[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004066856A1 - 超音波プローブ及び超音波装置 - Google Patents

超音波プローブ及び超音波装置 Download PDF

Info

Publication number
WO2004066856A1
WO2004066856A1 PCT/JP2004/000812 JP2004000812W WO2004066856A1 WO 2004066856 A1 WO2004066856 A1 WO 2004066856A1 JP 2004000812 W JP2004000812 W JP 2004000812W WO 2004066856 A1 WO2004066856 A1 WO 2004066856A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
therapeutic
wave
diagnostic
transducer
Prior art date
Application number
PCT/JP2004/000812
Other languages
English (en)
French (fr)
Inventor
Jun Kubota
Akira Sasaki
Hiroshi Furuhata
Kazunari Ishida
Shinichiro Umemura
Takashi Azuma
Katsunori Asafusa
Original Assignee
Hitachi Medical Corporation
Jikei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation, Jikei University filed Critical Hitachi Medical Corporation
Priority to JP2005504740A priority Critical patent/JP4543430B2/ja
Priority to EP04706363A priority patent/EP1591073A4/en
Priority to US10/543,916 priority patent/US7662098B2/en
Publication of WO2004066856A1 publication Critical patent/WO2004066856A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/546Control of the diagnostic device involving monitoring or regulation of device temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0808Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the brain
    • A61B8/0816Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the brain using echo-encephalography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound

Definitions

  • the present invention relates to an ultrasonic probe and an ultrasonic device for performing ultrasonic treatment.
  • Ultrasound equipment emits diagnostic ultrasound through a diagnostic probe that has been brought into contact with the body surface of the subject, and based on reflected echo signals generated from the subject, generates ultrasound images (for example,
  • the treatment site is non-invasively treated by emitting treatment ultrasonic waves to the subject via the treatment probe.
  • a diagnostic probe and a therapeutic probe are arranged side by side on the body of the subject and contacted to emit therapeutic ultrasonic waves while confirming the treatment site with an ultrasonic image.
  • a diagnostic probe and a therapeutic probe are arranged side by side on the body of the subject and contacted to emit therapeutic ultrasonic waves while confirming the treatment site with an ultrasonic image.
  • an ultrasonic probe according to the present invention includes a plurality of first transducers arranged, a treatment transducer that emits treatment ultrasound to a subject, and a plurality of the arranged transducers.
  • a diagnostic vibrator that emits diagnostic ultrasonic waves to the subject and receives the diagnostic ultrasonic waves reflected by the subject.
  • the diagnostic transducer is laminated with the diagnostic transducer.
  • the control accuracy of the irradiation position of the therapeutic ultrasonic wave can be reduced. Can be improved.
  • the center of the diameter of the therapeutic oscillator and the center of the diameter of the diagnostic oscillator can be matched.
  • the ultrasonic apparatus includes: the ultrasonic probe; a therapeutic transmitting unit that generates a driving signal of the therapeutic vibrator; and a diagnostic transmitting unit that generates a drive signal of the diagnostic vibrator.
  • a detecting unit, wherein the therapeutic wave transmitting unit has a warning function of outputting warning information based on the state of the treatment detected by the detecting unit.
  • the present invention it is possible to detect the progress of treatment by treatment ultrasonic waves and the like, so that the operator can sound a warning sound or display a warning message when treatment is completed, so that the operator can The ultrasonic treatment can be stopped, and the usability of the ultrasonic device is improved. In addition, it is possible to prevent the treatment ultrasonic wave from being excessively irradiated to the treatment site.
  • FIG. 1 is a configuration diagram of an ultrasonic apparatus according to a first embodiment of the present invention
  • FIG. 2 is a perspective view schematically showing the ultrasonic probe according to the first embodiment of the present invention
  • FIG. 3 is a cross-sectional view taken along line II-II of FIG.
  • FIG. 4 is a perspective view schematically showing an ultrasonic probe according to another embodiment
  • FIG. 5 is a time chart showing the operation of the ultrasonic probe
  • FIG. 6 is a configuration diagram of an ultrasonic apparatus according to a second embodiment of the present invention
  • FIG. 7 is a configuration diagram of an ultrasonic device according to a third embodiment of the present invention
  • FIG. 8 is a configuration diagram of an ultrasonic device according to a fourth embodiment of the present invention.
  • FIG. 9 is a perspective view schematically illustrating an ultrasonic probe according to a fifth embodiment of the present invention.
  • FIG. 10 is a schematic view illustrating another example of the ultrasonic probe according to the fifth embodiment of the present invention.
  • FIG. 11 is a perspective view schematically showing still another example of the ultrasonic probe according to the fifth embodiment of the present invention.
  • FIG. 12 is a configuration diagram of a therapeutic ultrasonic wave transmission unit according to a seventh embodiment of the present invention
  • FIG. 13 is a diagram illustrating avoidance of interference between an incident wave and a reflected wave in the eighth embodiment of the present invention
  • the present embodiment is an example of an ultrasonic probe in which a plurality of diagnostic transducers are stacked on an ultrasonic emission surface of a treatment transducer.
  • the ultrasonic device 1 includes a diagnostic ultrasonic unit 9, a therapeutic ultrasonic transmitting unit 24, a display unit 18, an input unit 20, a control unit 21 and the like.
  • the diagnostic ultrasonic unit 9 includes a diagnostic transmitting / receiving section 12 having a diagnostic transmitting section, and an image forming section including a tomographic image forming section 14 and a blood flow image forming section 16.
  • the therapeutic ultrasound transmitting unit 24 includes a therapeutic transmitting unit 25, an alarm unit 27, and the like.
  • the diagnostic transmitting / receiving section 12 and the therapeutic transmitting section 25 are connected to an ultrasonic probe 10.
  • the diagnostic transmitting / receiving section 12 generates a drive signal for transmitting the diagnostic ultrasonic wave to the ultrasonic probe 10 and receives a reflected echo signal output from the ultrasonic probe 10. is there.
  • the tomographic image forming unit 14 reconstructs a tomographic image based on the reflected echo signal.
  • the blood flow image forming section 16 obtains a blood flow velocity from the Doppler deviation of the reflected echo signal to reconstruct a blood flow image.
  • the therapeutic wave transmitting section 25 is a drive signal for causing the ultrasonic probe 10 to emit therapeutic ultrasonic waves. No. is generated.
  • the alarm unit 27 has a warning function of sounding a buzzer or displaying a warning message according to an input command.
  • the display unit 18 displays a tomographic image and a blood flow image on a display screen of a monitor.
  • the input unit 20 has a pointing device such as a keyboard and a mouse.
  • the ultrasonic probe 10 emits ultrasonic waves for diagnosis and treatment, and is included in the headset 11.
  • the head set 11 includes an ultrasonic probe 10, a probe cooling unit including water bags 32 a and 32 b, a circulation path 36, and a heat radiating unit 34.
  • the water bags 32a and 32b are formed in a bag shape, and a cooling medium (for example, water) is stored therein.
  • the water bags 32a and 32b are not limited to bags.
  • the circulation path 36 guides the water in the water bags 32 a and 32 b to the radiator 34.
  • the radiator 34 radiates the heat of the guided water to the outside air.
  • the head set 11 is attached to the head of the subject.
  • the water bags 32a and 32b of the headset 11 are fixed in contact with the epidermis of the subject's head (for example, near the temple).
  • the ultrasonic probe 10 is brought into contact with the back surface of the water bag 32a.
  • a drive signal is supplied to the ultrasonic probe 10 from the transmitting / receiving section 12 for diagnosis.
  • Ultrasonic waves for diagnosis are emitted from the ultrasonic probe 10 toward the subject by the supplied drive signal.
  • the emitted diagnostic ultrasonic waves are reflected or scattered by living tissue or blood flow in the head.
  • the diagnostic ultrasonic wave is received by the ultrasonic probe 10 as a reflected echo signal.
  • the received reflected echo signal is reconstructed as a tomographic image by the tomographic image forming unit 14.
  • the reconstructed tomographic image is displayed on the monitor of the display unit 18. By observing the displayed tomographic image, the position of the treatment site (for example, cerebral thrombus) can be accurately specified.
  • the position of the treatment site (for example, cerebral thrombus) on the tomographic image is input and set from the input unit 20. Based on the set position coordinates of the cerebral thrombus, a drive signal is generated by the therapeutic wave transmitting unit 25. The generated drive signal is supplied to the therapeutic wave transmitter 25 of the ultrasonic probe 10. With this, the ultrasonic probe 10 irradiates therapeutic ultrasonic waves to the cerebral thrombus, Dissolve cerebral thrombus non-invasively.
  • a blood flow image (for example, a two-dimensional Doppler blood flow image, a pulsed Doppler FFT measurement image) is reconstructed and displayed based on the obtained Doppler stitches.
  • both probes are arranged side by side and contact the water bag 32a.
  • a difference occurs in the scanning coordinates between the diagnostic ultrasonic wave and the therapeutic ultrasonic wave according to the difference in the contact position between the two probes.
  • the ultrasonic probe 10 is configured by laminating a diagnostic transducer 52, a therapeutic transducer 50, a backing material 54, and a cooling unit 56 in order from the subject side. ing.
  • the therapeutic transducer 50 generates ultrasonic waves of relatively low frequency (for example, about 500 kHz)
  • the diagnostic transducer 52 generates ultrasonic waves of relatively high frequency (for example, about 2 MHz). Generate. Therefore, the ultrasonic wave generated from the diagnostic oscillator 52 is more difficult to penetrate an obstacle than the ultrasonic wave generated from the therapeutic oscillator 50, and the diagnostic oscillator 52 is closer to the specimen. As shown in FIG.
  • the therapeutic vibrator 50 is formed by arranging a plurality of vibrating elements 50a to 50d.
  • Each of the treatment vibration elements 50a to 50d is formed of a rectangular parallelepiped piezoelectric ceramic, and is disposed at equal intervals with the longitudinal direction of the ultrasonic emission surface 51 being parallel.
  • the disposed therapeutic vibrating elements 50a to 50d convert the drive signal from the therapeutic wave transmitting section 24 into mechanical vibrations, and apply the therapeutic signals to the treatment site (for example, cerebral thrombus). Deflected sound waves are emitted.
  • the diagnostic vibrator 52 is formed by arranging a plurality of vibrating elements 52 a to 52 p.
  • Each of the diagnostic vibrating elements 52 a to 52 p is formed of a rectangular parallelepiped piezoelectric ceramic, and the vibrating elements 50 a to 50 p of the therapeutic vibrator 50 are provided to increase the resolution of the reconstructed tomographic image. It is formed smaller than 0 d.
  • the plurality of diagnostic transducers 52 a to 52 p are distributed on the ultrasonic emission surface 51. For example, as shown in FIG. 2, the diagnostic transducers 52a to 52d are distributed on the ultrasonic emission surface 51 of the therapeutic transducer 50a.
  • the surfaces of the diagnostic vibrating elements 52 a to 52 d opposite to the ultrasonic wave emitting surface 53 are joined to the ultrasonic wave emitting surface 51 of the therapeutic vibration element 50 a.
  • the diagnostic transducers 52a to 52d are arranged at equal intervals in the short direction of the ultrasonic emission surface 51 and with the longitudinal direction of the ultrasonic emission surface 53 parallel. I have. The same applies to the diagnostic vibrating elements 52e to 52p.
  • Each of the arranged diagnostic transducers 52a to 52p converts, for example, a pulse-like electric signal from the transmitting / receiving section 12 into mechanical vibration and deflects and transmits diagnostic ultrasonic waves to the subject.
  • the packing material 54 is formed of a low-impedance layer or the like having a thickness of half the wavelength of the therapeutic ultrasonic wave, and is opposite to the ultrasonic emission surface 51 of the therapeutic vibration elements 50a to 50d. It is provided on the side surface.
  • the cooling unit 56 is provided so as to overlap with the back surface of the backing material 54, that is, on the side opposite to the ultrasonic wave emitting direction of the therapeutic transducer 50.
  • the cooling section 56 is formed of a Peltier element or the like, and when current flows, absorbs heat by the Peltier effect and radiates heat to the outside air. Thereby, the temperature rise of the ultrasonic probe 10 can be suppressed.
  • the therapeutic transducer elements 5 0 a ⁇ 5 0 d thickness, the diagnostic transducer elements 5 2 a ⁇ 5 2 p thick t 2, the therapeutic transducer elements 5 0 a ⁇ 5 0 d array pitch, And the array pitch P2 of the diagnostic vibrating elements 52a to 52p is set to be close to the value calculated by the following equations (1) to (4): (l)
  • fx is the frequency of the therapeutic ultrasound emitted from the therapeutic transducer 50
  • 2 is the frequency of the diagnostic ultrasound emitted from the diagnostic transducer 52
  • a 2 is The wavelength of the diagnostic ultrasonic wave
  • c is the longitudinal sound velocity in the thickness direction of the therapeutic transducer 50, that is, the ultrasonic wave emitting direction, and is the sound velocity in water or a living body.
  • the frequency / i is 500 kHz, and the frequency / 2 is 2 MHz. But was, connexion, the sound velocity c 3. 3 mm / S, the speed of sound cw 1.
  • the thickness ti is 3. 3 mm
  • array pitch is 1.54mm
  • array pitch ⁇ 2 is 0.39mm .
  • the ultrasonic probe 10 With such dimensions, for example, even when the opening of the skull is thin and the ultrasonic transmission is relatively good (for example, near the temple) is limited to 30 mm square, for example, the ultrasonic probe 10 The ultrasonic aperture D of this falls within that range. Therefore, it is possible to reduce the loss of the energy of the diagnostic ultrasonic wave and the therapeutic ultrasonic wave due to the thickness of the skull.
  • the distance d 2 intervals and diagnostic transducer elements of therapeutic vibrating element as narrow as possible the better.
  • the frequency of the ultrasonic wave to be used is determined from the viewpoint of effect and safety. For example, if the limit of the intensity of the therapeutic ultrasound is 720 mW / cm, the temperature rise To be below, the frequency / i is adjusted below 580 kHz. As a result, the value of the thermal index (TI), which is an index indicating the intensity of the thermal action of the ultrasonic wave, can be reduced to 2 or less. Further, the frequency / i is adjusted to more than 390 kHz. This makes it possible to reduce the mechanical index (Ml), which is an index indicating the strength of the mechanical mechanical action of ultrasonic waves that destroy tissue cells due to cavitation or the like generated in blood vessels, to 0.25 or less. it can.
  • TI thermal index
  • Ml mechanical index
  • an ultrasonic probe 10 having four therapeutic vibration elements 50 a to 50 d and 16 diagnostic vibration elements 52 a to 52 p is described.
  • the number of each vibrating element can be appropriately changed.
  • the phase control method and the circuit type can be simplified.
  • a sound insulating material 53 is provided.
  • the material of the sound insulating material 53 include fine particles such as tungsten and microballoons dispersed in an epoxy resin.
  • the operation of the ultrasonic probe 10 will be described with reference to FIG.
  • the treatment ultrasonic waves from the treatment transducer 50 are received by the diagnostic transducer 52 as noise. Therefore, in the present embodiment, as shown in FIG. 5, the therapeutic ultrasonic beam (T beam) and the diagnostic ultrasonic beam (D beam) are alternately emitted at set time intervals. Note that the emission timing of the T beam and the D beam may be appropriately changed so that noise does not occur.
  • a D beam for example, a frequency of 2 MHz
  • a T beam for example, a frequency of 500 kHz
  • the emission time of the D beam is set in the range of, for example, 0.01 to 0.2 second, since it is sufficient that a tomographic image or a two-dimensional blood flow image can be formed.
  • the emission time of the T beam is appropriately set, for example, in the range of 1 to 10 seconds.
  • the D beam is formed, for example, by transmitting a burst wave in which pulse waveforms are bundled at 1Z2 to 20 wavelengths at set intervals.
  • the T beam is formed by transmitting continuously transmitted ultrasonic waves so that a predetermined mechanical index can be secured.
  • the control accuracy of the irradiation position of the therapeutic ultrasonic wave can be reduced. Can be improved. Therefore, it is possible to accurately irradiate the T beam to the treatment site whose position is specified by the D beam.
  • the ultrasonic probe 10 By electrically controlling the ultrasonic probe 10 without moving it along the body surface, it is possible to reconstruct a tomographic image using a D beam and to treat a treatment site using a T beam. . Therefore, the efficiency of the ultrasonic treatment can be improved, for example, the treatment time can be shortened. For example, when a cerebral infarction develops, it is necessary to dissolve the cerebral thrombus within a short time from the onset, but according to the present embodiment, the cerebral thrombus can be rapidly and accurately dissolved.
  • FIG. 6 shows a configuration diagram of the ultrasonic apparatus of the present embodiment.
  • a blood flow detection unit 22 is provided.
  • the blood flow detection unit '22 detects the intensity of the Dobra deviation signal of the reflected echo signal generated from the treatment site, that is, the blood flow velocity, and the detected blood flow velocity exceeds the set value ( ⁇ ). Output a control command to the transmission unit 24 for therapy.
  • the control command is not output to the therapeutic ultrasonic transmission unit 24. Therefore, the therapeutic wave transmitting section 25 maintains or increases the energy (eg, amplitude and frequency) of the therapeutic ultrasonic wave.
  • the control command is output to the therapeutic ultrasonic transmission unit 24, and the therapeutic transmission unit 25 outputs Reduce the sound energy or stop the injection.
  • a warning sound for example, a buzzer sound or voice
  • a warning message is displayed on the display unit 18.
  • the present embodiment it is possible to detect that the thrombus has been dissolved and blood has begun to flow. In this way, when blood begins to flow, the amplitude or frequency of the therapeutic ultrasound is reduced or injection is automatically stopped. Therefore, it is possible to prevent the treatment site from being excessively irradiated with the therapeutic ultrasonic waves.
  • the therapeutic ultrasound may be manually stopped when a warning sound or a warning message is issued.
  • the ultrasonic apparatus of the present embodiment can be used even when the diagnostic probe and the therapeutic probe are separated from each other. Can be applied.
  • FIG. 7 shows a configuration diagram of the ultrasonic apparatus of the present embodiment.
  • a temperature detecting unit 28 detects the temperature of the ultrasonic probe 10 and outputs a control command to the therapeutic transmission unit 24 when the detected temperature exceeds a set value.
  • the control command is not output to the therapeutic ultrasound transmission unit 24. Therefore, the therapeutic wave transmitter 25 maintains or increases the energy (eg, amplitude and frequency) of the therapeutic ultrasonic wave.
  • a control command is output to the therapeutic ultrasonic transmitting unit 24, and the therapeutic transmitting unit 25 reduces the energy for treatment or performs injection. Stop. At this time, a warning sound (for example, a single buzzer sound or voice) is issued by the warning unit 27 or a warning message is displayed on the display unit 18.
  • a warning sound for example, a single buzzer sound or voice
  • the temperature rise of the ultrasonic probe 10 can be automatically suppressed, it is possible to avoid a side effect on the living tissue due to the temperature rise.
  • the temperature of the water bag 32a in FIG. 1 may be detected. In short, it suffices to detect the temperature correlated with the therapeutic oscillator 50 or the diagnostic oscillator 52.
  • the therapeutic ultrasound may be manually stopped when a warning sound or a warning message is issued.
  • the ultrasonic apparatus of the present embodiment can be used even when the diagnostic probe and the therapeutic probe are separated from each other. Can be applied.
  • FIG. 8 shows a configuration diagram of the ultrasonic apparatus of the present embodiment.
  • a thrombolytic agent that promotes thrombus dissolution is injected into the subject.
  • the thrombolytic agent may be injected into the subject even after the thrombus has been dissolved and blood has begun to flow.
  • a dissolving agent injection control unit 30 is provided.
  • the dissolving agent injection control unit 30 includes an injection control unit 31, a calculation unit 29, an alarm unit 33, and the like.
  • the injection controller 31 controls the injection amount of the thrombolytic agent to be injected into the subject via the injector probe 26.
  • the calculation unit 29 calculates the injection amount of the thrombolytic agent into the subject based on the control command from the blood flow detection unit 22.
  • the alarm unit 33 sounds a warning buzzer or displays a warning message based on a control command from the blood flow detection unit 22.
  • the control command is not output to the dissolution agent injection control unit 30. Therefore, the injection control unit 31 maintains or increases the injection amount of the thrombolytic agent.
  • a control command is output to the dissolution agent injection control unit 30 and the injection control unit 31 is operated by the arithmetic unit. 29 Reduce the injection of thrombolytic agent or stop the injection operation based on the injection volume calculated in step 9.
  • a buzzer sound or a sound is issued by the alarm unit 33, or a warning message is displayed on the display screen of the monitor 18.
  • the injection amount of the thrombolytic agent can be automatically reduced or stopped. Therefore, side effects of excessive thrombolytic agent on biological tissues are avoided.
  • the injection of the thrombolytic agent may be stopped manually when a warning sound or a warning message is issued. Further, the injection amount of the thrombolytic agent may be displayed on the display screen of the monitor 18 in real time. As a result, the operator can objectively grasp the injection amount of the thrombolytic agent.
  • the ultrasonic apparatus of the present embodiment can be used even when the diagnostic probe and the therapeutic probe are separately provided. Can be applied.
  • a fifth embodiment to which the ultrasonic probe and the ultrasonic device according to the present invention are applied will be described with reference to FIGS.
  • the present embodiment is different from the first embodiment in that the cooling unit is installed on the side of the therapeutic oscillator and the diagnostic oscillator.
  • FIG. 9 shows an ultrasonic probe according to the present embodiment.
  • the cooling units 56 a and 56 b are provided on two side surfaces of the therapeutic oscillator 50 and the diagnostic oscillator 52, respectively.
  • the heat of the ultrasonic probe 10 can be radiated to the outside air by appropriately supplying a current to the cooling units 56a and 56b. Therefore, it is possible to continuously irradiate the treatment site with ultrasonic waves for a relatively long time while suppressing the temperature rise of the ultrasonic probe 10 to a set value (for example, 2 ° C.) or less. As a result, it is possible to improve the treatment efficiency such as shortening the treatment time.
  • the cooling unit 56 may be installed at any position as long as the treatment oscillator 50 or the diagnostic oscillator 52 can be cooled.
  • a cooling unit 56c may be provided so as to cover a side wall surrounding the periphery of the ultrasonic probe 10.
  • a metal foil may be used in addition to the cooling section.
  • a metal foil 60 is provided on the ultrasonic wave emitting surface of the diagnostic transducer 52 of FIG. Further, the disposed metal foil 60 comes into contact with the cooling sections 56a and 56b. As a result, the heat generated by the diagnostic oscillator 52 is absorbed by the metal foil 60. The absorbed heat is guided to the cooling units 56 a and 56 b via the metal foil 60.
  • the guided heat is radiated by the Peltier effect of the cooling units 56a and 56b. Therefore, the temperature rise of the ultrasonic probe 10 can be suppressed.
  • the metal foil 60 is made by thinning a conductor (for example, a metal) by several meters and is made of a material that does not affect the emission of ultrasonic waves.
  • the ultrasonic emission surface of the diagnostic transducer 52 is covered by the metal foil 60, when the ultrasonic probe 10 is brought into contact with the body surface, the temperature of the ultrasonic probe 10 is applied to the subject. Do not communicate directly. Therefore, it is possible to prevent the subject from being affected by the temperature of the ultrasonic probe 10.
  • the present embodiment is different from the first to fifth embodiments in that a treatment ultrasonic wave of a pulse wave is emitted in order to avoid a side effect occurring in a living tissue.
  • a treatment ultrasonic wave of a pulse wave is emitted in order to avoid a side effect occurring in a living tissue.
  • the therapeutic ultrasonic wave incident on the brain from the ultrasonic probe 10 may be reflected back on the inner wall of the skull in the traveling direction. This is because the skull has a relatively higher acoustic impedance than the biological tissue in the brain.
  • the reflected therapeutic ultrasound overlaps with and interferes with the therapeutic ultrasound (hereinafter, “incident wave”) that enters the brain from the ultrasound probe 10, so that it is standing in the brain. Waves may occur.
  • the standing wave has a relatively large intensity (amplitude) locally, it may cause side effects on living tissues in the brain.
  • the therapeutic wave transmitting unit 25 generates a drive signal of a burst wave from the basic waveform.
  • the generated drive signal is supplied to the treatment oscillator 50, so that a burst wave is emitted from the treatment oscillator 50 to the subject.
  • the emission time of the burst wave is set to be relatively short (for example, 10 us), and the pause time is set to be relatively long (for example, 100 s to 300 s).
  • a burst wave obtained by bundling a pulse wave having a duration of one wavelength, for example, 2 as is emitted.
  • the pause time of the burst wave is set to be longer than 100 s. Note that the burst wave emission time and pause time are appropriately changed and are set in advance from the input unit 20.
  • the burst wave T eta burst wave tau eta + 1 it does not overlap, is avoided to cause side effects to the living tissue.
  • the therapeutic ultrasound has a frequency of, for example, 500 kHz, so that the attenuation when traveling in the brain is relatively small. Therefore, the intensity of the reflected wave and that of the incident wave are almost equal, and the intensity of the interference wave is relatively large.
  • the frequency of the diagnostic ultrasonic wave is generally set to, for example, 2 MHz or more, attenuation during traveling in the brain is relatively large. Therefore, generated Although the intensity of the interference wave is relatively small, the pause time of the pulse wave or the burst wave may be set to be relatively long as in the case of the therapeutic ultrasound.
  • the emission time of the burst wave is set to, for example, 10 ns, but may be changed as appropriate. In short, it is sufficient if the incident wave and the reflected wave interfere with each other so long as the duration of the interference wave can be shortened to avoid the side effect of the living tissue.
  • the ultrasonic apparatus of the present embodiment can be used even when the diagnostic probe and the therapeutic probe are separately provided. Can be applied.
  • FIG. 12 is a configuration diagram of the therapeutic wave transmitting section 25 of FIG.
  • the therapeutic transmitter 24 As shown in Fig. 12, the therapeutic transmitter 24, the clock generator 70, the modulation signal generator 72, the phase shift circuit 74a to 74m (m: natural number), the amplifier (hereinafter, the amplifier) 76 a-76 m).
  • the phase shift circuits 74a to 74m can also be formed from delay circuits and the like.
  • m corresponds to the number of therapeutic vibration elements 50 a to 50 m constituting the ultrasonic probe 10.
  • a basic continuous wave is generated by the clock generator 70.
  • the generated basic waveform is shifted in phase by the phase shift circuits 74a to 74m.
  • each of the fundamental waveforms is amplified by the amplifiers 76a to 76m, and is then input to the therapeutic oscillator 50 as a drive signal.
  • the therapeutic ultrasonic wave is emitted from the therapeutic transducer 50 by the input drive signal.
  • a modulation signal is generated by the modulation signal generator 72 as the injection time elapses.
  • the generated modulation signal is input to each of the phase shift circuits 74a to 74m.
  • the phase shift circuits 74a to 74m greatly modulate the frequency of the basic waveform according to the input modulation signal.
  • the modulated waveform is input to the therapeutic transducer 50 as a drive signal.
  • the therapeutic ultrasonic wave whose frequency is greatly modulated is emitted from the therapeutic vibrator 50.
  • f the frequency of the ultrasonic wave when it is started to be emitted
  • The frequency of the ultrasonic wave of 10 S
  • The frequency of the ultrasonic wave of 10 S
  • the wavelength is ⁇ .
  • a modulation signal is generated by the modulation signal generator 72 so that the value becomes 4.
  • the therapeutic ultrasonic wave emitted from the therapeutic transducer 50 has a frequency modulated in the time axis direction.
  • the frequency of the overlapped reflected wave and the incident wave is different. Therefore, since the interference pattern between the reflected wave and the incident wave is not fixed, the intensity of the interference wave generated by the interference between the reflected wave and the incident wave can be suppressed.
  • the time for changing the frequency may be set as appropriate, but in the present embodiment, the emitted ultrasonic wave penetrates from the surface of the brain into the skull so that the interference pattern of the therapeutic ultrasonic wave is not fixed at all.
  • the frequency of the therapeutic ultrasound is modulated every time (eg, 10 / is) before it progresses into the brain. In short, the frequency may be modulated in the time axis direction based on the basic waveform.
  • the frequency modulation value can be set as appropriate. For example, if the frequency is changed so that the reflected wave and the incident wave are shifted by 1 Z 4 to 1/2 wavelength, the reflected wave and the incident wave interfere so as to cancel each other. Therefore, an increase in the intensity of the interference wave can be further suppressed.
  • the ultrasonic apparatus of the present embodiment can be used even when the diagnostic probe and the therapeutic probe are separately provided. Can be applied.
  • FIGS. 12 and 13 An eighth embodiment to which the ultrasonic probe and the ultrasonic device according to the present invention are applied will be described with reference to FIGS. 12 and 13.
  • the present embodiment is different from the seventh embodiment in that the incident direction of the therapeutic ultrasonic wave is shifted every set time.
  • FIG. 13 is an explanatory view showing the principle that the incident wave and the reflected wave of the therapeutic ultrasonic wave do not interfere with each other.
  • the preset delay data is added to the phase shift circuits 74 a to 7 every set time (for example, 0.1 second). 4 m each.
  • the ultrasonic waves emitted from the therapeutic transducer 50 are deflected. Therefore, the emission direction of the ultrasonic beam changes. Note that the angle (0) at which the emission direction of the ultrasonic beam is changed may be changed as appropriate.
  • the traveling direction of the incident wave of the therapeutic ultrasonic wave and the traveling direction of the reflected wave are not on the same straight line.
  • the incident wave and the reflected wave have different directions, so that interference between the incident wave and the reflected wave can be avoided.
  • the set time for changing the ultrasonic wave emission direction is set to 0.1 second, but may be set as appropriate. For example, if an incident wave and a reflected wave overlap and interfere, the interference wave may generate a caption (bubble) in the blood vessel. The resulting cavitation gradually breaks down after growing larger. The adverse effects of the broken cavitation may cause side effects on living tissues. Therefore, it is desirable to change the ultrasonic wave emitting direction before cavitation occurs.
  • the ultrasonic apparatus of the present embodiment can be used even when the diagnostic probe and the therapeutic probe are separately provided. Can be applied.
  • the ultrasonic probe and the ultrasonic device of the present invention can be applied to the treatment of myocardial infarction in addition to the treatment of cerebral infarction.
  • an ultrasound probe is brought into contact with the chest, and diagnostic and therapeutic ultrasound is emitted from the gap between the ribs of the chest toward the thrombus in the coronary artery of the heart.
  • the ultrasonic probe and ultrasonic device of the present invention can also be applied to dissolving abnormal solids (for example, calculi) formed of inorganic substances and salts in the body.
  • cerebral infarction includes lacunar infarction, atherothrombotic infarction and cardiogenic cerebral embolism.
  • Lacunar infarction is a small infarct in the deep part of the brain caused by the narrow arteries of the brain being damaged by high blood pressure and clogging those arteries.
  • Arterial thrombotic infarction is a sclerosis of the large arteries in the cervical or intracranial arteries (atherosclerosis) As a result, the artery becomes narrow, and a thrombus is formed at that position, thereby blocking blood flow.
  • a cardiogenic cerebral embolus is one in which a blood clot (thrombus) formed in the heart peels off and flows into the arteries of the brain, causing a blockage in blood flow.
  • thrombus blood clot

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Neurology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Surgical Instruments (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

 超音波プローブは、配列された複数の第1の振動素子を含み、被検体に治療用超音波を射出する治療用振動子と、配列された複数の第2の振動素子を含み、前記被検体に診断用超音波を射出し、前記被検体で反射された前記診断用超音波を受信する診断用振動子とを備え、前記治療用振動子と前記診断用振動子とが積層されている。

Description

超音波プロ一ブ及び超音波装置 技術分野
本発明は、 超音波治療を行う超音波プロ一ブ及び超音波装置に関する。 背景技術
超音波装置では、 被検体の体表に接触させた診断用プローブを介して診断用超音波 を射出し、 被検体から発生した反射エコー信号に基づき超音波像 (例えば、 断層像や
Mモード像) を再構成する。 また、 治療用プローブを介して治療用超音波を被検体に 射出することで治療部位を非侵襲的に治療する。
超音波治療を行うときは、 一般に、 治療部位を超音波像で確認しながら治療用超音 波を射出するために、 診断用プローブと治療用プロ一ブを被検体の体表に並べて接触 させて行われる (例えば、 特開平 5— 2 2 0 1 5 2号公報参照) 。
しかしながら、 従来のように、 診断用プローブと治療用プローブを体表に並べて接 触させると、 両プローブの接触位置の差に応じて診断用超音波と治療用超音波の走査 座標に差が生じる。 更に、 両プローブの接触位置は操作者により任意に決められるた め、 走查座標の差は一定しない。 したがって、 治療操作の都度、 両プローブの走査座 標の差を求める一方、 診断用プローブにより取得した超音波像に基づいて治療部位の 座標位置を求め、 その座標位置を治療用プローブの座標系に変換して治療部位に治療 用超音波を射出することになる。 その結果、 治療用プローブと診断用プローブの操作 に注意を払う必要があり、 使い勝手が悪いという問題がある。 発明の開示
本発明の課題は、 超音波治療に好適な超音波プローブ及び超音波装置を実現するこ とである。 上記課題を解決するため、 本発明に係る超音波プローブは、 配列された複数の第 1 の振動素子を含み、 被検体に治療用超音波を射出する治療用振動子と、 配列された複 数の第 2の振動素子を含み、 前記被検体に診断用超音波を射出し、 前記被検体で反射 された前記診断用超音波を受信する診断用振動子とを備え、 前記治療用振動子と前記 診断用振動子とが積層されていることを特徴とする。
本発明によれば、 治療用振動子からの治療用超音波及び診断用振動子からの診断用 超音波の走査座標を一致させることができるから、 治療用超音波の照射位置の制御精 度を向上できる。 また、 例えば、 治療用振動子の口径の中心と診断用振動子の口径の 中心を一致させることができる。
また、 本発明に係る超音波装置は、 前記超音波プローブと、 前記治療用振動子の駆 動信号を生成する治療用送波部と、 前記診断用振動子の駆動信号を生成する診断用送 波部と、 前記診断用振動子により受波された反射ェコ一信号に基づいて超音波像を再 構成する画像構成部と、 前記治療用超音波による前記被検体の治療の状態を検出する 検出手段とを備え、 前記治療用送波部は、 前記検出手段により検出された治療の状態 に基づいて警告情報を出力する警告機能を有することを特徴とする。
本発明によれば、 治療超音波による治療の進行具合などを検出することができるか ら、 治療が完了したときなどに警告音を鳴らしたり、 警告メッセージを表示したりす ることにより、 操作者は超音波治療を停止することができ、 超音波装置の使い勝手が 向上する。また、治療用超音波を治療部位に過剰に照射することを防ぐことができる。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態の超音波装置の構成図であり ;
図 2は、 本発明の第 1の実施形態の超音波プローブを模式的に示す斜視図であり ; 図 3は、 図 2の線 I I I— I I Iにおける断面図であり ;
図 4は、 他の実施の形態の超音波プローブを模式的に示す斜視図であり ; 図 5は、 超音波プローブの動作を示すタイムチヤ一トであり ;
図 6は、 本発明の第 2の実施形態の超音波装置の構成図であり ; 図 7は、 本発明の第 3の実施形態の超音波装置の構成図であり ;
図 8は、 本発明の第 4の実施形態の超音波装置の構成図であり ;
図 9は、 本発明の第 5の実施形態の超音波プローブを模式的に示す斜視図であり ; 図 1 0は、 本発明の第 5の実施形態の超音波プローブの他の例を模式的に示す斜視 図であり ;
図 1 1は、 本発明の第 5の実施形態の超音波プローブの更に他の例を模式的に示す 斜視図であり ;
図 1 2は、 本発明の第 7の実施形態の治療用超音波送波ユニットの構成図であり ; 図 1 3は、 本発明の第 8の実施形態における入射波と反射波の干渉を回避する原理 を示す説明図である。 発明を実施するための最良の形態
本発明の超音波プローブ及び超音波装置を適用した第 1の実施形態について説明す る。 本実施形態は、 治療用振動子の超音波射出面に複数の診断用振動子を積層させた 超音波プローブの一例である。
図 1に示すように、 超音波装置 1は、 診断用超音波ユニット 9、 治療用超音波送波 ユニット 2 4、 表示部 1 8、 入力部 2 0、 制御部 2 1などから構成されている。 診断 用超音波ユニット 9は、 診断用送波部を有する診断用送受波部 1 2、 並びに断層像形 成部 1 4及び血流画像形成部 1 6を含む画像構成部などを備えている。 治療用超音波 送波ユニット 2 4は、 治療用送波部 2 5、 警報部 2 7などを備えている。 そして、 診 断用送受波部 1 2と治療用送波部 2 5は、 超音波プローブ 1 0に接続されている。 診断用送受波部 1 2は、 超音波プローブ 1 0に診断用超音波を送波させるための駆 動信号を生成すると共に、 超音波プローブ 1 0から出力される反射エコー信号を受信 するものである。断層像形成部 1 4は、反射エコー信号に基づき断層像を再構成する。 血流画像形成部 1 6は、 反射エコー信号のドプラ偏位から血流速度を求めて血流像を 再構成する。
治療送波部 2 5は、 超音波プローブ 1 0に治療用超音波を射出させるための駆動信 号を生成するものである。 警報部 2 7は、 入力指令によりブザー音を鳴らしたり、 警 告メッセージを表示したりする警告機能を有している。 表示部 1 8は、 断層像と血流 像をモニタの表示画面に表示する。 入力部 2 0は、 キーボードやマウスなどのポイン ティングデバイスを有して形成されている。
超音波プローブ 1 0は、 診断用と治療用の超音波を射出するものであり、 ヘッドセ ット 1 1に含まれている。 へッドセット 1 1は、 超音波プローブ 1 0、 並びに水袋 3 2 a、 3 2 b , 循環路 3 6、 及び放熱部 3 4を含むプローブ冷却部などから構成され ている。 水袋 3 2 a、 3 2 bは、 袋状に形成されたものであり、 内部に冷却媒体 (例 えば、 水) が溜められている。 なお、 水袋 3 2 a、 3 2 bについては、 袋形状のもの に限られるものではない。 循環路 3 6は、 水袋 3 2 a、 3 2 b内の水を放熱部 3 4に 導くものである。 放熱部 3 4は、 導かれた水の熱を外気に放熱させる。
このように構成される超音波装置 1の詳細構成を動作と共に説明する。 まず、 へッ ドセット 1 1を被検体の頭部に取り付ける。 これにより、 へッドセット 1 1の水袋 3 2 a、 3 2 bは、 被検体の頭部表皮 (例えば、 こめかみ付近) に接触した状態で固定 される。 そして、 水袋 3 2 aの裏面に超音波プローブ 1 0を接触させる。
次いで、 超音波プローブ 1 0に診断用送受波部 1 2から駆動信号を供給する。 供給 された駆動信号により超音波プローブ 1 0から診断用超音波が被検体に向けて射出さ れる。 射出された診断用超音波は、 頭部内の生体組織や血流などにより反射又は散乱 される。 その診断用超音波は、 反射ェコ一信号として超音波プローブ 1 0により受波 される。 受波された反射エコー信号は、 断層像形成部 1 4により断層像として再構成 される。 再構成された断層像は、 表示部 1 8のモニタに表示される。 表示された断層 像を観察することにより、 治療部位 (例えば、 脳血栓) の位置を正確に特定すること ができる。
そして、 断層像上の治療部位 (例えば、 脳血栓) の位置が、 入力部 2 0から入力設 定される。 設定された脳血栓の位置座標に基づいて、 治療用送波部 2 5により駆動信 号が生成される。 生成された駆動信号は、 超音波プローブ 1 0の治療用送波部 2 5に 供給される。これにより、超音波プローブ 1 0から脳血栓に治療用超音波を照射して、 脳血栓を非侵襲的に溶解させる。
脳血栓が溶解すると、 血管が再開通されて血液が流れ始める。 流れ始めた血液によ り診断用超音波が反射エコー信号として反射又は散乱される。 その反射エコー信号の ドプラ偏位が血流画像形成部により求められる。 求められたドプラ編位に基づいて血 流像 (例えば、 2次元ドプラ血流像、 パルスドプラ F F T計測画像) が再構成されて 表示される。
このような超音波装置において、 診断用プローブと治療用プローブが別々に分かれ ていると、 両プローブを並べて水袋 3 2 aに接触させることになる。 その場合、 両プ ローブの接触位置の差に応じて診断用超音波と治療用超音波の走査座標に差が生じる ので、 超音波治療を行う際には、 治療用プローブと診断用プローブの操作に注意を払 う必要がある。 それに対し、 本実施形態では、 診断用振動子と治療用振動子を積層し て一体形成した超音波プロ一ブを用いることにより、 治療部位に治療用超音波を的確 に照射することができる。 - 次に、 超音波プローブ 1 0について詳細に説明する。 図 2に示すように、 超音波プ ローブ 1 0は、 診断用振動子 5 2、 治療用振動子 5 0、 バッキング材 5 4、 冷却部 5 6が被検体側から順番に積層して構成されている。 治療用振動子 5 0は比較的低い周 波数 (例えば約 5 0 0 k H z ) の超音波を発生させ、 診断用振動子 5 2は比較的高い 周波数 (例えば約 2 MH z ) の超音波を発生させる。 したがって、 診断用振動子 5 2 から発生する超音波の方が治療用振動子 5 0から発生する超音波よりも障害物を透過 しにくいので、 診断用振動子 5 2は、 披検体により近くなるように治療用振動子 5 0 の上に積層されている。
治療用振動子 5 0は、 複数の振動素子 5 0 a〜5 0 dが配列して形成されている。 各治療用振動素子 5 0 a〜5 0 dは、 直方体状の圧電セラミックスで形成されたもの であり、 超音波射出面 5 1の長手方向を平行にして等間隔で配設されている。 配設さ れた治療用振動素子 5 0 a〜5 0 dは、 治療用送波部 2 4からの駆動信号を機械的振 動に変換して治療部位 (例えば、 脳血栓) に治療用の超音波を偏向射出する。
診断用振動子 5 2は、 複数の振動素子 5 2 a〜5 2 pが配列して形成されている。 各診断用振動素子 5 2 a〜5 2 pは、直方体状の圧電セラミックスで形成されており、 再構成する断層像の分解能を高くするため治療用振動子 5 0の振動素子 5 0 a〜5 0 dより小さく形成されている。 そして、 診断用振動素子 5 2 a〜5 2 pは、 超音波射 出面 5 1上に複数個ずつ分配されている。 例えば、 図 2に示すように、 診断用振動素 子 5 2 a〜5 2 dは、治療用振動素子 5 0 aの超音波射出面 5 1上に分配されている。 つまり、 診断用振動素子 5 2 a〜5 2 dは、 超音波射出面 5 3の反対側の面が治療用 振動素子 5 0 aの超音波射出面 5 1に接合される。 そして、 診断用振動素子 5 2 a〜 5 2 dは、 超音波射出面 5 1の短手方向に等間隔を空けて、 かつ超音波射出面 5 3の 長手方向を平行にして配設されている。 診断用振動素子 5 2 e〜5 2 pについても同 様である。 配設された各診断用振動素子 5 2 a〜5 2 pは、 送受信部 1 2からの例え ばパルス状の電気信号を機械的振動に変換して被検体に診断用超音波を偏向送波する と共に、被検体から発生する反射エコー信号を受波して電気信号のパルスに変換する。 パッキング材 5 4は、 治療用超音波の半波長の厚みを有する低インピーダンス層な どから形成されたものであり、 治療用振動素子 5 0 a〜5 0 dの超音波射出面 5 1の 反対側の面に重ねて設けられている。 これにより、 治療用振動子 5 0から射出された 超音波のうち、 射出方向の反対側に送波する超音波が、 バッキング材 5 4により 射 されて被検体に向けて進行する。 したがって、 被検体に治療用超音波を効率良く射出 することができる。
また、 冷却部 5 6は、 バッキング材 5 4の背面、 つまり治療用振動子 5 0の超音波 射出方向の反対側に重ねて設けられている。 冷却部 5 6は、 ペルチェ素子などから形 成されたものであり、電流を流すとペルチェ効果により熱を吸収して外気に放熱する。 これにより、 超音波プローブ 1 0の温度上昇を抑えることができる。
このような超音波プローブ 1 0の寸法の一例について図 3を参照して説明する。 図 3に示す、 治療用振動素子 5 0 a〜 5 0 dの厚み 、 診断用振動素子 5 2 a〜 5 2 p の厚み t2、 治療用振動素子 5 0 a〜 5 0 dのアレイピッチ 、 及び診断用振動素子 5 2 a〜5 2 pのアレイピッチ P2は、 以下の式 (1 ) 乃至 (4 ) によって算出される値 に近くなるように設定される: = (l)
2 2
Figure imgf000009_0001
ここで、 fxは治療用振動子 50から射出される治療用超音波の周波数、 は治療用超 音波の波長、 2は診断用振動子 52から射出される診断用超音波の周波数、 A2は診断 用超音波の波長、 cは治療用振動子 50の厚み方向つまり超音波射出方向の縦波音速、 は水中又は生体中の音速である。
本実施形態では、 周波数/ iを 500 kHz、 周波数 /2を 2 MHzとしている。 した が、つて、 音速 cを 3. 3mm/ S、 音速 cwを 1. 538 mm/ ^ sとすると、 式 (1) 乃至 (4) により、 厚み tiは 3. 3mm、 厚み t2は 0. 83mm、 アレイピッ チ は 1. 54mm、 アレイピッチ Ρ2は 0. 39 mmになる。 更に、 診断用振動素子 の数を 64個とすると、 図 3に示す超音波プローブ 10のアレイ寸法つまり超音波口 径 Dは、 D=64Xp2 =24. 6mmになる。 このような寸法であれば、 例えば、 頭 蓋骨の厚みが薄く超音波の透過性が比較的良い開口部 (例えば、 こめかみ付近部) が 例えば 30mm角に限定されるときでも、 超音波プローブ 10の超音波口径 Dはその 範囲内に収まる。 したがって、 診断用超音波及び治療用超音波のエネルギが頭骸骨の 厚みにより損失されることを低減できる。
上述の例では、診断用振動素子の数を 64個として超音波口径 D= 64 XP2 =24. 6mmの場合を説明したが、 診断用振動素子の数 Nは任意の自然数でよく、 診断用振 動素子の数 Nを増やして超音波口径 D = NXp2を大きくしたり、 逆に診断用振動素子 の数 Nを減らして超音波口径 Dを小さくしたりすることが可能である。
また、 音響効果を上げるためには、 治療用振動素子の間隔 及び診断用振動素子 の間隔 d 2はできるだけ狭い方が良い。
利用する超音波の周波数は効果と安全性の観点から決められる。 例えば、 治療用超 音波の超音波強度の限界値が 720 mW/ c mの場合、 生体組織の温度上昇を 2 °C以 下とするために、 周波数 /iは、 5 8 0 k H z以下に調整される。 これにより、 超音波 の熱作用の強度を表す指標であるサーマルインデックス (T I ) の値を 2以下にする ことができる。 更に、 周波数/ iは、 3 9 0 k H z以上に調整される。 これにより、 血 管内に生じたキヤビテーション等で組織細胞が破壊される超音波の機械力学的作用の 強さを示す指標であるメカニカルインデックス (M l ) を 0 . 2 5以下にすることが できる。
図 2及び 3に示す実施形態では 4個の治療用振動素子 5 0 a〜5 0 dと 1 6個の診 断用振動素子 5 2 a〜5 2 pを有した超音波プローブ 1 0を説明したが、 各振動素子 の配設数については適宜変更することができる。 図 2及び 3に示すように治療用振動 素子のアレイピッチと診断用振動素子のアレイピッチとの比が整数比であると、 位相 制御方式及び回路形式を単純化することができる。
図 4に示す実施形態では、 4個の治療用振動素子と 1 5個の診断用振動素子が配設 されていて、 治療用振動素子の隙間を埋めて診断用振動素子の土台とするために、 遮 音材 5 3が設けられている。 遮音材 5 3の材料例としては、 タングステンなどの微細 粒子やマイクロバルーンをエポキシ樹脂に分散させたものが挙げられる。 図 4に示す ように治療用振動素子のァレイピッチと診断用振動素子のァレイピッチとの比が整数 比とならないように構成すると、 両者の格子が縮退しないような配置が実現できるの で、 グレーティングロ一ブが重ならないように制御することができる。
次に、 超音波プローブ 1 0の動作について図 5を参照して説明する。 一般に、 治療 用振動子 5 0と診断用振動子 5 2とを同時に駆動させると、 治療用振動子 5 0からの 治療用超音波が診断用振動子 5 2によりノイズとして受波される。 したがって、 本実 施形態では、 図 5に示すように、 治療用超音波ビーム (Tビーム) と診断用超音波ピ ーム (Dビーム) は、 設定時間ごとに交互に射出される。 なお、 ノイズが発生しない ように、 Tビームと Dビームの射出タイミングを適宜変更してもよい。
まず、 診断用振動子 5 2から Dビーム (例えば、 周波数 2 MH z ) が例えば 0 . 2 秒間にわたって射出される。 Dビームの射出後、 治療用振動子 5 0から Tビーム (例 えば、 周波数 5 0 0 k H z ) が例えば 3秒間にわたって射出される。 このような動作 が繰り返されるこ.とにより、 Dビームにより断層像と 2次元血流画像が形成されると 共に、 Tビームにより治療部位が治療される。 なお、 Dビームの射出時間は、 断層像 や 2次元血流画像を形成できればよいので例えば 0 . 0 1〜0 . 2秒の範囲で設定さ れる。 また、 Tビームの射出時間は、 例えば 1〜1 0秒の範囲で適宜設定される。 な お、 Dビームは、 断層像の分解能を向上させるため、 例えばパルス波形を 1 Z 2〜2 0波長束ねたバースト波を設定間隔で送波して形成する。 Tビームは、 所定のメカ二 カルインデックスを確保できるように、 連続的に送波される超音波を送波して形成す る。
本実施形態によれば、 治療用振動子 5 0からの Tビームと診断用振動子 5 2からの Dビームの走査座標を一致させることができるから、 治療用超音波の照射位置の制御 精度を向上できる。 したがって、 Dビームにより位置が特定された治療部位に Tビー ムを的確に照射することができる。
また、 治療用振動子 5 の口径の中心と診断用振動子 5 2の口径の中心を一致させ ることができるから、 格別な座標変換などを行う必要がないから制御機構を簡単化す ることができる。
更に、 超音波プローブ 1 0を体表に沿って移動させることなく、 電気的に制御する ことにより、 Dビームを用いて断層像を再構成すると共に、 Tビームを用いて治療部 位を治療できる。 したがって、 治療時間を短縮できるなど超音波治療の能率を向上さ せることができる。 例えば、 脳梗塞が発症すると、 発症時から短時間内に脳血栓を溶 解させる必要があるが、 本実施形態によれば、 迅速かつ的確に脳血栓を溶解させるこ とができる。
本発明の超音波プローブ及び超音波装置を適用した第 2の実施形態について図 6を 参照して説明する。 本実施形態が第 1の実施形態と異なる点は、 血栓が溶解して血液 が流れ始めたとき、 治療用超音波を停止したり、 治療用超音波の振幅などを小さくし たりすることである。 図 6は、 本実施形態の超音波装置の構成図を示している。 一般に、 治療用超音波で血栓を溶解させるとき、 血栓が溶解されて血液が流れ始め た後にも治療用超音波を照射するおそれがある。 そこで、 本実施形態では、 図 6に示 すように、 血流検出部 2 2が設けられている。 血流検出部' 2 2は、 治療部位から発生 する反射ェコ一信号のドブラ偏位信号の強度つまり血流速度を検出するものであり、 検出した血流速度が設定値 (α ) を超えているときに治療用送波ユニット 2 4に制御 指令を出力する。
.例えば、 血流検出部 2 2により検出された血流速度が設定値 (ひ) を超えていない と判定されたときは、 制御指令が治療超音波送波ユニット 2 4に出力されない。 した がって、 治療用送波部 2 5は、 治療用超音波のエネルギ (例えば、 振幅や周波数) を 維持あるいは増大する。 一方、 検出された血流速度が設定値を超えていると判定され たときは、制御指令が治療超音波送波ュニット 2 4に出力され、治療用送波部 2 5は、 治療用の超音波のエネルギを減らすか射出を停止する。 このとき、 警報部 2 7により 警告音 (例えば、 ブザー音や音声) が発せられたり、 警告メッセージが表示部 1 8に 表示されたりする。
一本実施形態によれば、 血栓が溶解して血液が流れ始めたことを検出することができ る。 これにより、 血液が流れ始めたときに、 治療用超音波の振幅や周波数などを減ら すか射出を自動的に停止する。 したがって、 治療部位に治療用超音波を過剰に照射す ることを防ぐことができる。
なお、 警告音や警告メッセージが発せられたときに、 手動で治療用超音波を停止す るようにしてもよい。 また、 第 1の実施形態の超音波プローブ 1 0を用いて本実施形 態を説明したが、本実施形態の超音波装置は、診断用プローブと治療用プローブが別々 に分かれている場合にも適用することができる。
本発明の超音波プローブ及び超音波装置を適用した第 3の実施形態について図 Ίを 参照して説明する。 本実施形態が第 1の実施形態と異なる点は、 超音波プローブの温 度が設定温度より上昇したときに、 治療用超音波の周波数や振幅などを減らしたり、 射出を停止したりするようにしたことである。 図 7は、 本実施形態の超音波装置の構 成図を示している。
一般に、 超音波プローブ 1 0から診断用及び治療用の超音波が射出される際、 射出 された超音波のエネルギの一部が超音波プローブ 1 0の内部で熱エネルギに変換され る。 したがって、 超音波プローブ 1 0の温度が上昇するおそれがある。 そこで、 本実 施形態では、 図 7に示すように、 温度検出部 2 8を設けるようにしている。 温度検出 部 2 8は、 超音波プローブ 1 0の温度を検出するものであり、 検出した温度が設定値 を超えているときに制御指令を治療用送波ュニット 2 4に出力する。
例えば、 温度検出部 2 8により検出された温度上昇が設定値 (例えば、 2 °C) を超 えていないと判定されたときは、 制御指令が治療超音波送波ュニット 2 4に出力され ない。 したがって、 治療用送波部 2 5は、 治療用超音波のエネルギ (例えば、 振幅や 周波数) を維持あるいは増大する。 一方、 温度上昇が設定値を超えたと判定されたと きは、 制御指令が治療超音波送波ユニット 2 4に出力され、 治療用送波部 2 5は、 治 療用のエネルギを減らすか射出を停止する。 このとき、 警報部 2 7により警告音 (例 えば、 ブザ一音や音声) が発せられたり、 警告メッセージが表示部 1 8に表示された りする。
本実施形態によれば、 超音波プローブ 1 0の温度上昇を自動的に抑えることができ るから、 温度上昇により生体組織に副作用を生じることが回避される。 なお、 超音波 プローブ 1 0の温度を検出することに代えて、 図 1の水袋 3 2 aの温度を検出するよ うにしてもよい。 要するに、 治療用振動子 5 0又は診断用振動子 5 2に相関した温度 を検出すればよい。
なお、 警告音や警告メッセージが発せられたときに、 手動で治療用超音波を停止す るようにしてもよい。 また、 第 1の実施形態の超音波プローブ 1 0を用いて本実施形 態を説明したが、本実施形態の超音波装置は、診断用プローブと治療用プローブが別々 に分かれている場合にも適用することができる。
本発明の超音波プローブ及び超音波装置を適用した第 4の実施形態について図 8を 参照して説明する。 本実施形態が第 2の実施形態と異なる点は、 治療用超音波により 梗塞部位を治療する際に血栓溶解剤を併用するようにし、 血栓が溶解したとき、 血栓 溶解剤の注入量を減らしたり、 停止したりするようにしたことである。 図 8は、 本実 施形態の超音波装置の構成図を示している。
一般に、梗塞部位の血栓の治療においては、血栓に治療用超音波を照射すると共に、 血栓の溶解を促進する血栓溶解剤が被検体に注入される。 その場合、 血栓が溶解され て血液が流れ始めた後にも血栓溶解剤を被検体に注入するおそれがある。
そこで、 本実施形態では、 図 8に示すように、 溶解剤注入制御ユニット 3 0が設け られる。 溶解剤注入制御ュニット 3 0は、 注入制御部 3 1、 演算部 2 9、 警報部 3 3 などを有している。 注入制御部 3 1は、 インジェクタープローブ 2 6を介して被検体 に注入する血栓溶解剤の注入量を制御するものである。 演算部 2 9は、 血流検出部 2 2からの制御指令に基づき被検体に血栓溶解剤の注入量を演算する。 警報部 3 3は、 血流検出部 2 2からの制御指令に基づき警告ブザーを鳴らしたり、 警告メッセージを 表示したりする。
例えば、 血流検出部 2 2により検出された血流速度が設定値 ( α ) を超えていない と判定されたときは、 制御指令が溶解剤注入制御ユニット 3 0に出力されない。 した がって、 注入制御部 3 1は、 血栓溶解剤の注入量を維持あるいは増加する。 一方、 検 出された血流速度が設定値 (a ) を超えていると判定されたときは、 制御指令が溶解 剤注入制御ュニッ卜 3 0に出力され、 注入制御部 3 1は、 演算部 2 9により計算され た注入量に基づいて、 血栓溶解剤の注入量を減らすか注入動作を停止する。 また、 警 報部 3 3によりブザー音や音声が発せられたり、 警告メッセージがモニタ 1 8の表示 画面に表示されたりする。
本実施形態によれば、 血栓が溶解して血流が流れ始めたとき、 血栓溶解剤の注入量 を自動的に減らすか停止することができる。 したがって、 過剰な血栓溶解剤により生 体組織に副作用を生じることが回避される。
なお、 警告音や警告メッセージが発せられたときに 手動で血栓溶解剤の注入を停 止するようにしてもよい。 また、 モニタ 1 8の表示画面に血栓溶解剤の注入量をリア ルタイムに表示してもよい。 これにより、 操作者は血栓溶解剤の注入量を客観的に把 握することができるようになる。
また、 第 1の実施形態の超音波プローブ 1 0を用いて本実施形態を説明したが、 本 実施形態の超音波装置は、 診断用プローブと治療用プローブが別々に分かれている場 合にも適用することができる。 本発明の超音波プローブ及び超音波装置を適用した第 5の実施形態について図 9乃 至 1 1を参照して説明する。 本実施形態が第 1の実施形態と異なる点は、 冷却部の設 置位置を治療用振動子及び診断用振動子の側面にしたことである。 図 9は、 本実施形 態における超音波プローブを示している。
図 9に示すように、 冷却部 5 6 a、 5 6 bは、 治療用振動子 5 0及び診断用振動子 5 2の 2つの側面にそれぞれ設けられている。 本実施形態によれば、 冷却部 5 6 a、 5 6 bに適宜に電流を流すようにすれば、 超音波プローブ 1 0の熱を外気に放熱させ ることができる。 したがって超音波プローブ 1 0の温度上昇を設定値(例えば、 2 °C) 以下に抑えながら、 治療部位に対し超音波を比較的長い時間にわたって連続的に照射 することができる。 その結果、 治療時間を短縮できるなど治療能率を向上させること ができる。
また、 冷却部 5 6については、 治療用振動子 5 0又は診断用振動子 5 2を冷やすこ とができれば、 いずれの位置に設置してもよい。 例えば、 図 1 0に示すように、 超音 波プローブ 1 0の周囲を取り囲む側壁を覆うように冷却部 5 6 cを設けてもよい。 更に、 冷却部に加えて金属箔を併用することもできる。 例えば、 図 1 1に示すよう に、 図 9の診断用振動子 5 2の超音波射出面に金属箔 6 0が配設される。 また、 配設 された金属箔 6 0は、 冷却部 5 6 a、 5 6 bに接触する。 これにより、 診断用振動子 5 2で発生した熱は、 金属箔 6 0により吸熱される。 吸熱された熱は、 金属箔 6 0を 介して冷却部 5 6 a、 5 6 bに導かれる。 導かれた熱は、 冷却部 5 6 a、 5 6 bのぺ ルチェ効果により放熱される。 したがって、 超音波プローブ 1 0の温度上昇を抑える ことができる。 なお、 金属箔 6 0は、 伝導体 (例えば、 金属) を数 mの薄さにした ものであり、 超音波の射出に影響を与えない材質から形成されている。
また、 診断用振動子 5 2の超音波射出面が金属箔 6 0によりカバ一されるから、 超 音波プローブ 1 0を体表に接触させたとき、 超音波プローブ 1 0の温度が被検体に直 接に伝達しない。 したがって、 超音波プローブ 1 0の温度により被検体に副作用を生 じることが回避される。
本発明の超音波プローブ及び超音波装置を適用した第 6の実施形態について説明す る。 本実施形態が第 1乃至第 5の実施形態と異なる点は、 生体組織に生じる副作用を 回避するために、 パ一スト波の治療用超音波を射出するようにしたことである。 例えば、 脳梗塞を治療する場合、 超音波プローブ 1 0から脳内に入射された治療用 超音波は、 進行方向にある頭蓋骨の内壁に反射して戻ってくることがある。 これは、 頭蓋骨が脳内の生体組織に比べて音響ィンピーダンスが比較的高いためである。 反射 された治療用超音波 (以下、 反射波) が超音波プローブ 1 0から脳内に入射される治 療用超音波 (以下、 入射波) と重なり合って干渉することで、 脳内に定在波が生じる ことがある。 定在波が局所的に比較的大きい強度 (振幅) を有するものであるとき、 脳内の生体組織に副作用を生じるおそれがある。
そこで、 本実施形態では、 治療用送波部 2 5は、 基本波形からバースト波の駆動信 号を生成する。 生成された駆動信号が治療用振動子 5 0に供給されることにより、 治 療用振動子 5 0からバースト波が被検体に射出される。 このとき、 バースト波の射出 時間は比較的短く (例えば、 1 0 u s )設定されると共に、休止時間が比較的長ぐ(例 えば、 1 0 0 s〜3 0 0 s ) 設定される。 なお、 1波長の継続時間が例えば 2 a sのパルス波を束ねたバースト波を射出するようにしている。
例えば、 脳内において反射波が戻ってくるまでの時間が 1 0 0 sの場合、 バース ト波の休止時間が 1 0 0 sより大きく設定される。 なお、 バースト波の射出時間や 休止時間は適宜変更されるものであり、 予め入力部 2 0から設定される。
本実施形態によれば、 入射されたバースト波 T nが反射して戻ってきた後に、 次の バースト波 Τ η + 1が入射されることになる。 したがって、 バースト波 Τ ηとバースト波 τ η + 1が重ならないから、 生体組織に副作用を生じることが回避される。
特に、 治療用超音波については、 周波数が例えば 5 0 0 k H zであるため、 脳内を 進行する際の減衰が比較的小さい。 したがって、 反射波と入射波の強度がほぼ等しく なるから、 干渉波の強度が比較的大きなものになる。 この点、 本実施形態によれば、 治療用超音波の反射波と入射波の干渉を回避できる。
また、 診断用超音波については、 周波数が例えば 2 MH z以上に設定されるのがー 般的であるため、 脳内を進行する際の減衰が比較的大きい。 したがって、 生成される 干渉波の強度は比較的小さいものとなるが、 治療用超音波と同様に、 パルス波又はバ ースト波の休止時間を比較的長く設定するようにしてもよい。
また、バースト波の射出時間を例えば 1 0 n sにしているが、適宜変更してもよい。 要するに、 入射波と反射波が干渉したときでも、 干渉波の継続時間を短くして生体組 織に生じる副作用を回避できるものであればよい。
なお、 第 1の実施形態の超音波プローブ 1 0を用いて本実施形態を説明したが、 本 実施形態の超音波装置は、 診断用プローブと治療用プローブが別々に分かれている場 合にも適用することができる。
本発明の超音波プローブ及び超音波装置を適用した第 7の実施形態について図 1 2 を参照して説明する。 本実施形態が第 6の実施形態と異なる点は、 治療用超音波の周 波数を射出時間の経過とともに徐々に大きくするようにしたことである。 図 1 2は、 図 1の治療用送波部 2 5の構成図である。
図 1 2に示すように、 治療用送波部 2 4ま、 クロックジェネレータ 7 0、 変調信号 発生器 7 2、 移相回路 7 4 a〜7 4 m (m: 自然数) 、 増幅器 (以下、 アンプ 7 6 a 〜7 6 m) などから構成されている。 なお、 移相回路 7 4 a〜7 4 mは、 遅延回路な どから形成することもできる。 また、 mは、 超音波プローブ 1 0を構成する治療用振 動素子 5 0 a〜5 0 mの数に対応している。
まず、 クロックジェネレータ 7 0により連続波の基本波形が生成される。 生成され た基本波形は、 移相回路 7 4 a〜7 4 mにより位相がずらされる。 そして、 各基本波 形は、 アンプ 7 6 a〜7 6 mにより増幅された後、 治療用振動子 5 0に駆動信号とし て入力される。 入力された駆動信号により治療用振動子 5 0から治療用超音波が射出 される。 射出時間の経過に従って変調信号発生器 7 2により変調信号が生成される。 生成された変調信号が各移相回路 7 4 a〜7 4 mに入力される。 入力された変調信号 により移相回路 7 4 a〜7 4 mは、 基本波形の周波数を大きく変調する。 変調された 波形が治療用振動子 5 0に駆動信号として入力される。 これにより、 周波数が大きく 変調された治療用超音波が治療用振動子 5 0から射出される。 例えば、 射出され始め た時 (T = 0 ) の超音波の周波数を f 0、 波長を λ。とすると、 一定時間経過後 (Τ = 1 0 S ) の超音波の周波数が 4 f 0、 波長が λ。 4となるように、 変調信号発生器 7 2により変調信号が生成される。 このような動作が繰り返されることにより、 治療 用振動子 5 0から射出される治療用超音波は、 時間軸方向に周波数が変調されたもの になる。
本実施形態によれば、 例えば頭蓋骨内で反射波と入射波が重なり合ったとしても、 重なり合った反射波と入射波の周波数は異なることになる。 したがって、 反射波と入 射波の干渉パターンが固定されないから、 反射波と入射波が干渉することで生じる干 渉波の強度を抑えることができる。
また、 周波数を変える時間については適宜設定すればよいが、 本実施形態では、 治 療用超音波の干渉パターンが少しでも固定されないように、 射出された超音波が脳の 表面から頭蓋骨内を透過して脳内に進行するまでの時間 (例えば、 1 0 /i s ) ごとに 治療用超音波の周波数を変調するようにしている。 要するに、 基本波形に基づいて時 間軸方向に周波数を変調すればよい。
なお、 周波数の変調値については適宜設定することができる。 例えば、 反射波と入 射波が 1 Z 4〜 1 / 2波長ずれるように周波数を変えると、 反射波と入射波が互いに 打ち消すように干渉する。 したがって、 干渉波の強度が大きくなることをより一層抑 えることができる。
また、 第 1の実施形態の超音波プローブ 1 0を用いて本実施形態を説明したが、 本 実施形態の超音波装置は、 診断用プローブと治療用プローブが別々に分かれている場 合にも適用することができる。
本発明の超音波プローブ及び超音波装置を適用した第 8の実施形態について図 1 2 及ぴ 1 3を参照して説明する。 本実施形態が第 7の実施形態と異なる点は、 治療用超 音波の入射方向を設定時間ごとにずらすようにしたことである。 図 1 3は、 治療用超 音波の入射波と反射波が干渉しない原理を示す説明図である。
すなわち、 図 1 2の治療用送波部 2 4により駆動信号が生成されるとき、 設定時間 (例えば、 0 . 1秒) ごとに、 予め設定された遅延データが移相回路 7 4 a〜 7 4 m にそれぞれ付与される。 これにより、 治療用振動子 5 0から射出される超音波が偏向 されるため、 超音波ビームの射出方向が変わる。 なお、 超音波ビームの射出方向を変 更する角度 (0 ) については、 適宜変更すればよい。
本実施形態によれば、 図 1 3に示すように、 治療用超音波の入射波の進行方向と反 射波の進行方向は、 同一直線上ではなくなる。 つまり、 入射波と反射波は、 方向が異 なったものになるから、 入射波と反射波の干渉を回避することができる。
また、 本実施形態では、 超音波の射出方向を変える設定時間を 0 . 1秒に設定した が、 適宜設定すればよい。 例えば、 入射波と反射波が重なり合って干渉すると、 干渉 波により血管内にキヤピテーシヨン (気泡) が生成されることがある。 生成されたキ ャビテーシヨンは徐々に大きくなつた後に壊される。 壊されたキヤビテーションの影 響により生体組織に副作用が生じるおそれがある。 したがって、 キヤビテーシヨンが 生じる前に超音波の射出方向を変えるようにするのが望ましい。
なお、 第 1の実施形態の超音波プローブ 1 0を用いて本実施形態を説明したが、 本 実施形態の超音波装置は、 診断用プローブと治療用プローブが別々に分かれている場 合にも適用することができる。
以上、 第 1乃至第 8の実施形態に基づいて本発明を説明したが、 これに限られるも のではない。 例えば、 脳梗塞を治療する場合のほか、 心筋梗塞を治療することにも本 発明の超音波プローブ及び超音波装置を適用することができる。 心筋梗塞を治療する ときは、 超音波プローブを胸部に当接させ、 胸部の肋骨の間隙から心臓の冠状動脈に 生じた血栓に向けて診断用及び治療用の超音波を射出する。
また、 血栓を溶解させるほか、 体内に形成される無機物や塩類からなる異常固形物 (例えば、 結石) を溶解させる場合にも、 本発明の超音波プローブ及び超音波装置を 適用することができる。
また、 本発明の超音波プローブ及び超音波装置を様々な脳梗塞の治療に用いること ができる。 例えば、 脳梗塞には、 ラクナ梗塞、 ァテローム血栓性梗塞及び心原性脳塞 栓症などがある。 ラクナ梗塞とは、 脳の細い動脈が高血圧のために損傷を受けてその 動脈が詰まることにより脳の深い部分に小さな梗塞巣ができるものである。 ァテロー ム血栓性梗塞とは、 頸の動脈や頭蓋内の比較的大きな動脈の硬化 (ァテローム硬化) によってその動脈が狭くなりその位置に血栓が形成されて血流の閉塞を起こすもので ある。 心原性脳塞栓とは、 心臓の中にできた血の塊 (血栓) が剥がれて脳の動脈に流 れ込んで血流の閉塞を起こすものである。 いずれの脳梗塞も発症から短時間内に梗塞 部位の血栓を溶解させる必要があるが、 本発明の超音波プロ一ブ及び超音波装置によ れば、 迅速かつ容易に血栓を溶解させることが可能になる。 産業上の利用可能性
以上説明したように本発明によれば、 超音波治療に好適な超音波プローブ及び超音 波装置を実現することができる。

Claims

1 . 配列された複数の第 1の振動素子を含み、 被検体に治療用超音波を射出する治療 用振動子と、
配列された複数の第 2の振動素子を含み、 前記被検体に診断用超音波を射出し、 前 記被検体で反射された前記診断用超音波を受信する診断用振動子とを備え、
前記治療用振動子と前記診断用振動子とが積層されていることを特徴とする超音波 プローブ。
の S
2 . 前記診断用振動子は、 前記治療用振動子よりも前記被検体に近くなるように積層 されていることを特徴とする請求項 1に記載の超音波プローブ。
3 . 前記複数の第 1の振動素子のそれぞれの超音波射出面に、 前記複数の第 2の振動 素子のうちの少なくとも二つが積層されていることを特徴とする請求項 1に記載の超 音波プローブ。 ―
4. 前記複数の第 1の振動素子のアレイピッチと前記複数の第 2の振動素子のアレイ ピッチとの比が整数比であることを特徴とする請求項 3に記載の超音波プローブ。
5 . 前記複数の第 1の振動素子間に遮音材を更に備え、
前記複数の第 2の振動素子は、 前記複数の第 1の振動素子の超音波射出面及び前記 遮音材上に積層され、
前記複数の第 1の振動素子のアレイピッチと前記複数の第 2の振動素子のアレイピ ツチとの比が整数比ではないことを特徵とする請求項 1に記載の超音波プローブ。
6 . 前記治療用超音波の半波長の厚みを有し前記治療用振動子の超音波射出面の反対 面側に配設されたパッキング材を更に備えることを特徴とする請求項 1に記載の超音 波プローブ。
7 . 前記治療用振動子と前記診断用振動子との少なくとも一方に接合された冷却部を 更に備えることを特徴とする請求項 1に記載の超音波プローブ。
8 . 前記冷却部は、 前記治療用振動子と前記診断用振動子との少なくとも一方の超音 波射出面の反対面側と側面との少なくとも一方を覆っていることを特徴とする請求項 7に記載の超音波プローブ。
9 . 前記治療用振動子と前記診断用振動子との少なくとも一方の超音波射出面に、 前 記冷却部に接した金属箔を更に備えることを特徴とする請求項 7に記載の超音波プロ ーブ。
1 0 . 前記超音波プローブの超音波口径 Dは、
Ό = Ν Χρ2
ここで、 Νは前記複数の第 2の振動素子の数、 は前記複数の第 2の振動素子のァ レイピッチ、
により算出されることを特徴とする請求項 1に記載の超音波プローブ。
1 1 . 請求項 1に記載の超音波プローブと、
前記治療用振動子の駆動信号を生成する治療用送波部と、
前記診断用振動子の駆動信号を生成する診断用送波部と、
前記診断用振動子により受波された反射エコー信号に基づいて超音波像を再構成す る画像構成部と、
前記治療用超音波による前記被検体の治療の状態を検出する検出手段とを備え、 前記治療用送波部は、 前記検出手段により検出された治療の状態に基づいて警告情 報を出力する警告機能を有することを特徴とする超音波装置。
1 2 . 前記治療用送波部は、 前記検出手段により検出された状態に基づいて前記治療 用振動子の駆動信号を制御することを特徴とする請求項 1 1に記載の超音波装置。
1 3 . 前記検出手段は、 前記治療用振動子と前記診断用振動子の少なくとも一方に相 関した温度を検出し、 検出した温度が設定値を超えたときに前記治療用送波部に該検 出温度を出力することを特徴とする請求項 1 1に記載の超音波装置。
1 4. 前記検出手段は、 前記被検体から発生する反射エコー信号のドプラ偏位に基づ き血流信号を検出し、 検出した血流信号が設定値を超えたときに前記治療用送波部に 該血流信号を出力することを特徴とする請求項 1 1に記載の超音波装置。
1 5 . 前記被検体に注入する血栓溶解剤の注入量を制御する注入制御部を更に備え、 前記注入制御部は、 前記検出手段により検出された血流信号に基づいて前記血栓溶 解剤の注入量を制御することを特徴とする請求項 1 4に記載の超音波装置。
1 6 . 前記治療用送波部は、 前記被検体内の部位により反射された反射波と前記治療 用振動子から前記被検体に入射される入射波との干渉を回避するように前記治療用振 動子の駆動信号を生成することを特徴とする請求項 1 1に記載の超音波装置。
1 7 . 前記治療用送波部'は、 射出時間と休止時間を制御して基本波形からパルス波と バースト波のいずれか一方の前記駆動信号を生成することを特徴とする請求項 1 6に 記載の超音波装置。
1 8 . 前記治療用送波部は、 基本波形に基づいて時間軸方向に周波数を変調してなる 超音波の前記駆動信号を生成することを特徴とする請求項 1 6に記載の超音波装置。
1 9 . 前記治療用送波部は、 前記治療用振動子から射出する超音波ビームの射出方向 を前記被検体内の部位により反射された反射波の方向と異ならせるように前記駆動信 号を生成することを特徴とする請求項 1 6に記載の超音波装置。
PCT/JP2004/000812 2003-01-31 2004-01-29 超音波プローブ及び超音波装置 WO2004066856A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005504740A JP4543430B2 (ja) 2003-01-31 2004-01-29 超音波プローブ及び超音波装置
EP04706363A EP1591073A4 (en) 2003-01-31 2004-01-29 ULTRASONIC PROBE AND ULTRASONIC DEVICE
US10/543,916 US7662098B2 (en) 2003-01-31 2004-01-29 Ultrasonic probe and ultrasonic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-024252 2003-01-31
JP2003024252 2003-01-31
JP2003-352464 2003-10-10
JP2003352464 2003-10-10

Publications (1)

Publication Number Publication Date
WO2004066856A1 true WO2004066856A1 (ja) 2004-08-12

Family

ID=32828927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000812 WO2004066856A1 (ja) 2003-01-31 2004-01-29 超音波プローブ及び超音波装置

Country Status (4)

Country Link
US (1) US7662098B2 (ja)
EP (1) EP1591073A4 (ja)
JP (1) JP4543430B2 (ja)
WO (1) WO2004066856A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137484A1 (ja) * 2005-06-22 2006-12-28 Hitachi Medical Corporation 超音波治療装置
JP2010500084A (ja) * 2006-08-11 2010-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 脳血流画像化、及びマイクロバブルを用いた血餅溶解をする超音波システム
JP2010500085A (ja) * 2006-08-11 2010-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 脳血流撮影及び微細気泡改善血栓消散のための超音波システム
JP2012509126A (ja) * 2008-11-19 2012-04-19 インサイテック・リミテッド 閉ループ血塊溶解
JP5222942B2 (ja) * 2008-05-16 2013-06-26 株式会社日立メディコ 超音波診断装置
JP5282309B2 (ja) * 2007-11-26 2013-09-04 コニカミノルタ株式会社 超音波探触子および該製造方法ならびに超音波診断装置
JP2014523263A (ja) * 2011-05-20 2014-09-11 ドヘニー アイ インスティテュート 眼球用超音波プローブ
JP2015519970A (ja) * 2012-06-13 2015-07-16 ニューウェル, デイビッド ダブリュー.NEWELL, David, W. 超音波血栓溶解療法を用いたクモ膜下血腫の治療、並びに関連する装置、システム、及び方法
US9177543B2 (en) 2009-08-26 2015-11-03 Insightec Ltd. Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI
JP5892639B1 (ja) * 2015-03-06 2016-03-23 株式会社Murakumo 超音波発振装置
US9412357B2 (en) 2009-10-14 2016-08-09 Insightec Ltd. Mapping ultrasound transducers
US9852727B2 (en) 2010-04-28 2017-12-26 Insightec, Ltd. Multi-segment ultrasound transducers
JP2019524294A (ja) * 2016-08-01 2019-09-05 コーダンス メディカル インコーポレイテッドCordance Medical Inc. 血液脳関門の超音波ガイド下開放
EP1912749B1 (en) * 2005-07-26 2021-04-21 Surf Technology AS Dual frequency band ultrasound transducer arrays

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6618620B1 (en) 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
JP4492818B2 (ja) * 2004-06-21 2010-06-30 博 古幡 超音波脳梗塞治療装置
JP2006020710A (ja) * 2004-07-06 2006-01-26 Ge Medical Systems Global Technology Co Llc 超音波撮影装置
US8409099B2 (en) 2004-08-26 2013-04-02 Insightec Ltd. Focused ultrasound system for surrounding a body tissue mass and treatment method
US20070129652A1 (en) * 2005-11-15 2007-06-07 Henry Nita Methods and apparatus for intracranial ultrasound therapies
US8012092B2 (en) 2005-08-30 2011-09-06 Koninklijke Philips Electronics N.V. Method of using a combination imaging and therapy transducer to dissolve blood clots
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US9492686B2 (en) * 2006-12-04 2016-11-15 Koninklijke Philips N.V. Devices and methods for treatment of skin conditions
US20080229832A1 (en) * 2007-02-16 2008-09-25 Los Alamos National Security Automatic time-of-flight selection for ultrasound tomography
WO2008132835A1 (ja) * 2007-04-24 2008-11-06 Panasonic Corporation 超音波診断装置
US20080284578A1 (en) * 2007-05-16 2008-11-20 Evdokimos Mouratidis Automobile communication device
WO2009021535A1 (en) * 2007-08-14 2009-02-19 Campus Micro Technologies Gmbh Medical devices, systems and methods for blood pressure regulation
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US20090292212A1 (en) * 2008-05-20 2009-11-26 Searete Llc, A Limited Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US9672471B2 (en) 2007-12-18 2017-06-06 Gearbox Llc Systems, devices, and methods for detecting occlusions in a biological subject including spectral learning
US20090287191A1 (en) * 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
CN105126262B (zh) 2008-07-14 2019-03-22 代理并代表亚利桑那州立大学的亚利桑那董事会 使用超声用于调节细胞活性的方法和装置
WO2010103469A1 (en) * 2009-03-12 2010-09-16 Koninklijke Philips Electronics, N.V. Sonolysis of blood clots using low power, coded excitation pulses
US8617073B2 (en) 2009-04-17 2013-12-31 Insightec Ltd. Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves
AU2010315132A1 (en) * 2009-11-04 2012-05-31 Arizona Board Of Regents For And On Behalf Of Arizona State University Devices and methods for modulating brain activity
US9694213B2 (en) * 2009-12-31 2017-07-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Acoustic coupling for assessment and ablation procedures
US8932237B2 (en) 2010-04-28 2015-01-13 Insightec, Ltd. Efficient ultrasound focusing
EP2768385B1 (en) 2011-10-21 2021-03-31 Cerevast Medical, Inc. System for direct communication
WO2014036170A1 (en) 2012-08-29 2014-03-06 Thync, Inc. Systems and devices for coupling ultrasound energy to a body
US20140194740A1 (en) * 2013-01-07 2014-07-10 Cerebrosonics, Llc Emboli detection in the brain using a transcranial doppler photoacoustic device capable of vasculature and perfusion measurement
JP2014168603A (ja) * 2013-03-05 2014-09-18 Jikei Univ 超音波栓子検出装置
WO2015027164A1 (en) 2013-08-22 2015-02-26 The Regents Of The University Of Michigan Histotripsy using very short ultrasound pulses
JP5963811B2 (ja) * 2014-07-18 2016-08-03 オリンパス株式会社 治療用超音波振動子
CN113286552A (zh) 2018-11-28 2021-08-20 希斯托索尼克斯公司 组织摧毁术系统及方法
US11716577B2 (en) 2019-08-15 2023-08-01 Cybersonics, Inc. Ultrasound transducer and housing for same
WO2021041797A1 (en) * 2019-08-30 2021-03-04 Cybersonics, Inc. Ultrasonic generator and controller for ultrasonic generator
WO2021155026A1 (en) 2020-01-28 2021-08-05 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization
WO2022221649A1 (en) * 2021-04-15 2022-10-20 The Regents Of The University Of Michigan Design and fabrication of therapeutic ultrasound transducer with arbitrarily shaped, densely packing, removable modular elements
CN113171156B (zh) * 2021-04-23 2022-09-06 北京荷清和创医疗科技有限公司 植入式医疗器械的超声除栓配件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131454A (ja) * 1994-09-17 1996-05-28 Toshiba Corp 超音波治療装置および超音波照射装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151952A (ja) 1989-11-08 1991-06-28 Matsushita Electric Ind Co Ltd 超音波治療装置
JP3300419B2 (ja) 1991-08-21 2002-07-08 株式会社東芝 血栓溶解治療装置
US5307816A (en) * 1991-08-21 1994-05-03 Kabushiki Kaisha Toshiba Thrombus resolving treatment apparatus
EP0659387B1 (en) * 1993-12-24 2003-04-16 Olympus Optical Co., Ltd. Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range
US5560362A (en) * 1994-06-13 1996-10-01 Acuson Corporation Active thermal control of ultrasound transducers
US5694936A (en) * 1994-09-17 1997-12-09 Kabushiki Kaisha Toshiba Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation
US5984881A (en) * 1995-03-31 1999-11-16 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparatus using a therapeutic ultrasonic wave source and an ultrasonic probe
US5558092A (en) * 1995-06-06 1996-09-24 Imarx Pharmaceutical Corp. Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously
DE19635593C1 (de) * 1996-09-02 1998-04-23 Siemens Ag Ultraschallwandler für den diagnostischen und therapeutischen Einsatz
US5938612A (en) * 1997-05-05 1999-08-17 Creare Inc. Multilayer ultrasonic transducer array including very thin layer of transducer elements
US6425867B1 (en) * 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
US6635017B1 (en) * 2000-02-09 2003-10-21 Spentech, Inc. Method and apparatus combining diagnostic ultrasound with therapeutic ultrasound to enhance thrombolysis
US6537224B2 (en) * 2001-06-08 2003-03-25 Vermon Multi-purpose ultrasonic slotted array transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131454A (ja) * 1994-09-17 1996-05-28 Toshiba Corp 超音波治療装置および超音波照射装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1591073A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137484A1 (ja) * 2005-06-22 2006-12-28 Hitachi Medical Corporation 超音波治療装置
JP4913736B2 (ja) * 2005-06-22 2012-04-11 学校法人慈恵大学 超音波治療装置
US8740797B2 (en) 2005-06-22 2014-06-03 The Jikei University Ultrasonic therapeutic apparatus
EP1912749B1 (en) * 2005-07-26 2021-04-21 Surf Technology AS Dual frequency band ultrasound transducer arrays
JP2010500084A (ja) * 2006-08-11 2010-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 脳血流画像化、及びマイクロバブルを用いた血餅溶解をする超音波システム
JP2010500085A (ja) * 2006-08-11 2010-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 脳血流撮影及び微細気泡改善血栓消散のための超音波システム
JP2014000431A (ja) * 2006-08-11 2014-01-09 Koninklijke Philips Nv 脳血流画像化、及びマイクロバブルを用いた血餅溶解をする超音波システム
JP5282309B2 (ja) * 2007-11-26 2013-09-04 コニカミノルタ株式会社 超音波探触子および該製造方法ならびに超音波診断装置
US8531178B2 (en) 2007-11-26 2013-09-10 Konica Minolta Medical & Graphic, Inc. Ultrasound probe, method for manufacturing the same, and ultrasound diagnostic apparatus
JP5222942B2 (ja) * 2008-05-16 2013-06-26 株式会社日立メディコ 超音波診断装置
JP2012509126A (ja) * 2008-11-19 2012-04-19 インサイテック・リミテッド 閉ループ血塊溶解
US9177543B2 (en) 2009-08-26 2015-11-03 Insightec Ltd. Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI
US9412357B2 (en) 2009-10-14 2016-08-09 Insightec Ltd. Mapping ultrasound transducers
US9852727B2 (en) 2010-04-28 2017-12-26 Insightec, Ltd. Multi-segment ultrasound transducers
JP2014523263A (ja) * 2011-05-20 2014-09-11 ドヘニー アイ インスティテュート 眼球用超音波プローブ
JP2015519970A (ja) * 2012-06-13 2015-07-16 ニューウェル, デイビッド ダブリュー.NEWELL, David, W. 超音波血栓溶解療法を用いたクモ膜下血腫の治療、並びに関連する装置、システム、及び方法
US9808653B2 (en) 2012-06-13 2017-11-07 David W. Newell Treatment of subarachnoid hematoma using sonothrombolysis and associated devices, systems and methods
US9956431B2 (en) 2015-03-06 2018-05-01 Murakumo Corporation Ultrasonic oscillator
WO2016143016A1 (ja) 2015-03-06 2016-09-15 株式会社Murakumo 超音波発振装置
JP5892639B1 (ja) * 2015-03-06 2016-03-23 株式会社Murakumo 超音波発振装置
JP2019524294A (ja) * 2016-08-01 2019-09-05 コーダンス メディカル インコーポレイテッドCordance Medical Inc. 血液脳関門の超音波ガイド下開放
JP7063882B2 (ja) 2016-08-01 2022-05-09 コーダンス メディカル インコーポレイテッド 血液脳関門の超音波ガイド下開放
JP2022097547A (ja) * 2016-08-01 2022-06-30 コーダンス メディカル インコーポレイテッド 血液脳関門の超音波ガイド下開放
US11534630B2 (en) 2016-08-01 2022-12-27 Cordance Medical Inc. Ultrasound guided opening of blood-brain barrier
US11857812B2 (en) 2016-08-01 2024-01-02 Cordance Medical Inc. Ultrasound guided opening of blood-brain barrier
JP7531542B2 (ja) 2016-08-01 2024-08-09 コーダンス メディカル インコーポレイテッド 血液脳関門の超音波ガイド下開放

Also Published As

Publication number Publication date
JP4543430B2 (ja) 2010-09-15
EP1591073A4 (en) 2010-11-17
JPWO2004066856A1 (ja) 2006-05-18
US20060173321A1 (en) 2006-08-03
EP1591073A1 (en) 2005-11-02
US7662098B2 (en) 2010-02-16

Similar Documents

Publication Publication Date Title
JP4543430B2 (ja) 超音波プローブ及び超音波装置
JP5451819B2 (ja) 凝血塊を溶解するために組み合わされたイメージング及び治療トランスデューサを使用する方法
Sokka et al. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh
US6984209B2 (en) Harmonic motion imaging
EP1790384A1 (en) Contrast agent augmented ultrasound therapy system with ultrasound imaging guidance for thrombus treatment
US9630028B2 (en) Ultrasound system for cerebral blood flow imaging and microbubble-enhanced blood clot lysis
Maleke et al. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues
US20220314034A1 (en) Systems and methods for high intensity focused ultrasound
JP4618810B2 (ja) 剪断モード診断用超音波
JP4629034B2 (ja) 剪断モード治療用超音波
JPH03251240A (ja) 超音波治療装置
JP2009505769A (ja) 治療トランスデューサ増幅器を有する、画像化及び治療トランスデューサの組合せ
JP2007160093A (ja) 高強度焦点超音波システム及び高強度焦点超音波システム用結合ヘッド
WO2011092683A1 (en) Non-invasive ultrasound treatment of subcostal lesions
JP2009505768A (ja) 複合撮像及び治療トランスデューサ
JP4263575B2 (ja) 超音波送波器及びこれを用いた超音波装置
CN100356895C (zh) 超声波探针以及超声波装置
US20090264798A1 (en) System and method for controlling energy delivery using local harmonic motion
JP4387947B2 (ja) 超音波治療装置
JP3145084B2 (ja) 超音波治療装置
Newman et al. Design of an Array Transducer for Localizing Microbubble Activity Through the Skull
JP3142535B2 (ja) 超音波治療装置
JP2015156885A (ja) 超音波治療システム
JP2002209895A (ja) 超音波撮像方法及び超音波撮像装置
Worthington et al. A comparison of imaging modalities to monitor thermal and mechanical ultrasound tissue therapies

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004706363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005504740

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006173321

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10543916

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048033442

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004706363

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10543916

Country of ref document: US