USRE32765E - High clarity colorless polyesters - Google Patents
High clarity colorless polyesters Download PDFInfo
- Publication number
- USRE32765E USRE32765E US07/014,739 US1473987A USRE32765E US RE32765 E USRE32765 E US RE32765E US 1473987 A US1473987 A US 1473987A US RE32765 E USRE32765 E US RE32765E
- Authority
- US
- United States
- Prior art keywords
- polyester
- parts
- compound
- cobalt
- antimony
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/02—Organic and inorganic ingredients
Definitions
- the present invention relates to a polyester which has a high clarity, and is transparent when made into an article.
- the article has a neutral color hue, a low haze value, and no greyness therein.
- polyester resins have been used for the preparation of polyester resins.
- high clarity, neutral hue, and low haze polyester articles such as films, sheets, containers, and the like are desirable, especially for containing food or drink, or when replacing glass.
- antimony has been used as a catalyst, at times in combination with a phosphite compound.
- the reaction between these two compounds would often result in some amount of antimony metal being formed which imparted a gray color to the resin and article formed therefrom.
- acetaldehyde was produced which is highly undesirable for use in connection with food containers.
- U.S. Pat. No 3,795,639 to Chimura, et al relates to a process for preparing linear polyesters wherein the polycondensation of glycol terephthalate is preformed in the presence of (1) an antimony catalyst, (2) a germanium compound and (3) a phosphoric ester.
- This patent is not pertinent in that it does not utilize a bluing agent and does utilize a germanium compound.
- U.S. Pat. No. 3,965,071 to McClelland relates to the preparation of polyesters in the presence of a titanium compound, the deactivation of a catalyst by reaction with phosphoric acid or ester and polycondensation in the presence of an antimony compound.
- this patent relates to a completely different catalyst system as well as to a deactivation of the titanium catalyst.
- U.S. Pat. No. 3,842,043 relates to a white, transparent polyester utilizing a polycondensation catalyst solution containing germanium dioxide, glycol and a solubilizing agent such as calcium, magnesium, strontium and zinc metals or salts thereof. Hence, it is not pertinent.
- U.S. Pat. No. 4,082,724 to Hewertson relates to polyesters containing a trihalide or a tri(pseudohalide) of antimony and an organic oxo compound of phosphorus.
- the mole ratio of the oxo phosphorus compound to antimony is generally in excess of 1.0.
- This patent is not pertinent in that it uses very high amounts of phosphorus compounds and does not utilize a bluing agent.
- U.S. Pat. Nos. 3,962,189 to Russin et al, 3,907,754 to Tershansy et al, and 4,010,145 to Russin et al are all very similar in that they relate to catalyst inhibitor systems having a combination of organic or inorganic salts of manganese and cobalt, titanium compounds, antimony compounds, and a phosphate ester.
- the amount by weight of phosphorus is greater than the total weight of cobalt, manganese, and titanium.
- the examples generally show the amount of phosphorus being at least four times as much as the amount of cobalt.
- references are not pertinent in that they use very high amounts of phosphate in comparison to the other metals, as well as use other components not utilized by the present invention. Moreover, they relate to making a polyester from dimethyl terephthalate and not from dicarboxylic acids.
- U.S. Pat. No. 3,028,366 to Engel et al relates to phosphate modifiers in association with antimony catalysts to produce colorless or white polyesters from dimethyl terephthalate.
- catalysts or catalyst combinations can also be utilized including various metals such as calcium, magnesium, lanthanum, manganese, and cobalt. Since such compounds are utilized as catalysts, high amounts thereof are required.
- This patent is not pertinent in that it fails to specifically teach applicant's use of a bluing agent, very small amounts of phosphate in comparison with any bluing agent as well as small amounts of the bluing agent, and relates only to the use of dimethyl terephthalate.
- a polyester which yields a high clarity, low haze, neutral hue article comprises: the polyester containing from about 70 to about 250 parts by weight of elemental antimony per 1 million parts of said polyester; a low amount by weight of a phosphorus compound and a bluing agent, the amount of said phosphorus compound ranging from about 0.35 to 2.5 parts by weight for each part by weight of a metal in said bluing agent.
- the process for making a polyester article having a high clarity, low haze, neutral hue comprises the steps of: preparing a polyester resin, adding a small amount of phosphorus and a bluing agent, wherein the amount of phosphorus to metal in said bluing agent ranges from about 0.35 to about 2.5 parts by weight, and adding from about 70 to about 250 parts by weight of elemental antimony in the form of an antimony compound to said polyester during the preparation thereof.
- High clarity polyesters are produced utilizing an antimony catalyst and low amounts of phosphorus and a bluing agent.
- blue agent any compound which upon addition to the polymer during preparation thereof will act as a blue colored compound or pigment and neutralize any otherwise yellow color in the polyester formed to yield a transparent, colorless or neutral hue article.
- the bluing agent although often a blue colored compound, can be a red compound such as cobalt acetate, a green compound, or the like, which upon addition to the polymerization process reacts and forms a blue colored compound which neutralizes yellow and forms a transparent polyester when made into an article.
- polyesters when made into articles have very high clarity, neutral hue, low haze, and low acetaldehyde levels and thus are suitable as films, sheets, or in any other form when a bright high clarity with low haze is desired.
- Particularly suited articles include containers, especially for foods, and bottles.
- the polyester resin is produced in a conventional manner but only from the reaction of dicarboxylic acids having from from 2 to about 16 carbon atoms with polyhydric alcohols such as glycols or diols containing from 2 to about 12 carbon atoms.
- the alkyl dicarboxylic acids may contain a total of from 2 to 16 carbon atoms.
- the acids are aryl or an alkyl substituted aryl acid containing from 8 to 16 carbon atoms.
- linear or alkyl dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and the like.
- an aryl acid include the various isomers of phthalic acid, such as paraphthalic acid (terephthalic acid) and naphthalic acid.
- alkyl substituted aryl acids include the various isomers of dimethylphthalic acid such as dimethylisophthalic acid, dimethylorthophthalic acid, dimethylterephthalic acid, the various isomers of diethylphthalic acid such as diethylisophthalic acid, diethylorthophthalic acid, diethylterephthalic acid, the various isomers of dimethylnaphthalic acid such as 2,6-dimethylnaphthalic acid and 2,5-dimethylnaphthalic acid, and the various isomers of diethylnaphthalic acid.
- terephthalic acid is highly preferred.
- Polyesters made from diesters such as dimethylterephthalate do not form any part of the present invention.
- high amounts of catalyst that is generally the 70 parts per million of the elemental catalyst, are required in order to promote the esterification and condensation reactions.
- Such amounts of catalyst are in excess of the present invention and will impart a color to the polyester and articles formed therefrom.
- the present invention completely avoids any color hue by utilizing the dicarboxylic acids and hence, utilizes low amounts of cobalt, that is generally less than 50 parts per million, and desirably less than 30 parts per million.
- the diols or glycols may be straight chained or branched. Specific examples include ethylene glycol, propylene glycol, trimethylene glycol, 1,2-butane diol, 1,3-butane diol, 1,4-butane diol, 2,3-butane diol, neopentyl glycol, and the like. Of the various glycols, those having from 2 to 8 carbon atoms are preferred with ethylene glycol and 1,4-butane diole being highly preferred. In lieu of the various glycols, another class of polyhydric alcohols, such as the glycol ethers containing from 4 to 12 carbon atoms, can be utilized as for example dimethylene glycol and 1,4-dihydroxyethoxy benzene.
- polyesters can be made according to melt polymerization, or melt and solid state polymerization. As known to those skilled in the art, polyesters are generally made in two stages. In the first stage or esterification stage, the diacid is reacted with the diol at elevated temperatures and pressures with water being produced. In the second stage or the polycondensation stage, a vacuum is gradually applied, or generally catalysts are utilized, and water and a diol are withdrawn as a condensation product.
- Various polyesters can be made by such a polymerization including polyethyleneterephthalate, a preferred polyester resin.
- the process may be modified slightly by reacting the dicarboxylic acid with the diol in a solvent which is a low molecular weight linear polyester in a manner as set forth in U.S. Pat. No. 4,020,049 to Rinehart which is hereby fully incorporated with regard to the method of making the polyester resin. That is, the dicarboxylic acid and the glycol added in a molar ratio of the glycol to the acid of from 1.7:1 to 1.05:1 to a solvent consisting of a preformed low molecular weight condensation polyester of a glycol and a dicarboxylic acid, the polyester having an average degree of polymerization of from 1.4 to 10.
- the mixture is then heated and reacted at a temperature at least from above the melting temperature of the low molecular weight linear polyester to a temperature of 300° C. with the pressure being from about 20 to about 1,000 pounds per square inch gauge.
- the reaction is continued until a linear condensation polyester resin made from said glycol and said acid, having an average degree of polymerization of from 1.4 to 10, is produced.
- the condensation or polymerization reaction is carried out until a linear polyester is formed at elevated temperature under reduced pressure, that is approximately 10 millimeters or less of mercury.
- the condensation reaction temperature is from about 260° to about 290° C. Regardless of the exact process, such reactions can be carried out in situ.
- Solid state polymerization can also be utilized.
- the polycondensation reaction is carried out until generally the intrinsic viscosity of the polymer melt reaches about 0.20 or higher, for example, up to about 0.80.
- the solution melt is cooled to produce a solid which is then pelletized, chopped, etc.
- the pellets are then subjected to a solid state polymerization wherein the vacuum is applied at a temperature below the melting point of the partially formed polymer.
- the polymerization can be accomplished by removal of the by-product, e.g. water, ethylene glycol, by circulating or blowing an inert gas through the pellets.
- the polymer is actually polymerized in a solid state, with the polycondensation reaction being conducted in such a state.
- the solid state polymerization is continued until the intrinsic viscosity reaches any desirable level, such as from about 0.60 to about 1.0, or even higher. That is, at times it is desirable to produce very high molecular weight polyesters, for example, a polyester having an intrinsic viscosity of from about 1.0 to about 1.2.
- the intrinsic viscosity ranges from about 0.70 to about 0.85 and preferably from about 0.70 to about 0.80.
- intrinsic viscosity it is meant that the value obtained when n specific /C or LOG r rel .
- n sp . n rel . -1.
- the units are deciliters/gram using a 60/40 phenol/tetrachloroethane at 25° C.
- the symbol n is for the Greek letter eta.
- polyester resin When the polyester resin is intended for use in contact with food only those polyesters which are regulated by the Federal Food and Drug Administration should be utilized, such as set forth in Title 21, ⁇ 177.1630, for example, the polyethylenephthalate polymers, and such polysters are preferred in the present invention.
- the antimony catalyst utilized in the present invention can be generally any trivalent organic antimony compound known to the art.
- specific antimony compounds include antimony triacetate, antimony trioxide, antimony glycolate (either formed separately or during polymerization), and the like, with antimony glycolate being preferred.
- the antimony compound desirably is added to the condensation stage or step of the polymerization.
- the present invention also relates to the use of relatively low amounts of a phosphorus compound, for example a phosphate, and a bluing agent in comparison to the weight or amount of the antimony catalyst.
- a phosphorus compound for example a phosphate
- a bluing agent in comparison to the weight or amount of the antimony catalyst.
- the term "phosphate" as utilized in the present invention includes various phosphate compounds known in the art as well as phosphoric acid.
- the bluing agents are generally cobalt compounds which may or may not initially be blue as previously discussed.
- the polyester resins of the present invention can be made to form various articles such as films, sheets, containers, and the like. The some of these applications wherein the polyester is utilized as a container, for example, for containing carbonated beverages, it is highly desirable to maintain or to have low acetaldehyde levels to prevent discernible differences in taste.
- the addition of levels of acetaldehyde as low as 60 parts per billion by weight have altered the tastes of carbonated cola beverages.
- Other food stuffs have different taste threshold levels which may be exceeded if the acetaldehyde level is not minimized.
- the amount of acetaldehyde diffusing from the container walls e.g., a 2 liter bottle
- the amount of acetaldehyde diffusing from the container walls is less than 3 micrograms per liter. This test is conducted by maintaining the container at 70° F. for twenty-four hours, and then testing the gases content therein to determine the amount by weight of acetaldehyde.
- acetaldehyde content is less than 3 micrograms per liter of volume in a container within twenty-four hours after preparation thereof, any remaining accumulation of acetaldehyde is low and presents no discernible taste in a beverage, food stuff, or the like with longer periods of storage.
- an amount of a phosphate compound (including phosphoric acid) is utilized to suppress the catalytic activity of the cobalt compound.
- one part by weight of elemental cobalt requires approximately 0.35 parts by weight of elemental phosphorus.
- a slight excess of the phosphorus compound is utilized to insure suppression of the catalytic influence of the cobalt compound on acetaldehyde production.
- from about 0.35 to about 2.5 parts by weight and preferably from about 0.4 to about 0.6 parts by weight of elemental phosphorus is desired for every one part of elemental cobalt.
- free phosphate will generally exist which will react with the antimony to produce an antimony phosphate type compound and if sufficient amounts exist in excess of the solubility limit of such a compound, will form particles and/or nucleation of crystallinity upon formation of the polyester. This results in a hazed article.
- the present invention as noted above relates to the article when formed from a polyester resin has low haze, a neutral color, and high clarity. If a bluing agent is not utilized, the resulting polymer produced would generally not have the neutral hue in that it would have an undesirable yellowish tinge or color.
- from about 70 to about 250 parts by weight per million of elemental antimony is desired based upon the produced polyester resin with the preferred range being from about 120 to about 210 parts per million.
- the amount of cobalt ranges from about 5 parts to about 50 parts by weight per million, desirably from about 5 to about 30 parts, and preferably from about 8 parts to about 20 parts per million.
- the amount of the phosphate compound expressed in terms of elemental phosphorus per million parts of polyester polymer ranges from about 5 to about 60 parts, desirably from about 10 to about 50 parts, and preferably from about 8 to about 20 parts by weight.
- Typical cobalt coloring agents include cobalt acetate tetrahydrate, cobalt aluminate, cobalt benzoate, cobalt chloride, and the like with cobalt acetate being preferred.
- typical phosphate compounds include any pentavalent phosphates such as phosphoric acid, trialkylphosphates, for example, trimethylphosphate, triethylphosphate, tripentylphosphate, and the like.
- Triaryl phosphates such as triphenyl phosphate, triaryl phosphate, and the like can also be utilized. Additionally, mono and dialkyl/aryl phosphates may be utilized. Phosphoric acid and the trialkyl phosphates are preferred.
- the phosphate and the cobalt compounds are added before the antimony addition, and preferably during the beginning of the esterification stage although they can be added at the beginning of the condensation stage.
- the preparation of the polyester resin can be conducted in any conventional manner utilizing a dicarboxylic acid. That is, conventional temperatures, pressures, reaction times, and the like are utilized as well known to those skilled in the art.
- the articles made from polyester resins of the present invention exhibit very high clarity, low haze values, and neutral hue.
- the haze value is generally indicated by a haze number according to the Hunter haze test.
- the haze number is generally less than 3.0, desirably less than 2.5, and preferably less than 2.0. Often, haze values are measured by eyesight since they tend to be more accurate than the Hunter values.
- the neutral hue is generally indicated by utilizing a Hunter Lab instrument.
- the hue is neutral as indicated by an "a" coordinate value ranging from about -1.0 to about 1.0, and preferably from about -0.5 to about 1.0, and a "b" coordinate value ranging from about -2.0 to about 2.0, and preferably from about -0.5 to about 2.0. That is, the numbers are basically on the zero-zero coordinates which indicates that the resulting article, for example a beverage bottle has no color.
- the poly(ethylene terephthalate) polyesters described in Table III were prepared in a 200 pound polyester process reactor.
- the processing conditions and procedures for the esterification (S/1) reaction are shown in Table IB, and the same for the polycondensation (S/2 and S/3) reactions are shown in Table IC.
- the present invention relates to a polyester which produces an article having a high clarity, a low haze, and neutral hue.
- Table III the data sets forth clarity, haze values, and color values, that is neutral hue; with regard to Example I, a prior art polyester containing antimony and a phosphite; Example II relates to a polyester produced merely containing antimony; Example III relates to a polyester produced containing only antimony and cobalt; whereas Examples IV and V relate to the present invention.
- the prior art resin has a reduced brightness value.
- Example II has yellow resin
- Example III has bluish resin and a reduced brightness.
- Examples IV and V have a neutral color as well as good brightness.
- Example IV and V have good brightness and therefore clarity and a neutral hue. Examining now the bottle properties which are taken through the sidewall, it is seen that Example I does show a fair amount of haze. The visual inspection also reveals that the bottle is hazy and has reduced brightness. Although Examples II and III show clear Hunter sidewall values, the visual inspection reveals that the neck and bottom which tend to be thicker are yellow and blue, respectively. Thus, they do not contain a neutral hue.
- Example III which contains the cobalt, has an unacceptable amount of acetaldehyde content.
- Examples IV and V both through the instrument readings and visual readings, have clear bottles including the neck and bottom portion and have no haze. The clarity is high and the acetaldehyde levels are low. Thus, it is apparent that the present invention yields a high clarity bright bottle having low haze and a neutral or no color thereto.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
TABLE I __________________________________________________________________________ Polyester Reactor Processing 0.60 ± 0.02 I.V. Feed Polymer __________________________________________________________________________ A. Raw Materials Amount Raw Material % S/ (lbs.) (gms.) Active Element. ppt __________________________________________________________________________ Terephthalic acid (TPA) 100 1 129.0 -- -- -- Ethylene glycol (EG) 100 1 50.7 -- -- - H.sub.3 PO.sub.4 :EG.sup.a -- 1 -- 102.1 P 0.015 Co(C.sub.2 H.sub.3 O.sub.2).sub.2.4H.sub.2 O:EG.sup.a -- 2 -- 215.3 Co 0.015 Sb.sub.2 O.sub.3 :EG.sup.b -- 2 -- 285.5 Sb 0.130 Ethylene glycol makeup -- 2 16.8 -- -- -- __________________________________________________________________________ B. Esterification (S/1) Reaction Conditions and Procedures Elasped Time Batch Oil Pressure Head (Min.) Temp., °C. Temp., °C. PSI Temp., °C. Procedure __________________________________________________________________________ 0 260 267 10 108 charge TPA 5 226 257 40 107 charge H.sub.3 PO.sub.4 :EG, EG 48 256 283 70 129 60 260 288 70 130 start temp. program 135 284 291 10 108 transfer to S/2 vessel __________________________________________________________________________ C. Polycondensation (S/2 and S/3) Reaction Conditions and Procedures Elasped Time Batch Oil Pressure Agitator (Min.) Temp., °C. Temp., °C. mm of Hg RPM Procedure __________________________________________________________________________ 142 280 285 Atm. -- charge Co(C.sub.2 H.sub.3 O.sub.2).sub.2.4 H.sub.2 O:EG 147 262 285 Atm. -- charge Sb.sub.2 O.sub.3 :EG, start S/2 vacuum 152 274 285 100 -- 193 275 286 2.5 -- transfer to S/3 vessel 196 273 283 300 73 S/3 208 281 286 0.30 66 242 283 286 0.15 30 cut vacuum and pressurize to 8 PSI to extrude resin ribbon that is diced into 1/8 inch cubes. 260 end of dicing __________________________________________________________________________ .sup.a Raw materials dissolved in ethylene glycol .sup.b Sb.sub.2 O.sub.3 reacted with EG to yield Sb glycolate The 0.60 ± 0.021 I.V. feed resin is subsequently solid state polymerized to 0.72 ± 0.02 IV in a 3 ft.sup.3 blenderdryer reaction vessel using conditions and procedures outlined in Table II.
TABLE II ______________________________________ Polyester Solid State Polymerization 3 ft.sup.3 Blender-Dryer 0.72 ± 0.02 I.V. Elasped Oil Batch Time Temp., Temp., (hrs.) °C. °C. Procedure ______________________________________ 0 190 -- Charge 100 pounds of feed resin 1.5 190 150 Crystallize at atm. pressure 8.0 237 226 Solid state polymerize at 0.2-.3 mm of Hg vac. 10.0 -- -- Cool resin temp. to 40-50° C. and discharge ______________________________________
TABLE III __________________________________________________________________________ Improved Appearance PET Properties __________________________________________________________________________ Feed Resin Properties Composition, ppm Gardner Color Sample Sb Co P I.V., dl/gm COOH.sup.Eq/ 10.sup.6 gms Mettler M.P., °C. Rd a b CH.sub.3 CHO Content, __________________________________________________________________________ ppm 1 210 -- 25* 0.606 17 255.1 24.0 -0.5 2.4 51.5 2 150 -- -- 0.568 22 255.8 40.0 -1.2 8.9 56.9 3 150 50 -- 0.561 27 256.0 20.9 5.4 -8.5 80.7 4 150 50 40 0.574 14 255.5 32.1 -0.1 -0.3 51.9 5 130 15 15 0.572 17 254.4 30.7 0.6 0.1 52.0 Solid State Resin Properties 1 Same as Above 0.709 12 -- 53.4 -2.0 0.0 1.6 2 " 0.715 15 -- 73.1 -2.4 11.9 1.1 3 " 0.713 18 -- 48.3 1.5 -6.1 1.7 4 " 0.747 9 -- 61.0 -1.4 -1.3 1.2 5 " 0.716 12 -- 66.3 -1.4 -1.1 1.4 CH.sub.3 CHO Generation Rate (ppm/min.) 1 Same as Above 1.12 2 " 1.13 3 " 3.36 4 " 1.23 5 " 1.16 __________________________________________________________________________ BOTTLE PREFORM PROPERTIES Hunter Values L (a) (b) __________________________________________________________________________ 1 Same as Above 56.2 -2.1 3.6 2 " 71.4 -2.8 7.1 3 " 64.3 1.0 0.8 4 " 68.7 0.8 2.2 5 " 71.8 1.0 2.0 __________________________________________________________________________ Bottle Properties (2 Liter) Composition, ppm Hunter Sidewall Headspace CH.sub.3 CHO Content Sample Sb Co P L a b Haze Visual μg/l __________________________________________________________________________ (ppb) 1 210 -- 25* 86.9 -0.8 1.7 3.4 Bottle hazy and 2.2 reduced brightness 2 150 -- -- 88.7 -0.8 1.9 1.7 Yellow neck and 2.6 bottom 3 150 50 -- 88.2 0.0 1.3 1.7 Bluish tinge 10.2 neck and bottom 4 150 50 40 88.0 +0.2 1.4 3.6 Clear neck and 2.0 bottom 5 130 15 15 88.9 -0.2 1.3 1.7 Clear neck and 2.1 bottom __________________________________________________________________________ *Phosphite
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/014,739 USRE32765E (en) | 1981-03-20 | 1987-02-13 | High clarity colorless polyesters |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24583881A | 1981-03-20 | 1981-03-20 | |
US07/014,739 USRE32765E (en) | 1981-03-20 | 1987-02-13 | High clarity colorless polyesters |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US24583881A Continuation | 1981-03-20 | 1981-03-20 | |
US06/454,753 Reissue US4499226A (en) | 1981-03-20 | 1982-12-30 | High clarity colorless polyesters |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE32765E true USRE32765E (en) | 1988-10-11 |
Family
ID=26686445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/014,739 Expired - Lifetime USRE32765E (en) | 1981-03-20 | 1987-02-13 | High clarity colorless polyesters |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE32765E (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5008230A (en) * | 1989-05-22 | 1991-04-16 | Hoechst Celanese Corporation | Catalyst for preparing high clarity, colorless polyethylene terephthalate |
US5153164A (en) * | 1989-05-22 | 1992-10-06 | Hoechst Celanese Corporation | Catalyst system for preparing polyethylene terephthalate |
EP0745629A2 (en) * | 1995-06-01 | 1996-12-04 | ENICHEM S.p.A. | Polyesters with a low crystallization rate and catalytic system for their preparation |
US6197856B1 (en) | 1997-08-28 | 2001-03-06 | Eastman Chemical Company | Copolymer binder fibers |
US6231976B1 (en) | 1997-08-28 | 2001-05-15 | Eastman Chemical Company | Copolyester binder fibers |
US6495656B1 (en) | 1990-11-30 | 2002-12-17 | Eastman Chemical Company | Copolyesters and fibrous materials formed therefrom |
US6544611B2 (en) | 2001-08-01 | 2003-04-08 | Arteva North America S.A.R.L. | Oxygen scavenging PET based polymer |
US20090068401A1 (en) * | 2004-12-20 | 2009-03-12 | Mitsubishi Plastics , Inc. | Optical Biaxially Oriented Polyester Film |
WO2013074835A1 (en) * | 2011-11-16 | 2013-05-23 | M&G Usa Corporation | Color control of polyester-cobalt compounds and polyester-cobalt compositions |
US8907009B2 (en) | 2008-08-29 | 2014-12-09 | Lurgi Zimmer Gmbh | Method for producing polymers with a neutral color tone |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2641592A (en) * | 1951-07-24 | 1953-06-09 | Du Pont | Production of polyethylene terephthalate with cobaltous acetate as catalyst |
US3907754A (en) * | 1974-06-19 | 1975-09-23 | Eastman Kodak Co | Process and catalyst-inhibitor system for preparing synthetic linear polyester |
US3951905A (en) * | 1973-05-10 | 1976-04-20 | Toray Industries, Inc. | Fiber- and film-forming polyester composition |
US3962189A (en) * | 1974-11-01 | 1976-06-08 | Eastman Kodak Company | Process and catalyst-inhibitor systems for preparing synthetic linear polyesters |
US4001187A (en) * | 1971-12-29 | 1977-01-04 | Kanebo, Ltd. | Method of producing polyesters terephthalic acid and ethylene glycol |
US4010145A (en) * | 1975-05-12 | 1977-03-01 | Eastman Kodak Company | Process and catalyst inhibitor systems for preparing synthetic linear polyesters |
US4020049A (en) * | 1967-09-14 | 1977-04-26 | The Goodyear Tire & Rubber Company | Process for preparing polyester resin |
US4082724A (en) * | 1968-12-03 | 1978-04-04 | Imperial Chemical Industries Limited | Production of aromatic polyesters of improved color |
JPS5351295A (en) * | 1976-10-22 | 1978-05-10 | Mitsubishi Rayon Co Ltd | Preparation of polyester |
JPS5515424A (en) * | 1978-07-18 | 1980-02-02 | Nippon Ester Co Ltd | Continuous esterification of terephthalic acid |
JPS5540714A (en) * | 1978-09-18 | 1980-03-22 | Toray Ind Inc | Preparation of polyester |
US4250078A (en) * | 1979-03-19 | 1981-02-10 | Eastman Kodak Company | Thermoplastic polyester molding compositions |
-
1987
- 1987-02-13 US US07/014,739 patent/USRE32765E/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2641592A (en) * | 1951-07-24 | 1953-06-09 | Du Pont | Production of polyethylene terephthalate with cobaltous acetate as catalyst |
US4020049A (en) * | 1967-09-14 | 1977-04-26 | The Goodyear Tire & Rubber Company | Process for preparing polyester resin |
US4082724A (en) * | 1968-12-03 | 1978-04-04 | Imperial Chemical Industries Limited | Production of aromatic polyesters of improved color |
US4001187A (en) * | 1971-12-29 | 1977-01-04 | Kanebo, Ltd. | Method of producing polyesters terephthalic acid and ethylene glycol |
US3951905A (en) * | 1973-05-10 | 1976-04-20 | Toray Industries, Inc. | Fiber- and film-forming polyester composition |
US3907754A (en) * | 1974-06-19 | 1975-09-23 | Eastman Kodak Co | Process and catalyst-inhibitor system for preparing synthetic linear polyester |
US3962189A (en) * | 1974-11-01 | 1976-06-08 | Eastman Kodak Company | Process and catalyst-inhibitor systems for preparing synthetic linear polyesters |
US4010145A (en) * | 1975-05-12 | 1977-03-01 | Eastman Kodak Company | Process and catalyst inhibitor systems for preparing synthetic linear polyesters |
JPS5351295A (en) * | 1976-10-22 | 1978-05-10 | Mitsubishi Rayon Co Ltd | Preparation of polyester |
JPS5515424A (en) * | 1978-07-18 | 1980-02-02 | Nippon Ester Co Ltd | Continuous esterification of terephthalic acid |
JPS5540714A (en) * | 1978-09-18 | 1980-03-22 | Toray Ind Inc | Preparation of polyester |
US4250078A (en) * | 1979-03-19 | 1981-02-10 | Eastman Kodak Company | Thermoplastic polyester molding compositions |
Non-Patent Citations (3)
Title |
---|
Kamatani et al., "Effect of Phosphoric Acid on the Polycondensation of Bis(2-hydroxyethyl) Terephthalate Catalyzed by Sb(III) Compounds", Polymer Journal, vol. 12, No. 2, pp. 125-130, (1980). |
Kamatani et al., Effect of Phosphoric Acid on the Polycondensation of Bis(2 hydroxyethyl) Terephthalate Catalyzed by Sb(III) Compounds , Polymer Journal, vol. 12, No. 2, pp. 125 130, (1980). * |
Unitika Co., Plasdoc 31808 V/17, Derwent Publications, 4/1/74. * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5008230A (en) * | 1989-05-22 | 1991-04-16 | Hoechst Celanese Corporation | Catalyst for preparing high clarity, colorless polyethylene terephthalate |
US5153164A (en) * | 1989-05-22 | 1992-10-06 | Hoechst Celanese Corporation | Catalyst system for preparing polyethylene terephthalate |
US6495656B1 (en) | 1990-11-30 | 2002-12-17 | Eastman Chemical Company | Copolyesters and fibrous materials formed therefrom |
EP0745629A3 (en) * | 1995-06-01 | 1997-05-07 | Enichem Spa | Polyesters with a low crystallization rate and catalytic system for their preparation |
EP0745629A2 (en) * | 1995-06-01 | 1996-12-04 | ENICHEM S.p.A. | Polyesters with a low crystallization rate and catalytic system for their preparation |
US6197856B1 (en) | 1997-08-28 | 2001-03-06 | Eastman Chemical Company | Copolymer binder fibers |
US6231976B1 (en) | 1997-08-28 | 2001-05-15 | Eastman Chemical Company | Copolyester binder fibers |
US6562938B2 (en) | 2000-05-12 | 2003-05-13 | Eastman Chemical Company | Copolyesters and fibrous materials formed therefrom |
US6544611B2 (en) | 2001-08-01 | 2003-04-08 | Arteva North America S.A.R.L. | Oxygen scavenging PET based polymer |
US20090068401A1 (en) * | 2004-12-20 | 2009-03-12 | Mitsubishi Plastics , Inc. | Optical Biaxially Oriented Polyester Film |
US8907009B2 (en) | 2008-08-29 | 2014-12-09 | Lurgi Zimmer Gmbh | Method for producing polymers with a neutral color tone |
WO2013074835A1 (en) * | 2011-11-16 | 2013-05-23 | M&G Usa Corporation | Color control of polyester-cobalt compounds and polyester-cobalt compositions |
US10322528B2 (en) | 2011-11-16 | 2019-06-18 | APG Polytech, LLC | Color control of polyester-cobalt compounds and polyester-cobalt compositions |
US11141886B2 (en) | 2011-11-16 | 2021-10-12 | APG Polytech, LLC | Color control of polyester-cobalt compounds and polyester-cobalt compositions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4499226A (en) | High clarity colorless polyesters | |
US4408004A (en) | High clarity, low haze polyesters having reduced infrared heat-up times | |
US4535118A (en) | High clarity, low haze polyesters having reduced infrared heat-up times | |
US4476272A (en) | High clarity, low haze polyesters having reduced infrared heat-up times | |
AU2004218085B2 (en) | Polyester polymerization catalyst, process for producing the same and process for producing polyester therewith | |
EP0128109B1 (en) | A composition and process for making an amber colored polyester | |
US5874517A (en) | Method to reduce regenerated acetaldehyde in pet resin | |
US5962625A (en) | High clarity polyester containing sub-visual antimony phosphate derivatives particles | |
EP1099720B1 (en) | Polyester resin and its production process | |
US4447595A (en) | Polyterephthalates and copolymers thereof having high clarity and process for making same | |
US6022603A (en) | Ethylene terephthalate/ethylene-2,6-naphthalene-dicarboxylate copolymers for bottles | |
US4374949A (en) | Composition and process for making a green colored polyester | |
EP0061414B1 (en) | High clarity colorless polyesters | |
USRE32765E (en) | High clarity colorless polyesters | |
CA2016744A1 (en) | Preparation of polyethylene terephthalate | |
EP0850967B1 (en) | Container formed from copolyester composition, copolyester composition therefor and method of producing the same | |
JP2004124067A (en) | Polyester resin and method for production thereof | |
EP0051038B1 (en) | Green colored polyester | |
JP2000256452A (en) | Production of polyester resin | |
JP2003147060A (en) | Method for producing copolymerized polyester resin | |
JPH11209465A (en) | Copolyester and production thereof | |
KR20010087534A (en) | Manufacturing method of polyester polymer having high transparency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: SHELL OIL COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GOODYEAR TIRE & RUBBER COMPANY, THE;REEL/FRAME:006388/0153 Effective date: 19921218 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: MOSSI & GHISOLFI OVERSEAS, S.A., LUXEMBOURG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELL OIL COMPANY;REEL/FRAME:012428/0886 Effective date: 20011113 |
|
AS | Assignment |
Owner name: M & G USA CORPORATION, WEST VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOSSI & GHISOLFI OVERSEAS S.A.;REEL/FRAME:012937/0624 Effective date: 20011115 |
|
AS | Assignment |
Owner name: CORPUS CHRISTI POLYMERS LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:M&G USA CORPORATION;REEL/FRAME:049479/0781 Effective date: 20181228 |