USRE27145E - Side-chain - Google Patents
Side-chain Download PDFInfo
- Publication number
- USRE27145E USRE27145E US27145DE USRE27145E US RE27145 E USRE27145 E US RE27145E US 27145D E US27145D E US 27145DE US RE27145 E USRE27145 E US RE27145E
- Authority
- US
- United States
- Prior art keywords
- block
- polymer
- lithium
- butadiene
- hydrogenated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/04—Reduction, e.g. hydrogenation
Definitions
- ABSTRACT OF THE DISCLOSURE Hydrogenated block copolymers having a superior combination of physical properties are prepared by block polymerizing a vinyl arene with butadiene in the presence of a polar compound tocause a limited amount of branching in the polybutadiene block and thereafter hydrogenating the polymer.
- This invention is concerned with novel block copolymers, their compositions and processes for their preparation. More particular, the invention is directed to certain hydrogenated block copolymers having optimum physical properties based upon a critical microstructure of the elastomeric polymeric blocks contained therein.
- Rubbers and elastomers of either natural or synthetic origin normally require vulcanization in order to obtain useful elastomeric properties. Before vulcanization, rubbers possess tacky properties and low strength which makes them of little utility except as rubber cements. Another of their prime shortcomings is that of stability relative to either heat or oxidation.
- Optimum elastomeric properties are not usually attained until the rubber has been subjected to a vulcanization treatment such as by means of heating with sulfur, sulfur compounds, peroxides or other means.
- Vulcanization usually results in insolubilization of the rubber in most common solvents. While this may be of advantage in certain situations, for many purposes such as the application of paints, etc., and in the formation of molded objects, insolubilization is in fact a substantial disadvantage. It has been necessary in many cases to apply vulcanized rubbers in the form of latices or to vulcanize the rubber after it has been formed in a molding operation or the like. vulcanization under such circumstances often results in substantial losses of product, since the flashings from moldings etc., cannot be readily reworked but must be incorporated in other compositions acting merely as a filler or reinforcing agent.
- the block copolymers under consideration comprise primarily those having a general structure ABA wherein the two terminal polymer blocks A comprise thermoplastic polymer blocks of vinylarenes such as polystyrene, while block B is a polymer block of a conjugated diene.
- thermoplastic terminal blocks to the center elastomeric polymer block and the relative molecular weights of each of these blocks is balanced to obtain a rubber having an optimum combination of properties such that it behaves as a vulcanized rubber without requiring the actual step of vulcanization.
- block copolymers can be designed not only with this important advantage but also so as to be handled in thermoplastic forming equipment and are soluble in a variety of relatively low cost solvents.
- alpha olefin polymers appear to be due in part to their degree of branching. While the alpha olefin polymers have a basic straight carbon chain backbone, those with elastomeric properties always have dependent alkyl radicals.
- EPR ethylene-propylene rubber
- EPR ethylene-propylene rubber
- EPR ethylene-propylene rubber
- the resulting polymer is essentially nonelastomeric or in the other words relatively rigid, and behaves like a typical thermoplastic without possessing resilience, elongation, tensile strength without yield, low set or other properties characteristic of desirable elastomers.
- a particular type of block copolymer has been prepared meeting in large measure the above requirements and combining within its structure, a configuration enabling the combination of a maximum number of physical properties especially desirable for such products.
- These polymers are hydrogenated block copolymers having a configuration, prior to hydrogenation, of ABA wherein each of the As is an alkenyl-substituted aromatic hydrocarbon polymer block and B is a butadiene polymer block wherein 3555 mol percent of the condensed butadiene units in the butadiene polymer block have 1,2 configuration.
- a means for the preparation of such branched block copolymers which comprises the steps of utilizing an alkyl lithium catalyst in a relatively inert hydrocarbon solvent for the block copolymer at each stage of its formation modified with a critically defined proportion of a polar compound of the group consisting of ethers, thio-ethers and tertiary amines; forming a first polymer block of an alkenyl aromatic hydrocarbon in said medium to form a living polymer block; adding butadiene thereto and continuing polymerization until the desired weight has been obtained; thereafter introducing an alkenyl arene and continuing block copolymerization to finally obtain the ABA block copolymer wherein the center polybutadiene block has the recited degree of branched configura- 3 :ion. Following the preparation of this unsaturated block :opolymer, the latter
- the block copolymer having the diene center block it least 90% hydrogenated but less than 10% of the )olystyrene units hydrogenated exhibits the dual advanages of improved stability while maintaining good procssability.
- Block copolymers wherein at least about 25% )f the polystyrene blocks are hydrogenated have the tdvantages both improved stability and increased softenng points.
- Such compositions may be mixtures of block :opolymers wherein at least part of the molecules are saturated over their entire length, the remaining molecules reing those in which only the butadiene polymer block is it least 90% saturated.
- the hydrogenated olymers may be those in which at least 90% of the )olybutadiene linkages are hydrogenated and in which he polystyrene blocks are those containing both saturated 1nd unsaturated styrene units.
- terminal blocks A having average molecilar weights of 4,000-115,000 and polybutadiene blocks 1aving average molecular weights of 20,000450,000. Still more preferably, the terminal blocks have average molec- Jlar weights of 8,00060,000 while the polybutadiene polymer block has an average molecular weight between about 50,000 and 300,000. Likewise, in order to promote the optimum combination of physical properties, it is desirable that the terminal plastic blocks comprise 530% by Weight of the total block copolymer.
- the proportion of polar modifying compounds to be used in forming the branched polybutadiene blocks in the above types of block copolymers will depend upon a iumber of factors such as the identity of the polar compound, the precise degree of branching desired, the hydro- :arbon medium utilized and the amount of lithium catalyst present.
- the imount of polar compound will be expressed as a molar ratio of polar compound to lithium alkyl.
- the molar ratio of polar :ompound to lithium should be between about 7 and 70, preferably between about 10 and 40.
- the degree of branching of the polybutadiene block is essentially linear with the molar ratio of polar compounds :0 lithium. Consequently, if the ratio is too low, then the desired degree of branching is correspondingly decreased and the resulting block copolymer, when hydrogenated, Is essentially a plastic having substantially non-elastomeric properties e.g. poor rubber properties. On the other hand, if the molar proportion is increased beyond the maximum :imit recited, the degree of branching is excessive and, as I will be seen by reference to the figures, the elastomeric properties of the resulting products following hydrogenazion are drastically damaged.
- the major abjective of the process is to utilize the correct proportion )f polar compound to lithium initiator such that the aranching of the polybutadiene block is within the desired 'ecited range of 35-55 mol percent. or in other terms, 35-55% of the carbon atoms in the polybutadiene block are in the form of dependent C side chains]
- the center elastomeric block is preferably a polymerized butaliene polymer having a recited degree of branching, this 4 may be modified, with about 25% by weight of elastomeric block-producing monomers of other conjugated dienes such as isoprene and the like.
- the non-elastomeric end polymer blocks comprise homopolymers or copolymers preferably prepared from alkenyl aromatic hydrocarbons and particularly from vinyl aromatic hydrocarbons wherein the aromatic may be either monocyclic or polycyclic (followed by hydrogenation).
- Typical monomers include styrene, alpha methyl styrene, vinyl xylene, ethyl vinyl xylene, vinyl naphthalene and the like. Mixtures of such monomers may be utilized as well.
- the two end blocks may be the same or different as long as they meet the generic description of these end blocks insofar as their thermoplastic character is concerned as differentiated from the elastomeric major of the center block.
- the center block may be an elastomer in accordance with the definition contained in ASTM Special Technical Bulletin, No. 184 as follows:
- the catalysts employed in the process of the present invention may be defined broadly as lithium based initiators although alkyl lithium initiators are preferred.
- suitable initiators include lithium metal and aryl lithium compounds and in certain instances, dilithium initiators such as dilithium stilbene, lithium l-diphenyl ethylene or lithium naphthalene.
- Alkyl lithium initiators, the preferred class may be generally divided into normal alkyl lithiums and branched alkyl lithiums, the latter having a number of functional aspects making them more desirable than the former.
- Branched alkyl lithium initiators exhibit no disadvantageous induction period in the startup of the polymerization, the rate of polymerization is reasonably rapid but sutficiently steady so that it can be controlled and the products obtained are of a relatively narrow molecular Weight range also adding to the product control and effectiveness thereof for a number of purposes.
- Polymerization is normally conducted at temperatures in the order of 20 to about C., preferably about +20 C. and 65 C.
- the proportion of initiators will depend upon the molecular weight of the products desired, but may be varied, with the latter qualification, between about 1 and about 200 parts per million based on the Weight of the monomers involved.
- the basic process when using the lithium-based catalysts comprises forming a solution of the first alkenyl arene monomer in an inert hydrocarbon such as alkanes, alkenes or cycloalkanes modified by the presence of the polar compounds of the group consisting of ethers, thioethers and tertiary amines.
- an inert hydrocarbon such as alkanes, alkenes or cycloalkanes modified by the presence of the polar compounds of the group consisting of ethers, thioethers and tertiary amines.
- the proportion of polar compounds should be restricted in accordance with the limits set forth hereinbefore in order to obtain the desired critical degree of branching in the center elastomeric block.
- polymerization proceeds to produce the first terminal polymeric block having an average molecular weight between about 4000 and 100,000, this block being terminated on one end with a lithium radical and being referred to as a living polymer.
- a lithium radical is injected into the system and block polymerization occurs, the presence of the polar compound now becoming important in producing the desired degree of branching of the polybutadiene block.
- the temperature, initiator concentration and solvent may be adjusted at this time to optimize the desired degree of polymerization or rate of reaction.
- the resulting product is then typified by the general structure ABLi, a living polymer block of the two monomers thus far employed.
- a second addition of an alkenyl aromatic hydrocarbon is made to produce the final terminal block and result in the formation of the three block system ABA which is the result of polymerization followed by termination with a polar terminator such as an alcohol and the like.
- the next necessary stage is to hydrogenate -the polymer in order to increase its service temperature and at the same time to improve the oxidation stability of the product.
- Hydrogenation may be conducted utilizing a variety of hydrogenation catalysts such as nickel on kieselguhr, Raney nickel, copper chromate, molybdenum sulfide, and finely divided platinum or other noble metals on a low surface area carrier.
- Hydrogenation may be conducted at any desired temperature or pressure, say, from atmospheric to 3000 p.s.i.g., the usual range being between 100 and 1000 p.s.i.g. at temperatures from about 75 F. to 600 F., for times between about 0.1 and 24 hours, preferably 0.2-8 hours.
- Preferred catalysts comprise the reduced metal products obtained by reduction of cobalt nickel, tungsten or molybdenum compounds with aluminum alkyls or hydrides. These catalysts are selective, in that the elasomeric block, a set of block copolymers was prepared having similar individual block molecular weights.
- polar compound was varied relative to the amount of lithium alkyl initiator present, the following is a typical example by which this set of block copolymers were prepared: Styrene (60 grams) was dissolved in benzene 1400 grams) containing varying proportions of tetrahydrofurane as the polar compound. This mixture was brought to C. and 0.003 mol of secondary butyl lithium was added. Polymerization was conducted at 40 C. in a reactor until all of the styrene had been converted to a polymer terminated with a lithium radical. Thereafter, butadiene was added to the reaction mixture (450 grams) and polymerization was continued until complete utilization of the butadiene monomer.
- the styrene-butadiene block polymer so formed was then modified by the addition of styrene (60 grams) and polymerization continued until no monomer remain:
- the resulting polystyrene-polybutadiene-polystyrene block polymer had average block molecular Weights of 15,000l00,00015,000.
- the block copolymers so prepared by variation in tetrahydrofurane ratio relative to secondary butyl lithium were then hydrogenated at 500 p.s.i.g. hydrogen pressure, for 18 hours at 160 C. utilizing 0.3 gram of nickel on kieselguhr support per gram of polymer.
- the hydrogenated polymers were then tested for physical properties which are shown in the table below.
- the polybutadiene block is that most subject to oxidative attack, it is the primary objective of hydrogenation to reduce the unsaturation of this block, the hydrogenation of the terminal plastic blocks being of less importance. With some selective catalysts, this is readily accomplished whereas with others, the hydrogenation proceeds along the entire chain.
- the diene unsaturation (measured by iodine number) should be reduced to less than 10% (preferably less than 5%) of its original value.
- Reduction of styrene unsaturation (measured by ultra violet) may be expressed as an average of 0100%; e.g., no reduction at all, and up to complete reduction.
- the hydrogenation product may be a mixture of products in which some of the polystyrene blocks are hydrogenated more than others.
- each A is a polymerized mono alkenyl aromatic hydrocarbon block having an average molecular weight of about 4,000115,000;
- B is a polymerized butadiene hydrocarbon block having an average molecular weight of about 20,000- 450,000;
- polymeric blocks A are polymer blocks of a vinyl aromatic hydrocarbon.
- each A is a polymerized styrene block having an average molecular weight of about 8,00060,000;
- B is a polymerized butadiene block having an average molecular weight of about 50,000300,000, 40- 50 mol percent of the condensed butadiene units in block B having 1,2-c0nfigurati0n; of the butadiene carbon atoms in the block being vinyl sidechains;
- step (b) is an ether.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Graft Or Block Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
HYDROGENATED BLOCK COPOLYMERS HAVING A SUPERIOR COMBINATION OF PHYSICAL PROPERTIES ARE PREPARED BY BLOCK POLYMERIZING A VINYL ARENE WITH BUTADIENE IN THE PRESENCE OF A POLAR COMPOUND TO CAUSE A LIMITED AMOUNT OF BRANCHING IN THE POLYBUTADINE BLOCK AND THEREAFTER HYDROGENATING THE POLYMER.
Description
June 22, 1971 TEIPERATURE, C
TEISILE, PSI N LII c O o 3 8 8 I I I R- C. JONES I Re. 27,145
APPAREIIT GLASS POINT, C
l l l 1.0.Sl0E-0HMN FIG. I
TEIISILE STRENGTH AT 75C I I l as c, suns-cam FIG. 3
BALL REBOUND, 7.
TEISILE, PSI
REBOUND,
7o C SIDE-CIIAIN FIG. 2
TENSILE STREIIGIH AT I00C I l I so 5o 10 1. 0, sum -cmuu FIG. 4
INVENTOR:
ROBERT C. JONES BY I @QM HIS AGENT States Patent Re. 27,145 Re issued June 22, 1971 27 145 HYDROGENATED BL( )CK COPOLYMERS F BUTADIENE AND A MONOVINYL ARYL HYDROCARBON Robert C. Jones, San Francisco, Calif., assignor to Shell Oil Company, New York, NY.
Original No. 3,431,323, dated Mar. 4, 1969, Ser. No. 338,795, Jan. 20, 1964. Application for reissue May 20, 1969, Ser. No. 848,755
Int. Cl. C08f /04 US. Cl. 260-880 10 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE Hydrogenated block copolymers having a superior combination of physical properties are prepared by block polymerizing a vinyl arene with butadiene in the presence of a polar compound tocause a limited amount of branching in the polybutadiene block and thereafter hydrogenating the polymer.
This invention is concerned with novel block copolymers, their compositions and processes for their preparation. More particular, the invention is directed to certain hydrogenated block copolymers having optimum physical properties based upon a critical microstructure of the elastomeric polymeric blocks contained therein.
Rubbers and elastomers of either natural or synthetic origin normally require vulcanization in order to obtain useful elastomeric properties. Before vulcanization, rubbers possess tacky properties and low strength which makes them of little utility except as rubber cements. Another of their prime shortcomings is that of stability relative to either heat or oxidation.
Optimum elastomeric properties are not usually attained until the rubber has been subjected to a vulcanization treatment such as by means of heating with sulfur, sulfur compounds, peroxides or other means. Vulcanization usually results in insolubilization of the rubber in most common solvents. While this may be of advantage in certain situations, for many purposes such as the application of paints, etc., and in the formation of molded objects, insolubilization is in fact a substantial disadvantage. It has been necessary in many cases to apply vulcanized rubbers in the form of latices or to vulcanize the rubber after it has been formed in a molding operation or the like. vulcanization under such circumstances often results in substantial losses of product, since the flashings from moldings etc., cannot be readily reworked but must be incorporated in other compositions acting merely as a filler or reinforcing agent.
It would be desirable to have a rubber which behaves like a vulcanized rubber without the necessity for vulcanization, as well as having the property of being soluble in a selected class of relatively inexpensive solvents such as certain hydrocarbons. Recently, a critically limited class of block copolymers has been investigated to determine the optimum structure for obtaining these combinations of properties. The block copolymers under consideration comprise primarily those having a general structure ABA wherein the two terminal polymer blocks A comprise thermoplastic polymer blocks of vinylarenes such as polystyrene, while block B is a polymer block of a conjugated diene. The proportion of the thermoplastic terminal blocks to the center elastomeric polymer block and the relative molecular weights of each of these blocks is balanced to obtain a rubber having an optimum combination of properties such that it behaves as a vulcanized rubber without requiring the actual step of vulcanization. Moreover, these block copolymers can be designed not only with this important advantage but also so as to be handled in thermoplastic forming equipment and are soluble in a variety of relatively low cost solvents.
While these block copolymers have a number of outstanding technical advantages, one of their principal limitations lies in their sensitivity to oxidation. This is due to their unsaturated character which can be minimized by hydrogenating the copolymer, especially in the center section comprising the polymeric diene block. Hydrogenation may be effected over the entire molecule, converting the terminal blocks such as polystyrene to polyvinylcyclohexaue blocks, while the diene polymer block is converted to a straight chain hydrocarbon having a relatively high degree of saturation, this portion of the block copolymer having properties similar to polymers of alpha olefins.
The elastomeric properties of certain alpha olefin polymers appear to be due in part to their degree of branching. While the alpha olefin polymers have a basic straight carbon chain backbone, those with elastomeric properties always have dependent alkyl radicals. For example, EPR (ethylene-propylene rubber) has a structure of dependent methyl radicals which appears to provide elasticity and other elastomeric properties. When an essentially unbranched straight chain polymer is formed, such as some polyethylenes, the resulting polymer is essentially nonelastomeric or in the other words relatively rigid, and behaves like a typical thermoplastic without possessing resilience, elongation, tensile strength without yield, low set or other properties characteristic of desirable elastomers.
The problem therefore exists of forming a block copolymer having the self-curing property discussed hereinbefore, solubility in relatively low cost solvents, stability toward oxidation and retention of the elastomeric properties over a wide temperature range in spite of hydrogenation of the polymer to obtain the desired degree of stability.
Now, in accordance with the present invention, a particular type of block copolymer has been prepared meeting in large measure the above requirements and combining within its structure, a configuration enabling the combination of a maximum number of physical properties especially desirable for such products. These polymers are hydrogenated block copolymers having a configuration, prior to hydrogenation, of ABA wherein each of the As is an alkenyl-substituted aromatic hydrocarbon polymer block and B is a butadiene polymer block wherein 3555 mol percent of the condensed butadiene units in the butadiene polymer block have 1,2 configuration. of the carbon atoms present in the butadiene polymer block are in the form of dependent vinyl side chains] Still in accordance with this invention, a means has been devised for the preparation of such branched block copolymers which comprises the steps of utilizing an alkyl lithium catalyst in a relatively inert hydrocarbon solvent for the block copolymer at each stage of its formation modified with a critically defined proportion of a polar compound of the group consisting of ethers, thio-ethers and tertiary amines; forming a first polymer block of an alkenyl aromatic hydrocarbon in said medium to form a living polymer block; adding butadiene thereto and continuing polymerization until the desired weight has been obtained; thereafter introducing an alkenyl arene and continuing block copolymerization to finally obtain the ABA block copolymer wherein the center polybutadiene block has the recited degree of branched configura- 3 :ion. Following the preparation of this unsaturated block :opolymer, the latter is subjected to hydrogenation of auch a degree that the unsaturation of the polybutadiene )lOCk is reduced to less than 10% of its original value.
The block copolymer having the diene center block it least 90% hydrogenated but less than 10% of the )olystyrene units hydrogenated exhibits the dual advanages of improved stability while maintaining good procssability. Block copolymers wherein at least about 25% )f the polystyrene blocks are hydrogenated have the tdvantages both improved stability and increased softenng points. Such compositions may be mixtures of block :opolymers wherein at least part of the molecules are saturated over their entire length, the remaining molecules reing those in which only the butadiene polymer block is it least 90% saturated. Alternatively, the hydrogenated olymers may be those in which at least 90% of the )olybutadiene linkages are hydrogenated and in which he polystyrene blocks are those containing both saturated 1nd unsaturated styrene units.
The figures forming a part of the specification indicate l number of physical properties of block copolymers of his variety containing a Wide range of C side chains howing that a critical range between about 35 and 55 nol percent 1,2 structure, of the carbon atoms in side :hains is required] in order to obtain the optimum comination of the most desired properties, while at the tame time retaining the benefits of self-curing and the )ossibility of processing the polymer in thermoforming :quipment such as extrusion or other thermoplastic moldng devices.
In order to have the most desirable properties, it is referred to form terminal blocks A having average molecilar weights of 4,000-115,000 and polybutadiene blocks 1aving average molecular weights of 20,000450,000. Still more preferably, the terminal blocks have average molec- Jlar weights of 8,00060,000 while the polybutadiene polymer block has an average molecular weight between about 50,000 and 300,000. Likewise, in order to promote the optimum combination of physical properties, it is desirable that the terminal plastic blocks comprise 530% by Weight of the total block copolymer.
The proportion of polar modifying compounds to be used in forming the branched polybutadiene blocks in the above types of block copolymers will depend upon a iumber of factors such as the identity of the polar compound, the precise degree of branching desired, the hydro- :arbon medium utilized and the amount of lithium catalyst present. For the purpose of the present invention, the imount of polar compound will be expressed as a molar ratio of polar compound to lithium alkyl. In order to achieve 3555 mol percent 1,2 structure, of carbon atoms in dependent side chains,] the molar ratio of polar :ompound to lithium should be between about 7 and 70, preferably between about 10 and 40.
The degree of branching of the polybutadiene block is essentially linear with the molar ratio of polar compounds :0 lithium. Consequently, if the ratio is too low, then the desired degree of branching is correspondingly decreased and the resulting block copolymer, when hydrogenated, Is essentially a plastic having substantially non-elastomeric properties e.g. poor rubber properties. On the other hand, if the molar proportion is increased beyond the maximum :imit recited, the degree of branching is excessive and, as I will be seen by reference to the figures, the elastomeric properties of the resulting products following hydrogenazion are drastically damaged. Consequently, the major abjective of the process is to utilize the correct proportion )f polar compound to lithium initiator such that the aranching of the polybutadiene block is within the desired 'ecited range of 35-55 mol percent. or in other terms, 35-55% of the carbon atoms in the polybutadiene block are in the form of dependent C side chains] While the center elastomeric block is preferably a polymerized butaliene polymer having a recited degree of branching, this 4 may be modified, with about 25% by weight of elastomeric block-producing monomers of other conjugated dienes such as isoprene and the like.
The non-elastomeric end polymer blocks comprise homopolymers or copolymers preferably prepared from alkenyl aromatic hydrocarbons and particularly from vinyl aromatic hydrocarbons wherein the aromatic may be either monocyclic or polycyclic (followed by hydrogenation). Typical monomers include styrene, alpha methyl styrene, vinyl xylene, ethyl vinyl xylene, vinyl naphthalene and the like. Mixtures of such monomers may be utilized as well. The two end blocks may be the same or different as long as they meet the generic description of these end blocks insofar as their thermoplastic character is concerned as differentiated from the elastomeric major of the center block. Where, in the specification, general reference is made to polystyrene blocks, it will be understood that other types of poly(-vinyl arenes) may be used in place thereof. The center block may be an elastomer in accordance with the definition contained in ASTM Special Technical Bulletin, No. 184 as follows:
A substance that can be stretched at room temperature to at least twice its original length and, after having been stretched and the stress removed, returned with force to approximately its original length in a short time.
The catalysts employed in the process of the present invention may be defined broadly as lithium based initiators although alkyl lithium initiators are preferred. Other suitable initiators include lithium metal and aryl lithium compounds and in certain instances, dilithium initiators such as dilithium stilbene, lithium l-diphenyl ethylene or lithium naphthalene. Alkyl lithium initiators, the preferred class, may be generally divided into normal alkyl lithiums and branched alkyl lithiums, the latter having a number of functional aspects making them more desirable than the former. Branched alkyl lithium initiators exhibit no disadvantageous induction period in the startup of the polymerization, the rate of polymerization is reasonably rapid but sutficiently steady so that it can be controlled and the products obtained are of a relatively narrow molecular Weight range also adding to the product control and effectiveness thereof for a number of purposes.
Polymerization is normally conducted at temperatures in the order of 20 to about C., preferably about +20 C. and 65 C. The proportion of initiators will depend upon the molecular weight of the products desired, but may be varied, with the latter qualification, between about 1 and about 200 parts per million based on the Weight of the monomers involved.
The basic process when using the lithium-based catalysts comprises forming a solution of the first alkenyl arene monomer in an inert hydrocarbon such as alkanes, alkenes or cycloalkanes modified by the presence of the polar compounds of the group consisting of ethers, thioethers and tertiary amines. Of course, since the presence of the polar compound is not essential in the formation of the first polymer block with many initiators, it is not essential to introduce the polar compounds at this stage since it may be introduced just prior to or together with addition of the butadiene for the formation of middle elastomeric branch block. Among the polar compounds which may be added in accordance with the one aspect of this invention ae dimethyl ether, diethyl ether, ethyl methyl ether, ethyl propyl ether, dioxane, dibenzyl ether, diphenyl ether, dimethyl sulfide, diethyl sulfide, tetramethylene oxide (tetrahydro furane), tripropyl amine, tributyl amine, trimethyl amine, triethyl amine, pyridine and quinoline. Mixtures of these polar compounds may be employed in the practice 'of the present invention. The proportion of polar compounds should be restricted in accordance with the limits set forth hereinbefore in order to obtain the desired critical degree of branching in the center elastomeric block.
When the lithium initiator, polar compound, alkenyl aromatic monomer and inert hydrocarbon are combined,
polymerization proceeds to produce the first terminal polymeric block having an average molecular weight between about 4000 and 100,000, this block being terminated on one end with a lithium radical and being referred to as a living polymer. At this time, without further alteration or removal of this lithium radical, butadiene is injected into the system and block polymerization occurs, the presence of the polar compound now becoming important in producing the desired degree of branching of the polybutadiene block. The temperature, initiator concentration and solvent may be adjusted at this time to optimize the desired degree of polymerization or rate of reaction. The resulting product is then typified by the general structure ABLi, a living polymer block of the two monomers thus far employed. After this, a second addition of an alkenyl aromatic hydrocarbon is made to produce the final terminal block and result in the formation of the three block system ABA which is the result of polymerization followed by termination with a polar terminator such as an alcohol and the like.
Having obtained the basic polymer with the described degree of branching in the center elastomeric butadiene polymer block, the next necessary stage is to hydrogenate -the polymer in order to increase its service temperature and at the same time to improve the oxidation stability of the product. Hydrogenation may be conducted utilizing a variety of hydrogenation catalysts such as nickel on kieselguhr, Raney nickel, copper chromate, molybdenum sulfide, and finely divided platinum or other noble metals on a low surface area carrier.
Hydrogenation may be conducted at any desired temperature or pressure, say, from atmospheric to 3000 p.s.i.g., the usual range being between 100 and 1000 p.s.i.g. at temperatures from about 75 F. to 600 F., for times between about 0.1 and 24 hours, preferably 0.2-8 hours. Preferred catalysts comprise the reduced metal products obtained by reduction of cobalt nickel, tungsten or molybdenum compounds with aluminum alkyls or hydrides. These catalysts are selective, in that the elasomeric block, a set of block copolymers was prepared having similar individual block molecular weights. While the polar compound was varied relative to the amount of lithium alkyl initiator present, the following is a typical example by which this set of block copolymers were prepared: Styrene (60 grams) was dissolved in benzene 1400 grams) containing varying proportions of tetrahydrofurane as the polar compound. This mixture was brought to C. and 0.003 mol of secondary butyl lithium was added. Polymerization was conducted at 40 C. in a reactor until all of the styrene had been converted to a polymer terminated with a lithium radical. Thereafter, butadiene was added to the reaction mixture (450 grams) and polymerization was continued until complete utilization of the butadiene monomer. The styrene-butadiene block polymer so formed was then modified by the addition of styrene (60 grams) and polymerization continued until no monomer remain: The resulting polystyrene-polybutadiene-polystyrene block polymer had average block molecular Weights of 15,000l00,00015,000.
The block copolymers so prepared by variation in tetrahydrofurane ratio relative to secondary butyl lithium were then hydrogenated at 500 p.s.i.g. hydrogen pressure, for 18 hours at 160 C. utilizing 0.3 gram of nickel on kieselguhr support per gram of polymer. The hydrogenated polymers were then tested for physical properties which are shown in the table below.
These data were then plotted in part in FIGURES l-4. It will be evident from a study of these figures and the accompanying table of data that block copolymers wherein the 1,2 content [side chain content] is between 35 and mol percent of the elastomeric center block appear to offer the best elastomeric compromise between low temperature resilience and stress-strain properties. At lower side chain levels, lower rebound and higher glass points are experienced. At higher side chain levels, tensile strength decreases along with rebuond, and glass point increases. Furthermore, tensile strength at elevated temperatures sulfers at 1,2 [side chain] contents above 55 mol diene block is hydrogenated rapidly, while the styrene percent. When the block copolymers having little or no PROPERTIES OF HYDROGENATED SBS, PRECURSOR HAVING VARYING 1,2 CONTENT AND 15-100-15Xl0' BLOCK LENGTHS Precursor, Modulus percent 1,2 in I.V., dl./g. Tensile Elongation butadiene (toluen I2 No at. break, 300%, 500%, at break, Set, Shore A block 25 0.) g 12/100 g p.s.i. p.s.i. p.s.i. percent percent hardness blocks are more slowly hydrogenated unless hydrogenation temperatures are increased.
Since the polybutadiene block is that most subject to oxidative attack, it is the primary objective of hydrogenation to reduce the unsaturation of this block, the hydrogenation of the terminal plastic blocks being of less importance. With some selective catalysts, this is readily accomplished whereas with others, the hydrogenation proceeds along the entire chain.
To improve the stability of the block copolymers, the diene unsaturation (measured by iodine number) should be reduced to less than 10% (preferably less than 5%) of its original value. Reduction of styrene unsaturation (measured by ultra violet) may be expressed as an average of 0100%; e.g., no reduction at all, and up to complete reduction. At intermediate reduction levels, it will be understood that the hydrogenation product may be a mixture of products in which some of the polystyrene blocks are hydrogenated more than others.
In order to compare the physical properties of the branched copolymers according to the present invention with those containing either less or more branching in the side chain branching in the center blocks were hydrogenated, the products resulted in a plastic-type polymer of limited solubility presumably due to a degree of crystallinity in the center segment.
I claim as my invention:
1. As a new composition of matter, a hydrogenated block copolymer having the general configuration ABA wherein, prior to hydrogenation.
(1) each A is a polymerized mono alkenyl aromatic hydrocarbon block having an average molecular weight of about 4,000115,000;
(2) B is a polymerized butadiene hydrocarbon block having an average molecular weight of about 20,000- 450,000;
(3) the blocks A constituting 2-33 weight percent of the copolymer;
(4) 35-55 mol percent of the condensed butadiene units in block B having 1,2-configuration; of the butadiene carbon atoms in block B being vinyl side chains;]
() and the unsaturation of block B having been reduced to less than of the original unsaturation.
2. A new composition of matter according to claim 1 wherein prior to hydrogenation the polymeric blocks A are polymer blocks of a vinyl aromatic hydrocarbon.
3. A new composition of matter according to claim 1 wherein the blocks A comprise 5-30% by weight of the copolymer, the unsaturation of block B is reduced to less than 5% of its original value and the average unsaturation of the hydrogenated block copolymer is reduced to less than of the original value.
4. As a new composition of matter, a hydrogenated block copolymer having the general configuration wherein, prior to hydrogenation,
(1) each A is a polymerized styrene block having an average molecular weight of about 8,00060,000;
(2) B is a polymerized butadiene block having an average molecular weight of about 50,000300,000, 40- 50 mol percent of the condensed butadiene units in block B having 1,2-c0nfigurati0n; of the butadiene carbon atoms in the block being vinyl sidechains;]
(3) the blocks A comprising 530% by weight of the copolymer; the unsaturation of block B having been reduced by hydrogenation to less than 10% of its original value.
5. A hydrogenated block copolymer composition acaccording to claim 1 wherein an average of less than about 10% of the mono alkenyl aromatic hydrocarbon units are hydrogenated.
6. A hydrogenated block copolymer composition ac- V cording to claim 1 wherein an average of more than about 25% of the mono alkenyl aromatic hydrocarbon units are hydrogenated. [hydrogeanted] 7. The process for the preparation of a block copolymer comprising the steps:
(a) polymerizing a mono alkenyl arene in the presence of an inert hydrocarbon solvent and alithium alkyl catalyst whereby a polymer block A having an average molecular weight of 4,000115,000 terminated with a lithium ion is formed;
(b) adding butadiene to the lithium-terminated block and block copolymerizing it with said first block in the presence of a polar compound of the group consisting of ethers, thioethers and tertiary amines, the molar ratio of said polar compound to lithium alkyl catalyst being between about 7 and 70, whereby a block copolymer terminated with lithium is formed 3555 mol percent of the condensed butdiene units in block B having 1,2-c0nfigurati0n; of the carbon atom in the butadiene polymer block being vinyl side chains,] the *butadiene polymer block B having an average molecular weight of 20,000450,000;
(0) adding thereto a mono alkenyl arene and block polymerizing it with the block copolymer of step (b), to form a block polymer ABA;
(d) and hydrogenating the block polymer whereby the unsaturation of the diene polymer block B is reduced to less than 10% of its original value.
8. A process according to claim 7 'Wherein the polar compound in step (b) is an ether.
9. A process according to claim 7 wherein the mono alkenyl arene is styrene and the polar compound is tetrahydrofiuran.
10. A process according to claim 9 wherein the lithium alkyl is a lithium secondary alkyl.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent UNITED STATES PATENTS 3,333,024 7/1967 Haefele 260-880 3,140,278 7/ 1964 Kuntz 260879 3,149,182 9/1964 Porter 260879 3,239,478 3/1966 Harlan 260879 3,251,905 5/1966 Zelinski 260-879 3,299,174 1/1967 Kuhre 260879 OTHER REFERENCES Kuntz: Journal Polymer Science, vol. 54, pp. 569-586 1961), pp. 576-577 and 583-584 specifically relied upon.
JAMES A. SEIDLECK, Primary Examiner R. A. GAITHER, Assistant Examiner US. Cl. X.R. 260879
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US84875569A | 1969-05-20 | 1969-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE27145E true USRE27145E (en) | 1971-06-22 |
Family
ID=25304183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US27145D Expired USRE27145E (en) | 1969-05-20 | 1969-05-20 | Side-chain |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE27145E (en) |
Cited By (233)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4057601A (en) | 1975-11-20 | 1977-11-08 | Phillips Petroleum Company | Block copolymers of alkadienes and monovinyl arenes |
US4239859A (en) | 1979-08-29 | 1980-12-16 | Shell Oil Company | High impact polystyrene blend compositions |
US4452951A (en) | 1981-07-24 | 1984-06-05 | Nippon Zeon Co. Ltd. | Process for hydrogenating conjugated diene polymers |
US4578429A (en) | 1984-08-31 | 1986-03-25 | Shell Oil Company | Selectively hydrogenated block copolymers modified with acid compounds or derivatives |
US4687815A (en) | 1985-12-23 | 1987-08-18 | Shell Oil Company | Hydrogenated block copolymers |
US4721739A (en) | 1982-07-01 | 1988-01-26 | Bic Corp. | Erasable ink compositions |
EP0254346A2 (en) * | 1986-07-07 | 1988-01-27 | Shell Internationale Researchmaatschappij B.V. | Thermoplastic compositions and process for the preparation thereof |
US4866128A (en) | 1988-06-08 | 1989-09-12 | Shell Oil Company | Polymer blend |
US4880878A (en) | 1987-12-29 | 1989-11-14 | Shell Oil Company | Block copolymer blends with improved oil absorption resistance |
USH731H (en) | 1985-08-16 | 1990-02-06 | Blends of thermoplastic polymers and modified block copolymers | |
US4898914A (en) | 1985-08-16 | 1990-02-06 | Shell Oil Company | Modified block copolymers functionalized in the monoalkenyl aromatic or vinylarene block |
US4906687A (en) | 1987-12-31 | 1990-03-06 | Shell Oil Company | Blends of polar thermoplastic polymers and modified block copolymers |
USH826H (en) | 1988-02-17 | 1990-10-02 | Lubricant compositions containing a viscosity index improver having dispersant properties | |
US4970254A (en) * | 1988-09-22 | 1990-11-13 | Shell Oil Company | Method for hydrogenating functionalized polymer and products thereof |
US4970265A (en) * | 1989-03-27 | 1990-11-13 | Shell Oil Company | Functionalized polymers and process for modifying unsaturated polymers |
US4983673A (en) * | 1988-12-22 | 1991-01-08 | Shell Oil Company | High impact resistant blends of thermoplastic polyamides and modified diblock copolymers |
US4988765A (en) * | 1985-08-16 | 1991-01-29 | Shell Oil Company | High impact resistant blends of thermoplastic polyamides and modified diblock copolymers |
US5051457A (en) * | 1990-07-16 | 1991-09-24 | Shell Oil Company | Asphalt-block copolymer roofing composition |
USH1022H (en) | 1991-01-09 | 1992-02-04 | Shell Oil Company | Soft paintable polymer composition |
US5106917A (en) * | 1990-02-28 | 1992-04-21 | Shell Oil Company | Peelable lidstock based on polybutylene block copolymer blends |
US5149895A (en) * | 1990-01-16 | 1992-09-22 | Mobil Oil Corporation | Vulcanizable liquid compositions |
US5166277A (en) * | 1991-10-31 | 1992-11-24 | Shell Oil Company | Hydrogenation of unsaturation in low molecular weight diene polymers |
US5175212A (en) * | 1991-11-04 | 1992-12-29 | Shell Oil Company | Low temperature toughening of polycarbonates with a modified block copolymer |
US5177155A (en) * | 1991-05-13 | 1993-01-05 | Shell Oil Company | Selective hydrogenation of conjugation diolefin polymers with rare earth catalysts |
USH1141H (en) | 1990-07-16 | 1993-02-02 | Shell Oil Company | Asphalt-block copolymer roofing composition |
US5187236A (en) * | 1990-01-16 | 1993-02-16 | Mobil Oil Corporation | Solid block and random elastomeric copolymers |
US5189110A (en) * | 1988-12-23 | 1993-02-23 | Asahi Kasei Kogyo Kabushiki Kaisha | Shape memory polymer resin, composition and the shape memorizing molded product thereof |
US5209862A (en) * | 1991-01-30 | 1993-05-11 | Shell Oil Company | Vi improver and composition containing same |
US5218033A (en) * | 1990-12-07 | 1993-06-08 | Shell Oil Company | Functionalized vinyl aromatic/conjugated diolefin block copolymer and salt of fatty acid compositions |
US5266635A (en) * | 1993-02-26 | 1993-11-30 | Shell Oil Company | Impact resistant polycarbonates containing elastomers having phenolic groups |
US5308676A (en) * | 1991-09-20 | 1994-05-03 | Shell Oil Company | Torchable roll roofing membrane |
US5336726A (en) * | 1993-03-11 | 1994-08-09 | Shell Oil Company | Butadiene polymers having terminal silyl groups |
US5342885A (en) * | 1989-12-08 | 1994-08-30 | Shell Oil Company | Epoxy resin coating with COOH-grated hydrogenated block copolymer |
US5349015A (en) * | 1989-12-08 | 1994-09-20 | Shell Oil Company | Melt blending acid or anhydride-crafted block copolymer pellets with epoxy resin |
US5376745A (en) * | 1993-12-01 | 1994-12-27 | Shell Oil Company | Low viscosity terminally functionalized isoprene polymers |
US5378761A (en) * | 1993-06-24 | 1995-01-03 | Shell Oil Company | Monohydroxylated 1,3-polybutadiene/polyisocyanate product reacted with hydroxyl-functional resin |
USH1405H (en) * | 1992-04-09 | 1995-01-03 | Shell Oil Company | Epoxy resin composition |
US5389711A (en) * | 1990-02-14 | 1995-02-14 | Shell Oil Company | Plasticisers for salt functionalized polyvinyl aromatics |
US5391637A (en) * | 1993-11-23 | 1995-02-21 | Shell Oil Company | Capping of anionic polymers with oxetanes |
US5393843A (en) * | 1992-08-31 | 1995-02-28 | Shell Oil Company | Butadiene polymers having terminal functional groups |
US5405914A (en) * | 1993-07-29 | 1995-04-11 | Shell Oil Company | Process for improving the color of selectively hydrogenated block copolymers modified with acid compounds or derivatives |
US5458791A (en) * | 1994-07-01 | 1995-10-17 | Shell Oil Company | Star polymer viscosity index improver for oil compositions |
US5460739A (en) * | 1994-09-09 | 1995-10-24 | Shell Oil Company | Star polymer viscosity index improver for oil compositions |
EP0684267A1 (en) | 1994-05-27 | 1995-11-29 | Shell Internationale Researchmaatschappij B.V. | A method for producing asymmetric radial polymers |
EP0697247A2 (en) | 1994-07-15 | 1996-02-21 | Shell Internationale Researchmaatschappij B.V. | Process for the conversion of hydrocarbonaceous feedstock |
EP0698638A1 (en) | 1994-07-18 | 1996-02-28 | Shell Internationale Researchmaatschappij B.V. | Crosslinkable waterborne dispersions of hydroxy functional polydiene polymers and amino resins |
EP0698626A1 (en) | 1994-08-11 | 1996-02-28 | Shell Internationale Researchmaatschappij B.V. | Asymmetric triblock copolymer, viscosity index improver for oil compositions |
EP0709416A2 (en) | 1994-09-29 | 1996-05-01 | Shell Internationale Researchmaatschappij B.V. | Polyurethane sealants and adhesives containing saturated hydrocarbon polyols |
EP0711795A1 (en) | 1994-11-09 | 1996-05-15 | Shell Internationale Researchmaatschappij B.V. | Low viscosity adhesive compositions containing asymmetric radial polymers |
EP0712892A1 (en) | 1994-11-17 | 1996-05-22 | Shell Internationale Researchmaatschappij B.V. | Blends of block copolymers and metallocene polyolefins |
US5554691A (en) * | 1993-07-12 | 1996-09-10 | Shell Oil Company | Adhesives, sealants, coatings and polymer compositions containing monohydroxylated polydienes in hydroxyl functional resins |
US5594072A (en) * | 1993-06-30 | 1997-01-14 | Shell Oil Company | Liquid star polymers having terminal hydroxyl groups |
US5602206A (en) * | 1992-03-04 | 1997-02-11 | Basf Corporation | Block copolymer process |
US5616542A (en) * | 1996-04-03 | 1997-04-01 | Shell Oil Company | Oil with asymmetric radial polymer having block copolymer arm |
EP0771641A2 (en) | 1995-11-01 | 1997-05-07 | Shell Internationale Researchmaatschappij B.V. | Process to prepare a blown film of a block copolymer composition |
EP0781782A1 (en) | 1995-12-28 | 1997-07-02 | Shell Internationale Researchmaatschappij B.V. | Removal of alkali metal compounds from polymer cements |
EP0781605A1 (en) | 1995-12-28 | 1997-07-02 | Shell Internationale Researchmaatschappij B.V. | Removal of metal compounds from an acid solution |
EP0781784A1 (en) | 1995-12-28 | 1997-07-02 | Shell Internationale Researchmaatschappij B.V. | Removal of an alkali metal compound from a polymer cement |
US5663250A (en) * | 1996-05-16 | 1997-09-02 | Shell Oil Company | Deprotection with molten salt |
US5681895A (en) * | 1995-04-19 | 1997-10-28 | Shell Oil Company | Coupling of anionic polymers with trialkoxysilanes having silicon-hydrogen bonds |
USH1725H (en) | 1996-02-23 | 1998-05-05 | Shell Oil Company | Clear polyphenylene ether/block copolymer composition |
US5777031A (en) * | 1996-07-03 | 1998-07-07 | Shell Oil Company | High 1,2 content thermoplastic elastomer/oil/polyolefin composition |
US5863646A (en) * | 1996-03-25 | 1999-01-26 | Ppg Industries, Inc. | Coating composition for plastic substrates and coated plastic articles |
WO1999005185A1 (en) * | 1997-07-23 | 1999-02-04 | Shell Internationale Research Maatschappij B.V. | Enhanced hydrogenation catalyst removal from block copolymers by reduction in polymer cement viscosity by increasing the vinyl content of the block copolymers |
US5925707A (en) | 1997-07-30 | 1999-07-20 | Shell Oil Company | Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers |
USH1799H (en) | 1991-11-08 | 1999-08-03 | Shell Oil Company | Star polymer viscosity index improver for oil compositions |
US5973071A (en) | 1997-03-19 | 1999-10-26 | Shell Oil Company | Polymeric composition |
US5993900A (en) | 1996-06-24 | 1999-11-30 | Shell Oil Company | Acid-grafted hydrogenated elastomer/endblock aromatic resin primer |
US6001469A (en) | 1996-03-28 | 1999-12-14 | Ppg Industries Ohio, Inc. | Thermosettable primer and topcoat for plastics, a method for applying and coated plastic articles |
US6075097A (en) | 1997-06-06 | 2000-06-13 | Shell Oil Company | Process for producing conjugated diene diols using carbon dioxide |
US6148830A (en) | 1994-04-19 | 2000-11-21 | Applied Elastomerics, Inc. | Tear resistant, multiblock copolymer gels and articles |
USH1949H1 (en) | 1996-02-01 | 2001-03-06 | Shell Oil Company | Hydrogenated elastomer primed polyolefin film |
US6203913B1 (en) | 1997-12-19 | 2001-03-20 | Ppg Industries Ohio, Inc. | Coating composition for plastic substrates |
US6225415B1 (en) | 1999-09-20 | 2001-05-01 | University Of North Carolina At Charlotte | Process to selectively place functional groups within polymer chain |
US6300414B1 (en) | 1998-08-28 | 2001-10-09 | Basf Corporation | Additive for coating compositions for adhesion to TPO substrates |
US6420490B1 (en) | 1998-12-02 | 2002-07-16 | Kraton Polymers U.S. Llc | Telechelic polymers are produced by ozonation degradation of diene polymers |
US6423778B1 (en) | 1999-06-30 | 2002-07-23 | Basf Corporation | Process for coating olefinic substrates |
US6451865B1 (en) | 1997-10-31 | 2002-09-17 | Kraton Polymers U.S. Llc | Foam composition comprising oil, thermoplastic elastomer and expandable particles |
US6451913B1 (en) | 1999-09-01 | 2002-09-17 | Kraton Polymers U.S. Llc | Radial hydrogenated block copolymers showing one phase melt behavior |
US20020188057A1 (en) * | 1994-04-19 | 2002-12-12 | Chen John Y. | Gelatinous elastomer compositions and articles for use as fishing bait |
US6593423B1 (en) | 2000-05-03 | 2003-07-15 | Ppg Industries Ohio, Inc. | Adhesion promoting agent and coating compositions for polymeric substrates |
US20030153681A1 (en) * | 2002-02-07 | 2003-08-14 | St. Clair David J. | Gels from controlled distribution block copolymers |
US20030181585A1 (en) * | 2002-02-07 | 2003-09-25 | Handlin Dale Lee | Articles prepared from hydrogenated controlled distribution block copolymers |
US20030187137A1 (en) * | 2002-03-28 | 2003-10-02 | Handlin Dale L. | Novel tetrablock copolymer and compositions containing same |
US6630532B1 (en) * | 1999-09-15 | 2003-10-07 | Kraton Polymer U.S. Llc | Modified styrenic block copolymer compounds having improved elastic performance |
US20030225210A1 (en) * | 2002-06-04 | 2003-12-04 | Handlin Dale Lee | Gels from silane-coupled block copolymers |
US20030225209A1 (en) * | 2002-06-04 | 2003-12-04 | Handlin Dale Lee | Articles prepared from hydrogenated block copolymers |
US20030229179A1 (en) * | 2000-11-07 | 2003-12-11 | Merritt William H. | Adhesion promoter, coating compositions for adhesion to olefinic substrates and methods therefor |
US20040018272A1 (en) * | 2002-07-20 | 2004-01-29 | Chen John Y. | Gelatinous food elastomer compositions and articles for use as fishing bait |
US6699941B1 (en) | 2002-11-07 | 2004-03-02 | Kraton Polymers U.S. Llc | Block copolymer |
USH2100H1 (en) | 1996-03-26 | 2004-04-06 | Kraton Polymers Llc | Low stress relaxation adhesive having high molecular weight endblock copolymer |
US20040072951A1 (en) * | 2002-02-07 | 2004-04-15 | Hansen David Romme | Photopolymerizable compositions and flexographic plates prepared from controlled distribution block copolymers |
US20040070187A1 (en) * | 1994-04-19 | 2004-04-15 | Chen John Y. | Inflatable restraint cushions and other uses |
US20040106705A1 (en) * | 2001-04-12 | 2004-06-03 | Mulder Evert Alan | Pipe coating |
US20040138371A1 (en) * | 2002-02-07 | 2004-07-15 | St. Clair David John | Gels from controlled distribution block copolymers |
US20040147686A1 (en) * | 2002-12-31 | 2004-07-29 | Kraton Polymers U.S. Llc | Process for preparing hydrogenated conjugated diene block copolymers |
US20040146541A1 (en) * | 1994-04-19 | 2004-07-29 | Chen John Y. | Tear resistant gel articles for various uses |
US6777026B2 (en) | 2002-10-07 | 2004-08-17 | Lord Corporation | Flexible emissive coatings for elastomer substrates |
WO2004106399A2 (en) | 2003-05-30 | 2004-12-09 | Kraton Polymers Research B.V. | Process for making a coupled block copolymer compositon |
US20040254082A1 (en) * | 2003-06-12 | 2004-12-16 | Bloch Ricardo A. | Viscosity index improver concentrates |
EP1493800A1 (en) | 2003-07-01 | 2005-01-05 | Infineum International Limited | Viscosity index improvers for lubricating oil compositions |
US20050008669A1 (en) * | 1994-04-19 | 2005-01-13 | Chen John Y. | Tear resistant gels and articles for every uses |
US6844412B2 (en) | 2002-07-25 | 2005-01-18 | Lord Corporation | Ambient cured coatings and coated rubber products therefrom |
US20050107541A1 (en) * | 2003-10-30 | 2005-05-19 | Bening Robert C. | Coupled radial anionic polymers |
US20050137312A1 (en) * | 2003-12-22 | 2005-06-23 | Kraton Polymers U.S. Llc | Adhesive formulations from novel radial (S-I/B)x polymers |
US20050137295A1 (en) * | 2003-12-17 | 2005-06-23 | Kraton Polymers U.S. Llc | Bituminous compositions modified by non-blocking elastomers |
US20050197465A1 (en) * | 2004-03-03 | 2005-09-08 | Kraton Polymers U.S. Llc | Block copolymers having high flow and high elasticity |
US20050215724A1 (en) * | 2004-03-25 | 2005-09-29 | Kraton Polymers U.S. Llc | Thermoplastic gel compositions that can be converted into thermoset gel compositions by exposure to radiation |
US20050215725A1 (en) * | 2004-03-25 | 2005-09-29 | Kraton Polymers U.S. Llc | Thermoplastic gel compositions that can be converted into thermoset gel compositions by exposure to radiation |
US20050222340A1 (en) * | 2004-04-02 | 2005-10-06 | Kraton Polymers U.S. Llc | Process for the prevention or restriction of oil spills |
US20050222305A1 (en) * | 2002-03-28 | 2005-10-06 | Trommelen Erik A | Bituminous composition |
US20050222356A1 (en) * | 2002-01-31 | 2005-10-06 | Gert Joly | Block copolymer compositions, having improved mechanical properties and processability |
US20050239930A1 (en) * | 2004-04-27 | 2005-10-27 | Kraton Polymers U.S. Llc | Photocurable compositions and flexographic printing plates comprising the same |
US20050256265A1 (en) * | 2004-05-11 | 2005-11-17 | Wright Kathryn J | Articles prepared from high molecular weight tetrablock copolymers |
US20060030665A1 (en) * | 2002-01-31 | 2006-02-09 | Gert Joly | Blockcopolymer compositions, having improved mechanical properties and processability and styrenic blockcopolymer to be used in them |
US20060106138A1 (en) * | 2002-12-16 | 2006-05-18 | Trommelen Erik A T | Block copolymer modified bitumens, and felts, coatings, sealants and roads made therefrom |
US20060183844A1 (en) * | 2003-03-24 | 2006-08-17 | Kraton Polymers U.S. Llc | Poly(styrene-butadiene-styrene)polymers having a high vinyl content in the butadiene block and hot melt adhesive composition comprising said polymers |
US7108873B2 (en) | 1994-04-19 | 2006-09-19 | Applied Elastomerics, Inc. | Gelatinous food elastomer compositions and articles |
WO2007000191A1 (en) | 2004-12-24 | 2007-01-04 | Kraton Polymers Research B.V. | High melt strength thermoplastic elastomer composition |
WO2007010039A1 (en) | 2005-07-22 | 2007-01-25 | Kraton Polymers Research B.V. | Sulfonated block copolymers, method for making same, and various uses for such block copolymers |
US20070020473A1 (en) * | 2005-07-25 | 2007-01-25 | Kraton Polymers U.S. Llc | Flexible packaging laminate films including a block copolymer layer |
US20070026175A1 (en) * | 2003-07-15 | 2007-02-01 | Denki Kagaku Kogyo Kabushiki Kaisha | Heat-shrinkable foam films |
US20070066753A1 (en) * | 2005-09-16 | 2007-03-22 | Ehrlich Martin L | Highly processible compounds of high MW conventional block copolymers and controlled distribution block copolymers |
US20070066757A1 (en) * | 2005-09-22 | 2007-03-22 | Corcoran Patrick H | Method of producing adherent coatings on resinous substrates |
US20070092722A1 (en) * | 2005-10-24 | 2007-04-26 | Kraton Polymers U.S. Llc | Protective films and pressure sensitive adhesives |
US20070105986A1 (en) * | 2005-11-09 | 2007-05-10 | Kraton Polymers U. S. Llc | Blown asphalt compositions |
US20070155846A1 (en) * | 2004-09-03 | 2007-07-05 | Xavier Muyldermans | Foamable polymeric compositions and articles containing foamed compositions |
US20070213241A1 (en) * | 2006-03-10 | 2007-09-13 | St Clair David John | Viscosity index improver for lubricating oils |
US20070225428A1 (en) * | 2006-03-24 | 2007-09-27 | Bening Robert C | Novel hydrogenated block copolymer compositions |
US20070225427A1 (en) * | 2006-03-24 | 2007-09-27 | Wright Kathryn J | Novel unhydrogenated block copolymer compositions |
US20070225429A1 (en) * | 2006-03-24 | 2007-09-27 | Wright Kathryn J | Novel block copolymer compositons |
WO2007111849A2 (en) | 2006-03-24 | 2007-10-04 | Kraton Polymers U.S. Llc | Novel block copolymer compositions |
US20080039584A1 (en) * | 2006-03-24 | 2008-02-14 | Kraton Polymers U.S. Llc | High Temperature Block Copolymers and Process for Making Same |
US20080076876A1 (en) * | 2006-09-25 | 2008-03-27 | Basf Corporation | Coating compositions for adhesion to olefinic substrates |
US20080153971A1 (en) * | 2006-12-21 | 2008-06-26 | Kraton Polymers U.S. Llc | Solvent sprayable contact adhesive formulations from (S-I/B)x polymers |
US20080153970A1 (en) * | 2006-12-21 | 2008-06-26 | Kraton Polymers U.S. Llc | Solvent sprayable contact adhesive formulations from functionalized/controlled distribution block copolymers |
US20080319130A1 (en) * | 2005-12-22 | 2008-12-25 | Dow Global Technologies Inc. | Blends of Styrenic Block Copolymers and Propylene-Alpha Olefin Copolymers |
US20090163361A1 (en) * | 2007-12-21 | 2009-06-25 | Kraton Polymers Us Llc | Soft elastomeric films |
US20090186958A1 (en) * | 2008-01-18 | 2009-07-23 | Kraton Polymers Us Llc | Gel compositions |
EP2083063A1 (en) | 2008-01-22 | 2009-07-29 | Infineum International Limited | Lubricating oil composition |
US20090234059A1 (en) * | 2008-03-13 | 2009-09-17 | Kraton Polymers Us Llc | Miktopolymer compositions |
US20090247689A1 (en) * | 2006-09-20 | 2009-10-01 | Kraton Polymers Us Llc | Elastic film grade thermoplastic polymer compositions having improved elastic performance |
US20090247703A1 (en) * | 2008-03-28 | 2009-10-01 | Handlin Jr Dale L | Process for improving tear resistance in elastic films |
US20100010147A1 (en) * | 2008-07-08 | 2010-01-14 | Kraton Polymer U.S. Llc | Adhesives prepared from diphenylethylene containing block copolymers |
US20100010154A1 (en) * | 2008-07-08 | 2010-01-14 | Kraton Polymers U.S. Llc | Gels prepared from dpe containing block copolymers |
US20100056721A1 (en) * | 2008-09-03 | 2010-03-04 | Kathryn Wright | Articles prepared from certain hydrogenated block copolymers |
US20100068515A1 (en) * | 2008-09-16 | 2010-03-18 | Paul Charles W | Acrylic pressure sensitive adhesive formulation and articles comprising same |
US20100112358A1 (en) * | 2005-09-22 | 2010-05-06 | Corcoran Patrick H | Adherent coating compositions for resinous substrates |
US20100130670A1 (en) * | 2008-11-21 | 2010-05-27 | Kraton Polymers Us Llc | End use applications prepared from certain block copolymers |
WO2010077799A1 (en) | 2008-12-15 | 2010-07-08 | Kraton Polymers Us Llc | Hydrogenated styrenic block copolymers blends with polypropylene |
US20100190912A1 (en) * | 2006-04-21 | 2010-07-29 | Kraton Polymers U.S. Llc | Thermoplastic elastomer composition |
US20110086977A1 (en) * | 2009-10-13 | 2011-04-14 | Carl Lesley Willis | Metal-neutralized sulfonated block copolymers, process for making them and their use |
US20110086982A1 (en) * | 2009-10-13 | 2011-04-14 | Carl Lesley Willis | Amine neutralized sulfonated block copolymers and method for making same |
US20110112236A1 (en) * | 2009-11-12 | 2011-05-12 | Kraton Polymers U.S. Llc | Thermoplastic polyurethane block copolymer compositions |
US20110184082A1 (en) * | 2010-01-27 | 2011-07-28 | Kraton Polymers U.S. Llc | Compositions Containing Styrene-Isobutylene-Styrene And Styrene-Ethylene/Butylene-Styrene Block Copolymers |
US8012539B2 (en) | 2008-05-09 | 2011-09-06 | Kraton Polymers U.S. Llc | Method for making sulfonated block copolymers, method for making membranes from such block copolymers and membrane structures |
WO2011133488A1 (en) | 2010-04-22 | 2011-10-27 | Kraton Polymers U.S. Llc | High tensile strength article with elastomeric layer |
WO2012050860A1 (en) | 2010-09-29 | 2012-04-19 | Kraton Polymers U.S. Llc | Energy recovery ventilation sulfonated block copolymer laminate membrane |
WO2012050740A1 (en) | 2010-09-29 | 2012-04-19 | Kraton Polymers U.S. Llc | Elastic, moisture-vapor permeable films, their preparation and their use |
WO2012054325A1 (en) | 2010-10-18 | 2012-04-26 | Kraton Polymers U.S. Llc | Method for producing a sulfonated block copolymer composition |
US8222346B2 (en) | 2003-09-23 | 2012-07-17 | Dais-Analytic Corp. | Block copolymers and method for making same |
EP2607466A2 (en) | 2011-12-21 | 2013-06-26 | Infineum International Limited | Viscosity index improvers for lubricating oil compositions |
WO2013138146A1 (en) | 2012-03-15 | 2013-09-19 | Kraton Polymers U.S. Llc | Blends of sulfonated block copolymers and particulate carbon and membranes, films and coatings comprising them |
WO2014046989A2 (en) | 2012-09-19 | 2014-03-27 | Kraton Polymers U.S. Llc | Paramethylstyrene block copolymers and their use |
EP2712809A1 (en) | 2007-10-19 | 2014-04-02 | Lord Corporation | Suspension system for aircraft auxilliary power unit with elastomeric member |
WO2014058823A1 (en) | 2012-10-08 | 2014-04-17 | Teknor Apex Company | Thermoplastic elastomer compositions having biorenewable content |
WO2014087814A1 (en) | 2012-12-07 | 2014-06-12 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | Adhesive composition for protective film of coated surface and method for preparing same |
WO2014087815A1 (en) | 2012-12-07 | 2014-06-12 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | Adhesive composition for protective film of coated surface and method for preparing same |
WO2014110534A1 (en) | 2013-01-14 | 2014-07-17 | Kraton Polymers U.S. Llc | Anion exchange block copolymers, their manufacture and their use |
WO2014132718A1 (en) | 2013-02-28 | 2014-09-04 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | Transparent and tough rubber composition, and process for producing same |
WO2014150119A1 (en) | 2013-03-15 | 2014-09-25 | Nike International Ltd. | Modified thermoplastic elastomers for increased compatibility with supercritical fluids |
WO2015006179A1 (en) | 2013-07-12 | 2015-01-15 | Kraton Polymers U.S. Llc | High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications |
WO2015065826A1 (en) | 2013-11-01 | 2015-05-07 | Kraton Polymers U.S. Llc | A fuse molded three dimensional article and a method for making the same |
US9061254B2 (en) | 2013-01-14 | 2015-06-23 | Kraton Polymers U.S. Llc | Block copolymers, their manufacture and their use |
WO2015103241A1 (en) | 2014-01-06 | 2015-07-09 | Kraton Polymers U.S. Llc | Hot melt pressure sensitive adhesive and thermoset comprising styrene-butadiene polymers having high vinyl and high di-block |
WO2015153747A1 (en) | 2014-04-02 | 2015-10-08 | Kraton Polymers U.S. Llc | Block copolymers containing a copolymer myrcene block |
WO2015153736A1 (en) | 2014-04-02 | 2015-10-08 | Kraton Polymers U.S. Llc | Adhesive compositions containing a block copolymer with polymyrcene |
EP2940110A1 (en) | 2014-04-29 | 2015-11-04 | Infineum International Limited | Lubricating oil compositions |
US9216405B1 (en) | 2014-06-26 | 2015-12-22 | Kraton Polymers U.S. Llc | Rotary enthalpy exchange wheel having sulfonated block copolymer |
EP2975071A1 (en) | 2014-07-16 | 2016-01-20 | Kraton Polymers U.S. LLC | Block copolymers, their manufacture and their use |
US9243163B2 (en) | 2012-02-24 | 2016-01-26 | Kraton Polymers U.S. Llc | High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications |
US9304231B2 (en) | 2014-02-04 | 2016-04-05 | Kraton Polymers U.S. Llc | Heat fusible oil gels |
WO2016057452A1 (en) | 2014-10-09 | 2016-04-14 | Kraton Polymers U.S. Llc | Adhesive compositions with amorphous polyolefins |
US9394472B2 (en) | 2014-03-27 | 2016-07-19 | Kraton Polymers U.S. Llc | Low fluid loss drilling fluid compositions comprising diblock copolymers |
WO2017006298A1 (en) | 2015-07-09 | 2017-01-12 | Eoc Belgium Nv | Cross-linkable hydroxyfunctional latex |
EP3190166A1 (en) | 2015-12-09 | 2017-07-12 | Infineum International Limited | Viscosity index improver concentrates |
EP3192858A1 (en) | 2016-01-15 | 2017-07-19 | Infineum International Limited | Use of lubricating oil composition |
US9758648B2 (en) | 2015-03-30 | 2017-09-12 | Kraton Polymers U.S. Llc | Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same |
US9758649B2 (en) | 2015-03-30 | 2017-09-12 | Kraton Polymers U.S. Llc | Cured transparent rubber article, and manufacturing process for the same |
US9757901B2 (en) | 2013-11-26 | 2017-09-12 | Kraton Polymers U.S. Llc | Laser sintering powder, laser sintering article, and a method of making a laser sintering article |
WO2017165521A1 (en) | 2016-03-24 | 2017-09-28 | Kraton Polymers U.S. Llc | Semi-crystalline block copolymers and compositions therefrom |
US9834625B2 (en) | 2015-08-14 | 2017-12-05 | Kraton Polymers U.S. Llc | Amine-containing polyalkenyl coupling agents and polymers prepared therefrom |
US9840600B2 (en) | 2015-03-30 | 2017-12-12 | Kraton Polymers U.S. Llc | Diene rubber composition configured to be vulcanized at lower temperature; and manufacturing process of rubber article from the same |
EP3257921A1 (en) | 2016-06-14 | 2017-12-20 | Infineum International Limited | Lubricating oil additives |
US9862819B2 (en) | 2015-06-12 | 2018-01-09 | Kraton Polymers U.S. Llc | Composition for soft skins and uses thereof |
US9861941B2 (en) | 2011-07-12 | 2018-01-09 | Kraton Polymers U.S. Llc | Modified sulfonated block copolymers and the preparation thereof |
US9932463B2 (en) | 2015-03-30 | 2018-04-03 | Kraton Polymers U.S. Llc | Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same |
US9938401B2 (en) | 2012-11-05 | 2018-04-10 | Kraton Polymers U.S. Llc | Fire retardant systems for polymers that enable flexibility and strength |
US9944776B2 (en) | 2014-08-26 | 2018-04-17 | Kraton Polymers U.S. Llc | Transparent, tough and heatproof rubber composition comprising neodymium-catalyzed isoprene component, and manufacturing process for the same |
EP3321347A1 (en) | 2016-11-14 | 2018-05-16 | Infineum International Limited | Lubricating oil additives based on overbased gemini surfactant |
WO2018098023A1 (en) | 2016-11-22 | 2018-05-31 | 3M Innovative Properties Company | Pentablock copolymers |
US10047212B2 (en) | 2015-03-30 | 2018-08-14 | Kraton Polymers U.S. Llc | Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same |
US10053609B2 (en) | 2015-06-12 | 2018-08-21 | Kraton Polymers U.S. Llc | Styrenic block copolymers as thermally-activated viscosifiers for oilfield applications |
WO2018152075A1 (en) | 2017-02-17 | 2018-08-23 | 3M Innovative Properties Company | Triblock copolymers |
EP3366755A1 (en) | 2017-02-22 | 2018-08-29 | Infineum International Limited | Improvements in and relating to lubricating compositions |
US10066098B2 (en) | 2015-09-16 | 2018-09-04 | Kraton Polymers U.S. Llc | Styrenic block copolymer compositions |
EP3369802A1 (en) | 2017-03-01 | 2018-09-05 | Infineum International Limited | Improvements in and relating to lubricating compositions |
US10208168B2 (en) | 2011-10-25 | 2019-02-19 | Kraton Polymers U.S. Llc | Polyoxyalkyleneamine modified sulfonated block copolymers, their preparation and their use |
EP3461877A1 (en) | 2017-09-27 | 2019-04-03 | Infineum International Limited | Improvements in and relating to lubricating compositions |
US10287428B2 (en) | 2015-06-12 | 2019-05-14 | Kraton Polymers U.S. Llc | Heat activated gels for cable filling applications |
WO2019094201A1 (en) | 2017-11-09 | 2019-05-16 | Milliken & Company | Additive composition and polymer compositions comprising the same |
EP3492567A1 (en) | 2017-11-29 | 2019-06-05 | Infineum International Limited | Lubricating oil additives |
EP3492566A1 (en) | 2017-11-29 | 2019-06-05 | Infineum International Limited | Lubricating oil additives |
WO2019183302A1 (en) | 2018-03-23 | 2019-09-26 | Kraton Polymers Llc | Ultrahigh melt flow styrenic block copolymers |
US10633567B2 (en) | 2015-10-29 | 2020-04-28 | Kraton Polymers U.S. Llc | Hot melt elastic attachment adhesive for low temperature applications |
WO2020165740A1 (en) | 2019-02-11 | 2020-08-20 | Eoc Belgium Nv | Cross-linkable functional latex comprising aluminium trihydroxide |
EP3738988A1 (en) | 2019-05-16 | 2020-11-18 | 3M Innovative Properties Company | Amphiphilic triblock copolymer |
EP3741832A2 (en) | 2019-05-24 | 2020-11-25 | Infineum International Limited | Nitrogen-containing lubricating oil additives |
EP3770235A1 (en) | 2018-09-24 | 2021-01-27 | Infineum International Limited | Polymers and lubricating compositions containing polymers |
US11021559B2 (en) | 2011-10-31 | 2021-06-01 | Kraton Polymers Llc | Sulfonated block copolymer laminates with polar or active metal substrates |
EP3831913A1 (en) | 2019-12-05 | 2021-06-09 | Infineum International Limited | Triblock copolymer concentrates for lubricating oil compositions |
WO2021124011A1 (en) | 2019-12-17 | 2021-06-24 | 3M Innovative Properties Company | Articles including an isoporous membrane disposed on a porous substrate and methods of making the same |
EP3851507A1 (en) | 2020-01-15 | 2021-07-21 | Infineum International Limited | Polymers and lubricating compositions containing polymers |
US11167251B2 (en) | 2016-11-22 | 2021-11-09 | 3M Innovative Properties Company | Porous membranes including pentablock copolymers and method of making the same |
EP3926026A1 (en) | 2020-06-16 | 2021-12-22 | Infineum International Limited | Oil compositions |
US11466115B2 (en) | 2018-06-01 | 2022-10-11 | 3M Innovative Properties Company | Porous membranes including triblock copolymers |
WO2023006474A1 (en) | 2021-07-26 | 2023-02-02 | Basf Coatings Gmbh | Peelable coating system and methods for forming the peelable coating system |
EP4159832A1 (en) | 2021-10-04 | 2023-04-05 | Infineum International Limited | Lubricating oil compositions |
EP4174153A1 (en) | 2021-10-29 | 2023-05-03 | Infineum International Limited | Method of limiting chemical degradation due to nitrogen dioxide contamination |
EP4174154A1 (en) | 2021-10-29 | 2023-05-03 | Infineum International Limited | Method of limiting chemical degradation due to nitrogen dioxide contamination |
EP4174152A1 (en) | 2021-10-29 | 2023-05-03 | Infineum International Limited | Ionic liquid composition |
US11692048B2 (en) | 2017-03-10 | 2023-07-04 | Kraton Corporation | Fusible oil gel compositions and methods of making and using same |
EP4303287A1 (en) | 2022-07-06 | 2024-01-10 | Infineum International Limited | Lubricating oil compositions |
-
1969
- 1969-05-20 US US27145D patent/USRE27145E/en not_active Expired
Cited By (356)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4057601A (en) | 1975-11-20 | 1977-11-08 | Phillips Petroleum Company | Block copolymers of alkadienes and monovinyl arenes |
US4239859A (en) | 1979-08-29 | 1980-12-16 | Shell Oil Company | High impact polystyrene blend compositions |
US4308358A (en) | 1979-08-29 | 1981-12-29 | Shell Oil Company | High impact polystyrene blend compositions |
US4452951A (en) | 1981-07-24 | 1984-06-05 | Nippon Zeon Co. Ltd. | Process for hydrogenating conjugated diene polymers |
US4721739A (en) | 1982-07-01 | 1988-01-26 | Bic Corp. | Erasable ink compositions |
US4578429A (en) | 1984-08-31 | 1986-03-25 | Shell Oil Company | Selectively hydrogenated block copolymers modified with acid compounds or derivatives |
USH731H (en) | 1985-08-16 | 1990-02-06 | Blends of thermoplastic polymers and modified block copolymers | |
USH1438H (en) * | 1985-08-16 | 1995-05-02 | Shell Oil Company | Modified block copolymers functionalized in the monoalkenyl aromatic or vinylarene block |
US4988765A (en) * | 1985-08-16 | 1991-01-29 | Shell Oil Company | High impact resistant blends of thermoplastic polyamides and modified diblock copolymers |
US4898914A (en) | 1985-08-16 | 1990-02-06 | Shell Oil Company | Modified block copolymers functionalized in the monoalkenyl aromatic or vinylarene block |
US4687815A (en) | 1985-12-23 | 1987-08-18 | Shell Oil Company | Hydrogenated block copolymers |
EP0254346A3 (en) * | 1986-07-07 | 1989-11-15 | Shell Internationale Research Maatschappij B.V. | Thermoplastic compositions and process for the preparation thereof |
EP0254346A2 (en) * | 1986-07-07 | 1988-01-27 | Shell Internationale Researchmaatschappij B.V. | Thermoplastic compositions and process for the preparation thereof |
US4880878A (en) | 1987-12-29 | 1989-11-14 | Shell Oil Company | Block copolymer blends with improved oil absorption resistance |
US4906687A (en) | 1987-12-31 | 1990-03-06 | Shell Oil Company | Blends of polar thermoplastic polymers and modified block copolymers |
USH826H (en) | 1988-02-17 | 1990-10-02 | Lubricant compositions containing a viscosity index improver having dispersant properties | |
US4866128A (en) | 1988-06-08 | 1989-09-12 | Shell Oil Company | Polymer blend |
US4970254A (en) * | 1988-09-22 | 1990-11-13 | Shell Oil Company | Method for hydrogenating functionalized polymer and products thereof |
US4983673A (en) * | 1988-12-22 | 1991-01-08 | Shell Oil Company | High impact resistant blends of thermoplastic polyamides and modified diblock copolymers |
US5189110A (en) * | 1988-12-23 | 1993-02-23 | Asahi Kasei Kogyo Kabushiki Kaisha | Shape memory polymer resin, composition and the shape memorizing molded product thereof |
US4970265A (en) * | 1989-03-27 | 1990-11-13 | Shell Oil Company | Functionalized polymers and process for modifying unsaturated polymers |
US5369167A (en) * | 1989-12-08 | 1994-11-29 | Shell Oil Company | Melt blending acid or anhydride-grafted block copolymer pellets with epoxy resin |
US5349015A (en) * | 1989-12-08 | 1994-09-20 | Shell Oil Company | Melt blending acid or anhydride-crafted block copolymer pellets with epoxy resin |
US5342885A (en) * | 1989-12-08 | 1994-08-30 | Shell Oil Company | Epoxy resin coating with COOH-grated hydrogenated block copolymer |
US5187236A (en) * | 1990-01-16 | 1993-02-16 | Mobil Oil Corporation | Solid block and random elastomeric copolymers |
US5149895A (en) * | 1990-01-16 | 1992-09-22 | Mobil Oil Corporation | Vulcanizable liquid compositions |
US5389711A (en) * | 1990-02-14 | 1995-02-14 | Shell Oil Company | Plasticisers for salt functionalized polyvinyl aromatics |
US5106917A (en) * | 1990-02-28 | 1992-04-21 | Shell Oil Company | Peelable lidstock based on polybutylene block copolymer blends |
USH1141H (en) | 1990-07-16 | 1993-02-02 | Shell Oil Company | Asphalt-block copolymer roofing composition |
US5051457A (en) * | 1990-07-16 | 1991-09-24 | Shell Oil Company | Asphalt-block copolymer roofing composition |
US5218033A (en) * | 1990-12-07 | 1993-06-08 | Shell Oil Company | Functionalized vinyl aromatic/conjugated diolefin block copolymer and salt of fatty acid compositions |
USH1022H (en) | 1991-01-09 | 1992-02-04 | Shell Oil Company | Soft paintable polymer composition |
US5209862A (en) * | 1991-01-30 | 1993-05-11 | Shell Oil Company | Vi improver and composition containing same |
US5177155A (en) * | 1991-05-13 | 1993-01-05 | Shell Oil Company | Selective hydrogenation of conjugation diolefin polymers with rare earth catalysts |
US5308676A (en) * | 1991-09-20 | 1994-05-03 | Shell Oil Company | Torchable roll roofing membrane |
US5166277A (en) * | 1991-10-31 | 1992-11-24 | Shell Oil Company | Hydrogenation of unsaturation in low molecular weight diene polymers |
US5175212A (en) * | 1991-11-04 | 1992-12-29 | Shell Oil Company | Low temperature toughening of polycarbonates with a modified block copolymer |
USH1799H (en) | 1991-11-08 | 1999-08-03 | Shell Oil Company | Star polymer viscosity index improver for oil compositions |
US5602206A (en) * | 1992-03-04 | 1997-02-11 | Basf Corporation | Block copolymer process |
USH1405H (en) * | 1992-04-09 | 1995-01-03 | Shell Oil Company | Epoxy resin composition |
US5405911A (en) * | 1992-08-31 | 1995-04-11 | Shell Oil Company | Butadiene polymers having terminal functional groups |
USRE39617E1 (en) | 1992-08-31 | 2007-05-08 | Kraton Polymers Us Llc | Butadiene polymers having terminal functional groups |
US5393843A (en) * | 1992-08-31 | 1995-02-28 | Shell Oil Company | Butadiene polymers having terminal functional groups |
USRE39559E1 (en) * | 1992-08-31 | 2007-04-10 | Kraton Polymer Us L.L.C. | Butadiene polymers having terminal functional groups |
US5266635A (en) * | 1993-02-26 | 1993-11-30 | Shell Oil Company | Impact resistant polycarbonates containing elastomers having phenolic groups |
US5336726A (en) * | 1993-03-11 | 1994-08-09 | Shell Oil Company | Butadiene polymers having terminal silyl groups |
US5378761A (en) * | 1993-06-24 | 1995-01-03 | Shell Oil Company | Monohydroxylated 1,3-polybutadiene/polyisocyanate product reacted with hydroxyl-functional resin |
US5594072A (en) * | 1993-06-30 | 1997-01-14 | Shell Oil Company | Liquid star polymers having terminal hydroxyl groups |
US5554691A (en) * | 1993-07-12 | 1996-09-10 | Shell Oil Company | Adhesives, sealants, coatings and polymer compositions containing monohydroxylated polydienes in hydroxyl functional resins |
US5405914A (en) * | 1993-07-29 | 1995-04-11 | Shell Oil Company | Process for improving the color of selectively hydrogenated block copolymers modified with acid compounds or derivatives |
US5418296A (en) * | 1993-11-23 | 1995-05-23 | Shell Oil Company | Capping of anionic polymers with oxetanes |
US5391637A (en) * | 1993-11-23 | 1995-02-21 | Shell Oil Company | Capping of anionic polymers with oxetanes |
US5376745A (en) * | 1993-12-01 | 1994-12-27 | Shell Oil Company | Low viscosity terminally functionalized isoprene polymers |
US7290367B2 (en) | 1994-04-19 | 2007-11-06 | Applied Elastomerics, Inc. | Tear resistant gel articles for various uses |
US7234560B2 (en) | 1994-04-19 | 2007-06-26 | Applied Elastomerics, Inc. | Inflatable restraint cushions and other uses |
US7226484B2 (en) | 1994-04-19 | 2007-06-05 | Applied Elastomerics, Inc. | Tear resistant gels and articles for every uses |
US20050008669A1 (en) * | 1994-04-19 | 2005-01-13 | Chen John Y. | Tear resistant gels and articles for every uses |
US20040146541A1 (en) * | 1994-04-19 | 2004-07-29 | Chen John Y. | Tear resistant gel articles for various uses |
US20020188057A1 (en) * | 1994-04-19 | 2002-12-12 | Chen John Y. | Gelatinous elastomer compositions and articles for use as fishing bait |
US6148830A (en) | 1994-04-19 | 2000-11-21 | Applied Elastomerics, Inc. | Tear resistant, multiblock copolymer gels and articles |
US7108873B2 (en) | 1994-04-19 | 2006-09-19 | Applied Elastomerics, Inc. | Gelatinous food elastomer compositions and articles |
US20040070187A1 (en) * | 1994-04-19 | 2004-04-15 | Chen John Y. | Inflatable restraint cushions and other uses |
US7134236B2 (en) | 1994-04-19 | 2006-11-14 | Applied Elastomerics, Inc. | Gelatinous elastomer compositions and articles for use as fishing bait |
EP0684267A1 (en) | 1994-05-27 | 1995-11-29 | Shell Internationale Researchmaatschappij B.V. | A method for producing asymmetric radial polymers |
US5458791A (en) * | 1994-07-01 | 1995-10-17 | Shell Oil Company | Star polymer viscosity index improver for oil compositions |
EP0690082A2 (en) | 1994-07-01 | 1996-01-03 | Shell Internationale Researchmaatschappij B.V. | Star polymer viscosity index improver for oil lubricating compositions |
EP0697247A2 (en) | 1994-07-15 | 1996-02-21 | Shell Internationale Researchmaatschappij B.V. | Process for the conversion of hydrocarbonaceous feedstock |
EP0698638A1 (en) | 1994-07-18 | 1996-02-28 | Shell Internationale Researchmaatschappij B.V. | Crosslinkable waterborne dispersions of hydroxy functional polydiene polymers and amino resins |
EP0698626A1 (en) | 1994-08-11 | 1996-02-28 | Shell Internationale Researchmaatschappij B.V. | Asymmetric triblock copolymer, viscosity index improver for oil compositions |
US5460739A (en) * | 1994-09-09 | 1995-10-24 | Shell Oil Company | Star polymer viscosity index improver for oil compositions |
EP0700942A2 (en) | 1994-09-09 | 1996-03-13 | Shell Internationale Researchmaatschappij B.V. | Star polymer viscosity index improver for lubricating oil compositions |
EP0709416A2 (en) | 1994-09-29 | 1996-05-01 | Shell Internationale Researchmaatschappij B.V. | Polyurethane sealants and adhesives containing saturated hydrocarbon polyols |
EP0711795A1 (en) | 1994-11-09 | 1996-05-15 | Shell Internationale Researchmaatschappij B.V. | Low viscosity adhesive compositions containing asymmetric radial polymers |
EP0712892A1 (en) | 1994-11-17 | 1996-05-22 | Shell Internationale Researchmaatschappij B.V. | Blends of block copolymers and metallocene polyolefins |
US5681895A (en) * | 1995-04-19 | 1997-10-28 | Shell Oil Company | Coupling of anionic polymers with trialkoxysilanes having silicon-hydrogen bonds |
EP0771641A2 (en) | 1995-11-01 | 1997-05-07 | Shell Internationale Researchmaatschappij B.V. | Process to prepare a blown film of a block copolymer composition |
US5658526A (en) * | 1995-11-01 | 1997-08-19 | Shell Oil Company | Method to prepare blown films of vinyl aromatic/conjugated diolefin block copolymer |
EP0781782A1 (en) | 1995-12-28 | 1997-07-02 | Shell Internationale Researchmaatschappij B.V. | Removal of alkali metal compounds from polymer cements |
EP0781605A1 (en) | 1995-12-28 | 1997-07-02 | Shell Internationale Researchmaatschappij B.V. | Removal of metal compounds from an acid solution |
EP0781784A1 (en) | 1995-12-28 | 1997-07-02 | Shell Internationale Researchmaatschappij B.V. | Removal of an alkali metal compound from a polymer cement |
USH1949H1 (en) | 1996-02-01 | 2001-03-06 | Shell Oil Company | Hydrogenated elastomer primed polyolefin film |
USH1725H (en) | 1996-02-23 | 1998-05-05 | Shell Oil Company | Clear polyphenylene ether/block copolymer composition |
US5863646A (en) * | 1996-03-25 | 1999-01-26 | Ppg Industries, Inc. | Coating composition for plastic substrates and coated plastic articles |
USH2100H1 (en) | 1996-03-26 | 2004-04-06 | Kraton Polymers Llc | Low stress relaxation adhesive having high molecular weight endblock copolymer |
US6001469A (en) | 1996-03-28 | 1999-12-14 | Ppg Industries Ohio, Inc. | Thermosettable primer and topcoat for plastics, a method for applying and coated plastic articles |
US6146706A (en) | 1996-03-28 | 2000-11-14 | Ppg Industries Ohio, Inc. | Thermosettable primer and topcoat for plastics a method for applying and coated plastic articles |
US5616542A (en) * | 1996-04-03 | 1997-04-01 | Shell Oil Company | Oil with asymmetric radial polymer having block copolymer arm |
US5663250A (en) * | 1996-05-16 | 1997-09-02 | Shell Oil Company | Deprotection with molten salt |
US5993900A (en) | 1996-06-24 | 1999-11-30 | Shell Oil Company | Acid-grafted hydrogenated elastomer/endblock aromatic resin primer |
US5777031A (en) * | 1996-07-03 | 1998-07-07 | Shell Oil Company | High 1,2 content thermoplastic elastomer/oil/polyolefin composition |
US5973071A (en) | 1997-03-19 | 1999-10-26 | Shell Oil Company | Polymeric composition |
US6075097A (en) | 1997-06-06 | 2000-06-13 | Shell Oil Company | Process for producing conjugated diene diols using carbon dioxide |
USH1956H1 (en) | 1997-07-23 | 2001-04-03 | Shell Oil Company | Enhanced hydrogenation catalyst removal from block copolymers by reduction in polymer cement viscosity by increasing the vinyl content of the block copolymers |
WO1999005185A1 (en) * | 1997-07-23 | 1999-02-04 | Shell Internationale Research Maatschappij B.V. | Enhanced hydrogenation catalyst removal from block copolymers by reduction in polymer cement viscosity by increasing the vinyl content of the block copolymers |
US5925707A (en) | 1997-07-30 | 1999-07-20 | Shell Oil Company | Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers |
US6451865B1 (en) | 1997-10-31 | 2002-09-17 | Kraton Polymers U.S. Llc | Foam composition comprising oil, thermoplastic elastomer and expandable particles |
US6203913B1 (en) | 1997-12-19 | 2001-03-20 | Ppg Industries Ohio, Inc. | Coating composition for plastic substrates |
US6979714B2 (en) | 1997-12-19 | 2005-12-27 | Ppg Industries Ohio, Inc. | Adhesion promoting agent and coating compositions for polymeric substrates |
US20030212209A1 (en) * | 1997-12-19 | 2003-11-13 | Kondos Constantine A. | Adhesion promoting agent and coating compositions for polymeric substrates |
US6300414B1 (en) | 1998-08-28 | 2001-10-09 | Basf Corporation | Additive for coating compositions for adhesion to TPO substrates |
US6420490B1 (en) | 1998-12-02 | 2002-07-16 | Kraton Polymers U.S. Llc | Telechelic polymers are produced by ozonation degradation of diene polymers |
US6423778B1 (en) | 1999-06-30 | 2002-07-23 | Basf Corporation | Process for coating olefinic substrates |
US6451913B1 (en) | 1999-09-01 | 2002-09-17 | Kraton Polymers U.S. Llc | Radial hydrogenated block copolymers showing one phase melt behavior |
US6630532B1 (en) * | 1999-09-15 | 2003-10-07 | Kraton Polymer U.S. Llc | Modified styrenic block copolymer compounds having improved elastic performance |
US6225415B1 (en) | 1999-09-20 | 2001-05-01 | University Of North Carolina At Charlotte | Process to selectively place functional groups within polymer chain |
US6593423B1 (en) | 2000-05-03 | 2003-07-15 | Ppg Industries Ohio, Inc. | Adhesion promoting agent and coating compositions for polymeric substrates |
US20030229179A1 (en) * | 2000-11-07 | 2003-12-11 | Merritt William H. | Adhesion promoter, coating compositions for adhesion to olefinic substrates and methods therefor |
US6939916B2 (en) * | 2000-11-07 | 2005-09-06 | Basf Corporation | Adhesion promoter, coating compositions for adhesion to olefinic substrates and methods therefor |
US20040106705A1 (en) * | 2001-04-12 | 2004-06-03 | Mulder Evert Alan | Pipe coating |
US7186779B2 (en) | 2002-01-31 | 2007-03-06 | Kraton Polymers U.S. Llc | Block copolymer compositions, having improved mechanical properties and processability |
US20060030665A1 (en) * | 2002-01-31 | 2006-02-09 | Gert Joly | Blockcopolymer compositions, having improved mechanical properties and processability and styrenic blockcopolymer to be used in them |
US7268184B2 (en) | 2002-01-31 | 2007-09-11 | Kraton Polymers U.S. Llc | Blockcopolymer compositions, having improved mechanical properties and processability and styrenic blockcopolymer to be used in them |
US20050222356A1 (en) * | 2002-01-31 | 2005-10-06 | Gert Joly | Block copolymer compositions, having improved mechanical properties and processability |
US7141621B2 (en) | 2002-02-07 | 2006-11-28 | Kraton Polymers U.S. Llc | Gels from controlled distribution block copolymers |
US20030176574A1 (en) * | 2002-02-07 | 2003-09-18 | St. Clair David J. | Adhesives and sealants from controlled distribution block copolymers |
US7332542B2 (en) | 2002-02-07 | 2008-02-19 | Kraton Polymers U.S. Llc | Block copolymers and method for making same |
US20030153681A1 (en) * | 2002-02-07 | 2003-08-14 | St. Clair David J. | Gels from controlled distribution block copolymers |
US7282536B2 (en) | 2002-02-07 | 2007-10-16 | Kraton Polymers Llc | Block copolymers and method for making same |
US7847022B2 (en) | 2002-02-07 | 2010-12-07 | Kraton Polymers U.S. Llc | Articles prepared from controlled distribution block copolymers |
US20050137350A1 (en) * | 2002-02-07 | 2005-06-23 | Bening Robert C. | Novel block copolymers and method for making same |
US20050137347A1 (en) * | 2002-02-07 | 2005-06-23 | Bening Robert C. | Novel block copolymers and method for making same |
US20050137346A1 (en) * | 2002-02-07 | 2005-06-23 | Bening Robert C. | Novel block copolymers and method for making same |
US20050137348A1 (en) * | 2002-02-07 | 2005-06-23 | Bening Robert C. | Novel block copolymers and method for making same |
US7267855B2 (en) | 2002-02-07 | 2007-09-11 | Kraton Polymers U.S. Llc | Articles prepared from hydrogenated controlled distribution block copolymers |
US20030181585A1 (en) * | 2002-02-07 | 2003-09-25 | Handlin Dale Lee | Articles prepared from hydrogenated controlled distribution block copolymers |
US20050137349A1 (en) * | 2002-02-07 | 2005-06-23 | Bening Robert C. | Novel block copolymers and method for making same |
US20050171290A1 (en) * | 2002-02-07 | 2005-08-04 | Bening Robert C. | Novel block copolymers and method for making same |
US7244785B2 (en) | 2002-02-07 | 2007-07-17 | Bening Robert C | Block copolymers and method for making same |
US7223816B2 (en) | 2002-02-07 | 2007-05-29 | Handlin Jr Dale L | Solvent-free, hot melt adhesive composition comprising a controlled distribution block copolymer |
US7169850B2 (en) | 2002-02-07 | 2007-01-30 | Kraton Polymers U.S. Llc | Block copolymers and method for making same |
US7169848B2 (en) | 2002-02-07 | 2007-01-30 | Kraton Polymers U.S. Llc | Block copolymers and method for making same |
US7138456B2 (en) | 2002-02-07 | 2006-11-21 | Bening Robert C | Block copolymers and method for making same |
US20040072951A1 (en) * | 2002-02-07 | 2004-04-15 | Hansen David Romme | Photopolymerizable compositions and flexographic plates prepared from controlled distribution block copolymers |
US6759454B2 (en) | 2002-02-07 | 2004-07-06 | Kraton Polymers U.S. Llc | Polymer modified bitumen compositions |
US7067589B2 (en) | 2002-02-07 | 2006-06-27 | Kraton Polymers U.S. Llc | Block copolymers and method for making same |
US7012118B2 (en) | 2002-02-07 | 2006-03-14 | Kraton Polymers U.S. Llc | Photopolymerizable compositions and flexographic plates prepared from controlled distribution block copolymers |
US20040138371A1 (en) * | 2002-02-07 | 2004-07-15 | St. Clair David John | Gels from controlled distribution block copolymers |
US6987142B2 (en) | 2002-02-07 | 2006-01-17 | Kraton Polymers U.S. Llc | Adhesives and sealants from controlled distribution block copolymers |
US20050222305A1 (en) * | 2002-03-28 | 2005-10-06 | Trommelen Erik A | Bituminous composition |
US7271207B2 (en) | 2002-03-28 | 2007-09-18 | Kraton Polymers U.S. Llc | Bituminous composition |
US20030187137A1 (en) * | 2002-03-28 | 2003-10-02 | Handlin Dale L. | Novel tetrablock copolymer and compositions containing same |
US7001950B2 (en) | 2002-03-28 | 2006-02-21 | Kraton Polymers U.S. Llc | Tetrablock copolymer and compositions containing same |
US20030225210A1 (en) * | 2002-06-04 | 2003-12-04 | Handlin Dale Lee | Gels from silane-coupled block copolymers |
US7001956B2 (en) | 2002-06-04 | 2006-02-21 | Kraton Polymers U.S. Llc | Articles prepared from hydrogenated block copolymers |
US7220798B2 (en) | 2002-06-04 | 2007-05-22 | Kraton Polymers Us Llc | Process for preparing block copolymer and resulting composition |
US20030225209A1 (en) * | 2002-06-04 | 2003-12-04 | Handlin Dale Lee | Articles prepared from hydrogenated block copolymers |
US7625979B2 (en) | 2002-06-04 | 2009-12-01 | Kraton Polymers U.S. Llc | Process for preparing block copolymer and resulting composition |
US7166672B2 (en) | 2002-06-04 | 2007-01-23 | Kraton Polymers U.S. Llc | Gels from silane-coupled block copolymers |
US7208184B2 (en) | 2002-07-20 | 2007-04-24 | Applied Elastomerics, Inc. | Gelatinous food elastomer compositions and articles for use as fishing bait |
US20040018272A1 (en) * | 2002-07-20 | 2004-01-29 | Chen John Y. | Gelatinous food elastomer compositions and articles for use as fishing bait |
US6844412B2 (en) | 2002-07-25 | 2005-01-18 | Lord Corporation | Ambient cured coatings and coated rubber products therefrom |
US6777026B2 (en) | 2002-10-07 | 2004-08-17 | Lord Corporation | Flexible emissive coatings for elastomer substrates |
US6699941B1 (en) | 2002-11-07 | 2004-03-02 | Kraton Polymers U.S. Llc | Block copolymer |
US20060106138A1 (en) * | 2002-12-16 | 2006-05-18 | Trommelen Erik A T | Block copolymer modified bitumens, and felts, coatings, sealants and roads made therefrom |
US20040147686A1 (en) * | 2002-12-31 | 2004-07-29 | Kraton Polymers U.S. Llc | Process for preparing hydrogenated conjugated diene block copolymers |
US20060183844A1 (en) * | 2003-03-24 | 2006-08-17 | Kraton Polymers U.S. Llc | Poly(styrene-butadiene-styrene)polymers having a high vinyl content in the butadiene block and hot melt adhesive composition comprising said polymers |
US7517932B2 (en) * | 2003-03-24 | 2009-04-14 | Kraton Polymers U.S. Llc | Poly(styrene-butadiene-styrene)polymers having a high vinyl content in the butadiene block and hot melt adhesive composition comprising said polymers |
WO2004106399A2 (en) | 2003-05-30 | 2004-12-09 | Kraton Polymers Research B.V. | Process for making a coupled block copolymer compositon |
WO2004108784A1 (en) | 2003-06-04 | 2004-12-16 | Kraton Polymers Research B.V. | Articles prepared from hydrogenated block copolymers |
US7018962B2 (en) | 2003-06-12 | 2006-03-28 | Infineum International Limited | Viscosity index improver concentrates |
US20040254082A1 (en) * | 2003-06-12 | 2004-12-16 | Bloch Ricardo A. | Viscosity index improver concentrates |
EP1493800A1 (en) | 2003-07-01 | 2005-01-05 | Infineum International Limited | Viscosity index improvers for lubricating oil compositions |
US20070026175A1 (en) * | 2003-07-15 | 2007-02-01 | Denki Kagaku Kogyo Kabushiki Kaisha | Heat-shrinkable foam films |
US8222346B2 (en) | 2003-09-23 | 2012-07-17 | Dais-Analytic Corp. | Block copolymers and method for making same |
US20050107541A1 (en) * | 2003-10-30 | 2005-05-19 | Bening Robert C. | Coupled radial anionic polymers |
US7232864B2 (en) | 2003-10-30 | 2007-06-19 | Bening Robert C | Coupled radial anionic polymers |
US20050137295A1 (en) * | 2003-12-17 | 2005-06-23 | Kraton Polymers U.S. Llc | Bituminous compositions modified by non-blocking elastomers |
US20050137312A1 (en) * | 2003-12-22 | 2005-06-23 | Kraton Polymers U.S. Llc | Adhesive formulations from novel radial (S-I/B)x polymers |
US7589152B2 (en) | 2003-12-22 | 2009-09-15 | Kraton Polymers U.S. Llc | Adhesive formulations for novel radial (S-I/B)x polymers |
US7439301B2 (en) | 2004-03-03 | 2008-10-21 | Kraton Polymers U.S. Llc | Block copolymers having high flow and high elasticity |
EP2428534A1 (en) | 2004-03-03 | 2012-03-14 | Kraton Polymers US LLC | Elastomeric bicomponent fibers comprising block copolymers having high flow |
US20050197465A1 (en) * | 2004-03-03 | 2005-09-08 | Kraton Polymers U.S. Llc | Block copolymers having high flow and high elasticity |
EP2586803A1 (en) | 2004-03-03 | 2013-05-01 | Kraton Polymers US LLC | Block copolymers having high flow and high elasticity |
WO2005092979A1 (en) | 2004-03-03 | 2005-10-06 | Kraton Polymers Research B.V. | Elastomeric bicomponent fibers comprising block copolymers having high flow |
US20050215724A1 (en) * | 2004-03-25 | 2005-09-29 | Kraton Polymers U.S. Llc | Thermoplastic gel compositions that can be converted into thermoset gel compositions by exposure to radiation |
US20050215725A1 (en) * | 2004-03-25 | 2005-09-29 | Kraton Polymers U.S. Llc | Thermoplastic gel compositions that can be converted into thermoset gel compositions by exposure to radiation |
US20050222340A1 (en) * | 2004-04-02 | 2005-10-06 | Kraton Polymers U.S. Llc | Process for the prevention or restriction of oil spills |
US7241540B2 (en) | 2004-04-27 | 2007-07-10 | Kraton Polymers U.S. Llc | Photocurable compositions and flexographic printing plates comprising the same |
US20050239930A1 (en) * | 2004-04-27 | 2005-10-27 | Kraton Polymers U.S. Llc | Photocurable compositions and flexographic printing plates comprising the same |
US7262248B2 (en) | 2004-05-11 | 2007-08-28 | Kraton Polymers U.S. Llc | Articles prepared from high molecular weight tetrablock copolymers |
US20050256265A1 (en) * | 2004-05-11 | 2005-11-17 | Wright Kathryn J | Articles prepared from high molecular weight tetrablock copolymers |
US8008398B2 (en) | 2004-09-03 | 2011-08-30 | Kraton Polymers U.S. Llc | Foamable polymeric compositions and articles containing foamed compositions |
US20070155846A1 (en) * | 2004-09-03 | 2007-07-05 | Xavier Muyldermans | Foamable polymeric compositions and articles containing foamed compositions |
WO2007000191A1 (en) | 2004-12-24 | 2007-01-04 | Kraton Polymers Research B.V. | High melt strength thermoplastic elastomer composition |
US20080132645A1 (en) * | 2004-12-24 | 2008-06-05 | Xavier Muyldermans | High Melt Strength Thermoplastic Elastomer Composition |
WO2007010039A1 (en) | 2005-07-22 | 2007-01-25 | Kraton Polymers Research B.V. | Sulfonated block copolymers, method for making same, and various uses for such block copolymers |
US7737224B2 (en) | 2005-07-22 | 2010-06-15 | Kraton Polymers U.S. Llc | Sulfonated block copolymers, method for making same, and various uses for such block copolymers |
US7569281B2 (en) | 2005-07-25 | 2009-08-04 | Kraton Polymers U.S. Llc | Flexible packaging laminate films including a block copolymer layer |
US20070020473A1 (en) * | 2005-07-25 | 2007-01-25 | Kraton Polymers U.S. Llc | Flexible packaging laminate films including a block copolymer layer |
US20070066753A1 (en) * | 2005-09-16 | 2007-03-22 | Ehrlich Martin L | Highly processible compounds of high MW conventional block copolymers and controlled distribution block copolymers |
US7714069B2 (en) | 2005-09-22 | 2010-05-11 | E. I. Du Pont De Nemours And Company | Method of producing adherent coatings on resinous substrates |
US20070066757A1 (en) * | 2005-09-22 | 2007-03-22 | Corcoran Patrick H | Method of producing adherent coatings on resinous substrates |
US20100112358A1 (en) * | 2005-09-22 | 2010-05-06 | Corcoran Patrick H | Adherent coating compositions for resinous substrates |
US7763679B2 (en) | 2005-09-22 | 2010-07-27 | E.I. Du Pont De Nemours And Company | Adherent coating compositions for resinous substrates |
US7645507B2 (en) | 2005-10-24 | 2010-01-12 | Kraton Polymers U.S. Llc | Protective films and pressure sensitive adhesives |
US20070092722A1 (en) * | 2005-10-24 | 2007-04-26 | Kraton Polymers U.S. Llc | Protective films and pressure sensitive adhesives |
US20070105986A1 (en) * | 2005-11-09 | 2007-05-10 | Kraton Polymers U. S. Llc | Blown asphalt compositions |
US7576148B2 (en) | 2005-11-09 | 2009-08-18 | Kraton Polymers U.S. Llc | Blown asphalt compositions |
US20080319130A1 (en) * | 2005-12-22 | 2008-12-25 | Dow Global Technologies Inc. | Blends of Styrenic Block Copolymers and Propylene-Alpha Olefin Copolymers |
US7893159B2 (en) | 2005-12-22 | 2011-02-22 | Dow Global Technologies Inc. | Blends of styrenic block copolymers and propylene-alpha olefin copolymers |
US20070213241A1 (en) * | 2006-03-10 | 2007-09-13 | St Clair David John | Viscosity index improver for lubricating oils |
WO2007106346A2 (en) | 2006-03-10 | 2007-09-20 | Kraton Polymers U.S. Llc | Viscosity index improver for lubricating oils |
US7625851B2 (en) | 2006-03-10 | 2009-12-01 | Kraton Polymers Us Llc | Viscosity index improver for lubricating oils |
US7858693B2 (en) | 2006-03-24 | 2010-12-28 | Kratonpolymers U.S. Llc | Unhydrogenated block copolymer compositions |
WO2007111853A2 (en) | 2006-03-24 | 2007-10-04 | Kraton Polymers U.S. Llc | Novel hydrogenated block copolymer compositions |
US7585916B2 (en) | 2006-03-24 | 2009-09-08 | Kraton Polymers Us Llc | Block copolymer compositions |
US20070225429A1 (en) * | 2006-03-24 | 2007-09-27 | Wright Kathryn J | Novel block copolymer compositons |
US20070225428A1 (en) * | 2006-03-24 | 2007-09-27 | Bening Robert C | Novel hydrogenated block copolymer compositions |
US7592390B2 (en) | 2006-03-24 | 2009-09-22 | Kraton Polymers U.S. Llc | Hydrogenated block copolymer compositions |
WO2007111849A2 (en) | 2006-03-24 | 2007-10-04 | Kraton Polymers U.S. Llc | Novel block copolymer compositions |
US7582702B2 (en) | 2006-03-24 | 2009-09-01 | Kraton Polymers U.S. Llc | Block copolymer compositons |
US7449518B2 (en) | 2006-03-24 | 2008-11-11 | Kraton Polymers U.S. Llc | High temperature block copolymers and process for making same |
US20070225427A1 (en) * | 2006-03-24 | 2007-09-27 | Wright Kathryn J | Novel unhydrogenated block copolymer compositions |
US20080039584A1 (en) * | 2006-03-24 | 2008-02-14 | Kraton Polymers U.S. Llc | High Temperature Block Copolymers and Process for Making Same |
WO2007111852A2 (en) | 2006-03-24 | 2007-10-04 | Kraton Polymers U.S. Llc | Novel unhydrogenated block copolymer compositions |
US20100190912A1 (en) * | 2006-04-21 | 2010-07-29 | Kraton Polymers U.S. Llc | Thermoplastic elastomer composition |
US20090247689A1 (en) * | 2006-09-20 | 2009-10-01 | Kraton Polymers Us Llc | Elastic film grade thermoplastic polymer compositions having improved elastic performance |
US20080076876A1 (en) * | 2006-09-25 | 2008-03-27 | Basf Corporation | Coating compositions for adhesion to olefinic substrates |
US20080153971A1 (en) * | 2006-12-21 | 2008-06-26 | Kraton Polymers U.S. Llc | Solvent sprayable contact adhesive formulations from (S-I/B)x polymers |
US20080153970A1 (en) * | 2006-12-21 | 2008-06-26 | Kraton Polymers U.S. Llc | Solvent sprayable contact adhesive formulations from functionalized/controlled distribution block copolymers |
EP2712809A1 (en) | 2007-10-19 | 2014-04-02 | Lord Corporation | Suspension system for aircraft auxilliary power unit with elastomeric member |
EP2712808A1 (en) | 2007-10-19 | 2014-04-02 | Lord Corporation | Suspension system for aircraft auxiliary power unit with elastomeric member |
US8188192B2 (en) | 2007-12-21 | 2012-05-29 | Kraton Polymers U.S. Llc | Soft elastomeric films |
WO2009082685A1 (en) | 2007-12-21 | 2009-07-02 | Kraton Polymers Us Llc | Soft elastomeric films |
US20090163361A1 (en) * | 2007-12-21 | 2009-06-25 | Kraton Polymers Us Llc | Soft elastomeric films |
US7994256B2 (en) | 2008-01-18 | 2011-08-09 | Kraton Polymers U.S. Llc | Gel compositions |
US20090186958A1 (en) * | 2008-01-18 | 2009-07-23 | Kraton Polymers Us Llc | Gel compositions |
EP2083063A1 (en) | 2008-01-22 | 2009-07-29 | Infineum International Limited | Lubricating oil composition |
US20090234059A1 (en) * | 2008-03-13 | 2009-09-17 | Kraton Polymers Us Llc | Miktopolymer compositions |
US8349950B2 (en) | 2008-03-13 | 2013-01-08 | Kraton Polymers Us Llc | Miktopolymer compositions |
US8552114B2 (en) | 2008-03-13 | 2013-10-08 | Kraton Polymers U.S. Llc | Miktopolymer compositions |
US20090247703A1 (en) * | 2008-03-28 | 2009-10-01 | Handlin Jr Dale L | Process for improving tear resistance in elastic films |
US8377515B2 (en) | 2008-05-09 | 2013-02-19 | Kraton Polymers U.S. Llc | Process for preparing membranes and membrane structures from a sulfonated block copolymer fluid composition |
US8377514B2 (en) | 2008-05-09 | 2013-02-19 | Kraton Polymers Us Llc | Sulfonated block copolymer fluid composition for preparing membranes and membrane structures |
US8012539B2 (en) | 2008-05-09 | 2011-09-06 | Kraton Polymers U.S. Llc | Method for making sulfonated block copolymers, method for making membranes from such block copolymers and membrane structures |
US20110230614A1 (en) * | 2008-05-09 | 2011-09-22 | Handlin Jr Dale Lee | Sulfonated block copolymer fluid composition for preparing membranes and membrane structures |
US20100010147A1 (en) * | 2008-07-08 | 2010-01-14 | Kraton Polymer U.S. Llc | Adhesives prepared from diphenylethylene containing block copolymers |
US20100010154A1 (en) * | 2008-07-08 | 2010-01-14 | Kraton Polymers U.S. Llc | Gels prepared from dpe containing block copolymers |
US20100056721A1 (en) * | 2008-09-03 | 2010-03-04 | Kathryn Wright | Articles prepared from certain hydrogenated block copolymers |
US8440304B2 (en) | 2008-09-16 | 2013-05-14 | Henkel Corporation | Acrylic pressure sensitive adhesive formulation and articles comprising same |
US20100068515A1 (en) * | 2008-09-16 | 2010-03-18 | Paul Charles W | Acrylic pressure sensitive adhesive formulation and articles comprising same |
US20100130670A1 (en) * | 2008-11-21 | 2010-05-27 | Kraton Polymers Us Llc | End use applications prepared from certain block copolymers |
US8445087B2 (en) | 2008-12-15 | 2013-05-21 | Kraton Polymers U.S. Llc | Hydrogenated styrenic block copolymers blends with polypropylene |
WO2010077799A1 (en) | 2008-12-15 | 2010-07-08 | Kraton Polymers Us Llc | Hydrogenated styrenic block copolymers blends with polypropylene |
US8445631B2 (en) | 2009-10-13 | 2013-05-21 | Kraton Polymers U.S. Llc | Metal-neutralized sulfonated block copolymers, process for making them and their use |
EP2784096A1 (en) | 2009-10-13 | 2014-10-01 | Kraton Polymers US LLC | Process for stabilizing and storing a polar component |
US8263713B2 (en) | 2009-10-13 | 2012-09-11 | Kraton Polymers U.S. Llc | Amine neutralized sulfonated block copolymers and method for making same |
US20110086982A1 (en) * | 2009-10-13 | 2011-04-14 | Carl Lesley Willis | Amine neutralized sulfonated block copolymers and method for making same |
US20110086977A1 (en) * | 2009-10-13 | 2011-04-14 | Carl Lesley Willis | Metal-neutralized sulfonated block copolymers, process for making them and their use |
US20110112236A1 (en) * | 2009-11-12 | 2011-05-12 | Kraton Polymers U.S. Llc | Thermoplastic polyurethane block copolymer compositions |
US8580884B2 (en) | 2009-11-12 | 2013-11-12 | Kraton Polymers U.S. Llc | Thermoplastic polyurethane block copolymer compositions |
US20110184082A1 (en) * | 2010-01-27 | 2011-07-28 | Kraton Polymers U.S. Llc | Compositions Containing Styrene-Isobutylene-Styrene And Styrene-Ethylene/Butylene-Styrene Block Copolymers |
US8299177B2 (en) | 2010-01-27 | 2012-10-30 | Kranton Polymers U.S. LLC | Compositions containing styrene-isobutylene-styrene and controlled distribution block copolymers |
WO2011133488A1 (en) | 2010-04-22 | 2011-10-27 | Kraton Polymers U.S. Llc | High tensile strength article with elastomeric layer |
WO2012050740A1 (en) | 2010-09-29 | 2012-04-19 | Kraton Polymers U.S. Llc | Elastic, moisture-vapor permeable films, their preparation and their use |
US9394414B2 (en) | 2010-09-29 | 2016-07-19 | Kraton Polymers U.S. Llc | Elastic, moisture-vapor permeable films, their preparation and their use |
US9429366B2 (en) | 2010-09-29 | 2016-08-30 | Kraton Polymers U.S. Llc | Energy recovery ventilation sulfonated block copolymer laminate membrane |
WO2012050860A1 (en) | 2010-09-29 | 2012-04-19 | Kraton Polymers U.S. Llc | Energy recovery ventilation sulfonated block copolymer laminate membrane |
WO2012054325A1 (en) | 2010-10-18 | 2012-04-26 | Kraton Polymers U.S. Llc | Method for producing a sulfonated block copolymer composition |
US9365662B2 (en) | 2010-10-18 | 2016-06-14 | Kraton Polymers U.S. Llc | Method for producing a sulfonated block copolymer composition |
US9861941B2 (en) | 2011-07-12 | 2018-01-09 | Kraton Polymers U.S. Llc | Modified sulfonated block copolymers and the preparation thereof |
US10208168B2 (en) | 2011-10-25 | 2019-02-19 | Kraton Polymers U.S. Llc | Polyoxyalkyleneamine modified sulfonated block copolymers, their preparation and their use |
US11021559B2 (en) | 2011-10-31 | 2021-06-01 | Kraton Polymers Llc | Sulfonated block copolymer laminates with polar or active metal substrates |
EP2607466A2 (en) | 2011-12-21 | 2013-06-26 | Infineum International Limited | Viscosity index improvers for lubricating oil compositions |
US9249335B2 (en) | 2012-02-24 | 2016-02-02 | Kraton Polymers U.S. Llc | High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications |
US9771473B2 (en) | 2012-02-24 | 2017-09-26 | Kraton Polymers U.S. Llc | High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications |
US9637660B2 (en) | 2012-02-24 | 2017-05-02 | Kraton Polymers U.S. Llc | High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications |
US9359523B2 (en) | 2012-02-24 | 2016-06-07 | Kraton Polymers U.S. Llc | High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications |
US9243163B2 (en) | 2012-02-24 | 2016-01-26 | Kraton Polymers U.S. Llc | High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications |
US10233323B2 (en) | 2012-03-15 | 2019-03-19 | Kraton Polymers U.S. Llc | Blends of sulfonated block copolymers and particulate carbon and membranes, films, and coatings comprising them |
WO2013138146A1 (en) | 2012-03-15 | 2013-09-19 | Kraton Polymers U.S. Llc | Blends of sulfonated block copolymers and particulate carbon and membranes, films and coatings comprising them |
WO2014046989A2 (en) | 2012-09-19 | 2014-03-27 | Kraton Polymers U.S. Llc | Paramethylstyrene block copolymers and their use |
US8703860B2 (en) | 2012-09-19 | 2014-04-22 | Kraton Polymers U.S. Llc | Paramethylstyrene block copolymers and their use |
WO2014058823A1 (en) | 2012-10-08 | 2014-04-17 | Teknor Apex Company | Thermoplastic elastomer compositions having biorenewable content |
US9938401B2 (en) | 2012-11-05 | 2018-04-10 | Kraton Polymers U.S. Llc | Fire retardant systems for polymers that enable flexibility and strength |
WO2014087815A1 (en) | 2012-12-07 | 2014-06-12 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | Adhesive composition for protective film of coated surface and method for preparing same |
WO2014087814A1 (en) | 2012-12-07 | 2014-06-12 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | Adhesive composition for protective film of coated surface and method for preparing same |
US10022680B2 (en) | 2013-01-14 | 2018-07-17 | Kraton Polymers U.S. Llc | Anion exchange block copolymers, their manufacture and their use |
US9061254B2 (en) | 2013-01-14 | 2015-06-23 | Kraton Polymers U.S. Llc | Block copolymers, their manufacture and their use |
WO2014110534A1 (en) | 2013-01-14 | 2014-07-17 | Kraton Polymers U.S. Llc | Anion exchange block copolymers, their manufacture and their use |
US9364825B2 (en) | 2013-01-14 | 2016-06-14 | Kraton Polymers U.S. Llc | Block copolymers, their manufacture and their use |
US9422422B2 (en) | 2013-02-28 | 2016-08-23 | Kraton Polymers U.S. Llc | Transparent and tough rubber composition and manufacturing process for the same |
WO2014132718A1 (en) | 2013-02-28 | 2014-09-04 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | Transparent and tough rubber composition, and process for producing same |
WO2014150119A1 (en) | 2013-03-15 | 2014-09-25 | Nike International Ltd. | Modified thermoplastic elastomers for increased compatibility with supercritical fluids |
WO2015006179A1 (en) | 2013-07-12 | 2015-01-15 | Kraton Polymers U.S. Llc | High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications |
US10843401B2 (en) | 2013-11-01 | 2020-11-24 | Kraton Polymers U.S. Llc | Fuse molded three dimensional article and a method for making the same |
WO2015065826A1 (en) | 2013-11-01 | 2015-05-07 | Kraton Polymers U.S. Llc | A fuse molded three dimensional article and a method for making the same |
US9757901B2 (en) | 2013-11-26 | 2017-09-12 | Kraton Polymers U.S. Llc | Laser sintering powder, laser sintering article, and a method of making a laser sintering article |
US9752068B2 (en) | 2014-01-06 | 2017-09-05 | Kraton Polymers U.S. Llc | Hot melt pressure sensitive adhesive and thermoset comprising styrene-butadiene polymers having high vinyl and high di-block |
WO2015103241A1 (en) | 2014-01-06 | 2015-07-09 | Kraton Polymers U.S. Llc | Hot melt pressure sensitive adhesive and thermoset comprising styrene-butadiene polymers having high vinyl and high di-block |
US9304231B2 (en) | 2014-02-04 | 2016-04-05 | Kraton Polymers U.S. Llc | Heat fusible oil gels |
US9394472B2 (en) | 2014-03-27 | 2016-07-19 | Kraton Polymers U.S. Llc | Low fluid loss drilling fluid compositions comprising diblock copolymers |
WO2015153736A1 (en) | 2014-04-02 | 2015-10-08 | Kraton Polymers U.S. Llc | Adhesive compositions containing a block copolymer with polymyrcene |
US10053603B2 (en) | 2014-04-02 | 2018-08-21 | Kraton Polymers U.S. Llc | Block copolymers containing a copolymer myrcene block |
US9458362B2 (en) | 2014-04-02 | 2016-10-04 | Kraton Polymers U.S. Llc | Adhesive compositions containing a block copolymer with polymyrcene |
WO2015153747A1 (en) | 2014-04-02 | 2015-10-08 | Kraton Polymers U.S. Llc | Block copolymers containing a copolymer myrcene block |
EP3415589A1 (en) | 2014-04-29 | 2018-12-19 | Infineum International Limited | Lubricating oil compositions |
EP2940110A1 (en) | 2014-04-29 | 2015-11-04 | Infineum International Limited | Lubricating oil compositions |
US9216405B1 (en) | 2014-06-26 | 2015-12-22 | Kraton Polymers U.S. Llc | Rotary enthalpy exchange wheel having sulfonated block copolymer |
EP2975071A1 (en) | 2014-07-16 | 2016-01-20 | Kraton Polymers U.S. LLC | Block copolymers, their manufacture and their use |
US9944776B2 (en) | 2014-08-26 | 2018-04-17 | Kraton Polymers U.S. Llc | Transparent, tough and heatproof rubber composition comprising neodymium-catalyzed isoprene component, and manufacturing process for the same |
WO2016057452A1 (en) | 2014-10-09 | 2016-04-14 | Kraton Polymers U.S. Llc | Adhesive compositions with amorphous polyolefins |
US10047212B2 (en) | 2015-03-30 | 2018-08-14 | Kraton Polymers U.S. Llc | Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same |
US9840600B2 (en) | 2015-03-30 | 2017-12-12 | Kraton Polymers U.S. Llc | Diene rubber composition configured to be vulcanized at lower temperature; and manufacturing process of rubber article from the same |
US9758648B2 (en) | 2015-03-30 | 2017-09-12 | Kraton Polymers U.S. Llc | Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same |
US9758649B2 (en) | 2015-03-30 | 2017-09-12 | Kraton Polymers U.S. Llc | Cured transparent rubber article, and manufacturing process for the same |
US9932463B2 (en) | 2015-03-30 | 2018-04-03 | Kraton Polymers U.S. Llc | Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same |
US10053609B2 (en) | 2015-06-12 | 2018-08-21 | Kraton Polymers U.S. Llc | Styrenic block copolymers as thermally-activated viscosifiers for oilfield applications |
US10287428B2 (en) | 2015-06-12 | 2019-05-14 | Kraton Polymers U.S. Llc | Heat activated gels for cable filling applications |
US9862819B2 (en) | 2015-06-12 | 2018-01-09 | Kraton Polymers U.S. Llc | Composition for soft skins and uses thereof |
WO2017006298A1 (en) | 2015-07-09 | 2017-01-12 | Eoc Belgium Nv | Cross-linkable hydroxyfunctional latex |
US9834625B2 (en) | 2015-08-14 | 2017-12-05 | Kraton Polymers U.S. Llc | Amine-containing polyalkenyl coupling agents and polymers prepared therefrom |
US10066098B2 (en) | 2015-09-16 | 2018-09-04 | Kraton Polymers U.S. Llc | Styrenic block copolymer compositions |
US10633567B2 (en) | 2015-10-29 | 2020-04-28 | Kraton Polymers U.S. Llc | Hot melt elastic attachment adhesive for low temperature applications |
US10731100B2 (en) | 2015-12-09 | 2020-08-04 | Infineum International Limited | Viscosity index improver concentrates |
US10011803B2 (en) | 2015-12-09 | 2018-07-03 | Infineum International Limited | Viscosity index improver concentrates |
EP3190166A1 (en) | 2015-12-09 | 2017-07-12 | Infineum International Limited | Viscosity index improver concentrates |
EP3192858A1 (en) | 2016-01-15 | 2017-07-19 | Infineum International Limited | Use of lubricating oil composition |
WO2017165521A1 (en) | 2016-03-24 | 2017-09-28 | Kraton Polymers U.S. Llc | Semi-crystalline block copolymers and compositions therefrom |
US10633465B2 (en) | 2016-03-24 | 2020-04-28 | Kraton Polymers U.S. Llc | Block copolymers having semi-crystalline blocks and compositions and articles made therefrom |
EP3257921A1 (en) | 2016-06-14 | 2017-12-20 | Infineum International Limited | Lubricating oil additives |
EP3321347A1 (en) | 2016-11-14 | 2018-05-16 | Infineum International Limited | Lubricating oil additives based on overbased gemini surfactant |
US11167251B2 (en) | 2016-11-22 | 2021-11-09 | 3M Innovative Properties Company | Porous membranes including pentablock copolymers and method of making the same |
US10781279B2 (en) | 2016-11-22 | 2020-09-22 | 3M Innovative Properties Company | Pentablock copolymers |
WO2018098023A1 (en) | 2016-11-22 | 2018-05-31 | 3M Innovative Properties Company | Pentablock copolymers |
WO2018152075A1 (en) | 2017-02-17 | 2018-08-23 | 3M Innovative Properties Company | Triblock copolymers |
US10889692B2 (en) | 2017-02-17 | 2021-01-12 | 3M Innovative Properties Company | Triblock copolymers |
EP3366755A1 (en) | 2017-02-22 | 2018-08-29 | Infineum International Limited | Improvements in and relating to lubricating compositions |
EP3369802A1 (en) | 2017-03-01 | 2018-09-05 | Infineum International Limited | Improvements in and relating to lubricating compositions |
US11692048B2 (en) | 2017-03-10 | 2023-07-04 | Kraton Corporation | Fusible oil gel compositions and methods of making and using same |
EP3461877A1 (en) | 2017-09-27 | 2019-04-03 | Infineum International Limited | Improvements in and relating to lubricating compositions |
WO2019094201A1 (en) | 2017-11-09 | 2019-05-16 | Milliken & Company | Additive composition and polymer compositions comprising the same |
EP3492567A1 (en) | 2017-11-29 | 2019-06-05 | Infineum International Limited | Lubricating oil additives |
EP3492566A1 (en) | 2017-11-29 | 2019-06-05 | Infineum International Limited | Lubricating oil additives |
WO2019183302A1 (en) | 2018-03-23 | 2019-09-26 | Kraton Polymers Llc | Ultrahigh melt flow styrenic block copolymers |
US11466115B2 (en) | 2018-06-01 | 2022-10-11 | 3M Innovative Properties Company | Porous membranes including triblock copolymers |
EP4039782A1 (en) | 2018-09-24 | 2022-08-10 | Infineum International Limited | Polymers and lubricating compositions containing polymers |
EP3770235A1 (en) | 2018-09-24 | 2021-01-27 | Infineum International Limited | Polymers and lubricating compositions containing polymers |
WO2020165740A1 (en) | 2019-02-11 | 2020-08-20 | Eoc Belgium Nv | Cross-linkable functional latex comprising aluminium trihydroxide |
BE1027044A1 (en) | 2019-02-11 | 2020-09-02 | Eoc Belgium Nv | INTERNETABLE FUNCTIONAL LATEX CONTAINING ALUMINUM TRIHYDROXIDE |
WO2020229308A1 (en) | 2019-05-16 | 2020-11-19 | 3M Innovative Properties Company | Amphiphilic triblock copolymer |
EP3738988A1 (en) | 2019-05-16 | 2020-11-18 | 3M Innovative Properties Company | Amphiphilic triblock copolymer |
EP3741832A2 (en) | 2019-05-24 | 2020-11-25 | Infineum International Limited | Nitrogen-containing lubricating oil additives |
EP3831913A1 (en) | 2019-12-05 | 2021-06-09 | Infineum International Limited | Triblock copolymer concentrates for lubricating oil compositions |
WO2021124011A1 (en) | 2019-12-17 | 2021-06-24 | 3M Innovative Properties Company | Articles including an isoporous membrane disposed on a porous substrate and methods of making the same |
EP3851507A1 (en) | 2020-01-15 | 2021-07-21 | Infineum International Limited | Polymers and lubricating compositions containing polymers |
EP3926026A1 (en) | 2020-06-16 | 2021-12-22 | Infineum International Limited | Oil compositions |
WO2023006474A1 (en) | 2021-07-26 | 2023-02-02 | Basf Coatings Gmbh | Peelable coating system and methods for forming the peelable coating system |
EP4159832A1 (en) | 2021-10-04 | 2023-04-05 | Infineum International Limited | Lubricating oil compositions |
EP4174153A1 (en) | 2021-10-29 | 2023-05-03 | Infineum International Limited | Method of limiting chemical degradation due to nitrogen dioxide contamination |
EP4174154A1 (en) | 2021-10-29 | 2023-05-03 | Infineum International Limited | Method of limiting chemical degradation due to nitrogen dioxide contamination |
EP4174152A1 (en) | 2021-10-29 | 2023-05-03 | Infineum International Limited | Ionic liquid composition |
US11859149B2 (en) | 2021-10-29 | 2024-01-02 | Infineum International Limited | Ionic liquid composition |
US12006486B2 (en) | 2021-10-29 | 2024-06-11 | Infineum International Limited | Method of limiting chemical degradation due to nitrogen dioxide contamination |
US12031103B2 (en) | 2021-10-29 | 2024-07-09 | Infineum International Ltd | Method of limiting chemical degradation due to nitrogen dioxide contamination |
EP4303287A1 (en) | 2022-07-06 | 2024-01-10 | Infineum International Limited | Lubricating oil compositions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE27145E (en) | Side-chain | |
US3431323A (en) | Hydrogenated block copolymers of butadiene and a monovinyl aryl hydrocarbon | |
US3595942A (en) | Partially hydrogenated block copolymers | |
US3670054A (en) | Block copolymers having reduced solvent sensitivity | |
US4086298A (en) | Branched block copolymers and their manufacture | |
US4167545A (en) | Branched block copolymers and their manufacture | |
US4335221A (en) | Preparation of mixtures of linear three-block copolymers, and moldings produced therefrom | |
US3700748A (en) | Selectively hydrogenated block copolymers | |
US4152370A (en) | Preparation, composition, and use of block polymers | |
CA1057889A (en) | Star polymers and process for the preparation thereof | |
US3231635A (en) | Process for the preparation of block copolymers | |
AU649990B2 (en) | Vulcanizable liquid compositions | |
US6699941B1 (en) | Block copolymer | |
EP0254346B1 (en) | Thermoplastic compositions and process for the preparation thereof | |
AU686193B2 (en) | Solid elastomeric block copolymers | |
EP0024314A1 (en) | Hydrogenated block copolymers of butadiene containing a block of 1,4 and a block of 1,2-microstructure | |
US3287333A (en) | Process for preparing a conjugated diene-vinyl-aromatic block copolymer with a lithium-condensed aromatic ring compound catalyst | |
US3985826A (en) | Hydrogenated block copolymers of butadiene and isoprene | |
US3766295A (en) | Block polymer compositions | |
CA2130169A1 (en) | Solid elastomeric block copolymers | |
CA1087339A (en) | Branched block copolymers of a monovinyl-aromatic compound and a conjugated diene | |
EP1169358B1 (en) | Hydrogenated block copolymers | |
US3706817A (en) | Block copolymers having dissimilar nonelastomeric polymer blocks | |
US4891410A (en) | Butadiene/sytrene block copolymers having an asymmetric structure, their preparation and their use as molding materials | |
US3639523A (en) | Block copolymers having improved physical properties |