[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2003059903A2 - Substituierte 4-aminopyridin-derivate als schädlingsbekämpfungsmittel - Google Patents

Substituierte 4-aminopyridin-derivate als schädlingsbekämpfungsmittel Download PDF

Info

Publication number
WO2003059903A2
WO2003059903A2 PCT/EP2003/000051 EP0300051W WO03059903A2 WO 2003059903 A2 WO2003059903 A2 WO 2003059903A2 EP 0300051 W EP0300051 W EP 0300051W WO 03059903 A2 WO03059903 A2 WO 03059903A2
Authority
WO
WIPO (PCT)
Prior art keywords
spp
formula
substituted
chlorine
alkyl
Prior art date
Application number
PCT/EP2003/000051
Other languages
English (en)
French (fr)
Other versions
WO2003059903A3 (de
Inventor
Fritz Maurer
Christoph Erdelen
Karl-Heinz Kuck
Astrid Mauler-Machnik
Ulrike Wachendorff-Neumann
Andreas Turberg
Original Assignee
Bayer Cropscience Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Aktiengesellschaft filed Critical Bayer Cropscience Aktiengesellschaft
Priority to AU2003235696A priority Critical patent/AU2003235696A1/en
Publication of WO2003059903A2 publication Critical patent/WO2003059903A2/de
Publication of WO2003059903A3 publication Critical patent/WO2003059903A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/713Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with four or more nitrogen atoms as the only ring hetero atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/82Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with three ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to new substituted 4-aminopyridine derivatives, processes for their preparation and their use as pesticides and for controlling unwanted microorganisms.
  • R 1 represents alkyl
  • R 2 represents halogen
  • Het represents an optionally substituted heterocycle
  • n 1 or 2
  • Y stands for halogen, alkyl or haloalkyl and p stands for 0, 1 or 2.
  • R 1 and R 2 have the meanings given above,
  • Het, Y, n and p have the meanings given above,
  • halogenating agent preferably thionyl chloride, optionally in the presence of an acid binding agent and optionally in the presence of a diluent;
  • Het, Y and p have the meanings given above and m represents 0 or 1,
  • the 4-aminopyridine derivatives according to the invention are generally defined by the formula (I).
  • R 1 is preferably C ⁇ -C 4 - alkyl.
  • R 2 preferably represents fluorine, chlorine, bromine or iodine.
  • Het preferably represents an optionally mono- or polysubstituted, identically or differently substituted 5- or 6-membered heterocycle having 1 to 4 heteroatoms, such as N, O or S, examples of which may be mentioned as substituents:
  • n is preferably 1 or 2.
  • Y preferably represents fluorine, chlorine, bromine; C 1 -C 4 alkyl or dC 4 - haloalkyl, p preferably represents 0, 1 or 2.
  • R 1 is particularly preferably C 1 -C 2 -alkyl.
  • R 2 particularly preferably represents fluorine, chlorine or bromine.
  • Het particularly preferably represents 5- or 6-membered heterocycles from the series of thienyl, oxazolyl, isoxazolyl, pyrazolyl; 1,2,4-oxadiazolyl; 1,2,4-thia-diazolyl; 1,3,4-thiadiazolyl; Tetrazolyl, pyridinyl, pyrimidinyl or pyridonyl, each of which can be substituted one to three times (depending on the respective substitution options), identically or differently, examples of such substituents being: fluorine, chlorine, bromine, iodine; Gi alkyl; C ⁇ -C 4 alkoxy, C 1 -C 4 alkylthio; each one to five times, the same or different, substituted by fluorine or chlorine substituted Ci- -alkyl, Cr -alkoxy and CrC -alkylthio; Cyano, nitro, formyl, hydroxyimino, C 1 -C alkyl: oxy
  • n particularly preferably represents 1 or 2.
  • Y particularly preferably represents fluorine, chlorine, methyl or trifluoromethyl.
  • p particularly preferably represents 0, 1 or 2.
  • R 1 very particularly preferably represents ethyl.
  • R 2 very particularly preferably represents chlorine.
  • Het very particularly preferably represents 5- or 6-membered heterocycles from the
  • Pyridonyl each one to three times (depending on the respective substitution options), may be substituted identically or differently, examples of which may be mentioned as substituents: fluorine, chlorine, bromine; Methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl; Methoxy, ethoxy, n- or i-propoxy; Methylthio, ethylthio, n- or i-propylthio; Trifluoromethyl, difluoromethyl, fluoromethyl; Trifluoromethoxy, difluoromethoxy; trifluoromethylthio; Cyano, formyl, hydroximino, methoxyimino, ethoxyimino; Methylcarbonyl, ethylcarbonyl; Methoxycarbonyl, ethoxycarbonyl; Methoxycarbonyl-methyl, 1-methoxycarbonyl-1-
  • n very particularly preferably represents 1 or 2.
  • p very particularly preferably represents 0.
  • radical definitions can be combined with one another in any way.
  • individual definitions can also be omitted.
  • radical definitions listed in the above and below are carbon residues, such as alkyl - also in combination with heteroatoms, such as alkoxy - as far as possible, in each case straight-chain or branched.
  • the starting materials for carrying out process (a) according to the invention are generally defined by the formula (E).
  • R and R are preferably, particularly preferably or very particularly preferably, those meanings which have already been mentioned as preferred, particularly preferred or very particularly preferred for these radicals in connection with the description of the compounds of the formula (I) according to the invention ,
  • the 4-aminopyridines of the formula (E) are generally known compounds of organic chemistry.
  • Formula (ET) provides a general definition of the phenylacetic acids to be used as starting materials in process (a) according to the invention.
  • Het, n, Y and p are preferred, particularly preferred or very particularly preferred for those meanings which, in connection with the description of the compounds of the formula (I) according to the invention, are preferred, particularly preferred or entirely for these radicals were particularly preferred.
  • the phenylacetic acids of the formula (ET) are new and also the subject of this application. They are obtained by building up the heterocyclic radical on the correspondingly substituted phenyl in a known manner.
  • the 4-tetrazolylphenylacetic acids are obtained by mixing 4-cyanophenylacetic acid with sodium azide in the presence of an amine hydrochloride (for example ammonium chloride or trialkylammonium chloride) and in the presence of an inert organic solvent (for example toluene) at temperatures between 50 ° C. and 150 ° C., preferably between 80 ° C and 120 ° C (see also the manufacturing examples).
  • the tetrazolyl radical can then be alkylated in a conventional manner (see also the preparation examples).
  • the 4-pyrazolylphenylacetic acids are e.g. obtained by using 4-hydrazino-phenylacetic acid hydrochloride with sodium salts of 2-substituted 1-hydroxy-
  • the formula (TV) generalizes the substituted 4-aminopyridines to be used as starting materials for carrying out process (b) according to the invention
  • R and R are preferably, particularly preferably or very particularly preferably, those meanings which have already been mentioned for these radicals in connection with the description of the compounds of the formula (I) according to the invention.
  • Q is preferably B (OH); 4,4,5,5-tetramethyl-l, 3,2-dioxoborolan-2-yl; 5,5-dimethyl-3,2-dioxo-borinan-2-yl; 4,4,6-trimethyl-l, 3,2-di-oxo-borinan-2-yl or l, 3,2-benzodioxoborolan-2-yl.
  • the substituted 4-aminopyridines of the formula (TV) are new and also the subject of this application. They are obtained by first of all 4-aminopyridines of the formula (E) in which
  • R 1 and R 2 have the meanings given above,
  • R 1 and R 2 have the meanings given above,
  • Formula (V) provides a general definition of the bromides to be used as starting materials in process (b) according to the invention.
  • Het, Y and p are preferred, particularly preferred or very particularly preferred for those meanings which, in connection with the description of the compounds of the formula (I) according to the invention, are preferred, particularly preferred or very particularly preferred for these radicals were mentioned, m preferably represents 0 or 1.
  • the bromides of the formula (V) are known or can be obtained in a known manner.
  • R and R are preferably, particularly preferably or very particularly preferably, those meanings which have already been mentioned as preferred, particularly preferred or very particularly preferred for these radicals in connection with the description of the compounds of the formula (I) according to the invention ,
  • the substituted 4-aminopyridines of Foremi (VI) are obtained by reacting 4-ammopyridines of the formula (E) with 4-bromophenylacetic acid in accordance with the conditions of process (a).
  • Formula (VE) provides a general definition of the compounds to be used as starting materials in process (c) according to the invention.
  • Het, Y and p are preferred, particularly preferred or very particularly preferred for those meanings which have been mentioned as preferred, particularly preferred or very particularly preferred for these radicals in connection with the description of the compounds of the formula (I) according to the invention
  • m preferably represents 0 or 1.
  • Q preferably represents those meanings which have already been mentioned as preferred for these radicals in connection with the description of the 4-aminopyridines of the formula (TV).
  • the compounds of formula (VE) are obtained by reacting bromides of formula (V) with boron derivatives of formula (TX) in accordance with the conditions of process (c).
  • DABCO diazabicyclooctane
  • DBU Diazabicyclonones
  • DBU diazabicycloundecen
  • Suitable diluents for carrying out process (a, variant 1) are all inert, organic solvents.
  • Aliphatic, alicyclic or aromatic hydrocarbons such as petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decalin can preferably be used; halogenated hydrocarbons, such as chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane; Ethers, such as diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl t-amyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane or anisole; Nitriles, such as acetonitrile,
  • reaction temperatures can be varied within a relatively wide range. In general, temperatures between 0 ° C and + 120 ° C, preferably between 20 ° C and 80 ° C.
  • Suitable catalysts for carrying out process are all customary reaction accelerators which are suitable for activating the carboxyl group of the phenylacetic acid derivative of the formula (ET).
  • Carbonyldiimidazole and dicyclohexylcarbodiimide can preferably be used.
  • the reaction can also be carried out in the presence of water-binding agents.
  • Suitable diluents for carrying out the process are all inert organic solvents which are customary for such reactions.
  • Aliphatic, alicyclic or aromatic can preferably be used
  • Hydrocarbons such as dioxane, petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decalin; halogenated hydrocarbons, such as chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane.
  • halogenated hydrocarbons such as chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane.
  • reaction temperatures can be varied within a certain range. In general, temperatures between 0 ° C and 120 ° C, preferably between 20 ° C and 80 ° C.
  • the procedure (a, variant 2) is generally carried out using equimolar amounts. However, it is also possible to use one or the other component in excess.
  • the processing takes place according to usual methods. In general, the procedure is such that the solid which has precipitated is filtered off with suction, the filtrate is concentrated under reduced pressure and the residue which remains is chromatographed.
  • the diluents used in the process are those of the invention
  • Hydrocarbons such as are preferably used PT / EP03 / 00051
  • halogenated hydrocarbons such as methylene chloride, chloroform, chlorobenzene, o-dichlorobenzene
  • ethers such as diethyl ether, diisopropyl ether, dimethoxyethane, tetiahydrofuran, dioxane
  • nitriles such as acetonitrile
  • Suitable bases for carrying out processes (b) and (c) according to the invention are all customary acid acceptors.
  • Tertiary amines such as triethylamine, pyridine, diazabicyclooctane (DABCO), diazabicyclo- undecene (DBU), diazabicyclonones (DBN), N, N-dimethylaniline, also alkaline earth metal oxides such as magnesium or calcium oxide, and also alkali metal and alkaline earth metal carbonates are preferably usable such as sodium carbonate, potassium carbonate and calcium carbonate, alkali metal hydroxides such as sodium or potassium hydroxide, and also alcoholates such as sodium ethanolate or potassium tert-butoxide.
  • reaction temperatures can be when carrying out the inventive reaction temperatures
  • Processes (b) and (c) can be varied over a wide range. In general, temperatures between 0 ° C and 120 ° C, preferably between 20 ° C and 80 ° C or at the boiling point of the solvent used.
  • the reaction is generally carried out in equimolar amounts, with 0.01 to 0.1 mol being optionally added
  • Catalyst and 1 to 5 mol of base can be used.
  • the end products are worked up and isolated in a generally customary manner.
  • the active ingredients are suitable with good plant tolerance and inexpensive warm Blood toxicity to control animal pests, especially insects, arachnids and nematodes, which occur in agriculture, in forests, in the protection of stocks and materials as well as in the hygiene sector. They can preferably be used as pesticides. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
  • the pests mentioned above include:
  • Isopoda e.g. Oniscus asellus, Armadillidium vulgare, Porcellio scaber. From the order of the Diplopoda e.g. Blaniulus guttulatus.
  • Chüopoda e.g. Geophilus carpophagus, Scutigera spp ..
  • Thysanura e.g. Lepisma saccharina.
  • Phthiraptera e.g. Pediculus humanus corporis, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp ..
  • Thysanoptera e.g. Hercinothrips femoralis, Thrips tabaci
  • Thrips palmi, Frankliniella accidentalis From the order of the Heteroptera e.g. Eurygaster spp., Dysdercus intermedius,
  • Trialeurodes vaporariorum Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabäe, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phoroponosum , Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.
  • Conoderus spp. Melolontha melolontha, Amphimallon s ⁇ lstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.
  • Hymenoptera e.g. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
  • Diptera e.g. Aedes spp., Anopheles spp., Culex spp.
  • Drosophila melanogaster Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tabanus spp.
  • Tannia spp. Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa, Hylemyia spp., Liriomyza spp ..
  • Plant-parasitic nematodes include e.g. Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetians, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaph.
  • the substances according to the invention can be used with particularly good success for combating plant-damaging insects, such as e.g. against the larvae of the cucumber beetle (Diabrotica balteata), the caterpillars of the cotton capsule worm (Heliothis virescens), the larvae of the horseradish beetle (Phaedon cochleariae), the
  • Cabbage caterpillars Panlla xylostella
  • army worm caterpillars Spodoptera exigua and Spodoptera frugiperda
  • cotton aphid Aphis gossypii
  • peach aphid Mycus persicae
  • plant-damaging mites such as against bean spanym mite (tica spica mite)
  • the substances according to the invention have a strong microbicidal action and can be used to control unwanted microorganisms, such as fungi and bacteria, in crop protection and in material protection.
  • Fungicides can be used to control Plasmodiophoromycetes
  • Bactericides can be used in crop protection to combat Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • Some pathogens of fungal and bacterial are exemplary but not limiting
  • Xanthomonas species such as, for example, Xanthomonas campestris pv. Oryzae;
  • Pseudomonas species such as, for example, Pseudomonas syringae pv. Lachrymans; Erwinia species, such as, for example, Erwinia amylovora;
  • Pythium species such as, for example, Pythium ultimum
  • Phytophthora species such as, for example, Phytophthora infestans
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or
  • Plasmopara species such as, for example, Plasmopara viticola
  • Bremia species such as, for example, Bremia lactucae
  • Peronospora species such as, for example, Peronospora pisi or P. brassicae;
  • Erysiphe species such as, for example, Erysiphe grarninis;
  • Sphaerotheca species such as, for example, Sphaerotheca fuliginea
  • Podosphaera species such as, for example, Podosphaera leucotricha
  • Venturia species such as, for example, Venturia inaequalis
  • Pyrenophora species such as, for example, Pyrenophora teres or P. grarninea
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • CochHobolus species such as, for example, Cocbliobolus sativus (conidial form: Drechslera, Syn: Helminthosporium);
  • Uromyces species such as, for example, Uromyces appendiculatus
  • Puccinia species such as, for example, Puccinia recondita
  • Sclerotinia species such as, for example, Sclerotinia sclerotiorurn
  • Tilletia species such as, for example, Tilletia caries
  • Ustilago species such as, for example, Ustilago nuda or Ustilago avenae
  • Pellicularia species such as, for example, Pellicularia sasakii;
  • Pyricularia species such as, for example, Pyricularia oryzae
  • Fusarium species such as, for example, Fusarium culmorum
  • Botrytis species such as, for example, Botrytis cinerea; Septoria species, such as, for example, Septoria nodorum;
  • Leptosphaeria species such as, for example, Leptosphaeria nodorum
  • Cercospora species such as, for example, Cercospora canescens
  • Alternaria species such as, for example, Alternaria brassicae;
  • Pseudocercosporella species such as, for example, Pseudocercosporella herpotrichoides.
  • Plants on. They are therefore suitable for mobilizing the plant's own defenses against attack by unwanted microorganisms.
  • Plant-strengthening (resistance-inducing) substances are to be understood in the present context as those substances that are able to
  • undesirable microorganisms include phytopathogenic
  • the substances according to the invention can therefore be used to protect plants against attack by the named pathogens within a certain period of time after the treatment.
  • the period within which protection is brought about generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.
  • the active compounds according to the invention can be used with particularly good success to combat cereal diseases, such as mildew and rust, and against diseases in wine, fruit and vegetable cultivation, such as Venturia, Podosphaera and Sphaerothera species.
  • the active compounds according to the invention are also suitable for increasing the crop yield. They are also less toxic and have good plant tolerance.
  • the active compounds according to the invention can also be used in certain concentrations and application rates as herbicides, for influencing plant growth, and for controlling animal pests. If appropriate, they can also be used as intermediates and precursors for the synthesis of further active compounds.
  • plants and parts of plants can be treated.
  • Plants are understood here to mean all plants and plant populations, such as desired and unwanted wild plants or crop plants (including naturally occurring crop plants).
  • Cultivated plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant cultivars which can or cannot be protected by plant breeders' rights.
  • Plant parts are to be understood to mean all above-ground and underground parts and organs of plants, such as shoots, leaves, flowers and roots, examples being leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds as well as roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and seeds.
  • the treatment of the plants and parts of plants with the active compounds according to the invention is carried out directly or by acting on their surroundings, living space or storage space according to the customary treatment methods, for example by dipping, spraying, evaporating, atomizing, scattering, spreading and in the case of propagation material, in particular seeds single or multi-layer wrapping.
  • the substances according to the invention can be used to protect technical materials against attack and destruction by undesired microorganisms.
  • technical materials that are to be protected against microbial change or destruction by active substances according to the invention can be adhesives, glues, paper and cardboard, textiles, leather, wood, paints and plastic articles, cooling lubricants and other materials that can be attacked or decomposed by microorganisms .
  • parts of production plants for example cooling water circuits, are also mentioned which can be impaired by the multiplication of microorganisms.
  • the preferred technical materials are adhesives, glues, papers and cartons, leather, wood,
  • Bacteria, fungi, yeasts, algae and slime organisms may be mentioned as microorganisms which can cause degradation or a change in the technical materials.
  • the active compounds according to the invention preferably act against fungi, in particular scummel fungi, wood-discoloring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.
  • microorganisms of the following genera may be mentioned:
  • Alternaria such as Alternaria tenuis
  • Aspergillus such as Aspergillus niger
  • Chaetomium like Chaetomium globosum
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus tigrinus
  • Penicillium such as Penicillium glaucum, " ⁇ ,
  • Polyporus such as Polyporus versicolor
  • Aureobasidium such as Aureobasidium pullulans
  • Sclerophoma such as Sclerophoma pityophila
  • Trichoderma such as Trichoderma viride
  • Escherichia such as Escherichia coli
  • Pseudomonas such as Pseudomonas aeruginosa
  • Staphylococcus such as Staphylococcus aureus.
  • the active ingredients can be converted into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and also ULV cold and warm fog formulations.
  • formulations are prepared in a known manner, for example by mixing the active ingredients with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents. If water is used as an extender, organic solvents can, for example, also be used as auxiliary solvents.
  • extenders that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • surface-active agents that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • organic solvents can, for example, also be used as auxiliary solvents.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions
  • alcohols such as Butanol or glycol and their ethers and esters
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • Liquefied gaseous triangular agents or carriers mean liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants, such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide.
  • Possible solid carriers are: for example natural stone powders such as kaolins, alumina, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders such as highly disperse silica, aluminum oxide and silicates.
  • Possible solid carriers for granules are: eg broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite as well as synthetic granules from inorganic and organic flours as well as granules from organic material such as sawdust, coconut shells, corn cobs and tobacco stems.
  • Suitable emulsifiers and / or foam-generating agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates.
  • Possible dispersants are: e.g. Lignin sulfite liquors and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex-shaped polymers, such as Giimmiarabicum, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95 percent by weight
  • Active ingredient preferably between 0.5 and 90%.
  • the active compounds according to the invention can be used as such or in their formulations, also in a mixture " with known fungicides, bactericides, acaricides, nematicides or insecticides, in order to broaden the spectrum of action or to prevent development of resistance, for example. In many cases, one obtains synergistic effects, ie the effectiveness of the mixture is greater than the effectiveness of the individual components.
  • Debacafb dichlorophene, diclobutrazole, diclofluanide, diclomezin, dicloran, diethofencarb, difenoconazole, dimethirimol, dimethomorph, diniconazole, diniconazol-M, dinocap, diphenylamine, dipyrithione, ditalimfos, dodipoxazolone, dodipoxazolone, dithipoxazol Ethirimol, etridiazole,
  • Mancopper Mancozeb, Maneb, Meferimzone, Mepampyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax,
  • Thicyofen Thifluzamide, thiophanate-methyl, thiram, Tioxymid, tolclofos-methyl, tolylfluanid, triadimefon, triadimenol, Triazbutil, triazoxide, Trichlamid, tricyclazole, tridemorph, trifloxystrobin, triflumizole, triforine, triticonazole, uniconazole, validamycin A, vinclozolin, Viniconazol, Zarilamid , Zineb, ziram as well
  • Dagger G OK-8705, OK-8801, ⁇ - (1, 1-dimethylethyl) -ß- (2-phenoxyethyl) - 1 H-1, 2,4-triazole-1-ethanol, ⁇ - (2,4 -Dichlorophenyl) -ß-fluoro-ß-propyl-1 H-1, 2,4- ⁇ riazole-1-ethanol, ⁇ - (2,4-dichlorophenyl) -ß-methoxy- ⁇ -methyl-1H-1, 2 , 4-triazol-1-ethanol, ⁇ - (5-methyl-l, 3-dioxan-5-yl) -ß - [[4- (trifluoromethyl) phenyl] methylene] -lH-l, 2.4 triazole-1-ethanol,
  • Halofenozide HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene, Imidacloprid, Indoxacarb, Isazofos, Isofenphos, Isoxathion, Ivermectin, Kernpolyederviruses, Lambda-cyhalothrin, Lufenuron
  • Pirimiphos M Profenofos, Promecarb, Propargite, Propoxur, Prothiofos, Prothoat,
  • Triarathenes triazamates, triazophos, triazuron, trichlophenidines, trichlorfon,
  • the compounds of formula (I) according to the invention also have very good antifungal effects. They have a very broad antimycotic activity spectrum, especially against dermatophytes and fungi, mold and diphasic fungi (eg against Candida species such as Candida albicans, Candida glabrata) as well as Epidermophyton floccosum, Aspergillus species such as Aspergillus nigerumigatus and Aspergillus -Species such as Trichophyton mentagrophytes, Microsporon species such as Microsporon canis and audoüinii.
  • Candida species such as Candida albicans, Candida glabrata
  • Epidermophyton floccosum Aspergillus species such as Aspergillus nigerumigatus and Aspergillus -Species such as Trichophyton mentagrophytes
  • Microsporon species such as Microsporon canis and audoüinii.
  • the list of these fungi does not in any way limit the my
  • the active compounds can be used as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the usual way, e.g. by pouring, spraying, atomizing, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredients by the ultra-low-volume process or to inject the active ingredient preparation or the active ingredient into the soil itself. The seeds of the plants can also be treated.
  • the application rates can be varied within a relatively wide range, depending on the type of application.
  • the active compound application rates are generally between 0.1 and 10,000 g ha, preferably between 10 and 1,000 g / ha.
  • the active compound application rates are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 10 g per kilogram of seed.
  • the active compound application rates are generally between 0.1 and
  • the active compounds according to the invention can also be present in their commercially available formulations and in the use forms prepared from these formulations in a mixture with synergists.
  • Synergists are compounds through which the action of the active ingredients is increased without the added synergist itself having to be active.
  • the active substance content of the use forms prepared from the commercially available formulations can vary within wide ranges.
  • the active ingredient concentration of Application forms can be from 0.0000001 to 95% by weight of active compound, preferably between 0.0001 and 1% by weight.
  • the application takes place in a customary manner adapted to the application forms.
  • the active ingredient When used against hygiene pests and pests of stored products, the active ingredient is distinguished by an excellent residual action on wood and clay as well as a good stability to alkali on limed substrates.
  • plants and their parts can be treated according to the invention.
  • transgenes are also preferred.
  • Plants and plant varieties that have been obtained by genetic engineering methods, possibly in combination with conventional methods (Genetic Modified Organisms) and their parts treated.
  • Genetic Modified Organisms Geneous Modified Organisms
  • the term “parts” or “parts of plants” or “plant parts” was explained above.
  • Plants of the plant varieties which are in each case commercially available or in use are particularly preferably treated according to the invention.
  • Plant cultivars are understood to mean plants with new properties (“traits”) which have been grown both by conventional breeding, by mutagenesis or by recombinant DNA techniques. These can be varieties, breeds, bio and genotypes.
  • the treatment according to the invention can also give rise to superadditive ("synergistic") effects.
  • superadditive for example, reduced application rates and / or extensions of the
  • W kimgsspektrum and / or an enhancement of the effect of the substances and agents usable according to the invention better plant growth, increased tolerance against high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, acceleration of ripeness, higher harvest yields, higher quality and or higher nutritional value of the harvested products, higher shelf life and / or workability of the harvested products possible, that go beyond the expected effects.
  • the preferred transgenic (genetically engineered) plants or plant cultivars to be treated according to the invention include all plants which, by virtue of the genetic engineering modification, have received genetic material which gives these plants particularly advantageous, valuable properties (“traits”). Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated ripening, higher crop yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or workability of the harvested products.
  • transgenic plants are the important crop plants, such as cereals (wheat, rice), corn, soybeans, potatoes, cotton, rapeseed and fruit plants (with the fruits apples, pears, citrus fruits and grapes), with corn, soybeans, potatoes and cotton and rapeseed are highlighted.
  • the traits are particularly emphasized as the increased defense of the plants against insects by toxins which arise in the plants, in particular those which are caused by the genetic material from BaciUus thuringiensis (for example by the genes CryIA (a), CryIA (b), CryIA (c), CryEA, CryEIA, CryEIB2 5 Cry9c Cry2Ab, Cry3Bb and CryTF as well as their combinations) are produced in the plants (hereinafter "Bt plants”).
  • Bt plants The increased resistance of plants against fungi, bacteria and viruses are also particularly emphasized as traits through systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins.
  • herbicidal active compounds for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (for example “P P-
  • genes imparting the desired properties can also occur in combinations with one another in the transgenic plants.
  • “Bt plants” are corn varieties, cotton varieties, soy varieties and potato varieties that are marketed under the trade names YTELD GARD® (e.g. corn, cotton, soy), KnockOut® (e.g. corn), StarLink® (e.g. corn), Bollgard®
  • herbicide-tolerant plants are corn varieties, cotton varieties and soy varieties which are sold under the trade names Roundup Ready® (tolerance against glyphosate e.g. corn, cotton, soy), Liberty Link® (tolerance against phosphinotricin, e.g. rape), TMI® (tolerance against Imidazolinone) and STS®
  • the herbicide-resistant plants include the varieties sold under the name Clearfield® (e.g. maize). Of course, these statements also apply to plant varieties developed in the future or coming onto the market in the future with these or future-developed genetic properties ("traits").
  • plants listed can be treated particularly advantageously according to the invention with the compounds of the general formula (I) or the active compound mixtures according to the invention.
  • the preferred ranges given above for the active substances or mixtures also apply to the treatment of these plants. Plant treatment with the compounds or mixtures specifically listed in the present text should be particularly emphasized.
  • the active compounds according to the invention act not only against plants, hygiene and
  • Pests, but also against the veterinary sector animal parasites such as tortoise ticks, leather ticks, mites, running mites, flies (stinging and licking), parasitic fly larvae, lice, hair lice, featherlings and fleas.
  • ectoparasites such as tortoise ticks, leather ticks, mites, running mites, flies (stinging and licking), parasitic fly larvae, lice, hair lice, featherlings and fleas.
  • Ischnocerina e.g. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp.,
  • Brachycerina e.g. Aedes spp., Anopheles spp., Culex spp., Simulium spp.,
  • Eusimulium spp. Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp.,
  • Hybomitra spp. Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp.,
  • Braula spp. Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp.,
  • Xenopsylla spp. Ceratophyllus spp .. From the order of the Heteropterida e.g. Cimex spp., Triatoma spp., Rhodnius spp.,
  • Hyalomma spp. Rhipicephalus spp., Dermanyssus spp., Raillietia spp.,
  • Actinedida Prostigmata
  • Acaridida Acaridida
  • Acarapis spp. Cheyletiella spp., Ornitrocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp.
  • Tyfophagus spp. Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp ..
  • the active compounds of the formula (I) according to the invention are also suitable for controlling arthropods which are used in agricultural animals, e.g. Cattle, sheep, goats, horses, pigs, donkeys, camels, buffalo, rabbits, chickens, turkeys, ducks, geese, bees, other pets such as e.g. Dogs, cats, house birds, aquarium fish and so-called experimental animals, such as Infest hamsters, guinea pigs, rats and mice. By fighting these arthropods, deaths and
  • the active compounds according to the invention are used in the veterinary sector in a known manner by enteral administration in the form of, for example, tablets, capsules, drinkers, drenches, granules, pastes, boluses, the feed-through method, suppositories, by parenteral administration, for example by Injections (intramuscular, subcutaneous, intravenous, intraperitoneal, etc.), implants, by nasal application, by dermal application in the form of, for example, diving or
  • Bathing dipping
  • spraying spray
  • pouring on pour-on and spot-on
  • washing powdering and with the help of shaped articles containing active ingredients, such as necklaces, ear tags, tail tags, limb tapes, holsters, marking devices, etc.
  • the active compounds of the formula (T) can be used as formulations (for example powders, emulsions, flowable agents) which contain the active compounds in an amount of 1 to 80% by weight, directly or apply after 100 to 10,000-fold dilution or use it as a chemical bath.
  • formulations for example powders, emulsions, flowable agents
  • insects may be mentioned by way of example and preferably, but without limitation:
  • Kalotermes flavicollis Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.
  • Bristle tails such as Lepisma saccharina.
  • the material to be protected against insect infestation is very particularly preferably wood and wood processing products.
  • Wood and wood processing products which can be protected by the agent according to the invention or mixtures containing it, are to be understood as examples:
  • Lumber wooden beams, railway sleepers, bridge parts, jetties, wooden vehicles,
  • the active substances can be used as such, in the form of concentrates or generally customary formulations such as powders, granules, solutions, suspensions, emulsions or pastes.
  • formulations mentioned can be prepared in a manner known per se, e.g. by mixing the active ingredients with at least one solution or
  • insecticides used to protect wood and wood-based materials or
  • Concentrates contain the 'active ingredient according to the invention in a concentration of 0.0001 to 95 wt .-%, in particular 0.001 to 60 wt .-%.
  • the amount of the agents or concentrates used depends on the type and occurrence of the insects and on the medium. The optimal amount can be determined in each case by test series. In general, however, it is sufficient to use 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, of the active compound, based on the material to be protected.
  • An organic chemical solvent or solvent mixture and / or an oily or oily heavy serves as the solvent and / or diluent volatile organic chemical solvent or solvent mixture and / or a polar organic chemical solvent or solvent mixture and / or water and optionally an emulsifier and / or wetting agent.
  • the organic chemical solvents used are preferably oily or oily ones
  • Solvents with an evaporation number above 35 and a flash point above 30 ° C, preferably above 45 ° C, are used.
  • Corresponding mineral oils or their aromatic fractions or mineral oil-containing solvent mixtures, preferably white spirit, petroleum and / or alkylbenzene, are used as such low-volatility, water-insoluble, oily and oily solvents.
  • Mineral oils with a boiling range of 170 to 220 ° C, white spirit with a boiling range of 170 to 220 ° C, spindle oil with a boiling range of 250 to 350 ° C, petroleum or aromatics with a boiling range of 160 to 280 ° C, turpentine oil and Like. Used.
  • liquid aliphatic hydrocarbons with a boiling range from 180 to 210 ° C or high-boiling mixtures of aromatic and aliphatic hydrocarbons with a boiling range from 180 to 220 ° C and / or locker oil and / or monochloronaphthalene, preferably - monochloronaphthalene, are used.
  • the organic non-volatile oily or oily solvents with an evaporation number above 35 and a flash point above 30 ° C, preferably above 45 ° C can be partially replaced by slightly or medium-volatile organic chemical solvents, with the proviso that the solvent mixture also has an evaporation number 35 and a flash point above 30 ° C, preferably above 45 ° C, and that the insecticide-fungicide mixture is soluble or emulsifiable in this solvent mixture.
  • part of the organic chemical solvent or solvent mixture or an aliphatic polar organic chemical solvent or solvent mixture is replaced.
  • Aliphatic organic chemical solvents containing hydroxyl and / or ester and / or ether groups such as, for example, glycol ethers, esters or the like, are preferably used.
  • the known organic-chemical binders are water-thinnable and / or soluble or dispersible or emulsifiable in the organic-chemical solvents used
  • Synthetic resins and / or binding drying oils in particular binders consisting of or containing an acrylate resin, a vinyl resin, e.g. Polyvinyl acetate, polyester resin, polycondensation or polyaddition resin, polyurethane resin, alkyd resin or modified alkyd resin, phenolic resin, hydrocarbon resin such as indene-coumarone resin, silicone resin, drying vegetable and / or drying oils and / or physically drying binders based on a natural and / / or synthetic resin used.
  • binders consisting of or containing an acrylate resin, a vinyl resin, e.g. Polyvinyl acetate, polyester resin, polycondensation or polyaddition resin, polyurethane resin, alkyd resin or modified alkyd resin, phenolic resin, hydrocarbon resin such as indene-coumarone resin, silicone resin, drying vegetable and / or drying oils and / or physically drying binders based on a natural and / / or synthetic resin used
  • the synthetic resin used as a binder can be used in the form of an emulsion, dispersion or solution. Bitumen or bituminous substances up to 10% by weight can also be used as binders. In addition, known dyes, pigments, water-repellants, odor correctors and inhibitors or anticorrosive agents and the like can be used.
  • At least one alkyd resin or modified alkyd resin and / or a drying vegetable oil is preferably contained in the agent or in the concentrate as the organic chemical binder.
  • Alkyd resins with an oil content of more than 45% by weight, preferably 50 to 68% by weight, are preferably used according to the invention.
  • All or part of the binder mentioned can be replaced by a fixing agent (mixture) or a plasticizer (mixture). These additives are intended to prevent volatilization of the active ingredients and crystallization or precipitation. They preferably replace 0.01 to 30% of the binder (based on 100% of the binder used).
  • the plasticizers come from the chemical classes of phthalic acid esters such as dibutyl, dioctyl or benzyl butyl phthalate, phosphoric acid esters such as tributyl phosphate, adipic acid esters such as di- (2-ethylhexyl) adipate, stearates such as butyl stearate or amyl stearate, oleates such as butyl oleate, higher glycerol glycerol or glycerol ether - Kolether, glycerol ester and p-toluenesulfonic acid ester.
  • phthalic acid esters such as dibutyl, dioctyl or benzyl butyl phthalate
  • phosphoric acid esters such as tributyl phosphate
  • adipic acid esters such as di- (2-ethylhexyl) adipate
  • Fixing agents are chemically based on polyvinyl alkyl ethers such as e.g. Polyvinyl methyl ether or ketones such as benzophenone, ethylene benzophenone.
  • Water is also particularly suitable as a solvent or diluent, if appropriate in a mixture with one or more of the above-mentioned organic chemical solvents or diluents, emulsifiers and dispersants.
  • a particularly effective wood protection is achieved through industrial impregnation processes, e.g. Vacuum, double vacuum or pressure process.
  • the ready-to-use compositions can optionally contain further insecticides and, if appropriate, one or more fungicides.
  • insecticides and fungicides mentioned in WO 94/29 268 are preferably suitable as additional admixing partners.
  • the compounds mentioned in this document are an integral part of the present application.
  • Insecticides such as chlorpyriphos, phoxime, silafluofin, alphamethrin, cyfluthrin, cypermetiirin, deltämethrin, Permethrin, imidacloprid, NI-25, flufenoxuron, hexaflumuron, transfluthrin, thiacloprid, methoxyphenoxide and triflumuron,
  • fungicides such as epoxyconazole, hexaconazole, azaconazole, propiconazole, tebuconazole, cyproconazole, metconazole, imazalil, dichlorfluanide, tolylfluanid,
  • the compounds according to the invention can be used to protect objects, in particular hulls, sieves, nets, structures,
  • Scalpellum species or by species from the group Balanomorpha (barnacles), such as Baianus or Pollicipes species, increases the frictional resistance of ships and consequently leads to a significant increase in operating costs due to increased energy consumption and, moreover, frequent dry dock stays.
  • (trialkyltin) sulfides tri-n-butyltin laurate, tri-n-butyltin chloride, copper (I) oxide, triethyltin chloride, tri-w-butyl (2-phenyl-4-chlorophenoxy) tin, tributyltin oxide, molybdenum disulfide, antimony oxide, polymeric butyl titanate, phenyl (bispyridine) bismuth chloride, tri - «- butyltin fluoride, manganese ethylene bisthiocarbamate, zinc dimethyl dithiocarbamate, zinc ethylene bisthiocarbamate, zinc and copper salts of 2-pyridine-thiol-1-oxy-oxychloride, bis (bisdimide) oxydimethylamide, bisdimide (bisdimide), bis (bisdimide), bis (bisdimide), bis (bisdimide) amide, bisdimide (bis) amdiboxamide, bis
  • the ready-to-use antifouling paints may also contain other active ingredients, preferably algicides, fungicides, herbicides, molluscicides or other antifouling active ingredients.
  • Suitable combination partners for the anti-fouling agents according to the invention are preferably:
  • Benzo [&] thiophenecarboxylic acid cyclohexylamide-S, S-dioxide, dichlofluanide, fluorofolpet, 3-iodo-2-propynyl butyl carbamate, tolyl fluanide and azoles such as
  • Molluscicides such as fentin acetate, metaldehyde, methiocarb, niclosamide, thiodicarb and trimethacarb; or conventional antifouling agents such as
  • the antifouling agents used contain the active compound according to the invention of the compounds according to the invention in a concentration of 0.001 to 50% by weight, in particular of 0.01 to 20% by weight.
  • the antifouling agents according to the invention furthermore contain the usual constituents, e.g. in Ungerer, Chem. Ind. 1985, 37, 730-732 and Williams, Antifouling Marine Coatings, Noyes, Park Ridge, 1973.
  • antifouling paints contain in particular binders.
  • Examples of recognized binders are polyvinyl chloride in a solvent system, chlorinated rubber in a solvent system, acrylic resins in one
  • Solvent system in particular in an aqueous system, vinyl chloride / vinyl acetate copolymer systems.
  • aqueous dispersions or in the form of organic solvent systems, butadene / styrene acrylonitrile rubbers, drying oils, such as linseed oil, resin esters or modified hard resins in combination with tar or bitumen , Asphalt and epoxy compounds, small amounts of chlorinated rubber, chlorinated polypropylene and vinyl resins.
  • Paints may also contain inorganic pigments, organic
  • Pigments or dyes which are preferably insoluble in sea water. Paints may also contain materials such as rosin in order to be controlled
  • the paints can also Plasticizers containing modifiers affecting theological properties and other conventional ingredients.
  • the compounds according to the invention or the abovementioned mixtures can also be incorporated into self-polishing antifouling systems. -
  • the active ingredients are also suitable for controlling animal pests, in particular insects, arachnids and mites, which live in closed spaces such as apartments, factory halls, offices, vehicle cabins, etc. occurrence. To control these pests, they can be used alone or in combination with other active ingredients and auxiliaries in household insecticide products.
  • Scorpionidea e.g. Buthus occitanus.
  • Acarina e.g. Argas persicus, Argas reflexus, Bryobia ssp.
  • Diplopoda e.g. Blaniulus guttulatus, Polydesmus spp ..
  • Saltatoria for example Acheta domesticus.
  • Dermaptera for example, Forficula auricularia.
  • Lepidoptera e.g. Achroia grisella, Galleria mellonella, Plodia interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
  • Ctenocephalides canis Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis.
  • Hymenoptera e.g. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.
  • Rhodinus prolixus Triatoma infestans.
  • reaction mixture is poured onto water and extracted with ethyl acetate.
  • organic phase is dried over sodium sulfate and evaporated in vacuo.
  • residue is triturated with disiopropyl ether and the precipitated product is filtered off with suction.
  • the determination is carried out in the acidic range at pH 2.3 with 0.1% aqueous phosphoric acid and acetonitrile as eluents; linear gradient from 10% acetonitrile to 90% acetonitrile.
  • the calibration is carried out with unbranched alkan-4-ones (with 3 to 16 carbon atoms) whose logP values are known (determination of the logP values on the basis of the retention time by linear interpolation between two successive alkanones).
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether
  • Cotton leaves which are heavily infested with the cotton aphid (Aphis gossypii), are treated by immersing them in the active ingredient preparation of the desired concentration.
  • the kill is determined in%. 100% means that all aphids have been killed; 0% means that no aphids have been killed.
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether
  • Pots filled with soil are poured into the active ingredient preparation. Immediately after the preparation, 5 corn kernels are laid out per pot and after 3 days the Diabrotica balteata larvae are placed on the treated soil. The concentration given relates to the amount of active ingredient per unit volume of soil (mg / 1).
  • the accumulated maize plants are counted and the efficiency is calculated. 100% means that all maize plants have emerged; 0% means that no maize plants have emerged.
  • Emulsifier 2. Parts by weight of alkylaryl polyglycol ether
  • Soybean shoots (Glycine max) are treated by dipping into the active ingredient preparation of the desired concentration and populated with Heliothis virescens caterpillars while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • compound 7 of the preparation examples shows a kill of 100% after 7 days.
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • Vessels are filled with sand, active ingredient solution, Meloidogyne incognita egg larva suspension and lettuce seeds.
  • the lettuce seeds germinate and the plantlets develop.
  • the galls develop at the roots.
  • the nematicidal effect is determined in% using the formation of bile. 100% means that no galls were found; 0% means that the number of galls on the treated plants corresponds to that of the untreated control.
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether
  • Savoy cabbage plants (Brassica oleracea), which are heavily infested with the green peach aphid (Myzus persicae), are watered with 10 ml active ingredient preparation of the desired concentration, so that the active ingredient preparation in the
  • the active ingredient is absorbed by the roots and passed on to the shoot.
  • the kill is determined in%. 100% means that all aphids have been killed; 0% means that no aphids have been killed.
  • Example F % and compound 34 of the preparation examples killed 99%, in each case after 6 days.
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active compound of the desired concentration and populated with larvae of the horseradish leaf beetle (Phaedon cochleariae) while the leaves are still moist.
  • the kill is determined in%. 100% means that all beetle larvae have been killed; 0% means that no beetle larvae have been killed.
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active compound of the desired concentration and populated with caterpillars of the cockroach (Plutella xylostella) while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • compound 7 of the preparation examples shows a kill of 100% after 7 days.
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active ingredient of the desired concentration and populated with caterpillars of the army worm (Spodoptera exigua) while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • compound 7 of the preparation examples shows a kill of 100% after 7 days.
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active compound of the desired concentration and populated with caterpillars of the army worm (Spodoptera frugiperda) while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether
  • the effect is determined in%. 100% means that all spider mites have been killed; 0% means that no spider mites have been killed.
  • compound 19 of the preparation examples shows 95% kill and compound 34 of the preparation examples shows 100% kill, in each case after 7 days.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • Soybean shoots (Glycine max) of the Roundup Ready variety (trademark of Monsanto Comp. USA) are treated by dipping into the preparation of active compound of the desired concentration and are populated with the tobacco bud caterpillar Heliothis virescens while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Solvent 7 parts by weight of dimethylformamide emulsifier: 1 part by weight of alkylaryl polyglycol ether
  • Amount of emulsifier and dilute the concentrate with water to the desired concentration is required.
  • the active ingredient preparation is poured onto the floor.
  • the concentration of the active ingredient in the preparation is practically irrelevant, the only decisive factor is the amount of active ingredient per unit volume of soil, which is given in ppm (mg / 1). You fill the bottom in 0.25 1 pots and let them stand at 20 ° C.
  • dimethylacetamide emulsifier 1.0 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • Evaluation is carried out 10 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • dimethylacetamide emulsifier 1.0 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • the plants are then placed in the greenhouse at approx. 21 ° C. and a relative humidity of approx. 90%.
  • Evaluation is carried out 10 days after the inoculation. 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • Evaluation is carried out 7 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Emulsifier 0.6 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • the plants are then placed in a greenhouse at a temperature of approximately 20.degree. C. and a relative atmospheric humidity of 80% in order to promote the development of rust pustules.
  • Evaluation is carried out 10 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

Neue substituierte 4-Aminopyridin-Derivate der Formel (I), in welcher R1, R2, Het, n, Y und p die in der Beschreibung angegebenen Bedeutungen haben,mehrere Verfahren zur Herstellung dieser Stoffe und deren Verwendung zur Bekämpfung von Schädlingen, sowie neue Zwischenprodukte und Verfahren zu deren Herstellung.

Description

Substituierte 4- Aminopyridin-Derivate
Die vorliegende Erfindung betrifft neue substituierte 4-Aminopyridin-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel sowie zur Bekämpfung von unerwünschten Mikroorganismen.
Es ist bereits bekannt, dass bestimmte substituierte 4-Aminopyridine insektizide Eigenschaften aufweisen (vgl. z.B. WO 93/04580, WO 96/08475, WO 96/10016 oder WO 96/33975). Die Wirksamkeit bzw. Wirkungsbreite dieser Verbindungen ist jedoch insbesondere bei niedrigen Aufwandmengen und -konzentiationen nicht immer voll zufriedenstellend.
Es wurden neue substituierte 4- Aminopyridin-Derivate der Formel (I) gefunden,
Figure imgf000003_0001
in welcher
R1 für Alkyl steht,
R2 für Halogen steht,
Het für einen gegebenenfalls substituierten Heterocyclus steht,
n für 1 oder 2 steht,
Y für Halogen, Alkyl oder Halogenalkyl steht und p für 0, 1 oder 2 steht.
Weiterhin wurde gefunden, dass man die substituierten 4- Aminopyridin-Derivate der Formel (I) erhält, indem man a) 4-Aminopyridine der Formel (11)
Figure imgf000004_0001
in welcher
R1 und R2 die oben angegebenen Bedeutungen haben,
und Phenylessigsäuren der Formel (IE)
Figure imgf000004_0002
in welcher
Het, Y, n und p die oben angegebenen Bedeutungen haben,
(1) mit einem Halogenierungsmittel, vorzugsweise Thionylchlorid, gegebenenfalls in Gegenwart eines Säurebindungsmittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt; oder
(2) in Gegenwart eines die Carboxyl-Gruppe aktivierenden Katalysators und in Gegenwart eines Verdünnungsmittels umsetzt; oder
b) substituierte 4-Aminopyridine der Formel (TV)
Figure imgf000004_0003
in welcher
R und R die oben angegebenen Bedeutungen haben und
Q für eine Abgangsgruppe steht, mit Bromiden der Formel (V)
Figure imgf000005_0001
in welcher
Het, Y und p die oben angegebenen Bedeutungen haben und m für 0 oder 1 steht,
in Gegenwart einer Base, in Gegenwart eines Katalysators und in Gegenwart eines Verdünnungsmittels umsetzt; oder c) substituierte 4-Aminopyridine der Formel (VT)
Figure imgf000005_0002
in welcher
R und R die oben angegebenen Bedeutungen haben,
mit Verbindungen der Formel (VE)
Figure imgf000005_0003
in welcher
Het, Q, Y, m und p die oben angegebenen Bedeutungen haben,
in Gegenwart einer Base, in Gegenwart eines Katalysators und in Gegenwart eines Verdünnungsmittels umsetzt. Schließlich wurde gefunden, dass die neuen substituierten 4-Aminopyridin-Derivate der Formel (I) stark ausgeprägte biologische Eigenschaften besitzen und vor allem zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Nematoden, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen, sowie zur Bekämpfung von unerwünschten Mikroorganismen geeignet sind.
Die erfindungsgemäßen 4-Aminopyridin-Derivate sind durch die Formel (I) allgemein definiert.
Bevorzugte Substituenten bzw. Bereiche der in den oben und nachstehend erwähnten Formeln aufgeführten Reste werden im folgenden erläutert:
R1 steht bevorzugt für C \ -C4- Alkyl. R2 steht bevorzugt für Fluor, Chlor, Brom oder Iod.
Het steht bevorzugt für einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituierten 5- oder 6-gliedrigen Heterocyclus mit 1 bis 4 Heteroatomen, wie N, O oder S, wobei als Substituenten beispielhaft genannt seien:
Halogen, Alkyl, Alkoxy, Alkylthio, Halogenalkyl, Halogenalkoxy, Halogen- alkylthio, Cyano, Nitro, Formyl, Hydroxyimino, AJkoxyimino, Alkylcarbonyl, Alkoxycarbonyl, Alkoxycarbonylalkyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Morpholino oder gegebenenfalls substituiertes Tetrazolyl.
n steht bevorzugt für 1 oder 2.
Y steht bevorzugt für Fluor, Chlor, Brom; C1-C4-Alkyl oder d-C4- Halogenalkyl, p steht bevorzugt für 0, 1 oder 2. R1 steht besonders bevorzugt für Cι-C2-Alkyl.
R2 steht besonders bevorzugt für Fluor, Chlor oder Brom.
Het steht besonders bevorzugt für 5- oder 6-gliedrige Heterocyclen aus der Reihe von Thienyl, Oxazolyl, Isoxazolyl, Pyrazolyl; 1,2,4-Oxadiazolyl; 1,2,4-Thia- diazolyl; 1,3,4-Thiadiazolyl; Tetrazolyl, Pyridinyl, Pyrimidinyl oder Pyrido- nyl, die jeweils einfach bis dreifach (in Abhängigkeit von den jeweiligen Substitutionsmöglichkeiten), gleich oder verschieden substituiert sein können, wobei als Substituenten beispielhaft genannt seien: Fluor, Chlor, Brom, Iod; -Gi-Alkyl; Cι-C4Alkoxy, C1-C4Alkylthio; jeweils einfach bis fünffach, gleich oder verschieden durch Fluor oder Chlor substituiertes Ci- -Alkyl, Cr -Alkoxy und CrC -Alkylthio; Cyano, Nitro, Formyl, Hydroxyimino, C1-C -AJk:oxyirnino, C1-C -Alkylcarbonyl, C1-C4- Alkoxycarbonyl, C1-C4-Alkoxycarbonyl-C1-C -alkyl; gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom, C1-C4- Alkyl,
C1-C4-Halogenalkyl, Alkoxy, C1-C4-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl; gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom oder -C4- Alkyl substituiertes Morpholino oder gegebenenfalls durch C1-C - Alkyl substituiertes Tetrazolyl.
n steht besonders bevorzugt für 1 oder 2.
Y steht besonders bevorzugt für Fluor, Chlor, Methyl oder Trifluormethyl. p steht besonders bevorzugt für 0, 1 oder 2.
R1 steht ganz besonders bevorzugt für Ethyl.
R2 steht ganz besonders bevorzugt für Chlor.
Het steht ganz besonders bevorzugt für 5- oder 6-gliedrige Heterocyclen aus der
Reihe von Thienyl, Oxazolyl, Isoxazolyl, Pyrazolyl; 1,2,4-Oxadiazolyl; 1,2,4- Thiadiazolyl; 1,3,4-Thiadiazolyl; Tetrazolyl, Pyridinyl, Pyrimidinyl oder
Pyridonyl, die jeweils einfach bis dreifach (in Abhängigkeit von den jeweiligen Substitutionsmöglichkeiten), gleich oder verschieden substituiert sein können, wobei als Substituenten beispielhaft genannt seien: Fluor, Chlor, Brom; Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl; Methoxy, Ethoxy, n- oder i-Propoxy; Methylthio, Ethylthio, n- oder i-Propyl- thio; Trifiuormethyl, Difluormethyl, Fluormethyl; Trifluormethoxy, Difluor- methoxy; Trifluormethylthio; Cyano, Formyl, Hydroximino, Methoxyimino, Ethoxyimino; Methylcarbonyl, Ethylcarbonyl; Methoxycarbonyl, Ethoxycar- bonyl; Methoxycarbonyl-methyl, 1 -Methoxycarbonyl- 1 -ethyl; gegebenenfalls einfach bis zweifach, gleich oder verschieden durch Fluor, Chlor, Methyl, Methoxy, Trifluormethyl, Nitro oder Cyano substituiertes Phenyl; gegebenenfalls einfach bis zweifach, gleich oder verschieden durch Fluor, Chlor, Methyl oder Ethyl substituiertes Mo holino oder gegebenenfalls durch Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl substituiertes Tetrazolyl.
n steht ganz besonders bevorzugt für 1 oder 2. p steht ganz besonders bevorzugt für 0.
Außerdem bevorzugt sind 4- Aminopyridin-Derivate der Formel (I), in welcher R1 für
Chlor steht. Außerdem bevorzugt sind 4-Arninopyridin-Derivate der Formel (I), in welcher R2 für
Ethyl steht.
Außerdem bevorzugt sind 4-Anιmopyridin-Derivate der Formel (I), in welcher p für
0 steht.
Außerdem bevorzugt sind 4- Aminopyridin-Derivate der Formel (I), in welcher Het für einen 5- oder 6-gliedrigen Heterocyclus mit mindestens einem Stickstoffatom steht.
Die zuvor genannten Reste-Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können auch einzelne Definitionen entfallen.
Die in der oben und nachstehend aufgeführten Restedefinitionen sind Kohlenstoff- reste, wie Alkyl - auch in Verbindung mit Heteroatomen, wie Alkoxy - soweit möglich, jeweils geradkettig oder verzweigt.
Verwendet man beispielsweise 2-Ethyl-3-chlor-4-amino-pyridin und 4-(2-tert.-Butyl- tetrazol-5-yl)-phenyl-essigsäure sowie Thionylchlorid als Ausgangsstoffe, so kann der Reaktionablauf des erfindungsgemäßen Verfahrens (a, Variante 1) durch das folgende Formelschema wiedergegeben werden:
Figure imgf000009_0001
Verwendet man beispielsweise 4-(4-Cyano-pyrazol-l-yl)-phenylessigsäure und 2-
Etnyl-3-chlor-4-arninopyridin als Ausgangsstoffe sowie N,N-Carbonyl-bisimidazol als Katalysator, so kann der Reaktionsablauf des erfindungsgemäßen Verfahrens (a, Variante 2) durch das folgende Formelschema wiedergegeben werden:
Figure imgf000009_0002
Figure imgf000009_0003
Verwendet man beispielsweise 4-(4,4,5,5-Tetramethyl-l,3,2-dioxaborolan-2-yl)- phenylessigsäure-N-(2-ethyl-3-chlor-pyridin-4-yl)-amid und 2-Methoxy-5-brom- pyridin als Ausgangsstoffe, so kann der Reaktionsablauf des erfmdungsgemäßen Verfahrens (b) durch das folgende Formelschema wiedergegeben werden:
Figure imgf000010_0001
Verwendet man beispielsweise 4-Brom-phenylessigsäιιre-N-(2-ethyl-3-cMor-pyridin- 4-yl)-amid und 2-Methoxy-pyridin-5-yl-boronsäure als Ausgangsstoffe, so kann der Reaktionsäblauf des erfindungsgemäßen Verfahrens (c) durch das folgende Formelschema wiedergegeben werden:
Figure imgf000010_0002
Die zur Durchfiihrung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe zu verwendenden 4-Aminopyridine sind durch die Formel (E) allgemein definiert. In dieser Formel stehen R und R bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt genannt wurden.
Die 4-Aminopyridine der Formel (E) sind allgemein bekannte Verbindungen der organischen Chemie.
Die außerdem beim erfindungsgemäßen Verfahren (a) als Ausgangsstoffe zu verwendenden Phenylessigsäuren sind durch die Formel (ET) allgemein definiert. In dieser Formel stehen Het, n, Y und p bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt genannt wurden.
Die Phenylessigsäuren der Formel (ET) sind neu und ebenfalls Gegenstand dieser Anmeldung. Sie werden erhalten, indem man den heterocyclischen Rest in bekannter Art und Weise an dem entsprechend substituiertem Phenyl aufbaut.
So werden z.B. die 4-Tetrazolylphenylessigsäuren erhalten, indem man 4-Cyano- phenylessigsäure mit Natriumazid in Gegenwart eines Amin-Hydrochlorids (z.B. Ammoniumchlorid oder Trialkylammoniumchlorid) und in Gegenwart eines inerten organischen Lösungsmittels (z.B. Toluol) bei Temperaturen zwischen 50°C und 150°C, vorzugsweise zwischen 80°C und 120°C umsetzt (vgl. auch die Herstellungsbeispiele). Der Tetrazolylrest kann anschließend in üblicher Art und Weise noch alkyliert werden (vgl. ebenfalls die Herstellungsbeispiele).
Die 4-Pyrazolylphenylessigsäuren werden z.B. erhalten, indem man 4-Hydrazino- phenylessigsäure-hydrochlorid mit Natriumsalzen von 2-substituierten 1-Hydroxy-
3,3-dimethoxy-l-proρen-Derivaten in Gegenwart eines inerten organischen Lösungs- mittels, wie beispielsweise Ethanol, bei Temperaturen zwischen 20°C und 50°C umsetzt (vgl. auch die Herstellungsbeispiele).
Die zur Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe zu verwendenden substituierten 4-Aminopyridine sind durch die Formel (TV) allgemein
• 1 9 definiert. In dieser Formel stehen R und R bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste genannt wurden. Q steht vorzugsweise für B(OH) ; 4,4,5,5-Tetramethyl-l,3,2- dioxoborolan-2-yl; 5,5-Dimethyl-l,3,2-dioxo-borinan-2-yl; 4,4,6-Trimethyl-l,3,2-di- oxo-borinan-2-yl oder l,3,2-Benzodioxoborolan-2-yl.
Die substituierten 4-Aminopyridine der Formel (TV) sind neu und ebenfalls Gegenstand dieser Anmeldung. Sie werden erhalten, indem man zunächst 4-Aminopyridine der Formel (E)
Figure imgf000012_0001
in welcher
R1 und R2 die oben angegebenen Bedeutungen haben,
mit 4-Bromphenylessigsäure der Formel (VTE)
Figure imgf000012_0002
gemäß den Bedingungen des Verfahrens (a) umsetzt und die so erhaltenen substituierten 4-Aminopyridine der Formel (VT)
Figure imgf000013_0001
in welcher
R1 und R2 die obenangegebenen Bedeutungen haben,
mit bekannten Bor-Derivaten der Formel (TX)
H - Q (TX) in welcher Q die oben genannten Bedeutungen hat,
gemäß den Bedingungen des Verfahrens (c) umsetzt (vgl. auch die Herstellungsbeispiele).
Die außerdem beim erfindungsgemäßen Verfahren (b) als Ausgangsstoffe zu verwendenden Bromide sind durch die Formel (V) allgemein definiert. In dieser Formel stehen Het, Y und p bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt genannt wurden, m steht bevorzugt für 0 oder 1.
Die Bromide der Formel (V) sind bekannt bzw. können in bekannter Art und Weise erhalten werden.
Die zur Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoffe zu verwendenden substituierten 4-Aminopyridine sind durch die Formel (VT) allgemein definiert. In dieser Formel stehen R und R bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt genannt wurden.
Die substituierten 4-Aminopyridine der Foremi (VI) werden erhalten, indem man 4- Ammopyridine der Formel (E) mit 4-Bromphenylessigsäure gemäß den Bedingungen des Verfahrens (a) umsetzt.
Die außerdem beim erfindungsgemäßen Verfahren (c) als Ausgangsstoffe zu verwendenden Verbindungen sind durch die Formel (VE) allgemein definiert. In dieser Formel stehen Het, Y und p bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diejenigen Bedeutungen die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt genannt wurden, m steht bevorzugt für 0 oder 1. Q steht vorzugsweise für diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der 4-Aminopyridine der Formel (TV) für diese Reste als vorzugsweise genannt wurden.
Die Verbindungen der Formel (VE) werden erhalten, indem man Bromide der Formel (V) mit Bor-Derivaten der Formel (TX) gemäß den Bedingungen des Verfahrens (c) umsetzt.
Als Säurebindemittel kommen bei der Durchführung des Verfahrens (a, Variante 1) alle üblichen anorganischen und organischen Basen infrage. Vorzugsweise verwendbar sind Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -arnide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie Natriumhydrid, Natriumamid, Natriummethylat, Natrium-ethylat, Kaliurn-tert.-butylat, Natriumhydroxid, Kalium- hydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Natriumcarbonat, Kaliurn- carbonat, Kaliumhydrogencarbonat, ferner Ammoniumhydroxid, Ammoniümacetat oder Ammoniumcarbonat, oder tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Me- thylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).
Als Verdünnungsmittel kommen bei der Durchführung des Verfahrens (a, Variante 1) alle inerten, organischen Lösungsmittel in Betracht. Vorzugsweise verwendbar sind aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie Petrol- ether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie Chlorbenzol, Dichlorbenzol, Dichlor- methan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril; Amide, wie N,N- Dimethylforma id, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrro- lidon oder Hexamethylphosphorsäiiretriamid; Ester wie Essigsäuremethylester oder Essigsäureethylester; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan.
Die Reaktionstemperaturen können bei der Durchführung des Verfahrens (a, Vari- ante 1) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und +120°C, vorzugsweise zwischen 20°C und 80°C.
Bei der Durchführung des Verfahrens (a, Variante 1) arbeitet man im allgemeinen mit äquimolaren Mengen oder einem kleinen Überschuss an Halogenierungsmittel und Säurebindemittel. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen verfährt man in der Weise, dass man das Reaktionsgemisch nach beendeter Umsetzung einengt, den verbleibenden Rückstand mit Wasser und einem mit Wasser wenig mischbaren organischen Lösungsmittel versetzt, die organische Phase ab- trennt, wäscht, trocknet und einengt. Das verbleibende Produkt kann nach üblichen
Methoden von eventuell enthaltenen Verunreinigungen befreit werden. Als Katalysatoren kommen bei der Durchführung des Verfahrens (a, Variante 2) alle üblichen Reaktionsbeschleuniger infrage, die zur Aktivierung der Carboxyl-Gruppe des Phenylessigsäure-Derivates der Formel (ET) geeignet sind. Vorzugsweise verwendbar sind Carbonyldiimidazol und Di-cyclohexyl-carbodiimid. Weiterhin kann die Umsetzung auch in Gegenwart von wasserbindenden Mitteln durchgeführt werden.
Als Verdünnungsmittel kommen bei der Durchführung des Verfahrens (a, Variante 2) alle für derartige Umsetzungen üblichen, inerten organischen Solventien in Betracht. Vorzugsweise verwendbar sind aliphatische, alicyclische oder aromatische
Kohlenwasserstoffe, wie Dioxan, Petrolether, Hexan, Heptan, Cyclohexan, Methyl- cyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan.
Die Reaktionstemperaturen können bei der Diirckführung des Verfahrens (a, Variante 2) innerhalb eines bestimmten Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 120°C, vorzugsweise zwischen 20°C und 80°C.
Bei der Diirchführung des Verfahrens (a, Variante 2) arbeitet man im allgemeinen mit äquimolaren Mengen. Es ist jedoch auch möglich, die eine oder andere Komponente in einem Überschuss zu verwenden. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen verfährt man in der Weise, dass man vom ausgefallenen Feststoff absaugt, das Filtrat unter vermindertem Druck einengt und den verbleibenden Rückstand chromatographiert.
Als Verdünnungsmittel kommen bei der Durcln'uhrung der erfindungsgemäßen
Verfahren (b) und'(c) alle unter den jeweils gegebenen Reaktionsbedingungen inerten organischen Lösungsmittel infrage. Sie können gegebenenfalls in Mischung mit
Wasser verwendet werden. Bevorzugt verwendet werden Kohlenwasserstoffe wie P T/EP03/00051
- 15 -
Toluol, Xylol, Tetralin, Hexan, Cyclohexan, Halogenkohlenwasserstoffe wie Methylenchlorid, Chloroform, Chlorbenzol, o-Dichlorbenzol, Ether wie Diethylether, Diisopropylether, Dimethoxyethan, Tetiahydrofuran, Dioxan, Nitrile wie Acetonitril oder Butyronitril, Amide wie Dimethylformamid, ferner Sulfolan.
Als Base kommen bei der Durchführung der erfindungsgemäßen Verfahren (b) und (c) alle üblichen Säureakzeptoren infrage. Vorzugsweise verwendbar sind tertiäre Amine wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicyclo- undecen (DBU), Diazabicyclononen (DBN), N,N-Dimethylanilin, ferner Erdalkali- metalloxide wie Magnesium- oder Calciumoxid, außerdem Alkali- und Erdalkali- metallcarbonate wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, Alkalihydroxide wie Natrium- oder Kahumhydroxid, ferner Alkoholate wie Natrium- ethanolat oder Kalium-tert.-butylat.
Als Katalysatoren kommen bei der Durchfuhrung der erfindungsgemäßen Verfahren
(b) und (c) Palladium oder seine Verbindungen bzw. Komplexe, vorzugsweise Tetiakis-(triphenylphosphin)-palladium oder l,r-[Bis-(diphenylphosphino)-ferro- cen]-dichlorpalladium infrage.
Die Reaktionstemperaturen können bei der Durcliführung der erfindungsgemäßen
Verfahren (b) und (c) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 120°C, bevorzugt zwischen 20°C und 80°C beziehungsweise bei der Siedetemperatur des verwendeten Lösungsmittels. Bei der Diirckführung der erfindungsgemäßen Verfahren (b) und (c) arbeitet man im allgemeinen in äquimolaren Mengen, wobei gegebenenfalls 0,01 bis 0,1 Mol an
Katalysator sowie 1 bis 5 Mol an Base eingesetzt werden.
Die Aufarbeitung und Isolierung der Endprodukte erfolgt in allgemein üblicher Art und Weise.
Die Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit und günstiger Warm- blütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren und Nematoden, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resi- stente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:
Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgäre, Porcellio scaber. Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.
Aus der Ordnung der Chüopoda z.B. Geophilus carpophagus, Scutigera spp..
Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.
Aus der Ordnung der Thysanura z.B. Lepisma saccharina.
Aus der Ordnung der Collembola z.B. Onychiurus armatus. Aus der Ordnung der Orthoptera z.B. Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus spp., Schistocerca gregaria.
Aus der Ordnung der Blattaria z.B. Blatta orientalis, Periplaneta americana,
Leucophaea maderae, Blattella germanica.
Aus der Ordnung der Dermaptera z.B. Forficula auricularia. Aus der Ordnung der Isoptera z.B. Reticuliterm.es spp..
Aus der Ordnung der Phthiraptera z.B. Pediculus humanus corporis, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp..
Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci,
Thrips palmi, Frankliniella accidentalis. Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius,
Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.
Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci,
Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabäe, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp. Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella xylostella, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp.,
Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Mamestra brassicae, Panolis flammea, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehmella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana,
Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana, Cnaphalocerus spp., Oulema oryzae.
Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diäbrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp.,
Conoderus spp., Melolontha melolontha, Amphimallon sόlstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.
Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp. Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp.,
Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa, Hylemyia spp., Liriomyza spp..
Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.. „^ ,
PCT/EP03/00051
- 18 -
Aus der Klasse der Arachnida z.B. Scorpio maurus, Latrodectus mactans, Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp.,
Hemitarsonemus spp., Brevipalpus spp..
Zu den pflanzenparasitären Nematoden gehören z.B. Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetians, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaphelenchus spp..
Die erfindungsgemäßen Stoffe lassen sich mit besonders gutem Erfolg zur Bekämpfung von pflanzenschädigenden Insekten, wie z.B. gegen die Larven des Gurkenkäfers (Diabrotica balteata), die Raupen des Baumwollkapselwurms (Heliothis virescens), die Larven des Meerettichkäfers (Phaedon cochleariae), die
Raupen der Kohlschabe (Plutella xylostella), die Raupen des Heerwurms (Spodoptera exigua und Spodoptera frugiperda), die Baumwollblattlaus (Aphis gossypii) und die Pfirsichblattlaus (Mycus persicae) oder zur Bekämpfung von pflanzenschädigenden Milben, wie gegen die Bohnenspinnmilbe (Tetranychus urticae), einsetzen.
Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.
Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes,
Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.
Bakterizide lassen" sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen. Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen
Erlα-ankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;
Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans; Erwinia-Arten, wie beispielsweise Erwinia amylovora;
Pythium- Arten, wie beispielsweise Pythium ultimum;
Phytophthora-Arten, wie beispielsweise Phytophthora infestans;
Pseudoperonospora- Arten, wie beispielsweise Pseudoperonospora humuli oder
Pseudoperonospora cübensis; Plasmopara- Arten, wie beispielsweise Plasmopara viticola;
Bremia-Arten, wie beispielsweise Bremia lactucae;
Peronospora- Arten, wie beispielsweise Peronospora pisi oder P. brassicae;
Erysiphe- Arten, wie beispielsweise Erysiphe grarninis;
Sphaerotheca- Arten, wie beispielsweise Sphaerotheca fuliginea; Podosphaera- Arten, wie beispielsweise Podosphaera leucotricha;
Venturia- Arten, wie beispielsweise Venturia inaequalis;
Pyrenophora- Arten, wie beispielsweise Pyrenophora teres oder P. grarninea
(Konidienform: Drechslera, Syn: Helminthosporium);
CochHobolus-Arten, wie beispielsweise Cocbliobolus sativus (Konidienform: Drechslera, Syn: Helminthosporium);
Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;
Puccinia-Arten, wie beispielsweise Puccinia recondita;
Sclerotinia- Arten, wie beispielsweise Sclerotinia sclerotiorurn;
Tilletia-Arten, wie beispielsweise Tilletia caries; Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;
Pellicularia- Arten, wie beispielsweise Pellicularia sasakii;
Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;
Fusarium-Arten, wie beispielsweise Fusarium culmorum;
Botrytis-Arten, wie beispielsweise Botrytis cinerea; Septoria-Arten, wie beispielsweise Septoria nodorum;
Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum; Cercospora- Arten, wie beispielsweise Cercospora canescens;
Alternaria- Arten, wie beispielsweise Alternaria brassicae;
Pseudocercosporella- Arten, wie beispielsweise Pseudocercosporella herpotrichoides.
Die erfindungsgemäßen Wirkstoffe weisen auch eine starke stärkende Wirkung in
Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.
Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das
Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mirkroorganismen entfalten.
Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene
Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.
Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.
Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie Mehltau und Rost verwenden sowie gegen Krankheiten im Wein-, Obst- und Gemüseanbau, wie Venturia-, Podosphaera- und Sphaerothera- Arten einsetzen. Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.
Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen. Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.
Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende
Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz,
Anstrichmittel, Kü schmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.
Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere ScMmmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.
Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:
Alternaria, wie Alternaria tenuis,
Aspergillus, wie Aspergillus niger,
Chaetomium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana, Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium glaucum, „^,
PCT/EP03/00051
- 23 -
Polyporus, wie Polyporus versicolor, Aureobasidium, wie Aureobasidium pullulans, Sclerophoma, wie Sclerophoma pityophila, Trichoderma, wie Trichoderma viride, Escherichia, wie Escherichia coli,
Pseudomonas, wie Pseudomonas aeruginosa, Staphylococcus, wie Staphylococcus aureus.
Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften -in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aro- maten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdöl- fraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Stieckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z.B. natürliche Ge- steinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmo- rillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokos- nussschalen, Maiskolben und Tabakstängel. Als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpoly- glycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate.
Als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitäblaugen und Methyl- cellulose.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Giimmiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferro- cyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin- farbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent
Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung "mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.
Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:
Fungizide:
Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol,
Azoxystrobin,
Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat,
Buthiobat,
Calciumpolysulfid, Carpropamid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfen- azol, Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinü, Cyprofuram,
Debacafb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Dinico- nazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemorph, Dodine, Drazoxolon, Ediphenphös, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,
Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenhexamid, Fenitro- pan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Fer- bam, Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl- Natrium, Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol,
Furconazol-cis, Furmecyclox,
Guazatin, Hexachlorobenzol, Hexaconazol, Hymexazol,
Imazalil, Imibenconazol, Immoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobenfos (D3P), Iprodione, Iprovahcarb, Irumamycin, Isoprothiolan, Isovaledione, Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfemaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,
Mancopper, Mancozeb, Maneb, Meferimzone, Mepampyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax,
Mildiomycin, Myclobutanil, Myclozolin, Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol, Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin, Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Picoxystrobin, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon,
Propamocarb, Propanosine-Natrium, Propiconazol, Propineb, Pyraclostrobin, Pyrazo- phos, Pyrifenox, Pyrimethanil, Pyroquilon, Pyroxyfur, Quinconazol, Quintozen (PCNB), Quinoxyfen, Schwefel und Schwefel-Zubereitungen, Spiroxarnine, Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol,
Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Trifloxystrobin, Triflumizol, Triforin, Triticonazol, Uniconazol, Validamycin A, Vinclozolin, Viniconazol, Zarilamid, Zineb, Ziram sowie
Dagger G, OK-8705, OK-8801, α-( 1 , 1 -Dimethylethyl)-ß-(2-phenoxyethyl)- 1 H- 1 ,2,4-triazol- 1 -ethanol, α-(2,4-Dichlorphenyl)-ß-fluor-ß-propyl- 1 H- 1 ,2,4-τriazol- 1 -ethanol, α-(2,4-Dichlorphenyl)-ß-methoxy-α-methyl- 1H- 1 ,2,4-triazol- 1 -ethanol, α-(5-Methyl-l,3-dioxan-5-yl)-ß-[[4-(trifluormethyl)-phenyl]-methylen]-lH-l,2,4- triazol-1 -ethanol,
(5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(lH-l,2,4-triazol-l-yl)-3-octanon, (E)-α-(Methoxyimino)-N-methyl-2-phenoxy-ρhenylacetamid, l-(2,4-DicMorphenyl)-2-(lH-l,2,4-triazol-l-yl)-e1hanon-O-(phenylmethyl)-oxim, l-(2-Methyl-l-naρhthalenyl)-lH-ρyrrol-2,5-dion, l-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-ρyrrolidindion, 1 -[(Diiodmethyl)-sulfonyl] -4-methyl-benzol, l-[[2-(2,4-Dichlorphenyl)-l,3-dioxolan-2-yl]-methyl]-lH-imidazol, l-[[2-(4-Chlorphenyl)-3-phenyloxiranyl]-methyl]-lH-l,2,4-triazol,
1 -[ 1 -[2- [(2 ,4-Dichlorphenyl)-methoxy] -phenyl] -ethenyl] - 1 H-imidazol, 1 -Methyl-5 -nonyl-2-(phenylmethyl)-3 -pyrrolidinol,
2^6'-Dibrom-2-methyl-4'-trifluormethoxy-4'-1rifluor-methyl-l,3-thiazol-5- carboxanilid,
2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
2,6-DicMor-N-(4-trifluormethylbenzyl)-benzamid, 2,6-Dicmor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,
2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
2-[( 1 -Methylethyl)-sulfonyl] -5 -(trichlormethyl)- 1 ,3 ,4-thiadiazol,
2-[[6-Deoxy-4-O-(4-O-methyl-ß-D-glycopyranosyl)-α-D-glucopyranosyl]-amino]-4- me1noxy-lH-pyrrolo[2,3-d]pyrirmdm-5-carbonitril, 2-Aminobutan,
2-Brom-2-(brommethyl)-pentandinitril,
2-Chlor-N-(2,3-dihydro- 1 , 1 ,3-trimethyl- lH-inden-4-yl)-3-pyridincarboxamid,
2-CMor-N-(2,6-dime1hylphenyl)-N-(isothiocyanatomethyl)-acetamid,
2-Phenylphenol(OPP), 3,4-Dichlor-l-[4-(difluormethoxy)-phenyl]-lH-pyrrol-2,5-dion,
3 ,5 -Dichlor-N-[cyan[(l -rnethyl-2-propynyl)-oxy] -methyl] -benzamid,
3-(l , 1 -Dimethylpropyl- 1 -oxo-lH-inden-2-carbonitril,
3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
4-CMor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)- lH-imidazol- 1 -sulfonamid, 4-Methyl-tetrazolo[l,5-a]quinazolin-5(4H)-on,
8-Hydroxychinolinsulfat,
9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid, bis:(l-Methylethyl)-3-me1nyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat, cis-l-(4-Chlorpheήyl)-2-(lH-l,2,4-triazol-l-yl)-cycloheptanol, cis-4-[3-[4-(l,l-Dimethylpropyl)-phenyl-2-methylρropyl]-2,6-dimethyl-mo holin- hydrochlorid, „^,
PCT/EP03/00051
- 28 -
Ethyl-[(4-chlorphenyl)-azo]-cyanoacetat,
Kaliiimhydrogencarbonat,
Methantetrathiol-Natriumsalz,
Methyl-l-(2,3-dihydro-2,2-dimethyl-lH-inden-l-yl)-lH-imidazol-5-carboxylat, Methyl-N-(256-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat,
Methyl-N-(chlorace1 l)-N-(2,6-dimethylphenyl)-DL-alaninat,
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetiahydro-2-oxo-3-furanyl)-acetamid,
N-(2,6-Dinιethylphenyl)-2-methoxy-N-(tetiahydro-2-oxo-3-t enyl)-acetarnid,
N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid, N-(4-Cyclohexylphenyl)- 1 ,4,5 ,6-tetrahydro-2-pyrimidinamin,
N-(4-Hexylphenyl)-l,4,5,6-tetiahydro-2-pyrimidinamin,
N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidmyl)-acetamid,
N-(6-Methoxy)-3-pyridmyl)-cycloproρancarboxamid,
N-[2,2,2-Trichlor-l-[(chloracetyl)-aπιino]-ethyl]-benzamid, N-[3-Chlor-4,5-bis-(2-propmyloxy)-phenyl]-N'-methoxy-methanimidamid,
N-Formyl-N-hydroxy-DL-alanin -Natriumsalz,
O,O-Diethyl-[2-(dipropylammo)-2-oxoethyl]-ethylphosphoranήdothioat,
O-Methyl-S-phenyl-phenylpropylphosphoramidothioate,
S-Methyl-l,2,3-benzothiadiazol-7-carbothioat, spiro[2H]-l-Berιzopyran-2,i 3Η)-isobenzofuran]-3'-on,
4-[3,4-Dimethoxyphenyl)-3-(4-fluorphenyl)-acryloyl]-morpholirι
Bakterizide:
Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Teclofta- lam, Kupfersulfat und andere Kupfer-Zubereitungen.
Insektizide / Akarizide / Nematizide:
Abamectin, Acephate, Acetamiprid, Acrmatiirin, Alanycarb, Aldicarb, Aldoxycarb, Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin,
Azamethiphos, Azinphos A, Azinphos M, Azocyclotin, Bacillus popilliae, BaciUus sphaericus, BaciUus subtilis, BaciUus thuringiensis, Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb, Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin, Biopermethrin, Bistrifluron, BPMC, Bromophos A, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butylpyridaben,
Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorpyrifos, Chlorpyrifos M, Chlovaporthrin, Chromafenozide, Cis- Resmethrin, Cispermethrin, Clocythrin, Cloethocarb, Clofentezine, Clothianidine, Cyanophos, Cycloprene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin,
Cypermetnrin, Cyromazine,
Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlorvos, Dicofol, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan,
Disulfoton, Docusat-sodium, Dofenapyn, ' Eflusilanate, Emamectin, Empentiirin, Endosulfan, Entomopfthora spp., Esfen- valerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfös, Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazuron, Flubrocythrinate, Flucycloxuron, Flucythrinate, Flufenoxuron, Flumethrin, Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fub- fenprox, Furathiocarb, Granuloseviren
Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene, Imidacloprid, Indoxacarb, Isazofos, Isofenphos, Isoxathion, Ivermectin, Kernpolyederviren, Lambda-cyhalothrin, Lufenuron
Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methidathion, Methiocarb, Methoprene, Methomyl, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, Monöcrotophos, Naled, Nitenpyram, Nithiazine, Novaluron
Omethoat, Oxamyl, Oxydemethon M Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthoat,
Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A,
Pirimiphos M, Profenofos, Promecarb, Propargite, Propoxur, Prothiofos, Prothoat,
Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridäben, Pyridathion, Pyrimidifen, Pyriproxyfen,
Quinalphos,
Ribavirin
Salithion, Sebufos, Silafluofen, Spinosad, Spirodiclofen, Sulfotep, Sulprofos,
Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Tetradifon Theta- cypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Tbiofanox, Thuringiensin, Tralocythrin, Tralomethrin,
Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon,
Triflumuron, Trimethacarb, Vamidothion, Vaniliprole, Verticillium lecanii
YI 5302
Zeta-cypermethrin, Zolaprofos
(lR-cis)-[5-(Phenylmethyl)-3-furany methyl]-2,2-dimethylcyclopropancarboxylat (3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat l-[(2-Chlor-5-tMazolyl)methyl]te1xahydro-3,5-dimethyl-N-mtro-l,3,5-triazin-2(lH)- imin
2-(2-Chlor-6-fluorphenyl)-4-[4-(l5l-dimethylethyl)phenyl]-4,5-dihydro-oxazol
2-(Acetlyoxy)-3 -dodecyl- 1 ,4-naphthalindion 2-CMor-N-[[[4-(l-phenylethoxy)-phenyl]-arnino]-carbonyl]-benzamid
2-CUor-N-[[[4-(2,2-dicMor-l,l-difluorethoxy)-phenyl]-armno]-carbonyl]-benzarnid
3 -Methylphenyl-propylcarbamat
4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-l-fluor-2-phenoxy-benzol
4-Cωor-2-(l,l-dimethylethyl)-5-[[2-(2,6-d^ 3(2H)-pyridazinon 4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyridinyl)methoxy]-3(2H)- pyridazinon
4-Chlor-5-[(6-chlor-3-pyridinyl)methoxy]-2-(3,4-dichlorphenyl)-3(2H)-ρyridazinon
BaciUus thuringiensis strain EG-2348 Benzoesäure [2-benzoyl-l-(l,l-dimethylethyl)-hydrazid
Butansäure 2,2-dimethyl-3-(2,4-dichlorphenyl)-2-oxo-l-oxaspiro[4.5]dec-3-en-4-yl- ester
[3 -[(6-Chlor-3 -pyridinyl)methyl] -2-thiazolidmyliden] -cyanamid
Dihydro-2-(nitromethylen)-2H-l,3-thiazine-3(4H)-carboxaldehyd Ethyl-[2-[[l,6-dihydro-6-oxo-l-(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat
N-(3,4,4-Trifluor-l-oxo-3-butenyl)-glycin
N-(4-Chlθ henyl)-3-[4-(difluormethoxy)phenyl]-4,5-dihydro-4-phenyl-lH-pyrazol-
1-carboxamid
N-[(2-CMor-5-1rüazolyl)methyl]-N'-methyl-N''-ni1xo-guanidin N-Methyl-N'-( 1 -methyl-2-propenyl)- 1 ,2-hydrazindicarbothioamid
N-Methyl-N'-2-propenyl- 1 ,2-hyά azmdicarbothioamid
O,O-Diethyl-[2-(dipropylam o)-2-oxoethyl]-ethylphosphorarnidothioat
N-Cyanomethyl-4-trifluorme1nyl-nicotinarnid
3,5-DicMor-l-(3,3-dicUor-2-propenyloxy)-4-[3-(5-1xifluormethylpyridin-2-yloxy)- propoxy]-benzol
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.
Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimyko- tisches Wήkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze ( z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Asper- gillus niger und Aspergillus fumigatus, Tnchophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audoüinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren myko- tischen Spektrums dar, sondern hat nur erläuternden Charakter.
Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus be- reiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low- Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.
Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und
10.000 g/ha, vorzugsweise zwischen 1 und 5.000 gΛia.
Die erfindungsgemäßen Wirkstoffe können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.
Der Wirkstoffgehält der aus den handelsüblichen Formulierungen bereiteten An- Wendungsformen kann in weiten Bereichen variieren. Die Wirkstoff konzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.
Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.
Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirkstoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekalkten Unterlagen aus.
Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene
Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetic Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurde oben erläutert.
Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftre- ten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des
W kimgsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.
Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gen- technologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleuni- gung der Reife, höhere Ernteerträge, höhere Quaütät und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus BaciUus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryEA, CryEIA, CryEIB25 Cry9c Cry2Ab, Cry3Bb und CryTF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "P P-
Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YTELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard®
(Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), TMI® (Toleranz gegen Imidazolinone) und STS®
(Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").
Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmi- schungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.
Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und
Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören:
Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp.,
Pediculus spp., Phtirus spp., Solenopotes spp..
Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie
Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp.,
Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp.. Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie
Brachycerina z.B. Aedes spp., Anopheles spp., Culex spp., Simulium spp.,
Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp.,
Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp.,
Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp.,
Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp..
Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp.,
Xenopsylla spp., Ceratophyllus spp.. Aus der Ordnung der Heteropterida z.B. Cimex spp., Triatoma spp., Rhodnius spp.,
Panstrongylus spp..
Aus der Ordnung der Blattarida z.B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp..
Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta- sowie Mesostigmata z.B. Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp.,
Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp.,
Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp.,
Pneumonyssus spp., Sternostoma spp., Varroa spp..
Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B. Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyfophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp..
Die erfindungsgemäßen Wirkstoffe der Formel (I) eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfälle und
Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so dass durch den Einsatz der erfindungsgemäßen Wirkstoffe eine wirtschaftlichere und einfachere Tierhaltung möglich ist.
Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten, Kapseln, Tränken, Drenchen, Granulaten, Pasten, Boli, des feed-through- Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös, intraperitonal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder
Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on und Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markierungsvorrichtungen usw.
Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffe der Formel (T) als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden. „^,
PCT/EP03/00051
- 38 -
Außerdem wurde gefunden, dass die erfindungsgemäßen Verbindungen eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.
Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt:
Käfer wie
Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.
Hautflügler wie
Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.
Termiten wie
Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.
Borstenschwänze wie Lepisma saccharina.
Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende
Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Holzverarbeitungsprodukte und Anstrichmittel.
Ganz besonders bevorzugt handelt es sich bei dem vor Insekteribefall zu schützenden Material um Holz und Holzverarbeitungsprodukte. Unter Holz und Holzverarbeitungsprodulcten, welche durch das erfindungsgemäße Mittel bzw. dieses enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen:
Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge,
Kisten, Paletten, Container, Telefonmasten, Holzverkleidungen, Holzfenster und -türen, Sperrholz, Spanplatten, Tischlerarbeiten oder Holzprodukte, die ganz allgemein beim Hausbau oder in der Bautischlerei Verwendung finden.
Die Wirkstoffe können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.
Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungs- bzw.
Verdünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeit mgshilfsmitteln.
Die zum Schutz von Holz und Holzwerkstoffen verwendeten Insektiziden Mittel oder
Konzentrate enthalten den erfindungsgemäßen' Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.
Die Menge der eingesetzten Mittel bzw. Konzentrate ist von der Art und dem Vor- kommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allgemeinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.
Als Lösungs- und/oder Verdünnungsmittel dient ein organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein öliges oder ölartiges schwer flüchtiges organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser und gegebenenfalls einen Emulgator und/oder Netzmittel.
Als organisch-chemische Lösungsmittel werden vorzugsweise ölige oder ölartige
Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, eingesetzt. Als derartige schwerflüchtige, wasserunlösliche, ölige und ölartige Lösungsmittel werden entsprechende Mineralöle oder deren Aromatenfraktionen oder mineralölhaltige Lösungsmittelgemische, vor- zugsweise Testbenzin, Petroleum und/oder Alkylbenzol verwendet.
Vorteilhaft gelangen Mineralöle mit einem Siedebereich von 170 bis 220°C, Testbenzin mit einem Siedebereich von 170 bis 220°C, Spindelöl mit einem Siedebereich von 250 bis 350°C, Petroleum bzw. Aromaten vom Siedebereich von 160 bis 280°C, Terpentinöl und dgl. zum Einsatz.
In einer bevorzugten Ausfuhrungsform werden flüssige aliphatische Kohlenwasserstoffe mit einem Siedebereich von 180 bis 210°C oder hochsiedende Gemische von aromatischen und aliphatischen Kohlenwasserstoffen mit einem Siedebereich von180 bis 220°C und/oder Spindeöl und/oder Monochlornaphthalin, vorzugsweise - Monochlornaphthalin, verwendet.
Die organischen schwerflüchtigen öligen oder ölartigen Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45 °C, können teilweise durch leicht oder mittelflüchtige organisch- chemische Lösungsmittel ersetzt werden, mit der Maßgäbe, daß das Lösungsmittelgemisch ebenfalls eine Verdunstungszahl über 35 und einen Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, aufweist und daß das Insektizid-Fungizid-- Gemisch in diesem Lösungsmittelgemisch löslich oder emulgierbar ist. Nach einer bevorzugten Ausführungsform wird ein Teil des organisch-chemischen Lösungsmittel oder Lösungsmittelgemisches oder ein aliphatisches polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch ersetzt. Vorzugsweise gelangen Hydroxyl- und/oder Ester- und/oder Ethergruppen enthaltende aliphatische organisch-chemische Lösungsmittel wie beispielsweise Glycolether, Ester oder dgl. zur Anwendung.
Als organisch-chemische Bindemittel werden im Rahmen der vorliegenden Erfindung die an sich bekannten wasserverdünnbaren und/oder in den eingesetzten organisch-chemischen Lösungsmitteln löslichen oder dispergier- bzw. emulgierbaren
Kunstharze und/oder bindende trocknende Öle, insbesondere Bindemittel bestehend aus oder enthaltend ein Acrylatharz, ein Vinylharz, z.B. Polyvinylacetat, Polyesterharz, Polykondensations- oder Polyadditionsharz, Polyurethanharz, Alkydharz bzw. modifiziertes Alkydharz, Phenolharz, Kohlenwasserstoffharz wie Inden-Cumaron- harz, Siliconharz, trocknende pflanzliche und/oder trocknende Öle und/oder physikalisch trocknende Bindemittel auf der Basis eines Natur- und/oder Kunstharzes verwendet.
Das als Bindemittel verwendete Kunstharz kann in Form einer Emulsion, Dispersion oder Lösung, eingesetzt werden. Als Bindemittel können auch Bitumen oder bituminöse Substanzen bis zu 10 Gew.-%, verwendet werden. Zusätzlich können an sich bekannte Farbstoffe, Pigmente, wasserabweisende Mittel, Geruchskorrigentien und Inhibitoren bzw. Korrosionsschutzmittel und dgl. eingesetzt werden.
Bevorzugt ist gemäß der Erfindung als organisch-chemische Bindemittel mindestens ein Alkydharz bzw. modifiziertes Alkydharz und/oder ein trocknendes pflanzliches Öl im Mittel oder im Konzentrat enthalten. Bevorzugt werden gemäß der Erfindung Alkydharze mit einem Ölgehalt von mehr als 45 Gew.-%, vorzugsweise 50 bis 68 Gew.-%, verwendet. Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungs- mittel(gemisch) oder ein Weichmacher(gemisch) ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe sowie einer Kristallisation bzw. Ausfällem vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30 % des Bindemittels (bezogen auf 100 % des eingesetzten Bindemittels).
Die Weichmacher stammen aus den chemischen Klassen der Phthalsäureester wie Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributyl- phosphat, Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate wie Butylstearat oder Amylstearat, Oleate wie Butyloleat, Glycerinether oder höhermolekulare Gly- kolether, Glycerinester sowie p-Toluolsulfonsäureester.
Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z.B. Polyvinyl- methylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.
Als Lösungs- bzw. Verdünnungsmittel kommt insbesondere auch Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der oben genannten organischchemischen Lösungs- bzw. Verdünnungsmittel, Emulgatoren und Dispergatoren.
Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierverfahren, z.B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt.
Die anwendungsfertigen Mittel können gegebenenfalls noch weitere Insektizide und gegebenenfalls noch ein oder mehrere Fungizide enthalten.
Als zusätzliche Zumischpartner kommen vorzugsweise die in der WO 94/29 268 genannten Insektizide und Fungizide in Frage. Die in diesem Dokument genannten Verbindungen sind ausdrücklicher Bestandteil der vorliegenden Anmeldung.
Als ganz besonders bevorzugte Zumischpartner können Insektizide, wie Chlorpyri- phos, Phoxim, Silafluofin, Alphamethrin, Cyfluthrin, Cypermetiirin, Deltämethrin, Permethrin, Imidacloprid, NI-25, Flufenoxuron, Hexaflumuron, Transfluthrin, Thia- cloprid, Methoxyphenoxid und Triflumuron,
sowie Fungizide wie Epoxyconazole, Hexaconazole, Azaconazole, Propiconazole, Tebuconazole, Cyproconazole, Metconazole, Imazalil, Dichlorfluanid, Tolylfluanid,
3-Iod-2-propinyl-butylcarbamat, N-Octyl-isothiazolin-3-on und 4,5-Dichlor-N- octylisothiazolin-3-on, sein.
Zugleich können die erfindungsgemäßen Verbindungen zum Schutz vor Bewuchs von Gegenständen, insbesondere von Schiffskörpern, Sieben, Netzen, Bauwerken,
Kaianlagen und Signalanlagen, welche mit See- oder Brackwasser in Verbindung kommen, eingesetzt werden.
Bewuchs durch sessile Ohgochaeten, wie Kallαöhrenwürmer sowie durch Muscheln und Arten der Gruppe Ledamorpha (Entenmuscheln), wie verschiedene Lepas- und
Scalpellum-Arten, oder durch Arten der Gruppe Balanomorpha (Seepocken), wie Baianus- oder Pollicipes-Species, erhöht den Reibungswiderstand von Schiffen und führt in der Folge durch erhöhten Energieverbrauch und darüber hinaus durch häufige Trockendockaufenthalte zu einer deutlichen Steigerung der Betriebskosten.
Neben dem Bewuchs durch Algen, beispielsweise Ectocarpus sp. und Ceramium sp., kommt insbesondere dem Bewuchs durch sessile Entomostraken-Gruppen, welche unter dem Namen Cirripedia (Rankenflußkrebse) zusammengefaßt werden, besondere Bedeutung zu.
Es wurde nun überraschenderweise gefunden, daß die erfindungsgemäßen Verbindungen allein oder in Kombination mit anderen Wirkstoffen, eine hervorragende Antifouling (Antibewuchs)- irkung aufweisen.
Durch Einsatz von erfindungsgemäßen Verbindungen allein oder in Kombination mit anderen Wirkstoffen, kann auf den Einsatz von Schwermetallen wie z.B. in Bis- „^,
PCT/EP03/00051
- 44 -
(trialkylzinn)-sulfiden, Tri-n-butylzinnlaurat, Tri-n-butylzinnchlorid, Kupfer(I)-oxid, Triethylzinnchlorid, Tri-w-butyl(2-phenyl-4-chlorphenoxy)-zinn, Tributylzinnoxid, Molybdändisulfid, Antimonoxid, pofymerem Butyltitanat, Phenyl-(bispyridin)-wis- mutchlorid, Tri-«-butylzinnfluorid, Manganethylenbisthiocarbamat, Zinkdimethyl- dithiocarbamat, Zinkethylenbisthiocarbamat, Zink- und Kupfersalze von 2-Pyridin- thiol- 1 -oxid, Bisdimethylditmocarbamoylzinkethylenbisthiocarbamat, Zinkoxid, Kupfer(ι)-ethylen-bisdithiocarbamat, Kupferthiocyanat, Kupfemaphthenat und Tri- butylzinnhalogeniden verzichtet werden oder die Konzentration dieser Verbindungen entscheidend reduziert werden.
Die anwendungsfertigen Antifoulingfarben können gegebenenfalls noch andere Wirkstoffe, vorzugsweise Algizide, Fungizide, Herbizide, Molluskizide bzw. andere Antifouling- Wirkstoffe enthalten.
Als Kombinationspartner für die erfindungsgemäßen Antifoulmg-Mittel eignen sich vorzugsweise:
Algizide wie
2-tert.-Butylarrώ o-4-cyclopropylarn o-6-m Dichlorophen, Diuron, Endothal, Fentinacetat, Isoproturon, Methabenzthiazuron, Oxyfluorfen,
Quinoclamine und Terbutryn;
Fungizide wie
Benzo[&]thiophencarbonsäurecyclohexylamid-S,S-dioxid, Dichlofluanid, Fluorfol- pet, 3-Iod-2-propinyl-butylcarbamat, Tolylfluanid und Azole wie
Azaconazole, Cyproconazole, Epoxyconazole, Hexaconazole, Metconazole, Propi- conazole und Tebuconazole;
Molluskizide wie Fentinacetat, Metaldehyd, Methiocarb, Niclosamid, Thiodicarb und Trimethacarb; oder herkömmliche Antifouling- Wirkstoffe wie
4,5-Dichlor-2-octyl-4-isothiazolin-3-on, Diiodmethylparatrylsulfon, 2-(N,N-Di- methyl1niocarbamoylthio)-5-nitrothiazyl, Kalium-, Kupfer-, Natrium- und Zinksalze von 2-Pyridinthiol-l-oxid, Pyridin-triphenylboran, Teträbutyldistannoxan, 2,3,5,6- Tetrachlor-4-(methylsulfonyl)-pyridin, 2,4,5, 6-Tetrachloroisophthalonitril, Tetrame- thylthiuramdisulfid und 2,4,6-Trichlorphenylmaleinimid.
Die verwendeten Antifouling-Mittel enthalten die erfindungsgemäßen Wirkstoff der erfindungsgemäßen Verbindungen in einer Konzentration von 0,001 bis 50 Gew.-%, insbesondere von 0,01 bis 20 Gew.-%.
Die erfindungsgemäßen Antifouling-Mittel enthalten desweiteren die üblichen Bestandteile wie z.B. in Ungerer, Chem. Ind. 1985, 37, 730-732 und Williams, Antifouling Marine Coatings, Noyes, Park Ridge, 1973 beschrieben.
Antifouling- Anstrichmittel enthalten neben den algiziden, fungiziden, molluskiziden und erfindungsgemäßen insektiziden Wirkstoffen insbesondere Bindemittel.
Beispiele für anerkannte Bindemittel sind Polyvinylchlorid in einem Lösungsmittel- system, chlorierter Kautschuk in einem Lösungsmittelsystem, Acrylharze in einem
Lösungsmittelsystem insbesondere in einem wäßrigen System, Vinylchlorid/Vinyl- acetat-Copolymersysteme.in Form wäßriger Dispersionen oder in Form von organischen Lösungsmittelsystemen, Butad en/Styro Acrylnitril-Kautschuke, trocknende Öle, wie Leinsamenöl, Harzester oder modifizierte Hartharze in Kombination mit Teer oder Bittunina, Asphalt sowie Epoxyverbindungen, geringe Mengen Chlorkautschuk, chloriertes Polypropylen und Vinylharze.
Gegebenenfalls enthalten Anstrichmittel auch anorganische Pigmente, organische
Pigmente oder Farbstoffe, welche vorzugsweise in Seewasser unlöslich sind. Femer können Anstrichmittel Materialien, wie Kolophonium enthalten, um eine gesteuerte
Freisetzung der Wirkstoffe zu ermöglichen. Die Anstriche können femer Weichmacher, die Theologischen Eigenschaften beeinflussende Modifizierungsmittel sowie andere herkömmliche Bestandteile enthalten. Auch in Self-Polishing- Antifouling-Systemen können die erfindungsgemäßen Verbindungen oder die oben genannten Mischungen eingearbeitet werden. -
Die Wirkstoffe eignen sich auch zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkäbinen u.a. vorkommen. Sie können zur Bekämpfung dieser Schädlinge allein oder in Kombination mit anderen Wirk- und Hilfsstoffen in Haushaltsinsektizid-Produkten verwendet werden.
Sie sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam. Zu diesen Schädlingen gehören:
Aus der Ordnung der Scorpionidea z.B. Buthus occitanus. Aus der Ordnung der Acarina z.B. Argas persicus, Argas reflexus, Bryobia ssp.,
Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat,
Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis,
Dermatophagoides pteronissimus, Dermatophagoides forinae.
Aus der Ordnung der Araneae z.B. Aviculariidae, Araneidae. Aus der Ordnung der Opiliones z.B. Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium.
Aus der Ordnung der Isopoda z.B. Oniscus asellus, Porcellio scäber.
Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus, Polydesmus spp..
Aus der Ordnung der Chilopoda z.B. Geophüus spp.. Aus der Ordnung der Zygentoma z.B. Ctenolepisma spp., Lepisma saccharina,
Lepismodes inquilinus.
Aus der Ordnung der Blattaria z.B. Blatta orientalies, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa, Supella longipalpa.
Aus der Ordnung der Saltatoria z.B. Acheta domesticus. Aus der Ordnung der Dermaptera z.B. Forficula auricularia.
Aus der Ordnung der Isoptera z.B. Kalotermes spp., Reticulitermes spp.
Aus der Ordnung der Psocoptera z.B. Lepinatus spp., Liposcelis spp.
Aus der Ordnung der Coleptera z.B. Anthrenus spp., Attagenus spp., Dermestes spp., Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum.
Aus der Ordnung der Diptera z.B. Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, Anopheles spp., Calliphora erythrocephala, Chrysozona pluvialis,
Culex quinquefasciatus, Culex pipiens, Culex tarsalis, Drosophila spp., Fannia canicularis, Musca domestica, Phlebotomus spp., Sarcophaga camaria, Simulium spp., Stomoxys calcitrans, Tipula paludosa.
Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Galleria mellonella, Plodia interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
Aus der Ordnung der Siphonaptera z.B. Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis.
Aus der Ordnung der Hymenoptera z.B. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.
Aus der Ordnung der Anoplura z.B. Pediculus humanus capitis, Pediculus humanus corporis, Phthirus pübis.
Aus der Ordnung der Heteroptera z.B. Cimex hemiptems, Ci ex lectularius,
Rhodinus prolixus, Triatoma infestans.
Die Anwendung im Bereich der Haushaltsinsektizide erfolgt allein oder in Kombina- tion mit anderen geeigneten Wirkstoffen wie Phosphorsäureestern, Carbamaten,
Pyrethroiden, Wachstumsregulatoren oder Wirkstoffen aus anderen bekannten Insektizidklassen.
Die Anwendung erfolgt in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zerstäubersprays, Nebelautomaten, Foggern, Schäumen, Gelen, Verdampferprodukten mit Verdampferplättchen aus Cellulose oder Kunststoff, Flüssigverdampfern, Gel- und Membranverdampfem, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Mottensäckchen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.
Die Herstellung und die Verwendung der erfindungsgemäßen Stoffe geht aus den folgenden Beispielen hervor.
Herstelhmgsbeispiele
Beispiel 1
Figure imgf000051_0001
(Verfahren a / Variante 1)
Zu einer Lösung von 3,2 g (0,0123 Mol) 4-(2-tert.-Butyl-tetrazol-5-yl)-phenyl-essig- säure in 80 ml Methylenchlorid gibt man 1,6 g (0,0137 Mol) Thionylchlorid. Dann kocht man das Gemisch bis zum Ende der Gasentwicklung unter Rückfluss, destilliert das Lösungsmittel im Vakuum ab und löst den Rückstand in 50 ml Methylenchlorid. Unter Kühlung gibt man diese Lösung bei 0°C zu einer Lösung von 1,9 g (0,0123 Mol) 2-Elnyl-3-cωor-4-ammopyridin und 1,4 g (0,014 Mol) Triethylamüi in 50 ml Methylenchlorid. Das Reaktionsgemisch wird für 16 Stunden bei Raum- temperatur gerührt, dann im Vakuum eingedampft und der Rückstand mit Essig- säureethylester und Wasser geschüttelt. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingedampft. Den Rückstand reinigt man durch Silikagelchromatographie (Methylenchlorid/Methanol 7:1).
Man erhält so 0,9 (18 % d. Th.) an 4-(2-tert.-Butyl-tetrazol-5-yl)-phenylessigsäure-N-
(2-ethyl-3-chlor-pyrid-4-yl)-amid in Form eines farblosen Feststoffes mit dem logP (pH2) = 2,34.
Figure imgf000052_0001
Figure imgf000052_0002
Eine Mischung aus 6,9 g (0,034 Mol) 4-(Tetrazol-5-yl)-phenylessigsäure, 75 ml Tri- fluoressigsäure, 14,8 g (0,2 Mol) tert-Butanol und 1,85 ml konz. Schwefelsäure wird für 16 Stunden bei Raumtemperatur gerührt. Dann dampft man das Reaktionsgemisch im Vakuum ein und schüttelt den Rückstand mit Essigsäureethylester und Wasser. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingedampft. Den Rückstand reinigt man durch Silikagelchromatographie (Methylenchlorid/ Diethylether 1:1).
Man erhält so 5,74 g (65 % d. Th.) an4-(2-tert.-Butyl-tetrazol-5-yl)-phenylessigsäure in Form farbloser Kristalle mit dem logP (ρH2) = 2,18.
Herstellung des VorrjrojMξtes
Figure imgf000052_0003
Eine Mischung aus 12,8 g (0,08 Mol) 4-Cyanophenylessigsäure, 11g (0,17 Mol)
Natriumazid, 23,4 g (0,17 Mol) Triethylamin-Hydrochlorid und 150 ml Toluol wird für 16 Stunden unter Rückfluss gekocht. Dann kühlt man auf Raumtemperatur ab, dekantiert die organische Phase und gibt zum öligen Rückstand 100 ml 5%ige Natronlauge. Dann filtriert man die Lösung über Celite und säuert das Filtrat mit verdünnter Salzsäure an. Das ausgefallene Produkt wird abgesaugt und mit Wasser nachgewaschen. n ,„
PCT/EP03/00051
- 51 -
Man erhält so 10 g (62 % d. Th.) an 4-(Tetrazol-5-yl)-phenylessigsäure als beiges Pulver mit dem logP (pH2) = 0,61.
Beispiel 2
Figure imgf000053_0001
(Verfahren a / Variante 2) Zu einer Lösung von 1,5 g (6,6 mMol) 4-(4-Cyano-pyrazol-l-yl)-phenylessigsäure in
50 ml Dioxan gibt man bei 5-10°C 1,3 g (0,06 Mol) N\N'-Carbonyl-diimidazol und rührt die Mischung 1 Stunde bei 10°C nach. Dann werden 7,4 g (0,045 Mol) 2-Ethyl- 3-cMor-4-aminopyridin portionsweise zugegeben und die Mischung 18 Stunden unter Rückfluss gekocht. Danach dampft man das Lösungsmittel im Vakuum ab und schüttelt den Rückstand mit Essigsäureethylester und Wasser. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingedampft. Den Rückstand reinigt man durch Silikagelchromatographie.
Man erhält so 0,1 g (4 % d. Th.) an 4-(4-Cyano-pyrazol-l-yl)-phenylessigsäure-N-(2- ethyl-3-chlor-pyrid-4-yl)-amid in Form beiger Kristalle mit dem logP (pH2) = 1,60.
Figure imgf000053_0002
Figure imgf000053_0003
Eine Mischung aus 40 g (0,066Mol) 4-Hydrazinophenylessigsäure-Hydrochlorid in 400 ml Ethanol wird mit 12 g (0,073 Mol) 2-Hydroxymethylen-3,3-dimethoxy-pro- pionitril-Natriumsalz (Herstellung s. EP 279 556) versetzt und für 16 Stunden bei Raumtemperatur gerührt. Dann wird die Mischung 2 Stunden unter Rückfluss gekocht und dann im Vakuum eingedampft. Den Rückstand verreibt man mit Wasser und saugt dann das ausgefallene Produkt ab.
Man erhält so 13,1 g (87 % d. Th.) an 4-(4-Cyano-pyrazol-l-yl)-phenylessigsäure in Form eines beigen Pulvers mit dem logP (pH2) = 1,46.
Beispiel 3
Figure imgf000054_0001
(Verfahren b)
Zu einer Lösung von 1 g (2,5 mMol) 4-(4,4,5,5,Tetramethyl-l,3,2-dioxaborolan-2- yl)phenylessigsäure-N-(2-ethyl-3-chlor-pyrid-4-yl)-amid und 0,7 g (3 mMol) 2-Meth- oxy-5-brompyridin in 60 ml 1,2-Dimethoxyethan gibt man unter Argonatmosphäre 0,1 g 1,1 '-[Bis-(diphenylphospl ιo)-ferrocen]-dichlorpalladium-DicMormethankom- plex und 5 ml 2M Natriumcarbonatlösung. Die Mischung wird für 16 Stunden bei 80°C gerührt. Dann wird das Reaktionsgemisch über Celite filtriert und das Filtrat im Vakuum eingedampft. Den Rückstand reinigt man durch Silikagelchromato- graphie (Methylenchlorid/Essigester 1:1). „^,
PCT/EP03/00051
- 53 -
Man erhält so 0,7 g (73 % d. Th.) an 4-(2-Methoxy-pyrid-5-yl)-phenylessigsäure-N- (2-ethyl-3-chlor-pyrid-4-yl)-amid mit dem logP (pH2) = 2,05.
Figure imgf000055_0001
Figure imgf000055_0002
Zu einer Lösung von 7 g (0,02 Mol) 4-Bromphenylessigsäure-N-(2-ethyl-3-chlor- pyrid-4-yl)-amid in 150 ml Dioxan gibt man bei Raumtemperatur 5,9 g (0,06 Mol) Kaliumacetat, 5,5 g (0,022 Mol) Bis-(pinacolato)-diboran, 0,4 g l,l'-[Bis-(diphenyl- phosphmo)-feιrocen]-dichlorpalladiiLm-DicUormethankomplex und 0,3 g 1,1 '-Bis- (diphenyl-phosphino)-ferrocen und rührt die Mischung 21 Stunden bei 80°C. Dann gießt man das Reaktionsgemisch auf Wasser und extrahiert mit Essigsäureethylester. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum einge- dampft. Den Rückstand verreibt man mit Disiopropylether und saugt das ausgefallene Produkt ab.
Man erhält so 4,8 g (60 % d. Th.) an 4-(4,4,5,5-Tetramethyl-l,3,2-dioxaborolan-2- yl)phenylessigsäure-N-(2-ethyl-3-chlor-pyrid-4-yl)-amid in Form farbloser Kristalle mit dem logP (pH2) = 2,69. Herstellung des Vgrrjr duktes
Figure imgf000056_0001
Zu einer Lösung von 10,8 g (0,05 Mol) 4-Bromphenylessigsäure in 100 ml Dioxan gibt man bei Raumtemperatur protionsweise 9,7 g (0,06 Mol) N',N'-Carbonyl-di- imidazol und rührt die Mischung 1 Stunde bei Raumtemperatur nach. Dann werden 7,4 g ((0,045 Mol) 2-Ethyl-3-chlor-4-aminopyridin portionsweise zugegeben und die Mischung 1 Stunde unter Rückfluss gekocht. Danach dampft man das Lösungsmittel im Vakuum ab und schüttelt den Rückstand mit Essigsäureethylester und Wasser. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingedampft. Den Rückstand kristallisiert man aus Acetonitril um.
Man erhält so 5,9 g (35 % d. Th.) an 4-Bromphenylessigsäure-N-(2-ethyl-3-chlor- pyrid-4-yl)-amid in Form beiger Kristalle mit dem logP (pH2) = 2,09.
Analog den Beispielen 1 bis 3 bzw. gemäß den allgemeinen Angaben zur Herstellung werden die in der folgenden Tabelle 1 angegebenen Verbindungen der Formel (Ia) erhalten: Tabelle 1
Figure imgf000057_0001
Figure imgf000057_0002
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Die Bestimmung der in den voranstehenden Tabellen und Herstellungsbeispielen angegebenen logP-Werte erfolgt gemäß EEC-Directive 79/831 Annex V.48 durch HPLC (High Performance Liquid Chromatography) an einer Phasenumkehrsäule (CI 8). Temperatur: 43°C.
Die Bestimmung erfolgt im saurem Bereich bei pH 2.3 mit 0,1 % wässriger Phosphorsäure und Acetonitril als Eluenten; linearer Gradient von 10 % Acetonitril bis 90 % Acetonitril.
Die Eichung erfolgt mit unverzweigten Alkan-4-onen (mit 3 bis 16 Kohlenstoffatomen), deren logP-Werte bekannt sind (Bestimmung der logP -Werte anhand der Retentionszeit durch lineare Interpolation zwischen zwei aufeinanderfolgenden Alkanonen).
Anwendungsbeispiele
Beispiel X
Aphis gossypii-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung' einer zweckmäßigen Wirkstoffzubereitung vermischt, man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Baumwollblätter (Gossypium hirsutum), die stark von der Baumwollblattlaus (Aphis gossypii) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
Bei diesem Test zeigt bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindung 1 der Herstellungsbeispiele eine Abtötung von 100 % und die Verbindung 20 der Herstellungsbeispiele eine Abtötung von 95 %, jeweils nach 6
Tagen. 03 00051
- 60 -
Beispiel B
Diabrotica-Test (Larven im Boden)
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Mit Erde gefüllte Töpfe werden mir der Wirkstoffzubereitung gegossen. Sofort nach dem Ansatz werden je Topf 5 Maiskörner ausgelegt und nach 3 Tagen die Diabrotica balteata-Larven auf den behandelten Boden gesetzt, Die angegebene Konzentration bezieht sich auf Wirkstoffmenge pro Volumeneinheit Boden (mg/1).
Nach der gewünschten Zeit werden die aufgelaufenen Maispflanzen gezählt und es wird der Wirkungsgrad errechnet. Dabei bedeutet 100%, dass alle Maispflanzen aufgelaufen sind; 0% bedeutet, dass keine Maispflanzen aufgelaufen sind.
Bei diesem Test zeigt bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindung 1 der Herstellungsbeispiele nach 10 Tagen eine Abtötung von 100 %. Beispiel C
Heliothis virescens-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 . Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Sojatriebe (Glycine max) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Heliothis virescens-Raupen besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Bei diesem Test zeigt bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindung 7 der Herstellungsbeispiele nach 7 Tagen eine Abtötung von 100 %.
T EP03/00051
62
Beispiel D
Meloidogyne-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Gefäße werden mit Sand, Wirkstofflösung, Meloidogyne incognita-Ei-Larven- Suspension und Salatsamen gefüllt. Die Salatsamen keimen und die Pflänzchen entwickeln sich. An den Wurzeln entwickeln sich die Gallen.
Nach der gewünschten Zeit wird die nematizide Wirkung an Hand der Gallenbildung in % bestimmt. Dabei bedeutet 100 %, dass keine Gallen gefunden wurden; 0 % bedeutet, dass die Zahl der Gallen an den behandelten Pflanzen der der unbehandelten Kontrolle entspricht.
Bei diesem Test zeigen bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindungen 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 21, 22, 24, 25, 26, 27, 29, 31, 35 und 37 der Herstellungsbeispiele nach 14 Tagen eine Abtötung von 100 %.
^ ,
PCT/EP03/00051
- 63 -
Beispiel E
Myzus-Test (systemische Wirkung)
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Mit je 10 ml Wirkstoffzubereitung der gewünschten Konzentration werden Wirsingkohl-Pflanzen (Brassica oleracea), die stark von der Grünen Pfirsichblattlaus (Myzus persicae) befallen sind, angegossen, so dass die Wirkstoffzubereitung in den
Boden eindringt, ohne den Spross zu benetzen. Der Wirkstoff wird von den Wurzeln aufgenommen und in den Spross weitergeleitet.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
Bei diesem Test zeigen bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindungen 1, 11, 27 und 36 der Herstellungsbeispiele eine Abtötung von 95 %, die Verbindungen 24 und 32 der Herstellungsbeispiele eine Abtötung von 98
% und die Verbindung 34 der Herstellungsbeispiele eine Abtötung von 99 %, jeweils nach 6 Tagen. Beispiel F
Phaedon-Larven-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven des Meerrettichblattkäfers (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden.
Bei diesem Test zeigen bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindungen 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36 und 37 der Herstellungsbeispiele nach 7 Tagen eine Abtötung von 100 %. Beispiel G
Plutella-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (Plutella xylostella) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Bei diesem Test zeigt bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindung 7 der Herstellungsbeispiele nach 7 Tagen eine Abtötung von 100 %.
Beispiel H
Spodoptera exigua-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen des Heerwurms (Spodo- ptera exigua) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Bei diesem Test zeigt bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindung 7 der Herstellungsbeispiele nach 7 Tagen eine Abtötung von 100 %.
Beispiel I
Spodoptera frugiperda-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen des Heerwurms (Spodo- ptera frugiperda) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Bei diesem Test zeigen bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindungen 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 34, 35, 36 und 37 der Herstellungsbeispiele nach 7 Tagen eine Abtötung von 100 %. Beispiel J
Tetranychus-Test (OP-resistent/Tauchbehandlung)
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Bohnenpflanzen (Phaseolus vulgaris), die stark von allen Stadien der Gemeinen Spinnmübe (Tetranychus urticae) befallen sind, werden in eine Wirkstoffzubereitung der gewünschten Konzentration getaucht.
Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Spinnmilben abgetötet wurden; 0 % bedeutet, dass keine Spinnmilben abgetötet wurden.
Bei diesem Test zeigt bei einer beispielhaften Wirkstoffkonzentration von 100 ppm z.B. die Verbindung 19 der Herstellungsbeispiele 95 % Abtötung und die Verbindung 34 der Herstellungsbeispiele 100 % Abtötung, jeweils nach 7 Tagen.
0051
- 69 -
Beispiel K
Heliothis virescens - Test (Behandlung transgener Pflanzen)
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte
Konzentration.
Sojatriebe (Glycine max) der Sorte Roundup Ready (Warenzeichen der Monsanto Comp. USA) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit der Tabakknospenraupe Heliothis virescens besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Beispiel L
Diabrotica balteata - Test (Larven im Boden)
Grenzkonzentrations-Test / Bodeninsekten - Behandlung transgener Pflanzen
Lösungsmittel: 7 Gewichtsteile Dimethylformamid Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge- wichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene
Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Die Wirkstoffzubereitung wird auf den Boden gegossen. Dabei spielt die Konzen- tration des Wirkstoffs in der Zubereitung praktisch keine Rolle, entscheidend ist allein die Wirkstoffgewichtsmenge pro Volumeneinheit Boden, welche in ppm (mg/1) angegeben wird. Man füllt den Boden in 0,25 1 Töpfe und lässt diese bei 20°C stehen.
Sofort nach dem Ansatz werden je Topf 5 vorgekeimte Maiskörner der Sorte YTELD
GUARD (Warenzeichen von Monsanto Comp., USA) gelegt. Nach 2 Tagen werden in den behandelten Boden die entsprechenden Testinsekten gesetzt. Nach weiteren 7 Tagen wird der Wirkungsgrad des Wirkstoffs durch Auszählen der aufgelaufenen Maispflanzen bestimmt (1 Pflanze = 20 % Wirkung). Beispiel M
Podosphaera-Test (Apfel) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton
24,5 Gewichtsteile Dimethylacetamid Emulgator: 1,0 Gewichtsteile Alkyl- Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge- wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritz- belages werden die Pflanzen mit einer wässrigen Sporensuspension des Apfelmehl- tauerregers Podosphaera leucotricha inokuliert. Die Pflanzen werden dann im Gewächshaus bei ca. 23 °C und einer relativen Luftfeuchtigkeit von ca. 70% aufgestellt.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, dass kein Befall beobachtet wird.
Bei diesem Test zeigen bei einer beispielhaften Aufwandmenge von lOOg/ha z.B. die Verbindungen 3, 9, 11, 13, 24, 26, 31, 32 und 34 der Herstellungsbeispiele einen Wirkungsgrad von mindestens 98%. Beispiel N
Venturia - Test (Apfel) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton
24,5 Gewichtsteile Dimethylacetamid Emulgator: 1,0 Gewichtsteile Alkyl- Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrock- nen des Spritzbelages werden die Pflanzen mit einer wässrigen Komdiensuspension des Apfelschorferregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100% relativer Luftfeuchtigkeit in einer Inkubationskabine.
Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90% aufgestellt.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100%o bedeutet, dass kein Befall beobachtet wird.
Bei diesem Test zeigen bei einer beispielhaften Aufwandmenge von lOOg/ha z.B. die Verbindungen 3, 9, 11, 13, 24, 26, 31, 32 und 34 der Herstellungsbeispiele einen Wirkungsgrad von mindestens 85%. Beispiel O
Sphaerotheca-Test (Gurke) / protektiv
Lösungsmittel: 49 Gewichtsteile N,N-Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Gurkenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der .Behandlung werden die Pflanzen mit einer Sporensuspension von Sphaerotheca fuliginea inokuliert. Anschließend werden die Pflanzen in einem Gewächshaus bei 70 % relativer Luftfeuchtigkeit und einer Temperatur von 23 °C aufgestellt.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, daß kein Befall beobachtet wird.
Bei diesem Test zeigen bei einer beispielhaften Aufwandmenge von 750g/ha z.B. die Verbindungen 6, 9, 13 und 21 der Herstellungsbeispiele einen Wirkungsgrad von 100 %. Beispiel P
Puccinia-Test (Weizen) / protektiv
Lösungsmittel: 25 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Konidiensuspension von Puccinia recondita besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskäbine.
Die Pflanzen werden dann in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von 80 % aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Bei diesem Test zeigen bei einer beispielhaften Aufwandmenge von 500g/ha z.B. die Verbindungen 1 und 3 der Herstellungsbeispiele einen Wirkungsgrad von 100 %.

Claims

Patentansprüche
Substituierte 4- Aminopyridin-Derivate der Formel (I)
Figure imgf000077_0001
in welcher
R1 für Alkyl steht,
R2 für Halogen steht,
Het für einen gegebenenfalls substituierten Heterocyclus steht,
n für 1 oder 2 steht,
Y für Halogen, Alkyl oder Halogenalkyl steht und p für 0, 1 oder 2 steht.
Substituierte 4- Aminopyridin-Derivate der Formel (I) gemäß Anspmch 1, in welcher
R1 für C C4-Alkyl steht,
R2 für Fluor, Chlor, Brom oder Iod steht,
Het für einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituierten 5- oder 6-gliedrigen Heterocyclus mit 1 bis 4 Heteroatomen, wie N, O oder S, wobei als Substituenten beispielhaft genannt seien:
Halbgen, Alkyl, Alkoxy, Alkylthio, Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Cyano, Nitro, Formyl, Hyfooxyimino, Alkoxy- imino, Alkylcarbonyl, Alkoxycarbonyl, Alkoxycarbonylalkyi; gegebe- nenfalls substituiertes Phenyl, gegebenenfalls substituiertes Morpho- lino oder gegebenenfalls substituiertes Tetrazolyl steht,
n für 1 oder 2 steht,
Y für Fluor, Chlor, Brom; d- -Alkyl oder d- -Halogenalkyl, p für 0, 1 oder 2 steht.
Substituierte 4- Aminopyridin-Derivate der Formel (I) gemäß Anspmch 1, in welcher
R1 für Cr -Alkyl steht,
R2 für Fluor, Chlor oder Brom steht,
Het für 5- oder 6-gliedrige Heterocyclen aus der Reihe von Thienyl, Oxazolyl, Isoxazolyl, Pyrazolyl; 1,2,4-Oxadiazolyl; 1,2,4-Thiadiazo- lyl; 1,3,4-Thiadiazolyl; Tetrazolyl, Pyridinyl, Pyrimidinyl oder Pyrido- nyl, die jeweils einfach bis dreifach (in Abhängigkeit von den jewie- ligen Substitutionsmöglichkeiten), gleich oder verschieden substituiert sein können, wobei als Substituenten beispielhaft genannt seien: Fluor, Chlor, Brom, Iod; C1-C4-Alkyl; C1-C4Alkoxy, C1-C4Alkylthio; jeweils einfach bis fünffach, gleich oder verschieden durch Fluor oder Chlor substituiertes C1-C4-Alkyl, C1-C4-Alkoxy und C1-C -Alkylthio; Cyano, Nitro, Formyl, Hydroxyimino, - -Alkoxyimino, Cι-C4- Alkylcarbonyl, Ci-C^Alkoxycarbonyl, C1-C -Alkoxycarbonyl-C1-C - alkyl; gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom, -GrAlkyl, C1-C4-Halogenalkyl, Alkoxy, C1-C4-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl; gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom oder C1-C4-Alkyl substituiertes Morpholino oder gegebe- nenfalls durch CrC4-Alkyl substituiertes Tetrazolyl steht, n für 1 oder 2 steht,
Y für Fluor, Chlor, Methyl oder Trifluormethyl steht, p für 0, 1 oder 2 steht.
Substituierte 4-Aminopyridin-Derivate der Formel (I) gemäß Ansprach 1, in welcher
R1 für Ethyl steht, R2 für Chlor steht,
Het für 5- oder 6-gliedrige Heterocyclen aus der Reihe von Thienyl, Oxazolyl, Isoxazolyl, Pyrazolyl; 1,2,4-Oxadiazolyl; 1,2,4-Thiadiazo- lyl; 1,3,4-Thiadiazolyl; Tetrazolyl, Pyridinyl, Pyrimidinyl oder Pyrido- nyl, die jeweils einfach bis dreifach (in Abhängigkeit von den jewei- ligen Substitutionsmöglichkeiten), gleich oder verschieden substituiert sein können, wobei als Substituenten beispielhaft genannt seien: Fluor, Chlor, Brom; Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t- Butyl; Methoxy, Ethoxy, n- oder i-Propoxy; Methylthio, Ethylthio, n- oder i-Propylthio; Trifluormethyl, Difluormethyl, Fluormethyl; Tri- fluormethoxy, Difluormethoxy; Trifluormethylthio; Cyano, Formyl,
Hydroximino, Methoxyimino, Ethoxyimino; Methylcarbonyl, Ethyl- carbonyl; Methoxycarbonyl, Ethoxycarbonyl; Methoxycarbonyl- methyl, 1 -Methoxycarbonyl- 1 -ethyl; gegebenenfalls einfach bis zweifach, gleich oder verschieden durch Fluor, Chlor, Methyl, Methoxy, Trifluormethyl, Nitro oder Cyano substituiertes Phenyl; gegebenenfalls einfach bis zweifach, gleich oder verschieden durch Fluor, Chlor, Methyl oder Ethyl substituiertes Morpholino oder gegebenenfalls durch Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl substituiertes Tetrazolyl steht,
n für 1 oder 2 steht, p für 0 steht.
Verfahren zum Herstellen von substituierten 4-Aminopyridin-Derivate der Formel (I) gemäß Anspmch 1, dadurch gekennzeichnet, dass man
a) 4-Aminopyridine der Formel (TT)
Figure imgf000080_0001
in welcher
R und R die in Anspmch 1 angegebenen Bedeutungen haben,
und Phenylessigsäuren der Formel (ET)
Figure imgf000080_0002
in welcher
Het, Y, n und p die in Anspruch 1 angegebenen Bedeutungen haben,
(1) mit einem Halogemerungsmittel, vorzugsweise Thionylchlorid, gegebenenfalls in Gegenwart eines Säurebindungsmittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt; oder
(2) in Gegenwart eines die Carboxyl-Gruppe aktivierenden Kataly- , sators und in Gegenwart eines Verdünnungsmittels umsetzt; oder b) substituierte 4-Aminopyridine der Formel (IV)
Figure imgf000081_0001
in welcher
R1 und R2 die in Ansprach 1 angegebenen Bedeutungen haben und
Q für eine Abgangsgruppe steht,
mit Bromiden der Formel (V)
Figure imgf000081_0002
in welcher
Het, Y und p die in Ansprach 1 angegebenen Bedeutungen haben und m für 0 oder 1 steht,
in Gegenwart einer Base, in Gegenwart eines- Katalysators und in
Gegenwart eines Verdünnungsmittels umsetzt; oder
c) substituierte 4-Aminopyridine der Formel (VT)
Figure imgf000081_0003
in welcher
R1 und R2 die in Anspmch 1 angegebenen Bedeutungen haben, mit Verbindungen der Formel (VE)
Figure imgf000082_0001
in welcher
Het, Y und p die in Ansprach 1 angegebenen Bedeutungen haben, Q und m die oben angegebenen Bedeutungen,
in Gegenwart einer Base, in Gegenwart eines Katalysators und in Gegenwart eines Verdünnungsmittels umsetzt.
6. Mittel zur Bekämpfung von Schädlingen und oder unerwünschten Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der Formel (I) gemäß Ansprach 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
7. Verwendung von Verbindungen der Formel (I) gemäß Ansprach 1 zur Bekämpfung von Schädlingen und/oder unerwünschten Mikroorganismen.
8. Verfahren zur Bekämpfung von Schädlingen und/oder unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Verbindungen der Formel (I) gemäß Ansprach 1 auf Schädlinge und/oder Mikroorganismen und/oder ihren jeweiligen Lebensraum einwirken lässt.
9. Verfahren zur Herstellung von Mittel zur Bekämpfung von Schädlingen und/oder unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Verbindungen der Formel (I) gemäß Ansprach 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt. Phenylessigsäuren der Formel (ET)
Figure imgf000083_0001
in welcher
Het, Y, n und p die in Ansprach 1 angegebenen Bedeutungen haben.
Substituierte 4-Aminopyridine der Formel (TV)
Figure imgf000083_0002
in welcher
R1 und R2 die in Ansprach 1 angegebenen Bedeutungen haben und
Q für eine Abgangsgrappe steht.
PCT/EP2003/000051 2002-01-18 2003-01-07 Substituierte 4-aminopyridin-derivate als schädlingsbekämpfungsmittel WO2003059903A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003235696A AU2003235696A1 (en) 2002-01-18 2003-01-07 Substituted 4-aminopyridine derivatives used as pest control agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002101764 DE10201764A1 (de) 2002-01-18 2002-01-18 Substituierte 4-Aminopyridin-Derivate
DE10201764.6 2002-01-18

Publications (2)

Publication Number Publication Date
WO2003059903A2 true WO2003059903A2 (de) 2003-07-24
WO2003059903A3 WO2003059903A3 (de) 2003-12-11

Family

ID=7712458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/000051 WO2003059903A2 (de) 2002-01-18 2003-01-07 Substituierte 4-aminopyridin-derivate als schädlingsbekämpfungsmittel

Country Status (3)

Country Link
AU (1) AU2003235696A1 (de)
DE (1) DE10201764A1 (de)
WO (1) WO2003059903A2 (de)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006071960A3 (en) * 2004-12-28 2007-05-24 Kinex Pharmaceuticals Llc Compositions and methods of treating cell proliferation disorders
US7691882B2 (en) 2005-10-31 2010-04-06 Eisai R&D Management Co., Ltd. Heterocycles substituted pyridine derivatives and antifungal agent containing thereof
US7851470B2 (en) 2006-12-28 2010-12-14 Kinex Pharmaceuticals, Llc Composition and methods for modulating a kinase cascade
WO2011022473A1 (en) * 2009-08-19 2011-02-24 Ambit Biosciences Corporation Biaryl compounds and methods of use thereof
US7935697B2 (en) 2006-12-28 2011-05-03 Kinex Pharmaceuticals, Llc Compositions for modulating a kinase cascade and methods of use thereof
US7939529B2 (en) 2007-05-17 2011-05-10 Kinex Pharmaceuticals, Llc Process for the preparation of compositions for modulating a kinase cascade and methods of use thereof
US7968574B2 (en) 2004-12-28 2011-06-28 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
US8124605B2 (en) 2007-07-06 2012-02-28 Kinex Pharmaceuticals, Llc Compositions and methods for modulating a kinase cascade
US8513287B2 (en) 2007-12-27 2013-08-20 Eisai R&D Management Co., Ltd. Heterocyclic ring and phosphonoxymethyl group substituted pyridine derivatives and antifungal agent containing same
US8748423B2 (en) 2010-04-16 2014-06-10 Kinex Pharmaceuticals, Llc Compositions and methods for the prevention and treatment of cancer
US8937071B2 (en) 2013-03-15 2015-01-20 Glaxosmithkline Intellectual Property Development Limited Compounds as rearranged during transfection (RET) inhibitors
US9382238B2 (en) 2013-03-15 2016-07-05 Glaxosmithkline Intellectual Property Development Limited Pyridine derivatives as rearranged during transfection (RET) kinase inhibitors
US9879021B2 (en) 2014-09-10 2018-01-30 Glaxosmithkline Intellectual Property Development Limited Compounds as rearranged during transfection (RET) inhibitors
US9918974B2 (en) 2014-09-10 2018-03-20 Glaxosmithkline Intellectual Property Development Limited Pyridone derivatives as rearranged during transfection (RET) kinase inhibitors
US9926273B2 (en) 2012-08-30 2018-03-27 Athenex, Inc. Composition and methods for modulating a kinase cascade
US9951089B2 (en) 2010-02-03 2018-04-24 Infinity Pharmaceuticals, Inc. Methods of treating a fatty acid amide hydrolase-mediated condition
US10196357B2 (en) 2007-04-13 2019-02-05 Athenex, Inc. Biaryl compositions and methods for modulating a kinase cascade
JP2019512505A (ja) * 2016-03-16 2019-05-16 プレキシコン インコーポレーテッドPlexxikon Inc. キナーゼ調節およびその適応症のための化合物および方法
US10492494B2 (en) 2015-11-13 2019-12-03 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10499644B2 (en) 2015-11-19 2019-12-10 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10555526B2 (en) 2015-11-05 2020-02-11 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10674727B2 (en) 2015-11-19 2020-06-09 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10687532B2 (en) 2015-11-13 2020-06-23 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10785980B2 (en) 2016-06-09 2020-09-29 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10986839B2 (en) 2016-04-11 2021-04-27 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO3598B1 (ar) 2006-10-10 2020-07-05 Infinity Discovery Inc الاحماض والاسترات البورونية كمثبطات اميد هيدروليز الحامض الدهني
AR072249A1 (es) 2008-04-09 2010-08-18 Infinity Pharmaceuticals Inc Inhibidores de amida hidrolasa de acido graso. usos. metodos.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046669A (de) * 1973-03-28 1975-04-25
JPS58177977A (ja) * 1982-04-09 1983-10-18 Grelan Pharmaceut Co Ltd 4−フエニルピラゾ−ル類
TW306916B (de) * 1994-09-13 1997-06-01 Ciba Geigy Ag
DE69603470T2 (de) * 1995-04-28 1999-11-18 Ihara Chemical Industry Co., Ltd. Pyridinderivative und pestizide
DE10015015A1 (de) * 2000-03-27 2001-10-04 Bayer Ag Oxim-Derivate

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236799B2 (en) 2004-12-28 2012-08-07 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
US7300931B2 (en) 2004-12-28 2007-11-27 Kinex Pharmaceuticals, Llc Compositions for treating cell proliferation disorders
US8980890B2 (en) 2004-12-28 2015-03-17 Kinex Pharmaceuticals, Llc Compositions and methods of treating cell proliferation disorders
US8598169B2 (en) 2004-12-28 2013-12-03 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
WO2006071960A3 (en) * 2004-12-28 2007-05-24 Kinex Pharmaceuticals Llc Compositions and methods of treating cell proliferation disorders
US7968574B2 (en) 2004-12-28 2011-06-28 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
US8003641B2 (en) 2004-12-28 2011-08-23 Kinex Pharmaceuticals, Llc Compositions and methods of treating cell proliferation disorders
US9655903B2 (en) 2004-12-28 2017-05-23 Athenex, Inc. Compositions and methods of treating cell proliferation disorders
US9580387B2 (en) 2004-12-28 2017-02-28 Athenex, Inc. Biaryl compositions and methods for modulating a kinase cascade
US7691882B2 (en) 2005-10-31 2010-04-06 Eisai R&D Management Co., Ltd. Heterocycles substituted pyridine derivatives and antifungal agent containing thereof
US8841327B2 (en) 2005-10-31 2014-09-23 Eisai R&D Management Co., Ltd. Heterocycles substituted pyridine derivatives and antifungal agent containing thereof
US10323001B2 (en) 2006-12-28 2019-06-18 Athenex, Inc. Compositions for modulating a kinase cascade and methods of use thereof
US8293739B2 (en) 2006-12-28 2012-10-23 Kinex Pharmaceuticals, Llc Process for the preparation of compositions for modulating a kinase cascade and methods of use thereof
US8309549B2 (en) 2006-12-28 2012-11-13 Kinex Pharmaceuticals, Llc Compositions for modulating a kinase cascade and methods of use thereof
US9556120B2 (en) 2006-12-28 2017-01-31 Athenex, Inc. Compositions for modulating a kinase cascade and methods of use thereof
US7935697B2 (en) 2006-12-28 2011-05-03 Kinex Pharmaceuticals, Llc Compositions for modulating a kinase cascade and methods of use thereof
US8901297B2 (en) 2006-12-28 2014-12-02 Kinex Pharmaceuticals, Llc Compositions for modulating a kinase cascade and methods of use thereof
US7851470B2 (en) 2006-12-28 2010-12-14 Kinex Pharmaceuticals, Llc Composition and methods for modulating a kinase cascade
US10196357B2 (en) 2007-04-13 2019-02-05 Athenex, Inc. Biaryl compositions and methods for modulating a kinase cascade
US7939529B2 (en) 2007-05-17 2011-05-10 Kinex Pharmaceuticals, Llc Process for the preparation of compositions for modulating a kinase cascade and methods of use thereof
US8124605B2 (en) 2007-07-06 2012-02-28 Kinex Pharmaceuticals, Llc Compositions and methods for modulating a kinase cascade
US8513287B2 (en) 2007-12-27 2013-08-20 Eisai R&D Management Co., Ltd. Heterocyclic ring and phosphonoxymethyl group substituted pyridine derivatives and antifungal agent containing same
WO2011022473A1 (en) * 2009-08-19 2011-02-24 Ambit Biosciences Corporation Biaryl compounds and methods of use thereof
CN102470127A (zh) * 2009-08-19 2012-05-23 埃姆比特生物科学公司 联芳基化合物和其使用方法
US9951089B2 (en) 2010-02-03 2018-04-24 Infinity Pharmaceuticals, Inc. Methods of treating a fatty acid amide hydrolase-mediated condition
US8748423B2 (en) 2010-04-16 2014-06-10 Kinex Pharmaceuticals, Llc Compositions and methods for the prevention and treatment of cancer
US9926273B2 (en) 2012-08-30 2018-03-27 Athenex, Inc. Composition and methods for modulating a kinase cascade
US10106505B2 (en) 2012-08-30 2018-10-23 Athenex, Inc. Composition and methods for modulating a kinase cascade
US9035063B2 (en) 2013-03-15 2015-05-19 Glaxosmithkline Intellectual Property Development Limited Compounds as rearranged during transfection (RET) inhibitors
US9789100B2 (en) 2013-03-15 2017-10-17 Glaxosmithkline Intellectual Property Development Limited Compounds as rearranged during transfection (RET) inhibitors
US8937071B2 (en) 2013-03-15 2015-01-20 Glaxosmithkline Intellectual Property Development Limited Compounds as rearranged during transfection (RET) inhibitors
US9382238B2 (en) 2013-03-15 2016-07-05 Glaxosmithkline Intellectual Property Development Limited Pyridine derivatives as rearranged during transfection (RET) kinase inhibitors
US9918974B2 (en) 2014-09-10 2018-03-20 Glaxosmithkline Intellectual Property Development Limited Pyridone derivatives as rearranged during transfection (RET) kinase inhibitors
US10709695B2 (en) 2014-09-10 2020-07-14 Glaxosmithkline Intellectual Property Development Limited Compounds as rearranged during transfection (RET) inhibitors
US10292975B2 (en) 2014-09-10 2019-05-21 Glaxosmithkline Intellectual Property Development Limited Compounds as rearranged during transfection (RET) inhibitors
US10294236B2 (en) 2014-09-10 2019-05-21 Glaxosmithkline Intellectual Property Development Limited Compounds as rearranged during transfection (RET) inhibitors
US9879021B2 (en) 2014-09-10 2018-01-30 Glaxosmithkline Intellectual Property Development Limited Compounds as rearranged during transfection (RET) inhibitors
US10111866B2 (en) 2014-09-10 2018-10-30 Glaxosmithkline Intellectual Property Development Limited Compounds as rearranged during transfection (RET) inhibitors
US10555526B2 (en) 2015-11-05 2020-02-11 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10687532B2 (en) 2015-11-13 2020-06-23 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10492494B2 (en) 2015-11-13 2019-12-03 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10499644B2 (en) 2015-11-19 2019-12-10 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10674727B2 (en) 2015-11-19 2020-06-09 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
JP2019512505A (ja) * 2016-03-16 2019-05-16 プレキシコン インコーポレーテッドPlexxikon Inc. キナーゼ調節およびその適応症のための化合物および方法
US10986839B2 (en) 2016-04-11 2021-04-27 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
US10785980B2 (en) 2016-06-09 2020-09-29 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi

Also Published As

Publication number Publication date
DE10201764A1 (de) 2003-07-31
WO2003059903A3 (de) 2003-12-11
AU2003235696A8 (en) 2003-07-30
AU2003235696A1 (en) 2003-07-30

Similar Documents

Publication Publication Date Title
WO2003059903A2 (de) Substituierte 4-aminopyridin-derivate als schädlingsbekämpfungsmittel
EP2301348A1 (de) Fungizide Wirkstoffkombinationen enthaltend Trifloxystrobin
DE10231333A1 (de) Cis-Alkoxysubstituierte spirocyclische 1-H-Pyrrolidin-2,4-dion-Derivate
EP1429607B1 (de) Delta 1-pyrroline als schädlingsbekämpfungsmittel
EP1367893A1 (de) Pyridylpyrimidine als schädlingsbekämpfungsmittel
EP1360190A1 (de) Phthalsäurediamide, ein verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel
EP1474389A2 (de) Delta1-pyrroline
EP1289969A1 (de) Substituierte n-benzoyl-n'-(tetrazolylphenyl)-harnstoffe und ihre verwendung als schädlingsbekämpfungsmittel
DE10034131A1 (de) Heterocyclische Fluoralkenylthioether (II)
DE10034132A1 (de) Heterocyclische Fluoralkenylthioether (lll)
DE10135551A1 (de) Pyrazolin-Derivate
WO2003067986A1 (de) Delta1-pyrroline und deren verwendung zur bekämpfung von schädlingen
EP1414815A1 (de) Tetrahydropyridazin-derivate und ihre verwendung als pestizide
DE10132896A1 (de) Heterocyclische Amidderivate
EP1448549B1 (de) Delta1 -pyrroline
WO2003040129A1 (de) Halogen-nitro-butadiene zur bekämpfung von tierischen shädlingen
DE10205057A1 (de) Substituierte 4-Hetaryl-pyrazoline
DE10201544A1 (de) Substituierte Pyrazoline
EP1399421A1 (de) Substituierte imidate als schädlingsbekämpfungsmittel
DE10206791A1 (de) Substituierte 4-Pyrazolyl-pyrazoline
WO2003040092A2 (de) Δpyrroline
WO2003016293A1 (de) Oxadiazolyl-u. thiadiazolyl-benzoylharnstoffe und ihre verwendung als schädlingsbekämpfungsmittel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 164698

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 164735

Country of ref document: IL

Ref document number: 164739

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 164838

Country of ref document: IL

Ref document number: 164837

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 164922

Country of ref document: IL

Ref document number: 164925

Country of ref document: IL

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 165182

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 165349

Country of ref document: IL

Ref document number: 165348

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 165306

Country of ref document: IL

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP