[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1993014396A1 - Gas sensor and its manufacture - Google Patents

Gas sensor and its manufacture Download PDF

Info

Publication number
WO1993014396A1
WO1993014396A1 PCT/JP1993/000012 JP9300012W WO9314396A1 WO 1993014396 A1 WO1993014396 A1 WO 1993014396A1 JP 9300012 W JP9300012 W JP 9300012W WO 9314396 A1 WO9314396 A1 WO 9314396A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
gas sensor
gas
particles
contact
Prior art date
Application number
PCT/JP1993/000012
Other languages
English (en)
French (fr)
Inventor
Kazuhisa Hasumi
Kentaro Nagano
Shuuichi Kamiyama
Hiroaki Yanagida
Osamu Okada
Original Assignee
Mikuni Corporation
Osaka Gas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corporation, Osaka Gas Co., Ltd. filed Critical Mikuni Corporation
Priority to KR1019930702699A priority Critical patent/KR100253633B1/ko
Priority to EP93901564A priority patent/EP0575628B1/en
Priority to JP05512329A priority patent/JP3081244B2/ja
Priority to DE69326199T priority patent/DE69326199T2/de
Publication of WO1993014396A1 publication Critical patent/WO1993014396A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • the present invention is used for detecting a trace amount of gas contained in a gas.
  • the present invention relates to a gas sensor that detects a test gas such as carbon monoxide, carbon dioxide, hydrogen, hydrocarbon, and the like.
  • the present invention is applicable to general households or business establishments using fuel gas, mining and other workplaces with underground work, business establishments that produce or refine gas, facilities that transport or refine petroleum, and others. Available.
  • One of the inventors of the present invention suggested in the above-mentioned known literature that a semiconductor junction having a rectifying property is effective for detecting hydrogen gas and water vapor in air, but at this stage the effect is sufficiently elucidated. As such, the types of gases that can be detected and the configuration of industrially applicable methods or equipment are not disclosed.
  • An object of the present invention is to further improve the gas sensors disclosed in the above-mentioned references 4 and 5, and to provide a gas sensor having practical characteristics and suitable for mass production. More specifically, the present invention provides stable characteristics, improves the flow of the test gas introduced into the contact portion, increases the contact area between the semiconductor contact portion and the gas, and provides a gas having good characteristics. It is an object to provide a sensor.
  • a first aspect of the present invention is a gas sensor, wherein a p-type semiconductor film and an n-type semiconductor film that are in contact with each other are formed as thick films on a substrate, respectively.
  • the thick film refers to a film formed by coating or printing and subsequent baking or drying, or a film formed by thermal spraying.
  • the p-type semiconductor a combination CuO, NiO, CoO, Cr 2 0 o, Cu 2 ⁇ , Mo0 2, Ag 2 0, Bi 9 ⁇ 3, Pr 2 0 3, MnO , either SiC, or it Can be used.
  • the semiconductor film Li o 0, A1? 0 3, Si0 2, Nb ⁇ 0 5, Cr o 0 3, CaO, La 2 0 o, comprise as additives any one or more materials of Ga 2 Oo Can be.
  • means are provided to block the air flow between the two semiconductors except for the contact portion.
  • a second aspect of the present invention is a method for producing the same, wherein a first paste-like substance mainly composed of particles of a P-type semiconductor material and a second paste-like substance mainly composed of particles of an n-type semiconductor material Is applied or printed so that the first and second paste-like substances are in contact with each other so that they respectively contact the two electrodes formed on the surface of the electrically insulating substrate, and the paste-like substance is fired. It is characterized by doing.
  • This manufacturing method can be based on thermal spraying. That is, a first paste-like substance mainly composed of particles of a p-type semiconductor material and a second paste-like substance mainly composed of particles of an n-type semiconductor material are formed on an electrically insulating substrate surface.
  • a third aspect of the present invention is a gas sensor, in which particles of a P-type semiconductor material and particles of an n-type semiconductor material are kneaded so as to be in contact with each other and formed into a solid. And a gas sensor including a structure in which a gas containing a test gas is introduced into a contact portion of the particles.
  • a fourth aspect of the present invention is a method for producing the same, in which a kneaded paste-like substance containing both particles of a p-type semiconductor material and particles of an n-type semiconductor material is brought into contact with an electrode formed on the surface of an electrically insulating substrate. It is characterized in that it is applied or printed on a paper and the paste-like substance is fired.
  • This manufacturing method can be based on thermal spraying. That is, the present invention is characterized in that a kneaded paste-like substance containing both particles made of a P- type semiconductor material and particles made of an n-type semiconductor material is sprayed so as to be in contact with an electrode formed on the surface of an electrically insulating substrate.
  • the paste-like substance is composed of solid particles and a vehicle, and the vehicle is in the range of 5 to 200 parts by weight per 100 parts by weight of the solid particles. Add. This makes it possible to control the film thickness during coating or printing. In addition, it is possible to control the degree of porosity of the thick film formed during firing.
  • the vehicle is preferably a solution in which ethyl cellulose or another derivative is dissolved in an organic solvent. Ethyl cellulose has the property of improving the properties of the coating film.
  • the blending amount and amount of the solvent are selected in consideration of the viscosity of the paste-like substance, the temperature at the time of firing, and the like.
  • the solid particles are particles of p-type semiconductor material and / or n-type semiconductor material, glass powder and other additives.
  • the compounding ratio of the semiconductor particles to the additive is selected between 5 and 95% by weight.
  • the thus weighed solid particles and the vehicle are preliminarily kneaded to loosen secondary or tertiary agglomeration of the solid particles, and then dispersed and pulverized and kneaded to uniformly disperse the solid particles in the vehicle. Finish kneading is preferably performed to further improve the uniformity.
  • an automated kneading means using a mortar or pestle called an automatic mortar or crusher is used.
  • a roll mill generally called a three-roll mill was used. Finish kneading is performed to further improve the uniformity of solid particles. Finish kneading also uses an automatic mortar or crusher.
  • the pre-drying is preferably performed at an arbitrary temperature of 100 to 200 ° C. for 1 to 30 minutes.
  • main drying is performed at an almost constant temperature of 200 to 350 ° C for 1 to 60 minutes.
  • firing is performed at an arbitrary temperature between 350 and 1450 ° C. for 5 to 180 minutes.
  • a thick film is a film formed by coating or printing followed by baking or drying, or a film formed by thermal spraying.In the case of a semiconductor, the particle diameter is about 0.1 ⁇ 111 to 20 // 111. It is obtained by printing and firing a paste-like substance obtained by kneading the particles, or by spraying.
  • the thick film formed in this manner is compared with a conventional technology in which a film formed by firing as a bulk is brought into mechanical contact with the bulk.
  • a stable P-n contact is formed and shows stable characteristics.
  • the p-type semiconductor thick film and the n- type semiconductor thick film may be formed side by side on the same substrate, or may be formed so as to be in contact with each other after being formed on separate substrates.
  • the P-type semiconductor particles and the II-type semiconductor particles are brought into contact with each other inside the film, and the test gas is supplied to the contact portion. It has been found that the structure to be introduced may be adopted. This structure is particularly stable and excellent as a practical structure.
  • the P-type semiconductor thick film and the n-type semiconductor thick film are formed separately, normally, a forward bias voltage is applied to the contact portion, and the test gas is detected by a change in the current.
  • a forward bias voltage is applied to the contact portion, and the test gas is detected by a change in the current.
  • P-type semiconductor particles and n-type semiconductor particles are mixed, there is no distinction between forward and reverse directions between the semiconductor particles, and alternating current can be used as a bias voltage.
  • the electrode may be provided between the substrate and the semiconductor thick film, or may be provided on the surface of the semiconductor thick film. It is convenient to form a thick film also for the electrodes.
  • FIG. 1 is a view showing a gas sensor according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a use state of the first embodiment.
  • FIG. 3 is a diagram showing an example of an electrode pattern.
  • FIG. 4 is a diagram showing another example of an electrode pattern.
  • FIG. 5 is a diagram showing another example of an electrode pattern.
  • FIG. 6 is a diagram for explaining the procedure of compounding and preparing the paste-like substance.
  • FIG. 7 is a diagram showing a test result of the first example, and is a diagram showing a change in the current value when the type of the test gas is changed over time.
  • FIG. 8A is a plan view showing a second embodiment of the present invention
  • FIG. 8B is a sectional view thereof.
  • FIG. 9 is a diagram showing the electrodes and turns used in the second embodiment.
  • FIG. 10 is a graph showing test results of the second embodiment, and shows a change in current value when the type of test gas is changed over time.
  • FIG. 11a is a plan view showing a partially modified example of the second embodiment
  • FIG. 1 lb is a transverse sectional view thereof.
  • FIG. 12 is a diagram illustrating test results of the second example, and is a diagram illustrating a change in a current value when the type of a test gas is changed over time.
  • FIG. 13 is a cross-sectional view showing a fourth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing the fifth embodiment.
  • FIG. 15 is a cross-sectional view showing a sixth embodiment of the present invention, showing a state before being assembled as a gas sensor.
  • FIG. 16 is a cross-sectional view showing the assembled state of the sixth embodiment.
  • FIG. 17 is a diagram showing the test results of the fifth example, and is a diagram showing a change in the current value when the type of the test gas is changed over time.
  • FIG. 18 is a perspective view showing a partially modified example of the sixth embodiment.
  • FIG. 19 is a cross-sectional view of the same gas sensor as in FIG.
  • FIG. 20 is a cross-sectional view showing a seventh embodiment of the present invention, showing a state before being assembled as a gas sensor.
  • FIG. 21 is a cross-sectional view showing a state after assembly of the seventh embodiment.
  • FIG. 22 is a diagram showing an example in which a part of the structure of the seventh embodiment is modified.
  • FIG. 23 is a diagram showing the structure of the eighth embodiment.
  • FIG. 24 is a diagram showing a partially modified example of FIG.
  • FIG. 25 is a plan view showing a ninth embodiment of the present invention.
  • FIG. 26 is a plan view showing an electrode “turn”.
  • FIG. 27 is a view for explaining the procedure for mixing pastes and preparing the same.
  • FIG. 28 is a diagram showing the test results of the ninth embodiment, where the horizontal axis shows the bias voltage and the vertical axis shows the current change rate.
  • FIG. 29 is a diagram showing the test results of the ninth embodiment, showing a change in the current value when the type of the test gas is changed over time.
  • FIG. 30 is a view showing the same test result when the distance between the electrodes is changed with respect to the test result of FIG. 28.
  • FIG. 31 is a diagram showing the test results of the ninth example, in which the horizontal axis shows the concentration of Cl 2 gas and the vertical axis shows the current change rate.
  • FIG. 32 is a sectional view showing a partially modified example of the ninth embodiment.
  • FIG. 33 is a diagram illustrating another test result of the gas sensor having the structure of the first embodiment, and is a diagram illustrating a change in a current value when the type of the test gas is changed over time.
  • FIG. 34 is a plan view showing a tenth embodiment of the present invention.
  • FIG. 35 is a plan view showing an eleventh embodiment of the present invention.
  • FIG. 36 is a view for explaining a microscopic structure of a pn mixed semiconductor thick film.
  • FIG. 37 is a wiring diagram showing an example of applying an alternating current to a pn mixed semiconductor thick film.
  • Fig. 38 is a diagram showing an example of operating with alternating current when each oxide semiconductor of pn is separately provided.
  • FIG. 40 is a diagram showing an example of a heater pattern.
  • FIG. 41 is a perspective view showing a cylindrical substrate and electrodes.
  • FIG. 42 is a perspective view showing an example in which a pn mixed semiconductor thick film is provided on a cylindrical substrate and electrodes.
  • Fig. 43 Explanation of spraying pn mixed semiconductor material particles on a cylindrical substrate by thermal spraying FIG.
  • FIG. 44 is a diagram showing an example of a heater when a cylindrical substrate is used.
  • FIG. 45 is a view showing another example of the heater when a cylindrical substrate is used.
  • FIG. 46 is a view showing a characteristic example of a gas sensor in which a CxiO thick film and a ZnO thick film are pressed against each other.
  • FIG. 47 is a diagram illustrating a method for manufacturing a gas sensor, and a diagram illustrating a method for manufacturing a paste-like substance.
  • FIG. 48 is a view showing the method for manufacturing the gas sensor, and showing the procedure of the printing step and the firing step.
  • FIG. 49 is a diagram showing a current change ratio with respect to a bias voltage when a forward direction noise is applied by pressing a NiO thick film and a ZnO thick film.
  • FIG. 50 is a view showing a current change ratio with respect to a bias voltage when a CuO thick film and a ZnO thick film are pressed against each other and a reverse noise is applied.
  • FIG. 51 is a graph showing a current change ratio with respect to a bias voltage when a CuO-NiO thick film and a ZnO thick film are pressed and a forward bias is applied.
  • Figure 52 is a diagram showing a current change ratio Bruno ⁇ scan voltage when applying a forward Bruno ⁇ Iasu pressed against the CuO thick film and Ti0 2 thick. .
  • FIG. 53 is a diagram showing an example of bias voltage versus current characteristics of a pn mixed semiconductor thick film.
  • FIG. 54 is a diagram showing a voltage change when an AC voltage is applied to a pn mixed semiconductor thick film.
  • FIG. 55a is a plan view showing a structural example of a gas sensor provided with pn separately, and FIG. 55b is a transverse sectional view thereof.
  • FIG. 56 is a view showing an example of characteristics obtained by the structures of FIGS. 55a and 55b.
  • Fig. 57 is a diagram showing the schematic configuration of the test equipment used to examine the characteristics of the prototype gas sensor.
  • FIG. 1 is a view showing a gas sensor according to a first example of the present invention
  • FIG. 2 is a view showing a use state of the gas sensor.
  • an electrode 13 is provided on the surface of a substrate 11 so as to be connected to the electrode 13.
  • a P-type semiconductor thick film 15 is provided.
  • a substrate 12 separate from the substrate 11 is provided, an electrode 14 is provided on the surface thereof, and an n-type semiconductor thick film 16 is provided on the surface of the electrode 14.
  • the p-type semiconductor thick film 15 and the n-type semiconductor thick film 16 are in mechanical contact with each other, and a gas containing a test gas is introduced into the contact portion.
  • the p-type semiconductor thick film 15 and the n-type semiconductor thick film 16 are each formed as a thick film. That is, the p-type semiconductor thick film 15 is formed by printing a paste-like substance containing particles of the p-type semiconductor material as a main solid component on the substrate 11 so as to be in contact with the electrode 13 and firing the paste-like substance. It is a membrane. Similarly, the n-type semiconductor thick film 16 is formed by printing a paste-like substance having particles of the n-type semiconductor material as a main solid component on the substrate 12 so as to be in contact with the electrode 14 and firing the paste-like substance. Film.
  • the paste-like substances printed on the substrate 11 and the substrate 12 may be dried, and then superposed so as to be in contact with each other, and then fired. In this way, the two semiconductor thick films 15 and 16 can be brought into contact with each other and fixed mechanically.
  • a positive DC voltage ie, a forward bias voltage is applied to the p-side electrode 13 and a negative n-type electrode 14 as shown in FIG.
  • the operation at this time is in principle equivalent to that described in the above-mentioned document 1, and when a gas containing the test gas is introduced into the contact portion between the two semiconductor thick films 15 and 16, the current flowing through the contact portion Use that the value changes.
  • FIG. 3 to 5 show pattern examples of the electrodes 13 and 14.
  • FIG. FIG. 3 shows an entire region as an electrode
  • FIG. 4 shows a comb-shaped pattern
  • FIG. 5 shows a grid-like pattern in which the grid area has an irregularity. It is convenient to form a thick film also for the electrodes 13 and 14, and in that case, various patterns of electrodes can be formed.
  • Table 1 shows the composition of the paste-like substance of the first embodiment.
  • Table 1 Pasty substance consisting of p-type semiconductor material particles
  • Pasty substance composed of p-type semiconductor material particles
  • FIG. 6 shows the procedure for preparing the paste-like substance.
  • BCA is a butyl carbitol acetate.
  • DBP is di-n-butyl phthalate.
  • FIG. 7 shows test results of the gas sensor having the structure of FIG. 1 using the electrode shown in FIG. 4 and the circuit shown in FIG.
  • the horizontal axis is time, which shows the temperature of the gas sensor, the gas switching signal indicating the gas switching timing, and the time change of the current with respect to it.
  • the unit is pA for current and x10 ° C for temperature. That is, the temperature of the gas sensor was maintained at 260 ° C, and a bias voltage of 0.7 V was applied in the forward direction with a direct current.
  • the test gases were CO, H 2 , and CgHg, each with a concentration of 4000 ppm.
  • Figure 7 shows that there is sensitivity for each of the test gases. In particular, it can be seen that under these conditions, there is excellent sensitivity to CO.
  • FIG. 8a and 8b are views showing a second embodiment of the present invention.
  • FIG. 8a is a plan view
  • FIG. 8b is a cross-sectional view.
  • FIG. 9 shows an electrode pattern used in this embodiment.
  • two comb-shaped electrodes 23 and electrodes 24 are provided on the surface of the same insulating substrate 21, and a P-type semiconductor thick film 25 and an n-type semiconductor thick film 26 are in contact with the electrodes 23 and 24, respectively.
  • This is different from the first embodiment in that it is formed on the same surface.
  • the two semiconductor thick films 25 and 26 are in contact with each other, and a gas containing a test gas is introduced into the contact portion.
  • composition of the paste-like substance is as shown in Table 1 shown above.
  • FIG. 9 Using the electrode shown in FIG. 9, a gas sensor having the structure shown in FIGS. 8a and 8b was tested with the circuit shown in FIG. Figure 10 shows the test results.
  • the horizontal axis in Fig. 10 is time, and the vertical axis is current and temperature of the contact part.
  • Test gas was CO, Ho, and 4000ppm each concentration C 3 H 8.
  • FIG. 11A and lib show the structure of the third embodiment.
  • the third embodiment has a structure that can be regarded as a partially modified example of the second embodiment.
  • FIG. 11A is a plan view, and FIG.
  • a protective film 27 was provided on the surfaces of the p-type semiconductor thick film 25 and the n-type semiconductor thick film 26 except for the pn contact portion.
  • the protective film 27 blocks the gas and prevents the gas from touching any part other than the pn contact part.
  • the composition of the paste-like substance is as shown in Table 1 shown in the above example.
  • FIG. 12 shows the test results of the third embodiment.
  • the horizontal axis represents time
  • the vertical axis represents current change and contact temperature.
  • the temperature of the gas sensor, the gas switching signal indicating the gas switching timing, and the change in current corresponding thereto are shown.
  • the test conditions are the same as those in the second embodiment shown in FIG. That is, the temperature of the gas sensor is 260 ° C, and the bias voltage is IV in the forward direction.
  • Test gases CO, H 0, respectively concentration C3H0 was 4000 ppm.
  • FIG. 13 is a transverse sectional view showing a fourth embodiment of the present invention.
  • FIG. 14 is a side view showing the fifth embodiment. It is sectional drawing. These embodiments are different from the second embodiment in the positional relationship between the electrode and the semiconductor thick film with respect to the substrate. Thus, an electrode can be formed.
  • a p-type semiconductor thick film 35 and an n-type semiconductor thick film 36 are formed directly on the surface of a substrate 31, and electrodes 33 and 34 are provided on the surface.
  • FIG. 13 is a transverse sectional view showing a fourth embodiment of the present invention.
  • FIG. 14 is a side view showing the fifth embodiment. It is sectional drawing.
  • These embodiments are different from the second embodiment in the positional relationship between the electrode and the semiconductor thick film with respect to the substrate.
  • an electrode can be formed.
  • a p-type semiconductor thick film 35 and an n-type semiconductor thick film 36 are formed directly on the surface of a substrate 31, and electrodes 33 and 34 are provided on the surface.
  • an n-side electrode 44 and a p-type semiconductor thick film 45 are formed on the surface of a substrate 41, and an n-type semiconductor thick film 46 and a p-side electrode 43 are formed on the surface, respectively. Are formed.
  • the p-type and n-type configurations shown in these examples can be inverted.
  • FIG. 15 and 16 are cross-sectional views showing a sixth embodiment of the present invention.
  • FIG. 15 shows a state before assembling as a gas sensor
  • FIG. 16 shows a state after assembling.
  • This embodiment is characterized in that two semiconductor thick films are formed discretely instead of in a plane, and the ⁇ -type semiconductor thick film and the n-type semiconductor thick film are brought into contact with each other by a half pitch. That is, a comb-shaped electrode 53 is provided on the surface of the substrate 51, and a p-type semiconductor thick film 55 is formed in contact with the electrode 53. Similarly, a comb-shaped electrode 54 and an n-type semiconductor thick film 56 in contact with the electrode 54 are provided on the surface of the substrate 52. As shown in FIG.
  • the p-type semiconductor thick film 55 and the n-type semiconductor thick film 56 are brought into contact with a shift of a half pitch.
  • FIG. 17 is a diagram showing test results of the sixth embodiment. That is, a gas sensor having the structure shown in FIG. 16 was tested using the circuit shown in FIG.
  • the horizontal axis in Fig. 17 is time, and the vertical axis is current and temperature at the contact part. This figure further shows the timing of the gas switching signal.
  • the composition of the paste-like substance of the sixth embodiment is as shown in Table 1 above.
  • the test conditions are the same as those in the second embodiment shown in FIG. That is, the temperature of the gas sensor is 260 ° C, and the bias voltage is IV in the forward direction.
  • Test gas is CO, H 2, each concentration Eta 8 was 4000 ppm.
  • FIG. 18 and 19 are views showing a partially modified example of the sixth example, and FIG. 18 is a perspective view and FIG. 19 shows a cross-sectional view.
  • the glass powder in order to mechanically press the two substrates 51 and 52, the glass powder is melted and welded.
  • the welded portion 59 is formed in a dotted shape so that the gas can easily pass, and the mechanical pressure contact state is stabilized. This structure improves manufacturing yield.
  • FIG. 20 and 21 are cross-sectional views showing a seventh embodiment of the present invention.
  • FIG. 20 shows a state before assembly as a gas sensor
  • FIG. 21 shows a state after assembly.
  • This embodiment is different from the sixth embodiment in that the tops thereof are in contact with each other without shifting the pitch between the P-type semiconductor thick film and the II-type semiconductor thick film. That is, a comb-shaped electrode 63 is provided on the surface of the substrate 61, and a p-type semiconductor thick film 65 is formed in contact with the electrode 63. Similarly, a comb-shaped electrode 64 and an n-type semiconductor thick film 66 in contact with the electrode 64 are provided on the surface of the substrate 62. The p-type semiconductor thick film 65 and the n-type semiconductor thick film 66 are arranged so as to face each other. In this configuration, the intersection in manufacturing can be made large, so that the manufacturing cost can be reduced. In FIGS. 19 and 20, a thick semiconductor film is not provided on the side surfaces of the electrodes 63 and 64, but this portion may be covered with a thick semiconductor film as in the sixth embodiment.
  • FIG. 22 is a sectional view showing a partially modified example of the seventh embodiment.
  • at least a part of each of the substrates 61 and 62, the electrodes 63 and 64, the p-type semiconductor thick film 65 and the n-type semiconductor thick film 66 is formed to be porous, and this porous portion is tested. The gas passes through to reach the pn contact.
  • FIG. 23 is a cross-sectional view of the eighth embodiment.
  • This example is a partially modified example of the seventh embodiment. Except for the contact portion between the p-type semiconductor thick film 65 and the n-type semiconductor thick film 66, the electrodes 63 and 64 and the two semiconductor thick films 65 and 66 are formed.
  • a protective film 67 is provided to cover. This protective film 67 shuts off the gas and prevents the gas from touching any part other than the pn contact part. This further improves the sensitivity to the test gas.
  • FIG. 24 is an example in which the eighth embodiment shown in FIG. 23 is further partially modified.
  • the side of the contact portion of Pn is exposed so that gas is introduced into that region.
  • the side of the pn contact portion is completely covered with the protective film 67, and A gas vent hole 68 is provided at the P-n contact portion of the device to positively introduce gas.
  • the sensitivity to the test gas is further improved.
  • FIG. 25 is a plan view showing a ninth embodiment of the present invention
  • FIG. 26 is a plan view showing an electrode pattern of the ninth embodiment.
  • electrodes 73 and 74 are provided on the surface of the same insulating ceramic 71, and connected to these electrodes 73 and 74, particles of the p-type semiconductor material and particles of the n-type semiconductor material are separated. It is characterized in that a pn mixed semiconductor thick film 75 which is mixed and formed into a solid is provided.
  • a pn mixed semiconductor thick film 75 which is mixed and formed into a solid is provided.
  • two comb-shaped electrodes 73 and 74 are formed on the surface of a substrate 71, and a p-type semiconductor is placed in contact with both of the electrodes 73 and 74.
  • a paste-like substance obtained by uniformly kneading the particles of the n-type semiconductor material and the particles of the n-type semiconductor material is applied or printed, and then fired.
  • Figure 27 shows the procedure for preparing this paste-like substance.
  • FIG. 28 shows the results of testing the gas sensor shown in Figure 25 with the electrode pattern shown in Figure 26.
  • the horizontal axis is the bias voltage [V]
  • the vertical axis is the current change rate [%].
  • the composition of the base substance is as shown in Table 2.
  • the joint was maintained at 260 ° C for the duration of the test.
  • Test gas is CO, an air balance of H 2 both 4000 ppm. As can be seen from Fig. 28, it is sensitive to CO near the noise voltage of 3V, and becomes H near the bias voltage of 8V. Sensitivity to That is, it is understood that there is selectivity for the type of the test gas depending on the bias voltage.
  • FIG. 29 shows the results of a test of the gas sensor shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents current and the temperature of the contact portion.
  • the joint was maintained at 260 ° C for the duration of the test.
  • the test gases CO, H 0 , and C 3 H 8 all have an air balance of 4000 ppm.
  • Fig. 1 shows the test results when the distance between the electrodes was changed instead of changing the mixing ratio of the paste-like substance.
  • FIG. 32 is a sectional view showing a partially modified example of the ninth embodiment.
  • a porous ceramic is used as the substrate 71 so that gas passes through the substrate 71.
  • the pii semiconductor thick film 75 can also be made porous.
  • the electrodes 73 and 74 can be made porous.
  • only the pn semiconductor thick film 75 can be made porous. ⁇ .
  • Fig. 33 shows the test results of the gas sensor manufactured with the structure shown in Fig. 32 and the paste-like substances shown in Table 3 mixed.
  • the horizontal axis is time
  • the vertical axis is current and temperature of the contact portion.
  • the joint was maintained at 260 ° C for the duration of the test.
  • the bias voltage is 5V.
  • the test gases CO, H 0 , and C 3 H 8 all have an air balance of 4000 ppm. In this example, it can be seen that the current value is large overall and the sensitivity is improved.
  • FIG. 34 is a plan view showing a tenth embodiment of the present invention
  • FIG. 35 is a plan view showing the eleventh embodiment.
  • one electrode is provided on the surface of the semiconductor thick film. That is, a comb-shaped electrode 83 is provided on the surface of the substrate 81, and a pn mixed semiconductor thick film 85 formed by kneading particles of a p-type semiconductor material and particles of an n-type semiconductor material so as to be in contact with the electrode 83 is formed.
  • a comb-shaped electrode 84 is provided on the surface of the pn mixed semiconductor thick film 85.
  • both electrodes are provided on the surface of the semiconductor thick film. That is, a pn mixed semiconductor thick film 95 is provided on the surface of the substrate 91, and comb-shaped electrodes 93 and 94 are formed on the surface.
  • FIG. 36 is a view for explaining the microscopic structure of a pn mixed semiconductor thick film.
  • the P-type semiconductor and the n-type semiconductor are separated from each other. Instead of forming the particles, the particles of each other are mixed. Therefore, as shown in FIG. 36, the p-type semiconductor particles and the n-type semiconductor particles are in contact with the opposing electrodes 103 and 104, respectively.
  • FIG. 37 shows an example in which an alternating current is applied to a mixed semiconductor thick film of p-type semiconductor particles and n-type semiconductor particles having one-n contact as shown in FIG.
  • the gas to be detected can be detected by detecting a change in current with such a circuit. Since an AC voltage can be applied as a power supply or a bias voltage, there is an advantage that a rectifier is not required by converting a commercial power supply with a transformer or directly using the commercial power supply. Also, since the signal processing of the detection signal can be performed by the AC signal from which the DC component has been removed by the coupling capacitor, there is an advantage that the sensitivity is substantially improved by using an amplifier, a noise removing circuit, or the like.
  • Fig. 38 shows an example of a circuit for this AC operation.
  • Figure 39 shows the equivalent circuit.
  • the structure example of this sensor shown in FIG. 38 is a partially modified example of the first embodiment, in which both the p-type semiconductor thick film 15 and the n-type semiconductor thickness are provided on the substrates 11 and 12 provided with the electrodes 13 and 14, respectively.
  • a membrane 16 is provided.
  • this is equivalent to a structure in which two structures of the first embodiment are used and connected in parallel in opposite directions.
  • the gas sensor can be operated with alternating current. There are the same advantages as described above when operated by alternating current.
  • FIG. 40 shows an example of the heater pattern. Gas sensors using semiconductors need to be heated for operation. Therefore, for example, a structure in which heating is performed from the back surface of the substrate using a heater having the pattern shown in FIG. 40 is preferable.
  • FIG. 41 shows an example of the shape of the substrate and the electrodes.
  • a flat substrate is used as the substrate.
  • a cylindrical substrate 111 may be used, and the electrodes 113 and 4 may be provided on the surface thereof.
  • a pn mixed semiconductor thick film 115 may be provided on the surfaces of the electrodes 113 and 114, and at least one of the electrodes 113 and 114 is provided on the surface of the pn mixed semiconductor thick film. Is also good.
  • the substrate has a cylindrical shape, it is easy to form a thick film by using thermal spraying instead of coating or printing.
  • the nozzle can be moved in the axial direction, and the pn semiconductor material particles can be produced while being sprayed.
  • FIGS. 44 and 45 show examples of heaters when a cylindrical substrate is used. That is, a structure in which a heater is inserted inside a cylindrical substrate is shown. When the substrate is cylindrical, it can be uniformly heated using a coil heater. In addition, as shown in Fig. 45, the influence of the electromagnetic field can be reduced even in the case of a cylindrical shape by devising the winding method of the heater.
  • FIG. 46 is a diagram showing a characteristic example of a gas sensor having a structure shown in FIG. 1 and a CuO thick film and a ZnO thick film which are different from the above-mentioned example, and each of CO, H 0 and C 3 H 8 is present. The amount of current change with respect to the bias voltage is shown below.
  • FIGS. 47 and 48 are views showing a method of manufacturing a gas sensor used for measuring the characteristics
  • FIG. 47 shows a method of producing a paste-like substance
  • FIG. 48 shows a procedure of a printing step and a firing step.
  • Figure 49 to Figure 50 is CO, and C 3 H.
  • Fig. 49 shows an example of the characteristics of the prototype gas sensor for each of Fig. 49.
  • Fig. 49 shows the results when the NiO thick film and the ZnO thick film were pressed against each other and a forward bias was applied.
  • Fig. 50 shows the CuO thick film and the ZnO thick film.
  • FIG. 52 is CuO thick film and Ti0 2 thickness The graph shows the current change ratio with respect to the bias voltage when a forward bias is applied by pressing the film.
  • the concentration of each of CO, H 2 and C 0 H 8 was 4000 ppm, and the ambient temperature was 260 ° C.
  • Table 4 shows the CO gas sensitivity and gas selectivity. The additives used are shown in parentheses in Table 4. Table 4
  • FIG. 53 shows an example of a bias voltage versus current characteristic of a pn mixed semiconductor thick film. However, the vertical axis is the absolute value of the current value. In this example, a mixture of CuO and ZnO was measured at an ambient temperature of 260 ° C. As shown in FIG. 53, no rectification characteristics can be obtained between the electrodes.
  • FIG. 54 shows the voltage change when an AC voltage is applied to the same pn mixed semiconductor thick film as in FIG. As shown in Fig. 54, the voltage differs when the atmosphere is air only and when 4000 ppm of CO is mixed into the air.
  • FIGS. 55a and 55b a structural example of a gas sensor in which a p-type region and an n-type region are mixed is shown in FIGS. 55a and 55b, and a characteristic example obtained with the structure is shown in FIG. 56.
  • FIG. 55a is a plan view
  • FIG. 55b is a cross-sectional view.
  • the horizontal axis represents time
  • the vertical axis represents current and the temperature of the contact portion.
  • Fig. 57 shows the outline of the test equipment used to examine the characteristics of the prototype gas sensor.
  • the gas sensor 200 to be measured is placed in a tubular furnace 203, and the tubular furnace 203 is charged. Air, CO, H 2, or C 3 H 8 was passed through the magnetic valve 201 and the mass flow meter 202, and the temperature was controlled by the temperature controller 204.
  • the applied voltage and current to the measured gas sensor 200 were measured by a voltmeter / ammeter 205, and the measured values were processed by a personal computer 206 and stored in an external station device 207.
  • Solenoid valve 201 is air, three levels of CO, H 2, C 3 has become H or by selecting one of vo chi configured to be supplied in a tubular furnace 203, is supplied through the relay 209 from the controller 208 Operated by control signal.
  • the personal computer 206 captures the current value detected by the voltage / ammeter 205, the personal computer 206 outputs a control signal for gas switching to the controller 208 when an appropriate time has elapsed.
  • the gas sensor of the present invention has excellent characteristics and is suitable for mass production. Furthermore, the present invention can provide a gas sensor that exhibits stable characteristics, improves the flow of the test gas introduced into the contact portion, increases the contact area between the semiconductor contact portion and the gas, and exhibits good characteristics. .
  • INDUSTRIAL APPLICABILITY The present invention can be used for detecting carbon monoxide, hydrogen, hydrocarbons, and other test gases, and is used for general households, business establishments, mining and other workplaces involving subordinate operations, gas production or purification. It can be effectively used in business establishments, facilities that transport or refine petroleum, and others. Furthermore, it is extremely effective when used for process control that performs control based on gas detection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

明 細 書 ガスセンサぉよびその製造方法
〔技術分野〕
本発明は気体中に微量に含ま るガスの検出に利用する。 特に、一酸化炭素、二 酸化炭素、 水素、 炭化水素その他被検ガスを検出するガスセンサに関する。 本発明は、 燃料ガスを利用する一般家庭あるいは事業所、 鉱業その他の地下作 業を伴う作業所、 ガスの製造あるいは精製を行う事業所、 石油類の輸送または精 製を行う設備、 その他に広く利用できる。
本発明は、 ガス検出に基づき制御を行うプロセス制御に利用できる。
〔背景技術〕
従来から、 雰囲気中に漏洩するガスが爆発を起こすある t、は人体に有害である などの危険状態になる前に警報を発するガスセンサが広く知られている。 特に、― 酸化炭素は爆発を起こす状態よりはるかに微量に空気中に混入しても、 人体ある いは生物体に危険があるため、混入量が数百 PPM程度で警報を発生するものが必 要とされている。
従来このためのガスセンサとして、 セラミック半導体物質を用いる技術が開発 された。 この技術は、 例えば
文献 1. 宮山、 柳田 「酸化亜鉛ガスセンサー」
窯業協会発行:雑誌「セラミックス」第 18巻第 11号 (1983年 11月) 941— 945頁
に詳しい記載がある。 この技術はセラミック半導体の表面に還元性のガスが接触 すると、半導体の表面にある吸着酸素がそのガスと反応することにより減少し、ポ テンシャル障壁の高さと幅が減少するため、 電子の移動が容易になり比抵抗が減 少する性質を利用するものである。
また、 本願発明の発明者の一人は、 整流特性のある金属と半導体、 あるいは一 つのセラミック半導体と異種のセラミック半導体の接合が、 水素ガスまたは水蒸 気に反応することに気付き、 整流特性の変化を空気中の水素または水蒸気の検知 に利用することが将来有望であることを提言した。 これは、 文献 2. 宮山、 柳田 「ガスセンサー材料開発の新しい展開」
雑誌「電気化学」第 50巻第 I号 (1982年 1月) 92— 98頁 あるいは
文献 3. 柳田他「半導体接合の相対湿度に対する電流電圧特性」
日本応用物理学会発行の英文論文誌 (Japanese Journal of Applied Physics) 第 22巻第 12号 1983年 12月 1933頁
に記載されている。
本願発明の発明者の一人は、 上記公知の文献で、 整流特性のある半導体接合が 空気中の水素ガスおよび水蒸気の検出に有効であることを示唆したが、 この段階 ではその作用が十分に解明されていなかったので、 検出できるガスの種類、 工業 的に利用できる方法または装置の構成などは明らかにされていない。
本願出願人の一部は、 低温で被検ガスの種類を選択的に検出することができる ガス検出方法およびガスセンサについて既に特許出願し、 その出願が、
文献 4. 特開昭 62 - 90529号公報
として公開されている。 この公報には、互いに接触させることにより整流特性を もつ二種類の固体物質を接触面を介して機械的に接触させ、 その接触面に空隙を 形成しておき、 その空隙に試料ガスを導くことが示されている。 このようにする と、 ノ、'ィァス電圧の変化により感応するガスの種類が変化する。 これは、被検ガ スの種類により、 その半導体物質表面のポテンシャル障壁エネルギ準位が異なる 値に変化するためと考えられる。
また、上記一部の出願人は、文献 4に示されたと同等の構造を用いて二酸化酸素 を検出できることについても特許出願し、 その出願は、
文献 5. 特開昭 62 - 90528号公報
として公開されている。
本発明は、上述の文献 4および 5に開示されたガスセンサをさらに改良し、実用 的な特性をもち、 しかも大量生産に適したガスセンサを提供することを目的とす る。 さらに具体的に本発明は、 安定な特性を示レ、 接触部に導入する被検ガスの 流通をよくし、半導体接触部とガスとの接触面積を増大させ良好な特性を示すガ スセンサを提供することを目的とする。
〔発明の開示〕
本発明の第一の観点はガスセンサであり、相互に接触する p型半導体膜および n 型半導体膜が、 それぞれ基板上に厚膜として形成されたことを特徴とする。 ここ で厚膜とは、 塗布もしくは印刷およびその後の焼成または乾燥により形成される 膜、 あるいは溶射により形成される膜をいう。
p型半導体としては、 CuO、 NiO、 CoO、 Cr20o、 Cu2〇、 Mo02、 Ag20、 Bi93、 Pr203、 MnO、 SiCのいずれか、 またはそれを組み合わせたものを用いることが できる。 また、 n型半導体としては、 MgO、 Alo03、 Si02、 V25、 Fe2O , SrO、 Nb205、 Nbo04、 Nb203、 BaO、 Ta2Og、 Ta25、 Ce〇2、 ZnO、 Ti〇2、 Sn〇2、 W03、 Nd2Oo、 SiC、 BaTiOg、 PbTi0o、 SrTi03のいずれか、 またはそれを組 み合わせたものを用いることができる。 これらの材料は、 その多くが一般に絶縁 体として分類されるものであるが、 それは室温の場合であって、 それより高いあ る程度の温度範囲では半導体としての性質を示す。
半導体膜には、 Lio0、 A1?03、 Si02、 Nbゥ 05、 Cro03、 CaO、 La20o、 Ga2Oo のいずれか一以上の材料を添加剤として含むことができる。
二つの半導体の接触部以外への通気を遮断する手段が設けられていることが望 ましい。
本発明の第二の観点はその製造方法であり、 P型半導体材料の粒子を主成分とす る第一のペースト状物質と n型半導体材料の粒子を主成分とする第二のペースト状 物質とを電気絶縁性の基板表面に形成された二つの電極にそれぞれ接するように、 かっこの第一および第二のペースト状物質が相互に接するように塗布もしくは印 刷し、 そのペースト状物質を焼成することを特徴とする。 この製造方法は溶射に よることができる。 すなわち、 p型半導体材料の粒子を主成分とする第一のペース ト状物質と n型半導体材料の粒子を主成分とする第二のペースト状物質とを電気絶 縁性の基板表面に形成された二つの電極にそれぞれ接するように、 かっこの第一 および第二のペースト状物質が相互に接するように溶射することを特徴とする。 本発明の第三の観点はガスセンサであり、 P型半導体材料の粒子および n型半導 体材料の粒子が相互に接触するように混練され固体に成形され、 この固体に二つ の電極が設けられ、 前記粒子の接触部に被検ガスを含む気体が導入される構造を 備えたことを特徴とするガスセンサが提供される。
本発明の第四の観点はその製造方法であり、 p型半導体材料による粒子および n 型半導体材料による粒子を共に含む混練したペースト状物質を電気絶縁性の基板 表面に形成された電極に接するように塗布もしくは印刷し、 そのペースト状物質 を焼成することを特徵とする。 この製造方法は溶射によることができる。 すなわ ち、 P型半導体材料による粒子および n型半導体材料による粒子を共に含む混練し たペースト状物質を電気絶縁性の基板表面に形成された電極に接するように溶射 することを特徵とする。
ペースト状物質の製法について説明すると (図 47、図 48参照)、 ペースト状物 質は固形粒子分とビヒクルとからなり、 固形粒子分 100重量部に対してビヒクル を 5〜200重量部の範囲で加える。 これにより塗布または印刷の際の膜厚を制御す ることができる。 また焼成のときにできる厚膜の多孔質具合を制御することがで きる。 ビヒクルは有機溶剤にェチルセルロースその他誘導体を溶解させた溶液が よい。 ェチルセルロースは塗膜性状を良くする性質があり、 溶剤の配合および量 はペースト状物質の粘度と焼成時の温度その他を考慮して選ぶ。 固形粒子分は p型 半導体材料およびまたは n型半導体材料の粒子およびガラス粉その他添加材であ る。 半導体粒子の添加材に対する配合比は 5〜95重量%の間に選ぶ。 このように 秤量された固形粒子分およびビヒクルを予備混練し、 固形粒子分の二次あるいは 三次凝集をほぐし、 さらにビヒクルに固形粒子分を均一に分散させるための分散 粉砕混練を行う。 さらに均一性を高めるために仕上げ混練を行うことがよい。 予備混練は自動乳鉢あるいは擂潰機といわれる乳鉢および乳棒による自動化さ れた混練手段を用いる。 固形粒子分の二次あるいは三次凝集をほぐすには一般に 3本ロールといわれるロールミルを使用した。 さらに固形粒子分の均一性を高める ために仕上げ混練を行う。仕上げ混練は同じく自動乳鉢あるいは擂潰機を用いる。 ペースト状物質を厚膜に形成するにはペースト状物質を基板に印刷することが よい。一般にスクリーン印刷といわれる公知の方法で行うことができる。 ペース ト状物質をアプリケータその他で基板に塗布することによつても実現できる。 次いで塗布または印刷により形成した塗膜を予備乾燥する。 これにより溶剤を 揮発させて塗膜の流れ出しを防止することができる。 予備乾燥の温度は 100〜200 °Cの任意の温度で 1〜30分行うことがよい。 次にビヒクル分を揮発させて固形分 を残すために 200〜350°Cのほぼ一定温度で 1〜60分程度の本乾燥を行う。 続いて 350〜1450 °Cの間の任意の温度で 5〜: 180分程度の焼成を行う。
上述の文献 4および文献 5に示されたガスセンサでは、 p型半導体および n型半 導体としてバルクまたは薄膜を用いていた。 本願発明者は、 バルクゃ薄膜の代わ りに厚膜を用いてガスセンサを試作したところ、 非常に優れた特性が得られるこ とを発見し、 この現象を追及して本発明を完成するに至った。 厚膜は塗布もしく は印刷およびそれに続く焼成または乾燥により形成される膜、 あるいは溶射によ り形成される膜であり、半導体の場合には、粒径が0.1 ^ 111〜20 // 111程度の粒子 を混練して得られるペースト状物質を印刷して焼成する、 もしくは溶射により得 られる。 このようにして形成される厚膜は、 従来技術であるバルクとして焼成し 形成されたものを機械的に接触させた場合に比べて、
(1) 安定した P— n接触部が形成され安定した特性を示す、
(2) 厚膜あるいは基板を多孔質にして p— n接触部への被検ガスの導入を効率的 にする、
(3) p— n接触部とガスとの接触面積を増大させて良好な特性を示す、
など優れた特長がある。
p型半導体厚膜と n型半導体厚膜とは、 同一基板上に並んで形成してもよく、 別々の基板に形成した後に互いに接するように配置してもよ 、。
さらには、 p型半導体の粒子と n型半導体の粒子とが互いに混ざりあつた状態で 膜の内部で P型半導体の粒子と II型半導体の粒子とを互いに接触させ、その接触部 に被験ガスが導入されるような構造にしてもよいことがわかった。 この構造は実 用的な構造として特に安定であり優れたものである。
P型半導体厚膜と n型半導体厚膜とを別々に形成した場合には、通常は、その接 触部に対して順方向バイアス電圧を与え、 その電流の変化により被検ガスを検出 する。 P型半導体の粒子と n型半導体の粒子とを混ぜた場合には、半導体粒子間に 順方向と逆方向との区別はなく、 バイアス電圧として交流を利用することもでき る。 電極は基板と半導体厚膜との間に設けてもよく、 半導体厚膜の表面に設けても よい。 電極についても厚膜形成することが便利である。
〔図面の簡単な説明〕
図 1は本発明第一実施例のガスセンサを示す図。
図 2は第一実施例の使用状態を示す図。
図 3は電極パターンの一例を示す図。
図 4は電極パターンの別の例を示す図。
図 5は電極パターンの別の例を示す図。
図 6はペースト状物質の配合およびその調合の手順を説明する図。
図 7は第一実施例の試験結果を示す図で'あり、被験ガスの種類を時間の経過に応 じて切り替えたときの電流値の変化を示す図。
図 8aは本発明の第二実施例を示す平面図であり、 図 8bはその断面図。
図 9は第二実施例で用いられる電極ノ、'ターンを示す図。
図 10は第二実施例の試験結果^示す図であり、被験ガスの種類を時間の経過に 応じて切り替えたときの電流値の変化を示す図。
図 11aは第二実施例の一部変更例を示す平面図であり、図 1 lbはその横断面図。 図 12は第二実施例の試験結果を示す図であり、被験ガスの種類を時間の経過に 応じて切り替えたときの電流値の変化を示す図。
図 13は本発明の第四実施例を示す横断面図。
図 14は第五実施例を示す横断面図。
図 15は本発明の第六実施例を示す横断面図であり、ガスセンサとしての組み立 て前の状態を示す図。
. 図 16は第六実施例の組み立て後の状態を示す横断面図。
図 17は第五実施例の試験結果を示す図であり、被験ガスの種類を時間の経過に 応じて切り替えたときの電流値の変化を示す図。
図 18は第六実施例の一部変更例を示す斜視図。
図 19は図 18と同じガスセンサの横断面図。
図 20は本発明の第七実施例を示す横断面図であり、ガスセンサとしての組み立 . て前の状態を示す図。 図 21は第七実施例の組み立て後の状態を示す横断面図。
図 22は第七実施例の構造の一部を変更した例を示す図。
図 23は第八実施例の構造を示す図。
図 24は図 23の一部変更例を示す図。
図 25は本発明の第九実施例を示す平面図。
図 26は電極ノ、"ターンを示す平面図。
図 27はペースト状 質の配合およびその調合の手順を説明する図。
図 28は第九実施例の試験結果を示す図であり、横軸はバイアス電圧を示し、縦 軸は電流変化率を示す。
図 29は第九実施例の試験結果を示す図であり、被験ガスの種類を時間の経過に 応じて切り替えたときの電流値の変化を示す図。
図 30は図 28の試験結果に対して電極間距離を変えたときの同様の試験結果を示 す図。
図 31は第九実施例の試験結果を示す図であり、横軸に Cl2ガスの濃度、縦軸に 電流変化率を示す。
図 32は第九実施例の一部変更例を示す断面図。
図 33は第一実施例の構造によるガスセンサの別の試験結果を示す図であり、被 験ガスの種類を時間の経過に応じて切り替えたときの電流値の変化を示す図。 図 34は本発明の第十実施例を示す平面図。
図 35は本発明の第十一実施例を示す平面図。
図 36は pn混合半導体厚膜の微視的構造を説明する図。
図 37は pn混合半導体厚膜に交流を印加する例を示す配線図。
図 38は pnのそれぞれの酸化物半導体を別個に設けた場合に交流で動作させる 例を示す図。
図 39は等価回路を示す図。
図 40はヒータパターンの一例を示す図。
図 41は円筒形の基板と電極を示す斜視図。
図 42は円筒形の基板と電極に pn混合半導体厚膜を設けた例を示す斜視図。 図 43は円筒形状の基板に溶射により pn混合半導体材料粒子を吹きつける説明 図。
図 44は円筒形の基板を用いた場合のヒータの例を示す図。
図 45は円筒形の基板を用いた場合のヒータの別の例を示す図。
図 46は CxiO厚膜と ZnO厚膜とを圧接したガスセンサの特性例を示す図。 図 47はガスセンサの製造方法を示す図であり、ペースト状物質の作製方法を示 す図。
図 48はガスセンサの製造方法を示す図であり、印刷工程および焼成工程の手順 を示す図。
図 49は NiO厚膜と ZnO厚膜とを圧接して順方向ノ 'ィァスを印加したときのバ ィァス電圧に対する電流変化比を示す図。
図 50は CuO厚膜と ZnO厚膜とを圧接して逆方向ノヾィァスを印加したときのバ ィァス電圧に対する電流変化比を示す図。 . 図 51は CuO - NiO厚膜と ZnO厚膜とを圧接して順方向バイァスを印加したと きのバイアス電圧に対する電流変ィヒ比を示す図。
図 52は CuO厚膜と Ti02厚膜を圧接して順方向ノ <ィァスを印加したときのノ ァス電圧に対する電流変化比を示す図。 .
図 53は pn混合半導体厚膜のバイァス電圧対電流の特性例を示す図。
図 54は pn混合半導体厚膜に交流電圧を印加したときの電圧変化を示す図。 図 55aは pnを別個に設けたガスセンサの構造例を示す平面図であり、図 55bは その横断面図。
図 56は図 55aおよび図 55bの構造により得られた特性例を示す図。
図 57は試作したガスセンサの特性を調べるために用いた試験装置の概略的な構 成を示す図。
〔発明を実施するための最良の形態〕
〔第一実施例〕
図 1は本発明第一 H ^例のガスセンサを示す図であり、図 2はその使用状態を示 す図である。 これらの図では、 p型半導体厚膜と n型半導体厚膜との接触部を横か ら見た構造を示す。
この実施例は、基板 11の表面に電極 13を備え、 この電極 13に接続されるよう に P型半導体厚膜 15を備える。 また、基板 11とは別個の基板 12を備え、 その表 面に電極 14を備え、 この電極 14の表面に n型半導体厚膜 16を備える。 p型半導 体厚膜 15と n型半導体厚膜 16とは機械的に接触され、その接触部に被検ガスを含 む気体が導入される構造となっている。
ここで本実施例の特徴とするところは、 p型半導体厚膜 15および n型半導体厚 膜 16がそれぞれ厚膜形成されていることにある。 すなわち、 p型半導体厚膜 15は、 p型半導体材料の粒子を主固形成分とするペースト状物質を電極 13に接するよう に基板 11に印刷し、そのペースト状物質を焼成することにより形成された膜であ る。 n型半導体厚膜 16も同様に、 n型半導体材料の粒子を主固形成分とするぺー スト状物質を電極 14に接するように基板 12に印刷し、そのペースト状物質を焼成 することにより形成された膜である。
この実施例にお 、て基板 11および基板 12にそれぞれ印刷されたぺ一スト状物質 を乾燥させてから、互いに接触させるように重ね合わせてから焼成を行うことが よい。 このようにすると二つの半導体厚膜 15および 16を相互に接触させるととも に機械的に固定することができる。
この実施例を動作させるには、 図 2に示すように p側の電極 13に正、 n型の電 極 14に負の直流電圧、すなわち順方向バイアス電圧を印加する。 このときの動作 は上述の文献 1に示されたものと原理的に同等であり、二つの半導体厚膜 15、 16 の接触部に被検ガスを含む気体が導入されると接触部に流れる電流値が変化する ことを利用する。
図 3ないし図 5は電極 13、 14のパターン例を示す。 図 3はある領域の全体を電 極にしたものであり、図 4は櫛型パターン、図 5は格子の面積に変ィヒが設けられた 格子状パターンを示す。 電極 13、 14についても厚膜形成することが便利であり、 そのときには種々のパタ一ンの電極を形成することができる。
第一実施例のペースト状物質の配合を表 1に示す。 表 1 p型半導体材料粒子よりなるペースト状物質
1 ビヒクル
1 ェチセル 7 g 1
I BCA 35 g 1
1 Q:—テルビネオール 3 g {
1 DBP 2 g 1
1固形粒子分
1 CuO 140 g [
1 ガラス粉 14 g 1
p型半導体材料粒子よりなるペースト状物質 ビヒクノレ
ェチセノレ 7 g
BCA 35 g
α—テルビネオール 35 g
DBP 23 g
固形粒子分
ΖηΟ 140 g
ガラス粉 14 g
ペースト状物質の調合手順を図 6に示す。 BCAはプチルカルビトールァセテ一 トである。 DBPはフタル酸ジ—n—ブチルである。
図 4に示す電極を用いて図 2に示す回路により図 1の構造のガスセンサの試験結 果を図 7に示す。 この図において横軸は時間であり、ガスセンサの温度と、ガスの 切り替えタイミングを示すガス切替信号と、 それに対する電流の時間変化とを示 す。単位は電流が pA、温度が x lO°Cである。 すなわち、ガスセンサの温度を 260 °Cに維持し、 バイアス電圧は直流で順方向に 0.7Vを印加した。 被験ガスは CO、 H2、 CgHgであり、 それぞれ濃度を 4000ppmとした。
図 7からそれぞれの披験ガスに対して感度があることが分かる。特にこの条件で は COに対して優れた感度があることがわかる。
〔第二実施例〕
図 8aおよび図 8bは本発明の第二実施例を示す図であり、図 8aは平面図、図 8b は横断面図である。 また、 図 9はこの実施例で用いられる電極パターンを示す。 この実施例は、 同一の絶縁性基板 21の表面に二つの櫛型電極 23、 電極 24が設 けられ、 P型半導体厚膜 25および n型半導体厚膜 26がそれぞれ電極 23、 24に接 するように同じ面に形成されたことが第一実施例と異なる。 二つの半導体厚膜 25、 26は、互いに接し、 かつその接触部に被検ガスを含む気体が導入されるようにな つている。
ペースト状物質の配合は上に示した表 1の通りである。
図 9に示す電極を用い、図 8aおよび図 8bに示す構造のガスセンサを図 2に示す 回路で試験した。 試験結果を図 10に示す。 図 10の横軸は時間であり縦軸は電流お よび接触部の温度である。
ガスセンサの温度は 260 °Cに維持され、バイアス電圧は直流であり順方向に IV である。 被験ガスは CO、 Ho、 C3H8でそれぞれ濃度を 4000ppmとした。
図 10から各被験ガスに対してかなりの感度を示すことがわかる。
〔第三実施例〕
図 11aおよび図 libは第三実施例の構造を示す図である。 この第三実施例は第 二実施例の一部変更例というべき構造であり、 図 11aは平面図、 図 libは横断面 図である。 この例では、 p型半導体厚膜 25および n型半導体厚膜 26の表面に、 p - n接触部を除いて保護膜 27を設けた。 この保護膜 27はガスを遮断し、 p - n接 触部以外にはガスが触れないようにしたものである。 ペースト状物質の配合は上 の例に示した表 1の通りである。
図 12にこの第三実施例につ tゝての試験結果を示す。 図 12の横軸は時間であり縦 軸は電流変化量および接触部の温度である。 ここでは、 ガスセンサの温度と、 ガ スの切り替えタイミングを示すガス切替信号と、 それに対する電流の変化とを示 す。 この試験条件は上記図 10に示す第二実施例と同一条件である。 すなわちガス センサの温度は 260°C、バイアス電圧は順方向に IVである。 被験ガスは CO、 H0、 C3H0でそれぞれ濃度を 4000ppmとした。
この結果から第三実施例では第二実施例に比べて COガスの選択性が強まり接触 部の電流変化が顕著になったことがわかる。
〔第四および第五実施例〕
図 13は本発明の第四実施例を示す横断面図である。 図 14は第五実施例を示す横 断面図である。 これらの実施例は、 基板に対する電極と半導体厚膜との位置関係 が第二実施例と異なる例である。 このように電極を形成することができる。 図 13 に示した第四実施例では、基板 31の表面に直接に p型半導体厚膜 35と n型半導体 厚膜 36とが形成され、 その表面にそれぞれ電極 33、 34が設けられている。 図 14 に示した第四実施例では、基板 41の表面に n側の電極 44と p型半導体厚膜 45と が形成され、その表面にそれぞれ n型半導体厚膜 46と p側の電極 43とが形成され ている。 これらの例に示した p型と n型の配置を反転させて形成することもでき
〔第六実施例〕
図 15および図 16はそれぞれ本発明の第六実施例を示す横断面図であり、 図 15 はガスセンサとしての組み立て前の状態、図 16は組み立て後の状態を示す。 この 実施例は、二つの半導体厚膜を面状ではなく離散的に形成し、 Ρ型半導体厚膜と n 型半導体厚膜とを半ピッチずらして接触させたところに特徵がある。 すなわち、基 板 51の表面には櫛型の電極 53が設けられ、 この電極 53に接して p型半導体厚膜 55が彤成される。 基板 52の表面には、 同様に、櫛型の電極 54とこれに接する n 型半導体厚膜 56とが設けられる。 p型半導体厚膜 55と n型半導体厚膜 56とは、図 15に示すように、半ピッチずれて接触させられる。 この場合には、 p型半導体厚 膜 55および n型半導体厚膜 56をそれぞれ電極 53、 54の側面にも設けることが望 ましい。 これにより接触面積が確保されガスの流通性が良くなる。
図 17はこの第六実施例の試験結果を示す図である。 すなわち図 16に示す構造の ガスセンサを図 2に示す回路で試験したものである。 図 17の横軸は時間であり縦 軸は電流および接触部の温度である。 この図にはさらに、 ガス切替信号のタイミ ングを示す。 この第六実施例のペースト状物質の配合は前記表 1に示す通りであ る。 この試験条件は上記図 10に示す第二実施例と同一条件である。 すなわちガス センサの温度は 260°C、バイアス電圧は順方向に IVである。 被験ガスは CO、 H2、 Η8でそれぞれ濃度を 4000ppmとした。
この結果からこの構造では電流の絶対値が大きくなつていることが分かる。 こ れは接触部の面積が実質的に大きくなっているものと考えられる。
図 18および図 19は第六 ¾6¾例の一部変更例を示す図であり、図 18は斜視図、図 19は横断面図を示す。 この例では、二枚の基板 51、 52を機械的に圧接するため、 ガラス粉を溶かして溶着させている。 溶着部 59は、ガスが通り易いように点状に 形成され、 かつ機械的圧接状態が安定する。 この構造により製造歩留りが向上す 〇
〔第七実施例〕
図 20および図 21は本発明の第七実施例を示す横断面図であり、図 20はガスセ ンサとしての組み立て前の状態、 図 21は組み立て後の状態を示す。
この実施例は、 P型半導体厚膜と II型半導体厚膜とのピッチをずらさずに、その 頂部が互いに接触する構造とした点が第六実施例と異なる。 すなわち、基板 61の 表面には櫛型の電極 63が設けられ、 この電極 63に接して p型半導体厚膜 65が形 成される。 基板 62の表面には、'同様に、櫛型の電極 64とこれに接する n型半導体 厚膜 66とが設けられる。 p型半導体厚膜 65と n型半導体厚膜 66とは、互いに対 面するように配置される。 この構成では製造上の交差が大きくとれるから製造コ ストを小さくできる。 なお、図 19および図 20では電極 63、 64の側面には半導体 厚膜を設けていな t、が、 第六実施例と同様にこの部分を半導体厚膜で覆つてもよ い。
図 22は第七実施例の一部変更例を示す断面図である。 この例は、基板 61、 62、 電極 63、 64、 p型半導体厚膜 65および n型半導体厚膜 66のそれぞれについて、そ の少なくとも一部を多孔質に形成し、この多孔質の部分を被験ガスが通過して p— n接触部に達するようにしたものである。
〔第八実施例〕
図 23は第八実施例の横断面図である。 この例は第七実施例の一部変更例であり、 p型半導体厚膜 65と n型半導体厚膜 66との接触部を除いて、 電極 63、 64および 二つの半導体厚膜 65、 66を覆うように、保護膜 67が設けられる。 この保護膜 67 は、ガスを遮断し、 pn接触部以外にはガスが触れないようにする。 これにより被 験ガスに対する感度がさらに向上する。
図 24は図 23に示す第八実施例をさらに一部変更した例である。 図 23の例では、 P一 nの接触部の側部を露出させて、その領域にガスが導入されるようにしていた。 これに対して図 24の例;では、 p— n接触部の側部まで完全に保護膜 67で覆い、 こ の P— n接触部にガス通気孔 68を設けて積極的にガスを導入する構造となってい る。 この例では被験ガスに対する感度がさらに向上する。
〔第九実施例〕
図 25は本発明の第九実施例を示す平面図であり、図 26はこの第九実施例の電極 パタ一ンを示す平面図である。
この実施例は、.同一の絶縁性華扳 71の表面に電極 73、 74を備え、 これらの電 極 73、 74に接続されて、 p型半導体材料の粒子と n型半導体材料の粒子とが混線 され固体に成形された pn混合半導体厚膜 75が設けられたことを特徵とする。 このガスセンサを製造するには、基板 71の表面に例えば図 26に示すように二つ の櫛型電極 73、 74を形成し、 その電極 73、 74の双方に接するように、 p型半導 料による粒子および n型半導体材料による粒子を均一に混練したペースト状物 質を塗布もしくは印刷し、 それを焼成する。 このペースト状物質の調合手順を図 27に示す。
表 2
1
1 ビヒクノレ
1 ェチセル 7 g 1
1 BCA 35 g 1
1 α—テルビネオール 35 g 1
[ DBP 23 g 1
1固形粒子分
1 CuO 70 g 1
1 ZnO 70 g 1
1 ガラス粉 14 g 1
1 1 図 26に示す電極パターンにより図 25に示すガスセンサの試験を行つた結果を図 28に示す。横軸はバイアス電圧〔V〕であり、縦軸は電流変化率〔%〕である。 ベー スト状物質の配合は表 2に示す通りである。試験の継続中は接合部を 260°Cに維持 した。 被験ガスは CO、 H2とも 4000ppmの空気バランスである。 図 28からわか るように、ノ ィァス電圧 3V近辺で COに対して感度があり、バイアス電圧 8V近 辺で H。に対して感度がある。 すなわちバイァス電圧により被験ガスの種類に対し て選択性があることがわかる。 ペースト状物質の配合を表 3のように変更した別のロッ卜について、図 26に示 す電極パターンにより図 25に示すガスセンサの試験を行った結果を図 29に示す。 図 29の横軸は時間であり縦軸は電流および接触部の温度である。 試験の継続中は 接合部を 260 °Cに維持した。 被験ガスは CO、 H0、 C3H8はすべて 4000ppmの空 気バランスである。
図 29に示す結果からバイァス電圧 5Vでは CPH8に対して電流が減少し、 H?お よび COに対しては増加した。 すなわち感度の極性が反対になったことがわかる。 COに対する変化量は H2に対する変化量より大きい。 また図 28の結果と比べると、 CuOと ZnOとの配合比を変えると特性の調整ができることがわかる。 この結果か ら電流変化の方向、 すなわち電流変化の正負によりガスの性質もしくは種類が識 別できることがわかる。 この現象については材料の配合、 電極間距離、 バイアス 電圧、加熱温度の影響を受けて識別できるガスの種類が変わる性質のあることが 発明者らの試験によりわかっている。
表 3
1 1
1 ビヒクル
1 ェチセル 7 g 1
1 BCA 35 g 1
1 "一テルビネオール 35 g 1
1 DBP 23 g 1
1固形粒子分
1 CuO 14 g 1
1 ZnO 130 g 1
1 ガラス粉 14 g 1
1 ペースト状物質の配合比を変える代わりに電極間を変えたときの試験結果を図
30に示す。 この試験では、図 28の場合には電極間(+と一との間) の距離が 700 〃mであったものを 130 z mとして実験した。
ペースト状物質を CuOの代わりに SiCとして配合量を表 2に準じたの通りにし た図 26に示す電極パターンによる図 25に示すガスセンサについて、 Cl2ガスに対 する感度試験を行った結果を図 31に示す。 この試験は大気中で温度 23°C、湿度 40 %で行いバイアス電圧は 5Vである。 図 31の縦軸に被験ガスに対する電流変化率 を、横軸に Cl2ガスのエアバランス (単位 ppm) をそれぞれ示す。
このようにして得られたガスセンサでは、電極 73、 74間に整流特性は得られな い。 しかし、実際に作製したところ、ガスの存在による比抵抗の変化が観測され、 しかも交流で動作することが確認された。 これは、 P型半導体と n型半導体とが粒 子の状態で混在し、それぞれの粒子の間に!) - n接触が形成されているためと考え られる。
図 32は第九実施例の一部変更例を示す断面図である。 この例では、基板 71とし 多孔質セラミックを用い、ガスが基板 71を透過するようにしている。 これと組み 合わせて、 pii半導体厚膜 75についても多孔質とすることができる。 さらに、電極 73、 74についても多孔質にすることができる。 また、 pn半導体厚膜 75だけを多 孔質'とすることもできる。 · .
図 32に示す構造で表 3に示すペースト状物質の配合により製作したガスセンサ の試験結果を図 33に示す。 図 33の横軸は時間であり縦軸は電流および接触部の温 度である。 試験の継続中は接合部を 260 °Cに維持した。 バイアス電圧は 5Vであ る。 被験ガスは CO、 H0、 C3H8はすべて 4000ppmの空気バランスである。 この例では全体的に電流値が大きく感度が向上していることがわかる。
〔その他の実施例〕
図 34は本発明の第十実施例を示す平面図であり、図 35は第十一実施例を示す平 面図である。 これらの実施例は、電極の配置が第九実施例と異なる。 図 34に示し た実施例では、一方の電極が半導体厚膜の表面に設けられる。 すなわち、基板 81 の表面に櫛型の電極 83が設けられ、 それに接するように、 p型半導体材料の粒子 と n型半導体材料の粒子とが混練され固体に成形された pn混合半導体厚膜 85が 設けられる。 さらに、 この pn混合半導体厚膜 85の表面に櫛型の電極 84が設けら れる。
図 35に示した実施例では、二つの電極の双方が半導体厚膜の表面に設けられる。 すなわち、基板 91の表面には pn混合半導体厚膜 95が設けられ、その表面に、櫛 型の電極 93、 94が形成される。
図 36は、 pn混合半導体厚膜の微視的構造を説明する図である。
上述した第九実施例ないし第十一実施例では、 P型半導体と n型半導体とを別個 た な用班 に形成するのではなく、互いの粒子が混在するようにしている。 このため、 図 36 に示すように、対向する電極 103、 104のそれぞれに、 p型半導体粒子と n型半導 体粒子とがそれぞれ接触している。
図 37は図 36に示すような 一 n接触をもつ p型半導体粒子と n型半導体粒子の 混合半導体厚膜に交流を印加する例を示す。 このような回路で電流の変化を検出 することにより被検ガスを検知できる。 電源あるいはバイアス電圧として交流電 圧を印加できることにより、 商用電源を変圧器で変換しあるいは直接に利用する ことにより整流装置を不要とすることができる利点がある。 また、 結合コンデン サにより直流成分を除去した交流信号により、検出信号の信号処理を行うことが できるから、 増幅器や雑音除去回路などを利用しゃすく感度が実質的に向上する 利点がある。
p型半導体および n型半導体をそれぞれ別個に設けた場合にも交流で動作させる ことができる。 この交流で動作させる場合の回路例を図 38に示す。 その等価回路 を図 39に示す。
図 38に示すこのセンサの構造例は第一実施例の一部変更例であり、電極 13、 14 がそれぞれ設けられた基板 11、 12の双方に、 p型半導体厚膜 15と n型半導体厚膜 16とを設ける。 すなわち、第一実施例の構造を 2個用いて互いに逆方向にして並 列接続したものと等価である。 この場合にも、 ガスセンサを交流で動作させるこ とができる。 交流により動作させると同様に上記のような利点がある。
図 40はヒータパターンの一例を示す。 半導体を用いたガスセンサは、動作のた めに加熱する必要がある。 そこで、例えば図 40に示したパターンのヒータを用い て、 基板の裏面から加熱する構造とすることがよい。
図 41は基板と電極との形状の例を示す。 これまでの実施例では基板として平板 状のものを使用した例について説明したが、 円筒形の基板 111を用い、 その表面 に電極 113、 Π4を設けることもできる。 この場合にも、 図 42に示すように電極 113、 114の表面に pn混合半導体厚膜 115を設けてもよく、 電極 113、 114の少 なくとも一方を pn混合半導体厚膜の表面に設けてもよい。 基板が円筒形の場合に は、塗布もしくは印刷に代えて溶射を用 ヽると厚膜の形成が容易である。
図 43に示すように、 円筒形の基板をその中心軸まわりに回転させながら、溶射 ノズルを軸方向に移動させ、 pn半導体材料粒子を吹きつけながら製作することが できる。 なお溶射については
文献 6. 産業技術サービスセンター発行
「最新表面処理技術総覧」昭和 62年 12月 21日、 第 4章溶射 文献 7. 通産省ファインセラミックス室編、 オーム社刊
「ファインセラミックスハンドブック」第 8章
に詳しい記載がある。
図 44および図 45は円筒形の基扳を用いた場合のヒータの例を示す。 すなわち円 筒形の基板の内部にヒータを挿入する構造を示す。 基板が円筒形の場合には、 コ ィル状のヒータを用いて均一に加熱できる。 また、図 45に示すようにヒータの巻 き方を工夫することで、 円筒形であつても電磁場の影響が少なくなるようにでき る。
図 46は図 1に示す構造で前記例とは別の CuO厚膜と ZnO厚膜とを圧接したガ スセンサの特性例を示す図であり、 CO、 H0および C3H8のそれぞれの存在下にお けるバイアス電圧に対する電流変ィヒ量を示す。
図 47および図 48はこの特性の測定に俾用したガスセンサの製造方法を示す図で あり、図 47はペースト状物質の作製方法、図 48は印刷工程および焼成工程の手順 を示す。
図 49ないし図 50は CO、 および C3H。のそれぞれに対する試作ガスセンサ の特性例を示す図であり、 図 49は NiO厚膜と ZnO厚膜とを圧接して順方向バイ ァスを印加したとき、 図 50は CuO厚膜と ZnO厚膜とを圧接して逆方向バイ了ス を印加したとき、図 51は CuO― NiO厚膜と ZnO厚膜とを圧接して順方向バイァ スを印加したとき、図 52は CuO厚膜と Ti02厚膜を圧接して順方向バイァスを印 加したときのそれぞ ィァス電圧に対する電流変化比を示す。 CO、 H2および C0H8のそれぞれの濃度は 4000ppm、 雰囲気温度は 260°Cとした。
COガス感度とガス選択性は表 4のとおりであった。 なお、使用した添加剤を表 4の中に括弧書きで示す。 表 4
COガス感度とガス選択性
Figure imgf000021_0001
◎ :感度、 選択性ともに非常に優れている (
〇:感度、 選択性ともに優れている。
△:感度、 選択性ともにある。
X :感度、 選択性ともにない。 図 53は pn混合半導体厚膜のバイアス電圧対電流の特性例を示す。 ただし、 縦 軸は電流値の絶対値である。 この例では、 CuOと ZnOとを混合したものであり、 雰囲気温度 260 °Cで測定した。 この図 53に示したように、電極間では整流特性は 得られない。
図 54は図 53と同じ pn混合半導体厚膜に交流電圧を印加したときの電圧変化を 示す。 この図 54に示したように、雰囲気が空気のみのときと空気に 4000ppmの COを混入したときとで電圧が異なつている。
pn混合半導体膜に類似した例として、 p型の領域と n型の領域とを混合させた ガスセンサの構造例を図 55aおよび図 55bに示し、 その構造で得られた特性例を 図 56に示す。 図 55aは平面図であり、 図 55bは横断面図である。 図 56の横軸は 時間であり縦軸は電流および接触部の温度である。 この例では、 櫛型電極の表面 に CuOと ZnOとを互いに接するように配置したガスセンサを用い、 10Vのバイァ ス電圧を印加し、 雰囲気温度 260 °Cで CO、 H2および C。H8を順番に導入したと きの電流値の変化を測定した。 それぞれのガスの濃度は 4000ppmとした。
図 57は試作したガスセンサの特性を調べるために用いた試験装置の概略を示す。 測定は、被測定ガスセンサ 200を管状炉 203内に配置し、 この管状炉 203に電 磁弁 201および質量流量計 202を経由して空気、 CO、 H2または C3H8を流し、そ の温度を温度コントローラ 204により制御して行つた。 被測定ガスセンサ 200へ の印加電圧および電流は電圧電流計 205により測定し、 その測定値はパーソナル コンピュータ 206により処理して外部局装置 207に蓄えた。
電磁弁 201は空気、 3レベルの CO、 H2、 C3H または ΝΟχのいずれかを選択 して管状炉 203に供給できる構成となっており、コントローラ 208からリレー 209 を介して供給される制御信号により動作する。 パーソナルコンピュータ 206は、電 圧電流計 205の検出した電流値を取り込むと、 適当な時間が経過した時点でガス 切替のための制御信号をコントローラ 208に出力する。
〔産業上の利用可能性〕
以上説明したように、 本発明のガスセンサは、 特性が優れ、 しかも大量生産に 適している。 さらに本発明は、 安定な特性を示し、 接触部に導入する被検ガスの 流通をよくし、半導体接触部とガスとの接触面積を増大させ良好な特性を示すガ スセンサを提供することができる。 本発明は、一酸化炭素、 水素、炭化水素その 他の被検ガスの検出に利用でき、一般家庭あるいは事業所、鉱業その他の ί也下作 業を伴う作業所、 ガスの製造あるいは精製を行う事業所、 石油類の輸送または精 製を行う設備、 その他で効果的に利用できる。 さらに、 ガス検出に基づき制御を 行うプロセス制御に利用して極めて効果的である。

Claims

請求の範囲
1. P型半導体膜と n型半導体膜とが相互に接触する構造に配置され、 前記二つの 半導体膜にそれぞれ接続された二つの電極を備え、 前記二つの半導体膜の接触部 に被検ガスを含む気体が導入される構造を備えたガスセンサにおいて、
前記 P型半導体膜および前記 n型半導体膜がそれぞれ基板上に形成された厚膜で あることを特徴とするガスセンサ。
2.前記 p型半導体膜はその材料が CuO、 NiO、 CoO、 Cr203、 Cu9O、 MoO。、 Ag20、 Bi20。、 Pr20o、 MnO、 SiCのうちから選ばれた一以上の材料である請求 項 1記載のガスセンサ。
3.前記 n型半導体膜はその材料が MgO、 A1203、 Si09、 V25、 Fe23、 SrO、 Nb205、 Nb204、 Nb 03 BaO、 Ta¾0o. Ta25、 Ce。2、 ZnO、 TiOり、 Sn〇2、 W03、 Nd 03 SiC、 BaTiO x PbTi〇3、 SrTiOnのうちから選ばれた一以上の 材料である請求項 1記載のガスセンサ。
4.前記接触部以外への通気を遮断する手段を含む請求項 1記載のガスセンサ。
5. 前記基板は、少なくとも被検ガスを前記接触部に導入する部分が多孔質であ る請求項 1記載のガスセンサ。
6.前記厚膜が多孔質である請求項 1記載のガスセンサ。
7.前記 p型半導体膜および前記 n型半導体膜が半導体として動作する温度に加熱 する手段を備えた請求項 1記載のガスセンサ。
8.請求項 1記載のガスセンサに備えられた二つの電極に前記接触部にバイアス電 圧を与えるように接続された電源と、 前記接触部を流れる電流の変化を検出する 手段とを備えたガスセンサ回路。
9. p型半導体材料の粒子を含み n型半導体材料をほとんど含まない第一のべ一ス ト状物質および n型半導体材料の粒子を含み p型半導体材料をほとんど含まない第 二のペースト状物質を電気絶縁性の基板表面に形成された二つの電極にそれぞれ 接するように、 かつ前記第一および第二のペースト状物質が相互に接するように 塗布もしくは印刷し、 その第一および第二のペースト状物質を焼成することを特. 徵とするガスセンサの製造方法。
10. p型半導体材料の粒子を含み n型半導体材料をほとんど含まな Iヽ第一の物質お
よび n型半導体材料の粒子を含み p型半導体材料をほとんど含まな t、第二の物質を
電気絶縁性の基板表面に形成された二つの電極にそれぞれ接するように、 かつ前
記第一および第二の物質が相互に接するように溶射することを特徴とするガスセ , ンサの製造方法。
11. p型半導体粒子および n型半導体粒子を共に含み、 この P型半導体粒子とこの
n型半導体粒子とが相互に接触するように混練され固体に成形され、この固体に二
つの電極が設けられ、 前記粒子の接触部に被検知ガスを含む気体が導入される構
造を備えたことを特徵とするガスセンサ。
12.前記固体は絶縁物基板上に形成された厚膜であり、前記二つの電極の少なくと
も一つはこの基板表面に形成された導体膜である請求項 11記載のガスセンサ。
13.前記基板はセラミック基板であり、前記厚膜は多孔質である請求項 12記載の
ガスセンサ。
14.前記基板が多孔質である請求項 12記載のガスセンサ。
15.前記基板が多孔質であり、かつ前記厚膜は多孔質である請求項 12記載のガス
センサ。
16.前記 p型半導体はその材料が CuO、 NiO、 CoO、 Crゥ〇3、 Cuo0、 Mo〇2、 Ag2〇、
Bio03、 Pr203、 MnO、 SiCのうちから選ばれた一以上の材料である請求項 11記
載のガスセンサ。
17.前記 n型半導体はその材料が MgO、 Al2Og、 SiOo. Vり 05、 Fe903、 SrO、
Nbo0f、 Nb204、 Nb23、 BaO、 Ta23、 Ta20「、 CeO、 ZnO、 Ti0o、 Sn0o
O3、 Nd20o、 SiC、 BaTi03、 PbTi0o、 SrTi〇3のうちから選ばれた一以上の
材料である請求項 11記載のガスセンサ。
18.前記 p型半導体および前記 ϋ型半導体が半導体として動作する温度に加熱する
手段を備えた請求項 11記載のガスセンサ。 . '
19.請求項 11または 12記載のガスセンサに備えられた二つの電極に接続された電
源と、 その電極を通じて流れる電流の変化を検出する手段とを備えたガスセンサ
回路。
20.前記電源は交流電源である請求項 19記載のガスセンサ回路。
21. p型半導体材料の粒子および n型半導体材料の粒子を共に含む混練したペース ト状物質を電気絶縁性の基板表面に形成された電極に接するように塗布もしくは 印刷し、 そのペースト状物質を厚膜状に焼成することを特徴とするガスセンサの 製造方法。 ' 一
22. p型半導体材料の粒子および II型半導体材料の粒子を共に含み均一に混合した 物質を電気絶縁性の基板表面に形成された電極に接するように溶射して厚膜を形 成させることを特徴とするガスセンサの製造方法。
PCT/JP1993/000012 1992-01-10 1993-01-08 Gas sensor and its manufacture WO1993014396A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019930702699A KR100253633B1 (ko) 1992-01-10 1993-01-08 가스센서 및 그 제조 방법
EP93901564A EP0575628B1 (en) 1992-01-10 1993-01-08 Gas sensor and its manufacture
JP05512329A JP3081244B2 (ja) 1992-01-10 1993-01-08 ガスセンサおよびその製造方法
DE69326199T DE69326199T2 (de) 1992-01-10 1993-01-08 Gassensor und seine herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP329492 1992-01-10
JP4/3294 1992-01-10

Publications (1)

Publication Number Publication Date
WO1993014396A1 true WO1993014396A1 (en) 1993-07-22

Family

ID=11553365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000012 WO1993014396A1 (en) 1992-01-10 1993-01-08 Gas sensor and its manufacture

Country Status (6)

Country Link
US (1) US5618496A (ja)
EP (2) EP0928964A3 (ja)
JP (2) JP3081244B2 (ja)
KR (1) KR100253633B1 (ja)
DE (1) DE69326199T2 (ja)
WO (1) WO1993014396A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010039A1 (fr) * 1993-10-05 1995-04-13 Mitsubishi Materials Corporation Detecteur de gaz et procede permettant de faire la distinction entre plusieurs gas
JP2014082197A (ja) * 2012-09-20 2014-05-08 Sekisui Chem Co Ltd 複合膜の製造方法
WO2015029541A1 (ja) * 2013-08-30 2015-03-05 株式会社村田製作所 ガスセンサ、ガスセンサの製造方法、及びガス濃度の検出方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7536094A (en) * 1993-08-13 1995-03-14 Andre De Haan Process for manufacturing a semiconductor element and gas detector provided with such an element
DE4432729C1 (de) * 1994-09-14 1996-04-11 Siemens Ag Gassensor
DE4433102A1 (de) * 1994-09-16 1996-03-21 Fraunhofer Ges Forschung Elektrodenanordnung zur Signalerfassung gassensitiver Schichten
DE4437692A1 (de) * 1994-10-21 1996-04-25 Fraunhofer Ges Forschung Kohlendioxid-Sensor
DE4445359A1 (de) * 1994-12-20 1996-06-27 Bosch Gmbh Robert Sensor zum Nachweis von brennbaren Gasen
US5841021A (en) * 1995-09-05 1998-11-24 De Castro; Emory S. Solid state gas sensor and filter assembly
TW338795B (en) * 1996-02-21 1998-08-21 Osaka Gas Co Ltd Method of manufacturing nitrogen oxide sensor and nitrogen oxide sensor manufactured by the method and material therefor
US6251344B1 (en) 1997-06-27 2001-06-26 Quantum Group, Inc. Air quality chamber: relative humidity and contamination controlled systems
DE19819575C1 (de) * 1998-04-30 2000-03-16 Siemens Ag Wasserstoffsensor
KR100305660B1 (ko) 1999-02-09 2001-09-26 김희용 이중이온빔법을 이용하여 CuO를 첨가한 황화합물계 가스 센서
US6181250B1 (en) * 1999-03-30 2001-01-30 Southeastern Universities Research Assn., Inc. Heat detection system and method
US6237397B1 (en) * 1999-10-06 2001-05-29 Iowa State University Research Foundation, Inc. Chemical sensor and coating for same
WO2002033393A2 (en) * 2000-10-16 2002-04-25 E. I. Du Pont De Nemours And Company Method and apparatus for analyzing mixtures of gases
US8152991B2 (en) 2005-10-27 2012-04-10 Nanomix, Inc. Ammonia nanosensors, and environmental control system
US8154093B2 (en) 2002-01-16 2012-04-10 Nanomix, Inc. Nano-electronic sensors for chemical and biological analytes, including capacitance and bio-membrane devices
US7547931B2 (en) * 2003-09-05 2009-06-16 Nanomix, Inc. Nanoelectronic capnometer adaptor including a nanoelectric sensor selectively sensitive to at least one gaseous constituent of exhaled breath
US20070048181A1 (en) * 2002-09-05 2007-03-01 Chang Daniel M Carbon dioxide nanosensor, and respiratory CO2 monitors
US20070048180A1 (en) * 2002-09-05 2007-03-01 Gabriel Jean-Christophe P Nanoelectronic breath analyzer and asthma monitor
US7522040B2 (en) * 2004-04-20 2009-04-21 Nanomix, Inc. Remotely communicating, battery-powered nanostructure sensor devices
US7714398B2 (en) * 2002-09-05 2010-05-11 Nanomix, Inc. Nanoelectronic measurement system for physiologic gases and improved nanosensor for carbon dioxide
US6627959B1 (en) * 2002-04-16 2003-09-30 Boston Microsystems, Inc. P-n junction sensor
US7948041B2 (en) 2005-05-19 2011-05-24 Nanomix, Inc. Sensor having a thin-film inhibition layer
US20070114573A1 (en) * 2002-09-04 2007-05-24 Tzong-Ru Han Sensor device with heated nanostructure
US20060263255A1 (en) * 2002-09-04 2006-11-23 Tzong-Ru Han Nanoelectronic sensor system and hydrogen-sensitive functionalization
US6763699B1 (en) 2003-02-06 2004-07-20 The United States Of America As Represented By The Administrator Of Natural Aeronautics And Space Administration Gas sensors using SiC semiconductors and method of fabrication thereof
WO2005062031A1 (en) * 2003-09-05 2005-07-07 Nanomix, Inc. Nanoelectronic capnometer adapter
WO2005026694A2 (en) * 2003-09-12 2005-03-24 Nanomix, Inc. Carbon dioxide nanoelectronic sensor
WO2008046926A1 (fr) * 2006-10-19 2008-04-24 Société De Chimie Inorganique Et Organique En Abrégé 'sochinor' Capteur de gaz émis par une combustion
KR101031209B1 (ko) * 2008-11-27 2011-04-26 한국세라믹기술원 세라믹 가스센서 및 그 제조방법
WO2011017660A2 (en) 2009-08-07 2011-02-10 Nanomix, Inc. Magnetic carbon nanotube based biodetection
KR101447788B1 (ko) 2009-11-05 2014-10-06 카케 에듀케이셔널 인스티튜션 미결정 셀레늄으로 이루어지는 가스 감수성 재료 및 그것을 이용한 가스 센서
CN102520018A (zh) * 2011-12-12 2012-06-27 中国科学院合肥物质科学研究院 基于半导体氧化物敏感的集成化二氧化碳传感器
EP2801819A1 (en) * 2013-05-08 2014-11-12 Sensirion AG Metal oxide chemical sensor for portable device
KR101760212B1 (ko) * 2016-06-14 2017-07-21 전남대학교산학협력단 가스센서 및 이의 제조방법
CN108426921B (zh) * 2017-02-13 2021-04-06 华邦电子股份有限公司 气体传感器
JP7384399B2 (ja) * 2020-02-26 2023-11-21 国立大学法人京都大学 測定装置及び測定方法
TWI729724B (zh) * 2020-03-10 2021-06-01 新唐科技股份有限公司 氣體感測器
CN114791445B (zh) * 2022-04-28 2024-08-23 电子科技大学中山学院 一种贵金属修饰复合型气体传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744847A (en) * 1980-08-30 1982-03-13 Matsushita Electric Works Ltd Detecting element for inflammable gas
JPS5830648A (ja) * 1981-08-17 1983-02-23 Hitachi Ltd 半導体ガスセンサ
JPS6290528A (ja) * 1985-06-29 1987-04-25 Hiroaki Yanagida ガス検出方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209477A (en) * 1975-08-20 1980-06-24 Mitsubishi Mining & Cement Co., Ltd. Process for preparing a film of densely packed structure
JPS5395097A (en) * 1977-01-31 1978-08-19 Toshiba Corp Gas-sensitive element
US4203946A (en) * 1978-03-20 1980-05-20 Energy For Independence, Inc. Ozone detecting element
JPS58191962A (ja) * 1982-05-07 1983-11-09 Hitachi Ltd ガス検出素子
US4587104A (en) * 1983-12-21 1986-05-06 Westinghouse Electric Corp. Semiconductor oxide gas combustibles sensor
JPS62124454A (ja) * 1985-11-26 1987-06-05 Nippon Telegr & Teleph Corp <Ntt> ヘテロ接合型ガスセンサ
DE3723051A1 (de) * 1987-07-11 1989-01-19 Kernforschungsz Karlsruhe Halbleiter fuer einen resistiven gassensor mit hoher ansprechgeschwindigkeit
JPH0695082B2 (ja) * 1987-10-08 1994-11-24 新コスモス電機株式会社 吸引式オゾンガス検知器
CA1332208C (en) * 1988-11-23 1994-10-04 Franco Consadori Gas sensor
NL9002750A (nl) * 1990-12-13 1992-07-01 Imec Inter Uni Micro Electr Sensor van het diode type.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744847A (en) * 1980-08-30 1982-03-13 Matsushita Electric Works Ltd Detecting element for inflammable gas
JPS5830648A (ja) * 1981-08-17 1983-02-23 Hitachi Ltd 半導体ガスセンサ
JPS6290528A (ja) * 1985-06-29 1987-04-25 Hiroaki Yanagida ガス検出方法
JPS6290529A (ja) * 1985-06-29 1987-04-25 Hiroaki Yanagida ガス検出方法およびガスセンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0575628A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010039A1 (fr) * 1993-10-05 1995-04-13 Mitsubishi Materials Corporation Detecteur de gaz et procede permettant de faire la distinction entre plusieurs gas
US5602324A (en) * 1993-10-05 1997-02-11 Mitsubishi Materials Corporation Gas sensor and gas discriminating method
JP2014082197A (ja) * 2012-09-20 2014-05-08 Sekisui Chem Co Ltd 複合膜の製造方法
WO2015029541A1 (ja) * 2013-08-30 2015-03-05 株式会社村田製作所 ガスセンサ、ガスセンサの製造方法、及びガス濃度の検出方法
JP6012005B2 (ja) * 2013-08-30 2016-10-25 株式会社村田製作所 ガスセンサ、ガスセンサの製造方法、及びガス濃度の検出方法

Also Published As

Publication number Publication date
EP0928964A2 (en) 1999-07-14
JP3081399B2 (ja) 2000-08-28
EP0575628A4 (en) 1995-03-08
JPH05249064A (ja) 1993-09-28
US5618496A (en) 1997-04-08
EP0575628B1 (en) 1999-09-01
DE69326199D1 (de) 1999-10-07
EP0928964A3 (en) 2003-05-21
KR100253633B1 (ko) 2000-04-15
JP3081244B2 (ja) 2000-08-28
EP0575628A1 (en) 1993-12-29
DE69326199T2 (de) 2000-03-23

Similar Documents

Publication Publication Date Title
WO1993014396A1 (en) Gas sensor and its manufacture
Kulwicki Ceramic sensors and transducers
Wang et al. Ceramic based resistive sensors
US4481499A (en) Gas detector
Yuanda et al. Thin film sensors of SnO2-CuO-SnO2 sandwich structure to H2S
US3952567A (en) Gas sensor
Arshak et al. Gas sensing properties of ZnFe2O4/ZnO screen-printed thick films
KR20100101599A (ko) 기체 관련 촉매 및 고체 상태 장치 내 전기장 강화 성능
US7236083B2 (en) Resistance type oxygen sensor and oxygen sensor device using it and air/fuel ratio control system
US20160161443A1 (en) Gas sensor, method for manufacturing gas sensor, and method for detecting gas concentration
US3955929A (en) Gas detecting sensor
KR101736795B1 (ko) 수소 검출용 가스 센서
Ahn et al. Mixed Conduction in Ceramic Hydrogen/Steam Electrodes by Hebb–Wagner Polarization in the Frequency Domain
Padmashri et al. Nanoparticle films for gas sensing applications: Greener approaches
WO2016166126A1 (en) Gas sensor with multiple internal reference electrodes and sensing electrodes
Arshak et al. Effects of NiO/TiO2 addition in ZnFe2O4-based gas sensors in the form of polymer thick films
Inoue et al. Ionic and electronic conductivities of LaCoO 3-and LaMnO 3-based perovskite-type oxides measured by the ac impedance method with electron-blocking electrodes
KR102247130B1 (ko) 자일렌 또는 톨루엔 가스의 선택적 감지용 가스 센서
Hashishin et al. Magnesium Ferrite Sensor for H 2 S Detection.
Yamamoto et al. Some considerations on stability of electrical resistance of the TiO 2/SnO 2 ceramic moisture sensor
JPH07140099A (ja) 電気化学装置
JPH0711497B2 (ja) ガス検出方法およびガスセンサ
JP2005214868A (ja) 一酸化炭素ガスセンサ、及びp型半導体の製造方法
JP2000283941A (ja) 半導体センサのための酸化金属材料およびその材料を用いた一酸化炭素センサ
Ghosh et al. Temperature dependence of semiconducting gas sensors in potentiometric and resistive modes of measurement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 1019930702699

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1993901564

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1993 117025

Country of ref document: US

Date of ref document: 19931216

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1993901564

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993901564

Country of ref document: EP