[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1997003163A1 - Compositions detergentes - Google Patents

Compositions detergentes Download PDF

Info

Publication number
WO1997003163A1
WO1997003163A1 PCT/US1996/011284 US9611284W WO9703163A1 WO 1997003163 A1 WO1997003163 A1 WO 1997003163A1 US 9611284 W US9611284 W US 9611284W WO 9703163 A1 WO9703163 A1 WO 9703163A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfactant
weight
detergent composition
alkyl
alkalinity
Prior art date
Application number
PCT/US1996/011284
Other languages
English (en)
Inventor
Gerard Marcel Baillely
Robin Gibson Hall
Christian Leo Marie Vermote
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Publication of WO1997003163A1 publication Critical patent/WO1997003163A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3715Polyesters or polycarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38645Preparations containing enzymes, e.g. protease or amylase containing cellulase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3945Organic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds

Definitions

  • the present invention relates to detergent compositions containing cationic ester surfactants which are suitable for use in laundry and dish washing methods.
  • EP-B-21,491 discloses detergent compositions containing a nonionic/cationic surfactant mixture and a builder mixture comprising aluminosilicate and polycarboxylate builder.
  • the cationic surfactant may be a cationic ester. Improved particulate and greasy/oily soil removal is described.
  • US-A-4,228,042 discloses biodegradable cationic surfactants, including cationic ester surfactants for use in detergent compositions to provide greasy /oily soil removal. The combination of these cationic surfactants with nonionic surfactants in compositions designed for particulate soil removal is also described. Anionic surfactants are disclosed as optional components of the compositions, but are present at low levels relative to the cationic surfactant component.
  • US-A-4,239,660 discloses laundry detergent compositions containing cationic ester surfactant and nonionic surfactant at defmed weight ratios and an alkalinity source.
  • the alkalinity source enables a wash solution having a pH of from 8 to 10 to be formed within 3 minutes of dissolution of the composition in water at 100°F (37°C) at a solution concentration of 0.15%.
  • US-A-4,260,529 discloses laundry detergent compositions having a pH of no greater than 11 containing cationic ester surfactant and nonionic surfactant at defined weight ratios.
  • Anionic surfactants are disclosed as optional components of the compositions, but are present at low levels relative to the cationic ester surfactant component.
  • a problem with the use of cationic ester surfactants can be the poor in-solution suspension of greasy soils, previously removed from soiled substrates. In a laundry wash context, this can give rise to a tendency for the soils to redeposit on the fabrics in the wash, thus causing the fabrics to take on a dingy appearance. In the context of white fabric washing the effect is often referred to in the art as as poor 'whiteness maintenance 1 .
  • the cationic ester surfactant is employed in a surfactant system comprising a relatively high proportion of anionic surfactant, in a detergent composition providing a relatively high level of alkalinity.
  • the source of alkalinity can be for example, carbonate or silicate salts.
  • the cationic ester surfactant is selected from those having the formula:
  • RJ is a C5-C31 linear or branched alkyl, alkenyl or alkaryl chain or M " .
  • N + (R6R7Rg)(CH2)sl X anQl Y> independently, are selected from the group consisting of COO, OCO, O, CO, OCOO, CONH, NHCO, OCONH and NHCOO wherein at least one of X or Y is a COO, OCO, OCOO, OCONH or NHCOO group;
  • R2, R3, R4, R6, R7, and Rg are independently selected from the group consisting of alkyl, alkenyl, hydroxyalkyl, hydroxy-alkenyl and alkaryl groups having from 1 to 4 carbon atoms; and
  • R5 is independently H or a Cj -C3 alkyl group; wherein the values of m, n, s and t independently lie in the range of from 0 to 8, the value of b lies in the range from 0 to 20,
  • the alkalinity system is present such that the weight ratio in the composition of anionic surfactant to weight NaOH equivalent is preferably from 4:1 to 1:8.
  • the alkalinity system preferably comprises alkaline salts selected from alkali metal or alkaline earth carbonate or silicate salts and any mixtures thereof.
  • the first essential element of the detergent compositions of the invention is a surfactant system comprising anionic and cationic ester surfactant present in amount from 1 % to 90% , preferably from 3 % to 40% , most preferably from 5% to 30% by weight of the detergent composition.
  • the weight ratio of anionic surfactant to cationic ester surfactant in the surfactant system is from 3:1 to 15:1, preferably from 4:1 to 12:1, most preferably from 5:1 to 10:1.
  • An essential component of the surfactant system is an anionic surfactant.
  • anionic surfactants useful for detersive purposes are suitable. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate surfactants are preferred.
  • anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C- ⁇ -C j g monoesters) diesters of sulfosuccinate (especially saturated and unsaturated Cg-C ⁇ diesters), N-acyl sarcosinates.
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
  • Anionic sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxy sulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5-C17 acyl-N-(C ⁇ -C4 alkyl) and -N-(C ⁇ -C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
  • Alkyl sulfate surfactants are preferably selected from the linear and branched primary C ⁇ )-Cl8 a ⁇ yl sulfates, more preferably the C1J-C15 branched chain alkyl sulfates and the Ci2 _ Cl4 linear chain alkyl sulfates.
  • Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C10-C18 alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a Ci 1 -Cj8 > most preferably C1J-C15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
  • a particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
  • Anionic sulfonate surfactant Anionic sulfonate surfactant
  • Anionic sulfonate surfactants suitable for use herein include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefm sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
  • Anionic carboxylate surfactant include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefm sulfonates, sulfonated polycarboxylic acids, alky
  • Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
  • Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH2 ⁇ ) x CH2COO-M+ wherein R is a C ⁇ to Cis alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation.
  • Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR ⁇ -CHR2-0)-R3 wherein R is a C ⁇ to Ci8 alkyl group, x is from 1 to 25, Ri and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
  • Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon.
  • Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl- 1-undecanoic acid, 2-ethyl- 1-decanoic acid, 2-propyl-l-nonanoic acid, 2- butyl-1-octanoic acid and 2-pentyl-l-heptanoic acid. Certain soaps may also be included as suds suppressors.
  • alkali metal sarcosinates of formula R-CON (R 1 ) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R is a C1 -C4 alkyl group and M is an alkali metal ion.
  • R is a C5-C17 linear or branched alkyl or alkenyl group
  • R is a C1 -C4 alkyl group
  • M is an alkali metal ion.
  • Cationic ester surfactant is the alkali metal sarcosinates of formula R-CON (R 1 ) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R is a C1 -C4 alkyl group and M is an alkali metal ion.
  • An essential component of the surfactant system is a cationic ester surfactant. That is, a preferably water dispersible compound having surfactant properties comprising at least one ester (ie -COO-) linkage and at least one cationically charged group.
  • Suitable cationic ester surfactants including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
  • Preferred cationic ester surfactants are those having the formula:
  • R ⁇ is a C5-C31 linear or branched alkyl, alkenyl or alkaryl chain or M-.
  • X and Y independently, are selected from the group consisiting of COO, OCO, O, CO, OCOO, CONH, NHCO, OCONH and NHCOO wherein at least one of X or Y is a COO, OCO, OCOO, OCONH or NHCOO group;
  • R2, R3, R4, R6, R7, and Rs are independently selected from the group consisting of alkyl, alkenyl, hydroxyalkyl, hydroxy-alkenyl and alkaryl groups having from 1 to 4 carbon atoms; and
  • R5 is independently H or a C1-C3 alkyl group; wherein the values of m, n, s and t independently lie in the range of from 0 to 8, the value of b lies in the range from 0 to 20, and the values
  • R2,R3 and R4 are independently selected from CH3 and -CH2CH2OH. 7/03163 PC17US96/11284
  • M is selected from the group consisting of halide, methyl sulfate, sulfate, and nitrate, more preferably methyl sulfate, chloride, bromide or iodide.
  • Preferred water dispersible cationic ester surfactants are the choline esters having the formula:
  • Rj is a C1J-C19 linear or branched alkyl chain.
  • the particularly preferred choline esters may be prepared by the direct esterification of a fatty acid of the desired chain length with dimethylaminoethanol, in the presence of an acid catalyst.
  • the reaction product is then quaternized with a methyl halide, preferably in the presence of a solvent such as ethanol, propylene glycol or preferably a fatty alcohol ethoxylate such as C10-C18 fatty alcohol ethoxylate having a degree of ethoxylation of from 3 to 50 ethoxy groups per mole forming the desired cationic material.
  • a solvent such as ethanol, propylene glycol or preferably a fatty alcohol ethoxylate such as C10-C18 fatty alcohol ethoxylate having a degree of ethoxylation of from 3 to 50 ethoxy groups per mole forming the desired cationic material.
  • They may also be prepared by the direct esterification of a long chain fatty acid of the desired chain length together with 2-haloethanol, in the presence
  • Suitable cationic ester surfactants have the structural formulas below, wherein d may be from 0 to 20.
  • the cationic ester surfactant is hydrolysable under the conditions of a laundry wash method.
  • compositions contain from 1.5% to 95%, preferably from 5% to 60% , most preferably from 10% to 40% by weight of the composition of an alkalinity system comprising components capable of providing alkalinity species in solution.
  • alkalinity species it is meant for the purposes of this invention: carbonate, bicarbonate, hydroxide and the various silicate anions.
  • alkalinity species can be formed for example, when alkaline salts selected from alkali metal or alkaline earth carbonate, bicarbonate, hydroxide or silicate, including crystalline layered silicate, salts and any mixtures thereof are dissolved in water.
  • Alkali metal percarbonate and persilicate salts are also suitable sources of alkalinity species.
  • the amount of alkalinity which a detergent composition is capable of delivering to a wash solution is critical to the present invention.
  • To enable practical comparison of the relative capacity of compositions containing different alkaline components to deliver alkalinity to a wash solution it is useful to express the alkalinity released on addition of the compositions to the wash solution in terms of % weight equivalent of NaOH. That is, in terms of the % weight of NaOH which would have equivalent 'alkaline effect' , e. g. in neutralising acid species, to that of the alkalinity species actually released when the composition is added to the wash.
  • the capacity to deliver alkalinity to a wash solution is herein characterized by reference to a representative test method now described.
  • a lg sample of detergent composition is added to 100 ml of distilled water at a temperature of 30°C with stirring at 150 rpm using a magnetic stirrer of size 2cm, thus providing a 1 % detergent solution, as would be a typical concentration of a laundry wash solution.
  • the solution is titrated against a standard HCl solution using any suitable titration method.
  • Commonly known acid-base titration methods employing colorimetric end-point determination methods, for example using chemical end-point indicators are particularly suitable.
  • the number of moles of HCl which the detergent solution is capable of neutralising is obtained.
  • 'neutralising' in this context is defined to mean titrating to pH 7. This number will be equivalent to the number of moles of alkalinity, expressed as NaOH equivalent, present in the detergent solution.
  • the % weight equivalent NaOH present in the sample of the detergent composition may be calculated as:
  • compositional make up of a detergent product is known, it is possible to calculate the theoretical maximum alkalinity, expressed as % weight equivalent of NaOH, which the product could provide to a solution as the sum over each alkaline species of:
  • n is the formal negative charge carried by the alkaline species.
  • a composition containing 1 % sodium carbonate is equivalent to a theoretical maximum of 0.756% NaOH, obtained as (1 x 40 x 2)/106, since this amount of NaOH in the composition would theoretically neutralise the same amount of acid as the 1 % sodium carbonate alkaline component.
  • detergent compositions also tend to comprise acidic species e. g. carboxylate builders whose presence will tend to reduce the alkalinity delivery capacity of a composition from its maximum theoretical value.
  • the alkalinity system is present in the detergent composition such that the capacity to deliver alkalinity to a wash solution measured by the given test method is such that the weight NaOH equivalent of the composition is greater than 7% , preferably greater than 8%, most preferably greater than 9% by weight of the composition.
  • the weight ratio in the composition of anionic surfactant to weight NaOH equivalent is preferably from 4:1 to 1 :8, more preferably from 2:1 to 1:5, most preferably from 1:1 to 1:3.
  • carbonates are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and any mixtures thereof with ultra-fine calcium carbonate such as are disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • Alkali metal percarbonate salts are also suitable sources of carbonate species and are described in more detail in the section 'inorganic perhydrate salts' herein.
  • Suitable silicates include the water soluble sodium silicates with an Si ⁇ 2: Na2 ⁇ ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.0 being preferred, and 2.0 ratio being most preferred.
  • the silicates may be in the form of either the anhydrous salt or a hydrated salt.
  • Sodium silicate with an Si ⁇ 2: Na2 ⁇ ratio of 2.0 is the most preferred silicate.
  • Alkali metal persilicates are also suitable sources of silicate herein.
  • Preferred crystalline layered silicates for use herein have the general formula
  • M is sodium or hydrogen
  • x is a number from 1.9 to 4 and y is a number from 0 to 20.
  • Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
  • x in the general formula above preferably has a value of 2, 3 or 4 and is preferably 2.
  • the most preferred material is ⁇ -Na2Si2 ⁇ 5, available from Hoechst AG as NaSKS-6.
  • the crystalline layered silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, water-soluble ionisable material.
  • the solid, water-soluble ionisable material is selected from organic acids, organic and inorganic acid salts and mixtures thereof.
  • the detergent compositions of the invention may also contain additional detergent components.
  • additional detergent components and levels of incorporation thereof will depend on the physical form of the composition, and the precise nature of the washing operation for which it is to be used.
  • compositions of the invention preferably contain one or more additional detergent components selected from additional surfactants, bleaches, builders, organic polymeric compounds, enzymes, suds suppressors, lime soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors.
  • the detergent compositions of the invention preferably contain an additional surfactant selected from nonionic, non-ester cationic, ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
  • the additional surfactant is preferably nonionic surfactant present at a level of from 0.1 % to 50% , more preferably from 1 % to 40% by weight, most preferably from 5% to 30% by weight of the surfactant system.
  • ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
  • any alkoxylated nonionic surfactants are suitable herein.
  • the ethoxylated and propoxylated nonionic surfactants are preferred.
  • Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
  • the condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains 97/03163 PC17US96/11284
  • Nonionic polyhydroxy fatty acid amide surfactant Nonionic polyhydroxy fatty acid amide surfactant
  • Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R ⁇ CONR ⁇ Z wherein : Rl is H, C1-C4 hydrocarbyl, 2- hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably Ci or C2 alkyl, most preferably Cl alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight-chain C5-C19 alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain C1J-C1 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
  • Z
  • Nonionic fatty acid amide surfactant Nonionic fatty acid amide surfactant
  • Suitable fatty acid amide surfactants include those having the formula: R6C0N(R )2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R ⁇ is selected from the group consisting of hydrogen, C1-C4 alkyl, C1-C4 hydroxyalkyl, and - (C2H4 ⁇ ) x H, where x is in the range of from 1 to 3.
  • Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
  • Preferred alkylpolyglycosides have the formula
  • R ⁇ is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalky Iphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8.
  • the glycosyl is preferably derived from glucose.
  • Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
  • Suitable amine oxides include those compounds having the formula R3(OR4) x N ⁇ (R5)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R ⁇ is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R ⁇ is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups.
  • Preferred are C10-C18 alkyl dimethylamine oxide, and CiO-18 acylamido alkyl dimethylamine oxide.
  • a suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Cone, manufactured by Miranol, Inc., Dayton, NJ.
  • Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
  • Suitable betaines are those compounds having the formula R(R')2N+R2C00 " wherein R is a C -Cis hydrocarbyl group, each Rl is typically C1-C3 alkyl, and R ⁇ is a C1 -C5 hydrocarbyl group.
  • Preferred betaines are C 12-18 dimethyl-ammonio hexanoate and the CiO-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines.
  • Complex betaine surfactants are also suitable for use herein. Cationic surfactants
  • Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C ⁇ -C ⁇ , preferably C ⁇ -C ⁇ Q N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • the detergent compositions of the present invention preferably contain a water-soluble builder compound, typically present at a level of from 1 % to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition.
  • Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, phosphates, and mixtures of any of the foregoing.
  • the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
  • Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
  • Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 97/03163 PC17US96/11284
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
  • Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
  • Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
  • Partially soluble or insoluble builder compound Partially soluble or insoluble builder compound
  • the detergent compositions of the present invention may contain a partially soluble or insoluble builder compound, typically present at a level of from 1 % to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
  • a partially soluble or insoluble builder compound typically present at a level of from 1 % to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
  • largely water insoluble builders include the sodium aluminosilicates.
  • Suitable aluminosilicate zeolites have the unit cell formula Na z [(Al ⁇ 2) z (Si ⁇ 2)y]. XH2O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
  • the aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28% , more preferably from 18% to 22% water in bound form.
  • the aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula
  • Zeolite X has the formula Na 8 6 [(AlO 2 )86(Si ⁇ 2)l06]. 276 H 2 0.
  • a preferred feature of detergent compositions of the invention is an organic peroxyacid bleaching system.
  • the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound.
  • the production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide.
  • Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches.
  • a preformed organic peroxyacid is incorporated directly into the composition.
  • Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
  • Inorganic perhydrate bleaches are a preferred source of hydrogen peroxide. These salts are normally incorporated in the form of the alkali metal, preferably sodium salt at a level of from 1 % to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
  • inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts.
  • the inorganic perhydrate salts are normally the alkali metal salts.
  • the inorganic perhydrate salt may be included as the crystalline solid without additional protection.
  • the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
  • Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
  • Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaB ⁇ 2H2 ⁇ 2 or the tetrahydrate NaB ⁇ 2H2 ⁇ 2.3H2 ⁇ .
  • Alkali metal percarbonates particularly sodium percarbonate are preferred perhydrates herein.
  • Sodium percarbonate is an addition compound having a formula corresponding to 2Na2C ⁇ 3.3H2 ⁇ 2, and is available commercially as a crystalline solid.
  • Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
  • Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid.
  • peroxyacid bleach precursors may be represented as O X-C-L
  • L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
  • Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1 % to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
  • Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O-acyl groups, which precursors can be selected from a wide range of classes.
  • Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789.
  • Suitable esters are disclosed in GB-A-836988, 864798, 1147871 , 2143231 and EP-A-0170386.
  • L group The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
  • Preferred L groups are selected from the group consisting of:
  • R is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms
  • R is an alkyl chain containing from 1 to 8 carbon atoms
  • R is H or R
  • Y is H or a solubilizing group.
  • Any of R , R and R may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups
  • the preferred solubilizing groups are -SOXM , -CO2 M , -SOXM , -N + (R 3 ) 4 X " and 0 ⁇ -N(R 3 ) 3 and most preferably -S0 3 " M + and -CO ⁇ ' M wherein R is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator.
  • M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
  • Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
  • Preferred precursors of this type provide peracetic acid on perhydrolysis.
  • Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1 , 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
  • TAED Tetraacetyl ethylene diamine
  • alkyl percarboxylic acid precursors include sodium 3,5,5- tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
  • Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
  • Rl is an alkyl group with from 1 to 14 carbon atoms
  • R ⁇ is an alkylene group containing from 1 to 14 carbon atoms
  • R5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group.
  • Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
  • Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
  • Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoy lating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas.
  • Suitable imidazole type perbenzoic acid precursors include N- benzoyl imidazole and N-benzoyl benzimidazole.
  • Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
  • Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
  • cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammmonium group, preferably an ethyl or methyl ammonium group.
  • Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a halide ion.
  • the peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore.
  • the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter
  • Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K. 1 ,382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332.
  • Examples of preferred cationic peroxyacid precursors are described in UK Patent Application No. 9407944.9 and US Patent Application Nos. 08/298903, 08/298650, 08/298904 and 08/298906.
  • Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N- acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides.
  • Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams and the trialkyl ammonium methylene alkyl caprolactams.
  • precursor compounds of the benzoxazin-type as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula:
  • Ri is H, alkyl, alkaryl, aryl, or arylalkyl.
  • the organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1 % to 15% by weight, more preferably from 1 % to 10% by weight of the composition.
  • a preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae: R 1 c — N — R 2 c — ooH R1 — N — C — R 2 C — OOH
  • Rl is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms
  • R2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms
  • R ⁇ is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
  • Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
  • organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
  • diacyl and tetraacylperoxides especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
  • Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
  • compositions optionally contain a transition metal containing bleach catalyst.
  • a transition metal containing bleach catalyst is a catalyst system comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
  • ethylenediaminetetraacetic acid ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
  • bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594.
  • Preferred examples of these catalysts include MnIV2(u-0)3(l,4,7-trimethyl-l,4,7- triazacyclononane)2-(PF6)2, MnIH2( u "0)l( u "OAc)2(l,4,7-trimethyl- 1 ,4,7-triazacyclononane)2-(Cl ⁇ 4)2, Mn ⁇ V 4(u-0)6(l ,4,7- triazacyclononane)4-(C104)2, Mnl II Mn IV 4(u-0) ⁇ (u-OAc)2-(l ,4,7- trimethyl-l,4,7-triazacyclononane)2-(C104)3, and mixtures thereof.
  • ligands suitable for use herein include 1,5,9-trimethyl- 1 ,5,9-triazacyclododecane, 2-methyl-l ,4,7-triazacyclononane, 2-methyl- 1 ,4,7-triazacyclononane, 1 ,2,4,7-tetramethyl-l ,4,7-triazacyclononane, and mixtures thereof.
  • bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(l,4,7-trimethyl- l,4,7-triazacyclononane)(OCH3)3_(PF6).
  • Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,114,606, is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH groups.
  • binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands including N4MnIII(u-0)2MnIVN4)+ an cl [Bipy2Mn ⁇ i( u -0)2MnI bipy 2 ]-(C104)3.
  • bleach catalysts are described, for example, in European patent application No. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo- porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S. 4,119,557 (ferric complex catalyst), German Pat.
  • the detergent compositions of the invention preferably contain as an optional component a heavy metal ion sequestrant.
  • heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
  • Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1 % to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
  • Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1 -hydroxy disphosphonates and nitrilo trimethylene phosphonates.
  • Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy- ethylene 1,1 diphosphonate.
  • Suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2- hydroxypropylenediamine disuccinic acid or any salts thereof.
  • Suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A- 399,133.
  • iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein.
  • EP-A-476,257 describes suitable amino based sequestrants.
  • EP-A- 510,331 describes suitable sequestrants derived from collagen, keratin or casein.
  • EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-l,2,4-tricarboxylic acid are alos suitable.
  • Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2- hydroxypropylenediamine-N-N' -disuccinic acid (HPDDS) are also suitable.
  • Another preferred ingredient useful in the detergent compositions is one or more additional enzymes.
  • Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, esterases, cellulases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
  • protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes.
  • Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001 % to 4% active enzyme by weight of the composition.
  • Preferred amylases include, for example, ⁇ -amylases obtained from a special strain of B licheniformis, described in more detail in GB- 1,269,839 (Novo).
  • Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl and BAN by Novo Industries A/S.
  • Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001 % to 2% active enzyme by weight of the composition.
  • Lipolytic enzyme may be present at levels of active lipolytic enzyme of from 0.0001 % to 2% by weight, preferably 0.001 % to 1 % by weight, most preferably from 0.001 % to 0.5% by weight of the compositions.
  • the lipase may be fiingal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Thermomyces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein.
  • a preferred lipase is derived from Pseudomonas pseudoalcaligenes. which is described in Granted European Patent, EP-B-0218272.
  • Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus oryza. as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
  • Organic polymeric compounds are preferred additional components of the detergent compositions in accord with the invention, and are preferably present as components of any particulate components where they may act such as to bind the particulate component together.
  • organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein.
  • Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1 % to 30% , preferably from 0.5% to 15% , most preferably from 1 % to 10% by weight of the compositions.
  • organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1, 596,756. Examples of such salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 100,000, especially 40,000 to 80,000.
  • polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
  • Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.
  • organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.
  • organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
  • the detergent compositions of the invention when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01 % to 15% , preferably from 0.05% to 10%, most preferably from 0.1 % to 5% by weight of the composition.
  • Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
  • antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
  • Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defmed herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component.
  • silicone antifoam compounds as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
  • Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
  • Suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
  • the monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • Suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C18-C40 ketones (e.g. stearone) N- alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
  • high molecular weight fatty esters e.g. fatty acid triglycerides
  • fatty acid esters of monovalent alcohols e.g. fatty acid esters of monovalent alcohols
  • a preferred suds suppressing system comprises (a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination
  • silica at a level of from 1 % to 50% , preferably 5% to 25% by weight of the silicone/silica antifoam compound;
  • silica/silicone antifoam compound is incorporated at a level of from 5% to 50% , preferably 10% to 40% by weight;
  • a dispersant compound most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78 % and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1 % to 10% by weight;
  • a particularly preferred silicone glycol rake copolymer of this type is DC0544, commercially available from DOW Corning under the tradename DC0544;
  • an inert carrier fluid compound most preferably comprising a C ⁇ - Ci8 ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80% , preferably 10% to 70% , by weight;
  • a highly preferred particulate suds suppressing system is described in EP- A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50 °C to 85 °C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms.
  • EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45 °C to 80 °C.
  • Clay softening system is described in EP- A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50 °C to 85 °C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon
  • the detergent compositions may contain a clay softening system comprising a clay mineral compound and optionally a clay flocculating agent.
  • the clay mineral compound is preferably a smectite clay compound.
  • Smectite clays are disclosed in the US Patents No.s 3,862,058, 3,948,790, 3,954,632 and 4,062,647.
  • European Patents No.s EP-A- 299,575 and EP-A-313,146 in the name of the Procter and Gamble Company describe suitable organic polymeric clay flocculating agents.
  • the detergent compositions herein may also comprise from 0.01 % to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
  • the polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N- vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof.
  • Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula :
  • A is NC, CO, C, -O-, -S-, -N-; x is O or 1 ;
  • R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
  • the N-O group can be represented by the following general structures :
  • Rl , R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.
  • the N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
  • Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
  • polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit.
  • a preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
  • the polyamine N-oxides can be obtained in almost any degree of polymerisation.
  • the degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
  • the average molecular weight is within the range of 500 to 1000,000.
  • Suitable herein are coploymers of N-vinylimidazole and N- vinylpyrrolidone having an average molecular weight range of from 5,000 to 50,000.
  • the preferred copolymers have a molar ratio of N- vinylimidazole to N-vinylpyrrolidone from 1 to 0.2.
  • the detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000.
  • PVP polyvinylpyrrolidone
  • Suitable polyvinylpyrrolidones are commercially vailable from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000).
  • PVP K-15 is also available from ISP Corporation.
  • Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12.
  • the detergent compositions herein may also utilize polyvinyloxazolidones as polymeric dye transfer inhibiting agents.
  • Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000.
  • the detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent.
  • Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
  • the detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
  • Hydrophilic optical brighteners useful herein include those having the structural formula:
  • Ri is selected from anilino, N-2-bis-hydroxyethyl and NH-2- hydroxy ethyl
  • R2 is selected from N-2-bis-hydroxy ethyl, N-2- hydroxy ethyl-N-methy lamino, morphilino, chloro and amino
  • M is a salt-forming cation such as sodium or potassium.
  • R is anilino
  • R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium
  • the brightener is 4,4',-bis[(4-anilino-6- (N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • the brightener is 4,4'- bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2- yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.
  • the brightener is 4,4'-bis[(4-anilino-6-morphilino- s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Co ⁇ oration.
  • Cationic fabric softening agents can also be incorporated into compositions in accordance with the present invention.
  • Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A-1 514 276 and EP-B-0 Oil 340.
  • Cationic fabric softening agents are typically incorporated at total levels of from 0.5% to 15% by weight, normally from 1 % to 5% by weight.
  • compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
  • compositions preferably have a pH measured as a 1 % solution in distilled water of at least 10.0, preferably from 10.0 to 12.5, most preferably from 10.5 to 12.0.
  • compositions in accordance with the invention can take a variety of physical forms including granular, tablet, bar and liquid forms.
  • the compositions are particularly the so-called concentrated granular detergent compositions adapted to be added to a washing machine by means of a dispensing device placed in the machine drum with the soiled fabric load.
  • the mean particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5 % of particles are greater than 1.7mm in diameter and not more than 5 % of particles are less than 0.15mm in diameter.
  • mean particle size as defined herein is calculated by sieving a sample of the composition into a number of fractions (typically 5 fractions) on a series of Tyler sieves. The weight fractions thereby obtained are plotted against the aperture size of the sieves. The mean particle size is taken to be the aperture size through which 50% by weight of the sample would pass.
  • the bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 600 g/litre, more preferably from 650 g/litre to 1200 g/litre.
  • Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrical cup disposed below the funnel.
  • the funnel is 130 mm high and has internal diameters of 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base.
  • the cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
  • the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup.
  • the filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement eg; a knife, across its upper edge.
  • the filled cup is then weighed and the value obtained for the weight of powder doubled to provide a bulk density in g/litre. Replicate measurements are made as required.
  • the surfactant system herein is preferably present in granular compositions in the form of surfactant agglomerate particles, which may take the form of flakes, prills, marumes, noodles, ribbons, but preferably take the form of granules.
  • the most preferred way to process the particles is by agglomerating powders (e.g. aluminosilicate, carbonate) with high active surfactant pastes and to control the particle size of the resultant agglomerates within specified limits.
  • Such a process involves mixing an effective amount of powder with a high active surfactant paste in one or more agglomerators such as a pan agglomerator, a Z-blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BV, 29 Chroomstraat 8211 AS, Lelystad, Netherlands, and Gebruder Lodige Maschinenbau GmbH, D-4790 Paderborn 1, Elsenerstrasse 7-9, Postfach 2050, Germany. Most preferably a high shear mixer is used, such as a Lodige CB (Trade Name).
  • a high active surfactant paste in one or more agglomerators such as a pan agglomerator, a Z-blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BV, 29 Chroomstraat 8211 AS, Lelystad, Netherlands, and Gebruder Lodige Maschinenbau GmbH, D-4790 Paderborn 1, Elsenerstrasse
  • a high active surfactant paste comprising from 50% by weight to 95% by weight, preferably 70% by weight to 85% by weight of surfactant is typically used.
  • the paste may be pumped into the agglomerator at a temperature high enough to maintain a pumpable viscosity, but low enough to avoid degradation of the anionic surfactants used.
  • An operating temperature of the paste of 50° C to 80° C is typical.
  • Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention.
  • an effective amount of the detergent composition it is meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
  • a dispensing device is employed in the washing method.
  • the dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
  • the dispensing device containing the detergent product is placed inside the drum.
  • water is introduced into the drum and the drum periodically rotates.
  • the design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water.
  • the device may possess a number of openings through which the product may pass.
  • the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product.
  • the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
  • Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle.
  • Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070.
  • the latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium.
  • the support ring is provided with a masking arrangemnt to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
  • the dispensing device may be a flexible container, such as a bag or pouch.
  • the bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
  • it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0011500, 0011501, 0011502, and 0011968.
  • a convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
  • C45E7 A C 14-15 predominantly linear primary alcohol condensed with an average of 7 moles of ethylene oxide
  • C25E3 A C 12-15 branched primary alcohol condensed with an average of 3 moles of ethylene oxide
  • Citric acid Anhydrous citric acid Carbonate Anhydrous sodium carbonate with a particle size between 200 ⁇ m and 900 ⁇ m
  • Bicarbonate Anhydrous sodium bicarbonate with a particle size distribution between 400 ⁇ m and 1200 ⁇ m
  • Silicate Amorphous Sodium Silicate Si ⁇ 2:Na2 ⁇ ; 2.0 ratio
  • MA/AA Copolymer of 1:4 maleic/acrylic acid average molecular weight about 70,000.
  • Brightener 1 Disodium 4,4 '-bis(2-sulphostyryl)biphenyl
  • Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-l .3.5- triazin-2-yl)amino) stilbene-2 : 2 ' -disulfonate .
  • Example 1 The following laundry detergent compositions A to F were prepared, A to D and F are comparative compositions E is in accord with the invention:
  • Test protocol 1 stain removal
  • the sets of fabric swatches were subjected to one wash cycle in an automatic washing machine.
  • the swatches were then assessed for removal of the various fatty stains by a four person grading panel using the well-known four-point Scheffe scale.
  • Test protocol 2 whiteness maintenance
  • a single plain white terry towel fabric swatch was subjected to five complete wash cycles in an automatic washing machine. The swatch was then assessed for dinginess/whiteness maintenance by a four person grading panel using the well-known four-point Scheffe scale.
  • J is a phosphorus-containing detergent composition
  • K is a zeolite-containing detergent composition
  • L is a compact detergent composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention a pour objet une composition détergente appropriée pour être utilisée pour le lavage du linge et de la vaisselle. Cette composition comprend (a) 1 à 90 % en poids de la composition d'un système de tensioactifs comprenant un tensioactif anionique et un tensioactif à base d'ester cationique, selon un rapport pondéral de tensioactifs anionique et à base d'ester cationique compris entre 3/1 et 15/1; et (b) entre 1,5 et 95 % en poids de la composition d'un système d'alcalinité ayant la capacité de rendre alcaline une solution de lavage de telle sorte que le pourcentage pondéral de l'équivalent de NaOH de la composition, mesuré par un procédé de test de libération de l'alcalinité défini, soit supérieur à 7 % en poids de la composition.
PCT/US1996/011284 1995-07-08 1996-07-03 Compositions detergentes WO1997003163A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9513956A GB2303141A (en) 1995-07-08 1995-07-08 Detergent compositions
GB9513956.4 1995-07-08

Publications (1)

Publication Number Publication Date
WO1997003163A1 true WO1997003163A1 (fr) 1997-01-30

Family

ID=10777343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/011284 WO1997003163A1 (fr) 1995-07-08 1996-07-03 Compositions detergentes

Country Status (3)

Country Link
AR (1) AR002780A1 (fr)
GB (1) GB2303141A (fr)
WO (1) WO1997003163A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998001521A1 (fr) * 1996-07-08 1998-01-15 The Procter & Gamble Company Compositions detergentes de lavage a la main renfermant une combinaison de tensioactifs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60024233T2 (de) 2000-05-16 2006-07-20 Clariant International Limited Verwendung kationischer Verbindungen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264457A (en) * 1980-02-04 1981-04-28 Desoto, Inc. Cationic liquid laundry detergent and fabric softener
US4889643A (en) * 1988-05-05 1989-12-26 The Procter & Gamble Company Quench cooled particulate fabric softening composition
US5207933A (en) * 1991-08-28 1993-05-04 The Procter & Gamble Company Liquid fabric softener with insoluble particles stably suspended by soil release polymer
US5466394A (en) * 1994-04-25 1995-11-14 The Procter & Gamble Co. Stable, aqueous laundry detergent composition having improved softening properties

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239660A (en) * 1978-12-13 1980-12-16 The Procter & Gamble Company Detergent composition comprising a hydrolyzable cationic surfactant and specific alkalinity source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264457A (en) * 1980-02-04 1981-04-28 Desoto, Inc. Cationic liquid laundry detergent and fabric softener
US4889643A (en) * 1988-05-05 1989-12-26 The Procter & Gamble Company Quench cooled particulate fabric softening composition
US5207933A (en) * 1991-08-28 1993-05-04 The Procter & Gamble Company Liquid fabric softener with insoluble particles stably suspended by soil release polymer
US5466394A (en) * 1994-04-25 1995-11-14 The Procter & Gamble Co. Stable, aqueous laundry detergent composition having improved softening properties

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998001521A1 (fr) * 1996-07-08 1998-01-15 The Procter & Gamble Company Compositions detergentes de lavage a la main renfermant une combinaison de tensioactifs
US6165967A (en) * 1996-07-08 2000-12-26 The Procter & Gamble Company Hand wash laundry detergent compositions containing a combination of surfactants

Also Published As

Publication number Publication date
GB2303141A (en) 1997-02-12
GB9513956D0 (en) 1995-09-06
AR002780A1 (es) 1998-04-29

Similar Documents

Publication Publication Date Title
WO1997003161A9 (fr) Procede pour laver du linge
EP0843715A1 (fr) Compositions detergentes
EP0883600B1 (fr) Composes cationiques detergents
EP0906385A1 (fr) Composition detergente
EP0842247A1 (fr) Compositions detergentes
EP0915950A1 (fr) Composition de detergence comprenant une source acide presentant une dimension de particule specifique
WO1998004662A9 (fr) Composition de detergence comprenant une source acide presentant une dimension de particule specifique
EP0906386A1 (fr) Composition detergente
WO1997003158A1 (fr) Compositions detergentes
EP0915956A1 (fr) Composition detergente
WO1997003164A1 (fr) Compositions detergentes
EP1021501A1 (fr) Composes detergents cationiques
WO1997045511A1 (fr) Compositions detergentes
WO1997003163A1 (fr) Compositions detergentes
WO1998017760A1 (fr) Composition detergente
EP0991747A1 (fr) Compositions detergentes sans phosphates
WO1997003157A1 (fr) Compositions detergentes comprenant un tensio-actif a ester cationique et une enzyme
WO1997045512A1 (fr) Compositions detergentes
WO1997003155A2 (fr) Compositions detergentes
EP0863969A1 (fr) Compositions detergentes
WO1997045513A1 (fr) Composition de detergent
GB2303142A (en) Detergent compositions
WO1997045513A9 (fr) Composition de detergent
EP0934395A1 (fr) Compositions detergentes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA