[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2003077438A1 - Receiver and automatic frequency control method - Google Patents

Receiver and automatic frequency control method Download PDF

Info

Publication number
WO2003077438A1
WO2003077438A1 PCT/JP2002/002227 JP0202227W WO03077438A1 WO 2003077438 A1 WO2003077438 A1 WO 2003077438A1 JP 0202227 W JP0202227 W JP 0202227W WO 03077438 A1 WO03077438 A1 WO 03077438A1
Authority
WO
WIPO (PCT)
Prior art keywords
correlation value
phase rotation
known symbol
correlation
code
Prior art date
Application number
PCT/JP2002/002227
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyuki Takahashi
Katsuhiko Hiramatsu
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2002236278A priority Critical patent/AU2002236278A1/en
Priority to CNB028119835A priority patent/CN100502249C/en
Priority to PCT/JP2002/002227 priority patent/WO2003077438A1/en
Publication of WO2003077438A1 publication Critical patent/WO2003077438A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/709Correlator structure

Definitions

  • the present invention relates to a receiving device and an automatic frequency control method used in a CDMA wireless communication system.
  • the receiving device performs automatic frequency control (hereinafter, referred to as “AFC”) in order to compensate for a difference in carrier frequency with the transmitting device.
  • AFC automatic frequency control
  • FIG. 1 is a diagram showing a slot configuration of data transmitted from a transmission device.
  • FIG. 2 is a block diagram showing a configuration of a conventional receiving apparatus.
  • a transmitting device (not shown) transmits a signal including a known symbol 11 and a known symbol 12 spread by Code A and Code B, respectively.
  • the code lengths of C 0 de A and C 0 deB are tCA and tCB, respectively, and the interval between known symbols 11 and 12 is t gap.
  • the signal transmitted from the transmitting device is received via the antenna 21 by the receiving device shown in FIG.
  • a signal (received signal) received by an antenna 21 is frequency-converted from a carrier frequency to a baseband by a reception RF unit 22.
  • the reception RF unit 22 uses a local signal oscillated from an oscillator 38 described later.
  • the in-phase component (I-ch) and quadrature component (Q-ch) of the baseband signal (reception paceband signal) output from the reception RF unit 22 are The signals are converted into digital signals by an A / D converter 23 and an A / D converter 24, respectively, and output to a searcher 25, a correlator 26, a correlator 27, and a correlator 28.
  • the received base-span signal converted to the digitized signal is correlated with CodeA, which is a known code, and the power of the correlation value exceeds the threshold value.
  • Timing) t A is detected.
  • the reception timing tB of CodeB is calculated by tA + tgap.
  • the reception timing t Data at the beginning of the data part is calculated by tA + tCAZ2.
  • the searcher 25 outputs the reception timing at the beginning of the data section to the correlator 26 and the synchronous detector 29, the searcher 25 outputs the reception timing of Code A to the correlator 27, and the searcher 25 outputs the correlator.
  • the reception timing of Code B is output.
  • the correlation between the data portion of the received baseband signal and a predetermined spreading code (the spreading code assigned to the receiving device) is determined. Be taken. The data part of the received baseband signal after the correlation processing is output to the synchronous detector 29.
  • the known symbol 11 of the received baseband signal is correlated with CodeA based on the reception timing of CdeeA from the searcher 25.
  • the correlator 28 correlates the known symbol 12 of the received base span signal with CodeB based on the reception timing of the CodeB from the searcher 25.
  • the synchronous detection process is performed on the data portion of the correlation-processed received paceband signal based on the first reception timing of the data portion from the searcher 25.
  • the data part of the received baseband signal after the synchronous detection is demodulated by the demodulation unit 30, and the received data is extracted.
  • the in-phase component of the known symbol 11 of the correlated received baseband signal is delayed.
  • the signal is delayed by t AB t CA / 2 + t gap + t CB / 2 (see Fig. 1) by the extension unit 31 and output to the complex correlation operation unit 33.
  • the in-phase component and the quadrature component of the known symbol 12 of the received baseband signal subjected to the correlation processing are output to the complex correlation calculator 33, respectively.
  • the complex correlation operation unit 33 performs a complex correlation process using the in-phase components of the known symbol 11 and the known symbol 12 of the received received baseband signal c .
  • a complex correlation process is performed using the orthogonal components of the known symbol 11 and the known symbol 12 of the correlation-processed received baseband signal.
  • the in-phase component and the quadrature component of the received base span signal after the complex correlation processing are output to phase estimating section 34.
  • the phase estimator 34 estimates the amount of phase rotation per unit time using the in-phase component and the quadrature component of the received baseband signal after the complex correlation processing output from the complex correlation calculator 33.
  • the smoothing unit 35 calculates a frequency offset using the phase rotation amount estimated by the phase estimating unit 34.
  • the calculated frequency offset is output to control voltage converter 36.
  • the control voltage converter 36 outputs a signal having a predetermined control voltage applied to the oscillator 38 in order to compensate for the calculated frequency offset.
  • the signal output from the control voltage converter 36 is converted to an analog signal by the DZA converter 37 and then output to the oscillator 38. Thereby, the frequency of the local signal in oscillator 38 is controlled so as to compensate for the frequency offset.
  • the conventional receiving apparatus estimates the amount of phase rotation between known symbols in a received signal, calculates a frequency offset, and performs AFC so as to compensate for the frequency offset.
  • the purpose is that the transmitting side inserts a known symbol consisting of a spreading code obtained by code shift into the transmission data and multiplexes it, and the receiving side uses the value obtained by adding the correlation values of a plurality of known symbols to obtain the phase rotation amount. Is achieved by estimating BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram showing a slot configuration of data transmitted from a transmission device
  • FIG. 2 is a block diagram showing a configuration of a conventional reception device
  • FIG. 3 is a diagram for explaining a method of generating a spread code of a known symbol part used in the present invention.
  • FIG. 4 is a diagram illustrating a slot configuration of data transmitted from a base station apparatus that performs wireless communication with a communication terminal apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a block diagram showing the configuration of the communication terminal device according to the above embodiment
  • FIG. 6 is a diagram showing a delay profile created by the communication terminal device according to the above embodiment
  • FIG. 7A is a diagram showing the amount of phase rotation estimated by the communication terminal device according to the above embodiment.
  • FIG. 7B is a diagram showing the amount of phase rotation estimated by the communication terminal device according to the above embodiment.
  • FIG. 7C shows the amount of phase rotation estimated by the communication terminal device according to the above embodiment. Figures shown, and
  • FIG. 8 is a block diagram showing a configuration of a communication terminal device according to Embodiment 2 of the present invention.
  • the length of the basic code is P (chip), and the maximum delay profile length of the radio line is W (chip).
  • two identical basic codes are arranged in series, the front is a basic code BC1, and the rear is a basic code BC2.
  • the spreading code Code 1 for the user 1 is created by adding a W portion from the beginning of the basic code BC 2 to the basic code BC 1. Also, the spreading code Code 2 for user 2 is created by removing the W portion from the beginning of the basic code BC1 and adding 2 XW from the beginning of the basic code BC2. That is, the spreading code Code 2 is obtained by moving (shifting) the portion corresponding to the spreading code Code 1 backward by W in the basic codes BC1 and BC2.
  • the transmitting side is a base station apparatus and the receiving side is a communication terminal apparatus.
  • a delayed wave is not considered.
  • the spread code generated by the method shown in FIG. 3 is referred to as “shift code”.
  • FIG. 4 is a diagram illustrating a base station that performs wireless communication with a communication terminal apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating a slot configuration of data transmitted from a device. As shown in FIG. 4, a known symbol is inserted at substantially the center of the slot. This known symbol is a spreading code generated by the method shown in FIG. Also, the de-multiplexing section is multiplied by a dispersion code unique to each user.
  • the base station apparatus multiplexes and transmits a signal having the slot configuration shown in FIG. 4 to each communication terminal apparatus (user) during communication.
  • the basic code and the shift amount are notified in advance to each communication terminal device by transmitting and receiving the control signal.
  • FIG. 5 is a block diagram showing a configuration of the communication terminal device according to the present embodiment.
  • FIG. 5 shows the configuration of the receiving side of the communication terminal apparatus, and the configuration of the transmitting side is omitted.
  • Receiving antenna 101 receives a radio signal transmitted from the base station device.
  • the reception RF section 102 multiplies the reception signal of the reception antenna 101 by a local signal oscillated by an oscillator 123 described later, and converts the frequency of the reception signal to spanned.
  • the AZD converter 103 performs A / D conversion on the in-phase component (I-ch) of the baseband signal (hereinafter, referred to as “reception paceband signal”) output from the reception RF section 102.
  • the 8/0 converter 104 performs A / D conversion on the orthogonal component (Q-ch) of the received spanned signal.
  • the searcher 105 uses the basic code shown in FIG. 3 to create a delay profile of the known symbol part of the received baseband signal converted to a digital signal, and the power of the correlation value is set to a threshold. (That is, the reception timing of a known symbol) is detected and output to the code number 'type determination unit 106. Further, the searcher 105 calculates the reception timing at the head of the data part based on the reception timing of the known symbol, and outputs it to the correlator 107 and the synchronous detector 110.
  • the code number 'type determination unit 106 determines the number and type of the currently used shift codes based on the reception timing of the known symbols from the searcher 105, and the correlator 108-l ⁇ N and correlator 1 0 9-l ⁇ n (where n is The timing of the correlation process is instructed to. The details of the determination of the number of codes and the type in the code number / type determination unit 106 will be described later.
  • the correlator 107 based on the reception timing of the head of the data portion from the search device 105, receives the data portion of the received paceband signal and a predetermined spreading code (spreading code assigned to its own device). And outputs the data part of the received paceband signal after the correlation processing to the synchronous detector 110.
  • a predetermined spreading code spreading code assigned to its own device.
  • the correlators 1 08 — 1 to n are correlated values (hereinafter referred to as “symbol first half”) between the known symbol first half of the received baseband signal and the shift code in accordance with the instruction from the code number / type determination unit 106. Partial correlation value ”). Similarly, the correlators 109-1 to n correspond to the correlation value between the latter half of the known symbol of the received baseband signal and the shift code (hereinafter, “ The second half of the symbol).
  • the synchronous detection unit 110 performs synchronous detection processing on the data part of the received baseband signal after correlation processing based on the reception timing at the head of the data part from the searcher 105, and performs demodulation. 1 Output to 1.
  • the demodulation unit 111 performs demodulation processing on the demodulated portion of the synchronously detected received baseband signal, and extracts received data.
  • the adder 111 adds the in-phase components of the first half symbol correlation values calculated by the correlators 108-ln to n, respectively.
  • the adder 113 adds the orthogonal components of the symbol first half correlation values calculated respectively by the correlators 108-1-n.
  • the adder 114 adds the in-phase components of the second half correlation values of the symbols calculated by the correlators 109-ln to n, respectively.
  • the adder 115 adds the orthogonal components of the correlation value of the latter half of the symbol calculated by the correlators 109-ln to n, respectively.
  • the delay unit 1 16 delays the in-phase component of the symbol first-half correlation value added by the adder 1 12 by a predetermined amount, and then outputs the result to the complex correlation operation unit 1 18.
  • delay section 117 delays the orthogonal component of the first half correlation value of the symbol added by adder 113 by a predetermined amount, and outputs the result to complex correlation operation section 118.
  • the complex correlation operation unit 118 performs a complex correlation process using the in-phase component of the symbol first half correlation value after the addition and the in-phase component of the symbol second half correlation value after the addition. Further, complex correlation operation section 118 performs a complex correlation process using the orthogonal component of the symbol first half correlation value after addition and the orthogonal component of the symbol second half correlation value after addition.
  • the phase estimating unit 119 estimates the amount of phase rotation per unit time using the in-phase component and the quadrature component of the correlation value after the complex correlation processing output from the complex correlation calculating unit 118. The details of the estimation of the amount of phase rotation by the phase estimating unit 119 will be described later.
  • the smoothing unit 120 calculates the frequency offset by smoothing the phase rotation amount estimated by the phase estimating unit 119.
  • the control voltage converter 122 outputs a signal having a predetermined control voltage to be applied to the oscillator 123 to the DZA converter 122 in order to compensate for the calculated frequency offset.
  • the D / A converter 122 converts the signal output from the control voltage converter 122 into an analog signal.
  • the oscillator 123 oscillates a local signal having a frequency corresponding to the voltage of the output signal of the DZA converter 122.
  • the radio signal transmitted from the base station apparatus is received by the receiving antenna 101, and is multiplied by the received RF unit 102 by the local signal oscillated by the oscillator 123 to obtain the baseband frequency. Is converted.
  • the in-phase component of the received baseband signal is converted to a digital signal by the A / D converter 103, and the quadrature component of the received paceband signal is converted to the digital signal by the octave converter 104. Is converted to a video signal.
  • the received paceband signal converted to the digitized signal is output to searcher 105, correlator 107, correlator 108-ln and correlator 109-ln.
  • a delay profile of a known symbol part of the received baseband signal converted into a digital signal is created by the basic code shown in FIG. 3 above, and the reception timing of the known symbol is detected.
  • the number and type of shift codes currently used are determined by the code number 'type determination unit 106.
  • the correlator 107 correlates the data portion of the received baseband signal with a predetermined spreading code (spreading code assigned to its own device) based on the reception timing at the head of the data portion.
  • the synchronous detection unit 110 performs synchronous detection processing on the data part of the received baseband signal after the correlation processing based on the reception timing at the head of the data part, and the demodulation unit 111 At 1, demodulation processing is performed on the data portion of the synchronously detected received baseband signal, and the received data is extracted.
  • the correlation value of the first half of the symbol is calculated from the second half of the known symbol of the received baseband signal and the shift code.
  • the symbol second half correlation value is calculated from the known symbol second half of the received paceband signal and the shift code.
  • the in-phase and quadrature components of the first half symbol correlation values calculated by each correlator 1 08—l to n are added by the adders 1 12 and 1 13 and the delay units 1 16 and 1 1 A predetermined amount is delayed by 7.
  • the in-phase and quadrature components of the second half correlation value of the symbol calculated by each correlator 109-l to n are added by adders 114 and 115.
  • the complex correlation operation unit 118 calculates the quadrature component of the symbol first-half correlation value after addition by using the in-phase component of the symbol first-half correlation value after addition and the in-phase component of the symbol second-half correlation value after addition.
  • a complex correlation process is performed by using and the orthogonal component of the correlation value of the latter half of the symbol after the addition.
  • the phase estimator 1 19 estimates the amount of phase rotation per unit time based on the in-phase and quadrature components of the correlation value after the complex correlation processing, and the smoothing unit 120 smoothes the amount of phase rotation. To calculate the frequency offset.
  • the calculated frequency offset is output to the control voltage converter 121.
  • control voltage converter 122 a signal having a predetermined control voltage is output to the DZA converter 122 so as to compensate for the calculated frequency offset, and is converted into an analog signal. Output to 3.
  • oscillator 13 a local signal having a frequency according to the voltage of the output signal of the DZA converter 122 is oscillated. 7
  • FIG. 6 is a diagram showing a delay profile created by the communication terminal device according to the present embodiment.
  • the horizontal axis is time
  • the vertical axis is power.
  • the receiving side of the communication terminal apparatus uses the basic code to generate the known symbol part of the received baseband signal.
  • peaks exceeding the threshold are detected by the number of communication terminals currently communicating.
  • the base station apparatus when the base station apparatus is performing wireless communication with the communication terminal apparatus using the shift code Code i, the time at which the base station apparatus transmitted the data is set to 0, and the time is calculated from the time (i-1) XW. A peak exceeding the threshold appears in the range of the time zone T i less than i ⁇ W.
  • peaks Pl and P3 that exceed the threshold in the range of T1 and T3 appear, so the base station apparatus uses the shift code Codel and the shift code Code3. It can be seen that wireless communication is being performed with the communication terminal device.
  • the code number and type determination unit 106 determines the number of communication terminals with which the base station apparatus is currently performing wireless communication based on the number of peaks exceeding the threshold, and determines the time zone to which the peak evening belongs.
  • the base station apparatus determines a shift code used for a known symbol of a transmission signal based on.
  • the code number 'type judging section 106 instructs the correlator 108-8-1 to use the time P1 as the timing of the correlation processing, and instructs the correlator 108-8-2.
  • Time P3 is designated as the timing of the correlation processing.
  • the code number 'type judging section 106 designates the time (Pl + tk / 2) as the timing of the correlation processing to the correlator 109--1, assuming that the length of the known symbol section is tk. Then, the time (P3 + tk / 2) is instructed to the correlator 109-2 as the timing of the correlation processing.
  • FIGS. 7B and 7C show the phase rotation amounts.
  • 7A, 7B, and 7C are diagrams illustrating the amount of phase rotation estimated by the communication terminal apparatus according to the present embodiment.
  • the correlation values are represented as vectors on the IQ plane.
  • vector 201 is a symbol first half correlation value between the known symbol first half of the received paceband signal and the shift code Codel
  • vector 202 is the known symbol first half of the received baseband signal. This is the correlation value of the first half of the symbol with the shift code Code 3
  • the vector 203 is a composite vector obtained by adding the vector 201 and the vector 202.
  • vector 211 is the correlation value of the latter half of the symbol of the received baseband signal and the latter half of the symbol with the shift code Code 1
  • the vector 211 is the received paceband signal.
  • This is the correlation value between the latter half of the known symbol and the shift code Code 3
  • the vector 2 13 is a composite vector obtained by adding the vector 2 11 and the vector 2 12.
  • the angle difference 0 between the combined vector 203 and the combined vector 213 indicates the amount of phase rotation.
  • the phase estimating unit 119 estimates the amount of phase rotation using a value obtained by adding the correlation values of a plurality of known symbols.
  • the transmitting side inserts the known symbol composed of the spread code obtained by the code shift into the transmission data and performs multiplex transmission, whereby the receiving side can calculate the correlation value of a plurality of known symbols.
  • the cross-correlation and noise of the spread code affecting the correlated known symbols are random, the correlation values of a plurality of known symbols are added to obtain the cross-correlation of the spread codes in estimating the amount of phase rotation. The effects of correlation and noise are suppressed.
  • the transmitting side inserts a known symbol consisting of a spreading code obtained by code shift into transmission data and multiplexes it, and the receiving side calculates the phase rotation amount using the value obtained by adding the correlation values of a plurality of known symbols.
  • the amount of phase rotation can be estimated with high accuracy, and highly accurate AFC can be realized.
  • the number n of the correlators 108-1 to: Q and the correlators 109-1 to n be equal to the number of codes that can be simultaneously communicated. Holds even if the number of codes is smaller than the number of codes.
  • the code number / type judging section 106 sequentially selects the shift codes having the highest peaks from the currently used shift codes, and selects the correlator 108-l to n and the correlator 109-1. 1 ⁇ ! ! Instruct the timing of the correlation processing to.
  • Embodiment 1 when only one communication terminal apparatus is currently communicating with the base station apparatus, the feature of adding the correlation value of the known symbol cannot be utilized, and In addition, since the phase rotation amount is estimated in the first half and the second half of the known symbol portion that are close in time, the estimation accuracy of the phase rotation amount is considered to deteriorate rather than the conventional case.
  • FIG. 8 is a block diagram showing a configuration of a communication terminal device according to Embodiment 2 of the present invention. Note that, in the communication terminal device shown in FIG. 8, the same components as those of the communication terminal device shown in FIG.
  • the communication terminal device shown in FIG. 8 differs from the code number / type determination unit 106 of the communication terminal device shown in FIG. 5 in the function of the code number / type determination unit 301. Further, the communication terminal device shown in FIG. 8 has a configuration in which correlators 302, 303 and a switching unit 304 are added, as compared with the communication terminal device shown in FIG.
  • the searcher 105 detects the timing at which the power of the correlation value exceeds the threshold (that is, the reception timing of the known symbol) and outputs it to the code number / type determination unit 301. 02227
  • the number-of-codes' type determination unit 301 determines the number and type of the currently used shift codes based on the reception timing of the known symbols from the searcher 105. Then, when the number of currently used shift codes is plural, the correlator 1 08— :! ⁇ N and correlator 1 0 9— 1 ⁇ ! ! (N is a natural number of 2 or more) indicates the timing of the correlation processing, and if singular, indicates the timing of the correlation processing to the correlator 302 and the correlation processing to the correlator 303 To execute
  • the code number / type determining unit 301 controls the switching of the switching unit 304 based on the number of currently used shift codes. Specifically, when the number of shift codes currently used is plural, the adder 1 1 2 and the delay 1 1 6, the adder 1 1 3 and the complex correlation calculator 1 1 8, the adder 1 1 Switching control is performed so that 4 and the delay unit 1 17 and the adder 1 15 and the complex correlation operation unit 1 18 are connected to each other.
  • the correlator 302 in accordance with the instruction from the code number / type judging unit 301, calculates the correlation value between the entire known symbol part of the received baseband signal and the shift code (hereinafter, referred to as “the overall symbol correlation value”). Is calculated.
  • the correlator 303 receives the correlation value between the received received signal of the control channel for synchronization and the spread code of the control channel (hereinafter referred to as "control channel"). Correlation value).
  • the switching unit 304 switches the connection according to the control of the code number / type determining unit 301 described above.
  • phase estimating section 119 estimates the amount of phase rotation from the angle difference between the overall symbol correlation value and the synchronization control channel correlation value.
  • the correlation value used for estimating the amount of phase rotation according to the number of currently used shift codes, when the number of shift codes is plural, the same effect as in the first embodiment is obtained. , And stable AFC can be performed even when the number of shift codes is singular.
  • the offset amount of the synchronization control channel with respect to the beginning of the slot differs depending on the cell, and the position of the synchronization control channel may be close in time to the position of the known symbol part.
  • AFC can be performed with higher accuracy by estimating the amount of phase rotation in the former half and the latter half of the known symbol part as shown in the first embodiment. Therefore, the communication terminal knows the position of the control channel for synchronization before the line is established, and appropriately adjusts the signal used for estimating the amount of phase rotation based on the positional relationship between the position of the control channel for synchronization and the known symbol part. By switching, it is always possible to achieve a certain level of stable AFC.
  • the transmitting side is described as a base station apparatus and the receiving side is described as a communication terminal apparatus.
  • the present invention can be applied even when the receiving side is a base station apparatus and the transmitting side is a communication terminal apparatus. it can.
  • a delayed wave is not taken into account for simplicity of description.
  • the present invention provides a receiving apparatus having a component for performing channel estimation, RAKE combining, and the like, thereby realizing delay.
  • the above effects can be obtained even in a propagation environment where waves exist.
  • the correlation value of the known symbol in other time slots is also added to perform a complex correlation operation, and the amount of phase rotation is estimated.
  • the effect of the AFC can be suppressed, and more accurate AFC can be realized.
  • the correlation values of a plurality of known symbols can be added.
  • the amount of phase rotation can be estimated with high accuracy, and highly accurate AFC can be realized. be able to.
  • the present invention is suitable for use in a communication terminal device or a base station device of a CDMA wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

A searcher (105) creates a delay profile of a known symbol portion of a received base band signal by using a basic code, and a number-of-codes/kind-of-code determining unit (106) determines the number and kind of shift codes being used, on the basis of the delay profile. Correlators (108-1 to 108-n) compute the correlation values between the known symbol first half of the received base band signal and the shift code. Correlators (109-1 to 109-n) compute the correlation values between the known symbol second half of the received base band signal and the shift codes. A phase estimation unit (119) estimates the phase rotation per unit time by using the sum of the output signals of the correlators (108-1 to 108-n) and the sum of the output signals of the correlators (109-1 to 109-n). As a result, the influence of the cross-correlation of spreading codes and the influence of noises are suppressed, so that the phase rotation between the known symbols can be estimated highly precisely to realize highly precise AFC.

Description

明 細 書 受信装置及び自動周波数制御方法 技術分野  Description Receiving device and automatic frequency control method
本発明は、 CDMA方式の無線通信システムに用いられる受信装置及び自動 周波数制御方法に関する。 背景技術  The present invention relates to a receiving device and an automatic frequency control method used in a CDMA wireless communication system. Background art
近年、 携帯電話や自動車電話等の無線通信システムが急速に普及してきてい る。 この無線通信システムの通信端末装置では、 受信側装置において、 送信側 装置とのキヤリア周波数のずれを補償するために自動周波数制御 (Automatic Frequency Control;以下、 「AFC」 という) を行っている。  In recent years, wireless communication systems such as mobile phones and car phones have rapidly become widespread. In the communication terminal device of this wireless communication system, the receiving device performs automatic frequency control (hereinafter, referred to as “AFC”) in order to compensate for a difference in carrier frequency with the transmitting device.
以下、 従来の受信装置について、 図 1、 図 2を参照して説明する。 図 1は、 送信装置から送信されるデータのスロット構成を示す図である。 図 2は、 従来 の受信装置の構成を示すプロック図である。  Hereinafter, a conventional receiving apparatus will be described with reference to FIGS. FIG. 1 is a diagram showing a slot configuration of data transmitted from a transmission device. FIG. 2 is a block diagram showing a configuration of a conventional receiving apparatus.
送信装置 (図示しない) は、 図 1に示すように、 それそれ Code Aおよび CodeBにより拡散された既知シンボル 11および既知シンボル 12を含む 信号を送信する。 ただし、 C 0 d e Aおよび C 0 d eBのコード長を、 それそ れ tCAおよび tCBとし、既知シンボル 11と既知シンボル 12との間隔を t gapとする。  As shown in FIG. 1, a transmitting device (not shown) transmits a signal including a known symbol 11 and a known symbol 12 spread by Code A and Code B, respectively. Here, the code lengths of C 0 de A and C 0 deB are tCA and tCB, respectively, and the interval between known symbols 11 and 12 is t gap.
送信装置から送信された信号は、 図 2に示す受信装置によりアンテナ 21を 介して受信される。図 2において、 アンテナ 21に受信された信号(受信信号) は、 受信 RF部 22により、 キャリア周波数からベースバンドに周波数変換さ れる。 このとき、 受信 RF部 22では後述する発振器 38から発振された口一 カル信号が用いられる。 受信 RF部 22から出力されたベースバンド信号 (受 信ペースバンド信号) の同相成分 (I-ch) および直交成分 (Q-ch) は、 それぞれ、 A/D変換器 23および A/D変換器 24により、 ディジタル信号 に変換され、 サーチャー 25、 相関器 26、 相関器 27および相関器 28に出 力される。 The signal transmitted from the transmitting device is received via the antenna 21 by the receiving device shown in FIG. In FIG. 2, a signal (received signal) received by an antenna 21 is frequency-converted from a carrier frequency to a baseband by a reception RF unit 22. At this time, the reception RF unit 22 uses a local signal oscillated from an oscillator 38 described later. The in-phase component (I-ch) and quadrature component (Q-ch) of the baseband signal (reception paceband signal) output from the reception RF unit 22 are The signals are converted into digital signals by an A / D converter 23 and an A / D converter 24, respectively, and output to a searcher 25, a correlator 26, a correlator 27, and a correlator 28.
サ一チヤ一 25では、 ディジ夕ル信号に変換された受信べ一スパンド信号と 既知コードである CodeAとの相関がとられ、 相関値の電力が閾値を越える 夕イミング(すなわち C o d e Aの受信タイミング) t Aが検出される。また、 サ一チヤ一 25では、 tA+tgapにより CodeBの受信タイミング tBが 算出される。 また、 サ一チヤ一 25では、 tA+tCAZ2によりデータ部の先 頭の受信タイミング t Dataが算出される。  In the searcher 25, the received base-span signal converted to the digitized signal is correlated with CodeA, which is a known code, and the power of the correlation value exceeds the threshold value. Timing) t A is detected. Further, in the searcher 25, the reception timing tB of CodeB is calculated by tA + tgap. Further, in the search unit 25, the reception timing t Data at the beginning of the data part is calculated by tA + tCAZ2.
サーチャー 25から相関器 26及び同期検波部 29に対してデータ部の先頭 の受信タイミングが出力され、 サーチャー 25から相関器 27に対して Co d e Aの受信タイミングが出力され、 サーチャ一25から相関器 28に対して C o d e Bの受信タイミングが出力される。  The searcher 25 outputs the reception timing at the beginning of the data section to the correlator 26 and the synchronous detector 29, the searcher 25 outputs the reception timing of Code A to the correlator 27, and the searcher 25 outputs the correlator. For Code 28, the reception timing of Code B is output.
相関器 26では、 サーチャー 25からのデータ部の先頭の受信タイミングに 基づいて、 受信ベースバンド信号のデ一夕部と所定の拡散コード (当該受信装 置に割り当てられた拡散コード) との相関がとられる。 相関処理後の受信べ一 スバンド信号のデータ部は、 同期検波部 29に出力される。  In the correlator 26, based on the reception timing at the beginning of the data portion from the searcher 25, the correlation between the data portion of the received baseband signal and a predetermined spreading code (the spreading code assigned to the receiving device) is determined. Be taken. The data part of the received baseband signal after the correlation processing is output to the synchronous detector 29.
相関器 27では、 サーチャー 25からの C 0 d e Aの受信タイミングに基づ いて、 受信ベースバンド信号の既知シンボル 11と C o d e Aとの相関がとら れる。 同様に、 相関器 28では、 サーチャー 25からの C o d eBの受信タイ ミングに基づいて、 受信べ一スパンド信号の既知シンボル 12と CodeBと の相関がとられる。  In the correlator 27, the known symbol 11 of the received baseband signal is correlated with CodeA based on the reception timing of CdeeA from the searcher 25. Similarly, the correlator 28 correlates the known symbol 12 of the received base span signal with CodeB based on the reception timing of the CodeB from the searcher 25.
同期検波部 29では、 サーチャー 25からのデ一夕部の先頭の受信タイミン グに基づいて、 相関処理された受信ペースバンド信号のデータ部に対して同期 検波処理が行われる。 同期検波後の受信ベースバンド信号のデータ部は、 復調 部 30にて復調され、 受信デ一夕が取り出される。  In the synchronous detection unit 29, the synchronous detection process is performed on the data portion of the correlation-processed received paceband signal based on the first reception timing of the data portion from the searcher 25. The data part of the received baseband signal after the synchronous detection is demodulated by the demodulation unit 30, and the received data is extracted.
相関処理された受信ベースバンド信号の既知シンボル 11の同相成分は、 遅 延部 3 1により t AB t CA/ 2 + t gap+ t CB/ 2 ;図 1参照) だけ遅延 された後複素相関演算部 3 3に出力される。 同様に、 相関処理された受信べ一 スバンド信号の既知シンボル 1 1の直交成分は、遅延部 3 2により t AB ( = t CA/ 2 + t gap+ t CB/ 2 ) だけ遅延された後複素相関演算部 3 3に出力さ れる。 相関処理された受信ベースバンド信号の既知シンボル 1 2の同相成分お よび直交成分は、 それそれ複素相関演算部 3 3に出力される。 The in-phase component of the known symbol 11 of the correlated received baseband signal is delayed. The signal is delayed by t AB t CA / 2 + t gap + t CB / 2 (see Fig. 1) by the extension unit 31 and output to the complex correlation operation unit 33. Similarly, the quadrature component of the known symbol 11 of the received baseband signal subjected to the correlation processing is delayed by t AB (= t CA / 2 + t gap + t CB / 2) by the delay unit 3 Output to arithmetic section 33. The in-phase component and the quadrature component of the known symbol 12 of the received baseband signal subjected to the correlation processing are output to the complex correlation calculator 33, respectively.
複素相関演算部 3 3では、 相関処理された受信ベースバンド信号の既知シン ボル 1 1および既知シンボル 1 2の同相成分を用いた複素相関処理が行われる c また、 複素相関演算部 3 3では、 相関処理された受信ベースバンド信号の既知 シンボル 1 1および既知シンボル 1 2の直交成分を用いた複素相関処理が行わ れる。 複素相関処理後の受信べ一スパンド信号の同相成分および直交成分は位 相推定部 3 4に出力される。 The complex correlation operation unit 33 performs a complex correlation process using the in-phase components of the known symbol 11 and the known symbol 12 of the received received baseband signal c . A complex correlation process is performed using the orthogonal components of the known symbol 11 and the known symbol 12 of the correlation-processed received baseband signal. The in-phase component and the quadrature component of the received base span signal after the complex correlation processing are output to phase estimating section 34.
位相推定部 3 4では、 複素相関演算部 3 3から出力された複素相関処理後の 受信ベースバンド信号の同相成分および直交成分を用いて単位時間当りの位相 回転量が推定される。 平滑化部 3 5では、 位相推定部 3 4により推定された位 相回転量を用いて周波数オフセットが算出される。 算出された周波数オフセヅ トは、 制御電圧変換部 3 6に出力される。  The phase estimator 34 estimates the amount of phase rotation per unit time using the in-phase component and the quadrature component of the received baseband signal after the complex correlation processing output from the complex correlation calculator 33. The smoothing unit 35 calculates a frequency offset using the phase rotation amount estimated by the phase estimating unit 34. The calculated frequency offset is output to control voltage converter 36.
制御電圧変換部 3 6では、 算出された周波数オフセットを補償すべく、 発振 器 3 8にかけられる所定の制御電圧をもった信号が出力される。 この制御電圧 変換部 3 6から出力された信号は、 DZA変換器 3 7によりアナログ信号に変 換された後、 発振器 3 8に出力される。 これにより、 周波数オフセットを補償 するように発振器 3 8におけるローカル信号の周波数が制御される。  The control voltage converter 36 outputs a signal having a predetermined control voltage applied to the oscillator 38 in order to compensate for the calculated frequency offset. The signal output from the control voltage converter 36 is converted to an analog signal by the DZA converter 37 and then output to the oscillator 38. Thereby, the frequency of the local signal in oscillator 38 is controlled so as to compensate for the frequency offset.
このように、 上記従来の受信装置は、 受信信号中の既知シンボル間の位相回 転量を推定して周波数オフセットを算出し、 周波数オフセットを補償するよう に A F Cを行っている。  As described above, the conventional receiving apparatus estimates the amount of phase rotation between known symbols in a received signal, calculates a frequency offset, and performs AFC so as to compensate for the frequency offset.
しかしながら、 相関をとつた後の既知シンボルには拡散コードの相互相関に よる影響やノイズによる影響等があるため、 上記従来の受信装置は、 既知シン ボル間の位相回転量を高精度に推定することが困難であり、 A F Cの精度が劣 化してしまうという問題を有している。 発明の開示 However, since the known symbols after correlation are affected by the cross-correlation of the spreading code and the noise, etc., the above-mentioned conventional receiving apparatus has a known symbol. It is difficult to estimate the amount of phase rotation between bols with high accuracy, and the accuracy of AFC deteriorates. Disclosure of the invention
本発明の目的は、 拡散コードの相互相関による影響やノイズによる影響を抑 圧して既知シンボル間の位相回転量を高精度に推定することができ、 高精度な A F Cを実現することができる受信装置及び自動周波数制御方法を提供するこ とである。  SUMMARY OF THE INVENTION It is an object of the present invention to provide a receiving apparatus that can accurately estimate the amount of phase rotation between known symbols by suppressing the influence of cross-correlation of a spreading code and the influence of noise, and realize a highly accurate AFC. And an automatic frequency control method.
この目的は、 送信側がコードシフトにより得られた拡散コードからなる既知 シンボルを送信デ一夕に挿入して多重送信し、 受信側が複数の既知シンボルの 相関値を加算した値を用いて位相回転量を推定することにより達成される。 図面の簡単な説明  The purpose is that the transmitting side inserts a known symbol consisting of a spreading code obtained by code shift into the transmission data and multiplexes it, and the receiving side uses the value obtained by adding the correlation values of a plurality of known symbols to obtain the phase rotation amount. Is achieved by estimating BRIEF DESCRIPTION OF THE FIGURES
図 1は、 送信装置から送信されるデータのスロット構成を示す図、 図 2は、 従来の受信装置の構成を示すプロック図、  FIG. 1 is a diagram showing a slot configuration of data transmitted from a transmission device, FIG. 2 is a block diagram showing a configuration of a conventional reception device,
図 3は、 本発明に用いられる既知シンボル部の拡散コードの生成方法を説明 する図、  FIG. 3 is a diagram for explaining a method of generating a spread code of a known symbol part used in the present invention.
図 4は、 本発明の実施の形態 1に係る通信端末装置と無線通信を行う基地局 装置から送信されるデ一夕のスロット構成図、  FIG. 4 is a diagram illustrating a slot configuration of data transmitted from a base station apparatus that performs wireless communication with a communication terminal apparatus according to Embodiment 1 of the present invention.
図 5は、 上記実施の形態に係る通信端末装置の構成を示すブロック図、 図 6は、 上記実施の形態に係る通信端末装置にて作成される遅延プロフアイ ルを示す図、  FIG. 5 is a block diagram showing the configuration of the communication terminal device according to the above embodiment, FIG. 6 is a diagram showing a delay profile created by the communication terminal device according to the above embodiment,
図 7 Aは、 上記実施の形態に係る通信端末装置にて推定される位相回転量を 示す図、  FIG. 7A is a diagram showing the amount of phase rotation estimated by the communication terminal device according to the above embodiment,
図 7 Bは、 上記実施の形態に係る通信端末装置にて推定される位相回転量を 示す図、  FIG. 7B is a diagram showing the amount of phase rotation estimated by the communication terminal device according to the above embodiment,
図 7 Cは、 上記実施の形態に係る通信端末装置にて推定される位相回転量を 示す図、 及び、 FIG. 7C shows the amount of phase rotation estimated by the communication terminal device according to the above embodiment. Figures shown, and
図 8は、 本発明の実施の形態 2に係る通信端末装置の構成を示すプロック図 である。 発明を実施するための最良の形態  FIG. 8 is a block diagram showing a configuration of a communication terminal device according to Embodiment 2 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
ここで、 各実施の形態の説明に入る前に、 まず、 図 3を用いて、 本発明にお ヽて送信側が送信デー夕に挿入する既知シンボル部の拡散コ一ドの生成方法に ついて説明する。  Here, before starting the description of each embodiment, first, a method of generating a spread code of a known symbol part inserted into transmission data by the transmission side in the present invention will be described with reference to FIG. I do.
図 3において、 基本コードの長さを P (チヅプ) 、 無線回線の最大遅延プロ ファイル長を W (チップ) とする。 また、 同一の基本コードを 2つ直列的に並 ベ、 前方を基本コード BC1とし、 後方を基本コード BC2とする。  In Fig. 3, the length of the basic code is P (chip), and the maximum delay profile length of the radio line is W (chip). In addition, two identical basic codes are arranged in series, the front is a basic code BC1, and the rear is a basic code BC2.
ユーザ 1に対する拡散コード Code 1は、基本コード B C 1に基本コード B C 2 の先頭から Wの部分を加えて作成される。 また、 ユーザ 2に対する拡散コー ド Code 2は、基本コ一ド B C 1の先頭から Wの部分を除いたものに基本コ一ド BC2 の先頭から 2 XWの部分を加えて作成される。 すなわち、 拡散コード Code 2は、 基本コード BC1、 B C2において、 拡散コード Code 1にあたる部 分を Wだけ後方に移動 (シフト) したものである。  The spreading code Code 1 for the user 1 is created by adding a W portion from the beginning of the basic code BC 2 to the basic code BC 1. Also, the spreading code Code 2 for user 2 is created by removing the W portion from the beginning of the basic code BC1 and adding 2 XW from the beginning of the basic code BC2. That is, the spreading code Code 2 is obtained by moving (shifting) the portion corresponding to the spreading code Code 1 backward by W in the basic codes BC1 and BC2.
同様に、 ュ一ザ数を kとすると、 ユーザ i (i= l、 2、 ···、 k) に対する 拡散コード Codeiは、基本コード BC1の先頭から (i一 1) xWの部分を除 いたものに基本コード B C2の先頭から i XWの部分を加えて作成される。 各 拡散コード Codeiは、 Lm=P+W (チップ) の長さである。  Similarly, assuming that the number of users is k, the spreading code Codei for the user i (i = l, 2,..., K) is obtained by removing the (i−1) × W part from the beginning of the basic code BC1. It is created by adding i XW part from the top of the basic code B C2 to the thing. Each spreading code Codei has a length of Lm = P + W (chip).
以下、 本発明の実施の形態について、 添付図面を参照して詳細に説明する。 なお、 以下の説明では、 送信側が基地局装置、 受信側が通信端末装置とする。 また、 以下の説明では、 遅延波を考慮しない。 また、 以下の説明において図 3 に示した方法にて生成された拡散コードを 「シフトコード」 という。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, the transmitting side is a base station apparatus and the receiving side is a communication terminal apparatus. In the following description, a delayed wave is not considered. In the following description, the spread code generated by the method shown in FIG. 3 is referred to as “shift code”.
(実施の形態 1 )  (Embodiment 1)
図 4は、 本発明の実施の形態 1に係る通信端末装置と無線通信を行う基地局 装置から送信されるデ一夕のスロット構成図である。 図 4に示すように、 ス口 ットの略中央に既知シンボルが揷入される。 この既知シンボルは、 図 3に示し た方法にて生成された拡散コードである。 また、 デ一夕部には各ユーザ固有の 摅散コードが乗算される。 FIG. 4 is a diagram illustrating a base station that performs wireless communication with a communication terminal apparatus according to Embodiment 1 of the present invention. FIG. 4 is a diagram illustrating a slot configuration of data transmitted from a device. As shown in FIG. 4, a known symbol is inserted at substantially the center of the slot. This known symbol is a spreading code generated by the method shown in FIG. Also, the de-multiplexing section is multiplied by a dispersion code unique to each user.
基地局装置は、 通信中の各通信端末装置 (ユーザ) に対して、 図 4のスロッ ト構成をもつ信号を多重して送信する。 また、 制御信号の送受信により基本コ ードとシフト量は、 予め各通信端末装置に通知される。  The base station apparatus multiplexes and transmits a signal having the slot configuration shown in FIG. 4 to each communication terminal apparatus (user) during communication. In addition, the basic code and the shift amount are notified in advance to each communication terminal device by transmitting and receiving the control signal.
図 5は、 本実施の形態に係る通信端末装置の構成を示すプロック図である。 なお、 図 5では、 通信端末装置の受信側の構成を示し、 送信側の構成を省略す る。  FIG. 5 is a block diagram showing a configuration of the communication terminal device according to the present embodiment. FIG. 5 shows the configuration of the receiving side of the communication terminal apparatus, and the configuration of the transmitting side is omitted.
受信アンテナ 1 0 1は、 基地局装置から送信された無線信号を受信する。 受 信 R F部 1 0 2は、 受信アンテナ 1 0 1の受信信号に、 後述する発振器 1 2 3 にて発振されたローカル信号を乗算し、 受信信号の周波数をべ一スパンドに変 換する。  Receiving antenna 101 receives a radio signal transmitted from the base station device. The reception RF section 102 multiplies the reception signal of the reception antenna 101 by a local signal oscillated by an oscillator 123 described later, and converts the frequency of the reception signal to spanned.
AZD変換器 1 0 3は、 受信 R F部 1 0 2から出力されたベースバンド信号 (以下、 「受信ペースバンド信号」 という) の同相成分 ( I - c h) に対して A /D変換を行う。 同様に、 八/0変換器1 0 4は、 受信べ一スパンド信号の直 交成分 ( Q- c h) に対して A/D変換を行う。  The AZD converter 103 performs A / D conversion on the in-phase component (I-ch) of the baseband signal (hereinafter, referred to as “reception paceband signal”) output from the reception RF section 102. Similarly, the 8/0 converter 104 performs A / D conversion on the orthogonal component (Q-ch) of the received spanned signal.
サ一チヤ一 1 0 5は、 上記図 3に示した基本コードを用いて、 ディジタル信 号に変換された受信べ一スパンド信号の既知シンボル部の遅延プロファイルを 作成し、 相関値の電力が閾値を越えるタイミング (すなわち既知シンボルの受 信タイミング) を検出し、 コード数'種類判定部 1 0 6に出力する。 また、 サ 一チヤ一 1 0 5は、 既知シンボルの受信タイミングによりデータ部の先頭の受 信タイミングを算出し、 相関器 1 0 7及び同期検波部 1 1 0に出力する。 コード数'種類判定部 1 0 6は、 サーチヤー 1 0 5からの既知シンボルの受 信タイミングに基づいて、 現在使用されているシフトコ一ドの数および種類を 判定し、 相関器 1 0 8— l〜nおよび相関器 1 0 9— l〜n ( nは 2以上の自 然数) に対して相関処理のタイミングを指示する。 なお、 コード数'種類判定 部 1 0 6におけるコード数および種類の判定の詳細については後述する。 The searcher 105 uses the basic code shown in FIG. 3 to create a delay profile of the known symbol part of the received baseband signal converted to a digital signal, and the power of the correlation value is set to a threshold. (That is, the reception timing of a known symbol) is detected and output to the code number 'type determination unit 106. Further, the searcher 105 calculates the reception timing at the head of the data part based on the reception timing of the known symbol, and outputs it to the correlator 107 and the synchronous detector 110. The code number 'type determination unit 106 determines the number and type of the currently used shift codes based on the reception timing of the known symbols from the searcher 105, and the correlator 108-l ~ N and correlator 1 0 9-l ~ n (where n is The timing of the correlation process is instructed to. The details of the determination of the number of codes and the type in the code number / type determination unit 106 will be described later.
相関器 1 0 7は、 サ一チヤ一 1 0 5からのデータ部の先頭の受信タイミング に基づいて、 受信ペースバンド信号のデータ部と所定の拡散コード (自装置に 割り当てられた拡散コード) との相関をとり、 相関処理後の受信ペースバンド 信号のデータ部を同期検波部 1 1 0に出力する。  The correlator 107, based on the reception timing of the head of the data portion from the search device 105, receives the data portion of the received paceband signal and a predetermined spreading code (spreading code assigned to its own device). And outputs the data part of the received paceband signal after the correlation processing to the synchronous detector 110.
相関器 1 0 8— 1〜nは、 それそれコード数 ·種類判定部 1 0 6からの指示 に従って、 受信ベースバンド信号の既知シンボル前半部とシフトコードとの相 関値 (以下、 「シンボル前半部相関値」 という) を計算する。 同様に、 相関器 1 0 9— l〜nは、それそれコード数 '種類判定部 1 0 6からの指示に従って、 受信ベースバンド信号の既知シンボル後半部とシフトコードとの相関値(以下、 「シンボル後半部相関値」 という) を計算する。  The correlators 1 08 — 1 to n are correlated values (hereinafter referred to as “symbol first half”) between the known symbol first half of the received baseband signal and the shift code in accordance with the instruction from the code number / type determination unit 106. Partial correlation value ”). Similarly, the correlators 109-1 to n correspond to the correlation value between the latter half of the known symbol of the received baseband signal and the shift code (hereinafter, “ The second half of the symbol).
同期検波部 1 1 0は、 サーチャー 1 0 5からのデータ部の先頭の受信タイミ ングに基づいて、 相関処理後の受信べ一スバンド信号のデータ部に対して同期 検波処理を行い、 復調部 1 1 1に出力する。 復調部 1 1 1は、 同期検波された 受信ベースバンド信号のデ一夕部に対して復調処理を行い、 受信データを取り 出す。  The synchronous detection unit 110 performs synchronous detection processing on the data part of the received baseband signal after correlation processing based on the reception timing at the head of the data part from the searcher 105, and performs demodulation. 1 Output to 1. The demodulation unit 111 performs demodulation processing on the demodulated portion of the synchronously detected received baseband signal, and extracts received data.
加算器 1 1 2は、 相関器 1 0 8— l〜nにてそれそれ算出されたシンボル前 半部相関値の同相成分を加算する。 同様に、 加算器 1 1 3は、 相関器 1 0 8— 1〜nにてそれそれ算出されたシンボル前半部相関値の直交成分を加算する。 加算器 1 1 4は、 相関器 1 0 9— l〜nにてそれぞれ算出されたシンボル後 半部相関値の同相成分を加算する。 同様に、 加算器 1 1 5は、 相関器 1 0 9 - l〜nにてそれそれ算出されたシンボル後半部相関値の直交成分を加算する。 遅延部 1 1 6は、 加算器 1 1 2にて加算されたシンボル前半部相関値の同相 成分を所定量遅延させた後、 複素相関演算部 1 1 8に出力する。 同様に 遅延 部 1 1 7は、 加算器 1 1 3にて加算されたシンボル前半部相関値の直交成分を 所定量遅延させた後、 複素相関演算部 1 1 8に出力する。 複素相関演算部 1 1 8は、 加算後のシンボル前半部相関値の同相成分と加算 後のシンボル後半部相関値の同相成分とを用いて複素相関処理を行う。 また、 複素相関演算部 1 1 8は、 加算後のシンボル前半部相関値の直交成分と加算後 のシンボル後半部相関値の直交成分とを用いて複素相関処理を行う。 The adder 111 adds the in-phase components of the first half symbol correlation values calculated by the correlators 108-ln to n, respectively. Similarly, the adder 113 adds the orthogonal components of the symbol first half correlation values calculated respectively by the correlators 108-1-n. The adder 114 adds the in-phase components of the second half correlation values of the symbols calculated by the correlators 109-ln to n, respectively. Similarly, the adder 115 adds the orthogonal components of the correlation value of the latter half of the symbol calculated by the correlators 109-ln to n, respectively. The delay unit 1 16 delays the in-phase component of the symbol first-half correlation value added by the adder 1 12 by a predetermined amount, and then outputs the result to the complex correlation operation unit 1 18. Similarly, delay section 117 delays the orthogonal component of the first half correlation value of the symbol added by adder 113 by a predetermined amount, and outputs the result to complex correlation operation section 118. The complex correlation operation unit 118 performs a complex correlation process using the in-phase component of the symbol first half correlation value after the addition and the in-phase component of the symbol second half correlation value after the addition. Further, complex correlation operation section 118 performs a complex correlation process using the orthogonal component of the symbol first half correlation value after addition and the orthogonal component of the symbol second half correlation value after addition.
位相推定部 1 1 9は、 複素相関演算部 1 1 8から出力された複素相関処理後 の相関値の同相成分および直交成分を用いて単位時間当りの位相回転量を推定 する。 なお、 位相推定部 1 1 9における位相回転量の推定の詳細については後 述する。  The phase estimating unit 119 estimates the amount of phase rotation per unit time using the in-phase component and the quadrature component of the correlation value after the complex correlation processing output from the complex correlation calculating unit 118. The details of the estimation of the amount of phase rotation by the phase estimating unit 119 will be described later.
平滑化部 1 2 0は、 位相推定部 1 1 9により推定された位相回転量を平滑ィ匕 して周波数オフセットを算出する。 制御電圧変換部 1 2 1は、 算出された周波 数オフセヅトを補償すべく、 発振器 1 2 3にかける所定の制御電圧をもった信 号を DZA変換器 1 2 2に出力する。 D/A変換器 1 2 2は、 制御電圧変換部 1 2 1から出力された信号をアナログ信号に変換する。 発振器 1 2 3は、 DZ A変換器 1 2 2の出力信号の電圧に応じた周波数の口一カル信号を発振する。 次に、 図 3に示した通信端末装置における A F Cの動作について説明する。 基地局装置から送信された無線信号は、 受信アンテナ 1 0 1に受信され、 受 信 R F部 1 0 2にて、 発振器 1 2 3にて発振されたローカル信号が乗算されて ベースバンドの周波数に変換される。  The smoothing unit 120 calculates the frequency offset by smoothing the phase rotation amount estimated by the phase estimating unit 119. The control voltage converter 122 outputs a signal having a predetermined control voltage to be applied to the oscillator 123 to the DZA converter 122 in order to compensate for the calculated frequency offset. The D / A converter 122 converts the signal output from the control voltage converter 122 into an analog signal. The oscillator 123 oscillates a local signal having a frequency corresponding to the voltage of the output signal of the DZA converter 122. Next, the operation of the AFC in the communication terminal device shown in FIG. 3 will be described. The radio signal transmitted from the base station apparatus is received by the receiving antenna 101, and is multiplied by the received RF unit 102 by the local signal oscillated by the oscillator 123 to obtain the baseband frequency. Is converted.
受信ベースバンド信号の同相成分は、 A/D変換器 1 0 3にてディジ夕ル信 号に変換され、 受信ペースバンド信号の直交成分は、 八//0変換器1 0 4にて ディジ夕ル信号に変換される。 ディジ夕ル信号に変換された受信ペースバンド 信号は、 サーチャー 1 0 5、 相関器 1 0 7、 相関器 1 0 8— l〜nおよび相関 器 1 0 9— l〜nに出力される。  The in-phase component of the received baseband signal is converted to a digital signal by the A / D converter 103, and the quadrature component of the received paceband signal is converted to the digital signal by the octave converter 104. Is converted to a video signal. The received paceband signal converted to the digitized signal is output to searcher 105, correlator 107, correlator 108-ln and correlator 109-ln.
サ一チヤ一 1 0 5では、 上記図 3に示した基本コードにより、 ディジタル信 号に変換された受信ベースバンド信号の既知シンボル部の遅延プロファイルが 作成され、 既知シンボルの受信タイミングが検出され、 コード数'種類判定部 1 0 6にて、 現在使用されているシフトコ一ドの数および種類を判定される。 相関器 1 0 7では、 データ部の先頭の受信タイミングに基づいて、 受信べ一 スパンド信号のデータ部と所定の拡散コード (自装置に割り当てられた拡散コ —ド) との相関がとられる。 そして、 同期検波部 1 1 0にて、 デ一夕部の先頭 の受信タイミングに基づいて、 相関処理後の受信べ一スバンド信号のデータ部 に対して同期検波処理が行われ、 復調部 1 1 1にて、 同期検波された受信べ一 スバンド信号のデータ部に対して復調処理が行われ、 受信データが取り出され る。 In the searcher 105, a delay profile of a known symbol part of the received baseband signal converted into a digital signal is created by the basic code shown in FIG. 3 above, and the reception timing of the known symbol is detected. The number and type of shift codes currently used are determined by the code number 'type determination unit 106. The correlator 107 correlates the data portion of the received baseband signal with a predetermined spreading code (spreading code assigned to its own device) based on the reception timing at the head of the data portion. Then, the synchronous detection unit 110 performs synchronous detection processing on the data part of the received baseband signal after the correlation processing based on the reception timing at the head of the data part, and the demodulation unit 111 At 1, demodulation processing is performed on the data portion of the synchronously detected received baseband signal, and the received data is extracted.
また、 相関器 1 0 8— l〜nでは、 それそれ受信ベースバンド信号の既知シ ンボル後半部とシフトコードとにより、 シンボル前半部相関値が計算される。 同様に、 相関器 1 0 9— 1〜nでは、 それそれ受信ペースバンド信号の既知シ ンボル後半部とシフトコードとにより、 シンボル後半部相関値が計算される。 各相関器 1 0 8— l〜nにて計算されたシンボル前半部相関値の同相成分お よび直交成分は加算器 1 1 2 , 1 1 3にて加算され、 遅延部 1 1 6、 1 1 7に て所定量遅延させられる。 各相関器 1 0 9一 l〜nにて計算されたシンボル後 半部相関値の同相成分および直交成分は加算器 1 1 4、 1 1 5にて加算される。 そして、 複素相関演算部 1 1 8では、 加算後のシンボル前半部相関値の同相 成分と加算後のシンボル後半部相関値の同相成分とにより、 および、 加算後の シンボル前半部相関値の直交成分と加算後のシンボル後半部相関値の直交成分 とにより複素相関処理が行われる。  In the correlators 108-ln, the correlation value of the first half of the symbol is calculated from the second half of the known symbol of the received baseband signal and the shift code. Similarly, in the correlators 109-1 to n, the symbol second half correlation value is calculated from the known symbol second half of the received paceband signal and the shift code. The in-phase and quadrature components of the first half symbol correlation values calculated by each correlator 1 08—l to n are added by the adders 1 12 and 1 13 and the delay units 1 16 and 1 1 A predetermined amount is delayed by 7. The in-phase and quadrature components of the second half correlation value of the symbol calculated by each correlator 109-l to n are added by adders 114 and 115. The complex correlation operation unit 118 calculates the quadrature component of the symbol first-half correlation value after addition by using the in-phase component of the symbol first-half correlation value after addition and the in-phase component of the symbol second-half correlation value after addition. A complex correlation process is performed by using and the orthogonal component of the correlation value of the latter half of the symbol after the addition.
そして、 位相推定部 1 1 9では、 複素相関処理後の相関値の同相成分および 直交成分により単位時間当りの位相回転量が推定され、 平滑化部 1 2 0では、 位相回転量が平滑化されて周波数オフセットが算出される。 算出された周波数 オフセヅトは制御電圧変換部 1 2 1に出力される。  Then, the phase estimator 1 19 estimates the amount of phase rotation per unit time based on the in-phase and quadrature components of the correlation value after the complex correlation processing, and the smoothing unit 120 smoothes the amount of phase rotation. To calculate the frequency offset. The calculated frequency offset is output to the control voltage converter 121.
制御電圧変換部 1 2 1では、 算出された周波数オフセットを補償すべく、 所 定の制御電圧をもった信号が DZA変換器 1 2 2に出力され、 アナログ信号に 変換された後、 発振器 1 2 3に出力される。 発振器 1 3では、 DZA変換器 1 2 2の出力信号の電圧に応じた周波数のローカル信号が発振される。 7 In the control voltage converter 122, a signal having a predetermined control voltage is output to the DZA converter 122 so as to compensate for the calculated frequency offset, and is converted into an analog signal. Output to 3. In the oscillator 13, a local signal having a frequency according to the voltage of the output signal of the DZA converter 122 is oscillated. 7
10 次に、 コード数 ·種類判定部 1 0 6におけるコード数および種類の判定の詳 細について、 図 6の遅延プロファイルを示す図を用いて説明する。 図 6は、 本 実施の形態に係る通信端末装置にて作成される遅延プロファイルを示す図であ る。 図 6において、 横軸は時間であり、 縦軸は電力である。  10 Next, the details of the determination of the code number and the type in the code number / type determination unit 106 will be described with reference to the diagram showing the delay profile in FIG. FIG. 6 is a diagram showing a delay profile created by the communication terminal device according to the present embodiment. In FIG. 6, the horizontal axis is time, and the vertical axis is power.
基地局装置が、 複数の通信端末装置に対して上記図 4に示したデータを多重 送信している場合に、 通信端末装置の受信側で基本コードを用いて受信ベース バンド信号の既知シンボル部の遅延プロファイルを作成すると、 閾値を越える ピークが、 現在通信を行っている通信端末装置の数だけ検出される。  When the base station apparatus multiplexes the data shown in FIG. 4 to a plurality of communication terminal apparatuses, the receiving side of the communication terminal apparatus uses the basic code to generate the known symbol part of the received baseband signal. When a delay profile is created, peaks exceeding the threshold are detected by the number of communication terminals currently communicating.
そして、 基地局装置がシフ トコード Code iを用いて通信端末装置と無線通 信を行っている場合、基地局装置がデ一夕を送信した時刻を 0として、時刻( i - 1 ) X Wから時刻 i xW未満の時間帯 T iの範囲内に閾値を越えるピークが 表れる。  Then, when the base station apparatus is performing wireless communication with the communication terminal apparatus using the shift code Code i, the time at which the base station apparatus transmitted the data is set to 0, and the time is calculated from the time (i-1) XW. A peak exceeding the threshold appears in the range of the time zone T i less than i × W.
例えば、 図 6の場合、 T 1および T 3の範囲内において閾値を越えるピーク P l、 P 3が表れているので、 基地局装置は、 シフ トコード Code lおよびシ フトコ一ド Code 3を用いて通信端末装置と無線通信を行っていることが判る。 コード数 ·種類判定部 1 0 6は、 閾値を越えるピークの数に基づいて現在基 地局装置が無線通信を行っている通信端末装置の数を判定し、 そのピークの夕 ィミングが属する時間帯に基づいて、 基地局装置が送信信号の既知シンボルに 用いているシフトコ一ドを判定する。  For example, in the case of FIG. 6, peaks Pl and P3 that exceed the threshold in the range of T1 and T3 appear, so the base station apparatus uses the shift code Codel and the shift code Code3. It can be seen that wireless communication is being performed with the communication terminal device. The code number and type determination unit 106 determines the number of communication terminals with which the base station apparatus is currently performing wireless communication based on the number of peaks exceeding the threshold, and determines the time zone to which the peak evening belongs. The base station apparatus determines a shift code used for a known symbol of a transmission signal based on.
そして、 図 6の場合、 コード数'種類判定部 1 0 6は、 相関器 1 0 8— 1に 対して時刻 P 1を相関処理のタイミングとして指示し、 相関器 1 0 8— 2に対 して時刻 P 3を相関処理のタイミングとして指示する。 また、 コード数'種類 判定部 1 0 6は、 既知シンボル部の長さを t k とすると、 相関器 1 0 9— 1に 対して時刻 (P l + t k/ 2 ) を相関処理のタイミングとして指示し、 相関器 1 0 9— 2に対して時刻 (P 3 + t k/ 2 ) を相関処理のタイミングとして指 示する。  Then, in the case of FIG. 6, the code number 'type judging section 106 instructs the correlator 108-8-1 to use the time P1 as the timing of the correlation processing, and instructs the correlator 108-8-2. Time P3 is designated as the timing of the correlation processing. Further, the code number 'type judging section 106 designates the time (Pl + tk / 2) as the timing of the correlation processing to the correlator 109--1, assuming that the length of the known symbol section is tk. Then, the time (P3 + tk / 2) is instructed to the correlator 109-2 as the timing of the correlation processing.
次に、位相推定部 1 1 9における位相回転量の推定の詳細について、図 7 A、 図 7 B、 図 7 Cの位相回転量を示す図を用いて説明する。 図 7 A、 図 7 B、 図 7 Cは、 本実施の形態に係る通信端末装置にて推定される位相回転量を示す図 である。 図 7 A、 図 7 B、 図 7 Cでは、 相関値を I Q平面上にベクトルで表わ す。 Next, details of the estimation of the amount of phase rotation in the phase estimating unit 1 19 will be described with reference to FIG. This will be described with reference to FIGS. 7B and 7C showing the phase rotation amounts. 7A, 7B, and 7C are diagrams illustrating the amount of phase rotation estimated by the communication terminal apparatus according to the present embodiment. In Figures 7A, 7B, and 7C, the correlation values are represented as vectors on the IQ plane.
図 7 Aにおいて、 ベクトル 2 0 1は受信ペースバンド信号の既知シンボル前 半部とシフトコード Code lとのシンボル前半部相関値であり、 ベクトル 2 0 2は受信ベースバンド信号の既知シンボル前半部とシフトコ一ド Code 3との シンボル前半部相関値であり、 べクトル 2 0 3はべクトル 2 0 1とぺクトル 2 0 2とを加算した合成べクトルである。  In FIG. 7A, vector 201 is a symbol first half correlation value between the known symbol first half of the received paceband signal and the shift code Codel, and vector 202 is the known symbol first half of the received baseband signal. This is the correlation value of the first half of the symbol with the shift code Code 3, and the vector 203 is a composite vector obtained by adding the vector 201 and the vector 202.
また、 図 7 Bにおいて、 ベクトル 2 1 1は受信べ一スバンド信号の既知シン ボル後半部とシフトコード Code 1とのシンボル後半部相関値であり、 ぺクト ル 2 1 2は受信ペースバンド信号の既知シンボル後半部とシフトコ一ド Code 3とのシンボル後半部相関値であり、 ベクトル 2 1 3はべクトル 2 1 1とべク トル 2 1 2とを加算した合成べクトルである。  In FIG. 7B, vector 211 is the correlation value of the latter half of the symbol of the received baseband signal and the latter half of the symbol with the shift code Code 1, and the vector 211 is the received paceband signal. This is the correlation value between the latter half of the known symbol and the shift code Code 3, and the vector 2 13 is a composite vector obtained by adding the vector 2 11 and the vector 2 12.
そして、 図 7 Cにおいて、 合成ベクトル 2 0 3と合成ベクトル 2 1 3との角 度差 0は位相回転量を示す。 位相推定部 1 1 9は、 複数の既知シンボルの相関 値を加算した値を用いて位相回転量を推定する。  Then, in FIG. 7C, the angle difference 0 between the combined vector 203 and the combined vector 213 indicates the amount of phase rotation. The phase estimating unit 119 estimates the amount of phase rotation using a value obtained by adding the correlation values of a plurality of known symbols.
このように、 送信側がコ一ドシフトにより得られた拡散コードからなる既知 シンボルを送信データに挿入して多重送信することにより、 受信側が複数の既 知シンボルの相関値を算出することができる。  As described above, the transmitting side inserts the known symbol composed of the spread code obtained by the code shift into the transmission data and performs multiplex transmission, whereby the receiving side can calculate the correlation value of a plurality of known symbols.
ここで、 相関をとつた既知シンボルに影響を及ぼす拡散コードの相互相関や ノィズはランダムであるため、 複数の既知シンボルの相関値を加算することに より、 位相回転量の推定において拡散コードの相互相関による影響やノイズに よる影響は抑圧される。  Here, since the cross-correlation and noise of the spread code affecting the correlated known symbols are random, the correlation values of a plurality of known symbols are added to obtain the cross-correlation of the spread codes in estimating the amount of phase rotation. The effects of correlation and noise are suppressed.
従って、 送信側がコードシフトにより得られた拡散コ一ドからなる既知シン ボルを送信データに挿入して多重送信し、 受信側が複数の既知シンボルの相関 値を加算した値を用いて位相回転量を推定することにより、 既知シンボル間の 位相回転量を高精度に推定することができ、 高精度な A F Cを実現することが できる。 Therefore, the transmitting side inserts a known symbol consisting of a spreading code obtained by code shift into transmission data and multiplexes it, and the receiving side calculates the phase rotation amount using the value obtained by adding the correlation values of a plurality of known symbols. By estimating, between known symbols The amount of phase rotation can be estimated with high accuracy, and highly accurate AFC can be realized.
なお、 相関器 1 0 8— 1〜: Qおよび相関器 1 0 9 - 1〜nの個数 nは、 同時 に通信可能なコード数と等しいことが望ましいが、 本発明は、 各相関器の個数 がコード数より少なくても成立する。 この場合、 コード数 ·種類判定部 1 0 6 が、現在使用されているシフトコードの中でピークの高いものを順に選択して、 相関器 1 0 8— l〜nおよび相関器 1 0 9一 1〜!!に対して相関処理のタイミ ングを指示する。  It is desirable that the number n of the correlators 108-1 to: Q and the correlators 109-1 to n be equal to the number of codes that can be simultaneously communicated. Holds even if the number of codes is smaller than the number of codes. In this case, the code number / type judging section 106 sequentially selects the shift codes having the highest peaks from the currently used shift codes, and selects the correlator 108-l to n and the correlator 109-1. 1 ~! ! Instruct the timing of the correlation processing to.
(実施の形態 2 )  (Embodiment 2)
ここで、 上記実施の形態 1において、 基地局装置と現在通信を行っている通 信端末装置が 1つだけである場合には既知シンボルの相関値を加算するという 特徴を活かすことができず、 しかも、 時間的に近い既知シンボル部の前半部と 後半部とで位相回転量を推定しているため、 むしろ従来に比べて位相回転量の 推定精度が劣化してしまうと考えられる。  Here, in Embodiment 1 described above, when only one communication terminal apparatus is currently communicating with the base station apparatus, the feature of adding the correlation value of the known symbol cannot be utilized, and In addition, since the phase rotation amount is estimated in the first half and the second half of the known symbol portion that are close in time, the estimation accuracy of the phase rotation amount is considered to deteriorate rather than the conventional case.
実施の形態 2では、 上記の問題を解決すべく、 現在使用されているシフトコ ードの数によって位相回転量の推定に用いる相関値を切替える場合について説 明する。  In the second embodiment, a case will be described in which the correlation value used for estimating the amount of phase rotation is switched according to the number of shift codes currently used in order to solve the above problem.
図 8は、 本発明の実施の形態 2に係る通信端末装置の構成を示すプロック図 である。 なお、 図 8に示す通信端末装置において、 図 5に示した通信端末装置 と共通する構成部分には図 5と同一符号を付して説明を省略する。  FIG. 8 is a block diagram showing a configuration of a communication terminal device according to Embodiment 2 of the present invention. Note that, in the communication terminal device shown in FIG. 8, the same components as those of the communication terminal device shown in FIG.
図 8に示す通信端末装置は、 コード数 ·種類判定部 3 0 1の機能が、 図 5に 示した通信端末装置のコ一ド数 ·種類判定部 1 0 6と異なる。 また、 図 8に示 す通信端末装置は、 図 5に示した通信端末装置と比較して、 相関器 3 0 2、 3 0 3および切替え部 3 0 4を追加した構成をとる。  The communication terminal device shown in FIG. 8 differs from the code number / type determination unit 106 of the communication terminal device shown in FIG. 5 in the function of the code number / type determination unit 301. Further, the communication terminal device shown in FIG. 8 has a configuration in which correlators 302, 303 and a switching unit 304 are added, as compared with the communication terminal device shown in FIG.
サーチャー 1 0 5は、 相関値の電力が閾値を越えるタイミング (すなわち既 知シンボルの受信タイミング) を検出し、 コ一ド数 ·種類判定部 3 0 1に出力 する。 02227 The searcher 105 detects the timing at which the power of the correlation value exceeds the threshold (that is, the reception timing of the known symbol) and outputs it to the code number / type determination unit 301. 02227
13  13
コード数'種類判定部 3 0 1は、 サーチャー 1 0 5からの既知シンボルの受 信タイミングに基づいて、 現在使用されているシフトコードの数および種類を 判定する。 そして、 コード数 ·種類判定部 3 0 1は、 現在使用されているシフ トコードの数が複数である場合、 相関器 1 0 8—:!〜 nおよび相関器 1 0 9— 1〜!! (nは 2以上の自然数) に対して相関処理のタイミングを指示し、 単数 である場合、 相関器 3 0 2に対して相関処理のタイミングを指示し、 相関器 3 0 3に対して相関処理の実行を指示する。  The number-of-codes' type determination unit 301 determines the number and type of the currently used shift codes based on the reception timing of the known symbols from the searcher 105. Then, when the number of currently used shift codes is plural, the correlator 1 08— :! ~ N and correlator 1 0 9— 1 ~! ! (N is a natural number of 2 or more) indicates the timing of the correlation processing, and if singular, indicates the timing of the correlation processing to the correlator 302 and the correlation processing to the correlator 303 To execute
また、 コード数 ·種類判定部 3 0 1は、 現在使用されているシフトコードの 数に基づいて、 切替え部 3 0 4に対してスィツチの切替え制御を行う。 具体的 には、 現在使用されているシフトコードの数が複数である場合、 加算器 1 1 2 と遅延器 1 1 6、 加算器 1 1 3と複素相関演算部 1 1 8、 加算器 1 1 4と遅延 器 1 1 7および加算器 1 1 5と複素相関演算部 1 1 8とをそれそれ接続するよ うに切替え制御を行う。 一方、 現在使用されているシフトコ一ドの数が単数で ある場合、 相関器 3 0 2と遅延器 1 1 6、 相関器 3 0 2と複素相関演算部 1 1 8、 相関器 3 0 3と遅延器 1 1 7および相関器 3 0 3と複素相関演算部 1 1 8 とをそれそれ接続するように切替え制御を行う。  Further, the code number / type determining unit 301 controls the switching of the switching unit 304 based on the number of currently used shift codes. Specifically, when the number of shift codes currently used is plural, the adder 1 1 2 and the delay 1 1 6, the adder 1 1 3 and the complex correlation calculator 1 1 8, the adder 1 1 Switching control is performed so that 4 and the delay unit 1 17 and the adder 1 15 and the complex correlation operation unit 1 18 are connected to each other. On the other hand, if the number of currently used shift codes is singular, the correlator 302 and the delay unit 116, the correlator 302 and the complex correlation operation unit 118, and the correlator 303 Switching control is performed so that the delay unit 117 and the correlator 303 are connected to the complex correlation operation unit 118, respectively.
相関器 3 0 2は、 コード数 ·種類判定部 3 0 1からの指示に従って、 受信べ ースバンド信号の既知シンボル部全体とシフトコ一ドとの相関値 (以下、 「シ ンボル全体相関値」 という) を計算する。  The correlator 302, in accordance with the instruction from the code number / type judging unit 301, calculates the correlation value between the entire known symbol part of the received baseband signal and the shift code (hereinafter, referred to as “the overall symbol correlation value”). Is calculated.
相関器 3 0 3は、 コード数 '種類判定部 3 0 1からの指示に従って、 受信し た同期用制御チャネルの受信信号と当該制御チヤネルの拡散コ一ドとの相関値 (以下、 「制御チャネル相関値」 という) を計算する。  According to the instruction from the code number 'type judging unit 301, the correlator 303 receives the correlation value between the received received signal of the control channel for synchronization and the spread code of the control channel (hereinafter referred to as "control channel"). Correlation value).
切替え部 3 0 4は、 上記のコード数 ·種類判定部 3 0 1の制御に従って接続 の切替えを行う。  The switching unit 304 switches the connection according to the control of the code number / type determining unit 301 described above.
この結果、 位相推定部 1 1 9は、 現在使用されているシフトコードの数が単 数である場合、 シンボル全体相関値と同期用制御チャネル相関値の角度差から 位相回転量を推定する。 このように、 現在使用されているシフトコ一ドの数によって位相回転量の推 定に用いる相関値を切替えることにより、 シフトコードの数が複数である場合 には上記実施の形態 1と同様の効果を得ることができ、 シフトコードの数が単 数である場合でも安定した A F Cを行うことができる。 As a result, when the number of currently used shift codes is single, phase estimating section 119 estimates the amount of phase rotation from the angle difference between the overall symbol correlation value and the synchronization control channel correlation value. As described above, by switching the correlation value used for estimating the amount of phase rotation according to the number of currently used shift codes, when the number of shift codes is plural, the same effect as in the first embodiment is obtained. , And stable AFC can be performed even when the number of shift codes is singular.
ここで、 全セルにおいて共通な同期用制御チャネルを用いた場合、 誤って他 セルの制御チャネルを用いて位相回転量を推定しまう可能性があり、 この場合 には、 周波数オフセットの引き込み精度が大きく劣化してしまう。 そこで、 各 セル固有の同期用制御チャネルを用いて位相回転量を推定することにより、 シ ステムの安定性が向上する。  Here, if a common synchronization control channel is used in all cells, there is a possibility that the amount of phase rotation is erroneously estimated using the control channel of another cell, and in this case, the accuracy of pulling in the frequency offset is large. Will deteriorate. Therefore, by estimating the amount of phase rotation using the synchronization control channel unique to each cell, the stability of the system is improved.
また、 同期用制御チャネルは、 スロットの先頭に対するオフセット量がセル によって異なり、 同期用制御チャネルの位置が既知シンボル部の位置と時間的 に近い場合がある。 この場合、 実施の形態 1で示したように既知シンボル部の 前半部と後半部とで位相回転量を推定する方が精度良く A F Cを行うことがで きる。 そこで、 通信端末装置が、 回線が確立するまでに同期用制御チャネルの 位置を知り、 同期用制御チャネルの位置と既知シンボル部との位置関係に基づ いて位相回転量の推定に用いる信号を適宜切替えることにより、 常にある程度 の安定した A F Cを実現することができる。  Further, the offset amount of the synchronization control channel with respect to the beginning of the slot differs depending on the cell, and the position of the synchronization control channel may be close in time to the position of the known symbol part. In this case, AFC can be performed with higher accuracy by estimating the amount of phase rotation in the former half and the latter half of the known symbol part as shown in the first embodiment. Therefore, the communication terminal knows the position of the control channel for synchronization before the line is established, and appropriately adjusts the signal used for estimating the amount of phase rotation based on the positional relationship between the position of the control channel for synchronization and the known symbol part. By switching, it is always possible to achieve a certain level of stable AFC.
なお、 上記各実施の形態とスペースダイバーシチ受信、 パスダイバーシチ受 信とを組み合わせることにより、 さらに安定し、 高精度な A F Cを行うことが できる。  In addition, by combining the above embodiments with space diversity reception and path diversity reception, more stable and highly accurate AFC can be performed.
また、 上記各実施の形態では、 送信側が基地局装置、 受信側が通信端末装置 として説明したが、 本発明は受信側が基地局装置、 送信側が通信端末装置の場 合であっても適用することができる。  Further, in the above embodiments, the transmitting side is described as a base station apparatus and the receiving side is described as a communication terminal apparatus. However, the present invention can be applied even when the receiving side is a base station apparatus and the transmitting side is a communication terminal apparatus. it can.
また、 上記各実施の形態では、 説明を簡単にするために遅延波を考慮してい ないが、 本発明は、 受信装置においてチャネル推定や RAK E合成等を行う構 成部分を備えることにより、 遅延波が存在する伝播環境においても上記の効果 を得ることができる。 また、 上記各実施の形態において、 他のタイムスロットにおける既知シンポ ルの相関値も加算して複素相関演算を行い、位相回転量を推定することにより、 さらに、 拡散コードの相互相関による影響やノイズによる影響を抑圧すること でき、 より高精度な AFCを実現することができる。 以上の説明から明らかなように、 本発明によれば、 複数の既知シンボルの相 関値を加算することができるので、 拡散コードの相互相関による影響やノイズ による影響を抑圧して既知シンボル間の位相回転量を高精度に推定することが でき、 高精度な AFCを実現することができる。 ことができる。 Further, in each of the above embodiments, a delayed wave is not taken into account for simplicity of description. However, the present invention provides a receiving apparatus having a component for performing channel estimation, RAKE combining, and the like, thereby realizing delay. The above effects can be obtained even in a propagation environment where waves exist. In each of the above embodiments, the correlation value of the known symbol in other time slots is also added to perform a complex correlation operation, and the amount of phase rotation is estimated. The effect of the AFC can be suppressed, and more accurate AFC can be realized. As is clear from the above description, according to the present invention, the correlation values of a plurality of known symbols can be added. The amount of phase rotation can be estimated with high accuracy, and highly accurate AFC can be realized. be able to.
本明細書は、 2000年 9月 13日出願の特願 2000— 278193に基 づくものである。 この内容をここに含めておく。 産業上の利用可能性  The present specification is based on Japanese Patent Application No. 2000-278193 filed on Sep. 13, 2000. This content is included here. Industrial applicability
本発明は、 C D M A方式の無線通信システムの通信端末装置あるいは基地局 装置に用いるに好適である。  INDUSTRIAL APPLICABILITY The present invention is suitable for use in a communication terminal device or a base station device of a CDMA wireless communication system.

Claims

請 求 の 範 囲 The scope of the claims
1 . 時間多重された 1又は複数の受信信号の相関値を算出する相関値算出手段 と、前記相関値の加算値を用いて位相回転量を推定する位相回転量推定手段と、 前記位相回転量に基づいて周波数オフセットを補償するように発振器の周波数 を制御する周波数制御手段とを具備する受信装置。  1. Correlation value calculation means for calculating a correlation value of one or a plurality of time-multiplexed received signals, phase rotation amount estimation means for estimating a phase rotation amount using an added value of the correlation values, and the phase rotation amount Frequency control means for controlling the frequency of the oscillator so as to compensate for the frequency offset based on the following.
2 . 相関値算出手段は、 所定の基本コードの一部からなる既知シンボルが挿入 された受信信号の前記既知シンボル部分を用いて相関値を算出する請求の範囲  2. The correlation value calculating means calculates a correlation value using the known symbol portion of the received signal into which a known symbol including a part of a predetermined basic code is inserted.
3 . 所定の基本コードの一部からなる既知シンボルが揷入された受信信号と前 記基本コードとの相関値である第 1相関値を算出するサーチ手段と、 所定の闘 値を越えた前記第 1相関値の数およびその受信タイミングが属する時間帯に基 づいて時間多重されている既知シンボルの数および種類を判定する判定手段と を具備する請求の範囲 2記載の受信装置。 3. Search means for calculating a first correlation value which is a correlation value between a received signal into which a known symbol consisting of a part of a predetermined basic code has been inserted and the basic code, and 3. The receiving apparatus according to claim 2, further comprising: determining means for determining the number and type of known symbols time-multiplexed based on the number of first correlation values and the time zone to which the reception timing belongs.
4 . 相関値算出手段は、 既知シンボルの前半が挿入されている受信信号部分と 判定手段にて時間多重されていると判定された既知シンボルとの相関値である 第 2相関値および前記既知シンボルの後半部と前記判定された既知シンボルと の相関値である第 3相関値を算出し、 位相回転量推定手段は、 前記第 2相関値 の加算結果と前記第 3相関値の加算結果との位相差から位相回転量を推定する 請求の範囲 3記載の受信装置。  4. The correlation value calculation means is a correlation value between the received signal portion in which the first half of the known symbol is inserted and the known symbol determined to be time-multiplexed by the determination means, and a second correlation value and the known symbol. Calculating a third correlation value which is a correlation value between the latter half of the known symbol and the determined known symbol, and the phase rotation amount estimating means calculates a sum of the second correlation value and the third correlation value. 4. The receiving device according to claim 3, wherein the phase rotation amount is estimated from the phase difference.
5 . 相関値算出手段は、 既知シンボルが挿入されている受信信号部分と判定手 段にて時間多重されていると判定された既知シンボルとの相関値である第 4相 関値および受信信号と制御チャネルの拡散コードとの相関値である第 5相関値 を算出し、 位相回転量推定手段は、 時間多重されている既知シンボルの数が 1 である場合、 前記第 4相関値と前記第 5相関値との位相差から位相回転量を推 定する請求の範囲 3記載の受信装置。 5. The correlation value calculating means calculates the correlation value between the fourth correlation value and the received signal, which are correlation values between the received signal portion where the known symbol is inserted and the known symbol determined to be time-multiplexed by the determination means. A fifth correlation value, which is a correlation value with the spreading code of the control channel, is calculated.If the number of time-multiplexed known symbols is 1, the fourth correlation value and the fifth correlation value are calculated. 4. The receiving device according to claim 3, wherein the amount of phase rotation is estimated from a phase difference from the correlation value.
6 . 相関値算出手段は、 セル固有の制御チャネルを用いて第 5相関値を算出す る請求の範囲 5記載の受信装置。 6. The receiving apparatus according to claim 5, wherein the correlation value calculating means calculates a fifth correlation value using a cell-specific control channel.
7 . 位相回転量推定手段は、 時間多重されている既知シンボルの数が 1である 場合であっても、 制御チャネルと既知シンボルが時間的に近い場合には、 前記 第 2相関値と前記第 3相関値との位相差から位相回転量を推定する請求の範囲7. Even if the number of time-multiplexed known symbols is one, the phase rotation amount estimating means may determine that the second correlation value and the second correlation value are equal when the control channel and the known symbols are temporally close to each other. (3) Claims for estimating the amount of phase rotation from the phase difference with the correlation value
5記載の受信装置。 The receiving device according to 5.
8 . 受信装置を搭載する通信端末装置であって、 前記受信装置は、 時間多重さ れた 1又は複数の受信信号の相関値を算出する相関値算出手段と、 前記相関値 の加算値を用いて位相回転量を推定する位相回転量推定手段と、 前記位相回転 量に基づいて周波数オフセットを補償するように発振器の周波数を制御する周 波数制御手段とを具備する。 8. A communication terminal device equipped with a receiving device, wherein the receiving device uses a correlation value calculating unit that calculates a correlation value of one or a plurality of time-multiplexed received signals, and an addition value of the correlation value. Phase rotation estimating means for estimating the amount of phase rotation, and frequency control means for controlling the frequency of the oscillator so as to compensate for the frequency offset based on the amount of phase rotation.
9 . データに所定の基本コードの一部からなる既知シンボルを揷入して請求の 範囲 8記載の通信端末装置に送信する基地局装置。 9. A base station apparatus for transmitting a known symbol including a part of a predetermined basic code to data and transmitting the data to the communication terminal apparatus according to claim 8.
1 0 . 受信装置を搭載する基地局装置であって、 前記受信装置は、 時間多重さ れた 1又は複数の受信信号の相関値を算出する相関値算出手段と、 前記相関値 の加算値を用いて位相回転量を推定する位相回転量推定手段と、 前記位相回転 量に基づいて周波数オフセットを補償するように発振器の周波数を制御する周 波数制御手段とを具備する。  10. A base station device equipped with a receiving device, wherein the receiving device calculates a correlation value of one or a plurality of time-multiplexed received signals, and calculates an added value of the correlation value. A phase rotation amount estimating means for estimating a phase rotation amount by using the same; and a frequency control means for controlling a frequency of an oscillator so as to compensate for a frequency offset based on the phase rotation amount.
1 1 . データに所定の基本コードの一部からなる既知シンボルを挿入して請求 の範囲 1 0記載の基地局装置に送信する通信端末装置。  11. A communication terminal device for inserting a known symbol consisting of a part of a predetermined basic code into data and transmitting the data to a base station device according to claim 10.
1 2 . 所定の基本コードの一部からなる既知シンボルが挿入された受信信号と 前記基本コードとの相関値である第 1相関値を算出し、 所定の閾値を越えた前 記第 1相関値の数およびその受信タイミングが属する時間帯に基づいて時間多 重されている既知シンボルの数および種類を判定し、 既知シンボルの前半が揷 入されている受信信号部分と時間多重されていると判定された既知シンボルと の相関値である第 2相関値および前記既知シンボルの後半部と前記判定された 既知シンボルとの相関値である第 3相関値を算出し、 前記第 2相関値の加算結 果と前記第 3相関値の加算結果との位相差から位相回転量を推定し、 前記位相 回転量に基づいて周波数オフセットを補償するように発振器の周波数を制御す る自動周波数制御方法。 1 2. Calculate a first correlation value that is a correlation value between a received signal in which a known symbol including a part of a predetermined basic code is inserted and the basic code, and calculate a first correlation value exceeding a predetermined threshold value The number and type of known symbols time-multiplexed are determined based on the number of received symbols and the time zone to which the reception timing belongs, and it is determined that the first half of the known symbols is time-multiplexed with the received signal portion in which the known symbols are inserted. A second correlation value that is a correlation value between the obtained known symbol and a third correlation value that is a correlation value between the second half of the known symbol and the determined known symbol, and sums up the second correlation value. The amount of phase rotation is estimated from the phase difference between the result and the result of adding the third correlation value, and the frequency of the oscillator is controlled so as to compensate for the frequency offset based on the amount of phase rotation. Automatic frequency control method.
PCT/JP2002/002227 2002-03-11 2002-03-11 Receiver and automatic frequency control method WO2003077438A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002236278A AU2002236278A1 (en) 2002-03-11 2002-03-11 Receiver and automatic frequency control method
CNB028119835A CN100502249C (en) 2002-03-11 2002-03-11 Receiver and automatic frequency control method
PCT/JP2002/002227 WO2003077438A1 (en) 2002-03-11 2002-03-11 Receiver and automatic frequency control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/002227 WO2003077438A1 (en) 2002-03-11 2002-03-11 Receiver and automatic frequency control method

Publications (1)

Publication Number Publication Date
WO2003077438A1 true WO2003077438A1 (en) 2003-09-18

Family

ID=27799910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002227 WO2003077438A1 (en) 2002-03-11 2002-03-11 Receiver and automatic frequency control method

Country Status (3)

Country Link
CN (1) CN100502249C (en)
AU (1) AU2002236278A1 (en)
WO (1) WO2003077438A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4809097B2 (en) * 2006-03-29 2011-11-02 ルネサスエレクトロニクス株式会社 Reception circuit and reception method
CN101335599B (en) * 2007-06-25 2013-03-13 上海贝尔阿尔卡特股份有限公司 Space relativity resisting method and apparatus for spatial multiplexing system of wireless network
US9584355B2 (en) * 2013-03-25 2017-02-28 Intel Deutschland Gmbh Device and method for frequency offset estimation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677932A (en) * 1992-06-29 1994-03-18 Mitsubishi Electric Corp Spread spectrum receiver
JP2001102960A (en) * 1999-09-29 2001-04-13 Denso Corp Spread spectrum receiver
JP2002094411A (en) * 2000-09-13 2002-03-29 Matsushita Electric Ind Co Ltd Receiving device ad method for automatic frequency control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677932A (en) * 1992-06-29 1994-03-18 Mitsubishi Electric Corp Spread spectrum receiver
JP2001102960A (en) * 1999-09-29 2001-04-13 Denso Corp Spread spectrum receiver
JP2002094411A (en) * 2000-09-13 2002-03-29 Matsushita Electric Ind Co Ltd Receiving device ad method for automatic frequency control

Also Published As

Publication number Publication date
CN100502249C (en) 2009-06-17
AU2002236278A1 (en) 2003-09-22
CN1516929A (en) 2004-07-28

Similar Documents

Publication Publication Date Title
US5914943A (en) Apparatus and method for establishing acquisition of spreading code in CDMA transmission system
KR100711842B1 (en) A Method and device of the estimating carrier frequency offset of subscriber terminal
JP2723094B2 (en) CDMA receiver
WO2002027957A1 (en) Communication terminal apparatus and demodulation method
JPH11261531A (en) Communications device and method for interference suppression in ds-cdma system
WO2000035129A2 (en) Manifold assisted channel estimation and demodulation for cdma systems in fast fading environments
JPH1168700A (en) Spread spectrum communication system
US7042862B1 (en) Path searching method and device
KR100355327B1 (en) Communication terminal apparatus and radio communication method
US7085311B2 (en) Apparatus and method for measuring SIR in CDMA communication system
JPWO2002058265A1 (en) Path search method, path search device, and mobile terminal device
US7505509B2 (en) Receiving communication apparatus using array antenna
US7526012B2 (en) Interference reduction apparatus and method
WO2002007403A1 (en) Channel presuming system and channel presuming method
KR20010050567A (en) Demodulation of receiver with simple structure
US6895038B2 (en) Communication system
WO2003077438A1 (en) Receiver and automatic frequency control method
JP3588043B2 (en) Receiver and automatic frequency control method
US20040259517A1 (en) Apparatus and method for reception
JP3357653B2 (en) Wireless receiver
KR100445496B1 (en) Receiving device and receiving method
JP3153531B2 (en) Direct spread receiver
JP5093342B2 (en) Radio base station apparatus, frequency deviation detection method, and mobile communication system
JP3228311B2 (en) Receiver
JP3030230B2 (en) Receiver for spread communication system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 028119835

Country of ref document: CN

122 Ep: pct application non-entry in european phase