HAIR CONDITIONING COMPOSITIONS
TECHNICAL FIELD
The present invention relates to hair conditioning compositions having suitable rheology profiles. The present invention further relates to a method of making hair conditioning compositions having suitable rheology profiles.
BACKGROUND
Human hair becomes soiled due to its contact with the surrounding environment and from sebum secreted from the scalp. The soiling of the hair causes it to have a dirty or greasy feel, and an unattractive appearance. The soiling of the hair necessitates shampooing with regularity. Shampooing cleans the hair by removing excess soil and sebum.
However, shampooing can leave the hair in a wet, tangled, and generally unmanageable state. Once the hair dries, it is often left in a dry, rough, lusterless, or frizzy condition due to removal of the hair's natural oils and other natural conditioning and moisturizing components. The hair can further be left with increased levels of static upon drying which can interfere with combing and result in a condition commonly referred to as "fly-away hair", or contribute to an undesirable phenomena of "split ends", particularly for long hair.
A variety of approaches have been developed to alleviate these after- shampoo problems. These approaches range from post-shampoo application of hair conditioner such as leave-on and rinse-off products, to hair conditioning shampoos which attempt to both cleanse and condition the hair from a single product. Although some consumers prefer the ease and convenience of a shampoo which includes conditioners, a substantial proportion of consumers prefer the more conventional conditioner formulations which are applied to the hair as a separate step from shampooing, usually subsequent to shampooing. Conditioning formulation can be in the form of rinse-off products or leave-on
products, and can be in the form of an emulsion, cream, gel, spray, or mousse. Such consumers who prefer the conventional conditioner formulations value the relatively higher conditioning effect, or convenience of changing the amount of conditioning depending on the condition of hair or portion of hair. Consumers who require high conditioning for their hair prefer a certain level of thickness and creamy rheology obtained by the so-called gel network structure provided by cationic conditioning agents and fatty alcohols. The use of water-insoluble high molecular weight oily compounds for hair is disclosed in PCT Publications WO 98/24401 and WO 98/24402. Addition of such oily compounds to conditioners having a gel network structure provide a conditioning composition with suitable conditioning benefits. However, such addition also significantly increases the viscosity and rheology of the composition. This may result in a composition which does not have satisfactory spreadability on the hair. This may also negatively affect on manufacture of the composition, as compositions having higher viscosity and rheology lead to higher in-line pressure upon mixing, milling, and cooling. This may further provide a composition which is difficult to dispense from conventional bottle and pump packages; resulting in increased residual product in the package.
Based on the foregoing, there remains a desire to provide hair conditioning compositions which provide improved conditioning benefits, while maintaining acceptable rheology profiles so as to provide satisfactory spreadability on the hair. There is also a desire to provide such hair conditioning composition by a convenient manufacturing method.
None of the existing art provides all of the advantages and benefits of the present invention.
SUMMARY
The present invention is directed to a hair conditioning composition comprising by weight: (1 ) from about 0.5% to about 5% of an amidoamine of the formula: R1CONH(CH2)mN( 2) 2 wherein R1 is a residue of C11 to C24 fatty acids, R2 is a C1 to C4 alkyl, and m is an integer of from 1 to about 4;
(2) an acid selected from the group consisting of I-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, I- glutamic acid hydrochloride, tartaric acid, citric acid, and mixtures thereof;
in an amount which provides the molar ratio of the amidoamine to acid of from about 1 : 0.3 to about 1 : 1 ;
(3) at least about 5% of a high melting point compound selected from the group consisting of fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, hydrocarbons, steroids, and mixtures thereof;
(4) from about 0.1 % to about 10% of a high molecular weight ester oil;
(5) from about 0.001% to about 3% of an electrolyte selected from the group consisting of monovalent, divalent, and trivalent cation salts of halides, sulfates, phosphates, and citrates; and (6) an aqueous carrier; wherein the composition has a viscosity of between about 800cps and about 1450cps at 50 rpm and provides a shear stress of less than about 250Pa at 950 sec-1.
The present invention is also directed to a suitable method of making the hair conditioning composition.
These and other features, aspects, and advantages of the present invention will become evident to those skilled in the art from a reading of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the present invention will be better understood from the following description of preferred embodiments taken in conjunction with the accompanying drawings, in which Fig. 1 shows a rheology curve of a preferred embodiment composition of the present invention, as well as an composition of the prior art.
DETAILED DESCRIPTION
While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description.
All cited references are incorporated herein by reference in their entireties.
Citation of any reference is not an admission regarding any determination as to its availability as prior art to the claimed invention. Herein, "comprising" means that other steps and other ingredients which do not affect the end result can be added. This term encompasses the terms
"consisting of and "consisting essentially of.
All percentages, parts and ratios are based upon the total weight of the compositions of the present invention, unless otherwise specified. All such weights as they pertain to listed ingredients are based on the active level and, therefore, do not include carriers or by-products that may be included in commercially available materials. All rheology and viscosities are measured at 26.7°C at atmospheric pressure, unless specified otherwise. AMIDOAMINE
The hair conditioning composition of the present invention comprises by weight from about 0.5% to about 5%, preferably from 1 % to about 3%, of an amidoamine of the formula:
R1CONH(CH2)mN(R2) 2 wherein R1 is a residue of C11 to C24 fatty acids, preferably C12 to C22 fatty acids, more preferably C14 to C18 fatty acids, R2 is a C1 to C4 alkyl, preferably C2 to C3 alkyl, and m is an integer of from 1 to about 4 preferably 2 to 3. Exemplary amido amines include: stearamidopropyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitamidopropyldiethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethylamine, behenamidopropyldimethylamine, behenamidopropyldiethylamine, behenamidoethyldiethylamine, behenamidoethyldimethylamine, arachidamidopropyldimethylamine, arachidamidopropyldiethylamine, arachidamidoethyldiethylamine, arachidamidoethyldimethylamine, diethylaminoethylstearamide. Also useful are dimethylstearamine, dimethylsoyamine, soyamine, myristylamine, tridecylamine, ethylstearylamine, N-tallowpropane diamine, ethoxylated (with 5 moles of ethylene oxide) stearylamine, dihydroxyethylstearylamine, and arachidylbehenylamine. Useful amines in the present invention are disclosed in U.S. Patent 4,275,055, Nachtigal, et al. ACID
The hair conditioning composition of the present invention comprises an acid which provides the molar ratio of the amidoamine to acid of from about 1 : 0.3 to about 1 : 1 , preferably from about 1 : 0.4 to about 1 : 1. The acids of the present invention provide the amido amines to be partially neutralized. The acids are selected from the group consisting of I-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, I-glutamic acid
hydrochloride, tartaric acid, citric acid, and mixtures thereof; preferably from the group consisting of I-glutamic acid, lactic acid, citric acid, and mixtures thereof. HIGH MELTING POINT COMPOUND
The hair conditioning composition of the present invention comprises by weight at least about 5%, preferably from about 5% to about 10%, more preferably from about 6% to about 8% of a high melting point compound. The high melting point compound herein has a melting point of at least about 25°C and is selected from the group consisting of fatty alcohols, fatty acids, fatty alchol derivatives, fatty acid derivatives, hydrocarbons, steroids, and mixtures thereof. The high melting point compound, together with the amidoamine and the acid, make the gel network.
Without being bound by theory, it is believed that these high melting point compounds cover the hair surface and reduce friction, thereby resulting in providing smooth feel on the hair and ease of combing. It is understood by the artisan that the compounds disclosed in this section of the specification can in some instances fall into more than one classification, e.g., some fatty alcohol derivatives can also be classified as fatty acid derivatives. However, a given classification is not intended to be a limitation on that particular compound, but is done so for convenience of classification and nomenclature. Further, it is understood by the artisan that, depending on the number and position of double bonds, and length and position of the branches, certain compounds having certain required carbon atoms may have a melting point of less than about 25°C. Such compounds of low melting point are not intended to be included in this section. Nonlimiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
The fatty alcohols useful herein are those having from about 14 to about 30 carbon atoms, preferably from about 16 to about 22 carbon atoms. These fatty alcohols can be straight or branched chain alcohols and can be saturated or unsaturated. Nonlimiting examples of fatty alcohols include, cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof.
The fatty acids useful herein are those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty acids can be straight or branched chain acids and can be saturated or unsaturated. Also included are diacids, triacids, and other multiple acids which meet the
requirements herein. Also included herein are salts of these fatty acids. Nonlimiting examples of fatty acids include lauric acid, palmitic acid, stearic acid, behenic acid, sebacic acid, and mixtures thereof.
The fatty alcohol derivatives and fatty acid derivatives useful herein include alkyl ethers of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, esters of fatty alcohols, fatty acid esters of compounds having esterifiable hydroxy groups, hydroxy-substituted fatty acids, and mixtures thereof. Nonlimiting examples of fatty alcohol derivatives and fatty acid derivatives include materials such as methyl stearyl ether; the ceteth series of compounds such as ceteth-1 through ceteth-45, which are ethylene glycol ethers of cetyl alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; the steareth series of compounds such as steareth-1 through 10, which are ethylene glycol ethers of steareth alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; ceteareth 1 through ceteareth-10, which are the ethylene glycol ethers of ceteareth alcohol, i.e. a mixture of fatty alcohols containing predominantly cetyl and stearyl alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; C^Cao alkyl ethers of the ceteth, steareth, and ceteareth compounds just described; polyoxyethylene ethers of behenyl alcohol; ethyl stearate, cetyl stearate, cetyl palmitate, stearyl stearate, myristyl myristate, polyoxyethylene cetyl ether stearate, polyoxyethylene stearyl ether stearate, polyoxyethylene lauryl ether stearate, ethyleneglycol monostearate, polyoxyethylene monostearate, polyoxyethylene distearate, propyleneglycol monostearate, propyleneglycol distearate, trimethylolpropane distearate, sorbitan stearate, polyglyceryl stearate, glyceryl monostearate, glyceryl distearate, glyceryl tristearate, and mixtures thereof.
Hydrocarbons useful herein include compounds having at least about 20 carbons.
Steroids useful herein include compounds such as cholesterol. High melting point compounds of a single compound of high purity are preferred. Single compounds of pure fatty alcohols selected from the group of pure cetyl alcohol, stearyl alcohol, and behenyl alcohol are highly preferred. By "pure" herein, what is meant is that the compound has a purity of at least about 90%, preferably at least about 95%. These single compounds of high purity provide good rinsability from the hair when the consumer rinses off the composition.
Commercially available high melting point compounds useful herein include: cetyl alcohol, stearyl alcohol, and behenyl alcohol having tradenames KONOL series available from Shin Nihon Rika (Osaka, Japan), and NAA series available from NOF (Tokyo, Japan); pure behenyl alcohol having tradename 1- DOCOSANOL available from WAKO (Osaka, Japan), various fatty acids having tradenames NEO-FAT available from Akzo (Chicago Illinois, USA), HYSTRENE available from Witco Corp. (Dublin Ohio, USA), and DERMA available from Vevy (Genova, Italy); and cholesterol having tradename NIKKOL AGUASOME LA available from Nikko. HIGH MOLECULAR WEIGHT ESTER OIL
The compositions of the present invention may further comprise a high molecular weight ester oil selected from the group consisting of pentaerythritol ester oils, trimethylol ester oils, citrate ester oils, and mixtures thereof. The high molecular weight ester oils useful herein are those which are water-insoluble, and are in liquid form at 25°C. As used herein, the term "water-insoluble" means the compound is substantially not soluble in water at 25°C; when the compound is mixed with water at a concentration by weight of above 1.0%, preferably at above 0.5%, the compound is temporarily dispered to form an unstable colloid in water, then is quickly separated from water into two phases. The high molecular weight ester oil herein provides moisturized feel, smooth feel, and manageability control to the hair when the hair is dried, yet not leave the hair feeling greasy. Thus, with the addition of the high molecular weight ester oil, obtained is a composition that can provide particularly suitable conditioning benefits both when the hair is wet and also after it has dried. The high molecular weight ester oil is comprised at a level of from about 0.1% to about 10%, preferably from about 0.2% to about 10%, more preferably from about 0.5% to about 5% by weight of the composition.
Pentaerythritol ester oils useful herein are those of the following formula having a molecular weight of at least 800:
wherein R\ R
2, R
3, and R
4, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
Preferably, R\ R
2, R
3, and R
4, independently, are branched, straight, saturated, or unsaturated alkyl groups having from about 8 to about 22 carbons. More preferably, R
1, R
2, R
3 and R
4 are defined so that the molecular weight of the compound is from about 800 to about 1200. Trimethylol ester oils useful herein are those of the following formula having a molecular weight of at least 800:
wherein R
11 is an alkyl group having from 1 to about 30 carbons, and R
2, R
13, and R
14, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons. Preferably, R
11 is ethyl and R
12, R
13, and R
4, independently, are branched, straight, saturated, or unsaturated alkyl groups having from 8 to about 22 carbons. More preferably, R
11, R
12, R
13 and R
14 are defined so that the molecular weight of the compound is from about 800 to about 1200. Citrate ester oils useful herein are those having a molecular weight of at least about 500 having the following formula:
wherein R
21 is OH or CH
3COO, and R
22, R
23, and R
24, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons. Preferably, R
21 is OH, and R
22, R
23, and R
24, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 8 to about 22 carbons. More preferably, R
21, R
22, R
23 and R
24 are defined so that the molecular weight of the compound is at least about 800. Particularly preferable high molecular weight ester oils are pentaerythritol ester oils and trimethylol ester oils.
Particularly useful pentaerythritol ester oils and trimethylol ester oils herein
include pentaerythritol tetraisostearate, pentaerythritol tetraoleate, trimethylolpropane triisostearate, trimethylolpropane trioleate, and mixtures thereof. Such compounds are available from Kokyo Alcohol with tradenames KAKPTI, KAKTTI, and Shin-nihon Rika with tradenames PTO, ENUJERUBU TP3SO.
Particularly useful citrate ester oils herein include triisocetyl citrate with tradename CITMOL 316 available from Bernel, triisostearyl citrate with tradename PELEMOL TISC available from Phoenix, and trioctyldodecyl citrate with tradename CITMOL 320 available from Bernel. ELECTROLYTE
The compositions of the present invention comprise from about 0.001% to about 3%, preferably 0.03% to about 1%, of an electrolyte selected from the group consisting of monovalent, divalent, and trivalent cation salts of halides, sulfates, phosphates, and citrates. The electrolytes herein help decrease the viscosity and rheology of the compositions of the present invention. The use of electrolytes, such as sodium chloride, is known for shampoo compositions as in United States Patent 4,728,457 and 4,472,297. However, electrolytes for shampoos have been used in the art to increase the viscosity. This is particularly true when the electrolytes have been used at low levels such as less than about 3%. Surprisingly, however, addition of from about 0.001% to about 3% of electrolytes provide decrease of viscosity and rheology in the compositions of the present invention.
Suitable electrolytes include, for example, sodium chloride, sodium sulfate, sodium citrate, ammonium chloride, magnesium chloride, magnesium sulfate, calcium chloride, calcium sulfate, and mixtures thereof. AQUEOUS CARRIER
The compositions of the present invention comprise an aqueous carrier wherein water is contained at a level of at least about 70% by weight of the composition. The level and species of the carrier are selected according to the compatibility with other components, and other desired characteristic of the product.
Carriers useful in the present invention include water and water solutions of lower alkyl alcohols and polyhydric alcohols. Lower alkyl alcohols useful herein are monohydric alcohols having 1 to 6 carbons, more preferably ethanol and isopropanol. The polyhydric alcohols useful herein include propylene glycol, hexylene glycol, glycerin, and propane diol.
Preferably, the aqueous carrier is substantially water. Deionized water is preferably used. Water from natural sources including mineral cations can also be used, depending on the desired characteristic of the product. The compositions of the present invention comprise at least about 70%, preferably at least about 80% water.
ADDITIONAL CONDITIONING AGENTS
The compositions of the present invention may further comprise by weight from about 0.01% to about 20.0%, preferably from about 1.0% to about 15.0%, and more preferably from about 2.0% to about 10.0%, of additional conditioning agents. Suitable additional conditioning agents useful herein include additional oily compounds, cationic polymers, silicone compounds, and nonionic polymers. Additional Oily Compound
Additional oily compounds useful herein include fatty alcohols and their derivatives, fatty acids and their derivatives, and hydrocarbons. The additional oily compounds useful herein may be volatile or nonvolatile, and have a melting point of not more than about 25°C. Without being bound by theory, it is believed that, the additional oily compounds may penetrate into the hair to modify the hydroxy bonds of the hair, thereby resulting in providing softness and flexibility to the hair. The additional oily compounds of this section are to be distinguished from the high melting point compounds described above. Nonlimiting examples of the additional oily compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
The fatty alcohols useful herein include those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty alcohols can be straight or branched chain alcohols and can be saturated or unsaturated alcohols, preferably unsaturated alcohols. Nonlimiting examples of these compounds include oleyl alcohol, palmitoleic alcohol, isostearyl alcohol, isocetyl alchol, undecanol, octyl dodecanol, octyl decanol, octyl alcohol, caprylic alcohol, decyl alcohol and lauryl alcohol.
The fatty acids useful herein include those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty acids can be straight or branched chain acids and can be saturated or unsaturated. Suitable fatty acids include, for example, oleic acid, linoleic acid, isostearic acid, linolenic
acid, ethyl linolenic acid, ethyl linolenic acid, arachidonic acid, and ricinolic acid.
The fatty acid derivatives and fatty alcohol derivatives are defined herein to include, for example, esters of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, and bulky ester oils such as pentaerythritol ester oils, trimethylol ester oils, citrate ester oils, glyceryl ester oils, and mixtures thereof. Nonlimiting examples of fatty acid derivatives and fatty alcohol derivatives, include, for example, methyl linoleate, ethyl linoleate, isopropyl linoleate, isodecyl oleate, isopropyl oleate, ethyl oleate, octyldodecyl oleate, oleyl oleate, decyl oleate, butyl oleate, methyl oleate, octyldodecyl stearate, octyldodecyl isostearate, octyldodecyl isopalmitate, octyl isopelargonate, octyl pelargonate, hexyl isostearate, isopropyl isostearate, isodecyl isononanoate, isopropyl isostearate, ethyl isostearate, methyl isostearate and Oleth-2. Bulky ester oils such as pentaerythritol ester oils, trimethylol ester oils, citrate ester oils and glyceryl ester oils useful herein are those which have a molecular weight of less than about 800, preferably less than about 500.
The hydrocarbons useful herein include straight chain, cyclic, and branched chain hydrocarbons which can be either saturated or unsaturated, so long as they have a melting point of not more than about 25°C. These hydrocarbons have from about 12 to about 40 carbon atoms, preferably from about 12 to about 30 carbon atoms, and preferably from about 12 to about 22 carbon atoms. Also encompassed herein are polymeric hydrocarbons of alkenyl monomers, such as polymers of C2^ alkenyl monomers. These polymers can be straight or branched chain polymers. The straight chain polymers will typically be relatively short in length, having a total number of carbon atoms as described above. The branched chain polymers can have substantially higher chain lengths. The number average molecular weight of such materials can vary widely, but will typically be up to about 500, preferably from about 200 to about 400, and more preferably from about 300 to about 350. Also useful herein are the various grades of mineral oils. Mineral oils are liquid mixtures of hydrocarbons that are obtained from petroleum. Specific examples of suitable hydrocarbon materials include paraffin oil, mineral oil, dodecane, isododecane, hexadecane, isohexadecane, eicosene, isoeicosene, tridecane, tetradecane, polybutene, polyisobutene, and mixtures thereof. Preferred for use herein are hydrocarbons selected from the group consisting of mineral oil, poly α-olefin oils such as isododecane, isohexadecane, polybutene, polyisobutene, and mixtures
thereof.
Commercially available fatty alcohols and their derivatives useful herein include: oleyl alcohol with tradename UNJECOL 90BHR available from Shin Nihon Rika, various liquid esters with tradenames SCHERCEMOL series available from Scher, and hexyl isostearate with a tradename HIS and isopropryl isostearate having a tradename ZPIS available from Kokyu Alcohol. Commercially available bulky ester oils useful herein include: trimethylolpropane tricaprylate/tricaprate with tradename MOBIL ESTER P43 from Mobil Chemical Co. Commercially available hydrocarbons useful herein include isododecane, isohexadeance, and isoeicosene with tradenames PERMETHYL 99A, PERMETHYL 101 A, and PERMETHYL 1082, available from Presperse (South Plainfield New Jersey, USA), a copolymer of isobutene and normal butene with tradenames INDOPOL H-100 available from Amoco Chemicals (Chicago Illinois, USA), mineral oil with tradename BENOL available from Witco, isoparaffin with tradename ISOPAR from Exxon Chemical Co. (Houston Texas, USA), and polydecene with tradename PURESYN 6 from Mobil Chemical Co. Cationic Polymers
The hair conditioning compositions of the present invention can further comprise one or more cationic polymer as a cationic conditioning agent. As used herein, the term "polymer" shall include materials whether made by polymerization of one type of monomer or made by two (i.e., copolymers) or more types of monomers.
Preferably, the cationic polymer is a water-soluble cationic polymer. By "water soluble" cationic polymer, what is meant is a polymer which is sufficiently soluble in water to form a substantially clear solution to the naked eye at a concentration of 0.1 % in water (distilled or equivalent) at 25°C. The preferred polymer will be sufficiently soluble to form a substantially clear solution at 0.5% concentration, more preferably at 1.0% concentration.
The cationic polymers hereof will generally have a weight average molecular weight which is at least about 5,000, typically at least about 10,000, and is less than about 10 million. Preferably, the molecular weight is from about 100,000 to about 2 million. The cationic polymers will generally have cationic nitrogen-containing moieties such as quaternary ammonium or cationic amino moieties, and mixtures thereof. The cationic charge density is preferably at least about 0.1 meq/gram, more preferably at least about 1.5 meq/gram, even more preferably at least
about 1.1 meq/gram, still more preferably at least about 1.2 meq/gram. Cationic charge density of the cationic polymer can be determined according to the Kjeldahl Method. Those skilled in the art will recognize that the charge density of amino-containing polymers may vary depending upon pH and the isoelectric point of the amino groups. The charge density should be within the above limits at the pH of intended use.
Any anionic counterions can be utilized for the cationic polymers so long as the water solubility criteria is met. Suitable counterions include halides (e.g., Cl, Br, I, or F, preferably Cl, Br, or I), sulfate, and methylsulfate. Others can also be used, as this list is not exclusive.
The cationic nitrogen-containing moiety will be present generally as a substituent, on a fraction of the total monomer units of the cationic hair conditioning polymers. Thus, the cationic polymer can comprise copolymers, terpolymers, etc. of quaternary ammonium or cationic amine-substituted monomer units and other non-cationic units referred to herein as spacer monomer units. Such polymers are known in the art, and a variety can be found in the CTFA Cosmetic Ingredient Dictionary, 3rd edition, edited by Estrin, Crosley, and Haynes, (The Cosmetic, Toiletry, and Fragrance Association, Inc., Washington, D.C., 1982). Suitable cationic polymers include, for example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as acrylamide, methacrylamide, alkyl and dialkyl acrylamides, alkyl and dialkyl methacrylamides, alkyl acrylate, alkyl methacrylate, vinyl caprolactone, and vinyl pyrrolidone. The alkyl and dialkyl substituted monomers preferably have C<| - C7 alkyl groups, more preferably C-|
- C3 alkyl groups. Other suitable spacer monomers include vinyl esters, vinyl alcohol (made by hydrolysis of polyvinyl acetate), maleic anhydride, propylene glycol, and ethylene glycol.
The cationic amines can be primary, secondary, or tertiary amines, depending upon the particular species and the pH of the composition. In general, secondary and tertiary amines, especially tertiary amines, are preferred. Amine-substituted vinyl monomers can be polymerized in the amine form, and then optionally can be converted to ammonium by a quaternization reaction.
Amines can also be similarly quaternized subsequent to formation of the polymer. For example, tertiary amine functionalities can be quaternized by reaction with a salt of the formula R'X wherein R' is a short chain alkyl, preferably
a C-| - C7 alkyl, more preferably a C-j - C3 alkyl, and X is an anion which forms a water soluble salt with the quaternized ammonium.
Suitable cationic amino and quaternary ammonium monomers include, for example, vinyl compounds substituted with dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, monoalkylaminoalkyl methacrylate, trialkyl methacryloxyalkyl ammonium salt, trialkyl acryloxyalkyl ammonium salt, diallyl quaternary ammonium salts, and vinyl quaternary ammonium monomers having cyclic cationic nitrogen-containing rings such as pyridinium, imidazolium, and quaternized pyrrolidone, e.g., alkyl vinyl imidazolium, alkyl vinyl pyridinium, alkyl vinyl pyrrolidone salts. The alkyl portions of these monomers are preferably lower alkyls such as the C-| - C3 alkyls, more preferably C-| and C2 alkyls. Suitable amine-substituted vinyl monomers for use herein include dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, dialkylaminoalkyl acrylamide, and dialkylaminoalkyl methacrylamide, wherein the alkyl groups are preferably C-| - C7 hydrocarbyls, more preferably C-| - C3, alkyls.
The cationic polymers hereof can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers. Suitable cationic hair conditioning polymers include, for example: copolymers of 1-vinyl-2-pyrrolidone and 1-vinyl-3-methylimidazolium salt (e.g., chloride salt) (referred to in the industry by the Cosmetic, Toiletry, and Fragrance Association, "CTFA", as Polyquaternium-16), such as those commercially available from BASF Wyandotte Corp. (Parsippany, NJ, USA) under the LUVIQUAT tradename (e.g., LUVIQUAT FC 370); copolymers of 1-vinyl-2- pyrrolidone and dimethylaminoethyl methacrylate (referred to in the industry by CTFA as Polyquaternium-11 ) such as those commercially available from Gaf Corporation (Wayne, NJ, USA) under the GAFQUAT tradename (e.g., GAFQUAT 755N); cationic diallyl quaternary ammonium-containing polymers, including, for example, dimethyldiallylammonium chloride homopolymer and copolymers of acrylamide and dimethyldiallylammonium chloride, referred to in the industry (CTFA) as Polyquaternium 6 and Polyquatemium 7, respectively; and mineral acid salts of amino-alkyl esters of homo- and co-polymers of unsaturated carboxylic acids having from 3 to 5 carbon atoms, as described in U.S. Patent 4,009,256, incorporated herein by reference.
Other cationic polymers that can be used include polysaccharide
polymers, such as cationic cellulose derivatives and cationic starch derivatives.
Cationic polysaccharide polymer materials suitable for use herein include those of the formula:
wherein: A is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual, R is an alkylene oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof, R1 , R2, and R independently are alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms, and the total number of carbon atoms for each cationic moiety (i.e., the sum of carbon atoms in R1 , R2 and R3) preferably being about 20 or less, and X is an anionic counterion, as previously described. Cationic cellulose is available from Amerchol Corp. (Edison, NJ, USA) in their Polymer JR® and LR® series of polymers, as salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquatemium 10. Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to in the industry (CTFA) as Polyquatemium 24. These materials are available from Amerchol Corp. (Edison, NJ, USA) under the tradename Polymer LM-200®.
Other cationic polymers that can be used include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride (commercially available from Celanese Corp. in their Jaguar R series). Other materials include quaternary nitrogen-containing cellulose ethers (e.g., as described in U.S. Patent 3,962,418, incorporated herein by reference), and copolymers of etherified cellulose and starch (e.g., as described in U.S. Patent 3,958,581 , incorporated herein by reference.) Silicone Compounds
The compositions of the present invention may contain a silicone compound. The silicone compounds useful herein include volatile soluble or insoluble, or nonvolatile soluble or insoluble silicone conditioning agents. By soluble what is meant is that the silicone compound is miscible with the carrier of
the composition so as to form part of the same phase. By insoluble what is meant is that the silicone forms a separate, discontinuous phase from the carrier, such as in the form of an emulsion or a suspension of droplets of the silicone. The silicone compounds herein may be made by any suitable method known in the art, including emulsion polymerization. The silicone compounds may further be incorporated in the present composition in the form of an emulsion, wherein the emulsion is made my mechanical mixing, or in the stage of synthesis through emulsion polymerization, with or without the aid of a surfactant selected from anionic surfactants, nonionic surfactants, cationic surfactants, and mixtures thereof.
The silicone compounds for use herein will preferably have a viscosity of from about 1 ,000 to about 2,000,000 centistokes at 25°C, more preferably from about 10,000 to about 1 ,800,000, and even more preferably from about 100,000 to about 1 ,500,000. The viscosity can be measured by means of a glass capillary viscometer as set forth in Dow Corning Corporate Test Method CTM0004, July 20, 1970. Silicone compound of high molecular weight may be made by emulsion polymerization. Suitable silicone fluids include polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes, polyether siloxane copolymers, and mixtures thereof. Other nonvolatile silicone compounds having hair conditioning properties can also be used.
The silicone compound is preferably included in the composition at a level by weight from about 0.01% to about 20%, more preferably from about 0.05% to about 10%.
The silicone compounds herein also include polyalkyl or polyaryl siloxanes with the following structure (I)
wherein R
123 is alkyl or aryl, and x is an integer from about 7 to about 8,000. Z
8 represents groups which block the ends of the silicone chains. The alkyl or aryl groups substituted on the siloxane chain (R
123) or at the ends of the siloxane chains Z
8 can have any structure as long as the resulting silicone remains fluid at room temperature, is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the hair, is compatible with the other components of the composition, is chemically stable under normal use and storage conditions, and
is capable of being deposited on and conditions the hair. Suitable Z
8 groups include hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy. The two R
123 groups on the silicon atom may represent the same group or different groups. Preferably, the two R
123 groups represent the same group. Suitable R
123 groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl. The preferred silicone compounds are polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. Polydimethylsiloxane, which is also known as dimethicone, is especially preferred. The polyalkylsiloxanes that can be used include, for example, polydimethylsiloxanes. These silicone compounds are available, for example, from the General Electric Company in their Viscasil® and SF 96 series, and from Dow Corning in their Dow Corning 200 series.
Polyalkylaryl siloxane fluids can also be used and include, for example, polymethylphenylsiloxanes. These siloxanes are available, for example, from the General Electric Company as SF 1075 methyl phenyl fluid or from Dow Corning as 556 Cosmetic Grade Fluid.
Especially preferred, for enhancing the shine characteristics of hair, are highly arylated silicone compounds, such as highly phenylated polyethyl silicone having refractive index of about 1.46 or higher, especially about 1.52 or higher. When these high refractive index silicone compounds are used, they should be mixed with a spreading agent, such as a surfactant or a silicone resin, as described below to decrease the surface tension and enhance the film forming ability of the material.
The silicone compounds that can be used include, for example, a polypropylene oxide modified polydimethylsiloxane although ethylene oxide or mixtures of ethylene oxide and propylene oxide can also be used. The ethylene oxide and polypropylene oxide level should be sufficiently low so as not to interfere with the dispersibility characteristics of the silicone. These material are also known as dimethicone copolyols.
Other silicone compounds include amino substituted materials. Suitable alkylamino substituted silicone compounds include those represented by the following structure (II)
wherein R
124 is H, CH
3 or OH, p
1, p
2, q
1 and q
2 are integers which depend on the molecular weight, the average molecular weight being approximately between 5,000 and 10,000. This polymer is also known as "amodimethicone".
Suitable amino substituted silicone fluids include those represented by the formula (III)
(R125)aG3-a-Si-(OSiG2)P3-(OSiGb(R125)2.b)p4-0-SiG3-a(R125)a (III) in which G is chosen from the group consisting of hydrogen, phenyl, OH, C C8 alkyl and preferably methyl; a denotes 0 or an integer from 1 to 3, and preferably equals 0; b denotes 0 or 1 and preferably equals 1 ; the sum p3+p4 is a number from 1 to 2,000 and preferably from 50 to 150, p3 being able to denote a number from 0 to 1,999 and preferably from 49 to 149 and p4 being able to denote an integer from 1 to 2,000 and preferably from 1 to 10; R125 is a monovalent radical of formula Cq3H2q3L in which q3 is an integer from 2 to 8 and L is chosen from the groups
— N(R126)CH2— CH2— N(R126)2
— N(R126)2
— N(R126)3X'
— N(R 26)CH2— CH2— NR126H2X' in which R126 is chosen from the group consisting of hydrogen, phenyl, benzyl, a saturated hydrocarbon radical, preferably an alkyl radical containing from 1 to 20 carbon atoms, and X' denotes a halide ion.
An especially preferred amino substituted silicone corresponding to formula (III) is the polymer known as "trimethylsilylamodimethicone" wherein R124 is CH3.
Other amino substituted silicone polymers which can be used are represented by the formula (V):
where R
128 denotes a monovalent hydrocarbon radical having from 1 to 18 carbon atoms, preferably an alkyl or alkenyl radical such as methyl; R
129 denotes a hydrocarbon radical, preferably a C C
18 alkylene radical or a C,-C
18, and more preferably C.,-C
8, alkyleneoxy radical; Q
" is a halide ion, preferably chloride; p
5 denotes an average statistical value from 2 to 20, preferably from 2 to 8; p
6 denotes an average statistical value from 20 to 200, and preferably from 20 to 50. A preferred polymer of this class is available from Union Carbide under the name "UCAR SILICONE ALE 56." References disclosing suitable nonvolatile dispersed silicone compounds include U.S. Patent No. 2,826,551 , to Geen; U.S. Patent No. 3,964,500, to Drakoff, issued June 22, 1976; U.S. Patent No. 4,364,837, to Pader; and British Patent No. 849,433, to Woolston. "Silicon Compounds" distributed by Petrarch Systems, Inc., 1984, provides an extensive, though not exclusive, listing of suitable silicone compounds.
Another nonvolatile dispersed silicone that can be especially useful is a silicone gum. The term "silicone gum", as used herein, means a polyorganosiloxane material having a viscosity at 25°C of greater than or equal to 1 ,000,000 centistokes. It is recognized that the silicone gums described herein can also have some overlap with the above-disclosed silicone compounds. This overlap is not intended as a limitation on any of these materials. Silicone gums are described by Petrarch, and others including U.S. Patent No. 4,152,416, to Spitzer et al., issued May 1 , 1979 and Noll, Walter, Chemistry and Technology of Silicones, New York: Academic Press 1968. Also describing silicone gums are General Electric Silicone Rubber Product Data Sheets SE 30, SE 33, SE 54 and SE 76. The "silicone gums" will typically have a mass molecular weight in excess of about 200,000, generally between about 200,000 and about 1 ,000,000. Specific examples include polydimethylsiloxane, polydimethylsiloxane methylvinylsiloxane) copolymer, polydimethylsiloxane diphenylsiloxane methylvinylsiloxane) copolymer and mixtures thereof.
Also useful are silicone resins, which are highly crossiinked polymeric siloxane systems. The crosslinking is introduced through the incorporation of tri- functional and tetra-functional silanes with mono-functional or di-functional, or both, silanes during manufacture of the silicone resin. As is well understood in the art, the degree of crosslinking that is required in order to result in a silicone resin will vary according to the specific silane units incorporated into the silicone resin. In general, silicone materials which have a sufficient level of trifunctional and tetrafunctional siloxane monomer units, and hence, a sufficient level of crosslinking, such that they dry down to a rigid, or hard, film are considered to be silicone resins. The ratio of oxygen atoms to silicon atoms is indicative of the level of crosslinking in a particular silicone material. Silicone materials which have at least about 1.1 oxygen atoms per silicon atom will generally be silicone resins herein. Preferably, the ratio of oxygen:silicon atoms is at least about 1.2:1.0. Silanes used in the manufacture of silicone resins include monomethyl-, dimethyl-, trimethyl-, monophenyl-, diphenyl-, methylphenyl-, monovinyl-, and methylvinylchlorosilanes, and tetrachlorosilane, with the methyl substituted silanes being most commonly utilized. Preferred resins are offered by General Electric as GE SS4230 and SS4267. Commercially available silicone resins will generally be supplied in a dissolved form in a low viscosity volatile or nonvolatile silicone fluid. The silicone resins for use herein should be supplied and incorporated into the present compositions in such dissolved form, as will be readily apparent to those skilled in the art. Without being bound by theory, it is believed that the silicone resins can enhance deposition of other silicone compounds on the hair and can enhance the glossiness of hair with high refractive index volumes.
Other useful silicone resins are silicone resin powders such as the material given the CTFA designation polymethylsilsequioxane, which is commercially available as Tospearl™ from Toshiba Silicones.
The method of manufacturing these silicone compounds, can be found in Encyclopedia of Polymer Science and Engineering, Volume 15, Second Edition, pp. 204-308, John Wiley & Sons, Inc., 1989.
Silicone materials and silicone resins in particular, can conveniently be identified according to a shorthand nomenclature system well known to those skilled in the art as the "MDTQ" nomenclature. Under this system, the silicone is described according to the presence of various siloxane monomer units which make up the silicone. Briefly, the symbol M denotes the mono-functional unit
(CH3)3SiO05; D denotes the difunctional unit (CH3)2SiO; T denotes the trifunctional unit (CHaJSiO, 5; and Q denotes the quadri- or tetra-functional unit Si02. Primes of the unit symbols, e.g., M', D', T\ and Q' denote substituents other than methyl, and must be specifically defined for each occurrence. Typical alternate substituents include groups such as vinyl, phenyl, amino, hydroxyl, etc. The molar ratios of the various units, either in terms of subscripts to the symbols indicating the total number of each type of unit in the silicone, or an average thereof, or as specifically indicated ratios in combination with molecular weight, complete the description of the silicone material under the MDTQ system. Higher relative molar amounts of T, Q, T' and/or Q' to D, D', M and/or or M' in a silicone resin is indicative of higher levels of crosslinking. As discussed before, however, the overall level of crosslinking can also be indicated by the oxygen to silicon ratio.
The silicone resins for use herein which are preferred are MQ, MT, MTQ, MQ and MDTQ resins. Thus, the preferred silicone substituent is methyl. Especially preferred are MQ resins wherein the M:Q ratio is from about 0.5:1.0 to about 1.5:1.0 and the average molecular weight of the resin is from about 1000 to about 10,000.
Commercially available silicone compounds which are useful herein include Dimethicone with tradename D-130, cetyl Dimethicone with tradename DC2502, stearyl Dimethicone with tradename DC2503, emulsified polydimethyl siloxanes with tradenames DC1664 and DC1784, and alkyl grafted copolymer silicone emulsion with tradename DC2-2845; all available from Dow Corning Corporation, and emulsion polymerized Dimethiconol available from Toshiba Silicone as described in GB application 2,303,857.
Nonionic Polymer
Nonionic polymers useful herein include cellulose derivatives, hydrophobically modified cellulose derivatives, ethylene oxide polymers, and ethylene oxide/propylene oxide based polymers. Suitable nonionic polymers are cellulose derivatives including methylcellulose with tradename BENECEL, hydroxyethyl cellulose with tradename NATROSOL, hydroxypropyl cellulose with tradename KLUCEL, cetyl hydroxyethyl cellulose with tradename POLYSURF 67, all supplied by Herculus. Other suitable nonionic polymers are ethylene oxide and/or propylene oxide based polymers with tradenames CARBOWAX PEGs, POLYOX WASRs, and UCON FLUIDS, all supplied by Amerchol.
The polyalkylene glycols useful herein are characterized by the general formula:
wherein R
201 is selected from the group consisting of H, methyl, and mixtures thereof. When R
201 is H, these materials are polymers of ethylene oxide, which are also known as polyethylene oxides, polyoxyethylenes, and polyethylene glycols. When R
201 is methyl, these materials are polymers of propylene oxide, which are also known as polypropylene oxides, polyoxypropylenes, and polypropylene glycols. When R
201 is methyl, it is also understood that various positional isomers of the resulting polymers can exist.
In the above structure, x3 has an average value of from about 1500 to about 25,000, preferably from about 2500 to about 20,000, and more preferably from about 3500 to about 15,000.
Other useful polymers include the polypropylene glycols and mixed polyethylene/polypropylene glycols.
Polyethylene glycol polymers useful herein are PEG-2M wherein R201 equals H and x3 has an average value of about 2,000 (PEG-2M is also known as Polyox WSR® N-10, which is available from Union Carbide and as PEG-2,000); PEG-5M wherein R201 equals H and x3 has an average value of about 5,000 (PEG-5M is also known as Polyox WSR® N-35 and Polyox WSR® N-80, both available from Union Carbide and as PEG-5,000 and Polyethylene Glycol 300,000); PEG-7M wherein R201 equals H and x3 has an average value of about 7,000 (PEG-7M is also known as Polyox WSR® N-750 available from Union Carbide); PEG-9M wherein R201 equals H and x3 has an average value of about
9,000 (PEG 9-M is also known as Polyox WSR® N-3333 available from Union Carbide); and PEG-14 M wherein R201 equals H and x3 has an average value of about 14,000 (PEG-14M is also known as Polyox WSR® N-3000 available from Union Carbide). OTHER ADDITIONAL COMPONENTS
The compositions of the present invention may include other additional components, which may be selected by the artisan according to the desired characteristics of the final product and which are suitable for rendering the compositions more cosmetically or aesthetically acceptable or to provide them with additional usage benefits. Such other additional components generally are used individually at levels from about 0.001 % to about 10.0%, preferably from about 0.01% to about 5.0% by weight of the composition.
A wide variety of other additional ingredients can be formulated into the present compositions. These include: other conditioning agents such as hydrolysed collagen with tradename Peptein 2000 available from Hormel, vitamin E with tradename Emix-d available from Eisai, panthenol available from Roche, panthenyl ethyl ether available from Roche, hydrolysed keratin, proteins, plant extracts, and nutrients; hair-fixative polymers such as amphoteric fixative polymers, cationic fixative polymers, anionic fixative polymers, nonionic fixative polymers, and silicone grafted copolymers; preservatives such as benzyl alcohol, methyl paraben, propyl paraben and imidazolidinyl urea; pH adjusting agents; coloring agents, such as any of the FD&C or D&C dyes; hair oxidizing (bleaching) agents, such as hydrogen peroxide, perborate and persulfate salts; hair reducing agents such as the thioglycolates; perfumes; and sequestering agents, such as disodium ethylenediamine tetra-acetate; ultraviolet and infrared screening and absorbing agents such as octyl salicylate, antidandruff agents such as zinc pyridinethione; and optical brighteners, for example polystyrylstilbenes, triazinstilbenes, hydroxycoumarins, aminocoumarins, triazoles, pyrazolines, oxazoles, pyrenes, porphyrins, imidazoles, and mixtures thereof; and inorganic reducing agents such as sodium sulfite, sodium bisulfite, and potassium sulfite. METHOD OF MAKING
The hair conditioning composition of the present invention can be made by any means which provide the composition with the defined viscosity and shear stress. A suitable method for providing the hair conditioning compositions of the present invention comprises four steps. The first step comprises mixing water,
the amidoamine, the high molecular weight ester oil, the electrolyte, at least a portion of the acid, preferably all of the acid, and the high molecular weight compound, at a temperature of at least 70°C. The second step comprises cooling the obtained mixture to a temperature below 60°C. A heat exchanger is preferably used in this second step. The third step comprises adding to the obtained cooled mixture the remaining components, and remaining acid, if any. When heat sensitive components such as perfume are comprised in the composition, such components are included in this third step. Agitation usually accompanies all of the three steps described above. The fourth step comprises milling the finally obtained mixture until a homogeneous mixture of uniform particle size is obtained. The fourth step may also comprise cooling the composition to an acceptable temperature for packaging, preferably using a heat exchanger.
It is at this fourth step wherein high in-line pressure is encountered during milling of compositions containing at least about 5% of the high melting point compound and at least about 0.1 % of the high molecular weight ester oil; as is the case for the compositions of the present invention. There is interest to control in-line pressure upon milling and optional cooling, as high in-line pressure necessitates lowering the flow rate, resulting in lower speed of manufacturing. In the present invention, the addition of electrolytes herein provide a composition which has decreased viscosity and rheology. Further, the amount of acid included in the first step may change the viscosity and rheology of the finally obtained composition. The amount of acid to be included in the first step and third step is adjusted in order to provide a composition which has a viscosity of between about 800cps and about 1450cps at 50 rpm and provides a shear stress of less than about 250Pa at 950 sec1. Preferably 100% of the acid is added in the first step.
EXAMPLES The following examples further describe and demonstrate embodiments within the scope of the present invention. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention. Ingredients are identified by chemical or CTFA name, or otherwise defined below.
The compositions of the present invention are suitable for rinse-off
products and leave-on products, and are particularly useful for making products in the form of emulsion, cream, gel, spray, or mousse.
Examples 1 through 7 are hair conditioning compositions of the present invention which are particularly useful for rinse-off use.
RHEOLOGY MEASUREMENTS FOR EXAMPLE 1 AND COMPARATIVE EXAMPLE 1
COMPOSITIONS FOR EXAMPLES 2-7
DEFINITIONS OF COMPONENTS
*1 Cetyl Alcohol: Konol series obtained by Shin-Nihon Rika. *2 Stearyl Alcohol: Konol series obtained by Shin-Nihon Rika. *3 Behenyl Alcohol: 1-Docosanol (97%) obtained by Wako. *4 Stearamidopropyl Dimethylamine: Amidoamine MPS obtained by Nikko. *5 BIutamic Acid: ^-Glutamic acid (cosmetic grade) obtained by Ajinomoto. *6 Stearamidopropyl betaine: Rikabion A-700 available from Shin-Nihon Rika. *7 Hydroxyethyl Cellulose: Available from Aqualon. *8 Polyoxyethyleneglycol: WSR N-10 obtained Amerchol.
9 Polyquaternium-10: UCARE Polymer LR 400 obtained by Amerchol.
10 Polyquaternium-7: Merquat S obtained by Calgon.
11 Pentaerythritol Tetraisostearate: KAK PTI obtained by Kokyu alcohol.
12 Pentaerythritol Tetraoleate: Available from Shin-Nihon RiKa.
*13 Trimethylolpropane Trioleate: Enujerubu TP3SO obtained by Shin-Nihon RiKa.
*14 Trimethylolpropane Triisostearate: KAK TTI obtained by Kokyu alcohol.
*15 Silicone Blend: SE76 obtained by G.E. *16 Silicone Emulsion: X65-4829 obtained by Tosil/GE.
*17 Hydrolyzed Collagen: Peptein 2000 obtained by Hormel.
*18 Vitamin E: Emix-d obtained by Eisai.
*19 Panthenol: Available from Roche.
*20 Panthenyl Ethyl Ether: Available from Roche. *21 Citric Acid: Anhydrous Citric acid obtained by Haarman & Reimer.
METHOD OF PREPARATION
For Examples I through 7 as well as Comparative Example I, water, the amidoamine, the acid, the high molecular weight ester oil, and the electrolyte are mixed at a temperature above 70°C. Then the high melting point compounds and benzyl alcohol are added with agitation. After cooling down below 60°C, the remaining components are added with agitation, then cooled down to about
30°C.
RHEOLOGY MEASUREMENT
Rheology measurement of the compositions of Example 1 and Comparative Example 1 as shown above can be conducted under the following conditions using a TA Instruments Controlled Stress rheometer CSL-200 100,
500, or QCR 500 available from TA Instruments. Rheology measurements are made using a 4cm, 2 degree steel cone and using 1 cc of sample and performing a linear controlled rate ramp from 0.5-1000 sec~1 in 1 minute. The rheology curves of the compositions of Example 1 and Comparative
Example 1 are provided in Figure 1.
The embodiments disclosed and represented by the previous examples have many advantages. For example, they can provide improved conditioning benefits such as good spreadability on the hair, and improved dispensing from the package. The embodiments are also advantageous upon manufacture as they are capable of maintaining acceptable rheology profiles during manufacture.
For example, Example 1 has a viscosity of between about 800cps and about
1450cps at 50 rpm and provides a shear stress of less than about 300Pa at 950 sec-1. It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light
thereof will be suggested to one skilled in the art without departing from its spirit and scope.