[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004087331A1 - Verfahren und vorrichtung zum fördern von pulverförmigem material - Google Patents

Verfahren und vorrichtung zum fördern von pulverförmigem material Download PDF

Info

Publication number
WO2004087331A1
WO2004087331A1 PCT/EP2003/010857 EP0310857W WO2004087331A1 WO 2004087331 A1 WO2004087331 A1 WO 2004087331A1 EP 0310857 W EP0310857 W EP 0310857W WO 2004087331 A1 WO2004087331 A1 WO 2004087331A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
inlet
filter element
outlet
storage container
Prior art date
Application number
PCT/EP2003/010857
Other languages
English (en)
French (fr)
Inventor
Andreas Kleineidam
Wilhard Kleineidam
Original Assignee
H. Börger & Co. GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2002147829 external-priority patent/DE10247829A1/de
Priority claimed from DE2002161053 external-priority patent/DE10261053A1/de
Priority to US10/501,693 priority Critical patent/US7150585B2/en
Priority to EP10185752.2A priority patent/EP2279796B1/de
Priority to AU2003304031A priority patent/AU2003304031A1/en
Priority to DE10393291T priority patent/DE10393291D2/de
Priority to CA2491391A priority patent/CA2491391C/en
Priority to JP2004570034A priority patent/JP5241996B2/ja
Priority to EP03816207A priority patent/EP1551558A1/de
Application filed by H. Börger & Co. GmbH filed Critical H. Börger & Co. GmbH
Publication of WO2004087331A1 publication Critical patent/WO2004087331A1/de
Priority to US11/533,519 priority patent/US7478976B2/en
Priority to US12/100,116 priority patent/US7481605B2/en
Priority to US12/331,009 priority patent/US7648312B2/en
Priority to US12/635,285 priority patent/US8057129B2/en
Priority to US13/252,506 priority patent/US8256996B2/en
Priority to US13/568,431 priority patent/US8491226B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1459Arrangements for supplying particulate material comprising a chamber, inlet and outlet valves upstream and downstream the chamber and means for alternately sucking particulate material into and removing particulate material from the chamber through the valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • B65G53/28Systems utilising a combination of gas pressure and suction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/52Adaptations of pipes or tubes
    • B65G53/525Adaptations of pipes or tubes for conveyance in plug-form

Definitions

  • the invention relates to a method and a device for conveying powdery material according to the preamble of claim 1 and 8 respectively.
  • the method and the device are used in particular in powder coating systems to powder powder by means of compressed air in a dense stream from a storage container into a conveyor line and through it a spray gun or other spray application device.
  • a method and a device of the type mentioned at the outset for the plug or dense phase conveyance of powdery substances with suction by means of negative pressure are already known from DE 196 43 523, DE 196 54 649 or EP 0 937 004 B1.
  • the known device has a cylindrical pump chamber, which is provided at its lower end with a discharge opening for the conveyed material and at its upper end with a plate-like filter element impermeable to the conveyed material, through which the pump chamber is alternately connected to a vacuum pump or to a compressed gas source become can, in order to fill the pumping chamber, to draw material to be conveyed from a storage container through a nozzle opening into the side of the pumping chamber, or to push the material to be conveyed through the discharge opening into a discharge line to empty the pumping chamber.
  • the pump chamber In order to enable precise dosing of the material to be conveyed and, at the same time, a high flow rate, the pump chamber should have the smallest possible filling volume and be filled and emptied in the shortest possible working cycle. In order to achieve the latter, however, the gas must be sucked out of the pump chamber or fed into the pump chamber relatively quickly, for which purpose the highest possible pressure difference between the interior of the pump chamber and the vacuum source or the compressed gas source is required. A high pressure difference at the filter element, however, leads to a greater bending and pressure load on the latter and thus to a shortening of its service life, which is why the filter element must be supported with support grids or the like.
  • the object of the invention is to improve a method and a device of the type mentioned at the outset such that the service life of the filter element is prolonged and contamination of the same can be avoided more easily.
  • the gas-permeable filter element is a hollow cylinder which, unlike in the prior art, does not form a chamber end wall but part of the peripheral wall of the chamber.
  • the invention is based on the idea that this measure allows the filter area of the filter element to be increased in a simple manner and thus the pressure difference between the outer and the inner surface of the filter element to be reduced with the same gas throughput, without thereby increasing the volume of the chamber and consequently the Dosing accuracy is deteriorated.
  • a filter element designed as a U wall portion also allows conveying in a straight line through the chamber in the axial direction, thereby ensuring a smoother conveying.
  • no moving parts are required except at the chamber inlet and outlet.
  • the hollow cylindrical filter element expediently consists of a sintered material, preferably of sintered plastic powder, since a support material can be dispensed with when using such rigid filter materials.
  • a cylindrical filter element made of a rigid filter material also has a higher stability than a flat filter element of the same size and can therefore be made with a smaller wall thickness with appropriate permeability. It is useful Pore size of the sintered material is smaller than the smallest grain size of the conveyed powdery material, that is to say preferably less than 5 ⁇ m when conveying powder coating.
  • the filter element is expediently surrounded by a housing which is separated from the filter element by a cylindrical annular space.
  • the annular space can alternately be connected to a vacuum source or a compressed gas source, either through a single connection or preferably through two connections, one of which is arranged near its end facing the outlet and can be subjected to negative pressure, while the other near it arranged in front of the inlet end face and can be acted upon with compressed gas.
  • a further increase in the conveying capacity can be achieved by selecting an optimal ratio between the length and the inner diameter of the hollow cylindrical filter element, which should preferably be in the range between 10 and 30.
  • Another preferred embodiment of the invention provides that the on the two ends of the filter element adjacent cylindrical peripheral wall sections of the chamber are designed to be flexible, and that the inlet and the outlet are arranged in the region of the flexible peripheral wall sections and are each closed gas-tight by a pneumatically operating pinch valve.
  • the inlet and the outlet of the chamber are preferably arranged at their opposite ends, so that when a single chamber alternately pressurized with gas and vacuum, the conveying path in the area of the latter is straight, i.e. without kinks or bends.
  • the smallest possible pressure drop along the conveying path is also achieved in that the filter element and the rest of the chamber have an inner diameter that essentially corresponds to the inside diameter of a feed line between the storage container and the chamber or the conveying line, and so the conveying path is not subject to major cross-sectional changes.
  • the compressed gas is fed into the chamber during the conveyance of the powdery material through the filter element in order to clean the inside of the chamber facing the chamber from adhering powdery material. Since, as a result of a triboelectric charging of the powdery material during the conveyance, electrostatic adhesion of powder particles can also occur at other points in the chamber, for the cleaning of which the compressed gas surge generated by the filter element may not be sufficient, compressed gas on the filter element is expedient for cleaning passed through a cleaning valve into the chamber.
  • the cleaning valve In order to prevent powdery material from escaping from the chamber through this cleaning valve when pressurized gas is supplied to the chamber during the conveyance through the filter element, the cleaning valve preferably has a membrane, which during the supply of Pressurized gas is deformed elastically by the cleaning valve and releases an inlet opening for the pressurized gas into the chamber and which, when the pressurized gas supply is terminated, is deformed back into its original shape by the cleaning valve, in which it tightly closes the inlet opening.
  • the membrane can be formed, for example, by a rubber-elastic piece of hose which is drawn over the circumferential wall provided with through openings of a pipe socket which is closed at its free end and, when compressed gas is supplied to the inside of the pipe socket, is lifted from its circumferential surface by the gas pressure, so that Pressurized gas can flow into the chamber between the membrane and the peripheral wall.
  • a further preferred embodiment of the invention provides for the use of a so-called vacuum injector, which is pressurized with compressed air from the compressed air source and after the venturi -Principle creates a vacuum.
  • the device is expediently provided in a known manner with two chambers, one of which is always filled while the other is emptied.
  • the two chambers are preferably aligned parallel to one another and by Y-shaped line sections with a common feed or. Conveying line connected, the angles between the foot and the two arms of the Y and at the ends of the arms at the transition to the parallel chambers are preferably each less than 30 degrees in order to ensure the most unobstructed material delivery with low pressure drops.
  • the inlets and the outlets of both chambers are opened and opened with only two locking mechanisms closed, one of which closes the inlet of the first chamber and at the same time opens the inlet of the second chamber and the other opens the outlet of the second chamber and simultaneously closes the outlet of the first chamber.
  • the two locking mechanisms expediently each comprise a double-acting pneumatic cylinder with two opposite piston rods, the free ends of which press in the resilient wall of the adjacent chamber in order to close its inlet or outlet.
  • the pneumatic cylinders are preferably controllable in their compressed air supply lines by means of two electromagnetic multi-way switching valves, so that it is possible to open the inlet and the outlet of a chamber for cleaning purposes at the same time, for example to blow out this chamber together with the feed line and the delivery line from the storage container ,
  • a further simplification of the construction of the double-chamber device is possible in that a single four- or five-way switching valve is used for the simultaneous application of pressure to one chamber with negative pressure and the other chamber, one or two inputs of which have a compressed air source and the other (s) are connected to a vacuum generator, which is preferably designed as a vacuum injector, while its two outputs are each connected to one of the chambers and are alternately connected to the compressed air input or to one of the vacuum inputs by switching the valve.
  • a vacuum generator which is preferably designed as a vacuum injector
  • FIG. 1 a plan view of a device according to the invention for the pneumatic conveying of powder coating in the dense phase process with two conveying chambers; 2: a partially sectioned and somewhat schematic view of the device corresponding to FIG. 1;
  • FIG. 3 shows an enlarged longitudinal sectional view of a part of one of the two delivery chambers of the device
  • FIG. 5 shows a sectional view of a preferred vacuum generator of the device
  • FIG. 6 shows a longitudinal sectional view of an alternative cleaning valve for supplying cleaning compressed air into the delivery chambers
  • FIG. 7 a plan view of a further device according to the invention corresponding to FIG. 1;
  • FIG. 8 a view of the device from FIG. 7 corresponding to FIG. 2;
  • FIGS. 7 and 8 are enlarged longitudinal sectional views of a portion of one of the two delivery chambers of the device of FIGS. 7 and 8
  • the devices 2 shown in FIGS. 1, 2, 7 and 8 of the drawing are used to convey powder coating 4 for the electrostatic powder coating of objects pneumatically in a dense phase process from a storage container 6 to a spray gun 8.
  • the devices 2 have two parallel cylindrical delivery chambers 10, 12, the opposite of which are open Each end forms an inlet 14, 16 and an outlet 18, 20 for the powder coating 4 being conveyed and with a Y-shaped line section 22 of a feed line 24 leading to the storage container 6 and with a Y-shaped line section 26 of a flexible line leading to the spray gun 8 Delivery line 28 are connected.
  • Each of the two delivery chambers 10, 12 can be closed in the region of its inlet 14, 16 and its outlet 18, 20 by means of a pinch valve 30.
  • the pinch valves 30 for the two inlets 14, 16, like the pinch valves 30 for the two outlets 18, 20, can each be actuated by means of a double-acting pneumatic cylinder 32 arranged between the two delivery chambers 10, 12.
  • the pneumatic cylinders 32 each have two piston rods 34 which protrude on opposite sides and whose spherically rounded free ends 36 at the inlet 14, 16 and at the outlet 18, 20 respectively through recesses 38 in a rigid cylindrical outer wall section 40 of the adjacent delivery chamber 10, 12 engage with an elastically deformable resilient inner wall portion 42 of the chamber 10, 12 in order to press it against an opposite chamber wall part and to close the inlet 14, 16 and the outlet 18, 20 airtight. Except in the area of the recesses 38, the elastic inner wall sections 42 are firmly connected to the rigid outer wall sections in order to prevent their contraction when a negative pressure is applied in the chamber 10, 12.
  • the two pneumatic cylinders 32 are each connected to a compressed air tank 48 (FIGS. 4 and 10) by an electromagnetic multi-way switching valve 44, 46 (FIGS. 1 and 7).
  • the two switching valves 44, 46 are always switched so that the pneumatic cylinders 32 are pressurized with compressed air so that in one chamber 10 the inlet 14 is open and the outlet 18 is closed, while in the other chamber 12 the inlet 16 is closed and the Outlet 20 is open, or vice versa (as shown in Figures 2 and 8).
  • the two chambers 10, 12 are each provided with an air-permeable and for powder coating 4 impermeable hollow cylindrical filter element 50 which the chamber 10, 12 between its inlet 14, 16 and its outlet 18, 20 over part of its length in the circumferential direction limited and forms a peripheral wall portion of the chamber 10, 12.
  • the hollow cylindrical filter element 50 consists of sintered polyethylene with a wall thickness between 2 and 4 mm and one
  • the filter element 50 extends approximately over half the chamber length (measured between the centers of the pinch valves 30), it expediently having a length between 20 and 70 mm. At its two ends, the filter element is connected in an airtight manner to the respectively adjoining peripheral wall section 40, 42.
  • each filter element 50 is surrounded by a housing 52 which is separated from the filter element 50 by a cylindrical annular space 54.
  • the housing 52 has a connection 56 which can be acted upon alternately with negative pressure from a negative pressure generator 58 (FIG. 4) and with compressed air from the compressed air container 48 (FIG. 4).
  • a negative pressure generator 58 FIG. 4
  • hose connector 58 At the two opposite ends of the housing 52 and Filter element 50 is provided with a hose connector 58, onto which the adjoining elastically flexible peripheral wall section 42 can be pushed and fastened by means of hose clips (not shown).
  • the hose sockets are screwed 58 to the housing 52 by means of union nuts 60.
  • Sealing rings 62, 64 inserted between the hose connector 58 and the filter element 50 or the housing 52 ensure that when the chamber 10, 12 is pressurized with compressed air, no compressed air from the chamber 10, 12 or from the annular space 54 of the housing in this area 52 escapes and no air enters the chamber 10, 12 or the annular space 54 from the outside when the chamber 10, 12 is subjected to negative pressure.
  • the compressed air / vacuum port 56 around housing 52 of each delivery chamber 10, 12 is alternately connected to the vacuum generator 58 and to the compressed air tank 48 via an electromagnetic 5-way switching valve 66 to the respective Apply vacuum to the chamber 10, 12 for suction of powder coating 4 from the storage container 6 with the inlet 14 or 16 open and the outlet 18 or 20 closed, or the powder coating 4 sucked into the chamber 10, 12 with the inlet 14 or closed. 16 and open outlet 18 or 20 by supplying compressed air into the chamber 10, 12 from the chamber 10, 12 and pushing through the delivery line 28 in the dense stream or so-called plug delivery method.
  • the compressed air container 48 which can be filled with compressed air by a compressor 68, is connected via a pressure regulator 70 and a throttle 72 to one of the three inputs of the 5-way switching valve 66.
  • the other two inputs of the 5-way switching valve 66 are connected by a line 82 to the vacuum generator 58, which is designed as a vacuum injector in the embodiment shown in the drawing.
  • the vacuum injector 58 has an injector nozzle 74 fed with compressed air P from the compressed air container 48.
  • a 4-way switching valve could also be used, the two inputs of which are connected to the compressed air tank 48 and the other to the vacuum generator 58, while the two outputs are each connected to one of the two chambers 10, 12 are connected so that each time the valve is switched, compressed air or a vacuum is alternately applied to them.
  • the two multi-way switching valves 44, 46 (FIG. 1) in the compressed air supply lines of the pneumatic cylinders 32 are also switched over to the outlet 18 or in the chamber 10 or 12 which was emptied immediately beforehand. 20 to close and open the inlet 14 or 16, as well as to close the inlet 16 or 14 in the chamber 12 or 10 filled immediately before and to open the outlet 20 or 18.
  • the Y-shaped line section 26 As best shown in FIG. 2, by applying a negative pressure U when the inlet 16 is open, powder coating 4 is sucked from the storage container 6 or from the feed line 24 into one chamber 12, while that through the filter element 50 into the other chamber 10 Compressed air P supplied the powder coating 4 previously sucked into this chamber 10 through the outlet 18 and through one arm of the Y-shaped line section 26 in the delivery line 28 presses.
  • the Y-shaped line section 26 like the Y-shaped line section 22, is in the region of its bends, ie at the connection points between the foot and the two arms of the Y and between the respective Arm and the inlet 14, 16 of the associated chamber 10, 12 each curved by less than 30 degrees.
  • the compressed air fed through the filter element 50 into the respective chamber 10, 12 not only presses the powder coating 4 contained in the chamber 10, 12 into the conveying line 28, but also cleans the adhering powder coating 4 from the cylindrical inner surface of the filter element 50, which has been sucked onto this surface due to the negative pressure previously applied.
  • the pressure surge generated when the chamber 10, 12 is pressurized with compressed air within the chamber 10, 12 is not always sufficient to also clean the other inner surfaces of the chamber 10, 12 from powder particles, since these are due to a triboelectric Charge can adhere relatively firmly to the surfaces of the chamber 10, 12.
  • a delivery chamber for example the chamber 10
  • the multi-way switching valves 44, 46 of the pneumatic cylinders 32 opening the multi-way switching valves 44, 46 of the pneumatic cylinders 32 accordingly, both the inlet 14 and the outlet 18 of this chamber 10 (and the inlet 16 and close the outlet 20 of the other chamber 12) in order to then blow this chamber 10 together with the delivery line 26 and the feed line 24 from the storage container 6 or from the spray gun 8.
  • the two chambers 10, 12 are each provided with an additional cleaning valve 84 (FIGS. 2 and 9) through which compressed air is used to clean the chamber 10, 12 can be blown inside the same.
  • the cleaning valve 84 which opens between the filter element 50 and the inlet 14, 16 (or the outlet 18, 20) radially from the side into the chamber 10, 12 essentially consists of a metallic pipe nipple 86 with an annular cross section, which is connected by means of an external thread its thicker end facing away from the chamber 10, 12 is screwed airtightly into an internal threaded bore of a pipe socket 88 projecting beyond the chamber wall 42 and the thinner end facing the chamber 10, 12 is closed at the end and has a plurality of radial bores 90 in its cylindrical peripheral wall 92 (cf.
  • a membrane in the form of a tube piece 94 made of a rubber-elastic material is fastened, which rests loosely against its outer circumferential surface under tension and closes the bores 90, as shown in FIGS. 2 and 9 below.
  • the diaphragm 94 is lifted by the compressed air from the outer circumferential surface of the nipple 86, so that the compressed air can flow between the diaphragm 94 and this circumferential surface into the chamber 10, as in FIGS. 2 and 9 shown above.
  • the deformed membrane 94 rests against the circumferential surface of the nipple 86 due to its elastic restoring force and prevents powder coating 4 from escaping through the cleaning valve 84 when the chamber 10, 12 is subsequently pressurized with compressed air.
  • a ball check valve 96 is provided in addition to the membrane, the ball 98 of which is pressed out of its seat against the force of a spring 102 when compressed air is fed into the valve 96.
  • the device 52 in FIGS. 7 to 10 has the housing 52 of each filter element 50 with two connections 104 and 106, respectively Mistake. While one connection 104 is arranged near the outlet end of the filter element 50 and can be subjected to negative pressure, the other connection 106 is arranged near the inlet end of the filter element 50 and can be pressurized with compressed air P from the compressed air tank 48.
  • a line 108 branches between the 5-way switching valve 66 and the housing 52 of each filter element 50, a spring-loaded line in each of the two branch lines 110 and 112 leading to the connections 104 and 106, respectively
  • Check valve 114, 116 is inserted with the opposite direction of installation, so that when compressed air is fed into line 108, check valve 114, which is arranged before connection 104, opens against the spring force, while check valve 116, which is arranged before connection 106, remains closed. Conversely, when a negative pressure is applied in line 118, check valve 116 opens against the spring force, while check valve 114 remains closed.
  • the hollow cylindrical filter elements 50 in the device in FIGS. 7 to 10 also have a greater length or a greater length / inner diameter ratio, namely a length of 80 or 250 mm an inner diameter of 6 or 12 mm and an associated chamber length between the middle of the inlet and outlet side pinch valve 30 of 180 and 400 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Nozzles (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung (2) zum pneumatischen Fördern von pulverförmigem Material (4), bei denen eine durch einen verschliessbaren Einlass (14, 16) mit einem Vorratsbehälter (6) und durch einen verschliessbaren Auslass (18, 20) mit einer Förderleitung (28) verbindbare zylindrische Kammer (10, 12) abwechselnd mit Material aus dem Vorratsbehälter (6) befüllt und entleert wird, indem die Kammer bei geschlossenem Auslass (18, 20) und bei geöffnetem Einlass (14, 16) durch eine von einem gasdurchlässigen Filterelement (50) gebildete Begrenzungswand mit einem Unterdruck beaufschlagt wird, um Material aus dem Vorratsbehälter (6) in die Kammer (10, 12) zu saugen, und indem die Kammer (10, 12) dann bei geschlossenem Einlass (14, 16) und bei geöffnetem Auslass (18, 20) mit einem unter Druck stehenden Gas beaufschlagt wird, um das in die Kammer (10, 12) gesaugte Material in die Förderleitung (28) zu drücken. Um die Lebensdauer des Filterelements (50) zu verlängern und Verunreinigungen desselben leichter zu vermeiden, wird erfindungsgemäss vorgeschlagen, dass das Filterelement (50) als Hohlzylinder ausgebildet ist und mindestens einen Teil der Kammer (10, 12) umschliesst.

Description

Verfahren und Vorrichtung zum Fördern von pulverförmige Material
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Fördern von pulverförmigem Material gemäß dem Oberbegriff des Patentanspruchs 1 bzw. 8. Das Verfahren und die Vorrichtung werden insbesondere in Pulverlackieranlagen eingesetzt, um Pulverlack mittels Druckluft im Dichtstrom aus einem Vorratsbehalter in eine Förderleitung und durch diese zu einer Sprühpistole oder einer anderen Sprühauftragsvorrichtung zu fördern.
Bisher wurde in Pulverlackieranlagen der Pulverlack gewöhnlich pneumatisch im Dünnstromverfahren durch schlauchförmige Förderleitungen aus einem Vorratsbehalter zur Sprühpistole gefördert. Dies bereitet jedoch Probleme, erstens weil relativ große Druckluftmengen benötigt werden, zweitens weil der Durchmesser der schlauchförmigen Förderleitung verhältnismäßig groß sein muss, und drittens infolge von Verschleißproblemen im Bereich abknickender Förderwege. Aus diesem Grund wurden in den vergangenen Jahren in einigen Pulverlackieranlagen Versuche mit der sogenannten Pfropfen- oder Dichtstromförderung unternommen, bei welcher der Pulverlack zyklisch entweder durch Schwerkraft oder mittels Unterdruck in eine Kammer eingebracht und dann mit Druckluft wieder aus der Kammer ausgestoßen und in Form von aufeinanderfolgenden "Pfropfen" durch die Förderleitung zur Sprühauftragsvorrichtung gefördert wird.
Ein Verfahren und eine Vorrichtung der eingangs genannten Art zur Pfropfen- oder Dichtstromförderung von pulverförmigen Stoffen mit Ansaugung durch Unterdruck ist bereits aus der DE 196 43 523, der DE 196 54 649 oder der EP 0 937 004 Bl bekannt. Die bekannte Vorrichtung weist eine zylindrische Pumpkammer auf, die an ihrem unteren Stirnende mit einer Austragsöffnung für das Fördergut und an ihrem oberen Stirnende mit einem für das Fördergut undurchlässigen plattenartigen Filterelement versehen ist, durch das die Pumpkammer abwechselnd mit einer Vakuumpumpe bzw. mit einer Druckgasquelle verbunden werden kann, um zum Befüllen der Pumpkammer Fördergut aus einem Vorratsbehalter durch einen seitlich in die Pumpkammer mündenden Stutzen anzusaugen bzw. um zum Entleeren der Pumpkammer das darin befindliche Fördergut durch die Austragsöffnung in eine Austragsieitung zu drücken. Um eine genaue Dosierung des Förderguts und gleichzeitig eine hohe Fördermenge zu ermöglichen, sollte die Pumpkammer ein möglichst geringes Füllvolumen aufweisen und in einem möglichst kurzen Arbeitszyklus befüllt und entleert werden. Um das letztere zu erreichen, muss jedoch das Gas verhältnismäßig schnell aus der Pumpkammer abgesaugt bzw. in die Pumpkammer zugeführt werden, wozu eine möglichst hohe Druckdifferenz zwischen dem Inneren der Pumpkammer und der Vakuumquelle bzw. der Druckgasquelle erforderlich ist. Eine hohe Druckdifferenz am Filterelement führt jedoch zu einer stärkeren Biege- und Druckbelastung des letzteren und damit zu einer Verkürzung seiner Lebensdauer, weshalb das Filterelement mit Stützgittern oder dergleichen abgestützt werden muss. Dies wiederum führt jedoch zu einer Verringerung seines Durchlassquerschnitts, weshalb man die Wahl zwischen einer stärkeren Belastung und damit einer kürzeren Lebensdauer des Filterelements und einem höheren Gasdurchsatz und damit einem kürzeren Arbeitszyklus hat. Bei der pneumatischen Förderung von Pulverlack kommt hinzu, dass dieser eine Korngröße < 80 μra aufweist, wobei etwa 10 bis 15 % in einem Korngrößenbereich < 5 μm liegen. Da dies im Bereich des Porendurchmessers der verwendeten Filtermaterialien liegt, können Partikel mit kleiner Korngröße tief in das Filterelement eindringen oder dieses sogar passieren. Einige der zuerst genannten Partikel bleiben beim anschließenden Beaufschlagen mit dem Druckgas im Filterelement zurück, wo sie sich ggf. erst nach längerer Zeit wieder lösen, was bei einem Farbwechsel zu Verunreinigungen der lackierten Oberflächen führen kann. Die zuletzt genannten Partikel können zumindest bei Verwendung von Membranpumpen als Unterdruckerzeuger zu deren Beschädigung führen. Ein geringerer Porendurchmesser zur Vermeidung dieser Probleme würde jedoch wiederum einen geringeren Gasdurchsatz und damit längere Arbeitszyklen zur Folge haben. Außerdem können bei der bekannten Vorrichtung beim Entleeren der Kammer auch innerhalb des Ansaugstutzens Farbreste zurückbleiben, was bei einem Farbwechsel ebenfalls Lackverunreinigungen zur Folge haben kann.
Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art dahingehend zu verbessern, dass die Lebensdauer des Filterelements verlängert und Verunreinigungen desselben leichter vermieden werden können.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass das gasdurchlässige Filterelement ein Hohlzylinder ist, der anders als beim Stand der Technik keine Kammerstirnwand sondern einen Teil der Umfangswand der Kammer bildet. Der Erfindung liegt der Gedanke zugrunde, dass sich durch diese Maßnahme auf einfache Weise die Filterfläche des Filterelements vergrößern und damit die Druckdifferenz zwischen der äußeren und der inneren Oberfläche des Filterelements bei gleichem Gasdurchsatz verkleinern lässt, ohne dass dadurch das Volumen der Kammer vergrößert und demzufolge die Dosiergenauigkeit verschlechtert wird. Anders als im Fall einer stirnseitigen Anordnung des Filterelements gestattet es ein als U fangswandabschnitt ausgebildetes Filterelement außerdem, in axialer Richtung geradlinig durch die Kammer zu fördern, wodurch eine reibungslosere Förderung gewährleistet wird. Darüber hinaus sind außer am Ein- und Auslass der Kammer keine bewegten Teile erforderlich.
Das hohlzylindrische Filterelement besteht zweckmäßig aus einem Sintermaterial, vorzugsweise aus gesinterten Kunststoffpulver, da bei Verwendung derartiger starrer Filtermaterialien auf ein Stützmaterial verzichtet werden kann. Ein zylindrisches Filterelement aus einem starren Filtermaterial weist zudem eine höhere Stabilität als ein ebenes Filterelement gleicher Größe auf und kann daher bei entsprechender Durchlässigkeit mit geringerer Wandstärke gefertigt werden. Zweckmäßig ist die Pörengröße des Sintermaterials kleiner als die kleinste Korngröße des geförderten pulverförmigen Materials, das heißt bei der Förderung von Pulve lack vorzugsweise kleiner als 5 μm.
Um eine gleichmäßige Beaufschlagung mit Unterdruck bzw. Druckgas sicherzustellen, ist das Filterelement zweckmäßig von einem Gehäuse umgeben, das durch einen zylindrischen Ringraum vom Filterelement getrennt ist. Der Ringraum ist abwechselnd mit einer Unterdruckquelle bzw. einer Druckgasquelle verbindbar, entweder durch einen einzigen Anschluss oder vorzugsweise durch zwei Anschlüsse, von denen der eine in der Nähe seines dem Auslass zugewandten Stirnendes angeordnet und mit Unterdruck beaufschlagbar ist, während der andere in der Nähe seines dem Einlass zugewandten Stirnendes angeordnet und mit Druckgas beaufschlagbar ist. Mit der zuletzt genannten Anordnung wird infolge einer schnelleren Befüllung der Kammer und eines größeren Füllgrades sowie infolge einer schnelleren und vollständigeren Entleerung der Kammer eine beträchtliche Steigerung der Förderleistung ermöglicht.
Eine weitere Steigerung der Förderleistung kann durch Auswahl eines optimalen Verhältnisses zwischen der Länge und dem Innendurchmesser des hohlzylindrischen Filterelements erreicht werden, das vorzugsweise im Bereich zwischen 10 und 30 liegen sollte.
Durch Versuche hat sich gezeigt, dass verhältnismäßig kurze Arbeitszyklen von weniger als 0,5 s zwischen zwei aufeinanderfolgenden Ansaugvorgängen ohne Beeinträchtigung der Lebensdauer des Filterelements möglich sind, wenn sich das letztere über mehr als ein Drittel der Länge der Kammer zwischen dem Einlass und dem Auslass erstreckt und vorzugsweise eine Länge aufweist, die etwa der Hälfte der Länge der Kammer entspricht.
Eine weitere bevorzugte Ausgestaltung der Erfindung sieht vor, dass die an die beiden Stirnenden des Filterelements angrenzenden zylindrischen Umfangswandabschnitte der Kammer nachgiebig ausgebildet sind, und dass der Einlass und der Auslass im Bereich der nachgiebigen Umfangswandabschnitte angeordnet sind und jeweils durch ein pneumatisch arbeitendes Quetschventil gasdicht geschlossen werden.
Der Einlass und der Auslass der Kammer sind bevorzugt an deren entgegengesetzten Stirnenden angeordnet, so dass bei Verwendung einer einzigen abwechselnd mit Druckgas und Unterdruck beaufschlagten Kammer der Förderweg im Bereich der letzteren geradlinig, d.h. ohne Knickstellen oder Biegungen, verlaufen kann. Ein möglichst kleiner Druckabfall entlang des Förderwegs wird auch dadurch erreicht, dass das Filterelement und die übrige Kammer einen im Wesentlichen dem Innendurchmesser einer Beschickungsleitung zwischen dem Vorratsbehalter und der Kammer bzw. der Förderleitung entsprechenden Innendurchmesser aufweist und so der Förderweg keine größeren QuerSchnittsVeränderungen unterliegt.
Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung erfolgt die Zufuhr des Druckgases in die Kammer während der Förderung des pulverförmigen Materials durch das Filterelement hindurch, um die der Kammer zugewandte Innenseite desselben von anhaftendem pulverförmigem Material zu reinigen. Da es infolge einer triboelektrischen Aufladung des pulverförmigen Materials bei der Förderung jedoch auch an anderen Stellen in der Kammer zu einer elektrostatischen Anhaftung von Pulverpartikeln kommen kann, für deren Abreinigung der durch das Filterelement hindurch erzeugte Druckgasstoß gegebenenfalls nicht ausreicht, wird zur Reinigung zweckmäßig Druckgas am Filterelement vorbei durch ein Reinigungsventil in die Kammer zugeführt.
Um zu verhindern, dass pulverförmiges Material durch dieses Reinigungsventil hindurch aus der Kammer austritt, wenn die Kammer bei der Förderung durch das Filterelement hindurch mit Druckgas beaufschlagt wird, weist das Reinigungsventil vorzugsweise eine Membran auf, die während der Zufuhr von Druckgas durch das Reinigungsventil elastisch verformt wird und eine Eintrittsöffnung für das Druckgas in die Kammer freigibt und die sich bei Beendigung der Druckgaszufuhr durch das Reinigungsventil in ihre ursprüngliche Gestalt zurückverformt, in der sie die Eintrittsöffnung dicht verschließt. Die Membran kann zum Beispiel von einem gummielastischen Schlauchstück gebildet werden, das über die mit Durchtrittsöffnungen versehene Umfangswand eines an seinem freien Stirnende geschlossenen Rohrstutzens gezogen ist und bei der Zufuhr von Druckgas ins Innere des Rohrstutzens durch den Gasdruck von dessen Umfangsflache abgehoben wird, so dass das Druckgas zwischen der Membran und der Umfangswand hindurch in die Kammer strömen kann.
Während es grundsätzlich möglich wäre, den zur Ansaugung von pulverförmigem Material in die Kammer erforderlichen Unterdruck mittels einer Membranpumpe zu erzeugen, sieht eine weitere bevorzugte Ausgestaltung der Erfindung vor, einen sogenannten Vakuuminjektor zu verwenden, der mit Druckluft aus der Druckluftquelle beaufschlagt wird und nach dem Venturi-Prinzip einen Unterdruck erzeugt.
Um einen noch schnelleren Arbeitstakt zu erreichen, ist die Vorrichtung zweckmäßig in bekannter Weise mit zwei Kammern versehen, von denen jeweils immer eine gefüllt wird, während die andere entleert wird. Die beiden Kammern sind in diesem Fall vorzugsweise parallel zueinander ausgerichtet und durch Y- förmige Leitungsabschnitte mit einer gemeinsamen Beschickungsbzw. Förderleitung verbunden, wobei die Winkel zwischen dem Fuß und den beiden Armen des Y und an den Enden der Arme am Übergang zu den parallelen Kammern vorzugsweise jeweils kleiner als 30 Grad sind, um eine möglichst unbehinderte Materialförderung mit geringen Druckverlusten sicherzustellen.
Um die Konstruktion der Vorrichtung mit Doppelkammer zu vereinfachen, werden die Einlasse und die Auslässe beider Kammern mit nur zwei Verschlussmechanismen geöffnet und geschlossen, von denen einer den Einlass der ersten Kammer schließt und gleichzeitig den Einlass der zweiten Kammer öffnet und der andere den Auslass der zweiten Kammer öffnet und gleichzeitig den Auslass der ersten Kammer schließt. Die beiden Verschlussmechanismen umfassen zweckmäßig jeweils einen doppeltwirkenden Pneumatikzylinder mit zwei entgegengesetzten Kolbenstangen, deren freie Enden die nachgiebige Wand der benachbarten Kammer eindrücken, um deren Einlass bzw. Auslass zu verschließen.
Die Pneumatikzylinder sind vorzugsweise mittels zweier elektromagnetischer Mehrwege-Schaltventile in ihren Druckluftzufuhrleitungen ansteuerbar, so dass es möglich ist, zu Reinigungszwecken den Einlass und den Auslass einer Kammer gleichzeitig zu öffnen, zum Beispiel um diese Kammer zusammen mit der Beschickungsleitung und der Förderleitung vom Vorratsbehalter aus auszublasen.
Eine weitere Vereinfachung der Konstruktion der Doppelkammer- Vorrichtung ist dadurch möglich, dass zur gleichzeitigen Beaufschlagung von einer Kammer mit Unterdruck und der anderen Kammer mit Druckgas ein einziges Vier- oder Fünfwege- Schaltventil verwendet wird, von dessen zwei bzw. drei Eingängen einer mit einer Druckluftquelle und der bzw. die anderen mit einem vorzugsweise als Vakuuminjektor ausgebildeten Unterdruckerzeuger verbunden sind, während seine beiden Ausgänge jeweils mit einer der Kammern verbunden sind und durch Umschaltung des Ventils abwechselnd mit dem Druckluft-Eingang bzw. einem der Unterdruck-Eingänge verbunden werden.
Im folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
Fig. 1: eine Draufsicht auf eine erfindungsgemäße Vorrichtung zur pneumatischen Förderung von Pulverlack im Dichtstromverfahren mit zwei Förderkammern; Fig. 2: eine teilweise geschnittene und etwas schematisierte Ansicht der Vorrichtung entsprechend Fig. 1;
Fig. 3: eine vergrößerte Längsschnittansicht eines Teils von einer der beiden Förderkammern der Vorrichtung;
Fig. 4: ein vereinfachtes Pneumatikschaltbild eines Teils der Vorrichtung;
Fig. 5: eine Schnittansicht eines bevorzugten Unterdruckerzeugers der Vorrichtung;
Fig. 6: eine Längsschnittansicht eines alternativen Reinigungsventils zum Zuführen von Reinigungsdruckluft in die Förderkammern;
Fig. 7: eine Draufsicht auf eine weitere erfindungsgemäße Vorrichtung entsprechend Fig. 1;
Fig. 8: eine Ansicht der Vorrichtung aus Fig. 7 entsprechend Fig. 2;
Fig. 9: eine vergrößerte Längsschnittansicht eines Teils von einer der beiden Förderkammern der Vorrichtung aus Fig. 7 und 8
) entsprechend Fig. 3;
Fig. 10: ein vereinfachtes Pneumatikschaltbild eines Teils der Vorrichtung aus den Figuren 7 und 8.
Die in den Figuren 1, 2, 7 und 8 der Zeichnung dargestellten Vorrichtungen 2 dienen dazu, Pulverlack 4 für die elektrostatische Pulverlackierung von Gegenständen pneumatisch im Dichtstromverfahren aus einem Vorratsbehalter 6 zu einer Sprühpistole 8 zu fördern.
Die Vorrichtungen 2 weisen dazu zwei parallele zylindrische Förderkammern 10, 12 auf, deren entgegengesetzte offene Stirnenden jeweils einen Einlass 14, 16 bzw. einen Auslass 18, 20 für den geförderten Pulverlack 4 bilden und mit einem Y- förmigen Leitungsabschnitt 22 einer zum Vorratsbehalter 6 führenden Beschickungsleitung 24 bzw. mit einem Y-förmigen Leitungsabschnitt 26 einer zur Sprühpistole 8 führenden flexiblen Förderleitung 28 verbunden sind.
Jede der beiden Förderkammern 10, 12 ist im Bereich ihres Einlasses 14, 16 und ihres Auslasses 18, 20 mittels eines Quetschventils 30 verschließbar. Die Quetschventile 30 für die beiden Einlasse 14, 16 sind ebenso wie die Quetschventile 30 für die beiden Auslässe 18, 20 jeweils mittels eines zwischen den beiden Förderkammern 10, 12 angeordneten doppeltwirkenden Pneumatikzylinders 32 betätigbar. Die Pneumatikzylinder 32 weisen jeweils zwei Kolbenstangen 34 auf, die nach entgegengesetzten Seiten überstehen und deren sphärisch gerundete freie Enden 36 am Einlass 14, 16 bzw. am Auslass 18, 20 durch Ausnehmungen 38 in einem starren zylindrischen Außenwandabschnitt 40 der benachbarten Förderkammer 10, 12 hindurch mit einem elastisch verformbaren nachgiebigen Innenwandabschnitt 42 der Kammer 10, 12 in Eingriff treten, um diesen gegen einen gegenüberliegenden Kammerwandteil zu drücken und den Einlass 14, 16 bzw. den Auslass 18, 20 luftdicht zu verschließen. Außer im Bereich der Ausnehmungen 38 sind die elastischen Innenwandabschnitte 42 fest mit den starren Außenwandabschnitten verbunden, um ihre Kontraktion beim Anlegen eines Unterdrucks in der Kammer 10, 12 zu verhindern.
Die beiden Pneumatikzylinder 32 sind jeweils durch ein elektromagnetisches Mehrwege-Schaltventil 44, 46 (Figuren 1 und 7) mit einem Druckluftbehälter 48 (Figuren 4 und 10) verbunden. Im Förderbetrieb werden die beiden Schaltventile 44, 46 immer so geschaltet, dass die Pneumatikzylinder 32 kreuzweise mit Druckluft beaufschlagt werden, so dass bei einer Kammer 10 der Einlass 14 geöffnet und der Auslass 18 geschlossen ist, während bei der anderen Kammer 12 der Einlass 16 geschlossen und der Auslass 20 geöffnet ist, oder umgekehrt (wie in den Figuren 2 und 8 dargestellt) .
Um ein Ansaugen von Pulverlack 4 aus dem Vorratsbehalter 6 in die Kammer 10 bzw. 12 mit dem geöffneten Einlass 14 bzw. 16 und ein Ausstoßen des angesaugten Pulverlacks 4 aus der Kammer 12 bzw. 10 mit dem geöffneten Auslass 20 bzw. 18 in die Förderleitung 28 zu ermöglichen, sind die beiden Kammern 10, 12 jeweils mit einem luftdurchlässigen und für Pulverlack 4 undurchlässigen hohlzylindrischen Filterelement 50 versehen, das die Kammer 10, 12 zwischen ihrem Einlass 14, 16 und ihrem Auslass 18, 20 auf einem Teil ihrer Länge in Umfangsrichtung begrenzt und einen Umfangswandabschnitt der Kammer 10, 12 bildet.
Das hohlzylindrische Filterelement 50 besteht aus gesintertem Polyethylen mit einer Wanddicke zwischen 2 und 4 mm und einer
Porengröße von etwa 5 μm und weist einen Innendurchmesser zwischen 5 und 30 mm auf, der im Wesentlichen dem Innendurchmesser der an beiden Seiten angrenzenden Wandabschnitte 40, 42, der Y-förmigen Leitungsabschnitte 22 und 26 sowie der Beschickungsleitung 24 und der Förderleitung 28 entspricht. Das Filterelement 50 erstreckt sich etwa über die halbe Kammerlänge (zwischen den Mitten der Quetschventile 30 gemessen) , wobei es zweckmäßig eine Länge zwischen 20 und 70 mm aufweist. An seinen beiden Stirnenden ist das Filterelement luftdicht mit dem jeweils anschließenden Umfangswandabschnitt 40, 42 verbunden.
Wie am besten in den Figuren 3 und 9 dargestellt, ist jedes Filterelement 50 von einem Gehäuse 52 umgeben, das durch einen zylindrischen Ringraum 54 vom Filterelement 50 getrennt ist. Bei der Vorrichtung aus den Figuren 1 und 2 weist das Gehäuse 52 einen Anschluss 56 auf, der abwechselnd mit Unterdruck aus einem Unterdruckerzeuger 58 (Fig. 4) und mit Druckluft aus dem Druckluftbehälter 48 (Fig. 4) beaufschlagbar ist. An den beiden entgegengesetzten Stirnenden des Gehäuses 52 und des Filterelements 50 ist jeweils ein Schlauchstutzen 58 vorgesehen, auf den der anschließende elastisch nachgiebige Umfangswandabschnitt 42 aufgeschoben und mittels Schlauchschellen (nicht dargestellt) befestigt werden kann. Die Schlauchstutzen sind 58 durch Überwurfmuttern 60 mit dem Gehäuse 52 verschraubt. Zwischen den Schlauchstutzen 58 und das Filterelement 50 bzw. das Gehäuse 52 eingesetzte Dichtringe 62, 64 sorgen dafür, dass bei der Beaufschlagung der Kammer 10, 12 mit Druckluft in diesem Bereich keine Druckluft aus der Kammer 10, 12 oder aus dem Ringraum 54 des Gehäuses 52 entweicht und bei der Beaufschlagung der Kammer 10, 12 mit Unterdruck keine Luft von außen in die Kammer 10, 12 oder in den Ringraum 54 eintritt.
Wie am besten in Fig. 4 dargestellt, wird der Druckluft- /Unterdruck-Anschluss 56 um Gehäuse 52 jeder Förderkammer 10, 12 über ein elektromagnetisches 5-Wege-Schaltventil 66 abwechselnd mit dem Unterdruckerzeuger 58 und mit dem Druckluftbehälter 48 verbunden, um die jeweilige Kammer 10, 12 zur Ansaugung von Pulverlack 4 aus dem Vorratsbeh lter 6 bei geöffnetem Einlass 14 bzw. 16 und geschlossenem Auslass 18 bzw. 20 mit Unterdruck zu beaufschlagen bzw. den in die Kammer 10, 12 gesaugten Pulverlack 4 bei geschlossenem Einlass 14 bzw. 16 und geöffnetem Auslass 18 bzw. 20 durch Zufuhr von Druckluft in die Kammer 10, 12 aus der Kammer 10, 12 auszustoßen und im Dichtstrom- oder sogenannten Pfropfen-Förderverfahren durch die Förderleitung 28 zu drücken.
Der durch einen Verdichter 68 mit Druckluft befüllbare Druckluftbehälter 48 ist über einen Druckregler 70 und eine Drossel 72 mit einem der drei Eingänge des 5-Wege-Schaltventils 66 verbunden. Die beiden anderen Eingänge des 5-Wege- Schaltventils 66 sind durch eine Leitung 82 mit dem Unterdruckerzeuger 58 verbunden, der bei dem in der Zeichnung dargestellten Ausführungsbeispiel als Vakuuminjektor ausgebildet ist. Wie am besten in Fig. 5 dargestellt, weist der Vakuuminjektor 58 eine mit Druckluft P aus dem Druckluftbehälter 48 gespeiste Injektordüse 74 auf. Bei der Zufuhr von Druckluft in die Injektordüse 74 wird nach dem Venturi-Prinzip in einem den Auslass 76 der Injektordüse 74 umgebenden Ringraum 78 ein Unterdruck erzeugt, der über einen Anschlussstutzen 80 und die Leitung 82 an den beiden mit dem Unterdruckerzeuger 58 verbundenen Einlassen des 5-Wege-Schaltventils 66 und bei jedem Umschalten desselben abwechselnd an jeweils einer der beiden Kammern 10, 12 angelegt wird, während die jeweils andere Kammer 12, 10 gleichzeitig mit Druckluft beaufschlagt wird.
An Stelle eines 5-Wege-Schaltventils könnte auch ein 4-Wege- Schaltventil verwendet werden, von dessen beiden Eingängen einer mit dem Druckluftbehälter 48 und der andere mit dem Unterdruckerzeuger 58 verbunden ist, während die beiden Ausgänge jeweils mit einer der beiden Kammern 10, 12 verbunden sind, so dass diese bei jedem Umschalten des Ventils abwechselnd mit Druckluft bzw. mit Unterdruck beaufschlagt werden.
Zeitgleich mit dem Umschalten des 5-Wege-Schaltventils 66 werden auch die beiden Mehrwege-Schaltventile 44, 46 (Fig. 1) in den Druckluftzuleitungen der Pneumatikzylinder 32 umgeschaltet, um bei der unmittelbar zuvor entleerten Kammer 10 bzw. 12 den Auslass 18 bzw. 20 zu schließen und den Einlass 14 bzw. 16 zu öffnen, sowie bei der unmittelbar zuvor befüllten Kammer 12 bzw. 10 den Einlass 16 bzw. 14 zu schließen und den Auslass 20 bzw. 18 zu öffnen.
Wie am besten in Fig. 2 dargestellt, wird durch das Anlegen eines Unterdrucks U bei geöffnetem Einlass 16 Pulverlack 4 aus dem Vorratsbehalter 6 bzw. aus der Beschickungsleitung 24 in die eine Kammer 12 gesaugt, während die durch das Filterelement 50 in die andere Kammer 10 zugeführte Druckluft P den zuvor in diese Kammer 10 angesaugten Pulverlack 4 durch den Auslass 18 und durch den einen Arm des Y-förmigen Leitungsabschnitts 26 in die Förderleitung 28 drückt. Um für eine möglichst reibungslose Förderung ohne größere Druckverluste zu sorgen, ist der Y- för ige Leitungsabschnitt 26 ebenso wie der Y-förmige Leitungsabschnitt 22 im Bereich seiner Biegungen, d.h. an den Verbindungsstellen zwischen dem Fuß und den beiden Armen des Y sowie zwischen dem jeweiligen Arm und dem Einlass 14, 16 der zugehörigen Kammer 10, 12 jeweils um weniger als 30 Grad gekrümmt.
Die während der Förderung durch das Filterelement 50 in die jeweilige Kammer 10, 12 zugeführte Druckluft drückt nicht nur den in der Kammer 10, 12 enthaltenen Pulverlack 4 in die Förderleitung 28, sondern reinigt auch die zylindrische innere Oberfläche des Filterelements 50 von anhaftendem Pulverlack 4, der infolge des zuvor angelegten Unterdrucks an diese Oberfläche angesaugt worden ist. Es hat sich jedoch gezeigt, dass der beim Beaufschlagen der Kammer 10, 12 mit Druckluft innerhalb der Kammer 10, 12 erzeugte Druckstoß nicht immer ausreicht, um auch die übrigen inneren Oberflächen der Kammer 10, 12 von Pulverpartikeln zu reinigen, da diese infolge einer triboelektrischen Aufladung relativ fest an den Oberflächen der Kammer 10, 12 haften können.
Grundsätzlich ist es zwar möglich, zur Reinigung einer Förder ammer, beispielsweise der Kammer 10, durch eine entsprechende Schaltung der Mehrwege-Schaltventile 44, 46 der Pneumatikzylinder 32 sowohl den Einlass 14 und den Auslass 18 dieser Kammer 10 zu öffnen (und den Einlass 16 und den Auslass 20 der anderen Kammer 12 zu schließen) , um diese Kammer 10 dann zusammen mit der Förderleitung 26 und der Beschickungsleitung 24 vom Vorratsbehalter 6 oder von der Sprühpistole 8 her auszublasen.
Da eine derartige Reinigung des gesamten Förderstrangs jedoch nicht immer erwünscht ist, sind die beiden Kammern 10, 12 jeweils mit einem zusätzlichen Reinigungsventil 84 (Figuren 2 und 9) versehen, durch das Druckluft zur Reinigung der Kammer 10, 12 ins Innere derselben eingeblasen werden kann. Das zwischen dem Filterelement 50 und dem Einlass 14, 16 (oder dem Auslass 18, 20) radial von der Seite her in die Kammer 10, 12 mündende Reinigungsventil 84 besteht im Wesentlichen aus einem metallischen Rohrnippel 86 mit ringförmigem Querschnitt, der mittels eines Außengewindes auf seinem von der Kammer 10, 12 abgewandten dickeren Ende luftdicht in eine Innengewindebohrung eines über die Kammerwand 42 überstehenden Rohrstutzens 88 eingeschraubt ist und dessen der Kammer 10, 12 zugewandtes dünneres Ende stirnseitig geschlossen ist und in seiner zylindrischen Umfangswand 92 mehrere radiale Bohrungen 90 aufweist (vgl. auch Fig. 6) . Auf dem dünneren Ende des Nippels 86 ist eine Membran in Form eine Schlauchstücks 94 aus einem gummielastischen Material befestigt, die unter Zugspannung lose gegen seine äußere Umfangsflache anliegt und die Bohrungen 90 verschließt, wie in den Figuren 2 und 9 unten dargestellt. Während der Zufuhr von Druckluft in das Reinigungsventil 84 wird die Membran 94 durch die Druckluft von der äußeren Umfangsflache des Nippels 86 abgehoben, so dass die Druckluft zwischen der Membran 94 und dieser Umfangsflache hindurch in die Kammer 10 strömen kann, wie in den Figuren 2 und 9 oben dargestellt. Bei Beendigung der Druckluftzufuhr legt sich die verformte Membran 94 infolge ihrer elastischen Rückstellkraft wieder gegen die Umfangsflache des Nippels 86 an und verhindert, dass bei einer späteren Beaufschlagung der Kammer 10, 12 mit Druckluft Pulverlack 4 durch das Reinigungsventil 84 hindurch austreten kann.
Bei dem in Fig. 6 vergrößert dargestellten Reinigungsventil 84 ist zusätzlich zu der Membran ein Kugelrückschlagventil 96 vorgesehen, dessen Kugel 98 bei der Zufuhr von Druckluft in das Ventil 96 entgegen der Kraft einer Feder 102 aus ihrem Sitz gedrückt wird.
Im Unterschied zu der Vorrichtung 2 aus den Figuren 1 bis 6 ist bei der Vorrichtung 2 in den Figuren 7 bis 10 das Gehäuse 52 jedes Filterelements 50 mit zwei Anschlüssen 104 bzw. 106 versehen. Während der eine Anschluss 104 in der Nähe des auslassseitigen Stirnendes des Filterelements 50 angeordnet ist und mit Unterdruck beaufschlagbar ist, ist der andere Anschluss 106 in der Nähe des einlassseitigen Stirnendes des Filterelements 50 angeordnet und mit Druckluft P aus dem Druckluftbehälter 48 beaufschlagbar.
Wie am besten in Fig. 10 dargestellt, verzweigt sich dazu eine Leitung 108 zwischen dem 5-Wege-Schaltventil 66 und dem Gehäuse 52 jedes Filterelements 50, wobei in die beiden zu den Anschlüssen 104 bzw. 106 führenden Abzweigleitungen 110 und 112 jeweils ein federbelastetes Rückschlagventil 114, 116 mit umgekehrter Einbaurichtung eingesetzt ist, so dass sich bei Zufuhr von Druckluft in die Leitung 108 das vor dem Anschluss 104 angeordnete Rückschlagventil 114 entgegen der Federkraft öffnet, während das vor dem Anschluss 106 angeordnete Rückschlagventil 116 geschlossen bleibt. Umgekehrt öffnet sich beim Anlegen eines Unterdrucks in der Leitung 118 das Rückschlagventil 116 entgegen der Federkraft, während das Rückschlagventil 114 geschlossen bleibt.
Um die Förderleistung der Vorrichtung 2 weiter zu steigern, weisen außerdem die hohlzylindrischen Filterele ente 50 bei der Vorrichtung in den Figuren 7 bis 10 eine größere Länge bzw. ein größeres Länge/Innendurchmesser-Verhältnis auf, nämlich eine Länge von 80 bzw. 250 mm bei einem Innendurchmesser von 6 bzw. 12 mm und einer zugehörigen Kammerlänge zwischen der Mitte des einlass- und auslassseitigen Quetschventils 30 von 180 bzw. 400 mm.

Claims

Patentansprüche
1. Verfahren zum pneumatischen Fördern von pulverförmigem Material, insbesondere von Pulverlack, bei dem eine durch einen verschließbaren Einlass mit einem Vorratsbehalter und durch einen verschließbaren Auslass mit einer Förderleitung verbindbare zylindrische Kammer abwechselnd mit Material aus dem Vorratsbehalter befüllt und entleert wird, indem die Kammer bei geschlossenem Auslass und bei geöffnetem Einlass durch eine von einem gasdurchlässigen Filterelement gebildete Begrenzungswand mit einem Unterdruck beaufschlagt wird, um Material aus dem Vorratsbehalter in die Kammer zu saugen, und indem die Kammer dann bei geschlossenem Einlass und bei geöffnetem Auslass mit einem unter Druck stehenden Gas beaufschlagt wird, um das in die Kammer gesaugte Material in die Förderleitung zu drücken, dadurch gekennzeichnet, dass das gasdurchlässige Filterelement (50) als Hohlzylinder ausgebildet ist und mindestens einen Teil der Kammer (10, 12) umschließt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kammer (10, 12) zur Entleerung durch das Filterelement (50) hindurch mit Druckgas beaufschlagt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kammer (10, 12) zur Reinigung am Filterelement (50) vorbei mit Druckgas beaufschlagt wird, das durch ein Reinigungsventil (84) in die Kammer (10, 12) zugeführt wird.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Unterdruck von einem mit Druckgas beaufschlagten Vakuuminjektor (58) erzeugt wird.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass parallel mit zwei Kammern (10, 12) gefördert wird, von denen die eine aus dem Vorratsbehalter (6) befüllt wird, während die andere in die Förderleitung (28) entleert wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Einlasse (14, 16) und die Auslässe (18, 20) beider Kammern (10, 12) mittels zweier Verschlussmechanismen (30, 32) geöffnet und geschlossen werden, wobei einer der Verschlussmechanismen (30, 32) den Einlass (14; 16) von einer der beiden Kammern (10; 12) schließt und gleichzeitig den Einlass (16; 14) der anderen Kammer (12; 10) öffnet und der andere Verschlussmechanismus
(30, 32) den Auslass (18; 20) der einen Kammer (10; 12) öffnet und gleichzeitig den Auslass (20; 18) der anderen Kammer (12; 10) schließt.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Beaufschlagung der einen Kammer (10; 12) mit einem Unterdruck und die gleichzeitige Beaufschlagung der anderen Kammer (12; 10) mit Druckgas durch ein einziges Mehrwege- Schaltventil (66) erfolgt.
8. Vorrichtung zum pneumatischen Fördern von pulverförmigem Material, insbesondere von Pulverlack, mit einer zylindrischen Kammer, die abwechselnd durch einen verschließbaren Einlass mit einem Vorratsbehalter und durch einen verschließbaren Auslass mit einer Förderleitung verbindbar ist, die eine von einem gasdurchlässigen Filterelement gebildete Begrenzungswand aufweist, die durch das Filterelement mit Unterdruck beaufschlagbar ist, um Gas aus der Kammer abzusaugen und die Kammer bei geschlossenem Auslass durch den geöffneten Einlass mit Material aus dem Vorratsbehalter zu befüllen, und die mit einem unter Druck stehenden Gas beaufschlagbar ist, um das in die Kammer gesaugte Material bei geschlossenem Einlass durch den geöffneten Auslass in die Förderleitung zu drücken, dadurch gekennzeichnet, dass das Filterelement (50) als Hohlzylinder ausgebildet ist und mindestens einen Teil der Kammer (10, 12) umschließt.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass sich das Filterelement (50) über mehr als ein Drittel der Länge der Kammer (10, 12) zwischen dem Einlass (14, 16) und dem Auslass (18, 20) erstreckt.
10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass ein Umfangswandabschnitt (42) der Kammer (10, 12) beiderseits des Filterelements (50) nachgiebig ausgebildet ist, und dass am Einlass (14, 16) und am Auslass (18, 20) jeweils ein pneumatischen Quetschventil (30) angeordnet ist.
11. Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass ein Innendurchmesser des Filterelements (50) im Wesentlichen dem Innendurchmesser von anschließenden Umfangswandabschnitten (42) der Kammer (10, 12) , dem Innendurchmesser einer Beschickungsleitung (24) zwischen der Kammer (10, 12) und dem Vorratbehälter (6) und/oder dem Innendurchmesser der Förderleitung (28) entspricht.
12. Vorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass der Einlass (14, 16) und der Auslass (18, 20) an entgegengesetzten Stirnenden der Kammer (10, 12) angeordnet sind.
13. Vorrichtung nach einem der Ansprüche 8 bis 12 , dadurch gekennzeichnet, dass das Filterelement (50) aus einem Sintermaterial besteht.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass das Filterelement (50) aus gesinterten Kunststoffpulver besteht.
15. Vorrichtung nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass das Filterelement (50) eine Porengröße von weniger als 20 μm, vorzugsweise von weniger als 5 μm aufweist.
16. Vorrichtung nach einem der Ansprüche 8 bis 15, dadurch gekennzeichnet, dass das Filterelement (50) von einem Gehäuse (52) umgeben ist, das durch einen zylindrischen Ringraum (54) vom Filterelement (50) getrennt ist und mindestens einen mit einem Unterdruckerzeuger (58) und/oder mit einer Druckgasquelle (48) verbindbaren Anschluss (56) aufweist.
17. Vorrichtung nach einem der Ansprüche 8 bis 16, dadurch gekennzeichnet, dass das Gehäuse (52) einen auslassseitigen Unterdruckanschluss (104) und einen einlassseitigen Druckgasanschluss (106) aufweist.
18. Vorrichtung nach einem der Ansprüche 8 bis 17 , dadurch gekennzeichnet, dass die Kammer (10, 12) zur Reinigung durch ein Reinigungsventil (84) am Filterelement (50) vorbei mit Druckgas beaufschlagbar ist.
19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass das Reinigungsventil (84) eine Membran (94) aufweist, die während der Zufuhr von Druckgas durch das Reinigungsventil (84) elastisch verformt wird und eine Eintrittsöffnung in die Kammer (10, 12) freigibt und sich bei Beendigung der Druckgaszufuhr zurückverformt und die Eintrittsöffnung verschließt.
20. Vorrichtung nach einem der Ansprüche 8 bis 19, gekennzeichnet durch mindestens einen Vakuuminjektor (58) zum Beaufschlagen der Kammer (10, 12) mit Unterdruck.
21. Vorrichtung nach einem der Ansprüche 8 bis 20, gekennzeichnet durch zwei Kammern (10, 12) , von denen die eine durch Öffnen ihres Einlasses (14; 16) mit dem Vorratsbehalter (6) verbindbar ist und die andere im Wesentlichen gleichzeitig durch Öffnen ihres Auslasses (20; 18) mit der Förderleitung (28) verbindbar ist, und umgekehrt.
22. Vorrichtung nach Anspruch 21, gekennzeichnet durch zwei Verschlussmechanismen (30, 32), von denen einer den Einlass (14; 16) der einen Kammer (10; 12) schließt und gleichzeitig den Einlass (16; 14) der anderen Kammer (12; 10) öffnet und der andere den Auslass (18; 20) der einen Kammer (10; 12) öffnet und gleichzeitig den Auslass. (20; 18) der anderen Kammer (12; 10) schließt.
23. Vorrichtung nach Anspruch 22, dadurch gekennzeichnet, dass jeder Verschlussmechanismus (30, 32) einen doppeltwirkenden Pneumatikzylinder (32) mit zwei entgegengesetzten Kolbenstangen (34) aufweist, deren Enden (36) einen nachgiebigen Umfangswandabschnitt (42) der benachbarten Kammer (10, 12) eindrücken, um deren Einlass (14, 16) bzw. Auslass (18, 20) zu verschließen.
24. Vorrichtung nach einem der Ansprüche 21 bis 23, gekennzeichnet durch ein einziges Mehrwege-Schaltventil (66) zur gleichzeitigen Beaufschlagung von einer Kammer (10; 12) mit Unterdruck und der anderen Kammer (12; 10) mit Druckgas.
25. Vorrichtung nach Anspruch 24, dadurch gekennzeichnet, dass das Mehrwege-Schaltventil (66) zusammen mit mindestens einem weiteren Mehrwege-Schaltventil (44, 46) in einer Druckluftzufuhrleitung zu den Pneumatikzylindern (32) der beiden Verschlussmechanismen (30, 32) betätigbar ist.
26. Vorrichtung nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass die beiden Kammern (10, 12) durch Y- förmige Leitungsabschnitte (22, 26) mit einer zum Vorratsbehalter (6) führenden Beschickungsleitung (24) bzw. mit der Förderleitung (28) verbunden sind.
27. Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, dass der Förderweg im Bereich der Y-förmigen Leitungsabschnitte (22, 26) Biegungen von weniger als 30 Grad aufweist.
PCT/EP2003/010857 2002-10-14 2003-10-01 Verfahren und vorrichtung zum fördern von pulverförmigem material WO2004087331A1 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US10/501,693 US7150585B2 (en) 2002-10-14 2003-10-01 Process and equipment for the conveyance of powdered material
EP10185752.2A EP2279796B1 (de) 2002-10-14 2003-10-01 Verfarhen und vorrichtung zum fördern von pulverförmigem material
AU2003304031A AU2003304031A1 (en) 2002-10-14 2003-10-01 Method and device for transporting pulverulent material
DE10393291T DE10393291D2 (de) 2002-10-14 2003-10-01 Verfahren und Vorrichtung zum Fördern von pulverförmigen Material
CA2491391A CA2491391C (en) 2002-10-14 2003-10-01 Process and equipment for the conveyance of powdered material
JP2004570034A JP5241996B2 (ja) 2002-10-14 2003-10-01 粉末材料を輸送する方法及び装置
EP03816207A EP1551558A1 (de) 2002-10-14 2003-10-01 Verfahren und vorrichtung zum fürdern von pulverfürmigem material
US11/533,519 US7478976B2 (en) 2002-10-14 2006-09-20 Process and equipment for the conveyance of powdered material
US12/100,116 US7481605B2 (en) 2002-10-14 2008-04-09 Process and equipment for the conveyance of powdered material
US12/331,009 US7648312B2 (en) 2002-10-14 2008-12-09 Process and equipment for the conveyance of powdered material
US12/635,285 US8057129B2 (en) 2002-10-14 2009-12-10 Process and equipment for the conveyance of powdered material
US13/252,506 US8256996B2 (en) 2002-10-14 2011-10-04 Process and equipment for the conveyance of powdered material
US13/568,431 US8491226B2 (en) 2002-10-14 2012-08-07 Process and equipment for the conveyance of powdered material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2002147829 DE10247829A1 (de) 2002-10-14 2002-10-14 Verfahren und Vorrichtung zum Fördern von pulverförmigem Material
DE10247829.5 2002-10-14
DE10261053.3 2002-12-24
DE2002161053 DE10261053A1 (de) 2002-12-24 2002-12-24 Verfahren und Vorrichtung zum Fördern von pulverförmigem Material

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/501,693 Continuation US7150585B2 (en) 2002-10-14 2003-10-01 Process and equipment for the conveyance of powdered material
US10501693 A-371-Of-International 2003-10-01
US11/533,519 Division US7478976B2 (en) 2002-10-14 2006-09-20 Process and equipment for the conveyance of powdered material

Publications (1)

Publication Number Publication Date
WO2004087331A1 true WO2004087331A1 (de) 2004-10-14

Family

ID=33132650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/010857 WO2004087331A1 (de) 2002-10-14 2003-10-01 Verfahren und vorrichtung zum fördern von pulverförmigem material

Country Status (7)

Country Link
US (7) US7150585B2 (de)
EP (2) EP1551558A1 (de)
JP (1) JP5241996B2 (de)
AU (1) AU2003304031A1 (de)
CA (1) CA2491391C (de)
DE (2) DE20321762U1 (de)
WO (1) WO2004087331A1 (de)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005060A2 (en) * 2003-07-11 2005-01-20 Studio A-Z Di Giancarlo Simontacchi Device for conveying powders through pipelines
WO2005051549A1 (en) * 2003-11-24 2005-06-09 Nordson Corporation Dense phase pump for dry particulate material
WO2006064014A1 (en) * 2004-12-17 2006-06-22 Shell Internationale Research Maatschappij B.V. Pipe part for conveying a solid particulate material
JP2006248231A (ja) * 2005-03-09 2006-09-21 Three D Syst Inc レーザ焼結用粉末回収システム
EP1752399A1 (de) 2005-08-12 2007-02-14 J. Wagner AG Vorrichtung und Methode zum Fördern von Pulver
US7478976B2 (en) 2002-10-14 2009-01-20 Nordson Corporation Process and equipment for the conveyance of powdered material
DE102007040900A1 (de) 2007-08-24 2009-02-26 Dürr Systems GmbH Hilfsmaterialaufnahmebehälter und Verfahren zum Abtrennen von Nasslack-Overspray
DE102007040153A1 (de) 2007-08-24 2009-02-26 Dürr Systems GmbH Verfahren und Vorrichtung zum Abscheiden von Overspray eines flüssigen Beschichtungsmaterials
DE102007040901A1 (de) 2007-08-24 2009-02-26 Dürr Systems GmbH Filtervorrichtung und Verfahren zum Abtrennen von Nasslack-Overspray
DE102007040896A1 (de) 2007-08-24 2009-03-05 Dürr Systems GmbH Einheit und Verfahren zum Herstellen einer Vorrichtung zum Abscheiden von Nasslack-Overspray
DE102007041551A1 (de) 2007-08-31 2009-03-05 Itw Gema Gmbh Pulversprühbeschichtungsvorrichtung und Beschichtungspulver-Fördervorrichtung dafür
WO2009037540A2 (en) 2007-09-22 2009-03-26 Itw Gema Gmbh Powder feeding method, powder feeding apparatus and electrostatical powder spray coating apparatus
WO2009040619A1 (en) 2007-09-28 2009-04-02 Itw Gema Gmbh Powder spray coating method and device therefor
DE102007046806A1 (de) 2007-09-29 2009-04-02 Itw Gema Gmbh Pulversprühbeschichtungsvorrichtung und Pulverfördervorrichtung hierfür
DE102007049219A1 (de) 2007-10-13 2009-04-16 Itw Gema Gmbh Pulverfördervorrichtung für Pulversprühbeschichtungsvorrichtungen
DE102007049169A1 (de) 2007-10-13 2009-04-16 Itw Gema Gmbh Pulversprühbeschichtungs-Steuergerät und seine Kombination mit einer Pulverfördervorrichtung oder mit einer Pulversprühbeschichtungsvorrichtung
DE102007048520A1 (de) 2007-10-10 2009-04-16 Itw Gema Gmbh Sprühbeschichtungspulver-Fördervorrichtung und Pulversprühbeschichtungsvorrichtung
DE102007049170A1 (de) 2007-10-13 2009-04-16 Itw Gema Gmbh Pulversprühbeschichtungsvorrichtung oder Pulverfördervorrichtung einer Pulversprühbeschichtungsvorrichtung
DE102007040154A1 (de) 2007-08-24 2009-05-07 Dürr Systems GmbH Verfahren zur Versorgung einer Beschichtungsanlage mit einem partikelförmigen Hilfsmaterial
US7530768B2 (en) * 2005-02-17 2009-05-12 Durr Systems, Inc. Powder conveying pump
US7793869B2 (en) 2003-08-18 2010-09-14 Nordson Corporation Particulate material applicator and pump
WO2011069588A1 (de) 2009-12-09 2011-06-16 Uhde Gmbh Vorrichtung zur einspeisung eines fluids in eine feststoffförderleitung
DE102011004035A1 (de) * 2011-02-14 2012-08-16 Illinois Tool Works Inc. Pulverpumpe zum Fördern von Beschichtungspulver
US8431180B2 (en) 2008-12-19 2013-04-30 Dürr Systems GmbH Paint shop and method of operating a paint shop
WO2014161718A1 (de) 2013-04-03 2014-10-09 Gema Switzerland Gmbh Pulverdichtstrompumpe und entsprechendes betriebsverfahren
DE102013205895A1 (de) 2013-04-03 2014-10-09 Gema Switzerland Gmbh Pulverdichtstrompumpe zum Fördern von Beschichtungspulver sowie entsprechendes Verfahren
DE102014202236A1 (de) 2014-02-07 2015-08-13 Siemens Aktiengesellschaft Hilfsgaselement zum Befördern von Staubströmen
DE102014105044A1 (de) * 2014-04-09 2015-10-15 Gema Switzerland Gmbh System zum Fördern von Beschichtungspulver und Verfahren zum Betreiben eines solchen Systems
DE102014215338A1 (de) 2014-08-04 2016-02-04 Gema Switzerland Gmbh Pulverabgabevorrichtung und Pulverbeschichtungsanlage zum Pulversprühbeschichten von Gegenständen
DE102015108492A1 (de) 2015-05-29 2016-12-01 Gema Switzerland Gmbh Verfahren zum Betreiben einer Pulverdichtstrompumpe sowie Pulverdichtstrompumpe
DE102015218875A1 (de) 2015-09-30 2017-03-30 Siemens Aktiengesellschaft Gaszuführungselement zum Befördern von Staubströmen
DE102017103487A1 (de) 2017-02-21 2018-08-23 Gema Switzerland Gmbh Pulverdichtstrompumpe
DE102021117798A1 (de) 2021-07-09 2023-01-12 Gema Switzerland Gmbh Pulverförderkammer für eine pulverdichtstrompumpe sowie pulverdichtstrompumpe mit einer pulverförderkammer
DE102021117797A1 (de) 2021-07-09 2023-01-12 Gema Switzerland Gmbh Pulverdichtstrompumpe mit quetschventil sowie quetschventil
DE102021117799A1 (de) 2021-07-09 2023-01-12 Gema Switzerland Gmbh Pulverdichtstrompumpe zum fördern von pulverigen materialien

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050126476A1 (en) * 2003-11-05 2005-06-16 Nordson Corporation Improved particulate material application system
EP2314379A1 (de) * 2003-08-18 2011-04-27 Nordson Corporation Sprühauftragvorrichtung für pulverförmiges Material
DE102004007967A1 (de) * 2004-02-18 2005-09-08 Dürr Systems GmbH Pulverförderpumpe und zugehöriges Betriebsverfahren
US7241080B2 (en) * 2004-03-22 2007-07-10 Durr Industries, Inc. Pump for transferring particulate material
US20060219807A1 (en) * 2004-06-03 2006-10-05 Fulkerson Terrence M Color changer for powder coating system with remote activation
US7712681B2 (en) * 2004-06-03 2010-05-11 Nordson Corporation Color change for powder coating material application system
DE102005006522B3 (de) * 2005-02-11 2006-08-03 J. Wagner Ag Vorrichtung zum Fördern von Beschichtungspulver und Verfahren zum Fördern von Pulver mit der Fördervorrichtung
US7731456B2 (en) * 2005-10-07 2010-06-08 Nordson Corporation Dense phase pump with open loop control
US20070099555A1 (en) * 2005-11-03 2007-05-03 Beauchamp Dale A Pneumatic animal confinement house air inlet actuation system and method
DE502006000102D1 (de) * 2006-02-07 2007-10-31 Ibau Hamburg Ing Ges Vorrichtung zum pneumatischen Fördern von partikel-und staubförmigem Schüttgut
DE102007005313A1 (de) * 2007-02-02 2008-08-07 Itw Gema Ag Beschichtungspulver-Fördervorrichtung
DE102007007588A1 (de) * 2007-02-13 2008-08-14 Itw Gema Ag Pulverfördervorrichtung für Sprühbeschichtungspulver
EP1958899B1 (de) * 2007-02-16 2013-08-21 J. Wagner AG Vorrichtung zum Fördern von Fluid
EP1967281B1 (de) * 2007-03-05 2013-01-02 J. Wagner AG Förderkammerschlauch sowie Vorrichtung zum Fördern
ITMI20071799A1 (it) * 2007-09-18 2009-03-19 Geico Spa "dispositivo perfezionato per il trasporto di polveri lungo condotti"
JP2009266962A (ja) * 2008-04-23 2009-11-12 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
US20100014926A1 (en) * 2008-07-17 2010-01-21 Boroch Anthony E System and Method for Pneumatically conveying Metered Amounts of Bulk Particulate Material
CN102209675B (zh) * 2008-11-14 2014-07-23 电源开发工程技术株式会社 闭锁料斗
US20100243252A1 (en) 2009-03-31 2010-09-30 Rajesh Luharuka Apparatus and Method for Oilfield Material Delivery
US8591617B2 (en) * 2009-11-25 2013-11-26 Scott Landgraf Powder coating apparatus and method
FI122107B (fi) * 2010-02-18 2011-08-31 Maricap Oy Menetelmä ja laitteisto pneumaattisessa materiaalinsiirtojärjestelmässä
CN102466104B (zh) * 2010-11-08 2015-08-26 通用电气公司 管道及输送方法
US9022344B2 (en) * 2011-02-28 2015-05-05 Fenwal, Inc. Clamping systems and apparatus
DE102011052432A1 (de) * 2011-04-15 2012-10-18 Reinhausen Plasma Gmbh Membranpumpe und Verfahren zum Fördern von feinkörnigen Pulvern mit Hilfe einer Membranpumpe
ITFI20110117A1 (it) * 2011-06-08 2012-12-09 Tecnorama Srl Valvola pinza-tubi ed apparecchiatura per il dosaggio di liquidi.
ITMI20112166A1 (it) 2011-11-28 2013-05-29 Otto Rusterholz Procedimento e dispositivo tubolare per l' alimentazione controllata di materiali solidi incoerenti nei sistemi a pressione differenziata, particolarmente per trasporti pneumatici
CN104271252A (zh) * 2012-04-13 2015-01-07 诺信公司 可构造用于从文丘里管或浓相泵供给的粉末枪
EP2872257B1 (de) * 2012-07-16 2020-09-23 Nordson Corporation Zur versorgung mittels venturipumpe oder dichtphasenpumpe konfigurierbare pulversprühpistole
US9085065B2 (en) * 2013-02-28 2015-07-21 Comco Inc. Particulate media conveying systems and apparatuses
DE102013205362A1 (de) * 2013-03-26 2014-10-02 Gema Switzerland Gmbh Sprühbeschichtungspistole zur Sprühbeschichtung von Gegenständen mit Beschichtungspulver
DE102013211536A1 (de) 2013-06-19 2014-12-24 Gema Switzerland Gmbh Pulverfördervorrichtung insbesondere für Beschichtungspulver und Verfahren zum Betreiben einer Pulverfördervorrichtung
DE102013211550A1 (de) 2013-06-19 2014-12-24 Gema Switzerland Gmbh Pulverfördervorrichtung insbesondere für Beschichtungspulver
EP3129153B1 (de) 2014-04-07 2018-06-06 Nordson Corporation Pulverversorgung für ein dichststrompulversystem
CN103863824A (zh) * 2014-04-08 2014-06-18 苏州富顺达科技有限公司 上料器
US10533915B2 (en) 2014-05-15 2020-01-14 Nordson Corporation Dense phase pump diagnostics
US20200368767A1 (en) * 2017-11-21 2020-11-26 Siver S.R.L. Apparatus for coating systems
PL3552714T3 (pl) * 2018-04-12 2021-08-30 Wagner International Ag Przenośnik proszku do transportowania proszku powlekającego, sposób wykonania przenośnika proszku i centrum proszku z przenośnikiem proszku do zasilania instalacji do powlekania proszkowego
PL3685924T3 (pl) * 2019-01-25 2022-04-19 Wagner International Ag Urządzenie przenoszące proszek do proszku powlekającego i instalacja do powlekania proszkowego z urządzeniem przenoszącym proszek
DE102020109819A1 (de) 2020-04-08 2021-10-14 Gema Switzerland Gmbh Beschichtungskabine zum beschichten von fahrzeugfelgen
CN112691802A (zh) * 2020-12-09 2021-04-23 广东泽亨智能科技有限公司 一种供粉装置、粉料装置及喷涂系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604758A (en) * 1968-10-02 1971-09-14 Nat Res Dev Apparatus for the conveyance of cohesive particulate material
US4893966A (en) * 1987-07-07 1990-01-16 Franz Roehl Lock apparatus for introducing dry granular materials into a pneumatic conveying conduit and spray gun for such materials
JPH0971325A (ja) * 1995-09-06 1997-03-18 Kazutoshi Ogawa 粉体空気輸送装置

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2151514A (en) 1934-03-17 1939-03-21 Kali Forschungsanstalt Gmbh Method of and apparatus for conveying material containing at least one expansible constituent
US2536300A (en) 1945-04-23 1951-01-02 Jessie F Smith Vacuumizer for filling machines
US2667280A (en) 1949-04-01 1954-01-26 Standard Oil Dev Co Handling finely divided solid materials
DE1087520B (de) 1957-08-07 1960-08-18 Polysius Gmbh Vorrichtung zum pneumatischen Foerdern von schuettfaehigem Gut
US3260285A (en) * 1963-08-05 1966-07-12 Clarence W Vogt Apparatus and method for filling containers for pulverulent material
FR1516004A (fr) 1966-11-18 1968-03-08 Siderurgie Fse Inst Rech Dispositif de transport pneumatique d'un produit pulvérulent
CH491680A (fr) 1967-10-06 1970-06-15 Sames Mach Electrostat Installation de recouvrement d'objets par un produit en poudre
FR1595173A (de) 1968-12-17 1970-06-08
CH533537A (de) * 1970-12-21 1973-02-15 Gericke & Co Vorrichtung zum Abfüllen eines Behältnisses mit verdichtetem, pulvrigem Gut
JPS516459B2 (de) * 1971-08-18 1976-02-27
US3932065A (en) 1973-07-26 1976-01-13 Coulter Electronics, Inc. Pneumatically controlled liquid transfer system
US3923343A (en) * 1973-11-09 1975-12-02 Keystone Int Boast assisted conveying system
GB1452561A (en) 1973-11-16 1976-10-13 Fogt Indmasch Apparatus for pumping wet concrete
US3951572A (en) * 1974-07-08 1976-04-20 Ray Jr Jess B Apparatus for pumping cement slurry
US4079894A (en) 1976-07-14 1978-03-21 Nordson Corporation Electrostatic spray coating gun
US4241880A (en) 1979-03-16 1980-12-30 Nordson Corporation Electrostatic spray gun
DK145208C (da) 1980-07-22 1983-02-28 Askov Mejeri A S Fremgangsmaade og apparat til dosering af et pulver- eller partikelformet materiale
US4502529A (en) * 1981-09-30 1985-03-05 Varney Paul R Heat recovery system
US4502629A (en) 1983-01-18 1985-03-05 Nordson Corporation Nozzle assembly for electrostatic spray guns
CH652100A5 (fr) 1983-04-28 1985-10-31 Frederic Dietrich Procede de transport des poudres et dispositif de mise en oeuvre.
US4545410A (en) * 1984-01-30 1985-10-08 Cyclonaire Corporation System for transferring dry flowable material
US4630777A (en) 1984-02-27 1986-12-23 Nordson Corporation Powder spray gun
US4576827A (en) 1984-04-23 1986-03-18 Nordson Corporation Electrostatic spray coating system
US4613083A (en) 1984-06-21 1986-09-23 Nordson Corporation Adjustable powder spray gun
US4638951A (en) 1985-05-09 1987-01-27 Nordson Corporation Adjustable powder spray nozzle
US4739935A (en) 1986-03-12 1988-04-26 Nordson Corporation Flexible voltage cable for electrostatic spray gun
EP0347544A3 (de) 1988-06-23 1990-09-19 Nordson Corporation Vorrichtung zum Auftragen eines pulver- oder flockenförmigen Materials auf ein Substrat
GB8901580D0 (en) * 1989-01-25 1989-03-15 Alcan Int Ltd Feeder for particulate material
JPH0741991B2 (ja) * 1991-08-27 1995-05-10 株式会社日本アルミ 粉粒体の空気輸送方法及び粉粒体の空気輸送装置
US5273406A (en) * 1991-09-12 1993-12-28 American Dengi Co., Inc. Pressure actuated peristaltic pump
US5252037A (en) 1992-07-30 1993-10-12 Aseptic Technology Engineering Co. Piston valved vertical pump for particulate materials
DE59405572D1 (de) * 1993-11-15 1998-05-07 Zeppelin Schuettguttech Gmbh Verfahren und Vorrichtung zum Freiblasen von Förderleitungen
JPH07172575A (ja) 1993-12-17 1995-07-11 Nordson Kk 粉粒体の供給搬送方法
EP0680790A3 (de) 1994-04-05 1996-06-12 Ransburg Corp Pulverdüse.
US5620138A (en) 1994-11-09 1997-04-15 Nordson Corporation Powder coating gun mounted diffuser and air cooled heat sink in combination with low flow powder pump improvements
DE4446797A1 (de) * 1994-12-24 1996-06-27 Gema Volstatic Ag Injektorvorrichtung zur Beförderung von Beschichtungspulver
US5615037A (en) * 1995-01-17 1997-03-25 Massachusetts Institute Of Technology Sub-octave bandpass optical remote antenna link modulator and method therefor
JP2852497B2 (ja) * 1995-03-16 1999-02-03 モレックス インコーポレーテッド 電気コネクタ
US5768800A (en) * 1995-06-08 1998-06-23 Matsuo Sangyo Co. Ltd. Powder feed mechanism
US5700323A (en) 1995-11-06 1997-12-23 Nordson Corporation Anti-contamination valve for powder delivery system
JP3597920B2 (ja) 1995-11-28 2004-12-08 日本パーカライジング株式会社 粉体塗料供給装置
US5657704A (en) * 1996-01-23 1997-08-19 The Babcock & Wilcox Company Continuous high pressure solids pump system
DE19611533B4 (de) * 1996-03-23 2005-11-03 Itw Gema Ag Vorrichtung zur Pulverbeschichtung
CH689329A5 (de) 1996-10-22 1999-02-26 Dietrich Frederic Vorrichtung und Verfahren zum pneumatischen Fördern pulverförmiger Stoffe.
DE19654648A1 (de) 1996-10-22 1998-04-23 Frederic Dietrich Vorrichtung und Verfahren zum pneumatischen Fördern pulverförmiger Stoffe sowie deren Verwendung
US5788728A (en) 1996-12-03 1998-08-04 Nordson Corporation Powder coating booth with improved cyclone separator
DE19654523C2 (de) 1996-12-19 2003-10-09 Wago Verwaltungs Gmbh Verbindungsklemme mit mindestens zwei Klemmstellen zum Anschließen elektrischer Leiter
US5935283A (en) * 1996-12-31 1999-08-10 Atmi Ecosys Corporation Clog-resistant entry structure for introducing a particulate solids-containing and/or solids-forming gas stream to a gas processing system
US6056483A (en) * 1997-09-10 2000-05-02 Nihon Parkerizing Co., Ltd. Powder coating material feeding apparatus
FR2771721B1 (fr) * 1997-12-02 2000-02-18 Lucien Vidal Dispositif pour transporter pneumatiquement un materiau tel que du beton
US6079461A (en) * 1998-08-17 2000-06-27 The Heil Co. Use of inert gas in transfer of comminuted product to tank
DE19838269A1 (de) * 1998-08-22 2000-02-24 Itw Gema Ag Pulverbeschichtungsvorrichtung
JP2000198548A (ja) * 1999-01-08 2000-07-18 Taisei Corp 粉粒体投入システム
JP2000344343A (ja) * 1999-06-01 2000-12-12 Mitsui High Tec Inc 球状物の搬送装置および搬送方法
DE59912772D1 (de) 1999-09-02 2005-12-15 Boerger & Co Gmbh H Pulverrückgewinnungseinheit
US6478242B1 (en) 1999-09-16 2002-11-12 Nordson Corporation Powder spray gun
JP2003528709A (ja) 1999-09-17 2003-09-30 ノードソン コーポレーション 急速色変更粉体塗装システム
DE19959473A1 (de) 1999-12-10 2001-06-13 Frederic Dietrich Vorrichtung und Verfahren zum pneumatischen Fördern pulverförmiger Stoffe sowie Verwendung der Vorrichtung
US6447216B1 (en) * 2000-08-17 2002-09-10 Xerox Corporation Fluid pumping system for particulate material
JP2002096930A (ja) * 2000-09-20 2002-04-02 Nippon Parkerizing Co Ltd 粉体定量供給装置
US6324854B1 (en) * 2000-11-22 2001-12-04 Copeland Corporation Air-conditioning servicing system and method
ATE329870T1 (de) 2001-09-10 2006-07-15 Dietrich Yves Vorrichtung und verfahren zum überführen eines staub-, pulver-, korn- oder granulatartigen fördergutes aus einem lagerbehälter in einen arbeits- oder überführungsbehälter od.dgl. aufnahmeraum
DE10145448A1 (de) * 2001-09-14 2003-05-22 Bayerische Motoren Werke Ag Vorrichtung zum Fördern von Pulver und Verfahren zu deren Betrieb
EP1551558A1 (de) 2002-10-14 2005-07-13 H. Börger &amp; Co. GmbH Verfahren und vorrichtung zum fürdern von pulverfürmigem material
US6939088B2 (en) * 2002-11-15 2005-09-06 Protech Structural Industries Pneumatic transport air shifter
DE10300280A1 (de) 2003-01-08 2004-07-22 Itw Gema Ag Pumpeneinrichtung für Pulver, Verfahren hierfür und Pulverbeschichtungseinrichtung
WO2004065911A2 (en) * 2003-01-16 2004-08-05 North Carolina State University Apparatus and method for controlling flow of process materials
US6830414B2 (en) * 2003-03-27 2004-12-14 General Motors Corporation Canister powder paint delivery apparatus and method
MXPA05012895A (es) 2003-06-05 2006-02-22 Pfizer Prod Inc Profarmaco inhibidor de beta-lactamasa.
ITMI20031419A1 (it) * 2003-07-11 2005-01-12 Studio A Z Di Giancarlo Simontacchi Dispositivo per il trasporto di polveri attraverso tubazioni
EP2314379A1 (de) 2003-08-18 2011-04-27 Nordson Corporation Sprühauftragvorrichtung für pulverförmiges Material
DE102004007967A1 (de) * 2004-02-18 2005-09-08 Dürr Systems GmbH Pulverförderpumpe und zugehöriges Betriebsverfahren
US7241080B2 (en) * 2004-03-22 2007-07-10 Durr Industries, Inc. Pump for transferring particulate material
DE102005006522B3 (de) * 2005-02-11 2006-08-03 J. Wagner Ag Vorrichtung zum Fördern von Beschichtungspulver und Verfahren zum Fördern von Pulver mit der Fördervorrichtung
US7530768B2 (en) * 2005-02-17 2009-05-12 Durr Systems, Inc. Powder conveying pump
DE102007005313A1 (de) * 2007-02-02 2008-08-07 Itw Gema Ag Beschichtungspulver-Fördervorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604758A (en) * 1968-10-02 1971-09-14 Nat Res Dev Apparatus for the conveyance of cohesive particulate material
US4893966A (en) * 1987-07-07 1990-01-16 Franz Roehl Lock apparatus for introducing dry granular materials into a pneumatic conveying conduit and spray gun for such materials
JPH0971325A (ja) * 1995-09-06 1997-03-18 Kazutoshi Ogawa 粉体空気輸送装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 07 31 July 1997 (1997-07-31) *
See also references of EP1551558A1 *

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478976B2 (en) 2002-10-14 2009-01-20 Nordson Corporation Process and equipment for the conveyance of powdered material
US7648312B2 (en) 2002-10-14 2010-01-19 Nordson Corporation Process and equipment for the conveyance of powdered material
US8057129B2 (en) 2002-10-14 2011-11-15 Nordson Corporation Process and equipment for the conveyance of powdered material
US7481605B2 (en) 2002-10-14 2009-01-27 Nordson Corporation Process and equipment for the conveyance of powdered material
WO2005005060A3 (en) * 2003-07-11 2005-09-09 Studio A Z Di Giancarlo Simont Device for conveying powders through pipelines
WO2005005060A2 (en) * 2003-07-11 2005-01-20 Studio A-Z Di Giancarlo Simontacchi Device for conveying powders through pipelines
US7410329B2 (en) 2003-07-11 2008-08-12 Geico S.P.A. Device for conveying powders through pipelines
US8807464B2 (en) 2003-08-18 2014-08-19 Nordson Corporation Particulate material applicator and pump
US8827191B2 (en) 2003-08-18 2014-09-09 Nordson Corporation Spray applicator with multi-piece housing
US7793869B2 (en) 2003-08-18 2010-09-14 Nordson Corporation Particulate material applicator and pump
US8057197B2 (en) 2003-11-24 2011-11-15 Nordson Corporation Transparent valve body for dense phase pump
US8333570B2 (en) 2003-11-24 2012-12-18 Nordson Corporation Dense phase pump for dry particulate material
US7997878B2 (en) 2003-11-24 2011-08-16 Nordson Corporation Dense phase powder pump with single ended flow and purge
US8678777B2 (en) 2003-11-24 2014-03-25 Nordson Corporation Dense phase pump for dry particulate material
WO2005051549A1 (en) * 2003-11-24 2005-06-09 Nordson Corporation Dense phase pump for dry particulate material
EP2095881A3 (de) * 2003-11-24 2009-10-21 Nordson Corporation Pumpe zum Transport in dichter Phase für trockenes partikelförmiges Material
WO2006064014A1 (en) * 2004-12-17 2006-06-22 Shell Internationale Research Maatschappij B.V. Pipe part for conveying a solid particulate material
US8801340B2 (en) 2004-12-17 2014-08-12 Shell Oil Company Pipe part for conveying a solid particulate material
US7530768B2 (en) * 2005-02-17 2009-05-12 Durr Systems, Inc. Powder conveying pump
US7887316B2 (en) 2005-03-09 2011-02-15 3D Systems, Inc. Selective laser sintering powder recycle system
JP2006248231A (ja) * 2005-03-09 2006-09-21 Three D Syst Inc レーザ焼結用粉末回収システム
EP1752399A1 (de) 2005-08-12 2007-02-14 J. Wagner AG Vorrichtung und Methode zum Fördern von Pulver
DE102007040901A1 (de) 2007-08-24 2009-02-26 Dürr Systems GmbH Filtervorrichtung und Verfahren zum Abtrennen von Nasslack-Overspray
EP2383048A1 (de) 2007-08-24 2011-11-02 Dürr Systems GmbH Verfahren und Vorrichtung zum Abscheiden von Overspray eines flüssigen Beschichtungsmaterials
US9616370B2 (en) 2007-08-24 2017-04-11 Dürr Systems GmbH Method and apparatus for introducing auxiliary material
DE102007040154A1 (de) 2007-08-24 2009-05-07 Dürr Systems GmbH Verfahren zur Versorgung einer Beschichtungsanlage mit einem partikelförmigen Hilfsmaterial
DE102007040896B4 (de) 2007-08-24 2023-02-16 Dürr Systems Ag Vorrichtung zum Abtrennen von Nasslack-Overspray, Anlage zum Lackieren von Gegenständen, Verfahren zum Herstellen einer Vorrichtung zum Abscheiden von Nasslack-Overspray und Verfahren zum Umbau einer bestehenden Vorrichtung zum Abscheiden von Nasslack-Overspray
US8377177B2 (en) 2007-08-24 2013-02-19 Durr Systems Gmbh Method for supplying auxiliary material and receptacle for auxiliary material
DE102007040898A1 (de) 2007-08-24 2009-10-01 Dürr Systems GmbH Verfahren und Vorrichtung zum Einbringen von Hilfsmaterial
DE102007040899A1 (de) 2007-08-24 2009-10-01 Dürr Systems GmbH Verfahren zum Zuführen von Hilfsmaterial und Hilfsmaterialaufnahmebehälter
EP2505255A1 (de) 2007-08-24 2012-10-03 Dürr Systems GmbH Filtervorrichtung und Verfahren zum Abtrennen von Nasslack-Overspray
EP2581126A1 (de) 2007-08-24 2013-04-17 Dürr Systems GmbH Filtervorrichtung und Verfahren zum Abtrennen von Nasslack-Overspray
US8584616B2 (en) 2007-08-24 2013-11-19 Durr Systems Gmbh Method for supplying a coating system with a particulate auxiliary material
DE102007040900A1 (de) 2007-08-24 2009-02-26 Dürr Systems GmbH Hilfsmaterialaufnahmebehälter und Verfahren zum Abtrennen von Nasslack-Overspray
WO2009026995A1 (de) 2007-08-24 2009-03-05 Dürr Systems GmbH Verfahren und vorrichtung zum abscheiden von overspray eines flüssigen beschichtungsmaterials
DE102007040153A1 (de) 2007-08-24 2009-02-26 Dürr Systems GmbH Verfahren und Vorrichtung zum Abscheiden von Overspray eines flüssigen Beschichtungsmaterials
EP2335800A1 (de) 2007-08-24 2011-06-22 Dürr Systems GmbH Filtervorrichtung und Verfahren zum Abtrennen von Nasslack-Overspray
DE102007040896A1 (de) 2007-08-24 2009-03-05 Dürr Systems GmbH Einheit und Verfahren zum Herstellen einer Vorrichtung zum Abscheiden von Nasslack-Overspray
EP2826567A1 (de) 2007-08-24 2015-01-21 Dürr Systems GmbH Verfahren zum Zuführen von Hilfsmaterial und Hilfsmaterialaufnahmebehälter
DE102007041551A1 (de) 2007-08-31 2009-03-05 Itw Gema Gmbh Pulversprühbeschichtungsvorrichtung und Beschichtungspulver-Fördervorrichtung dafür
DE202007018809U1 (de) 2007-08-31 2009-05-14 Itw Gema Gmbh Pulversprühbeschichtungsvorrichtung und Beschichtungspulver-Fördervorrichtung dafür
WO2009037540A2 (en) 2007-09-22 2009-03-26 Itw Gema Gmbh Powder feeding method, powder feeding apparatus and electrostatical powder spray coating apparatus
DE102007045330A1 (de) 2007-09-22 2009-04-02 Itw Gema Gmbh Beschichtungspulver-Förderverfahren, Beschichtungspulver-Fördervorrichtung und elektrostatische Pulversprühbeschichtungsvorrichtung
WO2009040619A1 (en) 2007-09-28 2009-04-02 Itw Gema Gmbh Powder spray coating method and device therefor
DE102007046738A1 (de) 2007-09-28 2009-04-02 Itw Gema Gmbh Pulversprühbeschichtungsverfahren und -vorrichtung
DE102007046806A1 (de) 2007-09-29 2009-04-02 Itw Gema Gmbh Pulversprühbeschichtungsvorrichtung und Pulverfördervorrichtung hierfür
DE102007048520A1 (de) 2007-10-10 2009-04-16 Itw Gema Gmbh Sprühbeschichtungspulver-Fördervorrichtung und Pulversprühbeschichtungsvorrichtung
DE102007049170A1 (de) 2007-10-13 2009-04-16 Itw Gema Gmbh Pulversprühbeschichtungsvorrichtung oder Pulverfördervorrichtung einer Pulversprühbeschichtungsvorrichtung
DE102007049219A1 (de) 2007-10-13 2009-04-16 Itw Gema Gmbh Pulverfördervorrichtung für Pulversprühbeschichtungsvorrichtungen
DE102007049169A1 (de) 2007-10-13 2009-04-16 Itw Gema Gmbh Pulversprühbeschichtungs-Steuergerät und seine Kombination mit einer Pulverfördervorrichtung oder mit einer Pulversprühbeschichtungsvorrichtung
WO2009047602A1 (en) 2007-10-13 2009-04-16 Itw Gema Gmbh Feeding device for powder spray coating device
US8658240B2 (en) 2008-12-19 2014-02-25 Durr Systems Gmbh Paint shop and method of operating a paint shop
US8431180B2 (en) 2008-12-19 2013-04-30 Dürr Systems GmbH Paint shop and method of operating a paint shop
WO2011069588A1 (de) 2009-12-09 2011-06-16 Uhde Gmbh Vorrichtung zur einspeisung eines fluids in eine feststoffförderleitung
DE102009057380A1 (de) 2009-12-09 2011-06-16 Uhde Gmbh Vorrichtung zur Einspeisung eines Fluids in eine Feststoffförderleitung
CN102712426A (zh) * 2009-12-09 2012-10-03 蒂森克虏伯伍德有限公司 用于将流体馈入固体输送管的装置
DE102011004035A1 (de) * 2011-02-14 2012-08-16 Illinois Tool Works Inc. Pulverpumpe zum Fördern von Beschichtungspulver
WO2012112436A1 (en) * 2011-02-14 2012-08-23 Illinois Tool Works Inc. Powder pump for conveying coating powder
WO2014161718A1 (de) 2013-04-03 2014-10-09 Gema Switzerland Gmbh Pulverdichtstrompumpe und entsprechendes betriebsverfahren
DE102013205895A1 (de) 2013-04-03 2014-10-09 Gema Switzerland Gmbh Pulverdichtstrompumpe zum Fördern von Beschichtungspulver sowie entsprechendes Verfahren
DE102013205895B4 (de) 2013-04-03 2024-07-11 Gema Switzerland Gmbh Pulverdichtstrompumpe zum Fördern von Beschichtungspulver, Pulversprühbeschichtungsvorrichtung sowie entsprechendes Verfahren
DE102014202236A1 (de) 2014-02-07 2015-08-13 Siemens Aktiengesellschaft Hilfsgaselement zum Befördern von Staubströmen
DE102014105044A1 (de) * 2014-04-09 2015-10-15 Gema Switzerland Gmbh System zum Fördern von Beschichtungspulver und Verfahren zum Betreiben eines solchen Systems
DE102014215338A1 (de) 2014-08-04 2016-02-04 Gema Switzerland Gmbh Pulverabgabevorrichtung und Pulverbeschichtungsanlage zum Pulversprühbeschichten von Gegenständen
DE102014215338B4 (de) * 2014-08-04 2016-03-31 Gema Switzerland Gmbh Pulverabgabevorrichtung und Pulverbeschichtungsanlage zum Pulversprühbeschichten von Gegenständen
DE102015108492A1 (de) 2015-05-29 2016-12-01 Gema Switzerland Gmbh Verfahren zum Betreiben einer Pulverdichtstrompumpe sowie Pulverdichtstrompumpe
DE102015218875A1 (de) 2015-09-30 2017-03-30 Siemens Aktiengesellschaft Gaszuführungselement zum Befördern von Staubströmen
DE102017103487A1 (de) 2017-02-21 2018-08-23 Gema Switzerland Gmbh Pulverdichtstrompumpe
WO2018153515A1 (de) 2017-02-21 2018-08-30 Gema Switzerland Gmbh Pulverdichtstrompumpe
CN110325286A (zh) * 2017-02-21 2019-10-11 瑞士金马有限公司 密相粉末泵
CN110325286B (zh) * 2017-02-21 2022-05-27 瑞士金马有限公司 密相粉末泵
DE102021117798A1 (de) 2021-07-09 2023-01-12 Gema Switzerland Gmbh Pulverförderkammer für eine pulverdichtstrompumpe sowie pulverdichtstrompumpe mit einer pulverförderkammer
WO2023280939A1 (de) 2021-07-09 2023-01-12 Gema Switzerland Gmbh Pulverförderkammer für eine pulverdichtstrompumpe sowie pulverdichtstrompumpe mit einer pulverförderkammer
DE102021117797A1 (de) 2021-07-09 2023-01-12 Gema Switzerland Gmbh Pulverdichtstrompumpe mit quetschventil sowie quetschventil
DE102021117799A1 (de) 2021-07-09 2023-01-12 Gema Switzerland Gmbh Pulverdichtstrompumpe zum fördern von pulverigen materialien
DE102021117797A8 (de) 2021-07-09 2024-01-04 Gema Switzerland Gmbh Pulverdichtstrompumpe mit quetschventil sowie quetschventil

Also Published As

Publication number Publication date
DE10393291D2 (de) 2005-07-28
US7481605B2 (en) 2009-01-27
DE20321762U1 (de) 2009-08-27
EP1551558A1 (de) 2005-07-13
JP5241996B2 (ja) 2013-07-17
US20070081865A1 (en) 2007-04-12
US8491226B2 (en) 2013-07-23
CA2491391A1 (en) 2004-10-14
US7648312B2 (en) 2010-01-19
US8057129B2 (en) 2011-11-15
US8256996B2 (en) 2012-09-04
US20100086368A1 (en) 2010-04-08
EP2279796A2 (de) 2011-02-02
US20120045287A1 (en) 2012-02-23
EP2279796A3 (de) 2016-10-26
US20050095071A1 (en) 2005-05-05
JP2006521979A (ja) 2006-09-28
US20080184931A1 (en) 2008-08-07
US20120308315A1 (en) 2012-12-06
US7478976B2 (en) 2009-01-20
CA2491391C (en) 2011-01-04
US20090084312A1 (en) 2009-04-02
US7150585B2 (en) 2006-12-19
AU2003304031A1 (en) 2004-10-25
EP2279796B1 (de) 2020-12-30

Similar Documents

Publication Publication Date Title
EP2279796B1 (de) Verfarhen und vorrichtung zum fördern von pulverförmigem material
EP2981365B1 (de) Pulverdichtstrompumpe und entsprechendes betriebsverfahren
EP3010645B1 (de) Pulverfördervorrichtung für beschichtungspulver
DE10353968A1 (de) Beschichtungspulver-Fördervorrichtung und -Förderverfahren
EP1427536A1 (de) Vorrichtung zum fördern von pulver und verfahren zu deren betrieb
DE202007018809U1 (de) Pulversprühbeschichtungsvorrichtung und Beschichtungspulver-Fördervorrichtung dafür
EP2085614A1 (de) Fördervorrichtung, insbesondere Doppel-Membran-Kolbenpumpe
DE202006015697U1 (de) Verbesserter Applikator für Teilchenmaterial und Pumpe
DE102007049219A1 (de) Pulverfördervorrichtung für Pulversprühbeschichtungsvorrichtungen
EP3177406B1 (de) Pulverabgabevorrichtung und pulverbeschichtungsanlage zum pulversprühbeschichten von gegenständen
CH697609B1 (de) Verfahren und Vorrichtung zur Überwachung von Strömungsverhältnissen.
EP3585522B1 (de) Pulverdichtstrompumpe
EP1752399B1 (de) Vorrichtung und Methode zum Fördern von Pulver
DE102013205895B4 (de) Pulverdichtstrompumpe zum Fördern von Beschichtungspulver, Pulversprühbeschichtungsvorrichtung sowie entsprechendes Verfahren
DE10261053A1 (de) Verfahren und Vorrichtung zum Fördern von pulverförmigem Material
DE10247829A1 (de) Verfahren und Vorrichtung zum Fördern von pulverförmigem Material
DE102007048520A1 (de) Sprühbeschichtungspulver-Fördervorrichtung und Pulversprühbeschichtungsvorrichtung
EP3043923A1 (de) Pulverversorgung mittels einer dichtstrompumpe für eine beschichtungsanlage
WO2016192915A1 (de) Verfahren zum betreiben einer pulverdichtstrompumpe sowie pulverdichtstrompumpe
WO2023280939A1 (de) Pulverförderkammer für eine pulverdichtstrompumpe sowie pulverdichtstrompumpe mit einer pulverförderkammer
DE20321593U1 (de) Vorrichtung zum Fördern von pulverförmigem Material
DE102006005209A1 (de) Sauglanze, Vorrichtung und Verfahren zum Fördern von pulverförmigem Material zu einer Dichtstrompumpe
EP3936235A1 (de) Beschichtungsanlage zum beschichten von werkstücken mit beschichtungsmaterial
DE102021117799A1 (de) Pulverdichtstrompumpe zum fördern von pulverigen materialien
DE102019101930A1 (de) Pulverabgabevorrichtung mit einer Pulverdünnstrompumpe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004570034

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10501693

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2491391

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003816207

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003816207

Country of ref document: EP

REF Corresponds to

Ref document number: 10393291

Country of ref document: DE

Date of ref document: 20050728

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393291

Country of ref document: DE