WO2003033891A1 - Verfahren und vorrichtung sowie computerprogramm zur steuerung eines verbrennungsmotors - Google Patents
Verfahren und vorrichtung sowie computerprogramm zur steuerung eines verbrennungsmotors Download PDFInfo
- Publication number
- WO2003033891A1 WO2003033891A1 PCT/DE2002/002685 DE0202685W WO03033891A1 WO 2003033891 A1 WO2003033891 A1 WO 2003033891A1 DE 0202685 W DE0202685 W DE 0202685W WO 03033891 A1 WO03033891 A1 WO 03033891A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- combustion
- center
- determined
- internal combustion
- ignition angle
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D37/00—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
- F02D37/02—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1497—With detection of the mechanical response of the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/1002—Output torque
- F02D2200/1004—Estimation of the output torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/18—Control of the engine output torque
Definitions
- the invention relates to a method and an apparatus and a computer program for controlling an internal combustion engine.
- engine speed, load (air mass, pressure, etc.) and possibly the exhaust gas composition are used.
- a torque model is used for the internal combustion engine, which is used both for determining the manipulated variable and for determining the actual variable.
- the key point of this model is that an optimum torque of the internal combustion engine and an optimal ignition angle are determined depending on the operating point, which are then corrected by means of efficiency values in accordance with the current setting of the internal combustion engine.
- DE 195 45 221 AI (US Pat. No. 5,832,897) provides for the value for the optimum ignition angle to be corrected as a function of variables influencing the efficiency of the internal combustion engine, such as exhaust gas recirculation rate, engine temperature, intake air temperature, valve overlap angle, etc.
- the known torque model shows unsatisfactory results in some operating states.
- Such operating states are, in particular, states with high inert gas rates in the combustion chamber, ie states with a large proportion of inert gas (through external or internal exhaust gas recirculation), which are caused by overlap of intake and exhaust valve opening times and occur especially with small to medium fresh gas fillings.
- the calculated base values mean that the known procedure does not achieve an exact torque calculation, since these effects are not taken into account sufficiently.
- the crankshaft angle at which a certain part (e.g. half) of the combustion energy is converted within the framework of the model calculations, the accuracy of the engine torque calculated with the model at high inert gas rates and small fillings is improved, the applicability is simplified and the torque model is also applicable to engines lean combustion or engines with charge movement flap or engines with controllable intake and exhaust valves.
- FIG. 1 to 4 show flow diagrams for a preferred embodiment of a torque model taking into account the focus of combustion.
- FIG. 5 shows an overview of a motor control in which the sketched model is used.
- FIGS. 1 to 4 show flow diagrams which represent a preferred exemplary embodiment for optimizing a torque model for an internal combustion engine.
- the individual blocks represent programs, program parts or program sections of a microcomputer of an electronic - -! - -
- crankshaft angle At which a certain crankshaft angle is referred to as the crankshaft angle at which a certain crankshaft angle is referred to as the crankshaft angle at which a certain crankshaft angle is referred to as the crankshaft angle at which a certain crankshaft angle is referred to as the crankshaft angle at which a certain crankshaft angle is referred to as the crankshaft angle at which a certain crankshaft angle is referred to as the crankshaft angle
- L0 th amount of combustion energy is implemented, preferably half of the combustion energy. It has been shown that the position of the center of combustion has a decisive influence on the conversion of the chemical combustion energy into indicated engine torque. Measurements show that there is
- the coefficients of such a polynomial contain the characteristic information of the mixture in the combustion chamber with regard to gas mass, composition, temperature and charge movement. If, as described above, the center of combustion is introduced as an intermediate size, then
- the second-order polynomial Since the model is used both for determining control variables from target variables and for determining actual variables from measured operating variables, the second-order polynomial has proven to be a suitable description of the relationship between the center of combustion and the ignition angle due to its simple invertibility. In other applications, however, higher-order polynomials or other mathematical functions are also used to describe the relationship in an approximate manner if these prove suitable in the respective environment (e.g. increased accuracy, etc.).
- FIGS. 1 to 4 show an example of implementation of how this knowledge is implemented with regard to the focus of combustion.
- FIG. 1 shows the determination of the indicated actual torque mnst_.
- the optimum torque value is formed in a first map 200 as a function of engine speed nmot and load rl. This is corrected in a correction point 202 with the efficiency etar ⁇ , preferably corrected. This is dependent on the speed and the residual gas rate and is determined in the map 204.
- the efficiency etarri describes the deviation in valve overlap from the standard value.
- the efficiency value etarri is formed in the map 204 m as a function of signals that represent an inert gas rate through internal and external exhaust gas pressure feedback.
- a signal m has proven suitable for the internal and external inert gas rate, which is calculated as a function of the position of the exhaust gas recirculation valve and the position of the inlet and outlet valves.
- the inert gas rate describes the proportion of the inert gas in the total gas mass sucked in.
- Another way of calculating the inert gas rate is based on the temperature of the recirculated exhaust gas flow, Lai ⁇ bda, the current air filling and the exhaust gas pressure.
- the efficiency etarri is read from the map 204.
- a signal wnw which represents the opening angle (based on the crankshaft or camshaft) of the intake valve, has proven to be suitable for taking the charge movement into account.
- the position of a charge movement flap or a size is used, which represents the stroke and the phase of the opening of the inlet valves.
- the optimal torque value corrected to this is then corrected (preferably multiplied) in a further correction stage 205 by the lambda efficiency etalam, which is determined in a characteristic curve 206 as a function of the measured lambda value.
- the optimum torque value is then corrected (multiplied) in the correction stage 208 by the ignition efficiency, which is determined in a procedure described below (210) depending on the load rl engine speed nmot, inert gas rate rri and the set ignition angle. If the base ignition angle is used instead of the actual base angle, the indexed actual torque must not appear as the output variable of the correction stage 208, but the base torque mibas appears as above.
- the determination of the ignition angle efficiency etazwist taking into account the center of combustion is in the 3 shows an example of the flow diagram of FIG.
- the example shown there shows an approximation approach using a second-order polynomial.
- the factors A, B and C of the polynomial are determined depending on the operating parameters such as load, engine speed and inert gas rate. This takes place within the framework of predetermined characteristic maps.
- the set actual orbit angle m is multiplied by the parameter B in a multiplication stage 252.
- the square of the actual orbit angle is multiplied
- L0 is formed, which is then multiplied by the coefficient A in the multiplication stage 256.
- the results of multiplication levels 252 and 256 are added together in 258.
- the sum is added to the coefficient C 260.
- the result is the angle of the center of combustion, which is determined by means of a
- characteristic curve 262 is converted into the ignition efficiency etazwist.
- the characteristic curve 262 is predefined and represents the generally valid characteristic curve of the ignition efficiency versus the angle of the center of combustion.
- FIG. 2 shows a flow chart for determining the target charge value, which is then converted into a target value for the throttle valve position of the internal combustion engine, taking into account an intake manifold model. This is then generated as part of a position control.
- the predetermined target torque value misoll is divided in the division stage 300 by the lambda efficiency etalam, which is determined in accordance with the procedure according to FIG. 1.
- the setpoint torque value corrected in this way is divided in a further division stage 302 by the degree of effectiveness of the setpoint ignition angle.
- This Target ignition efficiency is specified here, for example as a torque reserve during idling, as a torque reserve for catalytic converter heating, etc.
- the target torque corrected in 302 is then converted into a setpoint map 304 in accordance with the engine speed nmot n in accordance with the engine speed setpoint rlsoll, which then serves to adjust the air supply to the internal combustion engine.
- the determination of the target ignition angle to be set is shown in FIG. 4.
- the center of combustion is again used as the intermediate variable, the approximation being derived using the polynomial approach already known from FIG. 3.
- the calculation of the target ignition angle is carried out at a given target ignition efficiency, engine speed and given fresh gas and residual gas filling, wherein a reversal of the polynomial function is used. Furthermore, a characteristic curve is used which represents the angle of the center of combustion over the ignition efficiency.
- the predetermined target ignition efficiency is therefore implemented in the characteristic curve 350 m, a target angle for the center of combustion wvbsoll.
- the coefficients C, B and A of the polynomial function are determined in 352 as a function of operating parameters such as load, speed and inert gas rate r ⁇ , in accordance with characteristic maps, characteristic curves or tables.
- the coefficient C is linked to the linkage point 354 with the target value of the center of combustion.
- the setpoint of the center of combustion is preferably subtracted from the coefficient.
- the result of this combination is then divided by the coefficient A in the division stage 356.
- the latter is multiplied by a factor of -2 in a multiplication stage 358.
- the coefficient B is divided by the coefficient A multiplied by the value -2.
- the result is then divided by the Multiplication stage 362 squared and the link 364 supplied.
- the squared expression is linked to the result of the division level 356, in particular the latter value is subtracted from the former.
- the root is drawn from the result and this is fed to a further junction 368. There the root is subtracted from the result of the division point 360 and the desired ignition curve to be set is thus formed.
- the maps and characteristic curves used to calculate the model are determined within the scope of the application for each engine type using the software tool mentioned above.
- FIG. 5 shows a control unit 400 which comprises an input circuit 402, an output circuit 404 and a microcomputer 406. These components are connected to a bus system 408, the operating variables to be evaluated for engine control, which are recorded by measuring devices 418, 420 to 424, are fed in via input lines 410 and 412 to 416. The company sizes required for the model range are shown above. The recorded and, if necessary, processed operating size signals are then read in by the microcomputer via the bus system 408. In the microcomputer 406 itself, there in its memory, the commands are stored as a computer program which are used for model calculation. This is symbolized in FIG.
- the model results which may also be shown in other, not shown th programs are then processed by the microcomputer via the bus system 408 to the output circuit 404, which then outputs the control signal as manipulated variables, for example for setting the ignition angle and the air supply, and for measuring variables such as the actual torque miist.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Ignition Timing (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/491,908 US6990954B2 (en) | 2001-10-08 | 2002-07-20 | Method, device and computer program for controlling an internal combustion engine |
DE50209100T DE50209100D1 (de) | 2001-10-08 | 2002-07-20 | Verfahren und vorrichtung sowie computerprogramm zur steuerung eines verbrennungsmotors |
EP02754402A EP1436492B1 (de) | 2001-10-08 | 2002-07-20 | Verfahren und vorrichtung sowie computerprogramm zur steuerung eines verbrennungsmotors |
JP2003536598A JP4748935B2 (ja) | 2001-10-08 | 2002-07-20 | 内燃機関の制御方法および装置、並びにその制御のためのコンピュータ・プログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10149475A DE10149475A1 (de) | 2001-10-08 | 2001-10-08 | Verfahren und Vorrichtung sowie Computerprogramm zur Steuerung eines Verbrennungsmotors |
DE10149475.0 | 2001-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003033891A1 true WO2003033891A1 (de) | 2003-04-24 |
Family
ID=7701728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2002/002685 WO2003033891A1 (de) | 2001-10-08 | 2002-07-20 | Verfahren und vorrichtung sowie computerprogramm zur steuerung eines verbrennungsmotors |
Country Status (5)
Country | Link |
---|---|
US (1) | US6990954B2 (de) |
EP (1) | EP1436492B1 (de) |
JP (2) | JP4748935B2 (de) |
DE (2) | DE10149475A1 (de) |
WO (1) | WO2003033891A1 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10316113A1 (de) * | 2003-04-09 | 2004-10-28 | Daimlerchrysler Ag | Verfahren zum Betrieb einer Brennkraftmaschine mit Selbstzündung |
JP2006183506A (ja) * | 2004-12-27 | 2006-07-13 | Hitachi Ltd | エンジンの制御装置 |
FR2938019B1 (fr) * | 2008-10-31 | 2015-05-15 | Inst Francais Du Petrole | Procede de controle de combustion d'un moteur a allumage commande au moyen d'un controle du phasage de la combustion |
DE102008044305B4 (de) * | 2008-12-03 | 2021-06-02 | Robert Bosch Gmbh | Verfahren, Steuergerät und Computerprogrammprodukt zur Erfassung der Laufunruhe eines mehrzylindrigen Verbrennungsmotors |
US8843295B2 (en) * | 2009-05-27 | 2014-09-23 | GM Global Technology Operations LLC | Ethanol content determination systems and methods |
DE102009057277A1 (de) | 2009-12-02 | 2011-06-09 | Volkswagen Ag | Verfahren zum Betreiben eines in einem Abgasnachbehandlungssystem integrierten Brenners sowie Steuergerät zur Ausführung des Verfahrens |
US9759140B2 (en) * | 2015-03-05 | 2017-09-12 | GM Global Technology Operations LLC | Fifty percent burn crankshaft angle estimation systems and methods |
KR20230163837A (ko) * | 2022-05-24 | 2023-12-01 | 현대자동차주식회사 | 불꽃 점화 엔진의 토크 모델 보정 장치 및 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4239711A1 (de) | 1992-11-26 | 1994-06-01 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs |
DE4318504C1 (de) * | 1993-06-03 | 1994-10-27 | Siemens Ag | Verfahren zur Erzeugung eines Regelsignals für den Zündzeitpunkt einer Brennkraftmaschine |
WO1995024550A1 (de) | 1994-03-07 | 1995-09-14 | Robert Bosch Gmbh | Verfahren und vorrichtung zur steuerung eines fahrzeugs |
DE19545221A1 (de) | 1995-12-05 | 1997-06-12 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
DE19849329A1 (de) * | 1998-10-26 | 2000-04-27 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3435254A1 (de) * | 1984-09-26 | 1986-04-03 | Robert Bosch Gmbh, 7000 Stuttgart | Verfahren zur optimalen einstellung eines einstellparameters einer zyklisch arbeitenden maschine |
DE19859074A1 (de) * | 1998-12-21 | 2000-06-29 | Bosch Gmbh Robert | Verfahren zur Regelung der Laufruhe eines Verbrennungsmotors |
DE10149477A1 (de) * | 2001-10-08 | 2003-04-17 | Bosch Gmbh Robert | Verfahren und Vorrichtung sowie Computerprogramm zur Steuerung eines Verbrennungsmotors |
-
2001
- 2001-10-08 DE DE10149475A patent/DE10149475A1/de not_active Withdrawn
-
2002
- 2002-07-20 EP EP02754402A patent/EP1436492B1/de not_active Expired - Lifetime
- 2002-07-20 US US10/491,908 patent/US6990954B2/en not_active Expired - Fee Related
- 2002-07-20 WO PCT/DE2002/002685 patent/WO2003033891A1/de active IP Right Grant
- 2002-07-20 DE DE50209100T patent/DE50209100D1/de not_active Expired - Lifetime
- 2002-07-20 JP JP2003536598A patent/JP4748935B2/ja not_active Expired - Fee Related
-
2010
- 2010-12-08 JP JP2010273683A patent/JP2011047411A/ja not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4239711A1 (de) | 1992-11-26 | 1994-06-01 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs |
US5558178A (en) | 1992-11-26 | 1996-09-24 | Robert Bosch Gmbh | Method and arrangement for controlling a motor vehicle |
DE4318504C1 (de) * | 1993-06-03 | 1994-10-27 | Siemens Ag | Verfahren zur Erzeugung eines Regelsignals für den Zündzeitpunkt einer Brennkraftmaschine |
WO1995024550A1 (de) | 1994-03-07 | 1995-09-14 | Robert Bosch Gmbh | Verfahren und vorrichtung zur steuerung eines fahrzeugs |
US5692471A (en) | 1994-03-07 | 1997-12-02 | Robert Bosch Gmbh | Method and arrangement for controlling a vehicle |
DE19545221A1 (de) | 1995-12-05 | 1997-06-12 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
US5832897A (en) | 1995-12-05 | 1998-11-10 | Robert Bosch Gmbh | Method and arrangement for controlling an internal combustion engine |
DE19849329A1 (de) * | 1998-10-26 | 2000-04-27 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs |
Also Published As
Publication number | Publication date |
---|---|
JP2011047411A (ja) | 2011-03-10 |
US6990954B2 (en) | 2006-01-31 |
DE10149475A1 (de) | 2003-04-17 |
EP1436492A1 (de) | 2004-07-14 |
JP2005505716A (ja) | 2005-02-24 |
EP1436492B1 (de) | 2006-12-27 |
US20040194758A1 (en) | 2004-10-07 |
DE50209100D1 (de) | 2007-02-08 |
JP4748935B2 (ja) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19630213C1 (de) | Verfahren und Vorrichtung zur Motormomenteinstellung bei einem Verbrennungsmotor | |
DE10329763B4 (de) | Koordinierte Regelung einer elektronischen Drosselklappe und eines Turboladers mit variabler Geometrie in ladedruckverstärkten und stöchiometrisch betriebenen Ottomotoren | |
DE60129784T2 (de) | Vorrichtung zum Steuern des Luftüberschussfaktors einer Brennkraftmaschine | |
DE3015832A1 (de) | Verfahren und vorrichtung zum steuern und/oder regeln der luftmengenzufuhr bei verbrennungskraftmaschinen | |
DE4214648A1 (de) | System zur steuerung einer brennkraftmaschine | |
DE102005014735A1 (de) | Multivariable Aktorsteuerung für eine Brennkraftmaschine | |
WO2009074400A2 (de) | Verfahren zur bestimmung von adaptierten messwerten und/oder modellparametern zur steuerung des luftpfads von verbrennungsmotoren | |
DE102006020675A1 (de) | Verfahren zur Lambda- und Momentenregelung einer Verbrennungskraftmaschine sowie Programmalgorithmus | |
DE102009000329A1 (de) | Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors | |
DE10219382A1 (de) | Steuerungsvorrichtung für eine Brennkraftmaschine | |
EP1436493B1 (de) | Verfahren und vorrichtung sowie computerprogramm zur steuerung eines verbrennungsmotors | |
DE3311029A1 (de) | Verfahren und vorrichtung zur regelung der leerlaufdrehzahl einer brennkraftmaschine | |
DE19603472A1 (de) | Verfahren zur Steuerung einer Abgasrückführvorrichtung einer Brennkraftmaschine | |
DE102012203855B4 (de) | Maschinensteuerungssystem mit Algorithmus für Stellgliedsteuerung | |
DE19855493A1 (de) | Motorsteuervorrichtung | |
EP1436492A1 (de) | Verfahren und vorrichtung sowie computerprogramm zur steuerung eines verbrennungsmotors | |
DE102010000928B3 (de) | Verfahren und Vorrichtung zur Einstellung des Luft-/Kraftstoffverhältnisses im Abgas eines Verbrennungsmotors | |
DE112011105363T5 (de) | Steuerungsvorrichtung für Verbrennungsmotoren | |
DE4405340B4 (de) | Verfahren und Vorrichtung zur Einstellung der Drehzahl einer Antriebseinheit eines Fahrzeugs im Leerlauf | |
DE19618385B4 (de) | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine | |
EP1525383A1 (de) | Verfahren zum umrechnen einer kraftstoffmenge in ein drehmoment | |
EP3543514A1 (de) | Verfahren und regelkreis zum bestimmen einer stellgrösse zum einstellen eines saugrohrdrucks | |
DE102016205241A1 (de) | Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors mit einem variablen Einspritzprofil | |
DE19941007A1 (de) | Verfahren und Vorrichtung zum Regeln der Abgasrückführung einer Brennkraftmaschine | |
DE69810019T2 (de) | Elektronische Vorrichtung zum Steuern des Luft-Kraftstoff-Verhältnisses des einem Verbrennungsmotor zugeführten Gasgemisches |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002754402 Country of ref document: EP |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003536598 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10491908 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2002754402 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002754402 Country of ref document: EP |