[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1999054207A1 - Procede et dispositif de fabrication d'un corps de conditionnement a pression positive - Google Patents

Procede et dispositif de fabrication d'un corps de conditionnement a pression positive Download PDF

Info

Publication number
WO1999054207A1
WO1999054207A1 PCT/JP1999/001995 JP9901995W WO9954207A1 WO 1999054207 A1 WO1999054207 A1 WO 1999054207A1 JP 9901995 W JP9901995 W JP 9901995W WO 9954207 A1 WO9954207 A1 WO 9954207A1
Authority
WO
WIPO (PCT)
Prior art keywords
inert gas
spray
gas
nozzle
liquid nitrogen
Prior art date
Application number
PCT/JP1999/001995
Other languages
English (en)
French (fr)
Inventor
Ken Takenouchi
Hidetoshi Koike
Katsumi Senbon
Tsutomu Iwasaki
Kazuyuki Kurosawa
Mitsuo Tanioka
Yoshihiko Kimura
Original Assignee
Toyo Seikan Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP12426198A external-priority patent/JP4025418B2/ja
Priority claimed from JP30899298A external-priority patent/JP3567762B2/ja
Application filed by Toyo Seikan Kaisha, Ltd. filed Critical Toyo Seikan Kaisha, Ltd.
Priority to US09/647,935 priority Critical patent/US6519919B1/en
Priority to EP99914752A priority patent/EP1106510B1/en
Priority to AU33441/99A priority patent/AU3344199A/en
Priority to DE69940023T priority patent/DE69940023D1/de
Priority to KR1020007011549A priority patent/KR100628780B1/ko
Publication of WO1999054207A1 publication Critical patent/WO1999054207A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/006Adding fluids for preventing deformation of filled and closed containers or wrappers

Definitions

  • liquid nitrogen which is generally referred to as liquid nitrogen hereinafter
  • a positive pressure can manufacturing method has been performed in which the internal pressure is generated by evaporating and expanding the residual liquid nitrogen after sealing by sealing while sealing while the vaporization and expansion continue.
  • the main purpose of enclosing liquid nitrogen and generating a positive pressure in the can is to increase the rigidity of the can by the positive pressure, enable the can material to be thinner, and reduce the material used.
  • the variation in the internal pressure of the positive pressure can by the conventional liquid nitrogen filling method also occurs due to the variation in the content filling amount. That is, even if a fixed amount of liquid nitrogen remains, when the content filling amount increases (that is, the head space decreases), the filling internal pressure increases due to the vaporization and expansion of the liquid nitrogen. In order to obtain an accurate internal pressure, the amount of liquid nitrogen charged must be adjusted in accordance with the variation in the amount of charged content, and this was not possible with the conventional method.
  • the degree of boiling point drop when liquid nitrogen passes through the spray nozzle increases, and the liquid nitrogen boils in the nozzle to generate pulsation, so that fine particles cannot be obtained stably.
  • Another cause is that the moisture contained in the air freezes at the nozzle tip, blocking the jet outlet and making the spray amount unstable.
  • the spray pattern of the sprayed liquid nitrogen is inconsistent with the transport direction of the container, the filling accuracy of the liquid nitrogen fine particles into the container deteriorates. When the liquid reaches the liquid level, it may bounce off the container and scatter out of the container, and it is still unsatisfactory to obtain a low positive pressure can that requires a small amount of liquid nitrogen with extremely high precision. .
  • the present invention can improve the filling internal pressure accuracy of the positive pressure package, stably obtain a predetermined internal pressure even at a low internal pressure, and dramatically reduce the inert gas replacement rate of the positive pressure package as compared with the conventional art. It is an object of the present invention to provide a method and apparatus for manufacturing a positive pressure package which can be improved.
  • the present invention is to convert a liquefied inert gas or a solidified inert gas, which evaporates to an inert gas, into fine particles, and replace the gas in a gas-filled container with a container filled with contents.
  • the gas in the head space is replaced with inert gas by blowing together with a low-temperature inert gas whose temperature is lower than the final equilibrium temperature of the positive pressure package, and the residual liquefied inert gas after sealing is finely divided.
  • the internal pressure is generated by the vaporization and expansion of the particles or the residual solidified inert gas fine particles and the temperature expansion of the low-temperature inert gas.
  • the spray flow rate of the liquefied gas is preferably in the range of 0.2 g / s to 4.Og / s. If the spray flow rate is less than 0.2 g / s, a desired container internal pressure cannot be obtained. If s is exceeded, a pulsating flow is likely to occur during spraying, the divergence angle is not stable, and it is difficult to obtain a stable spray flow.
  • a more preferred spray flow rate is in the range of 0.2 g / s to 3.0 Og / s.
  • the spray pattern refers to the state of distribution of a large number of fine particles of liquid nitrogen, which are formed immediately after exiting from the nozzle holes, in the space. Liquid nitrogen is generally used as a liquefied gas to be filled in a container for producing a gas-replaced positive pressure package, and the present invention can also be suitably applied to spray filling of liquid nitrogen.
  • the spray nozzle is shut off from the outside air by a double purge gas of a relatively low temperature inner purge gas and a relatively high temperature purge gas.
  • a double purge gas of a relatively low temperature inner purge gas and a relatively high temperature purge gas may be used.
  • the liquefied gas is moved at 5 ° to 45 °, preferably 15 ° to 40 ° from the vertical with respect to the traveling of the container so that the spray flow of the liquefied gas has a velocity component in the traveling direction of the container. It is desirable to spray at an angle.
  • the spray distance from the tip of the spray nozzle to the container filling surface is desirably 5 to 100 mm, more preferably 45 to 60 mm.
  • the liquefied inert gas can be spray-filled into the can being transported from the filler to the seamer.
  • the liquefied inert gas can be sprayed into the container with the undercover.
  • Means such as vacuum insulation of the liquefied inert gas flow path can be adopted for the heat insulation path.
  • the outer periphery of the liquefied inert gas flow path from the valve to the spray nozzle is liquefied from the liquefied inert gas storage tank.
  • a nozzle cooling tank into which an inert gas flows, cooling and temperature control of the spray nozzle can be more effectively performed.
  • More liquefied inert gas The arrangement of the spray nozzles to ensure fine grain, the opening area is 0. 1 5 to 4 mm 2, the preferably have a 0. 2 consists of pores is 3 mm 2 spray nozzle hole Is desirable.
  • the spray nozzle is arranged to be inclined vertically downward at 5 ° to 45 °, preferably at 15 ° to 40 °, so that a velocity component in the container transport direction is imparted to the spray flow, and the liquefied gas It is desirable to be able to soft-translate the particles to the liquid level in the container.
  • the spraying means includes a purge means for blocking at least the vicinity of the nozzle outlet from outside air with a purge gas to prevent frost.
  • the purging means is formed by a double purge gas hood of an inner purge gas hood forming an inner purge gas path and an outer purge gas hood forming an outer purge gas path, and the inner purge gas hood is provided at a lower portion of the spray body.
  • the vaporized gas in the inert gas storage tank especially the vaporized gas generated from the pressurized tank, is introduced as a purge gas
  • the amount of low-temperature purge gas that can be sufficiently purged without forming a double purge path The structure can be simplified.
  • the liquefied gas storage tank is connected to an initial purge mechanism for supplying a dry heating gas to remove water in the tank before supplying the liquefied gas to the liquefied gas storage tank, This is desirable because ice is not formed in the tank.
  • FIG. 1 is a schematic diagram showing a basic configuration of a positive pressure package manufacturing apparatus according to the present invention
  • Figure 2 is a graph showing the relationship between the scattering distance of liquid nitrogen particles due to rotation within the seamer and the particle diameter
  • Fig. 3 is a graph showing the relationship between the content liquid filling amount and the filling internal pressure in a positive pressure package.
  • FIGS. 41A to 41D are schematic diagrams showing a phenomenon in a process of manufacturing a positive pressure can according to the present invention.
  • FIG. 5 is a cross-sectional view of a liquefied gas atomizing and filling apparatus according to an embodiment of the present invention.
  • FIG. 6 is a three-dimensional cross-sectional view of a spraying means assembly.
  • FIG. 10 is a schematic diagram showing the positional relationship between the container and the spray nozzle
  • Figure 11 shows a cross section of the spray pattern
  • Fig. 12-A1 and Fig. 12-A2 are a front view and a bottom view of a nozzle tip of a liquefied gas spray filling apparatus according to another embodiment of the present invention
  • Figs. 12-B1 and 12- B 21 is a front view and a bottom view of a nozzle tip of a liquefied gas spray filling device according to still another embodiment of the present invention
  • FIG. 13 is a sectional view of a liquefied gas spray filling apparatus according to another embodiment of the present invention.
  • FIG. 14-A is a schematic view of a liquefied gas spray filling apparatus according to still another embodiment of the present invention
  • FIG. 14-B is an enlarged view of a main part thereof.
  • the causes of the variation in the internal pressure of the conventional cans filled with liquid nitrogen are as follows: (1) Since liquid nitrogen is at a very low temperature (boiling point: 196 ° C), if liquid nitrogen collides with the liquid level during filling, The bumping phenomenon occurs due to the temperature difference from the surface, and it is easy to be scattered to the outside in the form of droplets, and the phenomenon is caused by the vibration during transportation to the sheeter, and the high-speed rotation of the can at the seamer. Liquid nitrogen also scatters to the outside of the can due to evaporation from filling to winding because of the evaporation from filling, and the amount of evaporation is uncertain, and the amount of residual liquid nitrogen during winding cannot be accurately controlled.
  • the internal pressure of the can after the coiling during filling is caused not only by the vaporization of liquid nitrogen, but also by the temperature expansion of the low-temperature vaporized gas filled in the head space together with the liquid nitrogen during sealing.
  • the generated internal pressure is Affected by the variation of the contents of the filling amount of.
  • the inventor of the present invention has conducted research to solve the above-mentioned problem (1) at a time. As a result, the liquid or solid that evaporates to become an inert gas is formed into fine particles, and at the same time as the low-temperature vaporized gas, the head space of the container is reduced.
  • FIG. 3 shows the results.
  • a diagram a shows the case where liquid nitrogen fine particles and their vaporized gas (low-temperature gas) are filled
  • a diagram b shows a case where only liquid nitrogen is used
  • a diagram c shows a case where only low-temperature gas nitrogen is used.
  • Diagram d shows the case of hot pack filling.
  • the internal pressure of the filling increases, while the thermal expansion of the low-temperature gas nitrogen increases, as shown in diagram b.
  • the filling pressure decreases as shown in diagram c. From this, it can be seen that by mixing these at an appropriate ratio, it is possible to keep the filling internal pressure constant as shown in the diagram a, regardless of the variation in the filling amount of the contents.
  • the absolute value of the filling internal pressure can be set to a desired value by selecting the amount of liquid nitrogen and the temperature of gaseous nitrogen. It can be seen that positive pressure cans with little variation can be obtained. Furthermore, the present inventor repeated various experiments on a method for surely forming liquid nitrogen into fine particles. As a result, a nozzle hole was formed in a fine hole, and liquid nitrogen was quickly passed in a liquid state through the fine hole. By adjusting physical conditions such as pressure, flow rate and nozzle temperature, and releasing liquid nitrogen into the atmosphere through the pores, part of the released liquid nitrogen rapidly evaporates and expands, We have discovered a phenomenon that liquid nitrogen in the phase state is atomized. The present invention has been made based on these findings.
  • FIG. 1 is a schematic view of an embodiment of a manufacturing apparatus for a gas-exchange positive pressure package for achieving the above object.
  • This embodiment has a single nozzle connected to a liquid nitrogen supply mechanism, and sprays liquid nitrogen fine particles and low-temperature gaseous nitrogen into the can from the nozzle.
  • reference numeral 50 denotes a nozzle body, which has a nozzle hole 51 composed of a fine hole, and its outer peripheral portion is a simple heat insulating means 52 such as an air heat insulating material or a heat insulating material as shown by a broken line. Is given.
  • a simple heat insulating means 52 such as an air heat insulating material or a heat insulating material as shown by a broken line.
  • the spray nozzle 50 is connected to a liquid nitrogen supply mechanism including a liquid nitrogen supply tank 53. That is, the spray nozzle 50 is connected via a pipe 54 to a liquid nitrogen supply tank 53 having a vacuum insulation structure, and a flow rate regulating valve 56 is provided in the middle of the pipe.
  • the piping 54 is provided with a vacuum means 57 including each valve up to the spray nozzle 50, so that liquid nitrogen can be supplied to the spray nozzle 50 from the liquid nitrogen supply tank 53 without evaporating the liquid nitrogen to the spray nozzle 50. It has a structure that blocks the inflow of heat.
  • the pressure and flow rate of the liquid nitrogen discharged from the nozzle holes 51 By appropriately controlling the pressure and flow rate of the liquid nitrogen discharged from the nozzle holes 51, the vaporization rate and the particle formation rate of the liquid nitrogen are different. By controlling these, the low-temperature filling in the container is achieved. The amount of nitrogen gas and the amount of liquid nitrogen fine particles can be controlled.
  • the gas replacement positive-pressure package manufacturing apparatus of the present embodiment is configured as described above, and the pressure control valve and the flow rate control valve operate based on the command of the control device 63, and the internal pressure of the liquid nitrogen supply tank 53, The liquid amount and the like are controlled to the set values, and the discharge pressure and flow rate satisfying the desired physical conditions of the liquid nitrogen discharged from the nozzle hole 51 are obtained.
  • a part of the liquid nitrogen discharged from the spray nozzle 50 is vaporized, and the vaporized expansion of the liquid nitrogen fines liquid nitrogen still in a liquid state, thereby producing fine particles of low-temperature nitrogen gas and liquid nitrogen. You. Therefore, a single nozzle can simultaneously fill the container with fine particles of liquid nitrogen and low-temperature nitrogen gas.
  • the ratio of liquid nitrogen gasification and gasification and the ratio of fine particle formation are such that the mass of finely divided liquid nitrogen is about 15 to 60% of the total sprayed amount of liquid nitrogen.
  • a predetermined internal pressure after gas replacement and sealing of the container head space can be obtained.
  • the vaporization rate of liquid nitrogen is preferably in the above range (that is, 40 to 85% by weight of liquid nitrogen).
  • a mixture of fine particles of liquid nitrogen and gaseous nitrogen (hereinafter referred to as “mixed gas” for convenience) into the headspace, the air in the headspace is expelled as shown in Fig. 4-A.
  • Nitrogen substitution Is done. This is different from the conventional case in which liquid nitrogen is simply flowed down, because liquid-nitrogen is atomized and vaporized low-temperature gaseous nitrogen is also blown at the same time. This is because the space is filled and filled.
  • the arrow a indicates the state of the gas mixture being blown out into the can
  • 65 indicates the mixed gas replaced with the air in the head space
  • arrow b indicates the flow of air.
  • the gas-replaced container is transported to the seamer and wound up.
  • FIG. 5 shows a cross-section
  • FIG. 6 shows a three-dimensional cross-sectional view of the spraying means assembly.
  • reference numeral 1 denotes a liquefied gas (liquid nitrogen) storage tank (hereinafter simply referred to as a tank) formed in a double-walled vacuum insulation structure having a vacuum insulation tank, which corresponds to the liquid nitrogen supply tank of the embodiment. I do.
  • Spraying means for atomizing and spraying liquid nitrogen is provided in the bottom opening.
  • the spraying means basically comprises a valve 2 for controlling the flow rate of liquid nitrogen (corresponding to the flow rate control valve of the above-described embodiment) and a spray nozzle 3 (hereinafter simply referred to as a nozzle).
  • these are integrally attached to the spray body 6 to constitute a spray means assembly 10.
  • the spray body 6 has a cylindrical outer wall 11 having an inner diameter matching the opening formed in the bottom wall of the tank 1, and the liquid nitrogen penetrates through the bottom wall 12.
  • a pipe 13 constituting a passage is provided upright. Therefore, the cylindrical outer wall 11 and the pipe 13 of the spray body have a double structure, and a nozzle cooling tank 5 through which liquid nitrogen flows from the tank 1 is formed between the cylindrical outer wall 11 and the pipe 13. are doing.
  • the nozzle cooling tank 5 extends to the vicinity of the nozzle as shown in the figure, and always cools the pipe 13 and the nozzle 3 with liquid nitrogen. This makes it possible to supply liquid nitrogen to the nozzle without evaporating it from the tank to the nozzle and with a temperature gradient near the boiling point.
  • valve 2 is composed of a needle valve, and a valve rod 15, which is provided to be able to move up and down opposite to valve seat 14, penetrates the inside of the tank and protrudes to the upper part of the tank, and is driven from outside by valve control means (not shown) It can be controlled.
  • valve control means not shown
  • a bubble deflecting member 16 is provided above the valve seat 14. Bubbles enter the pipe 13 even if the liquid nitrogen stored in the nozzle cooling tank 5 evaporates. This prevents air bubbles from entering the nozzle, which hinders the atomization of liquid nitrogen.
  • the lower end of the pipe 13 is formed on an inclined surface so that the spray direction is inclined downward by ⁇ in the vertical direction with respect to the traveling direction A of the container as shown in FIG. 5, and the nozzle 3 is formed on the inclined surface with respect to the horizontal plane. It is fixed in an ⁇ -tilted state.
  • the inclination angle ⁇ is appropriately selected within a range of 5 ° to 45 ° for the reason described later.
  • the nozzle 3 includes a nozzle tip 17 and a holding base 18 for fixing the nozzle tip to the spray body.
  • the nozzle tip 17 has a groove 19 formed in the center of the lower end at right angles to the direction of travel of the container, and liquid nitrogen is formed in the center of the groove.
  • a nozzle hole 20 composed of a fine hole communicating with the flow path is formed.
  • the holding base 18 has an opening that is sufficiently larger than the nozzle hole 20. Since the nozzle 3 has the above structure, the liquid nitrogen sprayed from the nozzle forms a flat spray pattern of a rectangular shape to an elliptical shape as a whole, which is flat with respect to the traveling direction with a predetermined spread angle, It is sprayed at an angle so that it has a velocity component in the traveling direction.
  • the spread angle of the spray pattern depends on the shape of the nozzle tip and the spray pressure, but in the present embodiment, as described later, the spread angle of the spray is in the range of 20 ° to 100 °. Select as appropriate.
  • Purge means is provided on the outer peripheral portion of the spray body 6.
  • the purge gas flow path is formed as a double structure with the inner purge gas path 21 and the outer purge gas path 22, and the inner purge gas path 21 is supplied with a relatively low-temperature inner purge gas.
  • the purge gas path 22 is configured to flow a relatively high temperature purge gas.
  • reference numeral 23 denotes an inner purge hood for forming an inner purge gas passage between the spray body and the spray body, which is formed so as to surround the nozzle tip from a lower outer peripheral portion of the spray body and faces the nozzle tip. However, it has a spray beak.
  • the shape of the spray guide port 25 of the spray beak corresponds to the spray pattern. As shown in FIGS.
  • the outlet end of the spray beak has a flat shape as a whole in the direction perpendicular to the container transport direction. So that the shape is elliptical It is formed in a flat elliptical cross section at a predetermined spread angle from the end. The divergence angle is in the range of 20 ° to 100 ° and is selected according to the container filled with liquid nitrogen.
  • FIG. 7 shows a case where the spray nozzle portion is viewed in the direction of arrow B from below the spray means assembly 10 in FIG. 5 for easy understanding.
  • Reference numeral 24 denotes an upper end opening of the spray guide port 25, which is open to the spray nozzle.
  • an outer purge hood 26 that forms an outer purge gas passage 22 with the outer periphery of the inner purge hood 23 is fixed to the outer periphery of the inner purge hood 23.
  • An outer cylindrical protective cap 28 is attached to the outer periphery of the outer purge hood 26, and a heater 27 is provided between the outer purge hood 26 and the outer purge hood to heat the outer purge hood as necessary.
  • reference numeral 29 denotes an inner purge gas supply pipe, which is connected to the gas phase of the tank in the present embodiment, and uses the vaporized gas in the tank as the inner purge gas.
  • An outer purge gas supply pipe 30 is connected to an external nitrogen gas tank.
  • 3 1 is a tank cover.
  • the tank 1 has a liquid level sensor that measures the liquid level of the stored liquid nitrogen 33, and the vaporized gas vaporized in the tank is released to the atmosphere to keep the tank internal pressure constant.
  • An exhaust pipe for keeping the tank or a pressurizing pipe for introducing a pressurized gas from the outside into the tank to control the tank internal pressure is connected via a pressure regulating valve. By appropriately controlling the amount of pressurized gas, the mist pressure can be controlled.
  • an initial purge mechanism is provided to sterilize the tank and completely remove water from the tank.
  • the initial purge mechanism includes, for example, a supply of steam for steam sterilizing the inside of the tank, and a mechanism for supplying a heated inert gas or heated air to dry the inside of the tank after the steam sterilization.
  • the liquid nitrogen spray filling apparatus of the present embodiment is formed as described above, and the nozzle is opened from the tank 1 through the valve hole of the bottom opening one valve seat 14 through the pipe 13.
  • a liquid nitrogen channel up to the nozzle hole 20 of the chip 17 is formed. Since the outer periphery of the pipe 13 is cooled by liquid nitrogen and heat inflow from the outside is prevented, the liquid nitrogen flow path from the tank 1 to the nozzle hole 20 is an adiabatic path.
  • the structure is not completely insulated, so that the flow of outside air into the spray body 6 and the nozzle tip 17 is not completely prevented, and the liquid nitrogen passing through the pipe 13 is affected by the heat inflow. As a result, the temperature gradually rises, and a temperature gradient occurs. By utilizing the temperature gradient, it is possible to raise the liquid nitrogen passing through the nozzle hole 20 to near the boiling point at the spray pressure, and effectively reduce the liquid nitrogen discharged from the nozzle hole 20 to fine particles. Can be
  • liquid nitrogen be sprayed stably and the sprayed liquid nitrogen be properly filled in the container.
  • various spray conditions such as nozzle temperature, nozzle hole diameter, spray pressure, spray flow rate, etc. are examined as spray conditions for stable and appropriate spraying of liquid nitrogen, and the sprayed liquid nitrogen is appropriately filled in the container.
  • the spray pattern, spray particle size, spray angle, and spray distance were examined as conditions.
  • the spray pattern depends on the spray flow rate and spray divergence angle, and also on the particle size of the sprayed liquid nitrogen.
  • the pressure inside the can at the time of filling is related to the spray flow rate (that is, the filling amount in the can).
  • the spray flow rate is determined by the spray pressure and the hole area of the nozzle tip. It is necessary to increase the hole diameter and / or increase the spray pressure. However, when the diameter of the nozzle hole is increased, the diameter of the droplet increases, causing a phenomenon that the liquid drops into the filling liquid and bumps.
  • the can was filled with 240 g of hot water at 65 ° C and operated at a line speed of 1500 cpm to investigate the relationship between the liquid nitrogen spray flow rate per unit time and the variation of the can internal pressure.
  • the liquid nitrogen spray flow rate was determined by setting the liquid nitrogen sprayed from the nozzle to a container filled with liquid nitrogen on an upper plate. They were collected by a balance placed and measured by measuring the weight increase per unit time. Figure 8 shows the results.
  • Fig. 8 shows the relationship between the liquid nitrogen spray flow rate and the internal pressure of the can when the spray pressure is lkPa, 5kPa, and 10kPa.
  • the dispersion gradually increased as the spray flow rate increased at all spray pressures, and the dispersion became significantly larger at 4. Og / s.
  • the spray flow rate is small, the variation in the can pressure decreases, but if the spray rate is less than 0.2 g / s, the desired inside of the can cannot be obtained, so the spray flow rate is 0.2 g / s or less. 4.
  • the range of Og / s is preferable, and the range of 0.2 g / s to 3.0 g / s is more preferable.
  • the liquid nitrogen spray flow rate with respect to the nozzle hole area was measured by changing the above range.
  • the nozzle hole area and the spray flow rate has a strong correlation, by the range of the nozzle hole area of 0. 1 5 ⁇ 4. 0mm 2, spray flow rate 0. 2 g
  • a spray flow rate of 4.0 g / s to 4.0 g / s can be obtained. Since the hole area is difficult to obtain a spray flow rate of 2. 0 g / s following flow If it is 4 mm 2, the nozzle hole area get spray flow rate 0. 2g / s ⁇ 3. 0g / s to ensure May be selected in the range of 0.2 to 3 mm 2 .
  • the range of the spray divergence angle is preferably in the range of 20 ° to 100 ° when the container is canned. Good. If the divergence angle is less than 20 °, the flow is almost close to the downflow state, and the above advantage is not exhibited.
  • the spread angle of the spray is also affected by the diameter of the container and the spray distance.For example, when the actual spray distance is 35 to 65, and the container diameter is 50 mm, the spread angle is 71 ° to 42. In the case of a container diameter of 60 mm, the spread angle was more preferably in the range of 86 ° to 54 °.
  • the spray pressure is controlled by measuring the pressure in the tank and adding a head pressure calculated from the height from the injection hole to the liquid level.
  • the spray pressure is considered as the sum of the autogenous pressure generated by evaporation of liquid nitrogen, the pressure applied from outside the tank, and the head pressure generated by the weight of liquid nitrogen. Spray pressure must be applied to produce fine liquid nitrogen particles. However, when the spray pressure is high, the boiling point rises, causing excessive vaporization of liquid nitrogen and not a sufficient spray state. On the other hand, when the tank internal pressure is high, it becomes difficult to supply liquid from a liquid nitrogen supply source, especially when liquid nitrogen is supplied from a gas-liquid separator.
  • the spray pressure range was preferably in the range of l kPa to 150 kPa, and particularly in the case of using an open-to-air type gas-liquid separator, in the range of l kPa to 3 O kPa.
  • the liquid nitrogen can be satisfactorily atomized by setting the above conditions, but in the present embodiment, in order to more accurately fill the container with the sprayed liquid nitrogen fine particles, the liquid nitrogen is sprayed.
  • the angle and spray distance were discussed.
  • the fine particles of liquid nitrogen sprayed from the nozzle softly landed on the liquid surface of the contents, and were designed so that they could be reliably filled into the container without splashing when reaching the liquid surface of the container.
  • spraying liquid nitrogen As shown in Fig. 5, the nozzle tip 17 was bent at the spray angle ⁇ with respect to the container traveling direction so that the velocity component in the container traveling direction appeared in the spray flow. .
  • the spray distance As for the spray distance, when the nozzle tip and the filling liquid level are brought close to each other, the fluctuation of the internal pressure of the can with respect to the spray distance increases, and the accuracy of the filling internal pressure decreases. On the other hand, if the spraying distance is too long, it will spill out of the can and the filling pressure will drop. Evaporation in the atmosphere also has an effect. Therefore, in these intermediate areas, there are areas where the can pressure does not fluctuate with distance. When this fact was confirmed by experiments, it was possible to adopt a range of 5 to 100 buns as the spraying distance, but more preferably, a range of 45 to 6 Omm was desirable, as there was almost no change in the internal pressure of the can. The result was obtained.
  • a single tank can be provided with multiple spraying means. With this configuration, it is possible to sequentially fill the container moving below the mist filling device with liquid nitrogen finely divided by a plurality of spraying means, and to fill a large amount of liquid nitrogen fine particles. be able to.
  • FIG. 12 shows a nozzle tip provided with a plurality (two) of nozzle holes.
  • Nozzle tip 36 shown in A1 and A2 has a two-way groove 39 at the lower end of spray guide port 38 that protrudes in a substantially rectangular shape in the middle of body 37
  • a spray port 41 having a substantially rectangular nozzle hole 40 formed at the center of each groove is provided so that the nozzle hole is orthogonal to the groove 39.
  • the nozzle tip 43 shown in FIG. 12—Bl and B2 has a single groove 46 formed at the lower end of the spray guide port 45 formed in the middle part of the body 44.
  • a spray port 48 in which two nozzle holes 47 each having a substantially rectangular pore are formed at the center is provided so that the nozzle holes 47 are orthogonal to the grooves 46.
  • a plurality of nozzle holes 39 and 47 are formed in pores having an opening area in the above range, respectively, so that liquid nitrogen is sprayed well. can do.
  • the spray flow rate can be increased with a single spray nozzle, so that the structure is simpler than when a plurality of spray nozzles are provided, and the manufacturing cost is reduced. Can be reduced.
  • the spray filling and a falling filling device may be combined.
  • the general line speed is as high as 100 Om / min (1200 cpm).
  • the spray amount may be increased by arranging a plurality of spraying means, employing a mist nozzle having a plurality of nozzle holes, or employing a combination of both.
  • the liquid nitrogen storage tank is divided into two storage tanks, one of which is an open-to-atmosphere storage tank, and the other is a pressurized storage tank that can control the internal pressure. It is preferable to provide a down nozzle and a spray nozzle in the pressurized storage tank.
  • FIG. 13 shows an embodiment in which both a spray nozzle and a flow-down nozzle are provided in a liquid nitrogen storage tank composed of one pressurized tank.
  • Fig. 13 70 is a closed (pressurized) liquefied gas storage tank consisting of one vacuum-insulated tank, and two spray nozzle assemblies 71 and one down nozzle assembly at the bottom.
  • the solid 72 is arranged.
  • the spray nozzle assembly 71 and the spray mechanism are the same as those of the embodiment shown in FIGS. 5 and 6 except for the purging means, and the other parts are the same. Only the differences will be described.
  • the purge gas hood is formed not in a double form but in a single form, and is introduced from the gas phase part 73 of the liquefied gas storage tank 70 which is pressurized while sealing the purge gas.
  • reference numeral 74 denotes a purge hood surrounding the outer periphery of the spray nozzle 3 and forming a purge gas passage 75.
  • the purge gas path 75 is connected to the gas phase part 3 of the liquefied gas storage tank 70 via a purge gas supply pipe 76.
  • the purge gas is introduced from the gas phase of the pressurized tank, a large amount of low-temperature vaporized gas can be obtained, and sufficient purging can be performed without externally introducing an outer purge gas separately. Therefore, in the present embodiment, the outer purge gas path is not provided in order to simplify the structure.
  • a heater 77 is provided on the outer periphery of the mist fog unit assembly, and when there is a possibility of dew / icing, the heater is operated to prevent dew / icing.
  • the above embodiment is basically based on the phenomenon that part of the liquid nitrogen discharged from the mist nozzle is rapidly vaporized and expanded to form liquid nitrogen in another liquid phase into fine droplets.
  • the gas in the head space of the container is replaced with inert gas using only the low-temperature vaporized gas that has been partially vaporized and expanded from nitrogen.At the same time, inert gas is supplied from the inert gas supply means provided separately. May be supplied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vacuum Packaging (AREA)

Description

明 細 書
陽圧包装体の製造方法及びその装置
技術分野
本発明は、 缶、 成形容器、 プラスチックボトル、 ガラス壜等の容器 におけるガス置換陽圧包装体の製造方法及びその装置、 特に不活性ガス 置換率を高めることができ、 且つ適正な陽圧となる容器内圧を安定して 得ることができて、 液化不活性ガスの少量充填が高精度でできて品質保 証に優れた低陽圧包装体を得ることができる陽圧包装体の製造方法及び その装置に関する。 背景技術
従来、 缶詰製造に際して、 フィラーからシーマへの搬送途中で缶のへ ッドスペースに液化不活性ガス (一般には液体窒素であるので、 以下液 体窒素で代表する) を流下させて充填し、 液体窒素の気化膨張が続いて いるうちに卷締密封することによって、 密封後に残留液体窒素の気化膨 張により内圧を発生させるようにした陽圧缶詰の製造方法が一般に行わ れている。 液体窒素を封入して缶に陽圧を発生させるのは、 陽圧により 缶に剛性をもたせて缶材料の薄肉化を可能にして使用材料の削減を図る ことを主目的とするものであるが、 缶内のガス (空気) を窒素 (不活性 ガス) で置換して酸素を除去することにより、 内容物の酸化によるフレ ーバ劣化を防ぐ効果もある。 さらに、 缶内を積極的に陽圧あるいは陰圧 にして、 缶内の圧力が所定圧に保持されているかを検査することにより - 缶詰の漏洩や細菌混入による内容物の変敗の検出を可能にして、 内容物 の安全性を保証する目的もある。
しかしながら、 従来の液体窒素を封入して内圧を発生させる方法は、 特に液体窒素充填時及び蓋卷締時に液体窒素が缶外に飛散してしまうた め充填量のバラツキが大きく、 所定内圧を安定して得ることができない 欠点がある。 そのため、 缶の使用材料を設定内圧に耐える限界まで薄く することができず、 効果的に使用材料を削減することができないという 問題がある。 特に、 低内圧缶詰を得るために、 液体窒素を少量充填する 場合は、 目標充填量に対するバラツキが一段と大きくなるので、 従来の 液体窒素充填方法では少量の液体窒素を充填して低陽圧缶詰を安定して 得ることができなかった。 ミルク入り飲料等の腐敗し易い内容液の場合、 腐敗菌による膨脹が判明し易いように負圧缶詰又は低陽圧缶詰が要求さ れるが、 上記のように内圧のバラツキが大きいと腐敗菌による膨脹か液 体窒素充填による内圧のバラツキによるものであるか判別できなくなる。 そのため、 これまで腐敗し易い内容液の場合、 液体窒素充填により缶内 圧を発生させて缶強度を高める手段が適用できず、 肉厚の缶に充填しな ければならかなった。
また、 従来の液体窒素充填法による陽圧缶の内圧のバラツキは、 内容 物充填量のバラツキによっても生じる。 即ち、 仮に定量の液体窒素が残 留したとしても、 内容物充填量が増加 (即ち、 ヘッ ドスペースが減少) したとき、 液体窒素の気化膨張で充填内圧が増大してしまうことになり、 より正確な内圧を得るためには内容物充填量のバラツキに合わせて、 液 体窒素充填量を調整しなければならず、 従来の方法では達成することは 不可能であった。
また、 液体窒素を霧状にして缶に充填することが提案されている (特 公昭 5 9— 9 4 0 9号) 、 大気圧下での沸点が一 1 9 6 °Cという極低 温で非常に気化し易い液体窒素の場合、 沸点が高い通常の液体と相違し て加圧常態で噴出しても安定して霧状にすることはできないため、 未だ 実用化されていない。 その原因は、 大気中に液体窒素を噴出すると、 常 温大気により液体窒素が熱せられて気化し、 噴霧前に噴霧ノズル内で気 化して圧力変動や、 噴出口への気泡の嚙み込みが起こり、 脈動を生じて しまうことにある。 特に、 高圧状態で噴出すると液体窒素が噴霧ノズル を通過する際の沸点降下度が大きくなり、 ノズル内で液体窒素が沸騰し て脈動が生じ、 微細粒を安定して得ることはできない。 また、 他の原因 として、 大気中に含まれる水分がノズル先端で氷結し、 噴出口を塞いで しまい噴霧量が安定しないことにある。 さらに、 例え安定して噴霧がで きたとしても、 噴霧した液体窒素の噴霧パターンが容器の搬送方向と整 合性がないと容器への液体窒素微細粒の充填精度が悪くなり、 そして特 に高速ラインの場合は液体窒素微細粒が内容液面への到達時に跳ね返つ て容器外へ飛散してしまうことがあり、 極めて高い精度で液体窒素の少 量充填が求められる低陽圧缶詰を得るには未だ満足するものではなかつ た。
従って、 本発明は、 陽圧包装体の充填内圧精度を向上させて、 低内圧 でも所定内圧を安定して得ることができ、 且つ陽圧包装体の不活性ガス 置換率を従来よりも飛躍的に向上させることができる陽圧包装体製造方 法及びその装置を提供するを目的としている。
また、 本発明のより詳細な目的は、 液化不活性ガス又は固化不活性ガ スをより安定的に微細粒化して微少量充填が精度良くでき、 品質保証性 に優れた低陽圧ガス置換包装体を得ることができ、 特に低酸性飲料液缶 詰にも薄肉缶の使用を可能とする陽圧包装体製造方法及びその装置を提 供することにある。 発明の開示
本発明は、 基本的には、 気化して不活性ガスとなる液化不活性ガス又 は固化不活性ガスを微細粒にして、 内容物が充填された容器へッ ドスべ ース内にガス置換陽圧包装体の最終平衡温度以下の低温不活性ガスと共 に吹き込んで密封することにより、 へッ ドスペース内のガスを不活性ガ スに置換すると共に、 密封後の残留液化不活性ガス微細粒又は残留固化 不活性ガス微細粒の気化膨張と前記低温不活性ガスの温度膨張により内 圧を発生させるものである。 このことにより、 内圧精度と不活性ガス置 換率の高い陽圧包装体を得ることができ、 上記目的が達成される。 前記液化不活性ガスの微細粒は、 液化不活性ガスを液化不活性ガス貯 留タンクから断熱経路により前記噴霧ノズルの細孔入口まで気化を防い で供給して、 前記細孔を液体状態で通過させて大気中に放出し、 該細孔 を出た直後に液化不活性ガスが急激な気化膨張作用を起すことにより、 未だ液相状態にある他の液化不活性ガスを微細粒化させることにより確 実に生成することができる。 前記液化不活性ガスとしては基本的には液 体窒素、 固体状ガスとしてはドライアイスが採用されるが、 必ずしもそ れに限るものではない。
前記低温不活性ガスは、 前記噴霧ノズルに所定圧力で供給された液化 不活性ガスの一部が沸騰気化することにより生成された気化ガスを使用 するが、 不活性ガス供給源から別経路により供給される不活性ガスとを 併用しても良い。 容器内への充填精度を高めるためには、 液化ガスを広 がり角 20° 〜 1 00° の噴霧パターンを形成するように噴霧ノズルよ り容器開口部に向けて噴霧することが望ましい。 その際、 前記液化ガス の噴霧流量は 0. 2g/s〜4. Og/sの範囲が好ましく、 噴霧流量が 0. 2g/sより少ないと所望の容器内圧が得られないし、 4. Og/sを越える と噴霧時に脈流がが発生しやすく、 広がり角も安定せず、 安定した噴霧 流が得にくい。 より好ましい噴霧流量は、 0. 2g/s〜3. Og/sの範囲 である。 なお、 噴霧パターンとは、 ノズル孔から出た直後に形成される 液体窒素の多数の微細粒の空間への分布状態を云う。 ガス置換陽圧包装 体を製造するために容器内に充填される液化ガスとしては、 一般に液体 窒素が採用されており、 本発明も液体窒素の噴霧充填に良好に適用でき る。
前記噴霧パターンは、 水平断面形状を方形状乃至は楕円形状に近似す る形状にすることによって、 効率良く液化ガス微細粒を容器内に充填で き望ましい。 前記噴霧ノズルより噴霧されて形成される液化ガスの微細 粒は、 その粒径が 2ram以下であることが望ましく、 2mmを越える粒径で あると従来の流下充填の場合と変わらず、 微小な充填制御が困難である c また、 液化ガスを効率良く且つ確実に微細粒化させるには、 前記液化 ガスを噴霧する際のノズル温度が、 液化ガスの沸点以上沸点 + 75°C以 下、 好ましくは沸点以上沸点 + 50°C以下であり、 例えば液体窒素を噴 霧する場合は、 一 1 20°C以下乃至液化ガス沸点以上、 好ましくは一 1 50°C以下液化ガス沸点以上である。 また、 噴霧圧力は、 lkPa〜 1 5 O kPa、 好ましくは l kPa〜 3 O kPaである。
前記液化ガスを噴霧する際、 前記噴霧ノズルを、 比較的低温のインナ 一パージガスと比較的高温のァウタ一パージガスの二重のパージガスに より、 外気と遮断するのが望ましい。 しかしながら、 液化ガス貯留タン ク、 特に加圧されている液化ガス貯留タンクから該タンク内で気化した 低温の気化ガスのみでも良い。
さらに、 液化ガスの噴霧流が容器の進行方向の速度成分を有するよう に、 前記液化ガスを容器の進行に対して鉛直から 5 ° 〜4 5 ° 、 好まし くは 1 5 ° 〜4 0 ° 傾斜して噴霧するのが望ましい。 そして、 前記噴霧 ノズルの先端部から容器充填面に達するまでの噴霧距離は、 5〜1 0 0 mmが望ましく、 より好ましくは 4 5〜6 0 mmである。 以上のような手段 によって、 密封後の容器内圧が 0 . 2〜0 . 8 kgf/cm2の低陽圧包装体を 安定して得ることができる。
前記容器が金属缶の場合は、 基本的にはフイラ一からシーマーへの搬 送中の缶に前記液化不活性ガスを噴霧充填することができるが、 前記噴 霧ノズルをシーマーのアンダーカバーガッシング装置として設けること によって、 アンダーカバーで容器内に液化不活性ガスを噴霧することも できる。
また、 本発明の陽圧包装体の製造装置は、 液化不活性ガス貯留タンク と、 該液化不活性ガス貯留タンクの底部に連通して設けられた噴霧ノズ ルを有する噴霧手段とを備え、 前記噴霧手段は、 液化不活性ガスの流量 を制御するバルブ、 ノズル細孔を有する前記噴霧ノズル、 前記バルブか ら前記ノズル細孔まで液化ガスを供給する断熱経路を有してなることを 特徴とするものである。
前記断熱経路は、 液化不活性ガス流路を真空断熱する等の手段が採用 できるが、 前記バルブから前記噴霧ノズルまでの液化不活性ガス流路の 外周部を、 液化不活性ガス貯留タンクから液化不活性ガスが流入するノ ズル冷却槽で囲って構成することによって、 前記噴霧ノズルをより効果 的に冷却 ·温度コントロールすることができる。 液化不活性ガスをより 確実に微細粒にする噴霧ノズルの構成としては、 開口部面積が 0 . 1 5 〜4 mm2、 好ましくは 0 . 2〜 3 mm2である細孔からなる噴霧ノズル孔を 有しているのが望ましい。 噴霧ノズル孔の開口面積がその範囲以下では、 噴出の際に気化して微細粒化が困難であり、 その範囲以上であると液滴 が大きくなり過ぎて流下状態に近くなり微細粒が得られにく くなる。 また、 前記噴霧ノズルを、 鉛直方向下向きに 5 ° ~ 4 5 ° 、 好ましく は 1 5 ° 〜4 0 ° 傾いて配置することによって、 噴霧流に容器搬送方向 の速度成分を付与し、 液化ガス微細粒を容器内の液面にソフ トランディ ングさせることができて望ましい。 また、 前記噴霧手段は、 少なく とも ノズル出口部近傍をパージガスで外気と遮断して霜付きを防止するパ一 ジ手段を備えているのが望ましい。 前記パージ手段は、 インナーパージ ガス路を形成するィンナーパージガスフ一ドと、 アウターパージガス路 を形成するアウターパージガスフードの二重のパージガスフードで形成 し、 且つ前記インナーパージガスフードは、 前記噴霧ボディ下部外周部 からノズル先端を囲うように形成することによって、 ノズル先端に面す るところを噴霧くちばしとして構成することができる。 しかしながら、 不活性ガス貯留タンクの気化ガス、 特に加圧タンクから発生する気化ガ スをパージガスとして導入すると、 2重のパージ路を形成しなくても、 十分にパージすることができる量の低温パージガスを得ることができる ので、 構造が簡単になる。
噴霧手段は、 それを構成する各部材を噴霧ボディに一体に取り付けて 噴霧手段組立体として構成することによって、 組立がより簡単にでき、 望ましい。 そして、 前記噴霧手段を液化ガス貯留タンクの底部に容器搬 送方向に沿って複数個配置するか、 あるいは液化ガス流下手段と組合せ て配置してマルチノズル構成とすることによって、 内圧に対するバラッ キを低減してより精密充填が可能となり望ましい。 また、 噴霧量が多い 場合にも高精度の液化ガス充填が可能となる。 前記液化ガス貯留タンク に、 該液化ガス貯留タンク内に液化ガスを供給前に乾燥加熱ガスを供給 して該タンク内の水分を除去する初期パージ機構を連結し、 初期パージ を行うことによって、 タンク内に氷ができることがなく望ましい。 図面の簡単な説明
図 1は、 この発明に係る陽圧包装体の製造装置の基本的構成を示す模 式図、
図 2は、 シーマ一内での自転による液体窒素粒子の飛散距離と粒子径 との関係を示すグラフ、
図 3は、 陽圧包装体における内容液充填量と充填内圧の関係を示すグ ラフ、
図 4一 A〜図 4一 Dは、 本発明を陽圧包装体製造方法による陽圧缶詰 の製造工程における現象を示す模式図、
図 5は、 本発明の実施形態に係る液化ガス嘖霧充填装置の断面図、 図 6は、 噴霧手段組立体の三次元断面図、
図 7は、 噴霧くちばし出口部から見た噴霧ノズルの底面図、 図 8は、 缶内圧と液化ガス噴霧流量との関係を表す線図、
図 9は、 缶内圧と噴霧ノズル孔面積との関係を表す線図、
図 1 0は、 容器と噴霧ノズルの位置関係を表す模式図、
図 1 1は、 噴霧パターンの断面図、
図 1 2— A 1図及び 1 2— A 2は、 本発明の他の実施形態に係る液化 ガス噴霧充填装置のノズルチップの正面図及び底面図、 図 1 2— B 1図 及び 1 2— B 2 1は、 本発明のさらに他の実施形態に係る液化ガス噴霧 充填装置のノズルチップの正面図及び底面図 、
図 1 3は、 本発明の他の実施形態に係る液化ガス噴霧充填装置の断面 図、
図 1 4— Aは、 本発明のさらに他の実施形態に係る液化ガス噴霧充填 装置の模式図であり、 図 1 4— Bはその要部拡大図、
図 1 5は、 本発明のさらに他の実施形態に係る液化ガス噴霧充填装置 の断面図である。 発明を実施するための最良の形態
本発明の実施形態を説明する前に、 まず本発明の基本原理について説 明する。 以下の説明では、 ガス置換陽圧包装体の代表的な例として、 金 属缶に液体窒素を充填して不活性ガス置換陽圧缶詰を得る場合について 説明する。
従来の液体窒素充填缶詰における缶内圧のバラツキの発生原因は、 ① 液体窒素は極低温 (沸点が一 1 9 6 °C) であるため、 液体窒素充填時に 液体窒素が内容液面と衝突すると液面との温度差によつて突沸現象が起 きて液滴状になって外部に飛散し易いこと、 及びその現象がシ一マまで の搬送中の振動、 及びシーマでの缶の高速自転 ·公転によっても起き、 さらに充填から卷締までの蒸発のため、 液体窒素の缶外部への飛散 ·蒸 発量が不確実で卷締時の残留液体窒素量が正確にコントロールできない こと、 ②液体窒素充填における卷締後の缶内圧の発生は、 液体窒素の気 化ばかりでなく、 密封時に液体窒素と共に缶へッ ドスペースに充填され る低温の気化ガスの温度膨張によっても起こるが、 これら要因によって 発生する内圧は容器の内容物充填量のバラツキによって影響を受ける。 そこで本発明者は、 上記①②の問題点を一挙に解決しようと研究した 結果、 気化して不活性ガスとなる液体又は固体を微細粒子状にして低温 の気化ガスと同時に、 容器へッ ドスペース内に充填することによって、 内圧のバラツキのない陽圧缶詰を安定して得ることができ、 しかも高置 換率でガス置換できることを見出し、 さらに、 研究した結果、 極低温の ため微細粒にすることが困難な液体窒素を安定して確実に微細粒にする 方法及び装置を見出し、 本発明に到達したものである。
まず本発明者は、 液体窒素の液滴の大きさに着目して、 液滴の直径と 缶の自転による液滴飛散距離を調べる実験を行った結果、 図 2のグラフ に示すような結果が得られた。 図の実験は缶の自転速度が 2 5 0 0 r p m、 卷締時間 0 . 2秒の場合である。 その結果、 液滴の粒径が小さいほ ど飛散距離が小さく、 粒子径 1匪であると、 約 3 0廳飛散するのに対し、 粒径が 0 . 1 mmであると飛散距離は約 0 . 3 ramしか飛散せず、 粒径が大 きくなるにつれて飛散距離はべき級数的に増大することが分かった。 従 つて、 この実験によれば、 自転速度 2 5 0 0 r p mでは液体窒素の粒径 が l mmを超えると、 飛散距離が通常の飲料缶では缶外に飛散してしまう ものが多くなり、 それ以下であると缶外への飛散が殆どなくなることが 予測される。 それ故、 液滴の粒径を小さく して微細粒にすることが、 液 体窒素の缶外への飛散防止に極めて有効であることが分かった。 液滴を 微細化することにより、 液体窒素の飛散距離が小さくなる原因として、 微細化すると慣性力の影響より粘性の影響が支配的となり、 飛散しなく なるものと考えられる。
また、 内容物充填量のバラツキによる缶内圧に与える影響を調べるた めに、 次の実験を行った。
満注容量 3 7 O ml缶に、 内容液充填量を 3 4 0 g〜3 5 0 gの間を 1 g刻みで変化させて充填し、 液体窒素微細粒と低温窒素ガスとを同時に 充填密封した場合の充填内圧の変化を測定した。 また、 比較例として、 従来の液体窒素を充填密封した場合と、 低温気体窒素のみを充填密封し た場合についても、 同様な実験を行った。 その結果を図 3に示す。 図 3 において、 線図 aが液体窒素微細粒とその気化ガス (低温ガス) 充填し た場合を示し、 線図 bが液体窒素だけの場合、 線図 cが低温気体窒素だ けの場合を示す。 なお、 線図 dは、 ホッ トパック充填の場合を示してい る。 図 3から明らかなように、 内容物充填量の増加に対応して、 液体窒 素の気化膨張では線図 bに示すように、 充填内圧が増大するのに対して、 低温気体窒素の温度膨張では線図 cに示すように、 充填内圧が減少する ことを示している。 このことから、 これらを適切な割合で混合すること によって、 内容物充填量のバラツキに関わらず充填内圧を線図 aに示す ように一定に保ことが可能となることが分かる。
以上の実験結果から、 充填内圧の絶対値は、 液体窒素の量と、 気体窒 素の温度を選択することにより、 所望の値に設定することができ、 充填 内圧の制御が可能となり、 内圧のバラツキの少ない陽圧缶詰を得ること ができることが分かる。 さらに本発明者は、 液体窒素を確実に微細粒にする方法を種々実験を 繰り返した結果、 ノズル孔を細孔に形成して、 該細孔を液体窒素が液体 状態で速やかに通過するように圧力、 流量及ぴノズル温度等の物理的条 件を整えて、 液体窒素を細孔から大気中に放出させることによって、 放 出された液体窒素の一部が急激に気化膨脹し、 他の液相状態にある液体 窒素を微小粒化させる現象を見出した。 本発明はこれらの知見に基づい てなされたものである。
図 1は上記課題を達成するためのガス置換陽圧包装体の製造装置の実 施形態の概略図を示している。 本実施形態は液体窒素供給機構に連結さ れている単一のノズルを有し、 該ノズルから液体窒素微細粒と低温気体 窒素を缶内に噴霧するようにしたものである。
図 1において、 5 0はノズル体であり、 該ノズル体は細孔からなるノ ズル孔 5 1を有し、 その外周部は破線で示すように空気断熱や断熱材等 による簡易断熱手段 5 2が施されている。 液体窒素が気化膨脹作用によ り良好にミス トを形成するためには、 液体窒素がノズル孔を通過する間 は沸騰せず、 ノズル孔を通過して大気中に放出された直後に一部の液体 窒素が直ぐに気化膨脹するような温度 (配管内の圧力に対応した沸点温 度が望ましい) となるようにノズル孔内壁温度を維持する必要がある。 このような温度条件を満たすように前記の簡易断熱手段で外部からの熱 の流入をコン トロールしている。
噴霧ノズル 5 0は、 液体窒素供給タンク 5 3を含む液体窒素供給機構 に連結されている。 即ち、 噴霧ノズル 5 0は、 真空断熱構造である液体 窒素供給タンク 5 3に配管 5 4を介して連結され、 配管の途中に流量調 整弁 5 6が設けられている。 配管 5 4は、 噴霧ノズル 5 0に至るまで各 弁を含め真空手段 5 7が施され、 液体窒素供給タンク 5 3から液体窒素 を蒸発させることなく噴霧ノズル 5 0に供給できるように外部からの熱 の流入を遮断する構造となっている。 液体窒素供給タンク 5 3の気相部 には外部に設けられた加圧ガスボンベ 5 8が配管 5 9を介して連結され、 該配管の途中には圧力調整弁 6 0が設けられ、 液体窒素供給タンクに加 圧ガスを供給することによりタンク内圧を高めることができるようにな つている。 また、 液体窒素供給タンクの気相部には、 外部に開放する配 管 6 1が圧力調整弁 6 2を介して設けられ、 液体窒素タンクの内圧が設 定値よりも高くなった場合、 タンク内のガスを外部に放出できるように なっている。 前記各弁は、 制御装置 6 3により制御され、 噴霧ノズルを 所望の圧力及び流量で液体窒素を供給するようになっている。 液体窒素 がノズル孔 5 1から放出される圧力 ·流量を適宜コン トロールすること によって、 該液体窒素の気化率と粒子形成率が相違するので、 これらを コントロールすることによって、 容器内に充填する低温窒素ガス量と液 体窒素微細粒量を制御することができる。
本実施形態のガス置換陽圧包装体製造装置は、 以上のように構成され、 制御装置 6 3の指令に基づき圧力調整弁 ·流量調整弁が作動して、 液体 窒素供給タンク 5 3の内圧、 液量等が設定値に制御されて、 ノズル孔 5 1から放出される液体窒素の所望の物理的条件を満たした放出圧 ·流量 が得られる。 その結果、 噴霧ノズル 5 0から放出される液体窒素の一部 が気化し、 その気化膨張により未だ液相状態にある液体窒素を微細粒化 し、 低温窒素ガスと液体窒素の微細粒が生成される。 従って、 単一のノ ズルから液体窒素の微細な粒子と低温窒素ガスとを同時に容器内に充填 することができる。 その際、 液体窒素の気化してガス化する割合と微細 粒化とする割合は、 液体窒素の全噴霧量に対して微細粒化した液体窒素 の質量が 1 5〜 6 0 %程度となるように、 前記放出圧力 ·流量を制御す ることによって、 容器へッドスペースのガス置換と密封後の所定内圧を 得ることができる。 ガス置換率を高めるためには、 液体窒素の気化率は 上記範囲 (即ち、 液体窒素の 4 0〜 8 5重量%) 内にあるのが好ましい。 上記のように、 液体窒素微細粒と気体窒素を缶内に吹き込むことによ つて行われるガス置換の作動状態が図 4 _ A〜図 4 _ Dに模式的に示さ れている。 所定の粒径の液体窒素微細粒と気体窒素の混合体 (以下便宜 的に混合ガスという) をヘッ ドスペースに吹き付けることによって、 図 4— Aに示すように、 へッドスペース内の空気が追い出されて窒素置換 される。 これは、 従来の単に液体窒素を流下した場合と相違して、 液体 - 窒素が微細粒化していると共に、 気化した低温の気体窒素も同時に吹き 込まれるので、 混合ガス状態となつてへッ ドスペース一杯に拡がって充 填されるからである。 図中、 矢印 aが混合ガスの缶への吹き出し状態を 示し、 6 5がヘッ ドスペース内の空気と置換された混合ガスを示し、 矢 印 bが空気の流れを示している。 ガス置換された容器はシーマーに搬送 されて卷締めが行われるが、 その搬送中、 図 4— B、 図 4— Cに示すよ うに液体窒素微細粒が気化膨張するので、 その膨張圧により缶内から缶 外への窒素ガスの流れ (矢印 cで示す) が発生し、 缶内への空気の流入 を阻止する。 図 4一 Bにおいて矢印 dは空気の流れを表す。 シーマ内で は公転 · 自転運動によって缶が回転するが、 液体窒素微細粒は慣性力の 影響よりも粘性の影響が支配的となるので、 回転運動に影響されずに液 体窒素微細粒が外部に飛散することがない (図 4— C ) 。 そして、 液体 窒素微細粒の気化膨張が続いているうちに蓋 6 6を被せて卷締密封を行 う (図 4一 D ) ことにより、 密封後に残留液滴の気化膨張と低温気体の 温度膨張で内圧が発生して、 陽圧缶となる。 なお、 図中、 6 7は缶、 6 8は内容液を示している。
図 5〜図 7は、 上記実施形態における液体窒素供給タンクから噴霧ノ ズルまでの具体的な機構を示している。
図 5はその断面を示し、 図 6はその噴霧手段組立体部分の立体断面図 を示している。 図中、 1は真空断熱槽を有する二重壁の真空断熱構造に 形成された液化ガス (液体窒素) 貯留タンク (以下、 単にタンク とい う) であり、 前記実施形態の液体窒素供給タンクに相当する。 その底部 開口部に液体窒素を微細化して噴霧するための噴霧手段が設けられてい る。 噴霧手段は、 基本構成として液体窒素の流量を制御するバルブ 2 (前記実施形態の流量調整弁に相当する) と噴霧ノズル (以下、 単にノ ズルという) 3からなり、 液体窒素を確実に微細粒化して噴霧する付加 的構成として、 バルブ 2からノズル 3までの液体窒素流路 4、 該流路を 冷却するノズル冷却槽 5、 ノズル外周部及び出口部を外気と遮断して霜 付きを防止するパージ手段等を有し、 本実施形態では図 2の立体断面図 に示すように、 これらが噴霧ボディ 6に一体に取り付けられて噴霧手段 組立体 1 0を構成している。
噴霧ボディ 6は、 図 6に示すように、 タンク 1の底壁に形成された開 口部に合致する内径を有する円筒状外壁 1 1を有し、 その底壁 1 2を貫 通して液体窒素通路を構成するパイプ 1 3が立ち上がって設けられてい る。 従って、 噴霧ボディの円筒状外壁 1 1 とパイプ 1 3は二重構造にな つて、 円筒状外壁 1 1 とパイプ 1 3の間には、 タンク 1から液体窒素が 流入するノズル冷却槽 5を構成している。 該ノズル冷却槽 5は、 図示の ようにノズル近傍まで延びており、 パイプ 1 3とノズル 3を常時液体窒 素で冷却するようになっている。 それにより、 液体窒素をタンクからノ ズルまで沸騰気化させることなく、 且つ沸点近傍までの温度勾配を持た せてノズルに供給することを可能にしている。
パイプ 1 3の上端開口部はタンク 1の開口部に臨み、 その入口部には ノズルへの液体窒素の供給を制御するバルブ 2の弁座 1 4が設けられて いる。 バルブ 2はニードルバルブで構成され、 弁座 1 4に対向して上下 動可能に設けられる弁棒 1 5がタンク内を貫通してタンク上部に突出し ており、 図示しない弁制御手段により外部から駆動制御できるようにな つている。 パイプ 1 3の上端には、 弁座 1 4の上方に位置して気泡偏向 部材 1 6が設けられノズル冷却槽 5に貯溜されている液体窒素が気化し ても気泡がパイプ 1 3内に侵入するのを阻止して、 液体窒素の微細粒化 の妨げとなる気泡のノズルへの浸入を阻止している。
パイプ 1 3の下端部は、 図 5に示すように容器の進行方向 Aに対して 噴霧方向が鉛直方向下向きに αだけ傾くように傾斜面に形成され、 該傾 斜面にノズル 3が水平面に対して α傾いた状態で固定されている。 傾斜 角 αは、 後述する理由により 5 ° 〜4 5 ° の範囲内で適宜選択される。 ノズル 3は、 ノズルチップ 1 7と該ノズルチップを噴霧ボディに固定す る保持口金 1 8で構成されている。 ノズルチップ 1 7は、 下端中央部に 容器の進行方向に対して直角に溝 1 9が形成され、 その中央に液体窒素 流路に連通する細孔からなるノズル孔 2 0が形成されている。 保持口金 1 8は、 ノズル孔 2 0よりも充分に大きな開口を有している。 ノズル 3 が上記構造を有することによって、 該ノズルから噴霧される液体窒素は、 所定の広がり角をもって進行方向に対して扁平で全体として直方形状〜 楕円形の扁平状の噴霧パターンを形成して、 進行方向に速度成分を有す るように傾斜して噴霧される。 噴霧パターンの広がり角は、 前記ノズル チップの形状と噴霧圧とによつて左右されるが、 本実施形態では後述す るように、 噴霧の広がり角を 2 0 ° 〜1 0 0 ° の範囲内で適宜選択する。 噴霧ボディ 6の外周部には、 パージ手段が設けられている。 パージガ スは、 液体窒素で氷結する成分 (水分等) を含んでいない乾燥ガスであ れば良く、 好ましくは窒素や乾燥空気が良い。 パージガス流量が少ない と外気を充分にパージできなくてノズルに霜付きが生じる。 一方、 パー ジガス流量が多いと液体窒素の安定的噴霧を阻害し、 噴霧流量の減少と バラツキの増大を招く。 さらに、 パージガス温度が高いと、 ノズルや液 体窒素噴霧流を加熱することになり、 同様に噴霧流量の減少やバラツキ の増加を招く。 従って、 液体窒素を良好に噴霧するには大気温よりも低 いパージガスが望ましいが、 装置の最外層は常温大気と接しているので、 結露 ·霜付きを防ぐためには、 この部分を過度に冷却することは望まし くない。
この観点から、 本実施形態では、 パージガス流路をインナーバージガ ス路 2 1 とアウターパージガス路 2 2と二重に形成して、 ィンナーバー ジガス路 2 1には比較的低温のインナーパージガスを、 アウターパージ ガス路 2 2は比較的高温のパージガスを流すように構成してある。 図中、 2 3は噴霧ボディとの間にィンナーパージガス路を形成するためのィン ナ一パージフードであり、 噴霧ボディ下部外周部からノズル先端を囲う ように形成され、 ノズル先端に面するところは噴霧くちばしとなってい る。 噴霧くちばしの噴霧誘導口 2 5の形状は、 噴霧パターンに対応して おり、 図 5及び図 6に示すように本実施形態ではその出口端で容器搬送 方向と直角方向が長径となる全体として扁平状楕円形となるように、 上 端部から所定の広がり角で断面扁平状楕円形に形成されている。 上記広 がり角は 2 0 ° 〜 1 0 0 ° の範囲で、 液体窒素を充填する容器に応じて 選択される。 なお、 図 7は判り易くするために、 図 5において噴霧手段 組立体 1 0の下方から矢印 B方向に噴霧ノズル部を見た場合を示してい る。 なお、 2 4は噴霧誘導口 2 5の上端開口部であり、 噴霧ノズルに面 して開口している。
さらに、 ィンナーパージフード 2 3の外周部にはその外周部との間に アウターパージガス路 2 2を形成するアウターパージフード 2 6が固定 されている。 該アウターパージフード 2 6の外周部には、 外周円筒状の 保護口金 2 8がー体に取付けられ、 アウターパージフードとの間にヒー タ 2 7が設け、 必要に応じてアウターパージフードを加熱して露結 ·氷 結を防止している。 図中、 2 9はインナーパージガス供給管であり、 本 実施形態ではタンクの気相部分に連結され、 タンク内の気化ガスをィン ナーパージガスとして利用している。 3 0はアウターパージガス供給管 であり、 外部の窒素ガスタンクに連結されている。 3 1はタンクカバー である。
なお、 図示されていないが、 タンク 1には、 貯留されている液体窒素 3 3の液面を計測する液面レベルセンサー、 タンク内で気化した気化ガ スを大気に逃がしてタンク内圧を一定に保っための排気管、 又はタンク 内に外部より加圧ガスを導入してタンク内圧を制御するための加圧管が 圧力調整弁を介して接続されており、 これらの液面レベル、 排気量、 加 圧ガス量を適宜制御することによって嘖霧圧を制御することができる。 また、 タンク内に液化ガスを貯留するに先立ち、 タンク内を殺菌し且つ タンク内の水分を完全に除去するために、 初期パージ機構を備えている。 該初期パージ機構は、 例えばタンク内を蒸気殺菌するための蒸気の供給 と、 該蒸気殺菌後にタンク内を乾燥させるために、 加熱不活性ガスや加 熱空気を供給する機構からなる。
本実施形態の液体窒素噴霧充填装置は、 以上のように形成され、 タン クの底部開口一弁座 1 4の弁孔ーパイプ 1 3を経てタンク 1からノズル チップ 1 7のノズル孔 2 0までの液体窒素流路を形成する。 パイプ 1 3 は外周部が液体窒素で冷却されて外部からの熱流入が阻止されているの で、 タンク 1からノズル孔 2 0までの液体窒素流路は断熱経路となって いる。 しかしながら、 タンクと違って完全な断熱構造ではないので、 噴 霧ボディ 6及ぴノズルチップ 1 7への外気熱の流入は完全に阻止されず、 パイプ 1 3を通過する液体窒素は熱流入の影響を受け温度が次第に上昇 し、 温度勾配が生じる。 該温度勾配を利用することによって、 ノズル孔 2 0を通過する液体窒素を噴霧圧での沸点近くまで上昇させることが可 能であり、 ノズル孔 2 0から放出する液体窒素を効果的に微細粒化する ことができる。
ところで、 極低温の液体窒素を容器内に正確に定量充填するには、 液 体窒素の安定した噴霧と、 噴霧された液体窒素が容器内に適正に充填さ れることが要求される。 本発明では、 液体窒素の安定した適正な噴霧の ための噴霧条件として、 ノズル温度、 ノズル孔径、 噴霧圧、 噴霧流量等 について種々検討し、 また噴霧された液体窒素が容器内に適正に充填す る条件として、 噴霧パターン、 噴霧粒径、 噴霧角、 噴霧距離について検 討した。
噴霧パターンは、 噴霧流量と噴霧広がり角に左右され、 また噴霧され た液体窒素の粒径によっても左右される。 ところで、 充填時の缶内圧は 噴霧流量 (即ち、 缶内充填量) に関係し、 噴霧流量は噴霧圧とノズルチ ップの穴面積によって決まるので、 充填缶内圧を高くするためには、 ノ ズル穴径を大きくする、 及び又は噴霧圧を高くする必要がある。 しかし ながら、 ノズル孔径を大きくすると、 液滴の直径が大きくなり、 充填液 中に潜り込んで突沸する現象が起こる。 また、 液滴の入る個数による充 填内圧のバラツキや、 液滴の飛散によるバラツキの影響が大きくなり、 充填缶内圧精度が悪くなる。 そこで、 缶に 6 5 °C温水を 2 4 0 g充填し、 ライン速度 1 5 0 0 c p mで稼動して、 単位時間当たりの液体窒素噴霧 流量と缶内圧のバラツキの関係を調べた。 なお、 液体窒素の噴霧流量は、 ノズルより噴霧した液体窒素を、 液体窒素を満たした容器を上皿上に設 置した天秤で捕集し、 単位時間当たりの重量増加量を測定することによ り求めた。 その結果を、 図 8に示す。
図 8は、 噴霧圧が lkPa、 5kPa、 1 0 kPaの場合の液体窒素噴霧流量 と缶内圧との関係を示している。 図から明らかなように、 何れの噴霧圧 の場合も噴霧流量が増えるにつれて次第にバラツキが大きくなり、 4. Og/sを越えるとバラツキがかなり大きくなつた。 また、 逆に噴霧流量 が少なければ缶内圧のバラツキは少なくなるが、 0. 2g/s以下である と、 所望する缶内を得ることはできないので、 噴霧流量としては 0. 2 g/s〜4. Og/sの範囲が好ましく、 より好ましくは 0. 2g/s~3. 0g /sの範囲である。
一方、 ノズル孔面積と液体窒素噴霧量との関係を、 上記の各噴霧圧 1 kPa、 5kPa、 1 0 kPaの場合において、 上記実施形態の形式のノズルの ノズル孔面積を 0. 1〜4ram2の範囲で変化させて、 ノズル孔面積に対 する液体窒素噴霧流量を測定した。 その結果、 図 9のグラフに示すよう に、 ノズル孔面積と噴霧流量は強い相関性を持ち、 ノズル孔面積を 0. 1 5〜4. 0mm2の範囲にすることによって、 噴霧流量 0. 2g/s〜4. 0g/sの噴霧流量を得ることができる。 孔面積が 4mm2であると噴霧流量 2. 0g/s以下の流量を得ることは困難であるので、 噴霧流量 0. 2g/s 〜3. 0g/sを確実に得るには、 ノズル孔面積は 0. 2〜 3mm2の範囲で 選択すれば良い。
一方、 噴霧の場合、 図 1 0に示すように、 液体窒素の微細粒が空間内 に広がって分布するので、 筋状に流下する場合と違って缶の開口部の全 面積あるいは広い範囲にわって液体窒素の微細粒が充填される。 その結 果、 液体窒素の蒸発が充填液面の広い範囲で起こり、 酸素除去効果が流 下の場合と比べて高まる利点がある。 その広がり角 ]3 (図 1 0) は、 ノ ズルチップ 1 7の形状と噴霧圧とによって決まる。 広がり角)3が大きい と開口部の広い範囲に広がるが、 微細粒があまり広い範囲に分布すると、 缶の開口部からはみ出すことになり、 効率が悪くなる。 従って、 噴霧の 広がり角の範囲は、 容器が缶詰の場合は、 20° 〜1 00° の範囲が望 ましい。 広がり角が 2 0 ° 以下であると、 殆ど流下状態に近くなり、 上 記利点が発揮されない。 噴霧の広がり角は容器の口径と噴霧距離によつ ても影響されるが、 例えば実噴霧距離が 3 5〜 6 5匪、 容器口径 5 0 mm の場合、 広がり角は 7 1 ° 〜4 2 ° の範囲がより望ましく、 容器口径 6 0 mmの場合は広がり角は 8 6 ° ~ 5 4 ° の範囲がより望ましかった。 噴霧圧は、 本実施形態ではタンク内の圧力を測定し、 噴射孔から液面 までの高さから計算されるへッ ド圧を加算して求めて制御する。 即ち、 噴霧圧は、 液体窒素の蒸発によって生じる自生圧、 タンクの外部から印 加する圧力、 及び液体窒素の自重によって生じるへッ ド圧の合計として 考える。 液体窒素の微細粒を作り出すには噴霧圧がかかることが必要で あるが、 噴霧圧が高い場合は沸点上昇により液体窒素の過剰な気化が生 じ充分な噴霧状態とならない。 一方、 タンク内圧が高い場合、 液体窒素 供給源からの給液が困難となり、 特に気液分離器から液体窒素の供給を 受ける場合は顕著になる。 このことから噴霧圧範囲は、 l kPa~ 1 5 0 k Pa、 特に大気開放型気液分離器を使用する場合は l kPa〜 3 O kPaの範囲 が好ましかった。
また、 噴霧によって形成される液体窒素の微細粒の粒径は、 必ずしも 霧や靄状の極微細粒である必要はなく、 充填時に液面との衝突による液 滴の飛散がなく、 且つ所定量が容器内に液体窒素として残留できる条件 を満たすものであれば良い。 実験の結果、 噴霧により形成される微細粒 の粒径は、 2匪以下であれば上記条件を満たし、 2讓を越えると従来の 流下充填の場合と変わらなかった。 そして、 平均粒径 l mm以下の微細粒 の場合が、 より上記条件を効果的に満たし望ましかった。
以上の条件設定で液体窒素を良好に微細粒化することができるが、 さ らに本実施形態では、 噴霧された液体窒素微細粒がより正確に容器内に 充填させるために、 液体窒素の噴霧角と噴霧距離について検討した。 ま ず、 ノズルから噴霧される液体窒素の微細粒が、 内容液面にソフトラン ディングして、 容器液面到達時に跳ね返ることなく確実に容器内に充填 できるように工夫した。 そのための技術手段として、 液体窒素の噴霧方 向を容器の進行方向に曲げて、 噴霧流に容器進行方向の速度成分がでる ように、 図 5に示すようにノズルチップ 1 7を容器の進行方向に対して 噴霧角 αだけ曲げて配置した。 噴霧角の最適値について実験したところ、 噴霧角は 5 ° 〜4 5 ° が適正であり、 4 5 ° 以上になると液体窒素微細 粒の飛行距離が長くなり、 液体窒素の蒸発量が多くなると共に、 容器か ら噴霧流がはみ出してしまうことがある。 また、 5 ° 未満であるとソフ トランディング効果が少なかった。 噴霧角が 1 5 ° 〜 4 0 ° の範囲が上 記効果をより満たしたので、 より好ましい範囲である。
また、 噴霧距離については、 ノズルチップと充填液面を近付けると、 噴霧距離に対する缶内圧の変動が大きくなり、 充填内圧精度が低下する。 一方、 噴霧距離が遠くなると、 缶の外側にこぼれ出てしまい充填内圧が 低下する。 また、 大気中での蒸発も影響する。 従って、 これらの中間領 域に、 距離に対して缶内圧が変動しない領域がある。 この事実を実験に より確認したところ、 噴霧距離として 5〜 1 0 0膽の範囲が採用可能で あつたが、 より望ましくは 4 5〜 6 O mmの範囲が殆ど缶内圧の変化がな く望ましい結果が得られた。
上記実施形態では、 単一の噴霧ノズルにより噴霧充填場合について説 明したが、 噴霧量を大きくするためには、 単純にはノズル孔径を大きく すれば良いが、 ノズル孔面積が上記のように 0 . 1 5〜4 . 0 mm2の範 囲を越えると微小粒滴の形成が困難となるので、 ノズル孔径を大きくす るのに制限を受ける。 その問題を解決するためには、 単一のタンクに複 数の噴霧手段を設ければ良い。 このように構成することによって、 該嘖 霧充填装置の下方を移動する容器に複数の噴霧手段により微細粒化され た液体窒素を順次充填することができ、 液体窒素微細粒を多量に充填す ることができる。 なお、 噴霧流量を多量にする場合でなくても、 複数の 噴霧ノズルを設けることによって、 例えば一定充填量を複数の噴霧ノズ ルに分割して充填することによって、 1本のノズルで充填した場合と比 ベてバラツキが抑制される効果があるので、 高速ラインには望ましい。 また、 噴霧量を大きくするための他の手段として、 単一の噴霧ノズル に複数のノズル孔を形成する方法がある。 図 1 2は、 複数 (2個) のノ ズル孔を設けたノズルチップを示す。 図 1 2— A l, A 2に示すノズル チップ 3 6は、 ボディ 3 7の中方部に略長方形状に突出して形成された 噴霧誘導口部 3 8の下端に 2条の溝 3 9を形成し、 各溝の中央部に略長 方形状の細孔からなるノズル孔 4 0が形成された噴霧口 4 1が前記ノズ ル孔が溝 3 9に直交するように設けられている。
また、 図 1 2— B l、 B 2に示すノズルチップ 4 3は、 ボディ 4 4の 中方部に形成された噴霧誘導口部 4 5の下端に 1条の溝 4 6を形成し、 溝の中央部に略長方形状の細孔からなるノズル孔 4 7が 2個形成された 噴霧口 4 8が前記ノズル孔 4 7が溝 4 6に直交するように設けられてい る。
これらのノズルチップ 3 6、 4 3において、 複数個設けられたノズル 孔 3 9、 4 7はそれぞれは前記の範囲の開口面積を有する細孔に形成さ れているから、 良好に液体窒素を噴霧することができる。 このように、 複数のノズル孔を形成することによって、 単一の噴霧ノズルで噴霧流量 を大きくすることができるので、 複数本の噴霧ノズルを設ける場合と比 ベて構造が簡単であり、 製造コス トの低減を図ることができる。
以上の各実施形態では、 液体窒素の噴霧充填のみによって内圧精度の 高い陽圧包装体を製造する場合について説明したが、 容器の種類によつ ては噴霧充填と流下充填装置と組み合わせても良い。 例えば、 飲料缶詰 の製造ラインにおいて、 一般的なライン速度は 1 0 O m/分 ( 1 2 0 0 c p m ) と高速であり、 このような高速充填ラインで所定の容器内圧を 得るためには、 液体窒素の噴霧量を多くする必要がある。 その場合、 上 記のように、 複数の噴霧手段を配置するか、 複数のノズル孔を有する噴 霧ノズルを採用するか、 あるいは両者を組み合わせて採用して噴霧量を 多く しても良いが、 流下ノズルと噴霧ノズルを組み合わせることによつ て、 流下ノズルから必要液体窒素量の多くを充填し、 噴霧ノズルからは その不足分を充填すれば良いから、 噴霧流量を多くすることなく液体窒 素の噴霧を良好に行うことができ、 内圧精度の高い缶詰類を得ることが できる。 その場合、 液体窒素貯留タンクを 2つの貯留槽に区分して、 一 方の貯留槽を大気開放貯留槽にし、 他方の貯留槽を内圧をコントロール できる加圧貯留槽にして、 大気開放貯留槽に流下ノズルを設け、 加圧貯 留槽に噴霧ノズルを設けると良い。
しかしながら、 必ずしも液体窒素貯留タンクを 2つの貯留槽に区分し なくても、 一つの加圧貯留槽からなる液体窒素貯留タンクに、 流下ノズ ルと噴霧ノズルを設けることも可能である。 その場合、 タンクの構造が 簡単になる利点がある。 図 1 3は、 1槽の加圧槽からなる液体窒素貯留 タンクに噴霧ノズルと流下ノズルの両方を設けた場合の実施形態を示し ている。
図 1 3において、 7 0は真空断熱された 1槽からなる密閉型 (加圧 型) の液化ガス貯留タンクであり、 その底部に 2個の噴霧ノズル組立体 7 1 と 1個の流下ノズル組立体 7 2を配置している。 噴霧ノズル組立体 7 1及び噴霧機構は、 図 5〜図 6に示す実施形態とパージ手段のみが相 違し、 他は同様であるので、 同一部分については同一符号を付して説明 を省き、 相違点のみについて説明する。
本実施形態の嘖霧手段におけるパージ手段は、 パージガスフードは 2 重でなくて一重に形成され、 パージガスを密閉して加圧されている液化 ガス貯留タンク 7 0の気相部 7 3から導入されている。 図中、 7 4は噴 霧ノズル 3の外周部を囲ってパージガス路 7 5を形成しているパージフ ードである。 パージガス路 7 5はパージガス供給管 7 6を介して、 液化 ガス貯留タンク 7 0の気相部 Ί 3に連結されている。 パージガスを加圧 タンクの気相部から導入するようにしてあるので、 多量の低温気化ガス を得ることができ、 外部から別個にアウターパージガスを導入しなくて も、 十分にパージすることができる。 そのため、 本実施形態では構造を 簡単にするために、 アウターパージガス路を設けてない。 なお、 嘖霧手 段組立体の外周部にヒータ 7 7が設けられており、 露結 ·氷結の恐れが あるときは、 該ヒータを作動させて露結 ·氷結を防止する。
本実施形態における流下ノズル組立体 7 2は、 従来のものを採用した ものであり、 ニードルバルブのバルブステム 7 8を開口量駆動制御装置 7 9により、 駆動制御することによって、 適量の液体窒素を流下又は滴 下させることができる。 なお、 本実施例では 2個の噴霧ノズル組立体 7 1 と 1個の流下ノズル組立体 7 2を配置しているが、 必要に応じてその 数は任意に変更することができる。
本実施形態は、 以上のように構成され、 多量の液体窒素を充填する必 要がある場合は、 まず流下ノズルで液体窒素を流下充填し、 次いで噴霧 ノズルで液体窒素の微細粒を充填することによって容器への液体窒素充 填量を容易に制御することができる。 しかしながら、 本実施形態の装置 は、 必ずしも流下ノズルと嘖霧ノズルの両方を同時に使用する場合に限 らず、 例えば流下ノズルを閉止状態にすれば、 噴霧ノズルのみが作動す る液体窒素噴霧装置として使用することができ、 噴霧装置のバルブを閉 止状態にすれば、 液体窒素流下装置として使用することができるので、 1つの装置で噴霧充填、 流下充填の両方を兼用することができる利点が ある。
以上の実施形態は、 基本的には嘖霧ノズルから放出された液体窒素の 一部が急激に気化膨張して、 他の液相状態にある液体窒素を微小粒滴化 させる現象に基づき、 液体窒素の一部の気化膨張した低温気化ガスのみ で、 容器のへッ ドスペースのガスを不活性ガスに置換するものであるが、 さらに別に設けられた不活性ガス供給手段から、 同時に不活性ガスを供 給するようにしても良い。
図 1 4— A, Bは、 その場合の実施形態の概念図である。
図中、 9 1は微細粒の液体窒素と低温の窒素ガスを流出する噴霧手段 組立体であり、 不活性気体供給ノズル 9 3の中央部に噴霧ノズル 9 2が 配置され、 図示のように中央部から液体窒素微細粒が噴出し、 その周囲 を包むように低温気体窒素が缶内に吹き付けられるように構成されてい る。 噴霧ノズル 9 2は、 液体窒素供給タンク 9 5に配管 9 6を介して連 結され、 配管の途中に圧力調整弁 9 7及び流量調整弁 9 8が設けられ、 これらの弁を制御装置 9 9によって制御することによって、 缶に供給す る液体窒素微細粒の粒径及び供給圧力及び流量を制御できるようになつ ている。 一方、 不活性気体供給ノズル 9 3は、 気体窒素供給機構 1 0 0 と配管 1 0 1を介して連結され、 配管 1 0 1の途中には気体温度調節機 構 1 0 2、 圧力調整弁 1 0 3、 流量調整弁 1 0 4が設けられている。 圧 力調整弁及び流量調整弁はそれぞれ前記制御装置 9 9により制御され、 不活性気体供給ノズルから吹き出す気体窒素の圧力及び流量を所望に制 御できるようになつている。 なお、 噴霧組立体 9 1への配管は点線 1 0 8で示すように断熱配管となっている。
本実施形態のガス置換装置は以上のように構成され、 噴霧ノズルのノ ズル穴形状、 液体窒素の流動圧力及び流量を所定に設定することによつ て、 噴霧ノズルから所定の粒径の液体窒素微細粒が吹き出し、 また、 不 活性気体供給ノズルから液体窒素微細粒 1 0 9を包むようにして気体窒 素 1 0 6が吹き出して、 コンべャ 1 1 0によって搬送される缶 6 7のへ ッドスペース内に液体窒素微細粒と気体窒素が同時に供給される。 その 際、 不活性気体供給ノズル 9 3から吹き出される気体窒素 1 0 6の温度 は、 気体温度調節機構 1 0 2により低温に調節されているが、 その温度 は微細粒に吹き出される液体窒素微細粒 1 0 9の一部が蒸発して発生し た低温の気体である蒸発気体 1 0 5よりは、 相対的に高温、 例えば一 1 5 0 °C以上になるように設定されている。
気体窒素の温度は、 充填密封後に温度膨張する温度であれば良く、 理 論的には最終平衡温度より低温であれば良い。 最終平衡温度は、 使用場 所の雰囲気温度であり、 通常は室温であるが、 使用状態によって変化し、 例えば自動販売機などで保存する場合、 低温 (冷却) で 5 °C、 高温 (加 熱) で 7 0 °Cとなり、 冷凍食品などに用いる場合は零下となる。
図 1 5は、 本発明の他の実施形態を示し、 本実施形態では、 従来のァ ンダ一力バーガッシング装置を改良して、 蓋卷締め直前に、 液体窒素微 細粒と気体窒素の混合ガスを缶に吹き込んで、 アンダーカバーガッシン グ法によって缶に内圧付与と窒素置換作業を同時に行おうとするもので ある。 図 1 5において、 1 3 0が従来のアンダーカバーガッシング装置に相 当するアンダーカバーガッシング機構であり、 1 3 1が気体窒素を吹き 出す不活性気体供給ノズルであり、 その中心部に噴霧ノズル 1 3 2が配 置されている。 不活性気体供給ノズル 1 3 1及び噴霧ノズル 1 3 2は、 それぞれ前記実施形態と同様に気体窒素供給機構と液体窒素供給タンク にそれぞれ接続されているが、 それらは前記実施形態と同様であるので、 前記実施形態と同一機構には同一符号を付し、 詳細な説明は省略する。 本実施形態のガス置換陽圧缶製造装置は以上のように構成され、 コン べャにより搬送されてシーマ一 1 2 9に達した缶は、 コンべャからリフ ターテーブル 1 3 3に移載され、 アンダーカバ一ガッシング機構 1 3 0 により、 液体窒素微細粒と気体窒素を同時に缶のへッ ドスペースに吹き 込まれる。 それにより、 前記実施形態と同様に、 混合ガスがヘッ ドスぺ ース内の空気を除去してへッ ドスペース内に充満してガス置換を行う。 そして、 直ぐに卷締め密封することによって液体窒素微細粒の気化膨張 と低温気体の温度膨張により内圧を発生し、 ガス置換率が高く且つ所定 の内圧を有する陽圧缶が得られる。
以上、 本発明の種々の実施形態について説明したが、 本発明は上記実 施形態に限らず、 その技術思想の範囲内で種々の設計変更が可能である。 例えば、 液化不活性ガスとしては、 液体窒素の外に炭酸ガス、 アルゴン ガス、 又はそれらの混合ガスを採用しても良い。 また、 液化不活性ガス に代えてドライアイスを採用することも可能である。 さらに、 本発明の ガス置換陽圧包装体の製造方法は、 包装体が缶詰の場合に限らず、 密封 できて内圧を保持できる容器であればよく、 プラスチックボトル、 成形 容器、 柔軟材包装容器、 ガラス壜等にも適用可能である。 また、 内容物 は液体に限らず、 固体の場合も適用可能である。
実施例 1
図 5〜図 7に示す陽圧包装体製造装置において、 ノズル孔の断面積は 0 . 4 4 mm2, ノズルの傾斜角 3 0 ° の噴霧ノズルを採用し、 タンク内 圧を 1 0 . O kPa (そのときの噴霧圧力は 1 1 . 2 kPaとなる) に設定し、 且つィンナーパージガスとしてタンク内の気化ガスを、 ァウーターパ一 ジガスとして常温の窒素ガスを窒素ガスボンベよりそれぞれ導入して、 液体窒素の噴霧を行った。 そのときのノズル温度、 噴霧流量、 噴霧バタ —ンの広がり角及び水平断面形状、 液体窒素の微細粒径をそれぞれ次の 方法で測定した。
ノズル温度は、 ノズルチップの外側、 ノズル孔近傍に熱電对を接触さ せて測定した。 そのとき噴霧中の温度は— 1 8 0 °C〜一 1 9 0 °Cの範囲 にあった。 また、 噴霧流量は、 噴霧された液体窒素を、 液体窒素を満た した容器を電子天秤の上皿に載せて捕集し、 単位時間当たりの重量増加 量を測定することにより測定した。 その結果上記条件における噴霧流量 は 0 . 4 4 g/sであった。 また、 噴霧パターンの広がり角及び水平断面 形状は、 ノズルから 5 0匪離れた位置で、 噴霧流を横断するように水平 面に設置した濾紙で受けて、 液体窒素微細粒の分布状態を調べた。 その 結果、 噴霧パターンの断面形状が図 1 1に示すように、 容器搬送方向が 短い細幅の略方形状を呈していた。 その最大噴霧幅 a及び最大噴霧厚み bを測定したら、 それぞれ 4 3 mm、 l l ramであった。 そして、 その広が り幅を測定し、 角度に換算したら、 広がり角 3は 4 6 . 5 ° であった。 さらに、 噴霧状態を高速度ビデオカメラで撮影し、 画像上でその直径を 測定したら、 粒径は略 0 . 3〜 2匪の範囲に分布し、 平均粒径は 0 . 9 mraであつた。
このような噴霧状態を 1 2 0分間続けたが、 その間上記計測値を維持 して安定した噴霧状態を続け、 またノズル出口にも霜の付着は見られな かった。 従って、 本発明の方法及び装置によれば、 粒径 0 . 3〜 2 mmの 範囲の液体窒素微細粒が所定噴霧量 (上記の場合は 0 . 9 4 g/s) が安 定して得られることが確認された。 それにより、 該噴霧装置から噴霧さ れる液体窒素微細粒を缶内に正確に充填すれば、 従来の流下充填方式で は困難であった液体窒素の少量充填が安定してできることになり、 内圧 精度の高い微陽圧缶詰を製造することが可能である。
実施例 2 そのことを確認するために、 上記の条件で、 缶内圧 5 5 kPa (後述の 実施例 3よりは高い内圧) の低陽圧缶詰を得ることを目標に設定して、 次のようにして缶詰を製造した。
満注内容積 2 6 3 mlのスチール製 2 ピース缶胴に 6 5 °Cの温水を 2 4 O ml充填し、 図 5に示されているガス置換陽圧包装体の製造装置の下を ノズルチップと充填液面との距離 (噴霧距離) 力 略 5 0 mmとなるよう に搬送コンペャと陽圧包装体製造装置との距離を設定し、 ラィン速度 7 6 ra/minの速度で搬送コンペャを稼動させ、 噴霧状態が安定した状態で 内容液が充填された缶を通過させて液体窒素の微細粒を容器へッ ドスべ ースに充填し、 直ちにアルミニューム製蓋を卷締密封して、 低陽圧缶詰 を製造した。
そのときの液体窒素噴霧流の缶内への充填状況を観察すると、 噴霧流 は図 7に示すような噴霧幅及び噴霧厚みを有し、 且つ下方を移動する缶 に対して 3 0 ° の傾斜角で噴霧され、 その殆どが缶内に充填される状態 であった。 そして、 製造した陽圧缶体の缶内圧を 1 2 0缶測定した結果、 缶内圧は 4 2 kPaから 6 5 kPaの間に分布し、 平均値は 5 3 kPaであった。 従って、 目標値に近似した内圧が発生し、 全ての缶体が所望する低陽圧 の範囲にあった。
実施例 3
上記実施例 2よりも低い缶内圧 3 5 kPaの低陽圧缶詰を得ることを目 標にして、 ライン速度を 1 1 4 m/minに高速度にした外は、 実施例 2 と同じ条件で低陽圧缶詰を 9 5 9缶製造した。
得られた缶詰の内圧を全数検査した結果、 缶内圧は 2 9 kPaから 4 3 k Paの間に分布し、 高速ラインであっても缶内圧のバラツキは少なく、 低 陽圧の缶詰を安定して製造することができた。 そのことは、 本装置は噴 霧流が缶の進行方向の速度成分を有しているので、 ライン速度が高速で あっても液体窒素微細粒が液面にソフトランディングすることができ、 極めて精度良く液体窒素が缶内に充填されることによる。
比較例 1 上記装置において、 噴霧圧力を 2 0 1 . 2 kPa (タンク内圧 2 0 O kP a) に設定して噴霧量を 2 . O g/sで液体窒素を噴霧して、 他は上記と同 じ条件で液体窒素を容器内に充填した。 その結果、 噴霧時に脈動が生じ 噴霧流の広がり角も安定せず、 安定した噴霧流を得ることができなかつ た。 また、 得られた缶詰の缶内圧は 2 2 kPaから 7 5 kPaの間に分布し、 低陽圧の缶詰を安定して得ることができなかった。
比較例 2
図 5に示す陽圧包装体製造装置と基本的には同じ構造であるが、 噴霧 ノズルをパイプ 1 3の下端に水平にとりつけた構造のものとし、 それに 合わせて噴霧くちばしの軸線も噴霧ノズル軸線と一致させて缶搬送方向 と垂直となるような装置を試作し、 実施例 2と同様な噴霧条件でライン 速度を① 7 6 m Zmin、 ② 1 1 4 m /minにした場合についてそれぞれ低 陽圧缶詰を製造した。
その結果、 低速である①の場合は、 缶内圧は 3 2 kPaから 5 8 kPaの間 に分布し、 比較的内圧のバラツキが少ない低陽圧缶詰を得ることができ た。 しかしながら、 高速ラインである②の場合は、 噴霧された液体窒素 微細粒の内容液面からの跳びはねが生じ、 缶内圧は 7 kPaから 3 9 kPaの 間に分布し、 目標内圧に対してバラツキが大きかった。 産業上の利用可能性
本発明にかかる陽圧包装体製造方法及びその装置は、 缶詰等の包装体 のへッ ドスペースに所定量の液体窒素等の液化不活性ガスを精度良く充 填することができ、 且つへッ ドスペースのガスを高置換率で不活性ガス に置換できるので、 陽圧缶詰や成形力ップ詰め食品等のガス置換陽圧包 装体の製造に利用でき、 特に従来困難であった低陽圧缶詰の製造に有用 であり、 本発明を適用することによって低酸性飲料等腐敗 ·変敗し易い 内容品の缶詰の缶材の薄肉軽量化 ·缶コス トの低減化 ·省資源を図るこ とができる。

Claims

請求の範囲
1. 気化して不活性ガスとなる液化不活性ガスを微細粒にして、 内 容物が充填された容器へッ ドスペース内にガス置換陽圧包装体の最終平 衡温度以下の低温不活性ガスと共に吹き込んで密封することにより、 へ ッ ドスペース内のガスを不活性ガスに置換すると共に、 密封後の残留液 化不活性ガス微細粒又は残留固化不活性ガス微細粒の気化膨張と前記低 温不活性ガスの温度膨張により内圧を発生させることを特徴とする陽圧 包装体の製造方法。
2. 液化不活性ガスの微細粒は、 液化不活性ガスを液化不活性ガス 貯留タンクから断熱経路により細孔のノズル孔を有する噴霧ノズルのノ ズル孔入口まで気化を防いで供給して、 前記ノズル孔を出た直後に液化 不活性ガスが急激な気化膨張作用を起すことにより、 未だ液相状態にあ る他の液化不活性ガスを微細粒化させることにより生成される請求項 1 の陽圧包装体の製造方法。
3. 前記低温不活性ガスは、 噴霧ノズルに所定圧力で供給された液 化不活性ガスの一部が沸騰気化することにより生成された気化ガスであ る請求項 1又は 2の陽圧包装体の製造方法。
4. 前記低温不活性ガスは、 噴霧ノズルに所定圧力で供給された液 化不活性ガスの一部が沸騰気化することにより生成された気化ガスと、 不活性ガス供給源から別経路により供給される不活性ガスである請求項 1又は 2の陽圧包装体の製造方法。
5. 液化不活性ガスは、 広がり角 20° 〜 1 00° の噴霧パターン を形成するように噴霧ノズルより噴霧される請求項 2の陽圧包装体の製 造方法。
6. 液化不活性ガスの噴霧パターンは、 水平断面形状が方形状乃至 は楕円形状に近似する形状である請求項 2又は 5の陽圧包装体の製造方 法。
7. 液化不活性ガスの噴霧流量が 0. 2g/s〜4. 0g/s、 好ましく は 0. 2g/s〜3. Og/sである請求項 2又は 5の陽圧包装体の製造方法。
8. 前記液化不活性ガスの微細粒は、 その粒径が 2 mm以下である . 請求項 1又は 2の陽圧包装体の製造方法。
9. 液化不活性ガスを噴霧する際の噴霧ノズル温度が、 液化不活性 ガスの沸点以上乃至沸点 + 75°C以下、 好ましくは沸点以上乃至沸点 + 50°C以下である請求項 2又は 5の陽圧包装体の製造方法。
1 0. 液化不活性ガスを噴霧する際の噴霧圧力が、 lkPa〜 1 50k Pa、 好ましくは lkPa〜3 0 kPaである請求項 2又は 5の陽圧包装体の製 造方法。
1 1. 液化不活性ガスを噴霧する際、 前記噴霧ノズルを、 液化ガス 貯留タンクの気相部から供給される比較的低温の気化ガスによって外気 と遮断するようにした請求項 2又は 5の陽圧包装体の製造方法。
1 2. 液化不活性ガスを噴霧する際、 前記噴霧ノズルを、 比較的低 温のィンナーパージガスと比較的高温のアウターパージガスの二重のパ ージガスにより、 外気と遮断するようにした請求項 2又は 5の陽圧包装 体の製造方法。
1 3. 液化不活性ガスの噴霧流が容器の進行方向の速度成分を有す るように、 液化不活性ガスを容器の進行に対して鉛直から 5° 〜4 5° 、 好ましくは 1 5° 〜40° 傾斜して噴霧するようにした請求項 2又は 5 の陽圧包装体の製造方法。
14. 前記噴霧ノズルの先端部から容器充填面に達するまでの噴霧 距離が、 5〜 1 00ram、 好ましくは 4 5〜 6 0mmである請求項 2又は 5 の陽圧包装体の製造方法。
1 5. 密封後の容器内圧が 0. 2〜0. 8kgf/cm2の低陽圧包装体 を得る請求項 1、 2又は 5の陽圧包装体の製造方法。
1 6. 前記容器が金属缶であり、 フィラーからシーマーへの搬送中 の缶に液化不活性ガスを噴霧充填するようにした請求項 1、 2又は 5の 陽圧包装体の製造方法。
1 7. 前記容器が金属缶であり、 前記噴霧ノズルがシーマーのアン ダーカバーガッシング装置として設けられ、 アンダーカバーで容器内に 液化不活性ガスを噴霧充填する請求項 1、 2又は 5の陽圧包装体の製造 - 方法。
1 8. 液化不活性ガス貯留タンク ( 1, 3 5, 5 3, 70, 9 5) と、 該液化不活性ガス貯留タンクの底部に連通して設けられた噴霧ノズ ル (3, 5 0, 9 2) を有する噴霧手段とを備え、 前記噴霧手段は、 液 化不活性ガスの流量を制御するバルブ (2, 5 6, 9 8) 、 ノズル孔
(20, 40, 4 7, 5 1) を有する前記噴霧ノズル、 前記バルブから 前記ノズル孔まで液化ガスを供給する断熱経路を有してなることを特徴 とする陽圧包装体の製造装置。
1 9. 前記断熱経路は、 前記バルブ (2) から前記噴霧ノズル (3) までの液化不活性ガス流路 (4) 、 該液化不活性ガス流路 (4) の外周部を囲繞し液化不活性ガス貯留タンク (1) から流入する液化不 活性ガスにより前記噴霧ノズルを冷却するノズル冷却槽 (5) を有して いる請求項 1 8の陽圧包装体の製造装置。
20. 前記噴霧ノズル (3, 50, 9 2) は、 液化不活性ガスを微 細粒にして噴霧する開口部面積が 0. 1 5〜4mra2、 好ましくは 0. 2 〜3rara2である噴霧ノズル孔 (20, 40, 47, 5 1) を有する請求 項 1 9又は 20の陽圧包装体の製造装置。
2 1. 前記噴霧ノズル (3, 50, 9 2) 力 S、 前記鉛直方向下向き に 5° 〜4 5° 、 好ましくは 1 5° 〜40° 傾いて配置されている請求 項 1 9又は 20の陽圧包装体の製造装置。
22. 前記噴霧ノズル (3, 50, 9 2) は、 複数のノズル孔を有 している請求項 1 8又は 1 9の陽圧包装体の製造装置。
23. 前記噴霧手段が、 少なく とも噴霧ノズル出口部近傍をパージ ガスで外気と遮断して霜付きを防止するパージ手段を備えている請求項 1 8又は 1 9の陽圧包装体の製造装置。
24. 前記パージ手段は、 インナーパージガス路 (2 1 ) を形成す るインナーパージガスフード (23) と、 アウターパージガス路 (2 2) を形成するアウターパージガスフード (26) との二重のパージガ スフ一ドから形成されている請求項 23の陽圧包装体の製造装置。
25. 前記噴霧手段が噴霧ボディ (6) に一体に取り付けられて噴 霧手段組立体 (10) を構成している請求項 1 8又は 1 9の陽圧包装体 の製造装置。
26. 前記噴霧手段が液化不活性ガス貯留タンク (1, 35, 53, 70, 95) の底部に複数個配置されている請求項 1 8又は 19の陽圧 包装体の製造装置。
27. 前記噴霧手段が液化不活性ガス貯留タンクの底部に液化不活 性ガス流下手段と組合せて配置されている請求項 1 8又は 1 9の陽圧包 装体の製造装置。
28. 前記液化不活性ガス貯留タンク (1, 35, 53, 70, 9 5) に、 該液化不活性ガス貯留タンク内に液化不活性ガスを供給前に乾 燥加熱ガスを供給して該タンク内の水分を除去する初期パージ機構が連 結されている請求項 1 8又は 1 9の陽圧包装体の製造装置。
29. 前記噴霧手段は、 不活性ガス供給機構に連結された不活性ガ スノズル (93) と、 液化不活性ガス供給機構に連結された噴霧ノズル (92) とを有する請求項 1 9の陽圧包装体の製造装置。
PCT/JP1999/001995 1998-04-17 1999-04-14 Procede et dispositif de fabrication d'un corps de conditionnement a pression positive WO1999054207A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/647,935 US6519919B1 (en) 1998-04-17 1999-04-14 Method and apparatus for manufacturing pressurized packaging body
EP99914752A EP1106510B1 (en) 1998-04-17 1999-04-14 Method and device for manufacturing positive pressure packaging body
AU33441/99A AU3344199A (en) 1998-04-17 1999-04-14 Method and device for manufacturing positive pressure packaging body
DE69940023T DE69940023D1 (de) 1998-04-17 1999-04-14 Verfahren und vorrichtung zur herstellung eines druckbehälters
KR1020007011549A KR100628780B1 (ko) 1998-04-17 1999-04-14 양압 포장체의 제조방법 및 그 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/124261 1998-04-17
JP12426198A JP4025418B2 (ja) 1997-05-26 1998-04-17 ガス置換陽圧包装体の製造方法及びその装置
JP30899298A JP3567762B2 (ja) 1998-10-29 1998-10-29 液化ガス噴霧充填方法及びその装置
JP10/308992 1998-10-29

Publications (1)

Publication Number Publication Date
WO1999054207A1 true WO1999054207A1 (fr) 1999-10-28

Family

ID=26460968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001995 WO1999054207A1 (fr) 1998-04-17 1999-04-14 Procede et dispositif de fabrication d'un corps de conditionnement a pression positive

Country Status (8)

Country Link
US (1) US6519919B1 (ja)
EP (1) EP1106510B1 (ja)
KR (1) KR100628780B1 (ja)
AU (1) AU3344199A (ja)
DE (1) DE69940023D1 (ja)
ES (1) ES2318891T3 (ja)
TW (1) TW418169B (ja)
WO (1) WO1999054207A1 (ja)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6363729B1 (en) * 2000-07-27 2002-04-02 Mg Industries Apparatus and method for injecting cryogenic liquid into containers
DE10052856A1 (de) * 2000-10-24 2002-04-25 Linde Ag Speicherbehälter für kryogene Medien
ATE332871T1 (de) * 2002-10-23 2006-08-15 Adelholzener Alpenquellen Gmbh Verfahren und vorrichtung zum abfüllen eines getränks in einen getränkebehälter
US7281550B2 (en) * 2003-07-14 2007-10-16 Cryotech International, Inc. Liquid delivery system with horizontally displaced dispensing point
AU2005202150A1 (en) * 2004-06-21 2006-01-12 Air Liquide Australia Limited An Apparatus for Inerting the Headspace of a Container
US20060010886A1 (en) * 2004-07-14 2006-01-19 Clamage Eric D Liquid cryogen dosing system with nozzle for pressurizing and inerting containers
FR2881107B1 (fr) * 2005-01-27 2007-04-06 Olivier Fedin Procede de remplissage d'un contenant en matiere plastique avec un liquide chaud et fond de contenant adapte
US7780025B2 (en) * 2005-11-14 2010-08-24 Graham Packaging Company, L.P. Plastic container base structure and method for hot filling a plastic container
JP2009517301A (ja) * 2005-11-29 2009-04-30 レクサム・ペタイナー・リドチエピング・アー・ベー 飲料を分配し小出しするシステムおよび方法
US7779608B2 (en) * 2007-02-02 2010-08-24 Lim Walter K Pressurized containers and methods for filling them
US8252228B1 (en) * 2008-10-13 2012-08-28 Abbott Cardiovascular Systems Inc. Methods for sterilizing carriers for treatment of a kidney
FR2944461B1 (fr) * 2009-04-15 2011-05-20 Air Liquide Procede et installation de traitement de surface par jets de fluide cryogenique.
FR2945761B1 (fr) * 2009-05-20 2012-06-01 Air Liquide Installation et procede de traitement de surface par jets de fluide cryogenique.
KR101133714B1 (ko) * 2009-12-08 2012-04-09 주식회사 비스 기화질소 배출기능을 갖는 3중 배관구조의 액체질소 분사장치
EP2578503B1 (en) * 2010-06-02 2016-03-23 Toyo Seikan Kaisha, Ltd. Method and device for gas replacement of container
DE102010051543A1 (de) 2010-11-18 2012-05-24 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Befüllen von Behältnissen
WO2013084530A1 (ja) * 2011-12-05 2013-06-13 東洋製罐グループホールディングス株式会社 充填密封方法及び装置
CN102514754A (zh) * 2011-12-23 2012-06-27 江苏中瀛涂料有限公司 一种有氮气保护装置的涂料硬化剂用作业装置
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9038403B2 (en) 2012-04-02 2015-05-26 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
EP2837570A4 (en) * 2012-04-09 2015-11-18 Otsuka Pharma Co Ltd SEALING DEVICE AND SEALING METHOD
WO2014060320A1 (en) * 2012-10-15 2014-04-24 V.B.S. Carbon dioxide dosing apparatus
US10010926B2 (en) * 2013-10-28 2018-07-03 Ball Corporation Method for filling, seaming, distributing and selling a beverage in a metallic container at a single location
WO2015069822A1 (en) * 2013-11-06 2015-05-14 The Procter & Gamble Company Flexible containers and methods of making the same
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10429125B2 (en) * 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
EP3443285B1 (en) 2016-04-15 2021-03-10 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
WO2018022007A1 (en) 2016-07-26 2018-02-01 Whirlpool Corporation Vacuum insulated structure trim breaker
EP3500804B1 (en) 2016-08-18 2022-06-22 Whirlpool Corporation Refrigerator cabinet
US10407983B2 (en) 2016-10-26 2019-09-10 Hunter Douglas Inc. Operating system for an architectural covering
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10352613B2 (en) 2016-12-05 2019-07-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
EP3560844B1 (de) * 2018-04-27 2021-02-24 MULTIVAC Sepp Haggenmüller SE & Co. KG Verpackungsmaschine mit beheiztem gitter
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
CN109335325B (zh) * 2018-10-09 2023-06-27 上海原能细胞生物低温设备有限公司 一种生物样本分区降温存储装置及其操作方法
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
JP7444554B2 (ja) * 2019-06-21 2024-03-06 大和製罐株式会社 難溶性飲料製品
FR3098512B1 (fr) 2019-07-11 2022-08-26 Sgd Sa Procede et installation de desalcalinisation de recipients en verre par voie liquide
BR112022013018A2 (pt) 2019-12-31 2022-09-06 Cold Jet Llc Método e aparelho para fluxo de jateamento aprimorado
US12070924B2 (en) 2020-07-27 2024-08-27 Whirlpool Corporation Appliance liner having natural fibers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125118A (en) * 1981-01-13 1982-08-04 Mitsubishi Heavy Ind Ltd Method of discharging air in head space of vessel into which liquid is filled
JPS57172217A (en) * 1981-04-16 1982-10-23 Teisan Kk Quantitative flowing-out device for low temperature liquefied gas
JPS599409A (ja) 1982-07-07 1984-01-18 株式会社日立製作所 気水分離器のドレンレベル検出器サポ−ト
JPS61165240A (ja) * 1985-01-18 1986-07-25 Toyo Seikan Kaisha Ltd 罐体の間欠巻締機
JPS62124398A (ja) * 1985-11-21 1987-06-05 Takeuchi Press Kogyo Kk 低温液化ガス流下装置
JPH02127218A (ja) * 1988-11-01 1990-05-15 Hokkai Can Co Ltd 窒素ガス封入飲料缶詰及びその製造方法
JPH02139313A (ja) * 1988-11-21 1990-05-29 Toyo Seikan Kaisha Ltd 不活性ガス置換液体充填方法と装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055398B2 (ja) * 1977-11-24 1985-12-04 花王株式会社 充填機の速度制御方法
GB2089191B (en) * 1980-12-10 1985-03-20 Toyo Seikan Kaisha Ltd Method and apparatus for making a hermetically sealed food container
US4407340A (en) * 1980-12-18 1983-10-04 Reynolds Metals Company Container pressurization system
US4489767A (en) * 1981-09-08 1984-12-25 Toyo Seikan Kaisha, Ltd. Apparatus for dropping liquefied gases
GB2125937B (en) * 1982-08-26 1986-06-25 Metal Box Plc Dispensing volatile liquids
DE3311200C1 (de) * 1983-03-26 1984-04-05 Krones Ag Hermann Kronseder Maschinenfabrik, 8402 Neutraubling Vorrichtung zum Behandeln von Flaschen od.dgl.
GB2169998B (en) * 1985-01-18 1988-02-17 Metal Box Plc Liquid nitrogen metering device with nozzle of insulating material
JPS62147196A (ja) * 1985-12-18 1987-07-01 Toyo Seikan Kaisha Ltd 液化ガス添加装置
JPS62147195A (ja) * 1985-12-18 1987-07-01 Toyo Seikan Kaisha Ltd 液化ガス添加装置
US4880041A (en) * 1987-04-15 1989-11-14 Tokyo Seikan Kaisha, Ltd. Apparatus for flowing and filling liquified inert gas
GB2235759A (en) * 1989-09-04 1991-03-13 Guinness Son & Co Ltd A Liquid dispensing system and packaging apparatus
US5033254A (en) * 1990-04-19 1991-07-23 American National Can Company Head-space calibrated liquified gas dispensing system
US5362455A (en) * 1990-05-03 1994-11-08 Praxair Technology, Inc. Draft tube, direct contact cryogenic crystallizer
FR2696152B1 (fr) * 1992-09-29 1994-10-28 Air Liquide Procédé et dispositif de distribution de doses de liquide, notamment de gaz liquéfié.
US5417255A (en) * 1993-09-16 1995-05-23 Sanfilippo; James J. Gas flushing apparatus and method
DE19502452A1 (de) * 1995-01-26 1996-08-01 Kronseder Maschf Krones Verfahren und Vorrichtung zum Behandeln von Gefäßen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125118A (en) * 1981-01-13 1982-08-04 Mitsubishi Heavy Ind Ltd Method of discharging air in head space of vessel into which liquid is filled
JPS57172217A (en) * 1981-04-16 1982-10-23 Teisan Kk Quantitative flowing-out device for low temperature liquefied gas
JPS599409A (ja) 1982-07-07 1984-01-18 株式会社日立製作所 気水分離器のドレンレベル検出器サポ−ト
JPS61165240A (ja) * 1985-01-18 1986-07-25 Toyo Seikan Kaisha Ltd 罐体の間欠巻締機
JPS62124398A (ja) * 1985-11-21 1987-06-05 Takeuchi Press Kogyo Kk 低温液化ガス流下装置
JPH02127218A (ja) * 1988-11-01 1990-05-15 Hokkai Can Co Ltd 窒素ガス封入飲料缶詰及びその製造方法
JPH02139313A (ja) * 1988-11-21 1990-05-29 Toyo Seikan Kaisha Ltd 不活性ガス置換液体充填方法と装置

Also Published As

Publication number Publication date
KR100628780B1 (ko) 2006-09-29
AU3344199A (en) 1999-11-08
US6519919B1 (en) 2003-02-18
EP1106510B1 (en) 2008-12-03
KR20010042803A (ko) 2001-05-25
ES2318891T3 (es) 2009-05-01
DE69940023D1 (de) 2009-01-15
TW418169B (en) 2001-01-11
EP1106510A1 (en) 2001-06-13
EP1106510A4 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
WO1999054207A1 (fr) Procede et dispositif de fabrication d'un corps de conditionnement a pression positive
US4715187A (en) Controlled cryogenic liquid delivery
EP0421597B1 (en) A liquid dispensing system and packaging apparatus which includes such a system
US4865088A (en) Controller cryogenic liquid delivery
JPH1179131A (ja) 低温液体を分配するための装置と低温バルブ、および製品をパッケージするための低温プラント
JP4025418B2 (ja) ガス置換陽圧包装体の製造方法及びその装置
JP3687349B2 (ja) 液化不活性ガス複合充填方法及びその装置
JP3687342B2 (ja) 液体窒素の微小粒滴化方法及びその装置、該装置のノズル組立体並びに液体窒素微小粒滴充填による陽圧包装体の製造方法
GB2092552A (en) Dispensing apparatus
JP3567762B2 (ja) 液化ガス噴霧充填方法及びその装置
JPH0159169B2 (ja)
US4253502A (en) Carbonated beverage bottling apparatus
JP3613975B2 (ja) 液化不活性ガス充填システム
JPS6344609B2 (ja)
JP4136516B2 (ja) ボトル型缶のガッシング方法
KR900006864B1 (ko) 가스 충전 용기 조림의 제법
JP3630025B2 (ja) 液化不活性ガス噴霧充填装置及びその噴霧ノズル
JPS6233198Y2 (ja)
JPH10250711A (ja) 液化ガス流下用ノズル
JP4600625B2 (ja) 液体窒素充填装置及びその充填ノズル組立体
JP3800598B2 (ja) 液化ガス添加用ノズル
US20200375216A1 (en) System for cryogenic freezing of viscous feed
JPH06293508A (ja) ドライアイススノーの充填装置
JP3658989B2 (ja) 液化ガス開閉バルブ構造体
JPH0121950B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999914752

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007011549

Country of ref document: KR

Ref document number: 09647935

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020007011549

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999914752

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007011549

Country of ref document: KR