously stirred until most of the acetone has evaporated.
  • the composite is then placed in a forced air oven for 30 minutes at 100°C After drying, the composite is pressed in a 3.17 cm cylinder in a metallurgical die at 200°C and 4.5 metric tons ram force. After 5 minutes, the die is allowed to cool under pressure to 50°C. After releasing the pressure, the composite sample is removed from the die and the physical properties are measured.
  • THV220A is a polymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • NZ 12 is neopentyl(diallyl)oxy-tri(dioctyl)phosphato-zirconate.
  • SIA0591.0 is N-(2-aminoethyl)-3-amonopropyl-trimethoxy-silane.
  • KR 238 J is a methacrylamid modified amine adduct available from Kenrich petrochemicals, Bayonne, NJ.
  • LICA 09 is neopentyl(diallyl)oxy-tri(dodecyl)benzene-sulfonyl- titanate.
  • Table 2 Effect of density and mechanical properties in fluoropolymer composite with an interfacial modifier at different concentrations
  • Table 2 ( 1 ) Crumbled upon removal from the mold (2) Calculated and Predicted based on current data trend « Table 2 shows that there is an effective amount of interfacial modifier. An increase above a stoichiometric surface coverage will then reduce the material properties of the composite (see note 1).
  • Table 3a Effect of density and mechanical properties on PVC polymers with the interfacial modifier NZ 12 Thermoplastics (PVC)
  • Table 3 shows that multiple thermoplastic and thermoset composites can be made using a select combination of materials and that the degree of properties including density, modulus, elongation can be designed into the materials.
  • Table 4 Effect of density with tungsten with particle size and circularity
  • Table 4 shows that the particle size, distribution and circularity have an impact on the density of the composite. All samples in Table 4 were made such that the formulation would result in the highest density for the resulting composite. Materials d and e have the maximum density due to the presence of both small and large average particle size materials and minimum circularity of about 14. Materials a and g have the lowest density in the table and have either only small or large particulate. The other materials either depart somewhat from the size or circularity parameter (of materials d and e) reducing density.
  • the material used for the melt flow experiment data in Table 5 was made as follows. Technon Plus tungsten particulate was modified and blended with the Dyneon THV220A polymer and introduced using a calibrated gravimetric feeder into the extruder.
  • the extruder was a Brabender 1.9 cm single screw with a custom screw, modified to create low compression.
  • the heating zones were set to 175°C, 175°C, 175°C, and 185°C.
  • the screw RPMs were maintained between 20 and 40.
  • the barrel was air-cooled.
  • the material exit speed was about 1 meter per minute.
  • 92 wt.-% of Technon Plus tungsten pretreated with 0.01 wt.-% of the interfacial modifier Kenrich NZ12 was blended with 8 wt.-% THV220A.
  • Typical melt flow for the materials of the invention are at least 5 sec “1 , at least 10 sec “1 , about 10 to 250 sec “1 or about 10 to 500 sec “1 .
  • a custom test system was created. A small hole (0.192 cm in diameter) was drilled into the side of a 3.17 cm metallurgical die. The die was used in conjunction with an instrumented metallurgical press, which allowed monitoring of the die temperature and pressure. With the temperature of the material and pressure of the die set, the material was extruded through the melt flow hole. For a given duration of time, the length of the resulting form was measured, and the results used to determine the peak velocity. With this data, the melt flow was calculated by dividing the velocity difference of the extrudate by the die hole radius. Table 5 The effect of temperature and pressure on melt flow
  • Polystyrene was dissolved in a blend of toluene, MEK and acetone to a total solid of 38 wt.-%.
  • the W particulate was dispersed with stirring in the same solvent blend and the NZ 12 was added to this dispersion.
  • the Polystyrene solution was added and stirred while blowing off the solvent till the blend became a semisolid. This material was then compression molded in a slip sinker.
  • Polyester Polymer was added to the W, and TiO2 particulate. Acetone was added to aid in the dispersion of the NZ 12. After the blend started to show signs of color development i.e. TiO2 dispersion more acetone was added and then the MEK peroxide. This material was compression molded into a slip sinker.
  • Example Article 4 Containing Polyester Polymer, Technon Powder, Kronos 2073 TiO2, and Ken- React NZ 12. Formulation by weight:
  • Polyester Polymer was added to the W, and TiO2 particulate. Acetone was added to aid in the dispersion of the NZ 12. After the blend started to show signs of color development i.e. TiO2 dispersion more acetone was added and then the MEK peroxide. This material was compression molded into the No. 1 slip sinker.
  • the NZ 12 was blended into the W particulate with the aid of acetone.
  • the THV220A was dissolved in acetone to 38 wt.-% and then added to the W slurry. This blend was stirred until the solvent is removed and only the polymer blend remains and then the material is compression molded in a 1.25 inch metallurgical press. This large pellet was diced and oven dried at 104C to dryness then reformed in a metallurgical press at 5700 lb-in "2 and 177C Density of this material was 11.7 gm-cm "3 .
  • the Tungsten particulate is first treated with the interfacial modifier.
  • THV220A is a copolymer of tetra- fluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • NZ 12 is neopentyl (diallyl)oxy- tri(dioctyl)phosphato-zirconate.
  • SIA0591.0 is N-(2-aminoethyl)-3-amonopropyl- trimethoxy-silane.
  • KR 238 J is a methacrylamid modified amine adduct available from Kenrich petrochemicals, Bayonne, NJ.
  • LICA 09 is neopentyl(diallyl)- oxy- tri(dodecyl)benzene-sulfonyl-titanate.
  • the series are named for the solvent used in compatibilizing. Predicted refers to the predicted elongation if Solvent-Exchange limited.
  • Figure 1 shows an isometric view of a stent comprising a metal polymer composite of the invention.
  • the stent can be extruded in a circular hollow cross section and can be carved with known mechanical or laser methods from the extruded tube of the composite.
  • the stent can be also directly molded into the form shown.
  • the stent 10 can comprise the composite and have flexible members 11 that permit expansion upon placement in a vascular lumen.
  • the stent has curved members 13 and linear members 12 that can be formed from the composite by direct molding techniques or by carving the structures from a molded tube.
  • FIG. 2A shows an extruded member having a symmetrical aspect.
  • the extruded object 20 has a body 21 with an insert 23 A and a symmetrical recess 24A.
  • Such a structure 20 can be extruded and cut to length and then each length can be mated with a symmetrical member such that insert 23A can be inserted into recess
  • FIG. 24B simultaneously with the insertion of insert 23B into recess 24A to interlock body 21 with body 22 to form a fixed mechanically stable assembly. That assembly is shown in Figure 2B.
  • Figure 2A an object is formed which is substantially entirely filled throughout the combined body.
  • Figures 3 A and 3B shows two jigs 30 and 31.
  • the jigs comprise a hook 32 , 33.
  • On the hook is placed a sinker 34, 35.
  • the sinker 34 is a molded sinker formed by compression molding on the hook 33.
  • the sinker 35 is a press fit sinker similar to the extrudate of Fig 2 including inserts and recesses for the snap fit structure.
  • Figures 4 A and 4B shows two wheel weight configurations of the invention.
  • a wheel weight 40 includes a shaped mass 44 of the invention, having a adhesive strip 45 that can adhere the weight to the wheel.
  • the weight can be extruded in a continuous sheet and cut into the mass 44 with the bending zones 46 formed in the weight 44 before cutting.
  • the composite material is flexible and can be bent to conform to the wheel shape.
  • Figure 4B shows a weight 41 having a composite mass 42 and a mechanical clip 43 configured for attachment to a transportation vehicle wheel.
  • Figures 5-11 show data demonstrating the viscoelastic properties of the examples of the invention and the adaptability of the technology to form desired properties in the materials
  • Figure 12A shows an extruded member having a symmetrical aspect.
  • the extruded object 20 has a body 21 with an insert 23 A and a symmetrical recess 24A.
  • Such a structure 20 can be extruded and cut to length and then each length can be mated with a symmetrical member such that insert 23 A can be inserted into recess 24B simultaneously with the insertion of insert 23B into recess 24A to interlock body 21 with body 22 to form a fixed mechanically stable assembly. That assembly is shown in Figure 12B.
  • an object is formed which is substantially entirely filled throughout the combined body.
  • the invention can additionally be embodied in a flexible hollow member that can be joined using interlocking tabs formed by extrusion, i Figures 13 A, a substantially circular extrudate is shown in cross-section.
  • Figure 13A shows the structure after extrusion prior to post-extrusion processing into a flexible useful unit.
  • the unit 30 shows a body 31, a coextruded but flexible hinge 33, a first interlocking tab 32 A and a cooperative second interlocking tab 32B in the extruded unit.
  • a removable portion 34 can be pulled, cut or otherwise removed from the extruded portion 30 to permit the effective opening and closing of the circular extrudate using the cooperating tabs 32 A and 32B.
  • Body 45 includes flexible insert 42 and flexible aperture 41 that can cooperate to press fit form a useful interlocking joint.
  • the body 45 additionally comprises a flexible hinge portion 43 that can comprise a flexible hinge as disclosed above.
  • the body also is formed using apertures 44 which can remain within the substantially solid joined structure shown in Figure 14B.
  • Figures 15 - 17 shows the extrusion performance ofthe composite ofthe invention from the Examples under varied conditions of temperature and pressure showing the material is capable of extrusion at conditions achievable in production equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Dispersion Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a metal polymer composite having properties that are enhanced or increased in the composite. Such properties include color, magnetism, thermal conductivity, electrical conductivity, density, improved malleability and ductility and thermoplastic or injection molding properties. The metal polymer composite comprises a specific metal particulate, a polymer phase, and optionally an interfacial modifier.

Description

EXTRUSION METHOD FORMING AN ENHANCED PROPERTY METAL POLYMER COMPOSITE
Related Applications This application claims priority under 35 U.S.C. §119(e) to U.S. provisional application Serial Number 60/520,507, filed on November 14, 2003 and U.S. provisional application Serial Numbers 60/571,456 and Serial No. 60/571,060, both filed on May 14, 2004, all hereby incorporated by reference herein.
Field of the Invention The invention relates to a method of extruding an extrudable enhanced property metal polymer composite by novel interactions of the components. The method can be used to extrude the composite material into useful shapes. The extruded high density metal polymer composite materials are not simple admixtures, but obtain enhanced chemical, electrical and mechanical properties from an extrusion of a unique combination of a metal particulate and polymer material matrix that optimizes the properties of the composite through blending the combined polymer and metal materials.
Background of the Invention Substantial attention has been paid to the creation of composite materials with unique properties. Included in this class of materials is a high-density material with improved properties. As an example, lead has been commonly used in applications requiring a high-density material. Applications of high-density materials include shotgun pellets, other ballistic projectiles, fishing lures, fishing weights, wheel weights, and other high-density applications. Lead has also been used in applications requiring properties other than density including in radiation shielding because of its resistance to α, β and γ radiation, EMI and malleability characteristics. Press-on fishing weights made of lead allow the user to easily pinch the weight onto a fishing line without tools or great difficulty. In the case of shotgun pellets, or other ballistic projectiles, lead offers the required density, penetrating force and malleability to achieve great accuracy and minimum gun barrel wear. Lead has been a primary choice for both hunting and military applications. Lead has well known toxic drawbacks in pellet and projectile end uses. Many jurisdictions in the United States and elsewhere have seriously considered bans on the sale and use of lead shot and lead sinkers due to increasing concentrations of lead in lakes and resulting mortality in natural populations.
Depleted uranium, also used in projectiles, has workability, toxicity and radiation problems. Composite materials have been suggested as a replacement for lead and other high-density materials. Composite materials have been made for many years by combining generally two dissimilar materials to obtain beneficial properties from both. A true composite is unique because the interaction of the materials provides the best properties of both components. Many types of composite materials are known and are not simple admixtures. Generally, the art recognizes that combining metals of certain types and at proportions that form an alloy provides unique properties in metal/metal alloy materials. Metal/ceramic composites have been made typically involving combining metal particulate or fiber with clay materials that can be fired into a metal/ceramic composite. Combining typically a thermoplastic or thermoset polymer phase with a reinforcing powder or fiber produces a range of filled materials and, under the correct conditions, can form a true polymer composite. A filled polymer, with the additive as a filler, cannot display composite properties. A filler material typically comprises inorganic materials that act as either pigments or extenders for the polymer systems. A vast variety of fiber-reinforced composites have been made typically to obtain fiber reinforcement properties to improve the mechanical properties of the polymer in a unique composite. Metal polymer admixtures in which a finely divided metallic material, a metal powder or fiber is dispersed in a polymer have been suggested. One subset of filled polymer materials is metal polymer admixtures in which a metallic material, a metal particulate or fiber is dispersed in a polymer. The vast majority of these materials are admixtures and are not true composites. Admixtures are typically easily separable into the constituent parts and display the properties of the components. A true composite resists separation and displays enhanced properties of the input materials. A true composite does not display the properties of the individual components. Tarlow, U.S. Patent No. 3,895,143, teaches a sheet material comprising elastomer latex that includes dispersed inorganic fibers and finely divided metallic particles. Bruner et al., U.S. Patent No. 2,748,099, teach a nylon material containing copper, aluminum or graphite for the purpose of modifying the thermal or electrical properties of the material, but not the density of the admixture. Sandbank, U.S. Patent No. 5,548,125, teaches a clothing article comprising a flexible polymer with a relatively small volume percent of tungsten for the purpose of obtaining radiation shielding. Belanger et al., U.S. Patent No. 5,237,930, disclose practice ammunition containing copper powder and a thermoplastic polymer, typically a nylon material. Epson Corporation, JP 63-273664 A shows a polyamide containing metal silicate glass fiber, tight knit whiskers and other materials as a metal containing composite. Bray et al., U.S. Patent Nos. 6,048,379 and 6,517,774, disclose an attempt to produce tungsten polymer composite materials. The patent disclosures combine tungsten powder having a particle size less than 10 microns, optionally with other components and a polymer or a metal fiber. The materials sold by the Bray et al. assignee and the materials disclosed in the patent do not attain a density greater than 10.0 gm-cni"3. While a substantial amount of work has been done regarding composite materials generally, high density metal composite materials have not been obtained having a density greater than 10 grams-cm"3. Increasing the density of these materials introduces unique mechanical properties into the composite and, when used, obtains properties that are not present in the lower density composite materials. A substantial need exists for an extrudable material that has high density, low toxicity, and improved properties in terms of electrical/magnetic properties, malleability, thermal processability, particularly using existing thermal processing equipment, and viscoelastic properties. Brief Description of the Invention The invention relates to an extrusion method and an extrudable metal polymer composite material having improved properties with respect to prior art materials. The material of the invention, through a selection of metal particle size distribution, polymer and processing conditions, attains improved density or other properties through minimization of the polymer filled excluded volume of the composite. The resulting composite materials exceed the prior art composites in terms of density, reduced toxicity, improved malleability, improved ductility, improved viscoelastic properties (such as tensile modulus, storage modulus, elastic- plastic deformation and others) electrical/magnetic properties, and machine molding properties substantially reduse wear in processing equipment. We have produced true composites and can obtain viscoelastic properties. We have produced a composite by using an interfacial modifier to improve the association of the particulate with the polymer. We have found that the composite materials of the invention can have a designed level of density, mechanical properties, or electrical/magnetic properties from careful composition blending. The novel viscoelastic properties make the materials useful in a variety of uses not filled by composites and provides a material easily made and formed into useful shapes. We have found that density and polymer viscoelasticity measured as elongation are useful properties and useful predictive parameters of a true composite in this technology. In the production of useful enhanced properties, the packing of the selected particle size and distribution and the selection of the particulate or mixed metal particulate, will obtain the enhanced properties. As such density can be used as a predictor of the other useful property enhancement. The invention relates to an extruded enhanced metal polymer composite material having improved properties with respect to prior art materials. Single metal and mixed metal composites can be tailored for increasing a variety of properties including but not limited to density, color, magnetism, thermal conductivity, electrical conductivity and other physical properties. The use of compositions further comprising a interfacial modifier demonstrates improved utilization of material properties and improved performance such as elongation and other properties. Preferred composites can be combined with one or more polymers of a given molecular weight distribution and one or more metal particulates with a given distribution to obtain unique composites. Briefly, the metal polymer composites of the invention can be extruded into a high-density material comprising a high-density metal particulate of defined particle size and size distribution, a polymer, and optionally a interfacial modifier material. In one embodiment of the invention a selected metal particulate having a specified particle size and size distribution is selected with a polymer with a molecular weight distribution to form an improved composite. Such particles can have a defined circularity that promotes maximum property development. In this system a metal particulate and fluoropolymer composite achieves the stated properties. hr another embodiment, an interfacial modifier is used to ensure that the proportions of metal particulate and polymer obtain the minimum excluded volume filled with polymer, the highest particulate packing densities, the maximize polymer composite material properties and obtain the maximum utilization of materials. The high-density materials of the invention can contain pigments or otlier ingredients to modify the visual appearance of the materials. Mixed metal particulate, bimetallic (e.g. WC) or alloy metal composites can be used to tailor properties for specific uses. These properties include but are not limited to density, thermal properties such as conductivity, magnetic properties, electrical properties such as conductivity, color, etc. These materials and combination of materials can be used as solid-state electrochemical (e.g. battery) and semiconductor structures. Preferred higher density metal polymer materials can also be combined with one or more polymers and one or more metal particulate to obtain unique composites. A secondary metal can be combined with a metal of high density. A composite can comprise a variety of different combinations of metals and polymers. The metal particulate can contain two metal particulates of different metals, each metal having a relatively high density. In another embodiment, the metal particulate can comprise a metal particulate of high density and a secondary metal. Other useful metals of this disclosure relates to a metal that, by itself, cannot achieve a density greater than 10 in the composite material, but can provide useful properties to the composite as a whole. Such properties can include electrical properties, magnetic properties, physical properties, including heat conductivity, acoustical shielding, etc. Examples of such secondary metals include, but not limited to, iron, copper, nickel, cobalt, bismuth, tin, cadmium and zinc. The materials of the invention permit the design engineers the flexibility to tailor the composite to end-uses and avoid the use of toxic or radioactive materials unless desired. Lead or depleted uranium are no longer needed in their typical applications now that the dense composites of the invention are available. In other applications where some tailored level of toxicity or radiation is needed, the composites of the invention can be used successfully with desired properties engineered into the material. Briefly, using the technology of the invention, the metal polymer composites of the invention can provide enhanced polymer composite properties. One important material comprises a composite having a density greater than 10 gm-cm" or higher, typically greater than 11.7 gm-cm" , greater than 12.5 gm-cm" or greater than 16.0 gm-cm"3. The composite comprises a high-density metal particulate, a polymer, and optionally an interfacial modifier material. The compositions of the invention can also contain other additives such as a visual indicator, fluorescent marker, dye or pigment at an amount of at least about 0.01 to 5 wt%. The composites of the invention comprise about 47 to 90 volume-% metal, 0.5 to 15 wt.- % polymer, 10 to 53 volume-% polymer in the composite. In this disclosure, we rely on density as an important property that can be tailored in the composite but other useful properties can be designed into the composite. Enhanced property metal polymer composites can be made by melt forming, preferable extruding, an extrudable composite. In the composite, the metal particulate is obtained at the highest possible packing by a careful selection of particle size and size distribution. The excluded volume in the particulate are substantially completely occupied by the polymer without reducing the composite density. Using a carefully selected finely divided metal, packing the particulate and combining the particulate with just sufficient polymer such that only the excluded volume (the space left after packing the particle distribution) of the particulate is filled can optimize the high density of the composite material. A metal particulate, or metal particulate blend, is selected having an absolute density of metal greater than about 4 grams-cm"3, greater than 7 grams-cm"3 , greater than 10 grams-cm"3 and often greater than 16 gm-cm"3. The particulate has a selected particle size and size distribution that is combined with a polymer selected for compatibility and increased density and processability. As the metal particulate and the polymer component increase in density, the composite material increases in density. The ultimate composite density is further controlled by efficiency in packing of the metal particulate in the composite and the associated efficiency in filling the unoccupied voids in the densely packed particulate with high density polymer material. The interfacial modifier can aid in closely associating the metal particulate and polymer to maximize density. A true composite is obtained by carefully processing the combined polymer and polymer particulate until density reaches a level showing that using an interfacial modifier to promote composite formation results in enhanced property development and high density. In this disclosure, we rely on density as one important property that can be tailored in the composite but other useful properties can be designed into the composite. A composite is more than a simple admixture. A composite is defined as a combination of two or more substances intermingled with various percentages of composition, in which each component retains its essential original properties. A controlled combination of separate materials results in properties that is superior to those of its constituents, hi a simple admixture the mixed material have little interaction and little property enhancement. One of the materials is chosen to increase stiffness, strength or density. Atoms and molecules can form bonds with other atoms or molecules using a number of mechanisms. Such bonding can occur between the electron cloud of an atom or molecular surfaces including molecular- molecular interactions, atom-molecular interactions and atom-atom interactions. Each bonding mechanism involves characteristic forces and dimensions between the atomic centers even in molecular molecular interactions. The important aspect of such bonding force is strength, the variation of bonding strength over distance and directionality. The major forces in such bonding include ionic bonding, covalent bonding and the van der Waals' (VDW) types of bonding. Ionic radii and bonding occur in ionic species such as Na+Cl", Li'T". Such ionic species form ionic bonds between the atomic centers. Such bonding is substantial, often substantially greater than 100 kJ-mol"1 often greater than 250 kJ-mol"1. Further, the interatomic distance for ionic radii tend to be small and on the order of 1-3 A. Covalent bonding results from the overlap of electron clouds surrounding atoms forming a direct covalent bond between atomic centers. The covalent bond strengths are substantial, are roughly equivalent to ionic bonding and tend to have somewhat smaller interatomic distances. The varied types of van der Waals' forces are different than covalent and ionic bonding. These van der Waals' forces tend to be forces between molecules, not between atomic centers. The van der Waals' forces are typically divided into three types of forces including dipole-dipole forces, dispersion forces and hydrogen bonding. Dipole-dipole forces are a van der Waals' force arising from temporary or permanent variations in the amount or distribution of charge on a molecule.
Summary of Chemical Forces and Interactions
Figure imgf000010_0001
Since VDW I-ondon forces increase with increasing size and there is no limit to the size of molecules, these forces can become rather large In general, however, they are very weak
Dipole structures arise by the separation of charges on a molecule creating a generally or partially positive and a generally or partially negative opposite end. The forces arise from electrostatic interaction between the molecule negative and positive regions. Hydrogen bonding is a dipole-dipole interaction between a hydrogen atom and an electronegative region in a molecule, typically comprising an oxygen, fluorine, nitrogen or other relatively electronegative (compared to H) site. These atoms attain a dipole negative charge attracting a dipole-dipole interaction with a hydrogen atom having a positive charge. Dispersion force is the van der Waals' force existing between substantially non-polar uncharged molecules. While this force occurs in non-polar molecules, the force arises from the movement of electrons within the molecule. Because of the rapidity of motion within the electron cloud, the non-polar molecule attains a small but meaningful instantaneous charge as electron movement causes a temporary change in the polarization of the molecule. These minor fluctuations in charge result in the dispersion portion of the van der Waals' force. Such VDW forces, because of the nature of the dipole or the fluctuating polarization of the molecule, tend to be low in bond strength, typically 50 kJ mol"1 or less. Further, the range at which the force becomes attractive is also substantially greater than ionic or covalent bonding and tends to be about 1.5-10 A. In the van der Waals composite materials of this invention, we have found that the unique combination of metal particles, the varying particle size of the metal component, the interfacially modification of the interaction between the particulate and the polymer, result in the creation of a unique van der Waals' bonding. The van der Waals' forces arise between metal atoms/crystals in the particulate and are created by the combination of particle size, polymer and interfacial modifiers in the metal/polymer composite. In the past, materials that are characterized as "composite" have merely comprised a polymer filled with particulate with little or no van der Waals' interaction between the particulate filler material. In the invention, the interaction between the selection of particle size, distribution, and polymer, and optional interfacial modifier enables the particulate to achieve an intermolecular distance that creates a substantial van der Waals' bond strength. The prior art materials having little viscoelastic properties, do not achieve a true composite structure. This leads us to conclude that this intermolecular distance is not attained in the prior art. In the discussion above, the term "molecule" can be used to relate to a particle of metal, a particle comprising metal crystal or an amorphous metal aggregate, other molecular or atomic units or sub-units of metal or metal mixtures, hi the composites of the invention, the van der Waals' forces occur between collections of metal atoms that act as "molecules" in the form of crystals or other metal atom aggregates. The composite of the invention is characterized by a composite having intermolecular forces between metal particulates that are in the range of van der Waals' strength, i.e., between about 5 and about 30 kJ-mol"1 and a bond dimension of 3-10 A. The metal particulate in the composite of the invention has a range of particle sizes such that about at least 5 wt.-% of particulate in the range of about 10 to 70 microns and about at least 5 wt.-% of particulate in the range of about 70 to 250 microns, and a polymer, the composite having a van der Waals' dispersion bond strength between molecules in adjacent particles of less than about 4 kJ-mol"1 and a bond dimension of 1.4 to 1.9 A or less than about 2 kJ-mol"1 and the van der Waals' bond dimension is about 1.5 to 1.8 A. Most composites have two constituent materials: a binder or matrix, and reinforcement. The reinforcement is usually much stronger and stiffer than the matrix, and gives the composite its good properties. The matrix holds the reinforcements in an orderly high density pattern. Because the reinforcements may be discontinuous, the matrix may also help to transfer load among the reinforcements. Processing can aids in the mixing and filling of the reinforcement metal. To aid in the mixture, an interfacial modifier can help to overcome the forces that prevent the matrix from forming a substantially continuous phase of the composite. Composites canbe made with certain polymers with little or no modifier. The composite properties arise from the intimate association obtained by use of careful processing and manufacture. An interfacial modifier is an organic material that provides an exterior coating on the particulate promoting the close association of polymer and particulate. The modifier is used in an amount of about 0.005 to 3 wt.% or about 0.02 to 2 wt.-%. For the purpose of this disclosure, the term "metal" relates to metal in an oxidation state, approximately 0, with up to 25 wt.-% or about 0.001 to 10 wt.-% as an oxide or a metal or non-metal contaminant, not in association with ionic, covalent or chelating (complexing) agents. For the purpose of this disclosure, the term "particulate" typically refers to a material made into a product having a particle size greater than 10 microns (a particle size greater than about 10 microns means that a small portion of the particulate is less than 10 microns, in fact, less than 10 wt.-% of the particulate and often less than 5 wt.-% of the particulate is less than 10 microns. A particulate is chosen containing at least some particulate in the size range of 10 to 100 microns and 100 to 4000 microns. In a packed state, this particulate has an excluded volume of about 13 to 60%. In this invention, the particulate sources, can comprise two three or more particulates, in a blend of metals of differing chemical and physical nature. Typically, the composite materials of the invention are manufactured using melt extrusion processing (compression and injection molding can also be used) and are also utilized in product formation using melt processing. Typically, in the manufacturing of the high density materials of the invention, a finely divided metal material of correctly selected particle size and size distribution is combined under conditions of heat and temperature with a typically thermoplastic polymer material, are processed until the material attains a maximum density. The density can be at least 4 gm-cm" , greater than 7 gm-cm" , greater than 11 gm-cm" , preferably greater than 13 gm-cm" , more preferably greater than 16 gm-cm" with improved mechanical, electrical, magnetic or catalytic properties indicating true composite formation. These materials and combination of materials can be used as solid state electrochemical (e.g. battery) and semiconductor structures. Alternatively, in the manufacture of the material, the metal or the thermoplastic polymer can be blended with a interfacially modifying (interfacial modifier) agents and the modified materials can then be melt processed into the material. The interfacial modifier can make the surface of the particulate more compatible with the polymer. Once the material attains a sufficient density and other properties, the material can be extruded directly into a final product or into a pellet, chip, wafer or other easily processed production raw material. The final product or intermediate chip or pellet can be made extrusion-processing techniques. In the manufacture of useful products with the composites of the invention, the manufactured composite can be obtained in appropriate amounts, subjected to heat and pressure, typically in extruder equipment and then either injection 'molded, compression molded or extruded into an appropriate useful shape having the correct amount of materials in the appropriate physical configuration. In the appropriate product design, during composite manufacture or during product manufacture, a pigment or other dye material can be added to the processing equipment. One advantage of this material is that an inorganic dye or pigment can be co-processed resulting in a material that needs no exterior painting or coating to obtain an attractive or decorative appearance. The pigments can be included in the polymer blend, can be uniformly distributed throughout the material and can result in a surface that cannot chip, scar or lose its decorative appearance. One useful pigment material comprises titanium dioxide (TiO ). This material is extremely non-toxic, is a bright white, finely divided metallic particulate that can be easily combined with either metal particulates and/or polymer composites to enhance the density of the composite material and to provide a white hue to the ultimate composite material. We have further found that a bimetallic blend or a blend of three or more metal particulates can, obtain important composite properties from the blended metals in a polymer composite structure. For example, a tungsten composite or other high density metal can be blended with a second metal that provides to the relatively stable, non-toxic tungsten material, additional properties including a low degree of radiation in the form of alpha, beta or gamma particles, a low degree of desired cytotoxicity, a change in appearance or other beneficial properties. One advantage of a bimetallic composite is obtained by careful selection of proportions resulting in a tailored density for a particular end use. For example, a copper/tungsten composite can be produced having a theoretical density, for example, with a fluoropolymer or fluorocarbon that can range from 7 gm-cm"3 through 11.4 gm-cm"3. For example, a tantalum/tungsten composite can be produced having a theoretical density, for example, with a fluoropolymer or that can range from 11 gm-cm"3 through 12.2 gm-cm"3. Alternatively, for other applications, an iridium/tungsten composite can be manufactured that, with a fluoropolymer or fluoropolymer elastomer, can have a density that ranges from about 12 gm-cm"3 to about 13.2 gm-cm"3. Such composites each can have unique or special properties. The extrudable material having high density that can be extruded into useful shapes include a material having a composite density of about 4 to 17 gm-cm"3, preferably about 6 to 16 gm-cm"3, at an extruded shear rate, in common processing equipment that ranges from about 10 sec"1 to about 500 sec"1, preferably about 10 to about 250 sec"1 at a temperature of greater than about 100°C or about 150 to 180°C. The storage modulus of the composite (G') ranges from about 1200 to about 14,000 MPa, preferably from about 3000 to about 7000 MPa and a tensile modulus of at least 70 MPa. One important characteristic of the extrudable material of the invention relates to the existence of an elastic-plastic deformation and its Poisson ratio. The extruded materials of the invention display an elastic plastic deformation. Under a stress that causes the extrudate to elongate, the structure deforms in an elastic mode until it reaches a limit after which it deforms in a plastic mode until it reaches its limit and fails structurally. This property is shown as the elongation at break in which the material elongates under stress by at least 10% before reaching a limit and breaking under continued stress. The preferred material has a Poisson ratio typically greater than 0.3 and preferably about 0.35 to about 0.65. Such a Poisson ratio indicates that it can be extruded with little elastic relaxation during processing.
Brief Description of the Drawings Figure 1 is a molded article made from the material of the invention. As an example of a structure that can be molded using the various methods described herein the stent is an example of an article with a flexible structure that obtains utility from the metal polymer composite of the invention. Figures 2-4 are extruded structures having interlocking members that cooperate to form an open and a closed aspect. Figures 5-11 show data demonstrating the viscoelastic properties of the invention and the adaptability of the technology to form desired properties in the materials Figures 12-14 are extruded structures having interlocking members that cooperate to form an open and a closed aspect. Figures 15 - 17 are graphic representations of extrusion data showing the material of the invention can be extruded at useful conditions of rate, temperature and pressure
Detailed Description of the Invention The invention relates to an extrusion process and an extruded metal polymer composite material having enhanced or improved properties with respect to prior art materials. Single metal and mixed metal composites can be tailored for novel properties including density, color, magnetism, thermal conductivity, electrical conductivity and other physical properties. The use of compositions further comprising an interfacial modifier demonstrates improved utilization of material properties and improved performance. Preferred composites can be combined with one or more polymers of a given molecular weight distribution and one or more metal particulates with a given distribution to obtain unique composites. The invention relates to a family of composite materials having composite characteristics that exceed the density and greatly improves viscoelastic properties of prior art metal composites. The materials can be used in applications requiring high-density properties, viscoelastic character, malleability, ductility, formability and extrusion molding properties. The invention specifically provides high-density materials comprising a high-density metal particulate or particulate blends, a polymer phase and when needed, an interfacial modifier that permits the polymer and metal particulate to interact to form a composite with desired nature and degree of properties and to attain the maximum density possible. Such materials obtain physical properties in excess of prior art materials including density, storage modulus color, magnetism, thermal conductivity, electrical conductivity and other physical property improvements without toxicity or residual radiation characteristic of lead or depleted uranium, respectively unless needed in a specific application. The materials of the invention permits the design engineer the flexibility to tailor the composite to end uses and avoid the use of toxic or radioactive materials unless desired. Lead or depleted uranium are no longer needed in their typical applications. The composite materials of the invention combine a metal particulate at a maximum tap density leaving a excluded volume and a polymer material substantially occupying the excluded volume, but no more to obtain the highest possible density from the composite composition. Tap density (ASTM B527-93) relates to how well the material is packed. Packing affects the excluded volume and a volume component that is included in the density calculation. The particle size and size distribution of the particulate appears to be important in attaining the highest density composite materials of the invention. We have found that the minimum useful particle size of the particulate is about 10 microns. Below 10 microns, the processability of the material as a homogeneous mixture is reduced and prevents close association between the metal particulate and the polymer. Further, the small particle size tends to promote the incorporation of voids within the composite. Particulate or blends greater than 10 microns in size appears to be useful in attaining close association between the metal particulate and the polymeric material. We have also found that it is important to include a broad range of particulate. The metal particulate contain at least an effective amount of at least one particulate having a particle size greater than 10 microns (less than 10 wt.-% often less than 5 wt.-% of the particulate is less than 10 microns). The size distribution should include a broad range. This set of broad distributions yield a material that will pack and be readily processable. This particulate distribution should contain at least some particulate (at least 5 wt.-%) in the range of about 10 to 70 microns, the particulate distribution should also contain at least some particulate (at least 5 wt- %) in the range of about 70 to 250 microns, optionally the particulate can contain some particulate (at least 5 wt.-%) in the range of about 250 to 500 microns and can contain some particulate in the 500+ micron range. We have found that this varied size distribution promotes close packing of the particulate, reduction in the exclusion volume in the polymer and improved particle polymer compatibility. We have found that this distribution of particles having a selected size distribution and an ultimate size greater than 10 microns greatly improves packing density, interfacial modification and ultimate composite formation. This distribution can be normal, Gaussian, log normal or skew normal but must include the desired range of particle sizes. A true composite is obtained by carefully processing the combined polymer and polymer particulate until properties are developed and density reaches a level showing that using an interfacial modifier promotes composite formation fills the excluded volume results in enhanced property development and high density. The regular, essentially spherical, character of the preferred particles of the invention can be defined by the roughness or roundness of the particle and by its aspect ratio. The aspect ratio of the particles should be less than 1:1.5 and should reflect a substantially circular cross section or spherical particle. The circularity, roundness or roughness of the particle can be measured by a microscopic inspection of the particles in which an automated or manual measurement of roughness can be calculated, h such a measurement, the perimeter of a representative selection of the particulate is selected and the area of the particle cross section is also measured. The circularity of the particle is calculated by the following formula: Circularity = (perimeter)2 /area. An ideal spherical particle has a roundness characteristic of about 12.6. This roundness characteristic is unitless parameter of less than about 20, often about 13 to 18. Metal and finely divided metal compositions that can be used in the composites of the invention include, but are not limited to, titanium, chromium, iron, nickel, molybdenum, tin tungsten, cobalt, copper, zinc, cadmium, bismuth, uranium, osmium, iridium, platinum, rhenium, gold, neptunium, plutonium and tantalum. An advantage is that non-toxic or non-radioactive materials can be used as a substitute for lead and depleted uranium where needed. Another advantage of the invention is the ability to create bimetallic or higher composites that use two or more metal materials that cannot naturally form an alloy. A variety of properties can be tailored through a careful selection of metal or a combination of metals and polymer and the toxicity or radioactivity of the materials can be designed into the materials as desired. We have further found that a blend of two, three or more metals in particulate form can, obtain important composite properties from both metals in a polymer composite structure. For example, a tungsten composite or other high density metal particulate can be blended with a second metal particulate that provides to the relatively stable, non-toxic tungsten material, additional properties including a low degree of radiation in the form of alpha, beta or gamma particles, a low degree of desired cytotoxicity, a change in appearance or other beneficial properties. One advantage of a bimetallic composite is obtained by careful selection of proportions resulting in a tailored density for a particular end use. For example, a tantalum/tungsten composite can be produced having a theoretical density, for example, with a fluoropolymer or fluoropolymer elastomer that can range from 11 gm-cm"3 through 12.2 gm-cm"3. Alternatively, for other applications, a iridium tungsten composite can be manufactured that, with a fluoropolymer or fluoropolymer elastomer, can have a density that ranges from about 12 gm-cm"3 to about 13.2 gm-cm"3. Such composites each can have unique or special properties. These composite processes and materials have the unique capacity and property that the composite acts as an alloy composite of two different metals that could not, due to melting point and other processing difficulties, be made into an alloy form without the methods of the invention. The extrudable composite materials of the invention combine a finely divided metal or metal particulate at a maximum packing density leaving an excluded volume and a polymer material substantially occupying the excluded volume, but no more to obtain the highest possible density from the composite composition. The composite can contain about 50 to 96 or about 80 to 96 vol.-% metal particulate. A variety of metal particulates in the correct size and distribution can be used with density greater than 4, greater than 8, greater than 10 or greater than 13 gm-cm"3. The important parameters of the metal particulate material include the fact that no more than 5 wt.-% of the metal particulate is less than 10 microns in diameter. Further, this distribution can be described by Table A, the metal particle having a substantial proportion of particulate falling in the range of 10 to 50 microns, a substantial proportion of a particulate falling in the range of 50 to 350 microns and a substantial proportion of a particulate falling in the range of 350 to l 2400 microns. By a substantial proportion, we mean at least 10 wt.-% of the particulate. A more preferred particulate range is as follows: 10 wt.-% 10 to 50 microns, 15 wt.-% 50 to 350 microns, 75 wt.-% 350 to 2400 microns The most preferred particulate range is as follows: 5 wt.-% 10 to 70 microns, 10 wt.-% 70 to 90 microns, 15 wt.-% 90 to 500 microns, 70 wt.-% 500 to 4000 microns. A number of metal particles can be used in the compositions of the invention. The following are examples of useful metals. Titanium has a symbol Ti, an atomic weight of 47.867 and common valence of 2, 3, 4 (mostly tetravalent). The metal is in Group IVB (4) It is the ninth most abundant element in earth's crust; 0.63% by wt. Reviews: Gmelin's, Titanium (8th ed.) 41 (1951); Everhart, Titanium and Titanium Alloys (Reihhold, New York, 1954); Brophy et al, Titanium Bibliography 1900-1951 + suppl (Washington, 1954); McQuillan & McQuillan, Titanium (Butterworth's, London, 1956); Barksdale, Titanium, Its Occurrence, Chemistry and Technology (Ronald Press, New York, 2nd ed, 1966); Clark, "Titanium" in Comprehensive Inorganic Chemistry vol. 3, J. C. Bailar, Jr. et al, Eds. Pergamon Press, Oxford, 1973) pp 355-417. The metal is a dark gray, lustrous metal with a mp 1677°, a bp 3277°, and a specific heat (25°) of 5.98 cal/g-atom °C. The metal forms alloys with aluminum, chromium, cobalt, copper, iron, lead, nickel, tin. The metal can be used as an alloy with copper and iron in titanium bronze, as addition to steel to impart great tensile strength and to aluminum to impart resistance to attack by aqueous salt and by organic acids. Chromium has a symbol Cr, an atomic weight and number of 51.9961 and 24 and common valences of 1-6. The metal is in Group VE3(6) and is abundant in earth's crust. For a review of chromium and alloys see: Chromium, M. J. Udy, Ed., A.C.S. Monograph Series, no. 132 (Reinhold, New York, 1956) vol. 1, 433 pp; vol. 2, 402 pp; C. L. Rollinson, "Chromium, Molybdenum and Tungsten" in Comprehensive Inorganic Chemistry vol. 3. Chromium is a steel-gray, lustrous metal; body-centered cubic structure; hard as corundum and less fusible than platinum. Chromium exhibits a mp of 1903 ±10°, a bp of 2642°, a d20 of 7.14, a heat capacity (25°) of 5.58 cal/mol/deg C°, a heat of fusion of 3.5 kcal/mol, a heat of vaporization of 81.7 kcal/mol (at bp), a d 0 of 7.19 a specific heat (25° C) of 23.9 J/mol/deg K and a heat of fusion of 14.6 kJ/mol. Chromium is resistant to common corroding agents, is acid resistant, (i.e.) and reacts with dil HC1, H2SO4 but not with HNO3. Chromium is useful in chrome steel or chrome-nickel-steel alloys (stainless steel), nonferrous alloys and heat resistant bricks for refractory furnaces. To greatly increase strength, hardness and resistance of metals to abrasion, corrosion and oxidation. Iron has a symbol Fe, an atomic weight of 55.845, exhibits common valences of 2 and 3 and is in Group VIII(8). Iron is the second most abundant metal in earth's crust after aluminum. See the comprehensive reviews: Feldmann, Schenck in Ullmanns Encyklopddie der Technischen Chemie vol. 6 (Mϋnchen-Berlin, 1955) pp 261-407; Nicholls in Comprehensive Inorganic Chemistry vol. 3, J. C. Bailar, Jr. et al, Eds. (Pergamon Press, Oxford, 1973) pp 979-1051; W. A. Knepper in Kirk- Othmer Encyclopedia of Chemical Technology vol. 13 (Wiley-Interscience, New York, 3rd ed., 1981) pp 735-753. Iron is a silvery-white or gray, soft, ductile, malleable, somewhat magnetic metal. Holds magnetism only after hardening (as alloy steel, e.g., Alnico). Stable in dry air but readily oxidizes in moist air, forming rust. In powder form it is black to gray and can be alloyed with C, Mn, Cr, Ni, and other elements to form steels. Nickel has a symbol Ni, an atomic weight of 58.6934, a common valence 2 and is in Group VIII(10). Nickel's abundance in earth's crust is 99 ppm. See the comprehensive reviews in Gmelin's, Nickel (8th ed.) 57, 5 vols, about 3500 pp (1965-1967); Nicholls in Comprehensive Inorganic Chemistry vol. 3, J. C. Bailar, Jr. et al, Eds. (Pergamon Press, Oxford, 1973) pp 1109-1161; J. K. Tien, T. E. Howson in Kirk-Othmer Encyclopedia of Chemical Technology vol. 15 (Wiley-h terscience, New York, 3rd ed., 1981) pp 787-801; Nickel is a lustrous white, hard, ferromagnetic metal with face-centered cubic crystals having a mp 1453° and a bp (calc) 2732°. Nickel is stable in air at ordinary temp; burns in oxygen, forming NiO, is not affected by water and decomposes steam at a red heat. Nickel is slowly attacked by dil hydrochloric or sulfuric acid, is readily attacked by nitric acid but is not attacked by fused alkali hydroxides. Nickel can be used for nickel-plating, for various alloys such as Monel metal, stainless steels, heat resistant steels, heat and corrosion resistant alloys, nickel-chrome resistance wire and in alloys for electronic and space applications. Molybdenum has a symbol Mo an at. wt 95.94, common valences 2,3,4,5,6 and is in Group VIB(6). Molybdenum has an occurrence in the earth's crust of about 1-1.5 ppm. See review of molybdenum in RoUinson, "Chromium, Molybdenum and Tungsten" in Comprehensive Inorganic Chemistry vol. 3, J. C. Bailar Jr. et al, Eds. (Pergamon Press, Oxford, 1973) pp 622-623, 700-742; R. Q. Barr in Kirk-Othmer Encyclopedia of Chemical Technology vol. 15 (Wiley-Interscience, New York, 3rd ed., 1981) pp 670-682. Molybdenum is a dark-gray or black powder with metallic luster or coherent mass of silver-white color; body-centered cubic structure with a mp 2622° (Worthing) , a bp -4825° a d of 10.28 and a spec heat 5.68 cal/g- atom/deg. Molebdenum is stable at ordinary temp, is oxidized to the trioxide at a red heat and slowly oxidized by steam. Molybdenum is not attacked by water, by dil acids or by conc'd hydrochloric acid and is practically insoluble in alkali hydroxides or fused alkalis. The metal reacts with nitric acid, hot concentrated sulfuric acid, fused potassium chlorate or nitrate. The metal can be used in the form of ferromolybdenum for manufacturing special steels for tools, boiler plate, rifle barrels, propeller shafts, electrical contacts, spark plugs, x-ray tubes and nonferrous alloys. The metal can be used in colloidal form as lubricant additive. Tin has a symbol of Sn and at. wt 118.710, a common valences of 2 and 4 an is in Group rVA(14) Tin has an occurrence in earth's crust of 6x10-4 %. The metal of commerce is about 99.8% pure. See the Monograph: C. L. Mantell, Tin: Its Mining, Production, Technology and Applications (Reinhold, New York, 1949) and W. Germain et al, in Kirk-Othmer Encyclopedia of Chemical Technology vol. 23 (Wiley-Interscience, New York, 3rd ed., 1983) pp 18-42. Tin is a silver-white, lustrous, soft, very malleable and ductile metal that is easily powdered. The metal is available in the form of bars, foil, powder, shot, etc. The metal is table in air, but when in powder form it oxidizes, esp in presence of moisture. Tin is chiefly for tin- plating, soldering alloys, babbitt and type metals, manufacture of tin salts, etc. Tungsten (W) has an atomic weight of 183.84; an atomic number of 74 and is in Group VJJ3(6). Naturally occurring isotopes are 180 (0.135%); 182 (26.4%); 183 (14.4%); 184 (30.6%); 186 (28.4%); artificial radioactive isotopes are 173-179; 181; 185; 187-189. Tungsten was discovered by C. W. Scheele in 11781 and isolated in 1783 by J. J. and F. de Elhuyar. One of the rarer metals, it comprises about 1.5 ppm of the earth's crust. Chief ores are Wolframite [(Fe,Mn)WO4] and Scheelite (CaWO4) found chiefly in China, Malaya, Mexico, Alaska, South America and Portugal. Scheelite ores mined in the U.S. carry from 0.4-1.0% WO3. Description of isolation processes are found in K. C. Li, C. Y. Wang, Tungsten, A.C.S. Monograph Series no. 94 (Reinhold, New York, 3rd ed., 1955) pp 113-269; G. D. Rieck, Tungsten audits Compounds (Pergamon Press, New York, 1967) 154 pp. Reviews: Parish, Advan. Inorg. Chem. Radiochem. 9, 315-354 (1966); RoUinson, "Chromium, Molybdenum and Tungsten" in Comprehensive Inorganic Chemistry Vol. 3, J. C. Bailar, Jr. et al, Eds. (Pergamon Press, Oxford, 1973) pp 623-624, 742-769. Tungsten is a steel-gray to tin-white metal having in crystal form, a body centered cubic structure. Its density is d420 18.7-19.3; its hardness is 6.5-7.5, melting point is 3410°C, boiling point is 5900°C, specific heat (20°C) is 0.032 cal/g/°C, heat of fusion is 44 cal/g, heat of vaporization is 1150 cal/g and electrical resistivity (20°C) is 5.5 μohm-cm. Tungsten is stable in dry air at ordinary temperatures, but forms the trioxide at red heat, is not attacked by water, but is oxidized to the dioxide by steam. Particulate tungsten can be pyrophoric under the right conditions and is slowly sol in fused potassium hydroxide or sodium carbonate in presence of air; is soluble in a fused mixture of NaOH and nitrate. Tungsten is attacked by fluorine at room temperature; by chlorine at 250-300°C giving the hexachloride in absence of air, and the trioxide and oxychloride in the presence of air. In summary the melting point is 3410°C, the boiling point is
5900°C and the density is d^20 18.7-19.3. Uranium (U) has an atomic weight of 238.0289 (characteristic naturally occurring isotopic mixture); an atomic number of 92 with no stable nuclides. Naturally occurring isotopes are 238 (99.275%); 235 (0.718%); 234 (0.005%); artificial radioactive isotopes are 226-233; 236; 237; 239; 240. Uranium comprises about 2.1 ppm of the earth's crust. Main uranium ores of commercial interest are carnotite, pitchblende, tobernite and autunite. Commercially important mines are located in Elliot Lake-Blind River area in Canada, Rand gold fields in South Africa, Colorado and Utah in the United States, in Australia and in France. The discovery from pitchblende is found in M.H. Klaproth, Chem. Ann. TT, 387 (1789). Preparation of the metal is found in E. Peligot, CR. Acad. Sci 12, 735 (1841) and Idem, Ann.
Chim. Phys. 5, 5 (1842). Flowsheet and details of preparation of pure uranium metal are found in Chem. Eng. 62, No. 10, 113 (1955); Spedding et al., U.S. Patent No. 2,852,364 (1958 to U.S.A.E.C.). Reviews: Mellor's Vol. Xϋ, 1-138 (1932); CD. Harrington, A.R. Ruehle, Uranium Production Technology (Van Nostrand, Princeton, 1959); E.H.P. Cordfunke, The Chemistry of Uranium (Elsevier, New
York, 1969) 2550 pp; several authors in Handb. Exp. Pharmakol, 36, 3-306 (1973); "The Actinides," in Comprehensive Inorganic Chemistry Vol. 5, J.C. Bailar, Jr., et al., Eds. (Pergamon Press, Oxford, 1913>) passim; F. Weigel in Kirk-Othmer Encyclopedia of Chemical Technology Vol. 23 (Wiley-Interscience, New York, 3rd ed., 1983) pp 502-547; idem in The Chemistry of the Actinide Elements Vol. 1, J.J. Katz et al., Eds. (Chapman and Hall, New York 1986) pp 169-442; J.C. Spirlet et al., Adv. Inorg. Chem. 31, 1-40 (1987). A review of toxicology and health effects are found in Toxicological Profile for Uranium (PB91-180471, 1990) 205 pp. Uranium is a silver-white, lustrous, radioactive metal that is both malleable and ductile, and tarnishes rapidly in air forming a layer of dark-colored oxide. Heat of vaporization is 446.7 kJ/mol; heat of fusion is 19.7 kJ/mol; heat of sublimation is 487.9 kJ/mol. Finely divided uranium metal and some uranium compounds may ignite spontaneously in air or oxygen and are rapidly soluble in aqueous HC1. Non- oxidizing acids such as sulfuric, phosphoric and hydrofluoric react only very slowly with uranium; nitric acid dissolves uranium at a moderate rate; and dissolution of finely divided Uranium in nitric acid may approach explosive violence. Uranium metal is inert to alkalis. In summary, the melting point is 1132.8 ± 0.8° and density is 19.07; d 18.11; d 18.06. Osmium (O) has an atomic weight of 190.23; an atomic number of 76 and is in Group VJJI(8). Naturally occurring isotopes are 184 (0.02%); 186 (1.6%); 187 (1.6%); 188 (13.3%); 189 (16.1%); 190 (26.4%); 192 (41.0%). Artificial radioactive isotopes are 181-183; 185; 191; 193-195. Osmium comprises about 0.001 ppm of the earth's crust and is found in the mineral osmiridium and in all platinum ores. Tennant discovered osmium in 1804. Preparation is found in Berzelius et al., cited by Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry 15, 6887 (1936). Reviews: Gilchrist, Chem. Rev. 32, 277-372 (1943); Beamish et al., in Rare Metals Handbook, CA. Hampel, Ed. (Reinhold New York, 1956) pp 291-328; Griffith, Quart. Rev. 19, 254-273 (1965); idem, The Chemistry of the Rarer Platinum Metals (John Wiley, New York, 1967) pp 1-125; Livingstone in Comprehensive Inorganic Chemistry, Vol. 3, J.C. Bailar, Jr. et al. Eds. (Pergamon Press, Oxford, 1973) pp 1163-1189, 1209-1233. Osmium is a bluish-white, lustrous metal with a close-packed hexagonal structure. With a density of d4 20 22.61, it has been long believed to be the densest element. X-ray data has shown it to be slightly less dense than iridium with a melting point of about 2700°C, boiling point of about 5500°C, a density of d4 20 22.61, specific heat (0°C) 0.0309 cal/g/°C and hardness 7.0 on Mohs' scale. Osmium is stable in cold air and, when finely divided, is slowly oxidized by air even at ordinary temperature to form tetroxide. Osmium is attacked by fluorine above 100°C, by dry chlorine on heating, but not attacked by bromine or iodine. Osmium is attacked by aqua regia, by oxidizing acids over a long period of time, but barely affected by HC1, H2SO4. Osmium burns in vapor of phosphorus to form a phosphide, in vapor of sulfur to form a sulfide. Osmium is also attacked by molten alkali hydrosulfates, by potassium hydroxide and oxidizing agents. Finely divided osmium absorbs a considerable amount of hydrogen, hi summary, osmium has a melting point of about 2700°C, a boiling point of about 5500°C and a density
Figure imgf000024_0001
Iridium (ϊr) has an atomic weight of 192.217 and an atomic number of 77. Naturally occurring isotopes are 191 (38.5%); 193 (61.5%) and artificial radioactive isotopes are 182-191; 194-198. It comprises about 0.001 ppm of the earth's crust. Iridium was discovered by Tennant. It occurs in nature in the metallic state, usually as a natural alloy with osmium (osmiridium) and found in small quantities alloyed with native platinum (platinum mineral) or with native gold. Recovery and purification from osmiridium are found in Deville, Debray, Ann. Chim. Phys. 61, 84 (1861); from the platinum mineral: Wichers, J. Res. Nat. Bur. Stand. 10, 819 (1933). Reviews of preparation, properties and chemistry of iridium and other platinum metals: Gilchrist, Chem. Rev. 32, 277-372 (1943); W.P. Griffith, the Chemistry of the Rare Platinum Metals (John Wiley, New York, 1967) pp 1-41, 227-312; Livingstone in Comprehensive Inorganic Chemistry Vol. 3, J.C. Bailar Jr. et al., Eds. (Pergamon Press, Oxford, 1973) pp 1163-1189, 1254-1274. Iridium is a silver- white, very hard metal; face-centered cubic lattice with a melting point of 2450°C, boiling point of about 4500°C with a density of d4 20 22.65, specific heat of 0.0307 cal/g/°C, Mohs' hardness of 6.5 and has the highest specific gravity of all elements. Pure iridium is not attacked by any acids including aqua regia and only slightly by fused (non-oxidizing) alkalis. It is superficially oxidized on heating in the air, is attacked by fluorine and chlorine at a red heat, attacked by potassium sulfate or by a mixture of potassium hydroxide and nitrate on fusion, attacked by lead, zinc or tin. The powdered metal is oxidized by air or oxygen at a red heat to the dioxide, IrO2, but on further heating the dioxide dissociates into its constituents. In summary, iridium has a melting point of 2450°C, a boiling point of about 4500°C and a density of d4 2022.65. Platinum (Pt) has an atomic weight of 195.078, an atomic number of 78 and is in Group VIII(10). Naturally occurring isotopes are 190 (0.01%); 192 (0.8%); 194 (32.9%; 195 (33.8%); 196 (25.2%); 198 (7.2%); 190 is radioactive: T>/2 6.9 x 1011 years. Artificial radioactive isotopes are 173-189; 191; 193; 197; 199-201. Platinum comprises about 0.01 ppm of the earth's crust. It is believe to be mentioned by Pliny under the name "alutiae" and has been known and used in South America as "platina del Pinto". Platinum was reported by UUoa in 1735; brought to Europe by Wood, and described by Watson in 1741. It occurs in native form alloyed with one or more members of its group (iridium, osmium, palladium, rhodium, and ruthenium) in gravels and sands. Preparation is found in Wichers et al, Trans. Amer. Inst. Min. Met. Eng. 16, 602 (1928). Reviews of preparation, properties and chemistry of platinum and other platinum metals: Gilchrist, Chem. Rev. 32, 277-372 (1943); Beamish et al., Rare Metals Handbook, CA. Hampel, Ed. (Reinhold, New York, 1956) pp 291-328; Livingstone, Comprehensive Inorganic chemistry, Vol. 3, J.C. Bailar, Jr. et al., Eds. (Pergamon press, Oxford, 1973) pp 1163-1189, 1330- 1370; F.R. Harley, The Chemistry of Platinum and Palladium with Particular Reference to Complexes of the Elements (Halsted Press, New York, 1973). Platinum is a silver-gray, lustrous, malleable and ductile metal; face-centered cubic structure; prepared in the form of a black powder (platinum black) and as spongy masses (platinum sponge). Platinum has a melting point of 1773.5 ± 1°C; Roeser et al., Nat Bur. Stand. J. Res. 6, 1119 (1931); boiling point of about 3827°C with a density of d4 2021.447 (calcd.); Brinell hardness of 55; specific heat of 0.0314 cal/g at 0°C; electrical resistivity (20°C) of 10.6 μohm-cm.; does not tarnish on exposure to air, absorbs hydrogen at a red heat and retains it tenaciously at ordinary temperature; gives off the gas at a red heat in vacuo; occludes carbon monoxide, carbon dioxide, nitrogen; volatilizes considerably when heated in air at 1500°C The heated metal absorbs oxygen and gives it off on cooling. Platinum is not affected by water or by single mineral acids, reacts with boiling aqua regia with formation of chloroplatinic acid, and also with molten alkali cycanides. It is attacked by halogens, by fusion with caustic alkalis, alkali metrates, alkali peroxides, by arsenates and phosphates in the presence of reducing agents, in summary, platinum has a melting point of 1773.5 ± 1°C; Roeser et al, Nat. Bur. Stand. J. Res. 6, 1119 (1931), boiling point about 3827°C and a density of 21.447 (calcd). Gold (Au) has an atomic weight of 196.96655; an atomic number of 79 and is in Group IB(11). Naturally occurring isotope 197; artificial isotopes (mass numbers) are 177-179, 181, 183, 185-196, 198-203. Gold comprises 0.005 of the earth's crust. Gold is probably the first pure metal known to man. It occurs in nature in its native form and in minute quantities in almost all rocks and in seawater. Gold ores including calavarite (AuTe2), sylvanite [(Ag,Au)Te2], petzite [(Ag,Au)2Te]. Methods of mining, extracting and refining are found in Hull, Stent, in Modern Chemical Processes, Vol. 5 (Reinhold, New York, 1958) pp 60-71. Laboratory preparation of gold powder from gold pieces is found in Block, Inorg. Syn 4, 15 (1953). Chemistry of gold drugs in the treatment of rheumatoid arthritis is found in D.H. Brown, W.E. Smith, Chem. Soc. Rev. 9, 217 (1980). Use as a catalyst in oxidation of organic compounds by NO2 is found in R.E. Sievers, S.A. Nyarady, J. Am. Chem. Soc. 107, 3726 (1985). Least reactive metal at interfaces with gas or liquid is found in B. Hammer, J.K. Norskov, Nature 373, 238 (1995). Reviews: Gmelin's Handb. Anorg. Chem., Gold (8th ed.) 62, parts 2, 3 (1954); Johnson, Davis, "Gold" in Comprehensive Inorganic Chemistry, Vol. 3, J.C Bailar Jr. et al., Eds. (Pergamon Press, Oxford, 1973) pp 129-186; J.G. Cohn, E.W. Stem in Kirk-Othmer Encyclopedia of Chemical Technology Vol. 11 (Wiley h terscience, New York, 3rd ed., 1980) pp 972-995. Gold is a yellow, soft metal; face-centered cubic structure; and when prepared by volatilization or precipitation methods, deep violet, purple, or ruby powder, melting point of 1064.76°C; boiling point of 2700°C with a density of 19.3; Moh's hardness of 2.5-3.0; Brinell hardness of 18.5. Gold is extremely inactive; not attacked by acids, air or oxygen; superficially attacked by aq halogens at room temperature; reacts with aqua regia, with mixtures containing chlorides, bromides or iodides if they can generate nascent halogens, with many oxidizing mixtures especially those containing halogens, alkali cyanides, solutions of thiocyanates and double cyanides. In summary, gold has a melting point of 1064.76°C, boiling point of 2700°C and density of 19.3. Rhenium (Re) has an atomic weight of 186.207; an atomic number of 75 and is in Group VHB(7). Naturally occurring isotopes are 185 (37.07%); 187 (62.93%), the latter is radioactive, T>/2 ~10π years; artificial radioactive isotopes are 177-184; 186; 188-192. Rhenium comprises about 0.001 ppm of the earth's crust. It occurs in gadolinite, molybdenite, columbite, rare earth minerals, and some sulfide ores. Rhenium was discovered by Nodack et al, Naturwiss. 13, 567, 571 (1925). Preparation of metallic rhenium by reduction of potassium perrhenate or ammonium perrhenate is found in Hurd, Brim, Inorg. Syn 1, 175 (1939) and preparation of high purity rhenium is found in Rosenbaum et al., J. Electrochem. Soc. 103, 18 (1956). Reviews: Mealaven in rare Metals Handbook, CA. Hampel, Ed. (Reinhold, New York, 1954) pp 347-364; Peacock in Comprehensive Inorganic Chemistry Vol. 3, J.C. Bailar, Jr. et al., Eds. (Pergamon Press, Oxford, 1973) pp 905-978; P.M.
Treichel in Kirk-Othmer Encyclopedia of Chemical Technology Vol. 20 (Wiley- Interscience, New York, 3rd ed., 1982) pp 249-258. Rhenium has hexagonal close- packed crystals, black to silver-gray; has a density of d 21.02; melting point of 3180°C; boiling point of 5900°C (estimated); specific heat of 0-20°C 0.03263 cal/g/°C; specific electrical resistance of 0.21 x 10"4 ohm/cm at 20°C; Brinell hardness of 250; latent heat of vaporization of 152 kcal/mol and reacts with oxidizing acids, nitric and concentrated sulfuric acid, but not with HC1. h summary, Rhenium has a melting point of 3180°C, boiling point of 5900°C (estimated) and density of 21.02. Neptunium (Np) has an atomic number of 93. It is the first man-made transuranium element with no stable nuclides. Known isotopes (mass numbers) are 227-242. The discovery of isotope 239 (Tι/22.355 days, alpha-decay, relative atomic mass of 239.0529) can be found in E. McMillan, P. Abelson, Phys. Rev. 57, 1185 (1940); of isotope 237 (T'/22.14 x 106 years, the longest-lived known isotope, relative atomic mass of 237.0482) can be found at A.C. Wahl, G.T. Seaborg, ibid. 73, 940 (1948). Preparation of metal is found in S. Fried, N. Davidson, J Am. Chem. Soc. 70, 3539 (1948); L.B. Magnusson, TJ. LaChapelle, ibid. 3534.
Neptum'um's presence in nature is found in Seaborg, Perlman, ibid. 70, 1571 (1948). Chemical properties are found in Seaborg, Wahl, ibid. 1128. Reviews: C. Keller, the chemistry of the Transactinide Elements (Verlag Chemie, Weinheim, English Ed., 1971) pp 253-332; W.W. Schulz, G.E. Benedict, Neptunium-237; Production and Recovery, AEC Critical Review Series (US AEC, Washington D.C.), 1972) 85 pp; Comprehensive Inorganic Chemistry Vol. 5, J.C. Bailar, Jr. et al., Eds. (Pergamon Press, Oxford, 1973) passim; J.A. Fahey in The Chemistry of the Actinide Elements Vol. 1, J.J. Katz et al., Eds (Chapman and Hall, New York, 1986) pp 443-498; G.T. Seaborg in Kirk-Othmer Encyclopedia of Chemical Technology Vol. 1 (Wiley-Interscience, New York, 4th ed., 1991) pp 412-444. Neptunium is a silvery metal; develops a thin oxide layer upon exposure to air for short periods. Reacts with air at high temperatures to form NpO2 with an extrapolated boiling point of 4174°C Neptunium has been obtained in its five oxidation states in solution; the most stable is the pentavalent state. Tetravalent Neptunium is readily oxidized to the hexavalent state by permanganate in the cold, or by strong oxidizing agents; on electrolytic reduction in an atmosphere of nitrogen, the trivalent form is obtained. In summary, Neptunium has a melting point of 637°C; a boiling point of 4174°C and a density of d 20.45; d 19.36. Plutonium (Pu) has an atomic number of 94 with no stable nuclides. Known isotopes (mass numbers) are 232-246. the longest-lived known isotopes are Pu (T./2 3.76 x 105 years, relative atomic mass 242.0587), 244 (T 2 8.26 x 107 years, relative atomic mass 244.0642). Commercially useful isotopes are 238Pu (T>/2 87.74 years, relative atomic mass 238.0496); 239Pu (Tι/22.41 x 104 years; relative atomic mass 239.0522). Plutonium comprises 10"22% of the earth's crust. The discovery of isotope 238Pu is found in G.T. Seaborg et al., Phys. Rev. 69, 366, 367 (1946); of isotope 239Pu in J.W. Kennedy et al., ibid 70 555 (1946). Solution of 239Pu from pitchblende is found in G.T. Saborg, M.L. Perlman, J. Am. Chem. Soc. 70, 1571 (1948). Preparation of metal is found in B.B. Cunningham, L.B. Werner, ibid. 71, 1521 (1949). Chemical properties are found in Seaborg, Wal, ibid. 1128; Harvey et al., J. Chem. Soc. 1947, 1010. Reviews: J.M. Cleveland, the Chemistry of Plutonium (Gordon & Breach, New York, 1970) 653 pp; C. Keller, The Chemistry of the Transuranium Elements (Verlag Chemie, Weinheim, English Ed., 1971) pp 333-484; Comprehensive Inorganic Chemistry Vol. 5, J.C Bailar, Jr. et al., Eds. (Pergamon Press, Oxford, 1913) passim; Handb. Exp. Pharmakol 36 307-688 (1973); F. Weigel in Kirk-Othmer Encyclopedia of Chemical Technology Vol. 18 (Wiley-Interscience, New York, 3rd ed., 1982) pp 278-301; Plutonium Chemistry, W.T. Carnall, G.R. Choppin, Eds. (Am. Chem. Soc, Washington, D.C, 1983) 484 pp; F. Weigel et al in The Chemistry of the Actinide Elements Vol. 1, J.J. Katz et al., Eds. (Chapman and Hall, New York, 1986) pp 499-886. Review of toxicology is found in W.J. Bair, R.C. Thompson, Science 183, 715-722 (1974); and health effects are found in Toxicological Profile for Plutonium (PB91-180406, 1990) 206 pp. Plutonium is a silvery-white metal that is highly reactive. It oxidizes readily in dry air and oxygen, the rate increasing in the presence of moisture. In summary,
Plutonium has a melting point of 640 ± 2°C and densities of d21 19.86; d190 17.70; d235 17.14; d320 15.92; d405 16.00; d490 16.51. Tantalum (Ta) has an atomic weight of 180.9479; atomic number of 73 and is in Group VB(5). Naturally occurring isotopes are 181 (99.9877%); 180 (0.0123%), T./2 > 1012 years; artificial radioactive isotopes are 172-179; 182-186.
Tantalum occurs almost invariably with niobium, but less abundant than niobium. It is found in the minerals columbite, q.v., tantalite ([(Fe,Mn)(Ta,Nb)2O6] and microlite [(Na,Ca)2Ta2O6(O,OH,F)]. Tantalum was discovered by Edeberg in 1802; first obtained pure by Bolton in Z. Elektrochem. 11, 45 (1905). Preparation is found in Schoeller, Powell, J. Chem. Soc. 119, 1927 (1921). Reviews: G.L. Miller,
Tantalum and Niobium (Academic Press, New York, 1959) 767 pp; Brown, "The Chemistry of Niobium and Tantalum" in Comprehensive Inorganic Chemistry Vol. 3, J.C. Bailar, Jr. et al., Eds. (Pergamon Press, Oxford, 1973) pp 553-622. Tantalum is a gray, very hard, malleable, ductile metal that can be readily drawn in fine wires; has a melting point of 2996°C; a boiling point of 5429°C, a density of d 16.69; specific heat 0°C: 0.036 cal/g/°C; electrical resistivity (18°C): 12.4 μohm-cm; insoluble in water; very resistant to chemical attack; not attacked by acids other than hydrofluoric and not attacked by aqueous alkalis; slowly attacked by fused alkalis. It reacts with fluorine, chlorine and oxygen only on heating and at high temperatures absorbs several hundred times its volume of hydrogen; combines with nitrogen, with carbon. In summary, Tantalum has a melting point of 2996°C, boiling point of 5429°C and a density of d 16.69. A large variety of polymer materials can be used in the composite materials of the invention. For the purpose of this disclosure, a polymer is a general term covering either a thermoset or a thermoplastic. We have found that polymer materials useful in the invention include both condensation polymeric materials and vinyl polymeric materials. Included are both vinyl and condensation polymer blends, and polymeric alloys thereof. Vinyl polymers are typically manufactured by the polymerization of monomers having an ethylenically unsaturated olefinic group. Condensation polymers are typically prepared by a condensation polymerization reaction which is typically considered to be a stepwise chemical reaction in which two or more molecules combined, often but not necessarily accompanied by the separation of water or some other simple, typically volatile substance. Such polymers can be formed in a process called polycondensation. The polymer has a density of at least 0.94 gm-cm"3, however, polymers having a density of 0.96 to 2 gm-cm"3 and preferably greater than 0.98 to 1.9 gm-cm"3 are useful to increase density, Preferred polymers can have a useful high density typically greater than 1 gm-cm"3 often greater than 1.5 gm-cm"3 and also greater than 1.7 gm-cm"3. Vinyl polymers include polyethylene, polypropylene, polybutylene, acrylonitrile-butadiene-styrene (ABS), polybutylene copolymers, polyacetyl polymers, polyacrylic polymers, homopolymers or copolymers comprising vinyl chloride, vinylidene chloride, fluorocarbon copolymers, etc. Condensation polymers include nylon, phenoxy polymers, polyarylether such as polyphenylether, polyphenylsulfide materials; polycarbonate materials, chlorinated polyether polymers, polyethersulfone polymers, polyphenylene oxide polymers, polysulfone polymers, polyimide polymers, thermoplastic urethane elastomers, polyester (i.e. polyethylene terephthalate) and many other polymer materials. Condensation polymers that can be used in the composite materials of the invention include polyamides, polyamide-imide polymers, polyarylsulfones, polycarbonate, polybutylene terephthalate, polybutylene naphthalate, polyetherimides, polyethersulfones, polyethylene terephthalate, thermoplastic polyimides, polyphenylene ether blends, polyphenylene sulfide, polysulfones, thermoplastic polyurethanes and others. Preferred condensation engineering polymers include polycarbonate materials, polyphenyleneoxide materials, and polyester materials including polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polybutylene naphthalate materials. Polycarbonate engineering polymers are high performance, amorphous engineering thermoplastics having high impact strength, clarity, heat resistance and dimensional stability. Polycarbonates are generally classified as a polyester or carbonic acid with organic hydroxy compounds. The most common polycarbonates are based on phenol A as a hydroxy compound copolymerized with carbonic acid. Materials are often made by the reaction of a bisphenol A with phosgene (O=CCl2). Polycarbonates can be made with phthalate monomers introduced into the polymerization extruder to improve properties such as heat resistance, further Irifunctional materials can also be used to increase melt strength or extrusion blow molded materials. Polycarbonates can often be used as a versatile blending material as a component with other commercial polymers in the manufacture of alloys. Polycarbonates can be combined with polyethylene terephthalate acrylonitrile- butadiene-styrene polymers, styrene maleic anhydride polymers and others. Preferred alloys comprise a styrene copolymer and a polycarbonate. Preferred melt for the polycarbonate materials should be indices between 0.5 and 30, preferably between 1 and 20 gms/10 min. A variety of polyester condensation polymer materials including polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, etc. can be useful in the composites of the invention. Polyethylene terephthalate and polybutylene terephthalate are high performance condensation polymer materials. Such polymers often made by a copolymerization between a diol (ethylene glycol, 1,4-butane diol) with dimethyl terephthalate. In the polymerization of the material, the polymerization mixture is heated to high temperature resulting in the transesterification reaction releasing methanol and resulting in the formation of the engineering plastic. Similarly, polyethylene naphthalate and polybutylene naphthalate materials can be made by copolymerizing as above using as an acid source, a naphthalene dicarboxyhc acid. The naphthalate thermoplastics have a higher Tg and higher stability at high temperature compared to the terephthalate materials. However, all these polyester materials are useful in the composite materials of the invention. Such materials have a preferred molecular weight characterized by melt flow properties. Useful polyester materials have a viscosity at 265°C of about 500-2000 cP, preferably about 800-1300 cP. Polyphenylene oxide materials are engineering thermoplastics that are useful at temperature ranges as high as 330°C Polyphenylene oxide has excellent mechanical properties, dimensional stability, and dielectric characteristics. Commonly, phenylene oxides are manufactured and sold as polymer alloys or blends when combined with other polymers or fiber. Polyphenylene oxide typically comprises a homopolymer of 2,6-dimethyl-l -phenol. The polymer commonly known as ρoly(oxy-(2,6-dimethyl-l,4-phenylene)). Polyphenylene is often used as an alloy or blend with a polyamide, typically nylon 6-6, alloys with polystyrene or high impact styrene and others. A preferred melt index (ASTM 1238) for the polyphenylene oxide material useful in the invention typically ranges from about 1 to 20, preferably about 5 to 10 gm/10 min. The melt viscosity is about 1000 at 265°C Another class of thermoplastic include styrenic copolymers. The term styrenic copolymer indicates that styrene is copolymerized with a second vinyl monomer resulting in a vinyl polymer. Such materials contain at least a 5 mol-% styrene and the balance being 1 or more other vinyl monomers. An important class of these materials are styrene acrylonitrile (SAN) polymers. SAN polymers are random amorphous linear copolymers produced by copolymerizing styrene acrylonitrile and optionally other monomers. Emulsion, suspension and continuous mass polymerization techniques have been used. SAN copolymers possess transparency, excellent thermal properties, good chemical resistance and hardness. These polymers are also characterized by their rigidity, dimensional stability and load bearing capability. Olefin modified SAN's (OS A polymer materials) and acrylic styrene acrylonitriles (ASA polymer materials) are known. These materials are somewhat softer than unmodified SAN's and are ductile, opaque, two phased terpolymers that have surprisingly improved weatherability. ASA polymers are random amorphous terpolymers produced either by mass copolymerization or by graft copolymerization. In mass copolymerization, an acrylic monomer styrene and acrylonitrile are combined to form a heteric terpolymer. In an alternative preparation technique, styrene acrylonitrile oligomers and monomers can be grafted to an acrylic elastomer backbone. Such materials are characterized as outdoor weatherable and UV resistant products that proyide excellent accommodation of color stability property retention and property stability with exterior exposure. These materials can also be blended or alloyed with a variety of other polymers including polyvinyl chloride, polycarbonate, polymethyl methacrylate and others. An important class of styrene copolymers includes the acrylonitrile-butadiene-styrene monomers. These polymers are very versatile family of engineering thermoplastics produced by copolymerizing the three monomers.
Each monomer provides an important property to the final terpolymer material. The final material has excellent heat resistance, chemical resistance and surface hardness combined with processability, rigidity and strength. The polymers are also tough and impact resistant. The styrene copolymer family of polymers have a melt index that ranges from about 0.5 to 25, preferably about 0.5 to 20. An important class of engineering polymers that can be used in the composites of the invention include acrylic polymers. Acrylics comprise a broad array of polymers and copolymers in which the major monomeric constituents are an ester acrylate or methacrylate. These polymers are often provided in the form of hard, clear sheet or pellets. Acrylic monomers polymerized by free radical processes initiated by typically peroxides, azo compounds or radiant energy. Commercial polymer formulations are often provided in which a variety of additives are modifiers used during the polymerization provide a specific set of properties for certain applications. Pellets made for polymer grade applications are typically made either in bulk (continuous solution polymerization), followed by extrusion and pelleting or continuously by polymerization in an extruder in which unconverted monomer is removed under reduced pressure and recovered for recycling. Acrylic plastics are commonly made by using methyl acrylate, methylmethacrylate, higher alkyl acrylates and other copolymerizable vinyl monomers. Preferred acrylic polymer materials useful in the composites of the invention has a melt index of about 0.5 to 50, preferably about 1 to 30 gm/10 min. The primary requirement for the substantially thermoplastic engineering polymer material is that it retains sufficient thermoplastic properties such as viscosity and stability, to permit melt blending with a metal particulate, permit formation of linear extrudate pellets, and to permit the composition material or pellet to be extruded or injection molded in a thermoplastic process forming the useful product. Engineering polymer and polymer alloys are available from a number of manufacturers including B.F. Goodrich, General Electric, Dow, and E. I. duPont. Vinyl polymers include a acrylonitrile; polymer of alpha-olefins such as ethylene, propylene, etc.; chlorinated monomers such as vinyl chloride, vinylidene dichloride, acrylate monomers such as acrylic acid, methylacrylate, methylmethacrylate, acrylamide, hydroxyethyl acrylate, and others; styrenic monomers such as styrene, alphamethyl styrene, vinyl toluene, etc.; vinyl acetate; and other commonly available ethylenically unsaturated monomer compositions. Polymer blends or polymer alloys can be useful in manufacturing the pellet or linear extrudate of the invention. Such alloys typically comprise two miscible polymers blended to form a uniform composition. Scientific and commercial progress in the area of polymer blends has lead to the realization that important physical property improvements can be made not by developing new polymer material but by forming miscible polymer blends or alloys. A polymer alloy at equilibrium comprises a mixture of two amorphous polymers existing as a single phase of intimately mixed segments of the two macro molecular components. Miscible amorphous polymers form glasses upon sufficient cooling and a homogeneous or miscible polymer blend may exhibit a single, composition dependent glass transition temperature (Tg). Immiscible or non-alloyed blend of polymers typically displays two or more glass transition temperatures associated with immiscible polymer phases. In the simplest cases, the properties of polymer alloys reflect a composition weighted average of properties possessed by the components. In general, however, the property dependence on composition varies in a complex way with a particular property, the nature of the components (glassy, rubbery or semi-crystalline), the thermodynamic state of the blend, and its mechanical state whether molecules and phases are oriented. Polyester polymers are manufactured by the reaction of a dibasic acid with a glycol. Dibasic acids used in polyester production include phthalic anhydride, isophthalic acid, maleic acid and adipic acid. The phthalic acid provides stiffness, hardness and temperature resistance; maleic acid provides vinyl saturation to accommodate free radical cure; and adipic acid provides flexibility and ductility to the cured polymer. Commonly used glycols are propylene glycol which reduces crystalline tendencies and improves solubility in styrene. Ethylene glycol and diethylene glycol reduce crystallization tendencies. The diacids and glycols are condensed eliminating water and are then dissolved in a vinyl monomer to a suitable viscosity. Vinyl monomers include styrene, vinyltoluene, paramethylstyrene, methylmethacrylate, and diallyl phthalate. The addition of a polymerization initiator, such as hydroquinone, tertiary butylcatechol or phenothiazine extends the shelf life of the uncured polyester polymer. Polymers based on phthalic anhydride are termed orthophthalic polyesters and polymers based on isophthalic acid are termed isophthalic polyesters. The viscosity of the unsaturated polyester polymer can be tailored to an application. Low viscosity is important in the fabrication of fiber-reinforced composites to ensure good wetting and subsequent high adhesion of the reinforcing layer to the underlying substrate. Poor wetting can result in large losses of mechanical properties. Typically, polyesters are manufactured with a styrene concentration or other monomer concentration producing polymer having an uncured viscosity of 200-1,000 mPa.s(cP). Specialty polymers may have a viscosity that ranges from about 20 cP to 2,000 cP. Unsaturated polyester polymers are typically cured by free radical initiators commonly produced using peroxide materials. Wide varieties of peroxide initiators are available and are commonly used. The peroxide initiators thermally decompose forming free radical initiating species. Phenolic polymers can also be used in the manufacture of the structural members of the invention. Phenolic polymers typically comprise a phenol- formaldehyde polymer. Such polymers are inherently fire resistant, heat resistant and are low in cost. Phenolic polymers are typically formulated by blending phenol and less than a stoichiometric amount of formaldehyde. These materials are condensed with an acid catalyst resulting in a thermoplastic intermediate polymer called NOVOLAK. These polymers are oligomeric species terminated by phenolic groups. In the presence of a curing agent and optional heat, the oligomeric species cure to form a very high molecular weight thermoset polymer. Curing agents for novalaks are typically aldehyde compounds or methylene (-CH2-) donors. Aldehydic curing agents include paraformaldehyde, hexamethylenetetraamine, formaldehyde, propionaldehyde, glyoxal and hexamethylmethoxy melamine. The fluoropolymers useful in this invention are polymers made with monomers containing one or more atoms of fluorine, or copolymers of two or more of such monomers. Common examples of fluorinated monomers useful in these polymers or copolymers include tetrafluoroethylene (TFE), hexafluoropropylene(HFP), vinylidene fluoride (VDF), perfluoroalkylvinyl ethers such as perfluoro-(n-propyl- vinyl) ether (PPVE) or perfluoromethylvinylether (PMVE). Other copolymerizable olefinic monomers, including non-fluorinated monomers, may also be present. Particularly useful materials for the fluoropolymers are TFE-HFP-VDF terpolymers (melting temperature of about 100 to 260°C; melt flow index at 265°C under a 5 kg load is about 1-30 g-10 min"1.), hexafluoropropylene- tetrafluoroethylene-ethylene (HTE) terpolymers (melting temperature about 150 to 280°C; melt flow index at 297°C. under a 5 kg load of about 1-30 g-10 min"1.), ethylene-tetrafluoroethylene (ETFE) copolymers (melting temperature about 250 to 275°C; melt flow index at 297°C under a 5 kg load of about 1-30 g-10 min"1.), hexafluoropropylene-tetrafluoroethylene (FEP) copolymers (melting temperature about 250 to 275°C; melt flow index at 372°C. under a 5 kg load of about 1-30 g-10 min"1.), and tetrafluoroethylene-perfluoro(alkoxy alkane) (PFA) copolymers
(melting temperature about 300 to 320°C; melt flow index at 372°C under a 5 kg load of about 1-30 g-10 min"1.). Each of these fluoropolymers is commercially available from Dyneon LLC, Oakdale, Minn. The TFE-HFP-VDF terpolymers are sold under the designation "THV". Also useful are vinylidene fluoride polymers primarily made up of monomers of vinylidene fluoride, including both homopolymers and copolymers. Such copolymers include those containing at least 50 mole percent of vinylidene fluoride copolymerized with at least one comonomer selected from the group consisting of tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, hexafluoropropene, vinyl fluoride, pentafluoropropene, and any other monomer that readily copolymerizes with vinylidene fluoride. These materials are further described in U.S. Patent No. 4,569,978 (Barber) incorporated herein by reference. Preferred copolymers are those composed of from at least about 70 and up to 99 mole percent vinylidene fluoride, and correspondingly from about 1 to 30 percent tetrafluoroethylene, such as disclosed in British Patent No. 827,308; and about 70 to 99 percent vinylidene fluoride and 1 to 30 percent hexafluoropropene (see for example, U.S. Patent No. 3,178,399); and about 70 to 99 mole percent vinylidene fluoride and 1 to 30 percent trifluoroethylene. Terpolymers of vinylidene fluoride, trifluoroethylene and tetrafluoroethylene such as described in U.S. Patent No. 2,968,649 and terpolymers of vinylidene fluoride, trifluoroethylene and tetrafluoroethylene are also representative of the class of vinylidene fluoride copolymers which are useful in this invention. Such materials are commercially available under the KYNAR trademark from Arkema Group located in King of Prussia, PA or under the DYNEON trademark from Dyneon LLC of Oakdale, MN. Fluorocarbon elastomer materials can also be used in the composite materials of the invention. Fluoropolymer Fluoropolymers contain VF2 and HFP monomers and optionally TFE and have a density greater than 1.8 gm-cm"3 and fluoropolymers exhibit good resistance to most oils, chemicals, solvents, and halogenated hydrocarbons, and an excellent resistance to ozone, oxygen, and weathering. Their useful application temperature range is -40°C to 300°C Fluoroelastomer examples include those described in detail in Lentz, U.S. Pat. No. 4,257,699, as well as those described in Eddy et al., U.S. Pat. No. 5,017,432 and Ferguson et al., U.S. Pat. No. 5,061 ,965. The disclosures of each of these patents are totally incorporated herein by reference. Latex fluoropolymers are available in the form of the polymers comprising the PFA, FEP, ETFE, The, THV and PVDF monomers. This class of latex materials can act as an interfacial modifier or in a bulk polymer state. Fluorinated poly(meth)acrylates can generally be prepared by free radical polymerization either neat or in solvent, using radical initiators well known to those skilled in the art. Other monomers which can be copolymerized with these fluorinated (meth)acrylate monomers include alkyl (meth)acrylates, substituted alkyl (meth)acrylates, (meth)acrylic acid, (meth)acrylamides, styrenes, vinyl halides, and vinyl esters. The fluoropolymers can comprise polar constituents. Such polar groups or polar group containing monomers may be anionic, nonionic, cationic, or amphoteric. In general, the more commonly employed polar groups or polar group- containing organic radicals include organic acids, particularly carboxylic acid, sulfonic acid and phosphonic acid; carboxylate salts, sulfonates, phosphonates, phosphate esters, ammonium salts, amines, amides, alkyl amides, alkyl aryl amides, imides, sulfonamides, hydroxymethyl, thiols, esters, silanes, and polyoxyalkylenes, as well as other organic radicals such as alkylene or arylene substituted with one or more of such polar groups. The latex fluoropolymers described herein are typically aqueous dispersed solids but solvent materials can be used. The fluoropolymer can be combined with various solvents to form emulsion, solution or dispersion in a liquid form. Dispersions of fluoropolymers can be prepared using conventional emulsion polymerization techniques, such as described in U.S. Patent Nos. 4,418,186; 5,214,106; 5,639,838; 5,696,216 or Modern Fluoropolymers, Edited by John Scheirs, 1997 (particularly pp. 71-101 and 597-614) as well as assignees' copending patent application Serial No. 01/03195, filed January 31, 2001. The liquid forms can be further diluted in order to deliver the desired concentration. Although aqueous emulsions, solutions, and dispersions are preferred, up to about 50% of a cosolvent such as methanol, isopropanol, or methyl perfluorobutyl ether may be added. Preferably, the aqueous emulsions, solutions, and dispersions comprise less than about 30% cosolvent, more preferably less than about 10% cosolvent, and most preferably the aqueous emulsions, solutions, and dispersions are substantially free of cosolvent. The metal particulate can be coupled to the polymer phase depending on the nature of the polymer phase, the filler, the particulate surface chemistry and any pigment process aid or additive present in the composite material. In general the mechanism used to couple metal particulate to polymer include interfacial modification, solvation, chelation, coordination bonding (ligand formation), etc. Interfacial modifiers used in the composite fall into broad categories including, for example, stearic acid and derivatives, silane compounds, titanate compounds, zirconate compounds, aluminate compounds. The choice of interfacial modifiers is dictated by metal particulate, polymer, and application. The maximum density of a composite is a function of the densities of the materials and the volume fractions of each. Higher density composites are achieved by maximizing the per unit volume of the materials with the highest densities. Interfacial modifying chemistries are capable of modifying the surface of the particulate by coordination bonding, Van der Waals forces, covalent bonding, or a combination of all three. The surface of the particle behaves as a particle of the non-reacted end of the interfacial modifier. These organics reduce the friction between particles preventing gouging and allowing for greater freedom of movement between particles. These phenomena allow the applied shaping force to reach deeper into the form resulting in a more uniform pressure gradient. This achieves closer packing (note highest Van der Waals occurs at 5 Angstrom or less) in the bulk and higher physical properties. The use of a sufficient amount of the interfacial modifier that is sufficient to modify the surface characteristic of the metal but not displace polymer is an important compounding characteristic. Stearic acid and derivatives or compounds thereof, modify the composites of the invention, stearic acid performs a interfacial modifying function to result in the formation of a stearic layer on the surface of the metal particle reducing the intermolecular forces, improving the tendency of the polymer to wet the particulate particle, and resulting in increased composite density. Similarly, silane interfacial modifiers improve physical properties of the composites by forming chemical bonds between the metal particle and the continuous polymer phase, or by modifying the surface energy of the inorganic metal particulate matching the surface energy of the polymer at the particle polymer interface. Silane coupling agents useful in the invention include but are not limited to compounds of the following structure:
R-(CH2)n-Si-X3
wherein X represents a hydrolyzable group comprising alkoxy-, acyloxy-, halo- or amino- depending on the surface chemistry of the metal particulate and the reaction mechanism. Coupling is maximized as the number of chemical bonds between the particulate surface and polymer is maximized. When a composite will be used in an application including large amounts of aqueous media and broad temperature excursions, dipodal silanes such as bis(triethoxysilyl) ethane are chosen. These materials have the following structure:
R[(CH2)n-Si-X3]2
wherein R represents the non-hydrolyzable organic group of the silane compound. The R group may be chemically bonded to the polymer phase or as desired to remain unreactive if non-bonded interfacial modifier can be applied. When R is chemically bonded to the polymer phase, the reaction proceeds through the addition of free radicals to the polymer. These free radicals can be added either through heat, light or in the form of peroxide catalysts or promoters and similar reactive systems. Selection of the R group additionally is made through a consideration of polymer used in the composite. Thermosetting polymers can be used to chemically bond the silane to the polymer phase if a thermoset polymer is selected. The reactive groups in the thermoset can include methacrylyl, styryl, or other unsaturated or organic materials. Thermoplastic materials with reactive sites can be used to increase the reactivity between the polymer phase and the metal particulate. Such thermoplastics having reactive sites in either the backbone or groups pendant to the polymer backbone include polyvinylchloride, polyphenylene sulfite, acrylic homopolymers, maleic anhydride containing polymers, acrylic materials, vinyl acetate polymers, diene containing copolymers such as 1,3 -butadiene, 1,4-pentadiene, halogen or chlorosulfonyl modified polymers or other polymers that can react with the composite systems of the invention. Condensation polymeric thermoplastics can be used including polyamides, polyesters, polycarbonates, fluoropolymers, polysulfones and similar polymer materials by reacting end groups with silanes having aminoalkyl, chloroalkyl, isocyanato or similar functional groups. Polyolefin materials including polyethylene and polypropylene can be coupled to the metal particulate using silanes such as alkyl silanes or amino silanes having a substantial aliphatic substituent. Chemical bonding to polyethylene can be achieved using a vinyl silane and reacting the metal particulate with the vinyl silane followed by compounding the modified metal particulate with the polymer phase in the presence of a peroxide catalyst or promoter such as dicumyl peroxide or bis(t-butylperoxy) materials. Chemical bonding to polypropylene or a polyethylene can be achieved when the reactive materials of sulfonyl azide compound. The filler is reacted with a silylsosulfonylazide and then combined with the polymer at an elevated temperature. The polymer material preferably has a polarity that is matches the interfacial modifier. The interfacial modifier material is selected such that it is a material that associates with the metal particle surface and presents a surface that is compatible with the polymer filling the excluded volume.
The metal particulate can be coupled to the polymer phase depending on the nature of the polymer phase, the filler, the particulate surface chemistry and any pigment process aid or additive present in the composite material. In general the mechanism used to couple metal particulate to polymer include solvation, chelation, coordination bonding (ligand formation), etc. Titanate or zirconate coupling agents can be used. Such agents have the following formula: (RO)rn-Ti-(O-X-R'-Y)n (RO)m-Zr-(O-X-R'-Y)n
wherein titanate chemistries provide superior bonds to transition metals and the lanthanide series. Titanates provide antioxidant properties and can modify or control cure chemistry. Zirconate provides excellent bond strength but maximizes curing, reduces formation of off color in formulated thermoplastic materials. A useful zirconate material is neopentyl(diallyl)oxy-tri(dioctyl)phosphato-zirconate.
The manufacture of the high density metal particulate composite materials depends on good manufacturing technique. Often the metal particulate is initially treated with an interfacial modifier such as a reactive silane by spraying a 25 wt-% solution of the silane or interfacial modifier on the particulate with blending and drying carefully to ensure uniform particulate coating of the interfacial modifier. Interfacial modifiers such as a silane may also be added to fillers in bulk blending operations using high intensity Littleford or Henschel blenders. Alternatively, twin screw conical mixers can be followed by drying or direct addition to a screw- compounding device. Interfacial modifier may also be reacted with the metal particulate in aprotic solvent such as toluene, tefrahydrofuran, mineral spirits or other such known solvents. The metal polymer composites of the invention can be used in a variety of embodiments including projectiles, high density sheeting with attachment means such as adherent coatings, fishing lures, fishing weights, automobile weights, vehicle tire wheel weights with attachment clips, radiation shielding, golf club components, sporting equipment, gyroscopic ballast, cellular phone vibrating weights or laboratory weight noise and vibration barriers, or other embodiments that require high density material with moldability, ductility, and dimensional stability. The high density materials of the present invention and all its embodiments are suitable for numerous processing methods. Selection of processing methods and formulation of base materials can be based upon required end use product requirements. The following examples illustrate this point. An embodiment of the present invention is a flexible or malleable composite that could be used in projectiles including shot gun pellets and other ammunition, stints for heart or artery applications, or radiation shielding garments. An example composite with these characteristics might include a combination of tungsten, a fluoropolymer as the binder, and a zirconate interfacial modifier. The end use product could be the result of an extrusion or injection molded part. Yet another embodiment of the present invention is a high output production, high density composite that could be used in fishing lures or weights, or cellular phone shielding or internal vibratory mechanisms. An example composite with these characteristics might include a combination of tungsten, polyvinyl chloride as the binder, and an alkaline metal stearate or a stearate amide interfacial modifier. The end use product could be the result of an extrusion or injection molded part. Yet another embodiment of the present invention is a low output production, high cure time, and high density composite that could be used in automobile or truck pneumatic tire wheel weights or other ballasts, or other products that could be produced in bulk forms. An example composite with these characteristics might include a combination of tungsten, polyester as the binder, and a zirconate interfacial modifier. The end use product could be the result of injection molding, or bulk molding parts. Yet another embodiment of the present invention is a high output production, high density composite that could be used for fishing lures and automobile or truck pneumatic tire wheel weights. An example composite with these characteristics might include a combination of tungsten, polystyrene as a binder and a zirconate interfacial modifier. The end use product could be the result of injection molding, or bulk molding parts. In addition to the aforementioned illustrative embodiments, additional processing methods are, but not limited to; Injection, compression molding, thermoset and thermoplastic extrusion, centrifugal molding, rotational molding, blow molding, casting, calendaring, liquid fill thermoset molding or filament winding to form a variety of shapes in conjunction with sequential compounding. Yet another embodiment of the invention includes colorization of the resulting composites where color is important for identification or as dictated by the end use requirements. Color additives are typically less than 1% of the resulting composite by weight and volume fraction.
Composition and Manufacture In the manufacture of the composite of the invention, the metal polymer particle size and shape distribution must be selected to obtain packing characteristics, combined with the appropriate polymer and then extruded at appropriate conditions. During the blending step, the metal particulate and the polymer are intimately mixed. The interfacial modifier is commonly added to the blended material or can be added to the metal particulate before combining the modified metal with the polymeric material. As discussed above, many of the fluorocarbon materials require no interfacial modification and are compatible with the metal particulates. Solvent blending can be used to introduce the polymer and metal particulate if necessary. The blended composite material can then be extruded under conditions of shear, temperature and time to obtain maximized density and other composite polymeric characteristics. The preferred equipment for mixing and extruding the composition is an industrial extruder device such as those obtainable from Brabender or Cincinnati Millicron. Once the materials are mixed under appropriate conditions of shear, temperature and time, the properties of the composite are maximized in density, storage modulus, etc. The resulting polymer material can be extruded in the form of a pellet, chip or other raw material for further processing or can be extruded into a finally useful shape. In a preferred mode, the metal particulate, preferably containing a interfacial modifying material, is placed in a volumetric hopper to proportion the particulate into the extruder. The polymer material is similarly input into the system. The amounts of particulate and polymer are gauged to ensure the composite material contains the appropriate proportions on a weight or preferably volumetric basis. Commonly, the material is blended on input and introduced into an extrusion device, preferably a single or twin screw extruder. Such a device typically has a mixing section, a transport section and a melt section. Each section has a desired heat profile resulting in appropriate blending and interfacial modification. The following example was performed to illustrate the invention in extruded composite materials. The following information illustrates the typical condition and composite composition. The high density metal polymer composite materials having the desired physical properties can be manufactured as follows. In a preferred mode, the surface of the metal particulate is initially prepared, the interfacial modifier is reacted with the prepared particle material, and the resulting product is isolated and then combined with the continuous polymer phase to affect a reaction between the metal particulate and the polymer. Once the composite material is prepared, it is then formed into the desired shape of the end use material. Solution processing is an alternative that provides solvent recovery during materials processing. The materials can also be dry-blended without solvent. Blending systems such as ribbon blenders obtained from Drais Systems, high intensity dry blenders available from Littleford Brothers and Henschel are possible. Further melt blending using Banbury, Farrell single screw or twin screw compounders is also useful. When the materials are processed as a plastisol, organosol or latex with solvent, liquid ingredients are generally charged to a processing unit first, followed by polymer, metal particulate and rapid agitation. Once all materials are added a vacuum can be applied to remove residual air and solvent and liquids the mixing is continued until the product is uniform and high in density with good mechanical properties. Dry blending is useful due to advantages in cost, however certain embodiments can be compositionally unstable due to differences in particle size. In dry blending processes, the composite can be made by first introducing the polymer , combimng the polymer stabilizers, if necessary, at a temperature from about ambient to about 60°C with the polymer, blending a metal particulate (modified if necessary) with the stabilized polymer, blending other process aids, colorants, indicators or lubricants followed by mixing in hot mix transfer to storage, packaging or end use manufacture. friterfacially modified materials can be made with solvent techniques that use an effective amount of solvent to initiate formation of a composite. When interfacial modification is substantially complete, the solvent can be stripped. Such solvent processes are conducted as follows: 1) Solvating the interfacial modifier or polymer or both; 2) Mixing the metal particulate and modifier into a bulk phase or polymer master batch: and 3) Devolatilizing the composition in the presence of heat & vacuum above the Tg of the polymer When compounding with a single or twin screw compounder or extruders, a process that can be used involves a twin screw compounding as follows. 1. Add metal and raise temperature to remove surface water (barrel 1). 2. Add interfacial modifier to twin screw when metal is at temperature (barrel 3). 3. Disperse/distribute interfacial modifier on metal particulate. 4. Maintain reaction temperature to completion. 5. Vent reaction by-products (barrel 6). 6. Add polymer (barrel 7). 7. Compress/melt polymer. 8. Disperse/distribute polymer binder in metal. 9. React modified metal with polymer binder. 10. Vacuum degas remaining reaction products (barrel 9). 11. Compress resulting composite. 12. Form desired shape, pellet, lineal, tube, injection mold article, etc. through a dye or post-manufacturing step. Alternatively in formulations containing small volumes of continuous phase: 1. Add polymer binder. 2. Add interfacial modifier to twin screw when polymer binder is at temperature. 3. Disperse/distribute interfacial modifier in polymer binder. 4. Add metal and disperse/distribute metal. 5 Raise temperature to reaction temperature. 6. Maintain reaction temperature to completion. 7. Compress resulting composite. 8. Form desired shape, pellet, lineal, tube, injection mold article, etc. through a dye or post-manufacturing step.
Alternatively in formulations for presized materials: 1. Add polymer. 2. Raise the temperature of the polymer to a melt state 3. Add metal particulate which has been pre-treated with the interfacial modifier and disperse/distribute particulate. 4. Compress resulting composite. 5. Form desired shape, pellet, lineal, tube, injection mold article, etc. through a die or post-manufacturing step. Certain selections of polymers and particulates may permit the omission of the interfacial modifiers and their related processing steps. Compounding Process Summary - Methodology Multiple continuous compounding trials were conducted with the tungsten composite material similar to Example 8. The following section details the parallel, co-rotating, twin-screw compounding technology employed during the trials. Sequencing of the necessary unit operations must accomplish complete polymer matrix mastification and distribution of the interfacial modifier, prior to the introduction of metal particulate. Once particulate has been introduced, distributive mixing and devolatilization of the matrix occurs. The devolatilization of the interfacial modifier carrier solution removes solvent. Lastly, pressurization of the matrix is limited to driving the degree of fill within the twin-screw to 1. The following extrusion unit operation sequence was agreed upon by the project team as an initial starting point. 1. Polymer feed 2. Dispersive Mixing (Melt processing) 3. Additive Feed (Injection) 4. Distributive Mixing 5. Tungsten Feed 6. Distributive Mixing 7. Vacuum Devolitalization 8. Pressurize The following equipment list was employed throughout the experimental trials: ZSK-30 Compounding Extruder K-Tron Gravimetric Feeding Array & Controller Zenith Gear Pump with Injection Nozzle Strand Pelletizing System All equipment was verified for accuracy. Particular attention was paid to the verification of the liquid injection system. This was performed to ensure proper dilution of the interfacial modifier within a carrier solvent. The typical output of the unit is 200 lbs./hr. hi summary, the present invention, as dictated by the specific claims contained herein, represents a breadth of raw material combinations including; metals, polymers, interfacial modifiers, other additives, all with varying particle size distribution, weight fractions, and volume fractions. The present invention also includes a breadth of processing methods, resulting physical and chemical properties, and end-use applications. The following materials exemplify the invention. The materials can all be made into useful composites and shapes. The metal polymer composites of the invention can be used in a variety of embodiments including projectiles, fishing lures, fishing weights, automobile weights, radiation shielding, golf club components, sporting equipment, gyroscopic ballast, cellular phone vibrating weights or laboratory weight noise and vibration barriers, or other embodiments that require high density material, with varying combinations of moldability, ductility, and dimensional stability, thermal conductivity, electrical conductivity, magnetism, and are non toxic. The high density materials of the present invention and all its embodiments are suitable for numerous processing methods. Selection of processing methods and formulation of base materials can be based upon required end use product requirements. The following examples illustrate this point. An embodiment of the present invention is a flexible or malleable composite that could be used in projectiles including shot gun pellets and other ammunition, stents for heart or artery applications, radiation shielding garments, or extruded and coextruded line for multiple applications including string line and fishing line. An example composite with these characteristics might include a combination of tungsten, a fluoropolymer as the binder, and a zirconate interfacial modifier. The end use product could be the result of an extrusion or injection molded part. Yet another embodiment of the present invention is a high output production, high density composite that could be used in fishing lures or weights with or without the optionally included interfacial modifier, or cellular phone shielding or internal vibratory mechanisms. An example composite with these characteristics might include a combination of tungsten, polyvinyl chloride as the binder, and an alkaline metal stearate or a stearate amide interfacial modifier. The end use product could be the result of an extrusion or injection molded part. Yet another embodiment of the present invention is a low output production, high cure time, and high density composite that could be used in automobile or truck pneumatic tire wheel weights or other ballasts, or other products that could be produced in bulk forms. An example composite with these characteristics might include a combination of tungsten, polyester as the binder, and a zirconate interfacial modifier. The end use product could be the result of injection molding, or bulk molding parts. Yet another embodiment of the present invention is a high output production, high density composite that could be used for fishing lures, vehicle pneumatic tire wheel weights, crankshaft and driveshaft weights and aircraft balancing weights. The wheel weight comprises attachment means and an article of mass of the composite of the invention. The weight can be attached with conventional clips or adhered to the wheel with an adhesive. An example composite with these characteristics might include a combination of tungsten, polystyrene as a binder and a zirconate interfacial modifier. The end use product could be the result of injection molding, or bulk molding parts. In addition to the aforementioned illustrative embodiments, additional processing methods are, but not limited to; molding, compression molding, thermoset and thermoplastic extrusion, centrifugal molding, rotational molding, blow molding, casting, calendaring, liquid fill thermoset molding or filament winding to form a variety of shapes in conjunction with sequential compounding. Yet another embodiment of the invention includes the magnetic composition of the resulting composites where a magnetic component is added for identification or as dictated by the end use requirements. Magnetic additives are typically 0.1% to 5% of the resulting composite by weight and volume fraction. Yet another embodiment of the invention includes colorization of the resulting composites where color is important for identification or as dictated by the end use requirements. Color additives are typically less than 1% of the resulting composite by weight and volume fraction. Composite materials of the invention can be used in a projectile in the form of a shotgun pellet or a shaped round. Shotgun pellets are typically spherical particulates having a dimension of about 0.7 to about 3 millimeters and are generally spherical, but can have a puckered or dimpled surface. Projectiles useful in the invention typically comprise a substantial proportion of the high density composite of the invention. The projectile can comprise an extruded rod, in a jacketed or unjacketed form. The jacket can surround the composite or can leave a portion (leading end or following end) exposed. The composite can be manufactured in a variety of modes to form a projectile. The projectile can comprise about 0.1 grams to as much as 2 kilograms of the composite of the invention at least partially surrounded by a metal jacket. Such projectiles can have an tapered open leading end, an open closed end, or both, or can be entirely enclosed by the jacket. Further, the jacket can include other components such as explosives, metal tips, or other inserts to alter the center of aerodynamic pressure or the center of gravity or the center of mass of the projectile forward of or to the rear of the dimensional center. Such projectiles made from composites of the invention comprising tungsten, iron or other non-toxic metal, comprise a "green" bullet or projectile that deteriorates after use into a non-toxic material, compatible with aquatic plant and animal life. The elastic properties of the material render the projectile particularly useful. The projectile can deliver substantial inertia or kinetic energy to the target due to its high density, but also upon contact, can deform elastically causing the jacket to expand as would be the case in lead projectiles. The jacket will expand as expected, but the elastic material will spring back substantially to its initial dimensions. The round, or projectile, can be engineered such that the center of aerodynamic pressure and the center of gravity or mass can be adjusted forward of or to the rear of the dimensional center to improve the aerodynamic capability of the round. Such rounds can be made to fly in a more stable trajectory avoiding deviation from the desired trajectory that can reduce accuracy. Further, the materials of the invention can, due to its stability, be fired at a higher firing rate with reduced weapon heating due to a reduced spin rate. In the preferred projectile of the invention, the center of gravity is placed well before the center of aerodynamic pressure and narrowly stabilizing the spinning round in its trajectory to the target. In summary, the present invention, as dictated by the specific claims contained herein, represents a breadth of raw material combinations including; metals, polymers, interfacial modifiers, other additives, all with varying particle sizes, weight fractions, and volume fractions. The present invention also includes a breadth of processing methods, resulting physical and chemical properties, and end- use applications. The following materials exemplify the invention. The materials can all be formed, molded, extruded or otherwise made into useful composites and shapes. EXPERIMENTAL
Raw Material Table
Figure imgf000050_0001
Figure imgf000051_0001
Experimental 1
The experiment consisted of three main areas of focus: density, melt flow, tensile strength and elongation. Density measurements were taken by creating samples using an apparatus assembled by Wild River Consulting, which mainly consisted of a metallurgical press fitted with a load cell, and a 1 lA inch cylindrical die modified with a 0.1 inch diameter hole in the lower ram. Samples created by these instruments were assumed to be perfectly cylindrical, and therefore measuring the diameter, length, and mass yielded the density of the sample.
During die extrusion, an index of melt flow was measured for each sample. By timing the sample as it passes the length calibration of the instrument, the rate in which it extruded was calculated. This linear velocity was then normalized by dividing by the orifice radius. The resulting quantity was defined as the melt flow index (MFI) of the material. To ensure complete mixing, extruded materials were re-extruded at least four more times.
The die extruded samples were also tested for tensile elongation. Each sample was trimmed to 4 inches in length, and Α inch from each end was marked. The sample was fixed in the machines grips, where the lA inch marked the point depth the sample was inserted into the grip. The test began and upon completion the sample was removed. Two formulations were tested in the experiment using Alldyne C-60 Tungsten and Dyneon THV220A fluoropolymer. The first formulation was designed to achieve a density of 10.8 g/cc. The second formulation was designed to achieve the density of 11.4 g/cc. Table 1 gives the weight percentages used to create the samples for both formulations. Four interfacial modifiers were tested in the experiment. The first interfacial modifier was a Zirconate coupling agent — NZ 12. The second and third modifiers were Titanate coupling agents — KR238J and LICA 09. The last interfacial modifier was a Silane-SIA0591.0.
Table 1 Effect of composite melt flow and mechanical properties with different interfacial modifiers
Figure imgf000052_0001
*With 0.2 wt% interfacial modifier
It was clearly observed that treatment of the tungsten powder caused considerable changes in physical properties. In all formulations, the melt flow was severely affected with the treatment of an interfacial modifier. The melt flow index of compounded materials increased as much as 68 times the untreated compounds. The effect made can also be observed in the elongation of the material. AU four interfacial modifiers caused an increase in tensile elongation, with NZ 12 and LICA 09 causing the largest changes. Although materials treated with SIA0591.0 did not exhibit an increase in melt flow, they showed a surprising increase of approximately 50% of the maximum load during tensile elongation in the 91.4 wt% Tungsten compound. In the case of a fluoropolymer with no interfacial modifier, an elongation of greater than 5% is observed and demonstrates the viscoelastic character of the composite.
Experimental 2, 3, and 4
In tables 2, 3 and 4, the tungsten particulate is first treated with the interfacial modifier. This is done by dissolving the desired amount of the interfacial modifier in a 250 ml beaker containing 50 ml of solvent (usually isopropyl, or some other, alcohol) and then adding 100 grams of tungsten particulate into the beaker. The resulting slurry is then heated at 100°C until the mixture can no longer be stirred and most of the solvent has been driven off. The beaker containing the tungsten particulate and interfacial modifier is then placed in a forced air oven for 30 minutes at 100°C The treated tungsten is then added to a 100 ml beaker containing a solution of THV220A dissolved in acetone. The mixture is then heated to 30°C and continuously stirred until most of the acetone has evaporated. The composite is then placed in a forced air oven for 30 minutes at 100°C After drying, the composite is pressed in a 3.17 cm cylinder in a metallurgical die at 200°C and 4.5 metric tons ram force. After 5 minutes, the die is allowed to cool under pressure to 50°C. After releasing the pressure, the composite sample is removed from the die and the physical properties are measured. See Tables 2, 3, and 4 for compositions and properties measured. THV220A is a polymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride. NZ 12 is neopentyl(diallyl)oxy-tri(dioctyl)phosphato-zirconate. SIA0591.0 is N-(2-aminoethyl)-3-amonopropyl-trimethoxy-silane. KR 238 J is a methacrylamid modified amine adduct available from Kenrich petrochemicals, Bayonne, NJ. LICA 09 is neopentyl(diallyl)oxy-tri(dodecyl)benzene-sulfonyl- titanate. Table 2 Effect of density and mechanical properties in fluoropolymer composite with an interfacial modifier at different concentrations
Figure imgf000054_0001
It was clearly observed that treatment of the tungsten powder caused considerable changes in physical properties. In all formulations, the melt flow was severely affected with the treatment of an interfacial modifier. The melt flow index of compounded materials increased as much as 68 times the untreated compounds. The effect made can also be observed in the elongation of the material. All four interfacial modifiers caused an increase in tensile elongation, with NZ 12 and LICA 09 causing the largest changes. Although materials treated with SIA0591.0 did not exhibit an increase in melt flow, they showed a surprising increase of approximately 50% of the maximum load during tensile elongation in the 91.4 wt% Tungsten compound. Notes for Table 2: ( 1 ) Crumbled upon removal from the mold (2) Calculated and Predicted based on current data trend « Table 2 shows that there is an effective amount of interfacial modifier. An increase above a stoichiometric surface coverage will then reduce the material properties of the composite (see note 1). Table 3a Effect of density and mechanical properties on PVC polymers with the interfacial modifier NZ 12 Thermoplastics (PVC)
Figure imgf000055_0001
Table 3b Effect of density and mechanical properties on a thermoset polymer with the interfacial modifier NZ 12 Thermosets (Polyester)
Figure imgf000055_0002
Note for Table 3: (1) Crumbled upon removal from the mold
Table 3 shows that multiple thermoplastic and thermoset composites can be made using a select combination of materials and that the degree of properties including density, modulus, elongation can be designed into the materials. Table 4 Effect of density with tungsten with particle size and circularity
Figure imgf000055_0003
With 0.03-0.2 % NZ 12 interfacial modifier
Table 4 shows that the particle size, distribution and circularity have an impact on the density of the composite. All samples in Table 4 were made such that the formulation would result in the highest density for the resulting composite. Materials d and e have the maximum density due to the presence of both small and large average particle size materials and minimum circularity of about 14. Materials a and g have the lowest density in the table and have either only small or large particulate. The other materials either depart somewhat from the size or circularity parameter (of materials d and e) reducing density.
Experimental 5
The material used for the melt flow experiment data in Table 5 was made as follows. Technon Plus tungsten particulate was modified and blended with the Dyneon THV220A polymer and introduced using a calibrated gravimetric feeder into the extruder. The extruder was a Brabender 1.9 cm single screw with a custom screw, modified to create low compression. The heating zones were set to 175°C, 175°C, 175°C, and 185°C. The screw RPMs were maintained between 20 and 40. The barrel was air-cooled. The material exit speed was about 1 meter per minute. Using the above settings, 92 wt.-% of Technon Plus tungsten pretreated with 0.01 wt.-% of the interfacial modifier Kenrich NZ12, was blended with 8 wt.-% THV220A.
Typical melt flow for the materials of the invention are at least 5 sec"1, at least 10 sec"1, about 10 to 250 sec"1 or about 10 to 500 sec"1. In order to measure extrusion melt flow, a custom test system was created. A small hole (0.192 cm in diameter) was drilled into the side of a 3.17 cm metallurgical die. The die was used in conjunction with an instrumented metallurgical press, which allowed monitoring of the die temperature and pressure. With the temperature of the material and pressure of the die set, the material was extruded through the melt flow hole. For a given duration of time, the length of the resulting form was measured, and the results used to determine the peak velocity. With this data, the melt flow was calculated by dividing the velocity difference of the extrudate by the die hole radius. Table 5 The effect of temperature and pressure on melt flow
Figure imgf000057_0001
The results in Table 5 show that the increase in melt temperature at a given pressure demonstrated a melt flow increase as would be seen by a viscoelastic material. Likewise an increase in pressure causes an increase in melt flow, which is again characteristic of a viscoelastic material.
Article Examples Example 1 of article production Containing: Polystyrene, Technon Powder, Kronos 2073, and Ken-React NZ 12.
Formulation by weight:
Polystyrene 0.6563g
Technon Plus W particulate 12.1318g
Kronos 2073 TiO2 particulate 0.14719g
Ken-React NZ 12 0.2740g
Polystyrene was dissolved in a blend of toluene, MEK and acetone to a total solid of 38 wt.-%. The two particulates were dispersed with stirring in the same solvent blend and the NZ 12 was added to this dispersion. After stirring to break the TiO2 agglomerations the Polystyrene solution was added and stirred while blowing off the solvent till the blend became a semisolid. This material was then compression molded in a jig with No. 1 hook. Example Article 2 Containing: Polystyrene, Technon Powder, and Ken-React NZ 12.
Formulation by weight: Polystyrene 0.601 lg
Technon Plus W particulate 12.0927g
Ken-React NZ 12 0.03g*
Polystyrene was dissolved in a blend of toluene, MEK and acetone to a total solid of 38 wt.-%. The W particulate was dispersed with stirring in the same solvent blend and the NZ 12 was added to this dispersion. The Polystyrene solution was added and stirred while blowing off the solvent till the blend became a semisolid. This material was then compression molded in a slip sinker. Example Article 3
Containing: Polyester Polymer, Technon Powder, Kronos 2073 TiO2, and Ken- React NZ 12.
Formulation by weight: Polyester Polymer 0.462 lg
Technon Plus W particulate 13.0287g
Kronos 2073 TiO2 particulate 1.5571g
Ken-React NZ 12 0.0366g MEK peroxide
Polyester Polymer was added to the W, and TiO2 particulate. Acetone was added to aid in the dispersion of the NZ 12. After the blend started to show signs of color development i.e. TiO2 dispersion more acetone was added and then the MEK peroxide. This material was compression molded into a slip sinker.
Example Article 4 Containing: Polyester Polymer, Technon Powder, Kronos 2073 TiO2, and Ken- React NZ 12. Formulation by weight:
Polyester Polymer 3M 1.6000g
Technon Plus W particulate 36.3522g Kronos 2073 TiO2 particulate 4.8480g
Ken-React NZ 12 0.0400g MEK peroxide
Polyester Polymer was added to the W, and TiO2 particulate. Acetone was added to aid in the dispersion of the NZ 12. After the blend started to show signs of color development i.e. TiO2 dispersion more acetone was added and then the MEK peroxide. This material was compression molded into the No. 1 slip sinker.
Example Article 5 Containing: Fluoroelastomer, Technon Particulate, and Ken-React NZ 12.
Formulation by weight:
Fluoroelastomer THV220A Dyneon 1.6535g
Technon Plus W particulate 36.8909g Ken-React NZ 12 0.0400g
The NZ 12 was blended into the W particulate with the aid of acetone. The THV220A was dissolved in acetone to 38 wt.-% and then added to the W slurry. This blend was stirred until the solvent is removed and only the polymer blend remains and then the material is compression molded in a 1.25 inch metallurgical press. This large pellet was diced and oven dried at 104C to dryness then reformed in a metallurgical press at 5700 lb-in"2 and 177C Density of this material was 11.7 gm-cm"3. In these examples, the Tungsten particulate is first treated with the interfacial modifier. This is done by dissolving the desired amount of the interfacial modifier in a 250 ml beaker containing 50 ml of solvent (usually Isopropyl, or some other, alcohol) and then adding 100 grams of Tungsten particulate into the beaker. The resulting slurry is then mixed thoroughly on a steam bath until the mixture can no longer be stirred and most of the solvent has been driven off. The beaker containing the tungsten particulate and interfacial modifier is then placed in a forced air oven for 30 minutes at 100°C The treated tungsten is added to a 100 ml beaker containing solid solution of THV220A dissolved in acetone. The mixture is then heated to 30°C and continuously stirred until most of the acetone has evaporated. The composite is then placed in a forced air oven for 30 minutes at 100°C After drying, the composite is pressed in a 3.17 cm cylinder in a metallurgical die at 200°C and 4.5 metric tons ram force. After 5 minutes, the die is allowed to cool under pressure to 50°C After releasing the pressure, the composite sample is removed from the die and the physical properties are measured. See Table _ for compositions and properties measured. THV220A is a copolymer of tetra- fluoroethylene, hexafluoropropylene, and vinylidene fluoride. NZ 12 is neopentyl (diallyl)oxy- tri(dioctyl)phosphato-zirconate. SIA0591.0 is N-(2-aminoethyl)-3-amonopropyl- trimethoxy-silane. KR 238 J is a methacrylamid modified amine adduct available from Kenrich petrochemicals, Bayonne, NJ. LICA 09 is neopentyl(diallyl)- oxy- tri(dodecyl)benzene-sulfonyl-titanate.
RESULTS Samples similar to the formulae above prepared using pentanol solvent and modifier for treatment solvent.
Figure imgf000060_0001
The series are named for the solvent used in compatibilizing. Predicted refers to the predicted elongation if Solvent-Exchange limited.
Data from Pentanol-compatibilized Material Sample 1 - Temperature 80°C
Figure imgf000061_0001
Sample 2- Temperature 135°C
Figure imgf000061_0002
Pertinent physical properties of materials used in experiment
Figure imgf000061_0003
The analysis of elongation data showed that there was a strong correlation to temperature. Regardless of solvent, the elongation of extruded material was approximately 225% at
80°C and 175% at 135°C A small increase in elongation was observed in materials compatibilized using pentanol, and the increase was consistent for both temperatures. This increase yielded an elongation of 175%, still far less than the predicted value of 225%. These observations conclude that the limiting mechanism for the coupling reaction is not solvent-exchange, and that a mechanism within the coupling agent is limited by temperature dependence.
Detailed Description of the Drawings Figure 1 shows an isometric view of a stent comprising a metal polymer composite of the invention. The stent can be extruded in a circular hollow cross section and can be carved with known mechanical or laser methods from the extruded tube of the composite. The stent can be also directly molded into the form shown. The stent 10 can comprise the composite and have flexible members 11 that permit expansion upon placement in a vascular lumen. The stent has curved members 13 and linear members 12 that can be formed from the composite by direct molding techniques or by carving the structures from a molded tube. The usefulness of the extrudable material that can have viscoelastic properties is illustrated by the following Figures, hi the Figures, extruded objects are exemplified which can be used in a cooperative mode. In each of the Figures, cooperative shapes are formed that can interact and interlock to form a stable mechanical structure. The flexibility of the overall structure, along with the flexibility of the inserts and recesses, render the extruded structures usable in their intended role. Figure 2A shows an extruded member having a symmetrical aspect. The extruded object 20 has a body 21 with an insert 23 A and a symmetrical recess 24A. Such a structure 20 can be extruded and cut to length and then each length can be mated with a symmetrical member such that insert 23A can be inserted into recess
24B simultaneously with the insertion of insert 23B into recess 24A to interlock body 21 with body 22 to form a fixed mechanically stable assembly. That assembly is shown in Figure 2B. In Figure 2A, an object is formed which is substantially entirely filled throughout the combined body. Figures 3 A and 3B shows two jigs 30 and 31. The jigs comprise a hook 32 , 33. On the hook is placed a sinker 34, 35. The sinker 34 is a molded sinker formed by compression molding on the hook 33. The sinker 35 is a press fit sinker similar to the extrudate of Fig 2 including inserts and recesses for the snap fit structure. Figures 4 A and 4B shows two wheel weight configurations of the invention.
In Figure 4 A, a wheel weight 40 includes a shaped mass 44 of the invention, having a adhesive strip 45 that can adhere the weight to the wheel. The weight can be extruded in a continuous sheet and cut into the mass 44 with the bending zones 46 formed in the weight 44 before cutting. The composite material is flexible and can be bent to conform to the wheel shape. Figure 4B shows a weight 41 having a composite mass 42 and a mechanical clip 43 configured for attachment to a transportation vehicle wheel.
Figures 5-11 show data demonstrating the viscoelastic properties of the examples of the invention and the adaptability of the technology to form desired properties in the materials Figure 12A shows an extruded member having a symmetrical aspect. The extruded object 20 has a body 21 with an insert 23 A and a symmetrical recess 24A. Such a structure 20 can be extruded and cut to length and then each length can be mated with a symmetrical member such that insert 23 A can be inserted into recess 24B simultaneously with the insertion of insert 23B into recess 24A to interlock body 21 with body 22 to form a fixed mechanically stable assembly. That assembly is shown in Figure 12B. hi Figure 12 A, an object is formed which is substantially entirely filled throughout the combined body. The invention can additionally be embodied in a flexible hollow member that can be joined using interlocking tabs formed by extrusion, i Figures 13 A, a substantially circular extrudate is shown in cross-section. Figure 13A shows the structure after extrusion prior to post-extrusion processing into a flexible useful unit. The unit 30 shows a body 31, a coextruded but flexible hinge 33, a first interlocking tab 32 A and a cooperative second interlocking tab 32B in the extruded unit. A removable portion 34 can be pulled, cut or otherwise removed from the extruded portion 30 to permit the effective opening and closing of the circular extrudate using the cooperating tabs 32 A and 32B. Depending on the degree of flexibility, the optional hinge 33 can be co-extruded with known extrusion technologies to form a flexible binge with the high density extrudable material in body 31. Extrudable binge 33 can comprise typical elastomeric materials including the fluoropolymers of the composite, but also can include typical rubbery polymeric materials such as polyisobutylenes, ABA block copolymers and other well known rubbers or flexible polymeric materials. Figures 14 and 14A show additional extruded member on cross-section that can be used to form a useful structure ofthe invention. In Figure 14A, the structure can be extruded with an extrudate 40, a body 45. Body 45 includes flexible insert 42 and flexible aperture 41 that can cooperate to press fit form a useful interlocking joint. The body 45 additionally comprises a flexible hinge portion 43 that can comprise a flexible hinge as disclosed above. The body also is formed using apertures 44 which can remain within the substantially solid joined structure shown in Figure 14B. Figures 15 - 17 shows the extrusion performance ofthe composite ofthe invention from the Examples under varied conditions of temperature and pressure showing the material is capable of extrusion at conditions achievable in production equipment. The above specification, examples and data provide a complete description ofthe manufacture and use ofthe invention as known. As many embodiments of the invention can be made without departing from the spirit and scope ofthe invention, the invention resides in the claims hereinafter appended.

Claims

I CLAIM:
1. A metal and polymer viscoelastic composite comprising: (a) a metal particulate, the particulate having a particle size greater than about 10 microns, a particle size distribution such that there is an effective amount of particulate in the range of 10 to 70 microns and greater than 70 microns to form the composite and a circularity of greater than 14; and (b) a polymer phase; wherein the viscoelastic composite has a tensile elongation of about at least 5%.
2. The composite of claim 1 wherein the viscoelastic composite has a tensile elongation of at least 100%.
3. The viscoelastic composite of claim 1 wherein the composite has a tensile strength of at least 0.2 MPa and a thermoplastic shear of at least 5 sec"1.
4. The composite of claim 1 wherein the metal particulate comprises a metal particle having a particle size distribution ranging from about 10 to about 1000 microns.
5. The composite of claim 1 wherein the metal particle comprises an alloy particle.
6. The composite of claim 1 wherein the particulate comprises a bimetallic particle.
7. The composite of claim 1 wherein the particulate comprises a tungsten carbide particle.
8. The composite of claim 4 wherein the composite contains about at least 5 wt.-% of particulate in the range of about 10 to 70 microns and about at least 5 wt.-% of particulate in the range of about 70 to 250 microns,
9. The composite of claim 8 wherein the particulate can contain about at least 5 wt.-% of a particulate in the range of about 250 to 500.
10. The composite of claim 1 wherein the polymer comprises a fluoropolymer.
11. The composite of claim 1 wherein the composite comprises about 0.005 to 4 wt% of an interfacial modifier.
12. The composite of claim 1 wherein the metal particle has an excluded volume of about 13 vol.-% to about 61 vol.-%.
13. The composite of claim 1 wherein the metal particulate comprises zinc.
14. The composite of claim 1 wherein the metal particulate comprises tin.
15. The composite of claim 1 wherein the metal particulate comprises iron.
16. The composite of claim 1 wherein the metal particulate comprises bismuth.
17. The composite of claim 1 wherein the metal particulate comprises tungsten.
18. A metal fluoropolymer viscoelastic composite comprising: (a) a metal particulate, the particulate having a particle size greater than about 10 microns , a particle size distribution such that there is an effective amount of particulate in the range of 10 to 70 microns and greater than 70 microns to form the composite and a circularity of greater than 13; and (b) a polymer phase; wherein the composite is free of an interfacial modifier and the viscoelastic composite has a tensile elongation of about af least 5%
19. The composite of claim 18 wherein the viscoelastic composite has a tensile elongation of at least 100%.
20. The viscoelastic composite of claim 18 wherein the composite has a tensile strength of at least 0.2 MPa and thermoplastic shear of at least 5 sec"1.
21. The composite of claim 18 wherein the metal particulate comprises a metal particle having a particle size distribution ranging from about 10 to about 1000 microns.
22. The composite of claim 18 wherein the metal particle comprises an alloy particle.
23. The composite of claim 18 wherein the particulate comprises a bimetallic particle.
24. The composite of claim 18 wherein the particulate comprises a tungsten carbide particle or a silicon carbide particle.
25. The composite of claim 21 wherein the composite contains about at least 5 wt.-% of particulate in the range of about 10 to 70 microns and about at least 5 wt.-% of particulate in the range of about 70 to 250 microns,
26. The composite of claim 25 wherein the particulate can contain about at least 5 wt.-% of a particulate in the range of about 250 to 500.
27. The composite of claim 18 wherein the fluoropolymer comprises a fluoropolymer.
28. The composite of claim 18 wherein the composite comprises about 0.02 to 2 wt% of an interfacial modifier.
29. The composite of claim 18 wherein the metal particle has an excluded volume of about 13 % to about 61 %.
30. The composite of claim 18 wherein the metal particulate comprises zinc.
31. The composite of claim 18 wherein the metal particulate comprises tin.
32. The composite of claim 18 wherein the metal particulate comprises iron.
33. The composite of claim 18 wherein the metal particulate comprises bismuth.
34. The composite of claim 18 wherein the metal particulate comprises tungsten.
35. A metal polymer composite comprising: (a) a metal particulate, the metal having a density greater than about 13 gm-cm"3 and a particle size greater than about 10 microns; and (b) a polymer phase; wherein the metal comprises a particle having a distribution of particle size, the polymer in sufficient amounts to occupy substantially the excluded volume ofthe particulate and the composite density is greater than about 11 gm-cm" .
36. The composite of claim 35 wherein the metal particulate comprises a circularity of greater than 13 and a density greater than 12 gm-cm" .
37. The composite of claim 35 wherein the composite density is greater than 16 gm-cm"3.
38. The composite of claim 35 wherein the polymer is a halogen containing polymer having a density of greater than 1.7 gm-cm" .
39. The composite of claim 35 wherein the composite comprises an organic or inorganic pigment.
40. The composite of claim 35 wherein the composite comprises an organic fluorescent dye.
41. The composite of claim 35 wherein the metal particulate comprises tungsten having a particle size distribution ranging from about 10 to 70 microns.
42. The composite of claim 41 wherein the metal particulate comprises tungsten having at least 5 wt.-% with a particle size ranging from about 70 to 250 microns.
43. The composite of claim 38 wherein the polymer comprises a fluoropolymer.
44. The composite of claim 35 wherein the metal particulate has an excluded volume about 13 vol.-% to about 61 vol.-%.
45. A metal polymer composite comprising a metal particulate in a polymer phase, the composite comprising: (a) about 90 to 50 volume-%) of a metal particulate, having a density greater than 13 gm-cm" and less than 23 gm-cm" , a particle size greater than 10 microns, at least 5 wt.-% of particulate having a particle size distribution of 10 to 70 microns a circularity greater than 13 and an aspect ratio less than 3; (b) about 10 to 50 volume-% of a polymer phase; and (c) about 0.005 to 2 wt.-% of an interfacial modifier material; wherein the composite density is greater than about 11 gm-cm"3.
46. The composite of claims 45 wherein the metal particulate comprises at least about 5 wt.-% of particulate in the range of about 70 to 250 microns.
47. The composite of claims 45 wherein the composite comprises polymer blend or alloy and the interfacial modifier comprises about 0.005 to 1 wt.-% ofthe composite.
48. The composite of claims 45 wherein the metal particulate comprises tungsten.
49. The composite of claim 45 wherein the metal particulate is present in an amount of about 50 to 85 volume-% and the circularity is about 14 to 20.
50. The composite of claim 45 wherein the polymer is a halogen containing polymer having a density of greater than 1.7 grams-cm"3.
51. The composite of claim 45 wherein the composite comprises an organic or inorganic pigment.
52. The composite of claim 45 wherein the composite comprises an organic fluorescent dye.
53. The composite of claim 45 wherein the metal has a density greater than 13 gm-cm"3.
54. A metal polymer composite comprising a metal particulate in a polymer phase, the composite comprising: (a) about 50 to 90 volume-%) of a metal particulate having a density greater than 13 gm-cm"3, the particulate comprising at least about 5 wt.-% having a particle size about 10 to 70 microns, at least about 5 wt.-% having a particle size about 70 to 250 microns and a circularity about 14 to 20; (b) about 50 to 10 volume-% of a continuous polymer phase; and (c) about 0.005 to 2 volume-% of an interfacial modifier; wherein the composite density is greater than about 11 gm-cm"3.
55. The composite of claim 54 wherein the interfacial modifier comprises an organic aluminate, an organic zirconate, an organic titanate, an organic silicate or mixtures thereof.
56. The composite of claims 54 wherein the metal comprises tungsten and the polymer comprises a vinyl polymer.
57. The composite of claim 54 wherein the metal particulate is present in an amount of about 75 to 85 volume-%.
58. The composite of claim 54 wherein the polymer is a halogen containing polymer having a density of greater than 1.7 gm-cm"3.
59. The composite of claim 54 wherein the composite comprises an organic or inorganic pigment.
60. The composite of claim 54 wherein the composite comprises an organic fluorescent dye.
61. The composite of claim 54 wherein the metal has a density greater than 13.2 gm-cm"3.
62. A metal polymer composite comprising a metal particulate in a polymer phase, the composite comprising: (a) about 50 to 90 volume-% of a metal particulate having a density greater than 11 gm-cm"3, the particulate comprising at least about 5 wt.-% having a particle size about 10 to 70 microns, at least about 5 wt.-% having a particle size about 70 to 250 microns and a circularity about 14 to 20; (b) a fluoropolymer elastomer phase; wherein the composite density is greater than about 11 gm-cm"3.
63. The composite of claims 62 wherein the composite comprises a metal oxide interfacial modifier material.
64. The composite of claim 62 wherein the interfacial modifier comprises a zirconate.
65. The composite of claims 62 wherein the fluoropolymer comprises an elastomer with a density greater than 1.7 gm-cm" .
66. The composite of claims 62 wherein the metal particulate comprises tungsten
67. The composite of claim 62 wherein the metal has a density greater than 12 gm-cm" and is present in an amount of about 80 to 90 volume-%.
68. The composite of claim 62 wherein the composite comprises an inorganic pigment.
69. The composite of claim 62 wherein the composite comprises an organic fluorescent dye.
70. A vascular stent comprising the composite of claim 1.
71. A vascular stent comprising the composite of claim 35.
72. A shotgun shot comprising the composite of claim 1.
73. The shot of claim 72 comprising molded dimples on the shot to reduce the drag and improve the flight during the travel ofthe shot.
74. A shotgun shot comprising the composite of claim 35.
75. The shot of claim 74 comprising molded dimples on the shot to reduce the drag and improve the flight during the travel ofthe shot.
76. A shotgun shot comprising the composite of claim 18.
77. The shot of claim 76 comprising molded dimples on the shot to reduce the drag and improve the flight during the travel ofthe shot.
78. A projectile comprising the composite of claim 1.
79. The projectile of claim 78 comprising a metal jacket.
80. The projectile of claim 78 wherein the jacket has a tapered leading end and an open following end.
81. A projectile comprising the composite of claim 35.
82. The projectile of claim 81 comprising a metal jacket.
83. The projectile of claim 82 wherein the jacket has a tapered leading end and an open following end.
84. A projectile comprising the composite of claim 35.
85. The projectile of claim 84 comprising a metal jacket.
86. The projectile of claim 85 wherein the jacket has a tapered leading end and an open following end.
87. A fishing jig comprising a hook and a sinker portion comprising the composite of claim 1.
88. A fishing jig comprising a hook and a sinker portion comprising the composite of claim 35.
89. The jig of claim 87 wherein the sinker is snap fit onto the hook.
90. The jig of claim 87 wherein the sinker is compression molded onto the hook.
91. A weight comprising attachment means and a article comprising the composite of claim 1.
92. The weight of claim 91 wherein the attachment means is a clip.
93. The weight of claim 91 wherein the attachment means is an adhesive layer.
94. A metal particle-polymer composite comprising a metal particulate having a range of particle sizes such that about at least 5 wt.-% of particulate in the range of about 10 to 70 microns and about at least 5 wt.-% of particulate in the range of about 70 to 250 microns, and a polymer, the composite having a van der Waals' dispersion bond strength between molecules in adjacent particles of less than about 4 kJ-mol"1 and a bond dimension of 1.4 to 1.9 A.
95. The composite of claim 1 wherein the van der Waals' dispersion bond strength between molecules in adjacent particles of less than about 2 kJ-mol"1 and the van der Waals' bond dimension is about 1.5 to 1.8 A.
96. A shaped article formed through a high temperature extrusion, the shaped article comprising a thermoplastic composite comprising a finely divided metal particulate, the metal having a density greater than 4 gm-cm"3; and a polymer phase to form a composite; wherein the shaped article has a cross-sectional shape conforming to the shape of an extrusion die; the extrusion having a tensile modulus of at least 0.2 MPa and a storage modulus within the range of 1380 to about 14000 MPa.
97. The article of claim 96 wherein in the polymer composite comprises about 90 to 50 volume-%) of a metal particulate having a particle size greater than 10 microns, the metal particulate having a particle size distribution having at least 10 wt.-% of a particulate within about 10 to 70 microns, at least 10 wt.-% ofthe polymer particulate within about 70 to 500 microns, a circularity greater than 13 and an aspect ratio less than 3; and about 10 to 50 volume-% of a continuous polymer phase.
98. The article of claim 96 wherein the article additionally comprises a co-extruded flexible polymer portion free of metal.
99. The article of claim 96 wherein the article has an elongation at break ofabout 5 to 500%.
100. A shaped article wherein in the polymer composite comprises about 90 to 50 volume-% of a metal particulate having a particle size greater than 10 microns, the metal particulate having a particle size distribution having at least 10 wt.-% ofthe particulate within about 10 to 100 microns, at least 10 wt.-% ofthe polymer particulate within about 100 to 500 microns, a circularity greater than 13 and an aspect ratio less than 1:3 and about 10 to 50 volume-% of a polymer phase.
101. The article of claim 100 having a composite density greater than
7 gm-cm"3 and a metal density greater than 8 gm-cm"3.
102. The article of claim 101 comprising a composite having a storage modulus of 1380 to about 14000 MPa and an extrusion shear rate of 10 to 250 sec"1 at 180°C.
103. A shaped article wherein in the polymer composite comprises about
87 to 48 volume-% of a metal particulate having a particle size greater than 10 microns, the metal particulate having a particle size distribution having at least 10 wt.-% of a particulate within about 10 to 100 microns, at least 10 wt.-% ofthe polymer particulate within about 100 to 500 microns, a circularity greater than 13 and an aspect ratio less than 1:3; about 13 to 51 volume-% of a polymer phase.
104. The article of claim 103 having a composite density greater 11.4 gm-cm"3 and a metal density greater than 13.2 gm-cm"3.
105. The article of claim 103 comprising composite having a storage modulus of 1380 to about 14000 MPa and an extrusion shear rate of 10 to 500 sec"1 at 220°C.
106. An extruded article comprising a composite strip with a density of greater than 7 gm-cm"3 and attachment means in the form of an automobile weight.
107. A radiation shield comprising a composite in the form of an extruded sheet with a density greater than 7.5 gm-cm"3.
108. A method to extrude a metal polymer composite comprising: (a) combimng: (i) a metal particulate, the metal having a density greater than 4 gm-cm" , the particulate having a particle size greater than 10 microns, at least 5 wt.-%, and an excluded volume of about 13 to about 61 volume-%; the polymer in sufficient amounts to substantially occupy the excluded volume ofthe particulate; and (ii) a polymer phase, to form a composite mix; and (b) extruding the mix at a temperature greater than 100°C and at a shear rate of about 1 to 250 sec"1; wherein the extruded composite has a density greater than about 7 gm-cm3, the composite having a storage modulus of greater than 1400 MPa.
109. The method of claim 108 comprising extruding the mix at a temperature greater than 150° C and at a shear rate of about 10 to 300 sec"1.
110. The method of claim 108 wherein the composition comprises about 0.005 to 1 wt.-% of an interfacial modifier and the metal particulate is present in an amount of about 50 to 96 vol.-%.
111. The method of claim 108 wherein the polymer is a halogen containing polymer having a density of greater than 1.2 gm-cm"3.
112. The method of claim 108 wherein the composite comprises about 0.01 to 5 wt.-% of an inorganic pigment.
113. The method of claim 108 wherein the composite comprises about 0.01 to 5 wt.-% of an organic fluorescent dye.
114. The method of claim 108 wherein the metal comprises a particulate having at least 5 wt.-% ofthe metal with particle size ranging greater than 250 microns.
115. The method of claim 111 wherein the polymer comprises a fluoroelastomer.
116. The method of claim 112 comprising extruding the mix at a temperature greater than 180°C and at a shear rate of about 10 to 500 sec"1 ;
117. A method to extrude a metal polymer composite, the composite comprising a metal particulate and a polymer phase, the method comprising: (a) combining: (i) about 96 to 50 volume-% of a metal particulate having a particle size greater than 10 microns, the metal having a density greater than 8 gm-cm" , m a particulate phase having a particle size distribution having at least 10 wt.-% of particulate within of about 10 to 70 microns, at least 20 wt.-% ofthe polymer particulate within about 70 to 500 microns, a circularity greater than 13 and an aspect ratio less than 3; (b) about 10 to 50 volume-% of a polymer phase; (c) about 0.005 to 1 wt.-% of an interfacial modifier material to form a composite mix; and (d) extruding the mix at a temperature greater than 150°C and at a shear rate of about 1 to 250 sec"1; wherein the extruded composite has a density is greater than about 7 gm-cm"3 and a storage modulus of greater than 1400 MPa.
118. The method of claim 117 wherein the composite comprises a single polymer source and the interfacial modifier comprises about 0.005 to 0.7 wt.-% of the composite.
119. The method of claim 117 wherein the composite comprises polymer blend or alloy and the interfacial modifier comprises about 0.005 to 1 wt.-% ofthe composite.
120. The method of claim 117 wherein the metal comprises tungsten and the polymer comprises a vinyl polymer.
121. The method of claim 117 wherein the metal particulate is present in an amount of about 50 to 85 volume-%.
122. The method of claim 117 wherein the polymer is a halogen containing polymer having a density of greater than 1.2 gm-cm"3.
123. The method of claim 117 wherein the composite comprises about 0.01 to 5 volume-% of an inorganic pigment.
124. The method of claim 117 wherein the composite comprises about 0.01 to 5 volume-% of an organic fluorescent dye.
125. The method of claim 117 wherein the metal has a density greater than 10 gm-cm"3.
126. The method of claim 117 comprising extruding the mix at a temperature greater than 180°C and at a shear rate of about 10 to 500 sec"1;
127. An injection molding process comprising heating a composite to an elevated temperature and injecting that composite into a mold; wherein the composite comprises a polymer, and a metal particulate, the metal with a density greater than 13 gm-cm"3 and an interfacial modifier between 0.005 and 1 wt.-%.
128. A compression molding process comprising molding a composite under elevated pressure; wherein the composite comprises a polymer, and metal particulate, the metal with a density greater than 13 gm-cm"3 and an interfacial modifier between 0.005 and 1 wt.-%.
129. A sequential compounding process comprising of a polymer, and metal particulate the metal with a density greater than 13 gm-cm" and an interfacial modifier between 0.005 and 1 wt.-%.
130. A sequential compounding process comprising blending a solvent- free mixture of a polymer, a metal particulate, the metal with a density greater than 13 gm-cm" and an interfacial modifier between 0.005 and 1 wt.-% to form a composite and in a second operation comprising compression molding, extrusion, or injection molding an object.
131. A sequential compounding process comprising blending solvent, polymer, metal particulate, the metal with a density greater than 13 gm-cm"3 and an interfacial modifier between 0.005 and 1 wt.-%, and in a second operation comprising compression molding, extrusion or injection molding an object.
132. The method of claim 131 wherein the composite is formed by wetting the metal particulate with solvent and the solvent is removed after processing.
133. A sequential compounding process comprising blending solvent, polymer, metal particulate, the metal with a density greater than 13 gm-cm"3 and an interfacial modifier between 0.005 and 1 wt.-%, followed by a solvent degassing of the composite during the melt portion of mixing.
134. An extruded or coextruded line for use in fishing or a string trimmer for grass or shrubs.
135. An automotive wheel weight, crankshaft weight or driveshaft weight and an aircraft ballast weight comprising ofthe composite of claim 91.
136. A battery comprising of the composite of claim 1.
137. A semiconductor comprising of the composite of claim 1.
138. A nuclear fuel rod comprising of the composite of claim 1.
PCT/US2004/037931 2003-11-14 2004-11-12 Metal polymer composite , a method for its extrusion and shaped articles made therefrom WO2005049714A2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
MXPA06005515A MXPA06005515A (en) 2003-11-14 2004-11-12 Metal polymer composite , a method for its extrusion and shaped articles made therefrom.
EP04810911.0A EP1689811B1 (en) 2003-11-14 2004-11-12 Enhanced property metal polymer composite
PL04810911T PL1689811T3 (en) 2003-11-14 2004-11-12 Enhanced property metal polymer composite
EP10182628.7A EP2270085B1 (en) 2003-11-14 2004-11-12 Metal polymer composite, a method for its extrusion and shaped articles made therefrom
BRPI0416565-9A BRPI0416565A (en) 2003-11-14 2004-11-12 metallic polymeric compound, method for extruding it and formatted articles made from it
CN2004800373463A CN1902271B (en) 2003-11-14 2004-11-12 Metal polymer composite, extrusion method thereof and product prepared thereby
JP2006539937A JP2007516320A (en) 2003-11-14 2004-11-12 Metal polymer composite, extrusion method thereof, and molded product produced therefrom
KR1020067011547A KR101060411B1 (en) 2003-11-14 2004-11-12 Metallic polymer composites, extrusion methods thereof, and shaped articles made therefrom
ES04810911T ES2716941T3 (en) 2003-11-14 2004-11-12 Metal and polymer composite that has improved properties
EP10182673.3A EP2261278B1 (en) 2003-11-14 2004-11-12 Metal polymer composite, a method for its extrusion and shaped articles made therefrom
PL10182628T PL2270085T3 (en) 2003-11-14 2004-11-12 Metal polymer composite, a method for its extrusion and shaped articles made therefrom
BR122014029746-7A BR122014029746B1 (en) 2003-11-14 2004-11-12 METHOD OF MANUFACTURING A METAL POLYMERIC COMPOSITE
CA2546109A CA2546109C (en) 2003-11-14 2004-11-12 Metal polymer composite, a method for its extrusion and shaped articles made therefrom
PL10182673T PL2261278T3 (en) 2003-11-14 2004-11-12 Metal polymer composite, a method for its extrusion and shaped articles made therefrom
ZA200604047A ZA200604047B (en) 2003-11-14 2006-05-19 Metal polymer composite, a method for its extrusion and shaped articles made therefrom

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US52050703P 2003-11-14 2003-11-14
US60/520,507 2003-11-14
US57106004P 2004-05-14 2004-05-14
US57145604P 2004-05-14 2004-05-14
US60/571,456 2004-05-14
US60/571,060 2004-05-14

Publications (2)

Publication Number Publication Date
WO2005049714A2 true WO2005049714A2 (en) 2005-06-02
WO2005049714A3 WO2005049714A3 (en) 2005-08-04

Family

ID=34623788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/037931 WO2005049714A2 (en) 2003-11-14 2004-11-12 Metal polymer composite , a method for its extrusion and shaped articles made therefrom

Country Status (12)

Country Link
US (2) US7491356B2 (en)
EP (3) EP2261278B1 (en)
JP (6) JP2007516320A (en)
KR (1) KR101060411B1 (en)
CN (2) CN102226039A (en)
BR (2) BR122014029746B1 (en)
CA (3) CA2546109C (en)
ES (3) ES2718928T3 (en)
MX (1) MXPA06005515A (en)
PL (3) PL2270085T3 (en)
WO (1) WO2005049714A2 (en)
ZA (1) ZA200604047B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1897567A1 (en) * 2006-08-07 2008-03-12 BIOTRONIK VI Patent AG X-ray marker for medical implants made of a bio-corrodible metal substance
EP1897906A1 (en) * 2006-09-06 2008-03-12 Olympus Corporation Fluorescent object and method for manufacturing the same
EP1987089A1 (en) * 2006-02-10 2008-11-05 Wild River Consulting Group, LLC Enhanced property metal polymer composite
EP1989047A2 (en) * 2006-02-09 2008-11-12 Wild River Consulting Group, LLC Metal polymer composite with enhanced viscoelastic and thermal properties
WO2009091987A2 (en) * 2008-01-18 2009-07-23 Wild River Consulting Group, Llc Melt molding polymer composite and method of making and using the same
WO2010127101A1 (en) * 2009-04-29 2010-11-04 Tundra Composites, LLC Composite composition
WO2013127945A1 (en) 2012-02-29 2013-09-06 Wegmann Automative Gmbh & Co. Kg Clip-on balancing weights
JP2014534089A (en) * 2011-09-29 2014-12-18 スリーエム イノベイティブ プロパティズ カンパニー Amino-substituted organosilane ester catalyst primer
WO2015134426A1 (en) 2014-03-03 2015-09-11 3M Innovative Properties Company Wheel balancing weights, and methods and devices for using same
RU2579586C1 (en) * 2014-10-20 2016-04-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Composite material for implementation of explosion penetrating action

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002243A2 (en) 2001-06-27 2003-01-09 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
ES2718928T3 (en) * 2003-11-14 2019-07-05 Wild River Consulting Group Llc Metal polymer composite material, a method for extrusion and articles formed therefrom
US9105382B2 (en) 2003-11-14 2015-08-11 Tundra Composites, LLC Magnetic composite
US20090127801A1 (en) * 2003-11-14 2009-05-21 Wild River Consulting Group, Llc Enhanced property metal polymer composite
US20090324875A1 (en) * 2003-11-14 2009-12-31 Heikkila Kurt E Enhanced property metal polymer composite
US20080190009A1 (en) * 2005-09-09 2008-08-14 Shelton Michael T Fish Roe Cluster Lure
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
CN105001661B (en) * 2006-02-09 2018-04-20 瓦尔德瑞沃咨询集团公司 The metal polymer composite of viscoplasticity and hot property with enhancing
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
CA2659761A1 (en) 2006-08-02 2008-02-07 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
WO2008034013A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices and methods of making the same
JP2010503489A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Biodegradable endoprosthesis and method for producing the same
WO2008034048A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprosthesis with biostable inorganic layers
WO2008034066A1 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprostheses and methods of making the same
EP2068962B1 (en) 2006-09-18 2013-01-30 Boston Scientific Limited Endoprostheses
EP2125065B1 (en) 2006-12-28 2010-11-17 Boston Scientific Limited Bioerodible endoprostheses and methods of making same
US20100059154A1 (en) * 2007-02-19 2010-03-11 Perecman Jack L Apparatus and method for dispensing vehicle ballasting weights
US8814723B2 (en) 2007-04-05 2014-08-26 Nike, Inc. Rotational molded golf club heads
US20100070020A1 (en) * 2008-06-11 2010-03-18 Nanovasc, Inc. Implantable Medical Device
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8118857B2 (en) * 2007-11-29 2012-02-21 Boston Scientific Corporation Medical articles that stimulate endothelial cell migration
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7927708B2 (en) 2008-08-18 2011-04-19 Productive Research Llc Formable light weight composites
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
EP2334170B1 (en) * 2008-10-03 2013-11-27 Langley Innovations PTY LTD Sinker or float for fishing
JP2012513756A (en) * 2008-12-24 2012-06-21 ワイルド リバー コンサルティング グループ リミテッド ライアビリティー カンパニー Fishing lures with variable density material
EP2403546A2 (en) 2009-03-02 2012-01-11 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8329219B2 (en) * 2009-12-22 2012-12-11 Cook Biotech Incorporated Methods for producing ECM-based biomaterials
KR102032405B1 (en) 2010-02-15 2019-10-16 프로덕티브 리서치 엘엘씨 Formable light weight composite material systems and methods
WO2011119573A1 (en) 2010-03-23 2011-09-29 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
KR101297099B1 (en) * 2011-05-13 2013-08-20 한국원자력연구원 Epoxy resin compositions for neutron shielding materials and mehtod for preparing the same
CN102786720A (en) * 2011-05-20 2012-11-21 马明 Preparation method for soft powder metal composite coiled material
JP2013127021A (en) * 2011-12-17 2013-06-27 Nippon Tungsten Co Ltd High density composite material
CN102585330A (en) * 2012-01-18 2012-07-18 厦门虹鹭钨钼工业有限公司 Tungsten-polymer composite material and preparation method thereof
USD737116S1 (en) 2012-03-08 2015-08-25 Plombco Inc. Wheel-securing clip
FR2990435B1 (en) * 2012-05-11 2014-04-25 Commissariat Energie Atomique COMPOSITION CHARGED WITH ACTINIDE POWDER AND POLY-OLEFINIC
JP6046428B2 (en) * 2012-09-07 2016-12-14 帝人株式会社 Radiation shielding sheet
CN102873821B (en) * 2012-09-11 2014-10-15 大连理工大学 Micro injection mould for biodegradable vascular stent
EP2735764A1 (en) * 2012-11-23 2014-05-28 WEGMANN automotive GmbH & Co. KG Method for Balancing a Wheel
RU2627857C2 (en) 2012-12-20 2017-08-14 3М Инновейтив Пропертиз Компани Composite particles including fluoropolymer, methods of production and products including them
CN103877624B (en) * 2012-12-21 2016-05-25 上海微创医疗器械(集团)有限公司 A kind of degradable polyester support and preparation method thereof
CN103050162B (en) * 2013-01-21 2015-10-07 哈尔滨工业大学 A kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance
WO2015006697A1 (en) * 2013-07-11 2015-01-15 Heikkila Kurt E Surface modified particulate and sintered extruded products
US10026513B2 (en) 2014-06-02 2018-07-17 Turner Innovations, Llc. Radiation shielding and processes for producing and using the same
US10022792B2 (en) 2014-11-13 2018-07-17 The Indian Institute of Technology Process of dough forming of polymer-metal blend suitable for shape forming
FR3031743B1 (en) * 2015-01-19 2018-09-21 Meto & Co SOFT METAL POLYMERIC COMPOSITES
KR101731785B1 (en) * 2015-11-17 2017-05-02 제주대학교 산학협력단 soft radiation shielding material comprising hydrogel, preparation method of the same, and storage device for containing radioactive substances with the same
US10011922B2 (en) 2016-03-21 2018-07-03 Stratasys, Inc. Core-shell morphology of composite filaments for use in extrusion-based additive manufacturing systems
TWI738743B (en) 2016-03-23 2021-09-11 美商道康寧公司 Metal-polyorganosiloxanes
WO2018027136A1 (en) 2016-08-04 2018-02-08 Tundra Composites, LLC Reduced polymer content and bonding in polymer particulate composite
US20190168187A1 (en) 2016-08-04 2019-06-06 Glass Polymer Technologies, Llc Desiccant composition and use
US10774196B2 (en) * 2016-09-22 2020-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and polymer
US11911995B2 (en) 2016-09-22 2024-02-27 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and aramid with fully penetrated reinforcement
US11617361B1 (en) * 2017-03-02 2023-04-04 Dragonfly Lures, Inc. Weighted lures and methods for making weighted lures
DE102017107611A1 (en) * 2017-04-10 2018-10-11 Ilias Efthimiou Fishing Hook ballast weight
WO2018222995A1 (en) 2017-06-02 2018-12-06 Tundra Composites, LLC Surface modified inorganic particulate in sintered products
WO2018222965A1 (en) 2017-06-02 2018-12-06 Tundra Composites Llc Surface modified metallic particulate in sintered products
CN110709475A (en) * 2017-06-05 2020-01-17 株式会社阿瑞斯科技 Molded article, part for food production apparatus, and polymer product for food production
CN107492433B (en) * 2017-07-05 2019-08-16 铜陵江威科技有限公司 Modified nickel powder doped iron-based soft magnetic composite material and preparation method thereof
CN107910089A (en) * 2017-11-17 2018-04-13 南京核安核能科技有限公司 A kind of protective garment of the unleaded radiation of novel flexible
CN109994235B (en) * 2017-12-29 2022-03-22 中国核动力研究设计院 Preparation method of UO2 fuel pellet
CN108219459A (en) * 2018-01-05 2018-06-29 上海晨光文具股份有限公司 Macromolecule-metallic composite and preparation method thereof
US10830565B2 (en) * 2018-02-20 2020-11-10 Michael Sloff Method of making a colored projectile
US10753718B1 (en) 2018-03-16 2020-08-25 Vista Outdoor Operations Llc Colored cartridge packaging
USD857523S1 (en) 2018-03-16 2019-08-27 Vista Outdoor Operations Llc Cartridge packaging
US11584041B2 (en) 2018-04-20 2023-02-21 Pella Corporation Reinforced pultrusion member and method of making
US11371280B2 (en) 2018-04-27 2022-06-28 Pella Corporation Modular frame design
WO2020093049A1 (en) 2018-11-02 2020-05-07 Stratasys,Inc. Core-shell filament for use in extrusion-based additive manufacturing systems and method of printing parts
CN109364288B (en) * 2018-11-26 2021-04-02 温州生物材料与工程研究所 Application of hole-hole composite micro-nano structure polysaccharide microspheres in preparation of hemostatic dressing
EP3674816B1 (en) * 2018-12-24 2022-04-27 The Swatch Group Research and Development Ltd External part of a timepiece or jewelry made of a heavy composite material
US11193741B1 (en) * 2019-01-21 2021-12-07 Avert Industries, LLC Less-lethal ammunition and methods for making less-lethal ammunition
US11338552B2 (en) 2019-02-15 2022-05-24 Productive Research Llc Composite materials, vehicle applications and methods thereof
JP7245190B2 (en) 2019-03-21 2023-03-23 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Woven carbon fiber reinforced steel matrix composite with unreinforced areas
US11788175B2 (en) 2019-03-21 2023-10-17 Toyota Motor Engineering & Manufacturing North America, Inc. Chemically bonded amorphous interface between phases in carbon fiber and steel composite
CN111073316B (en) * 2019-04-18 2022-04-26 重庆市智翔铺道技术工程有限公司 Polymer alloy for paving steel bridge deck and preparation method thereof
EP3785823A1 (en) * 2019-08-30 2021-03-03 ETH Zurich Light gold
CN111312422A (en) * 2020-02-27 2020-06-19 西安交通大学 Flexible material with gamma ray radiation shielding function and silicon-based doped nano titanium oxide and preparation method thereof
CN111422840B (en) * 2020-04-01 2022-12-13 东华理工大学 Phosphorus/graphene three-dimensional aerogel material and preparation method and application thereof
US11910552B2 (en) 2020-06-17 2024-02-20 Apple Inc. Electronic devices with corrosion-resistant colored metal structures
US11982386B2 (en) 2021-05-21 2024-05-14 S & B Technical Products, Inc. Process for producing gripping elements for sealing and restraint systems for fluid pipelines and pipe joints produced thereby
CN113618066B (en) * 2021-07-27 2023-05-26 界首市汇珠渔具有限公司 Preparation method of disposable environment-friendly ceramic composite material fishing weight
CN113717467A (en) * 2021-08-24 2021-11-30 河南双立仕智能家居有限公司 Fishing gear pendant and preparation method thereof
EP4422710A1 (en) * 2021-10-28 2024-09-04 CareFusion 303, Inc. Medical tubing and formulations therefor
CN116920167A (en) * 2022-04-06 2023-10-24 湖南理工学院 Medical zinc-based nano composite bone implant and preparation method thereof
US11913329B1 (en) 2022-09-21 2024-02-27 Saudi Arabian Oil Company Untethered logging devices and related methods of logging a wellbore

Family Cites Families (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US103195A (en) 1870-05-17 Improvement in combined shirt and collar
US2852364A (en) 1944-09-20 1958-09-16 Frank H Spedding Melting and purification of uranium
US2748099A (en) 1952-09-04 1956-05-29 Du Pont Polyamide compositions containing a high percentage of metal filler
US2879667A (en) * 1955-03-21 1959-03-31 Robert D Henderson Wheel balancing device
DE1074268B (en) 1955-11-30 1960-01-28 Minnesota Mining and Manufac turing Company St Paul Mmn (V St A) Vcrtr Dipl Chem Dr rer nat I Ruch Pat Anw München 15 (V St A) I Process for the manufacture of copolymers of tetrafluoroethylene
US2968649A (en) 1958-12-04 1961-01-17 Du Pont Elastomeric terpolymers
US3178399A (en) 1961-08-10 1965-04-13 Minnesota Mining & Mfg Fluorine-containing polymers and preparation thereof
US3365315A (en) * 1963-08-23 1968-01-23 Minnesota Mining & Mfg Glass bubbles prepared by reheating solid glass partiles
BE656603A (en) * 1963-12-06
DE1473466B2 (en) * 1964-04-10 1971-09-09 Gebr Hofmann KG, Maschinenfabrik, 6100 Darmstadt METHOD AND DEVICE FOR POWER AND TORQUE MEASUREMENT OF MOTOR VEHICLES
US3382908A (en) * 1965-11-05 1968-05-14 Minnesota Mining & Mfg Reflex-reflective tires
US3493257A (en) * 1967-03-22 1970-02-03 Gen Motors Corp Resilient microcellular foam bumper
GB1246829A (en) * 1967-10-27 1971-09-22 Exxon Research Engineering Co Compositions with controlled electrical properties
US3424127A (en) * 1967-12-11 1969-01-28 Minnesota Mining & Mfg Apparatus for applying retro-reflective bands on cylindrical surfaces
SE392582B (en) * 1970-05-21 1977-04-04 Gore & Ass PROCEDURE FOR THE PREPARATION OF A POROST MATERIAL, BY EXPANDING AND STRETCHING A TETRAFLUORETENE POLYMER PREPARED IN AN PASTE-FORMING EXTENSION PROCEDURE
US3663328A (en) * 1970-12-12 1972-05-16 Alexander Turoczi Jr Balanced tire and balancing method
US3793656A (en) * 1971-09-07 1974-02-26 Perfect Equip Corp Wheel weight tool
US3716927A (en) * 1971-11-29 1973-02-20 Perfect Equip Corp Wheel weight demonstrating device
US3895143A (en) 1973-03-16 1975-07-15 Nicolet Ind Inc Metal-fiber-latex-containing sheet materials
US3901845A (en) * 1974-04-01 1975-08-26 Gen Motors Corp Filled and reinforced polyamide molding compositions
US3918141A (en) 1974-04-12 1975-11-11 Fiber Materials Method of producing a graphite-fiber-reinforced metal composite
DE2444584C3 (en) * 1974-09-18 1982-01-21 Basf Ag, 6700 Ludwigshafen Thermoplastic polyester molding compounds
US4224267A (en) 1978-03-28 1980-09-23 Westinghouse Electric Corp. Wire, rod, stick, and the like, with or without fluxing agent for welding applications
US4257699A (en) 1979-04-04 1981-03-24 Xerox Corporation Metal filled, multi-layered elastomer fuser member
JPS57109810A (en) 1980-12-26 1982-07-08 Asahi Glass Co Ltd Copolymer giving fluorine-containing elastomer with cold and alcohol resistance
US4780981A (en) 1982-09-27 1988-11-01 Hayward Andrew C High density materials and products
US4949645A (en) 1982-09-27 1990-08-21 Royal Ordnance Speciality Metals Ltd. High density materials and products
US4569978A (en) 1984-07-25 1986-02-11 Pennwalt Corporation Emulsion polymerization of vinylidene fluoride polymers in the presence of trichlorofluoromethane as chain transfer agent
GB2179664A (en) 1985-08-07 1987-03-11 Robin John Lewis Polymer compositions containing particulate metal filler
US4740538A (en) 1986-07-03 1988-04-26 Engelhard Corporation Coated minerals for filling plastics
US4891399A (en) * 1986-10-28 1990-01-02 Calp Corporation Thermoplastic resin-based molding composition
JPS63225657A (en) * 1986-10-28 1988-09-20 Calp Corp Composite polymer composition
US5198295A (en) * 1987-02-17 1993-03-30 Rogers Corporation Ceramic filled fluoropolymeric composite material
JPH0730242B2 (en) * 1987-03-26 1995-04-05 岸本産業株式会社 Filling with metal powder, etc. Polycarbonate composition and method for producing the same
JP2520632B2 (en) * 1987-04-14 1996-07-31 岸本産業株式会社 Thermoplastic polyester resin composition filled with metal powder, etc. and method for producing the same
JPS63258952A (en) * 1987-04-15 1988-10-26 Kishimoto Sangyo Kk Polyamide composition filled with metallic powder or the like and production thereof
JPS63273664A (en) 1987-04-30 1988-11-10 Kanebo Ltd Polyamide composition
JPH01110561A (en) * 1987-10-24 1989-04-27 Calp Corp Composite resin composition for motor rotor
JPH07103307B2 (en) * 1987-11-27 1995-11-08 ダイセル・ヒュルス株式会社 High specific gravity polyamide resin
US5017432A (en) 1988-03-10 1991-05-21 Xerox Corporation Fuser member
US5130342A (en) 1988-10-14 1992-07-14 Mcallister Jerome W Particle-filled microporous materials
JPH02117933A (en) * 1988-10-27 1990-05-02 Kishimoto Sangyo Kk Filled plastic composition, excellent in strength and containing metallic powder in high concentration
US5278219A (en) * 1988-11-25 1994-01-11 Lilley Martin J Flexible highly filled compositions
US5019311A (en) 1989-02-23 1991-05-28 Koslow Technologies Corporation Process for the production of materials characterized by a continuous web matrix or force point bonding
JPH02232249A (en) * 1989-03-03 1990-09-14 Kansai Paint Co Ltd Resin composition, curable composition and paint composition
JPH02255760A (en) * 1989-03-30 1990-10-16 Ube Nitto Kasei Co Ltd Resin composition having high specific gravity
GB8916944D0 (en) * 1989-07-25 1989-09-13 Ici Plc Composite particle dispersions
JPH0372561A (en) * 1989-08-11 1991-03-27 Ube Nitto Kasei Co Ltd Surface-treated metallic material for filling and high specific gravity resin composition containing the same
DE3931652A1 (en) * 1989-09-22 1991-04-04 Basf Ag METHOD FOR PRODUCING THERMOPLASTIC PLASTICS FILLED WITH CERAMIC POWDERS
US5061965A (en) 1990-04-30 1991-10-29 Xerox Corporation Fusing assembly with release agent donor member
US5026748A (en) 1990-05-07 1991-06-25 E. I. Du Pont De Nemours And Company Thermally conductive adhesive
US5289997A (en) 1991-04-18 1994-03-01 Harris B Waylon Apparatus and method for reducing drag on bodies moving through fluid
US5214106A (en) 1991-05-22 1993-05-25 E. I. Du Pont De Nemours And Company Cured fluoroelastomer compositions
US5548125A (en) 1991-07-16 1996-08-20 Smith & Nephew Plc Radiation protective glove
GB9118430D0 (en) * 1991-08-28 1991-10-16 Mortile Ind Inc Composite metal
CA2083676A1 (en) * 1991-12-17 1993-06-18 Paul E. Naton Compositions containing hollow microspheres
DE4214988C2 (en) 1991-12-23 1993-11-25 Inventa Ag Reusable abrasive, process for its manufacture and use of the abrasive
US5237930A (en) 1992-02-07 1993-08-24 Snc Industrial Technologies, Inc. Frangible practice ammunition
US5877437A (en) 1992-04-29 1999-03-02 Oltrogge; Victor C. High density projectile
US5378407A (en) 1992-06-05 1995-01-03 Raychem Corporation Conductive polymer composition
US5580624A (en) * 1992-08-11 1996-12-03 E. Khashoggi Industries Food and beverage containers made from inorganic aggregates and polysaccharide, protein, or synthetic organic binders, and the methods of manufacturing such containers
US5582670A (en) * 1992-08-11 1996-12-10 E. Khashoggi Industries Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
US5851634A (en) * 1992-08-11 1998-12-22 E. Khashoggi Industries Hinges for highly inorganically filled composite materials
JPH0688012A (en) * 1992-09-04 1994-03-29 Nippon Steel Chem Co Ltd High-specific-gravity thermoplastic resin composition
JP3328336B2 (en) * 1992-10-12 2002-09-24 岸本産業株式会社 Flame retardant polyamide resin composition
JP3373872B2 (en) * 1992-10-12 2003-02-04 岸本産業株式会社 Flame retardant polyamide resin composition
IT1264125B1 (en) 1993-03-30 1996-09-16 Ausimont Spa FLUOROELASTOMERS WITH HIGH RESISTANCE TO POLAR SOLVENTS AND BASES
CA2123828C (en) * 1993-05-20 2001-03-20 Shingo Midorikawa Pneumatic vehicle tire
GB9318437D0 (en) 1993-09-06 1993-10-20 Gardner John Christopher High specific gravity material
US5399187A (en) 1993-09-23 1995-03-21 Olin Corporation Lead-free bullett
US6168226B1 (en) * 1994-05-19 2001-01-02 Henkel Corporation Composite laminate automotive structures
WO1996010471A1 (en) * 1994-09-30 1996-04-11 Minnesota Mining And Manufacturing Company Coated abrasive article, method for preparing the same, and method of using
JP3379243B2 (en) * 1994-10-24 2003-02-24 豊田合成株式会社 Blow molded product for automotive exterior
US5594186A (en) 1995-07-12 1997-01-14 Magnetics International, Inc. High density metal components manufactured by powder metallurgy
US5620775A (en) * 1995-11-03 1997-04-15 Minnesota Mining And Manufacturing Company Low refractive index glass microsphere coated article having a smooth surface and a method for preparing same
DE19542501A1 (en) 1995-11-15 1997-05-22 Bayer Ag Peroxidically crosslinkable fluororubbers, a process for their production and their use
US7216938B2 (en) * 2003-11-14 2007-05-15 Perfect Equipment Inc. Wheel weight with body having recess and clip secured therein
AU741567B2 (en) * 1996-06-28 2001-12-06 Ideas To Market L.P. High density composite material
US5985182A (en) 1996-10-08 1999-11-16 Therm-O-Disc, Incorporated High temperature PTC device and conductive polymer composition
JPH10158507A (en) * 1996-11-29 1998-06-16 Sumitomo Bakelite Co Ltd High specific gravity resin composition
US6457417B1 (en) 1997-04-16 2002-10-01 Doris Nebel Beal Inter Vivos Patent Trust Method for the manufacture of a frangible nonsintered powder-based projectile for use in gun ammunition and product obtained thereby
DE19741603A1 (en) * 1997-09-20 1999-03-25 Volkswagen Ag Electrical contacting arrangement
US6218015B1 (en) * 1998-02-13 2001-04-17 World Properties, Inc. Casting mixtures comprising granular and dispersion fluoropolymers
US6074576A (en) 1998-03-24 2000-06-13 Therm-O-Disc, Incorporated Conductive polymer materials for high voltage PTC devices
CA2330954A1 (en) * 1998-05-01 1999-11-11 Mbt Holding Ag Integrated retroreflective marking materials
US6576697B1 (en) 1998-09-02 2003-06-10 Thayer A. Brown, Jr. Malleable high density polymer material
US6270549B1 (en) 1998-09-04 2001-08-07 Darryl Dean Amick Ductile, high-density, non-toxic shot and other articles and method for producing same
US6177533B1 (en) * 1998-11-13 2001-01-23 E. I. Du Pont De Nemours And Company Polytetrafluoroethylene resin
US6364421B1 (en) * 1998-12-09 2002-04-02 Perfect Equipment Company Llc Wheel balancing weights
JP2000191749A (en) * 1998-12-28 2000-07-11 Toshiba Chem Corp Epoxy resin composition and device for sealing semiconductor
US6371532B1 (en) * 1999-01-22 2002-04-16 James B. Skarie Traction-enhancing system for use with motor vehicles
JP2002536467A (en) * 1999-02-05 2002-10-29 マテリア インコーポレイテッド Polyolefin compositions having various densities and methods of making and using the compositions
JP2000256569A (en) * 1999-03-08 2000-09-19 Daisee Kogyo Kk Thermoplastic resin composition having high specific gravity, its production and molding product using the same
US20010050020A1 (en) * 1999-04-02 2001-12-13 Davis George B. Jacketed frangible bullets
JP3578446B2 (en) 1999-04-02 2004-10-20 カネボウ合繊株式会社 Thermoplastic resin composition
AU4835500A (en) * 1999-05-12 2000-11-21 International Marketing, Inc. Equalizing tire radial and lateral force variations
US6204971B1 (en) * 1999-05-14 2001-03-20 3M Innovative Properties Company Glass microspheres for use in films and projection screen displays and methods
JP3556527B2 (en) * 1999-06-18 2004-08-18 住友ゴム工業株式会社 Balancing weight for sports equipment
US7356390B2 (en) * 1999-06-29 2008-04-08 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US6346565B1 (en) * 1999-07-02 2002-02-12 Bridgestone Corporation Synthetic resin composition for resin magnet, molded resin magnet, and production process for synthetic resin composition
US7324261B2 (en) * 1999-07-09 2008-01-29 Gentex Corporation Electrochromic devices with thin bezel-covered edge
JP2001041290A (en) 1999-07-29 2001-02-13 Mitsubishi Materials Corp Balance weight structure
US6447875B1 (en) * 1999-07-30 2002-09-10 3M Innovative Properties Company Polymeric articles having embedded phases
US7015271B2 (en) * 1999-08-19 2006-03-21 Ppg Industries Ohio, Inc. Hydrophobic particulate inorganic oxides and polymeric compositions containing same
DE60000713T2 (en) 1999-08-20 2003-07-03 Sumitomo Rubber Industries Ltd., Kobe Wheel balance weight
JP2001132797A (en) * 1999-08-20 2001-05-18 Sumitomo Rubber Ind Ltd Balance weight for vehicle wheel
US7121955B2 (en) 1999-11-01 2006-10-17 Callaway Golf Company Golf club head with customizable center of gravity
JP3420730B2 (en) * 1999-12-28 2003-06-30 旭精機工業株式会社 Bullet for small arms
GB0009731D0 (en) * 2000-04-18 2000-06-07 Dytech Corp Ltd Mouldable E G extrudable ceramic compositions
KR100533097B1 (en) * 2000-04-27 2005-12-02 티디케이가부시기가이샤 Composite Magnetic Material and Magnetic Molding Material, Magnetic Powder Compression Molding Material, and Magnetic Paint using the Composite Magnetic Material, Composite Dielectric Material and Molding Material, Powder Compression Molding Material, Paint, Prepreg, and Substrate using the Composite Dielectric Material, and Electronic Part
US6413626B1 (en) 2000-06-08 2002-07-02 3M Innovative Properties Company Wheel weight/tape article and a method of using
JP2001349381A (en) 2000-06-08 2001-12-21 Banzai Ltd Balance weight for rotating body
US7176269B2 (en) * 2000-07-25 2007-02-13 Mitsui Chemicals, Inc. Curable composition and its use
US7037865B1 (en) * 2000-08-08 2006-05-02 Moldite, Inc. Composite materials
DE10041194A1 (en) 2000-08-23 2002-03-07 Starck H C Gmbh Process for the production of composite components by powder injection molding and suitable composite powder
JP2002105324A (en) * 2000-09-27 2002-04-10 Kanebo Ltd High specific gravity molded article
US6553831B1 (en) * 2000-11-28 2003-04-29 Perfect Equipment Company Llc Spring-mounted wheel balancing weight
US6544596B2 (en) * 2000-11-29 2003-04-08 Pacific Northwest Coatings Method of coating a substrate using a thermosetting basecoat composition and a thermoplastic top coat composition
US7217389B2 (en) 2001-01-09 2007-05-15 Amick Darryl D Tungsten-containing articles and methods for forming the same
JP4794055B2 (en) * 2001-01-29 2011-10-12 東洋アルミニウム株式会社 Glittering material for resin addition and thermoplastic resin composition
CN1263774C (en) * 2001-02-28 2006-07-12 钟渊化学工业株式会社 Novel polymer and liquid gasket for in-place forming
FR2823818B1 (en) 2001-04-23 2003-12-12 Lemer Pax ANTI-VIBRATION MASS FOR MOTOR VEHICLE
AU2002308472A1 (en) 2001-04-26 2002-11-11 International Non-Toxic Composites Corp. Composite material containing tungsten, tin and organic additive
DE10132941A1 (en) * 2001-07-06 2003-01-23 Degussa Oligomeric organosilanes, process for their preparation and their use
DE10135014A1 (en) * 2001-07-18 2003-01-30 Bayer Ag Rubber mixtures containing 1,4-butenediol (polyether)
US6416094B1 (en) * 2001-07-27 2002-07-09 Talfourd-Jones Inc. Energy absorbing bumper
ES2241937T3 (en) * 2001-09-18 2005-11-01 Toyo Boseki Kabushiki Kaisha LOW PRESSURE INJECTION METHOD FOR POLYESTER RESINS AND RESIN COMPOSITIONS.
CA2462976A1 (en) 2001-10-16 2003-04-24 International Non-Toxic Composites Corporation High density non-toxic composites comprising tungsten, another metal and polymer powder
NZ532693A (en) 2001-10-16 2005-03-24 Internat Non Toxic Composites Sintered composite material containing tungsten and bronze
JP3936566B2 (en) * 2001-10-25 2007-06-27 旭精機工業株式会社 Bullet for firearms and method for producing the same
MXPA02011812A (en) 2001-12-14 2005-08-26 Rohm & Haas Multimodal polymer particles and uses thereof.
US6749802B2 (en) * 2002-01-30 2004-06-15 Darryl D. Amick Pressing process for tungsten articles
EP1342623A1 (en) * 2002-03-08 2003-09-10 N.V. Bekaert S.A. Reinforced impact beam
US6740260B2 (en) 2002-03-09 2004-05-25 Mccord Stuart James Tungsten-precursor composite
US7169489B2 (en) * 2002-03-15 2007-01-30 Fuelsell Technologies, Inc. Hydrogen storage, distribution, and recovery system
CN1445377A (en) * 2002-03-20 2003-10-01 哈尔滨工业大学 Tungsten based composite material with granules of double carbide enhanced
US6972144B2 (en) * 2002-04-19 2005-12-06 Hunter Paine Enterprises, Llc Composite structural material and method of making same
US6672635B2 (en) * 2002-06-06 2004-01-06 Netshape Corporation Bumper with integrated foam and non-foam components
US20040007912A1 (en) 2002-07-15 2004-01-15 Jacques Amyot Zinc based material wheel balancing weight
US6866313B2 (en) * 2002-07-30 2005-03-15 General Electric Co. Bumper assembly including and energy absorber
AU2003255291A1 (en) * 2002-08-03 2004-02-25 Degussa Ag High-surface precipitation silicic acids
US20060020086A1 (en) * 2002-09-19 2006-01-26 Dennis Smith Ionomer modified polypropylene compound for superior scratch performance,low blushing and molded in color with controllable gloss
US20050005807A1 (en) 2002-10-29 2005-01-13 Polytech Ammunition Company Lead free, composite polymer based bullet and cartridge case, and method of manufacturing
US7213519B2 (en) 2002-10-29 2007-05-08 Polytech Ammunition Company Composite polymer based cartridge case having an overmolded metal cup, polymer plug base assembly
CN100528613C (en) * 2003-02-04 2009-08-19 米其林技术公司 Lubricating composition for a tire safety support, use and tyre and mounting component
JP2004244546A (en) * 2003-02-14 2004-09-02 Kishimoto Sangyo Co Ltd Plastic composition, molded product using the same and method for producing the same molded product
WO2005012408A2 (en) 2003-03-10 2005-02-10 Rtp Company Malleable composites and methods of making and using the same
US6981996B2 (en) 2003-03-14 2006-01-03 Osram Sylvania Inc. Tungsten-tin composite material for green ammunition
WO2004101323A1 (en) * 2003-05-14 2004-11-25 Kyoraku Co., Ltd. Shock absorber of car
US7164197B2 (en) * 2003-06-19 2007-01-16 3M Innovative Properties Company Dielectric composite material
JP2005129115A (en) * 2003-10-22 2005-05-19 Fuji Photo Film Co Ltd Magnetic recording medium
US20050188879A1 (en) 2003-10-29 2005-09-01 Polytech Ammunition Company Lead free, composite polymer based bullet and cartridge case, and method of manufacturing
ES2718928T3 (en) * 2003-11-14 2019-07-05 Wild River Consulting Group Llc Metal polymer composite material, a method for extrusion and articles formed therefrom
US8357727B2 (en) * 2004-02-27 2013-01-22 Dow Global Technologies Llc Durable foam of olefin polymers, methods of making foam and articles prepared from same
US7645829B2 (en) * 2004-04-15 2010-01-12 Exxonmobil Chemical Patents Inc. Plasticized functionalized propylene copolymer adhesive composition
US7649029B2 (en) * 2004-05-17 2010-01-19 3M Innovative Properties Company Dental compositions containing nanozirconia fillers
US20050258404A1 (en) 2004-05-22 2005-11-24 Mccord Stuart J Bismuth compounds composite
US20060029795A1 (en) * 2004-08-09 2006-02-09 University Of Florida Research Foundation, Inc. Multi-layer low friction and low wear polymer/polymer composites having compositionally graded interfaces
US7086690B2 (en) * 2004-08-24 2006-08-08 General Electric Company Bumper assembly including twin energy absorbers
WO2006055612A1 (en) * 2004-11-16 2006-05-26 3M Innovative Properties Company Microsphere filled polymer composites
TW200635830A (en) * 2004-12-29 2006-10-16 Hunter Paine Entpr Llc Composite structural material and method of making the same
US8084537B2 (en) * 2005-03-17 2011-12-27 Dow Global Technologies Llc Polymer blends from interpolymers of ethylene/α-olefin with improved compatibility
US7507480B2 (en) * 2005-05-31 2009-03-24 Brookhaven Science Associates, Llc Corrosion-resistant metal surfaces
JP4402624B2 (en) * 2005-06-30 2010-01-20 富士通株式会社 Load management apparatus and load management method
US7406990B2 (en) * 2005-08-10 2008-08-05 The Goodyear Tire & Rubber Company Runflat tire with sidewall component containing high strength glass bubbles
US7906587B2 (en) * 2005-09-16 2011-03-15 Dow Global Technologies Llc Polymer blends from interpolymer of ethylene/α olefin with improved compatibility
AU2007207495A1 (en) * 2006-01-19 2007-07-26 Warsaw Orthopedic, Inc. Porous osteoimplant
MXPA06010229A (en) * 2006-09-08 2008-03-07 Plastiglas De Mexico S A De C Composition and process for producing acrylic composite materials with mineral charges having superior mechanical, thermal and processing properties.
ES2688777T3 (en) * 2006-10-12 2018-11-06 Suncolor Corporation Polymer compositions
US8309659B2 (en) * 2006-12-20 2012-11-13 Basell Poliolefine Italia S.R.L. Filled polyolefin compositions
WO2008094529A1 (en) * 2007-01-29 2008-08-07 Jeffrey Jacob Cernohous Compositions and methods for producing high strength composites
US7478849B2 (en) * 2007-02-27 2009-01-20 Nissan Technical Center North America, Inc. Vehicle bumper assembly
US7671227B2 (en) * 2007-02-28 2010-03-02 Corning Incorporated Asymmetric bis-silanes and methods for making and their use
US7533912B2 (en) * 2007-06-12 2009-05-19 Ford Global Technologies, Llc Hybrid energy absorber for automobile bumper
US20090032088A1 (en) * 2007-08-03 2009-02-05 Mario Rabinowitz Sealants for Solar Energy Concentrators and Similar Equipment
US20090078353A1 (en) * 2007-09-21 2009-03-26 Ramendra Nath Majumdar Pneumatic Tire Having Built-In Sealant Layer And Preparation Thereof
DE102007049439A1 (en) * 2007-09-27 2009-04-02 Electrovac Ag Plastic composite material and method for its production
US20090084482A1 (en) * 2007-09-28 2009-04-02 Ramendra Nath Majumdar Pneumatic tire having built-In sealant layer and preparation thereof
US8316903B2 (en) * 2007-10-01 2012-11-27 The Goodyear Tire & Rubber Company Pneumatic tire having built-in sealant layer and preparation thereof
US8894731B2 (en) * 2007-10-01 2014-11-25 Saint-Gobain Abrasives, Inc. Abrasive processing of hard and /or brittle materials
GB0720713D0 (en) * 2007-10-23 2007-12-05 Wellstream Int Ltd Thermal insulation of flexible pipes
US7883156B2 (en) * 2008-07-09 2011-02-08 Perfect Equipment Inc. Wheel balancing weights with body and mounting clip
US7878599B2 (en) * 2008-07-09 2011-02-01 Perfect Equipment Inc. Wheel balancing weights with body and mounting clip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1989047A2 (en) * 2006-02-09 2008-11-12 Wild River Consulting Group, LLC Metal polymer composite with enhanced viscoelastic and thermal properties
WO2007094764A3 (en) * 2006-02-09 2009-05-28 Wild River Consulting Group Ll Metal polymer composite with enhanced viscoelastic and thermal properties
JP2009526120A (en) * 2006-02-09 2009-07-16 ワイルド リバー コンサルティング グループ リミテッド ライアビリティー カンパニー Metal polymer composites with enhanced viscoelastic and thermal properties
EP1989047A4 (en) * 2006-02-09 2011-11-09 Wild River Consulting Group Llc Metal polymer composite with enhanced viscoelastic and thermal properties
EP1987089A4 (en) * 2006-02-10 2011-04-06 Wild River Consulting Group Llc Enhanced property metal polymer composite
EP1987089A1 (en) * 2006-02-10 2008-11-05 Wild River Consulting Group, LLC Enhanced property metal polymer composite
JP2009526119A (en) * 2006-02-10 2009-07-16 ワイルド リバー コンサルティング グループ リミテッド ライアビリティー カンパニー Metal polymer composite with enhanced properties
KR101477451B1 (en) * 2006-02-10 2014-12-29 와일드 리버 컨설팅 그룹 엘엘씨 Enhanced property metal polymer composite
EP1897567A1 (en) * 2006-08-07 2008-03-12 BIOTRONIK VI Patent AG X-ray marker for medical implants made of a bio-corrodible metal substance
EP1897906A1 (en) * 2006-09-06 2008-03-12 Olympus Corporation Fluorescent object and method for manufacturing the same
US7799244B2 (en) 2006-09-06 2010-09-21 Olympus Corporation Fluorescent object and method for manufacturing the same
WO2009091987A2 (en) * 2008-01-18 2009-07-23 Wild River Consulting Group, Llc Melt molding polymer composite and method of making and using the same
WO2009091987A3 (en) * 2008-01-18 2009-09-11 Wild River Consulting Group, Llc Melt molding polymer composite and method of making and using the same
US8487034B2 (en) 2008-01-18 2013-07-16 Tundra Composites, LLC Melt molding polymer composite and method of making and using the same
CN102898819A (en) * 2008-01-18 2013-01-30 瓦尔德瑞沃咨询集团公司 Melt molding polymer composite and method of making and using the same
US9376552B2 (en) 2009-04-29 2016-06-28 Tundra Composites, LLC Ceramic composite
WO2010127101A1 (en) * 2009-04-29 2010-11-04 Tundra Composites, LLC Composite composition
WO2010127106A1 (en) * 2009-04-29 2010-11-04 Tundra Composites, LLC Composite composition
WO2010127117A1 (en) * 2009-04-29 2010-11-04 Tundra Composites, LLC Composite composition
US11767409B2 (en) 2009-04-29 2023-09-26 Tundra Composites, LLC Reduced density hollow glass microsphere polymer composite
CN102439083B (en) * 2009-04-29 2015-12-16 腾德拉合成有限公司 Low-density hollow glass microspheres polymer composites
US11041060B2 (en) 2009-04-29 2021-06-22 Tundra Composites, LLC Inorganic material composite
US10508187B2 (en) 2009-04-29 2019-12-17 Tundra Composites, LLC Inorganic material composite
US9771463B2 (en) 2009-04-29 2017-09-26 Tundra Composites, LLC Reduced density hollow glass microsphere polymer composite
EP3246357A1 (en) * 2009-04-29 2017-11-22 Tundra Composites, LLC Composite composition
CN102439083A (en) * 2009-04-29 2012-05-02 腾德拉合成有限公司 Composite composition
JP2014534089A (en) * 2011-09-29 2014-12-18 スリーエム イノベイティブ プロパティズ カンパニー Amino-substituted organosilane ester catalyst primer
WO2013127945A1 (en) 2012-02-29 2013-09-06 Wegmann Automative Gmbh & Co. Kg Clip-on balancing weights
US10428900B2 (en) 2014-03-03 2019-10-01 3M Innovative Properties Company Wheel balancing weights, and methods and devices for using same
WO2015134426A1 (en) 2014-03-03 2015-09-11 3M Innovative Properties Company Wheel balancing weights, and methods and devices for using same
RU2579586C1 (en) * 2014-10-20 2016-04-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Composite material for implementation of explosion penetrating action

Also Published As

Publication number Publication date
JP2013147660A (en) 2013-08-01
US20060055077A1 (en) 2006-03-16
CA2877263A1 (en) 2005-06-02
PL1689811T3 (en) 2019-07-31
JP5934136B2 (en) 2016-06-15
CA2877263C (en) 2016-08-16
ZA200604047B (en) 2007-10-31
CA2877320C (en) 2015-12-29
EP2261278A1 (en) 2010-12-15
EP2261278B1 (en) 2019-02-13
JP2012062489A (en) 2012-03-29
CN102226039A (en) 2011-10-26
JP2007516320A (en) 2007-06-21
EP1689811B1 (en) 2019-01-23
ES2716941T3 (en) 2019-06-18
BRPI0416565A (en) 2007-01-23
WO2005049714A3 (en) 2005-08-04
ES2718247T3 (en) 2019-06-28
US7491356B2 (en) 2009-02-17
JP2015145509A (en) 2015-08-13
ES2718928T3 (en) 2019-07-05
EP2270085B1 (en) 2019-02-06
KR101060411B1 (en) 2011-08-29
CN1902271B (en) 2011-06-22
US20090254171A1 (en) 2009-10-08
JP2016191055A (en) 2016-11-10
PL2270085T3 (en) 2019-07-31
KR20070021112A (en) 2007-02-22
MXPA06005515A (en) 2007-01-30
BR122014029746B1 (en) 2019-09-17
JP6441856B2 (en) 2018-12-19
EP1689811A2 (en) 2006-08-16
CA2546109A1 (en) 2005-06-02
PL2261278T3 (en) 2019-07-31
CA2877320A1 (en) 2005-06-02
CN1902271A (en) 2007-01-24
EP2270085A1 (en) 2011-01-05
JP2016056383A (en) 2016-04-21
JP6067970B2 (en) 2017-01-25
CA2546109C (en) 2015-09-29
JP6306619B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
CA2877320C (en) Metal polymer composite, a method for its extrusion and shaped articles made therefrom
US20200031066A1 (en) Enhanced property metal polymer composite
US20200032029A1 (en) Metal polymer composite with enhanced viscoelastic and thermal properties
EP1987089B1 (en) Enhanced property metal polymer composite
US20110236699A1 (en) Work piece comprising metal polymer composite with metal insert
US20090127801A1 (en) Enhanced property metal polymer composite
KR20080106230A (en) Metal polymer composite with enhanced viscoelastic and thermal properties

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480037346.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539937

Country of ref document: JP

Ref document number: 2546109

Country of ref document: CA

Ref document number: PA/a/2006/005515

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2006/04047

Country of ref document: ZA

Ref document number: 200604047

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 3229/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020067011547

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004810911

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004810911

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0416565

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 1020067011547

Country of ref document: KR