US5374752A - Process for the preparation of a high molecular weight olefin polymer - Google Patents
Process for the preparation of a high molecular weight olefin polymer Download PDFInfo
- Publication number
- US5374752A US5374752A US08/232,368 US23236894A US5374752A US 5374752 A US5374752 A US 5374752A US 23236894 A US23236894 A US 23236894A US 5374752 A US5374752 A US 5374752A
- Authority
- US
- United States
- Prior art keywords
- group
- metallocene
- different
- methyl
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 15
- 238000002360 preparation method Methods 0.000 title description 8
- 229920000098 polyolefin Polymers 0.000 title description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 21
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 15
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 18
- 125000005843 halogen group Chemical group 0.000 claims description 12
- 229910052801 chlorine Inorganic materials 0.000 claims description 9
- VPGLGRNSAYHXPY-UHFFFAOYSA-L zirconium(2+);dichloride Chemical compound Cl[Zr]Cl VPGLGRNSAYHXPY-UHFFFAOYSA-L 0.000 claims description 9
- 239000000460 chlorine Substances 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 7
- 125000000041 C6-C10 aryl group Chemical group 0.000 claims description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 6
- 238000005304 joining Methods 0.000 claims description 6
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 5
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 125000000027 (C1-C10) alkoxy group Chemical group 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 4
- 125000006374 C2-C10 alkenyl group Chemical group 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 125000004104 aryloxy group Chemical group 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 abstract description 40
- 239000003054 catalyst Substances 0.000 abstract description 16
- 150000001336 alkenes Chemical class 0.000 abstract description 7
- 125000000217 alkyl group Chemical group 0.000 abstract description 6
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052736 halogen Inorganic materials 0.000 abstract description 3
- 150000002367 halogens Chemical class 0.000 abstract description 3
- 125000003118 aryl group Chemical group 0.000 abstract description 2
- 125000005842 heteroatom Chemical group 0.000 abstract description 2
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 abstract 1
- 101150035983 str1 gene Proteins 0.000 abstract 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 88
- 239000000203 mixture Substances 0.000 description 53
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 42
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 42
- -1 polypropylenes Polymers 0.000 description 36
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 33
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 30
- 239000004743 Polypropylene Substances 0.000 description 27
- 229920001155 polypropylene Polymers 0.000 description 27
- 230000000694 effects Effects 0.000 description 23
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 20
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 13
- 239000003446 ligand Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000012071 phase Substances 0.000 description 11
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 10
- 238000001819 mass spectrum Methods 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 9
- 238000010992 reflux Methods 0.000 description 9
- 239000000725 suspension Substances 0.000 description 9
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 8
- 239000011261 inert gas Substances 0.000 description 8
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000012074 organic phase Substances 0.000 description 7
- XOJVVFBFDXDTEG-UHFFFAOYSA-N pristane Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 7
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 7
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 7
- YACBQDSJEQTNRJ-UHFFFAOYSA-N 2,5,7-trimethyl-2,3-dihydroinden-1-one Chemical compound CC1=CC(C)=C2C(=O)C(C)CC2=C1 YACBQDSJEQTNRJ-UHFFFAOYSA-N 0.000 description 6
- XFNIQDLAPZZUMH-UHFFFAOYSA-N 2-methyl-4,6-di(propan-2-yl)-1h-indene Chemical compound CC(C)C1=CC(C(C)C)=CC2=C1C=C(C)C2 XFNIQDLAPZZUMH-UHFFFAOYSA-N 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 6
- 239000005977 Ethylene Substances 0.000 description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- 238000004821 distillation Methods 0.000 description 6
- 229910052938 sodium sulfate Inorganic materials 0.000 description 6
- 235000011152 sodium sulphate Nutrition 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 5
- KGDCHNBUAFRQKF-UHFFFAOYSA-N dimethyl-bis[2-methyl-4,6-di(propan-2-yl)-1h-inden-1-yl]silane Chemical compound CC1=CC(C(=CC(=C2)C(C)C)C(C)C)=C2C1[Si](C)(C)C1C(C=C(C=C2C(C)C)C(C)C)=C2C=C1C KGDCHNBUAFRQKF-UHFFFAOYSA-N 0.000 description 5
- 239000005457 ice water Substances 0.000 description 5
- QNXSIUBBGPHDDE-UHFFFAOYSA-N indan-1-one Chemical class C1=CC=C2C(=O)CCC2=C1 QNXSIUBBGPHDDE-UHFFFAOYSA-N 0.000 description 5
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 5
- 235000019341 magnesium sulphate Nutrition 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- OSNBXQPGMJVNOI-UHFFFAOYSA-N 2,4,6-trimethyl-1h-indene Chemical compound C1=C(C)C=C(C)C2=C1CC(C)=C2 OSNBXQPGMJVNOI-UHFFFAOYSA-N 0.000 description 4
- LYGOMMCGNNRRQD-UHFFFAOYSA-N 2-methyl-5,7-di(propan-2-yl)-2,3-dihydroinden-1-one Chemical compound CC(C)C1=CC(C(C)C)=CC2=C1C(=O)C(C)C2 LYGOMMCGNNRRQD-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 4
- 241000287531 Psittacidae Species 0.000 description 4
- 239000012230 colorless oil Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002431 hydrogen Chemical group 0.000 description 4
- 239000012442 inert solvent Substances 0.000 description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 4
- 239000012279 sodium borohydride Substances 0.000 description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 4
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- YAZRQPVPGIIJRN-UHFFFAOYSA-N 2-methyl-1-[1-[2-methyl-4,6-di(propan-2-yl)-1h-inden-1-yl]butan-2-yl]-4,6-di(propan-2-yl)-1h-indene Chemical compound CC1=CC(C(=CC(=C2)C(C)C)C(C)C)=C2C1C(CC)CC1C(C=C(C=C2C(C)C)C(C)C)=C2C=C1C YAZRQPVPGIIJRN-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- XRTCHIPNYUJZQS-UHFFFAOYSA-N dimethyl-bis(2,4,6-trimethyl-1h-inden-1-yl)silane Chemical compound CC1=CC(C(=CC(C)=C2)C)=C2C1[Si](C)(C)C1C(C=C(C)C=C2C)=C2C=C1C XRTCHIPNYUJZQS-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 150000002469 indenes Chemical class 0.000 description 3
- ZJHVYPYPZXMOPK-UHFFFAOYSA-N methyl-bis[2-methyl-4,6-di(propan-2-yl)-1h-inden-1-yl]-phenylsilane Chemical compound CC1=CC=2C(C(C)C)=CC(C(C)C)=CC=2C1[Si](C)(C1C2=C(C(=CC(=C2)C(C)C)C(C)C)C=C1C)C1=CC=CC=C1 ZJHVYPYPZXMOPK-UHFFFAOYSA-N 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 230000037048 polymerization activity Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 239000011877 solvent mixture Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 2
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- YOCIJWAHRAJQFT-UHFFFAOYSA-N 2-bromo-2-methylpropanoyl bromide Chemical compound CC(C)(Br)C(Br)=O YOCIJWAHRAJQFT-UHFFFAOYSA-N 0.000 description 2
- ALGLPEWJXUNUOJ-UHFFFAOYSA-N 2-methyl-4,6-di(propan-2-yl)-2,3-dihydroinden-1-one Chemical compound CC(C)C1=CC(C(C)C)=CC2=C1CC(C)C2=O ALGLPEWJXUNUOJ-UHFFFAOYSA-N 0.000 description 2
- UQRONKZLYKUEMO-UHFFFAOYSA-N 4-methyl-1-(2,4,6-trimethylphenyl)pent-4-en-2-one Chemical group CC(=C)CC(=O)Cc1c(C)cc(C)cc1C UQRONKZLYKUEMO-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- IDASTKMEQGPVRR-UHFFFAOYSA-N cyclopenta-1,3-diene;zirconium(2+) Chemical compound [Zr+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 IDASTKMEQGPVRR-UHFFFAOYSA-N 0.000 description 2
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- 229920001580 isotactic polymer Polymers 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000006384 oligomerization reaction Methods 0.000 description 2
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003623 transition metal compounds Chemical class 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- CZWSZZHGSNZRMW-UHFFFAOYSA-N 1,2-dibromobutane Chemical compound CCC(Br)CBr CZWSZZHGSNZRMW-UHFFFAOYSA-N 0.000 description 1
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 1
- UNEATYXSUBPPKP-UHFFFAOYSA-N 1,3-Diisopropylbenzene Chemical compound CC(C)C1=CC=CC(C(C)C)=C1 UNEATYXSUBPPKP-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- QBJRKLMGNRDIKB-UHFFFAOYSA-N 2-methyl-1-[2-[2-methyl-4,6-di(propan-2-yl)-1h-inden-1-yl]ethyl]-4,6-di(propan-2-yl)-1h-indene Chemical compound CC1=CC(C(=CC(=C2)C(C)C)C(C)C)=C2C1CCC1C(C=C(C=C2C(C)C)C(C)C)=C2C=C1C QBJRKLMGNRDIKB-UHFFFAOYSA-N 0.000 description 1
- KSJULJVHQBLVFF-UHFFFAOYSA-N 2-methyl-5,7-di(propan-2-yl)-1h-indene Chemical compound CC(C)C1=CC(C(C)C)=CC2=C1CC(C)=C2 KSJULJVHQBLVFF-UHFFFAOYSA-N 0.000 description 1
- WGAIKEHHOKCOJR-UHFFFAOYSA-N 2-methyl-5-propan-2-yl-2,3-dihydroinden-1-one Chemical compound CC(C)C1=CC=C2C(=O)C(C)CC2=C1 WGAIKEHHOKCOJR-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- PYLJALCCEVZPPL-UHFFFAOYSA-N CC(C)C1=CC(C(C(C)=C2)[Zr](C)(C(C(C)=C3)C4=C3C(C(C)C)=CC(C(C)C)=C4)[SiH2]C3=CC=CC=C3)=C2C(C(C)C)=C1.Cl.Cl Chemical compound CC(C)C1=CC(C(C(C)=C2)[Zr](C)(C(C(C)=C3)C4=C3C(C(C)C)=CC(C(C)C)=C4)[SiH2]C3=CC=CC=C3)=C2C(C(C)C)=C1.Cl.Cl PYLJALCCEVZPPL-UHFFFAOYSA-N 0.000 description 1
- TVYAZEYCGZYYNC-UHFFFAOYSA-N CC(C)C1=CC(C(C)C)=C(C=C(C)C2[Zr](C)(C3=CC=CC=C3)[SiH3])C2=C1.Cl.Cl Chemical compound CC(C)C1=CC(C(C)C)=C(C=C(C)C2[Zr](C)(C3=CC=CC=C3)[SiH3])C2=C1.Cl.Cl TVYAZEYCGZYYNC-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FKLJPTJMIBLJAV-UHFFFAOYSA-N Compound IV Chemical compound O1N=C(C)C=C1CCCCCCCOC1=CC=C(C=2OCCN=2)C=C1 FKLJPTJMIBLJAV-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910003556 H2 SO4 Inorganic materials 0.000 description 1
- 229910003944 H3 PO4 Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229910004809 Na2 SO4 Inorganic materials 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 108091006629 SLC13A2 Proteins 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- 229910007932 ZrCl4 Inorganic materials 0.000 description 1
- YVQPUXMWIMJFBY-UHFFFAOYSA-L [Cl-].[Cl-].CC1=Cc2c(cc(C)cc2C)C1[Zr++](C1C(C)=Cc2c1cc(C)cc2C)=[Si](C)C Chemical compound [Cl-].[Cl-].CC1=Cc2c(cc(C)cc2C)C1[Zr++](C1C(C)=Cc2c1cc(C)cc2C)=[Si](C)C YVQPUXMWIMJFBY-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- PQLAYKMGZDUDLQ-UHFFFAOYSA-K aluminium bromide Chemical compound Br[Al](Br)Br PQLAYKMGZDUDLQ-UHFFFAOYSA-K 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical compound Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229920001585 atactic polymer Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- GNEPOXWQWFSSOU-UHFFFAOYSA-N dichloro-methyl-phenylsilane Chemical compound C[Si](Cl)(Cl)C1=CC=CC=C1 GNEPOXWQWFSSOU-UHFFFAOYSA-N 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical class [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- YIAPLDFPUUJILH-UHFFFAOYSA-N indan-1-ol Chemical class C1=CC=C2C(O)CCC2=C1 YIAPLDFPUUJILH-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 150000003413 spiro compounds Chemical class 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C13/00—Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
- C07C13/28—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
- C07C13/32—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
- C07C13/45—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing nine carbon atoms
- C07C13/465—Indenes; Completely or partially hydrogenated indenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/45—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
- C07C45/46—Friedel-Crafts reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F17/00—Metallocenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/02—Systems containing two condensed rings the rings having only two atoms in common
- C07C2602/04—One of the condensed rings being a six-membered aromatic ring
- C07C2602/08—One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/04—Monomers containing three or four carbon atoms
- C08F210/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/639—Component covered by group C08F4/62 containing a transition metal-carbon bond
- C08F4/63912—Component covered by group C08F4/62 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/639—Component covered by group C08F4/62 containing a transition metal-carbon bond
- C08F4/6392—Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
- C08F4/63922—Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
- C08F4/63927—Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/943—Polymerization with metallocene catalysts
Definitions
- the invention relates to a process for the preparation of olefin polymers of high isotacticity, narrow molecular weight distribution and high molecular weight.
- Polyolefins of high molecular weight are of particular importance for the production of films, sheets or large hollow articles, such as, for example, pipes or moldings.
- the polymerization must be carried at the highest possible reaction temperatures, since at higher polymerization temperatures, the heat of polymerization formed can be removed with less cooling medium, and the polymerization can therefore be realized with significantly smaller dimensions of the cooling water circulation.
- the metallocenes last mentioned with substituents in the 2- or 2- and 4-position relative to the bridge are already very efficient in this respect at a polymerization temperature of 70° C, but the molecular weights which can be achieved at industrially relevant polymerization temperatures (for example 70° C.) are still too low for some industrial uses, such as, for example, preparation of polymers for pipes and large hollow articles, as well as specific fibers.
- the invention thus relates to a process for the preparation of an olefin polymer by polymerization or copolymerization of an olefin of the formula R a --CH ⁇ CH--R b , in which R a and R b are identical or different and are a hydrogen atom or a hydrocarbon radical having 1 to 14 carbon atoms, or R a and R b , with the atoms joining them, can form a ring, at a temperature of from -60° to 200° C.
- a catalyst which is formed from a metallocene as the transition metal compound and a cocatalyst, which comprises using as the metallocene a compound of the formula I ##STR2## in which M 1 is a metal of group IVb, Vb or VIb of the periodic table,
- R 1 and R 2 are identical or different and are a hydrogen atom, a C 1 -C 10 -alkyl group, a C 1 -C 10 -alkoxy group, a C 6 -C 10 -aryl group, a C 6 -C 10 -aryloxy group, a C 2 -C 10 -alkenyl group, a C 7 -C 40 -arylalkyl group, a C 7 -C 40 -alkylaryl group, a C 8 -C 40 -arylalkenyl group or a halogen atom,
- the radicals R 3 are identical or different and are a hydrogen atom, a halogen atom, a C 1 -C 10 -alkyl group, which can be halogenated, a C 6 -C 10 -aryl group, which can be halogenated, or a --NR 2 10 , --SR 10 , OSiR 3 10 , --SiR 3 10 or --PR 2 10 radical, in which R 10 is a halogen atom, a C 1 -C 10 -alkyl group or a C 6 -C 10 -aryl group,
- R 4 to R 6 are identical or different and have the meaning given for R 3 with the proviso that R 4 and R 6 are not hydrogen,
- R 7 is ##STR3## ⁇ BR 11 , ⁇ AlR 11 , --Ge--, --Sn--, --O--, --S--, ⁇ SO, ⁇ SO 2 ⁇ NR 11 , ⁇ CO, ⁇ PR 11 or ⁇ P(O)R 11
- R 11 , R 12 and R 13 are identical or different and are a hydrogen atom, a halogen atom, a C 1 -C 10 -alkyl group, a C 1 -C 10 -fluoroalkyl group, a C 6 -C 10 -aryl group, a C 6 -C 10 -fluoroaryl group, a C 1 -C 10 -alkoxy group, a C 2 -C 10 -alkenyl group a C 7 -C 40 -arylalkyl group, a C 8 -C 40 -arylalkenyl group or a C 7 -C 40 -alkylaryl group, or R 11 and R 12 or R 11 and R 13 in each case with the atoms joining them, form a ring,
- M 2 is silicon, germanium or tin
- R 8 and R 9 are identical or different and have the meaning given for R 11 and
- n and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2.
- Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine or chlorine.
- the present invention furthermore relates to the polyolefins prepared by the process described.
- the catalyst to be used for the process according to the invention comprises a cocatalyst and a metallocene of the formula I.
- M 1 is a metal of group IVb, Vb or VIb of the periodic table, for example titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten, preferably zirconium, hafnium and titanium.
- R 1 and R 2 are identical or different and are a hydrogen atom, a C 1 -C 10 -, preferably C 1 -C 3 -alkyl group, a C 1 -C 10 -, preferably C 1 -C 3 -alkoxy group, a C 6 -C 10 -, preferably C 6 -C 8 -aryl group, a C 6 -C 10 -, preferably C 6 -C 8 -aryloxy group, a C 2 -C 10 -, preferably C 2 -C 4 -alkenyl group, a C 7 -C 40 -, preferably C 7 -C 10 -arylalkyl group, a C 7 -C 40 -, preferably C 7 -C 12 -alkylaryl group, a C 8 -C 40 -, preferably C 8 -C 12 -arylalkenyl group or a halogen atom, preferably chlorine.
- the radicals R 3 are identical or different and are a hydrogen atom, a halogen atom, preferably a fluorine, chlorine or bromine atom, a C 1 -C 10 -, preferably C 1 -C 4 -alkyl group, which can be halogenated, a C 6 -C 10 -, preferably C 6 -C 9 -aryl group, which can be halogenated, or a --NR 2 10 --SR 10 , --OSiR 3 10 , --SiR 3 10 or --PR 2 10 radical in which R 10 is a halogen atom, preferably a chlorine atom, or a C 1 -C 10 -, preferably C 1 -C 3 -alkyl group or C 6 -C 10 -, preferably C 6 -C 8 -aryl group.
- R 3 particularly preferably is hydrogen, C 1 -C 4 -alkyl or C 6 -C 9 -aryl.
- R 4 to R 6 are identical or different and have the meaning described for R 3 with the proviso that R 4 and R 6 may not be hydrogen
- R 4 to R 6 are (C 1 -C 4 )-alkyl or C 6 -C 9 -aryl, both of which can be halogenated, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, trifluoromethyl, phenyl, tolyl or mesityl, in particular methyl, isopropyl or phenyl.
- R 7 is ##STR4## ⁇ BR 11 ⁇ AlR 11 --GE--, --Sn--, --O--, --S--, ⁇ SO, ⁇ SO 2 ⁇ NR 11 ⁇ CO, ⁇ PR 11 or ⁇ P(O)R 11 in which R 11 , R 12 and R 13 are identical or different and are a hydrogen atom, a halogen atom, a C 1 -C 10 -, preferably C 1 -C 4 -alkyl group, in particular the methyl group, a C 1 -C 10 -fluoroalkyl group, preferably the CF 3 group, a C 6 -C 10 -, preferably C 6 -C 8 -aryl group, a C 6 -C 10 -fluoroaryl group, preferably the pentafluorophenyi group, a C 1 -C 10 -, preferably C 1 -C 4 -alkoxy group, in particular the methoxy group, a C 2 -
- M 2 is silicon, germanium or tin, preferably silicon and germanium.
- R 7 is preferably ⁇ CR 11 R 12 ⁇ SiR 11 R 12 ⁇ GeR 11 R 12 , --O--, --S--, ⁇ SO, ⁇ PR 11 or ⁇ P(O)R 11 .
- R 8 and R 9 are identical or different and have the meaning given for R 11 .
- n and n are identical or different and are zero, 1 or 2, preferably zero or 1, m plus n being zero, 1 or 2, preferably zero or 1.
- R 5 is other than hydrogen and has the meanings of R 4 and R 6 .
- the chiral metallocenes are preferably employed as the racemate.
- the pure R- or S-form can also be used.
- Optically active polymer can be prepared with these pure stereoisomeric forms.
- the meso form of the metallocenes should be removed, since the polymerizationactive center (the metal atom) in these compounds is no longer chiral, because of mirror symmetry on the central metal, and no highly isotactic polymer can therefore be produced. If the meso form is not removed, atactic polymer is also formed, alongside isotactic polymer. This may be entirely desirable for certain uses--flexible shaped articles, for example.
- the compounds H 2 R c and H 2 R d are prepared by reaction of a compound IV ##STR7## with a compound V ##STR8## or an anhydride thereof, in the presence of a Friedel-Crafts catalyst.
- X 1 and X 2 are a nucleo philic leaving group, such as, for example, halogen, the hydroxyl group or a tosyl group; in particular bromine or chlorine.
- the indanones can be obtained in the form of two structural isomers of the formula VI or VIa, depending on the substitution pattern on the aromatic radical. These isomers can be reduced, in the pure form or as a mixture, by methods known from the literature using reducing agents such as NaBH 4 or LiAlH 4 to give the corresponding indanols, and these can then be dehydrated with acids, such as sulfuric acid, oxalic acid or p-toluenesulfonic acid, or by treatment with dehydrating substances.
- reducing agents such as NaBH 4 or LiAlH 4
- Suitable Friedel-Crafts catalysts are, for example, AlCl 3 , AlBr 3 , FeCl 3 SbCl 5 SnCl 4 , BF 3 , TiCl 4 , ZnCl 2 , HF, H 2 SO 4 , polyphosphoric acid, H 3 PO 4 or an Alcl 3 NaCl melt; in particular AlCl 3 .
- the starting compounds of the formulae IV and V are known and are commercially obtainable, or they can be preDared by processes which are known from the literature.
- reaction is carried out in an inert solvent.
- Methylene chloride or CS 2 is preferably employed. If the starting components are liquid, a solvent can also be dispensed with.
- the molar ratios of the starting compounds can vary within wide limits.
- the molar ratio of compound I:II: catalyst is preferably 1:0.5-1.5:1-5; in particular 1:1:2.5-3.
- the reaction temperature is preferably 0° C. to 130° C. in particular 25 ° C. to 80 ° C.
- reaction times as a rule vary between 30 minutes and 100 hours, preferably between 2 hours and 30 hours.
- a mixture of the compounds IV and V is initially introduced into the reaction vessel and the Friedel-Crafts catalyst is metered in.
- the reverse sequence of addition is also possible.
- indanones of the formula VI or VIa can be purified by distillation, column chromatography or crystallization
- the substituted indenes can be obtained as double bond isomers (VII/VIIa). These can be purified from byproducts by distillation, column chromatography or crystallization.
- radicals R 14 are identical and are methyl, isobutyl, phenyl or benzyl, particularly preferably methyl.
- radicals R 14 are different, they are preferably methyl and hydrogen, or alternatively methyl and isobutyl, hydrogen and isobutyl preferably being present to the extent of 0.01-40% (number of radicals R 14 ).
- the aluminoxane can be prepared in various ways by known processes.
- One of the methods is, for example, to react an aluminum-hydrocarbon compound and/or a hydride-aluminum-hydrocarbon compound with water (gaseous, solid, liquid or bonded--for example as water of crystallization) in an inert solvent (such as, for example, toluene).
- an inert solvent such as, for example, toluene.
- AlR 3 +AlR' 3 two different aluminum triaikyls (AlR 3 +AlR' 3 ), corresponding to the desired composition, are reacted with water (cf. S. Pasynkiewicz, Polyhedron 9 (1990) 429 and EP-A 302 424).
- the metallocene preactivated with an aluminoxane of the formula (II) and/or (III) before use in the polymerization reaction. In this way, the polymerization activity is increased significantly and the particle morphology is improved.
- the preactivation of the transition metal compound is carried out in solution.
- the metallocene is dissolved in a solution of the alum/noxane in an inert hydrocarbon.
- An aliphatic or aromatic hydrocarbon is a suitable inert hydrocarbon.
- Toluene is preferably used.
- the concentration of the aluminoxane in the solution is in the range from about 1% by weight up to the saturation limit, preferably 5 to 30% by weight, in each case based on the total solution.
- the metallocene can be employed in the same concentration, but it is preferably employed in an amount of 10 -4 -1 mol per mol of aluminoxane.
- the preactivation time is 5 minutes to 60 hours, preferably 5 to 60 minutes.
- the preactivation is carried out at a temperature of from -78° C. to 100° C., preferably 0° to 70° C.
- the metallocene can also be prepolymerized or applied to a support.
- the (or one of the) olefin(s) employed in the polymerization is (are) preferably used for the prepolymerization.
- Suitable supports are, for example, silica gels, aluminum oxides, solid aluminoxane or other inorganic support materials.
- a polyolefin powder in finely divided form is also a suitable support material.
- compounds of the formulae R x NH 4-x BR' 4 , R x PH 4-x BR' 4 , R 3 CBR' 4 , or BR' 3 can be used as suitable cocatalysts instead of or alongside an aluminoxane.
- x is a number from 1 to 4, preferably 3, the radicals R are identical or different, preferably identical, and are C 1 -C 10 -alkyl or C 6 -C 18 -aryl, or 2 radicals R, together with the atom joining them, form a ring, and the radicals R' are identical or different, preferably identical, and are C 6 -C 18 -aryl, which can be substituted by alkyl, haloalkyl or fluorine.
- R is ethyl, propyl, butyl or phenyl and R' is phenyl, pentafluorophenyl, 3,5-bistrifluoromethylphenyl, mesityl, xylyl or tolyl (cf. EP-A 277 003, EP-A 277 004 and EP-A 426 638).
- the actual (active) polymerization catalyst comprises the reaction product of the metallocene and one of the compounds mentioned. This reaction product is therefore preferably first prepared in a separate step outside the polymerization reactor, using a suitable solvent.
- any compound which, on the basis of its Lewis acidity, can convert the neutral metallocene into a cation and can stabilize this ("labile coordination") is suitable according to the invention as the cocatalyst.
- the cocatalyst or the anion formed from it should not undergo other reactions with the metallocene cation formed (cf. EP-A 427 697).
- purification with an aluminum alkyl for example AlMe 3 or AIEt 3 , is advantageous. This purification either can be carried out in the polymerization system itself, or the olefin is brought into contact with the A1 compound before addition into the polymerization system, and is then separated off again.
- an aluminum alkyl for example AlMe 3 or AIEt 3
- the polymerization or copolymerization is carried out in a known manner in solution, in suspension or in the gas phase, continuously or discontinuously, in one or more stages at a temperature of from -60° to 200° C., preferably 30°to 80° C., particularly preferably 50° to 80° C.
- Olefins of the formula R a --CH ⁇ CH--R b are polymerized or copolymerized.
- R a and R b are identical or different and are a hydrogen atom or an alkyl radical having 1 to 14 carbon atoms.
- R a and R b with the carbon atoms joining them, can also form a ring.
- olefins examples include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-l-pentene, 1-octene, norbornene or norbonadiene.
- propylene and ethylene are polymerized.
- hydrogen is added as a molecular weight regulator and/or to increase the activity.
- the overall pressure in the polymerization system is 0.5 to 100 bar. Polymerization in the pressure range of 5 to 64 bar, which is of particular industrial interest, is preferred.
- the metallocene is used here in a concentration, based on the transition metal, of 10 -3 to 10 -8 , preferably 10 -4 to 10 7 mol of transition metal per dm 3 of solvent or per dm 3 of reactor volume.
- the aluminoxane is used in a concentration of 10 -5 to 10 -1 mol, preferably 10 -4 to 10 -2 mol per dm 3 of solvent or per dm 3 of reactor volume.
- the other cocatalysts mentioned are used in approximately equimolar amounts to the metallocene. In principle, however, higher concentrations are also possible.
- the polymerization is carried out as suspension or solution polymerization, an inert solvent customary for the Ziegler low pressure process is used.
- an inert solvent customary for the Ziegler low pressure process is used.
- the polymerization is carried out in an aliphatic or cycloaliphatic hydrocarbon; examples of these which may be mentioned are propane, butane, pentane, hexane, heptane, isooctane, cyclohexane and methylcyclohexane.
- a gasoline or hydrogenated diesel oil fraction furthermore can be used.
- Toluene can also be used.
- the polymerization is preferably carried out in the liquid monomer.
- the monomers are metered into the reaction vessel in gaseous or liquid form.
- the polymerization can be of any desired length, since the catalyst system to be used according to the invention shows only a slight decrease in polymerization activity with respect to time.
- the process according to the invention is distinguished by the fact that, in the temperature range of between 50°and 80° C., which is of particular industrial interest, the metallocenes described produced polymers of high molecular weight, high stereospecificity and good particle morphology.
- the zirconocenes according to the invention advance into a molecular weight range, or even exceed this, which was reserved for the hafnocenes in the previous prior art.
- these hafnocenes had the disadvantage of only a low polymerization activity ant very high catalyst costs, and the polymers prepared with them had a poor powder morphology.
- the mixture was warmed to room temperature in the course of 1 hour, and stirred at this temperature for a further 30 minutes. After the solvent had been stripped off, the orange-brown residue was extracted with 50 ml of hexane. After the solvent had been stripped off, 2.6 g (60% ) of the complex 6 were obtained in the form of a yellow powder. The ratio of the racemate to the meso form was 3: 1. 1.3 g (30% ) of the complex 6 were able to be obtained as the pure racemate (yellow crystalline powder) by recrystallization from hexane.
- the reaction mixture had been warmed to room temperature, it was evaporated completely and the residue was dried under an oil pump vacuum.
- the solid residue comprised a mixture of the racemic form with the meso form in a ratio of 1:1. This residue was first washed with a small amount of hexane. It was then extracted with a total of 120 ml of toluene. The solution was concentrated, anQ left to crystallize at -35° C. 800 mg (28%) of the zirconccene 8 were able to be obtained as the pure racemate in the form of orange-colored crystals.
- Mass spectrum 530 M + (with respect to 90 Zr), correct isotope pattern, correct disintegration.
- Mass spectrum 704 M + (with respect to 90 Zr), correct isotope pattern, correct disintegration.
- Mass spectrum 612 M + (with respect to 90 Zr), correct isotope pattern, correct disintegration.
- a dry 24 dm 3 reactor was flushed with propylene and filled with 12 dm 3 of liquid propylene.
- the wine-red solution was then introduced into the reactor, the mixture was heated up to 75° C (10° C/minute>by supplying heat, and the polymerization system was kept at 75° C, by cooling, for 1 hour. The polymerization was stopped by gassing off the excess monomer. 2.11 kg of polypropylene were obtained. The activity of the metallocene was thus 603 kg of polypropylene/g of metallocene ⁇ hour.
- Example 1 was repeated with the metallocene rac-dimethy1silyl(2-methyl-l-indenyl) 2 zirconium dichloride.
- the isotactic index (II) was 96.0%.
- Example 1 was repeated with the metallocene rac-dimethylsilyl(2-methyl-4-isopropyl-l-indenyl)2zirconium dichloride.
- Example 1 was repeated with the metallocene rac-dimethylsilyl (1-indenyl ) 2 zirconium dichloride.
- Example 1 was repeated with the metallocene rac-dimethylsilyl(4,7-dimethyl-l-indenyl)2zirconium dichloride.
- the four comparison experiments show that polypropylenes prepared using the metallocenes substituted in various ways on the indenyl ligand and polypropylenes prepared using the unsubstituted metallocene show distinct differences in molecular weight.
- the range extends from the wax range (Comparison Example 4) to the very high molecular weight polymer acccrding to the invention (Example 1).
- Example 1 was repeated with the metallocene rac-dimethyl-silyl(3-methyl-l-indenyl)2zirconium dichloride. A polypropylene having an unacceptable isotactic index and a low molecular weight was obtained.
- Example 1 was repeated with 5.1 mg (0.008 mmoi) of the metallocene rac-dimethylsilyl(2-methyl-4,6-diisopropyl1-indenyl)2zirconium dichloride.
- the polymerization temperature was 50° C. 0.85 kg of polypropylene corresponding to a metallocene activity of 166.7 kg of polypropylene/g of metallocene ⁇ hour, was obtained.
- VN 454 cm 3 /g
- M w 498,500 g/mol
- MFI (230/5) 1.7 dg/minute.
- Example 1 was repeated with 9.6 mg (0.015 mmol) of the metallocene rac-dimethylsilyl(2-methyl-4,6-diisopropyl1-indenyl)2zirconium dichloride at a polymerization temperature of 30° C. Although this polymerization temperature is not very suitable on a large industrial scale, the experiment demonstrates the molecular weight potential and the high activity of the metallocene.
- VN 645 cm 3 /g
- M w 867,000 g/mol
- MFI (230/5) 0.26 dg/minute.
- Example 1 was repeated with 3.3 mg (0.006 mmol) of the metallocene rac-dimethylsilyl(2,4,6-trimethyl-1indenyl) 2 zirconium dichloride. 1.83 kg of polypropylene were obtained. The metallocene activity was thus 555 kg of polypropylene/g of metallocene ⁇ hour.
- VN 165 cm 3/ g
- M w 186,000 g/mol
- M w /M n 2.0
- m.p. 145° C
- MFI (230/5) 40 dg/minute.
- Example 6 was repeated with 7.9 mg (0.011 mmol) of the metallocene at a polymerization temperature of 50° C.
- the metallocene activity was 156 kg of polypropylene/g of metallocene ⁇ hour.
- VN 498 cm 3 /g
- M w 586,000 g/mol
- M w /M n 3.0
- m.p. 147° C.
- MFI (230/5) 1.5 dg/minute.
- Example 6 was repeated with 12.0 mg (0.017 mmol) of the metallocene at a polymerization temperature of 30° C.
- the metallocene activity was 58.3 kg of polypropylene/g of metallocene ⁇ hour.
- VN 811 cm 3 /g
- M w 1,020,000 g/mol
- M w /M n 2.3
- m.p. 148° C
- MFI (230/5) 0.2 dg/minute.
- Example 7 was repeated with 2.8 mg of the metallocene. Before the polymerization, 24 Ndm.sup. 3 of hydrogen were metered into the reactor. The metallocene activity was 600 kg of polypropylene/g of metallocene ⁇ hour.
- VN 30 cm 3/ g
- M w 18,250 g/mol
- M w /M n 2.5, m.p. 144° C.
- Example 7 was repeated with 3.5 mg of the metailocene and with 60 Ndm s of hydrogen.
- the metallocene activity was 650 kg of polypropylene/g of metallocene ⁇ hour.
- VN 14 cm 3 /g
- M w 6,300 g/mol
- Examples 9 and 10 demonstrate the excellent responsiveness of the metallocene to hydrogen for establishing a desired molecular weight. With small amounts of hydrogen, the chain length can be varied within wide limits into the wax range.
- a dry 150dm 3 reactor was flushed with nitrogen and filled at 20° C. with 80 dm 3 of a dearomatized gasoline cut having a boiling range of 100°-120° C.
- the gas space was then flushed free from nitrogen; by forcing in 2 bar of propylene and letting down 5 times.
- the reactor was kept at a polymerization temperature of 50° C. for 18 hours, by cooling, the polymerization was then stopped by addition of 2 bar of CO 2 gas, and the polymer formed was separated off from the suspension medium on a pressure suction filter.
- the product was dried for 24 hours at 80° C/200 mbar. 20.9 kg of polymer powder, corresponding to a metallocene activity of 74.9 kg of polypropylene/g of metallocene ⁇ hour., were obtained.
- VN 424 cm 3 /g
- M w 518,000 g/mol
- M w /M n 2.0
- m.p. 149° C
- MFI (230/5) 4.1 dg/minute.
- a dry 150 dm 3 reactor was filled as in Example 11. 18.9 mg of rac-phenyl(methyl)silyl(2-methyl-4,6-diiso-propyl-1-indenyl) 2 zirconium dichloride were dissolved in 32 ml of a toluene solution of methylaluminoxane (50 mmol), and the solution was introduced into the reactor.
- the polymerization was carried out at 70° C for 5 hours in a first stage.
- 3 kg of ethylene were then rapidly added at 55° C, and after polymerization at 55° C for a further 3 hours, the reaction was stopped with CO 2 gas. 25.9 kg of block copolymer powder were obtained.
- VN 344 cm 3 /g
- M w 399,000 g/mol
- M w /M n 3.8
- MFI (230/5) 5.0 dg/minute.
- the block copolymer contained 10.8% by weight of ethylene. Fractionation showed a content of 27.5% by weight of ethylene/propylene rubber. The glass transition temperature of the rubber was -51° C.
- Example 1 was repeated at a polymerization temperature of 70 ° C with 4.0 mg of the metallocene rac-1,2-ethanediylbis (2-methyl-4 , 6-diisopropyl-1-indenyl ) zirconium dichloride.
- the metallocene activity was 529 kg of polypropylene/g of metallocene ⁇ hour.
- VN 149 cm 3 /g
- M w /M n 1.9
- m.p. 141° C
- MFI (230/5) 74 dg/minute.
- Example 14 was repeated with 4.0 mg of the metallocene rac-butanediylbis(2-methyl-4,6-diisopropyl-l-indenyl)zirconiumdichloride.
- the metallocene activity was 319 ko of polypropylene/g of metallocene ⁇ hour.
- VN 295 cm 3 /g
- M w 368,500 g/mol
- MFI (230/5) 4.0 dg/minute.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
______________________________________ VN = viscosity number in cm.sup.3 /g M.sub.w = weight-average molecular weight in g/mol determined by gel permeation chromatography M.sub.w /M.sub.n = polydispersity m.p. = melting point, determined by differential scanning calorimetry (20° C./minute heating up/- cooling down rate) II = isotactic index (II = mm + 1/2mr), determined by .sup.13 C-NMR spectroscopy MFI/(230/5) = melt flow index, measured in accordance with DIN 53735; in dg/min BD = polymer bulk density in g/dm.sup.3 ______________________________________
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/232,368 US5374752A (en) | 1991-11-30 | 1994-04-25 | Process for the preparation of a high molecular weight olefin polymer |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4139596 | 1991-11-30 | ||
DE4139596 | 1991-11-30 | ||
US07/980,643 US5328969A (en) | 1991-11-30 | 1992-11-24 | Process for the preparation of a high molecular weight olefin polymer |
US08/232,368 US5374752A (en) | 1991-11-30 | 1994-04-25 | Process for the preparation of a high molecular weight olefin polymer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/980,643 Division US5328969A (en) | 1991-11-30 | 1992-11-24 | Process for the preparation of a high molecular weight olefin polymer |
Publications (1)
Publication Number | Publication Date |
---|---|
US5374752A true US5374752A (en) | 1994-12-20 |
Family
ID=6446020
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/980,643 Expired - Lifetime US5328969A (en) | 1991-11-30 | 1992-11-24 | Process for the preparation of a high molecular weight olefin polymer |
US08/232,368 Expired - Lifetime US5374752A (en) | 1991-11-30 | 1994-04-25 | Process for the preparation of a high molecular weight olefin polymer |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/980,643 Expired - Lifetime US5328969A (en) | 1991-11-30 | 1992-11-24 | Process for the preparation of a high molecular weight olefin polymer |
Country Status (12)
Country | Link |
---|---|
US (2) | US5328969A (en) |
EP (2) | EP0545303B1 (en) |
JP (1) | JP3464231B2 (en) |
KR (1) | KR100261362B1 (en) |
AT (2) | ATE321015T1 (en) |
AU (1) | AU651914B2 (en) |
CA (1) | CA2084015A1 (en) |
DE (2) | DE59208944D1 (en) |
ES (2) | ES2108072T3 (en) |
RU (1) | RU2111211C1 (en) |
TW (1) | TW318184B (en) |
ZA (1) | ZA929214B (en) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5455365A (en) * | 1992-08-03 | 1995-10-03 | Hoechst Ag | Process for the preparation of an olefin polymer using metallocenes containing specifically substituted indenyl ligands |
US5532396A (en) * | 1993-12-27 | 1996-07-02 | Hoechst Aktiengesellschaft | Metallocene compound |
US5646323A (en) * | 1994-09-09 | 1997-07-08 | Phillips Petroleum Company | Process for preparing metallocene compounds |
US5714555A (en) * | 1992-09-04 | 1998-02-03 | Bp Chemicals Limited | Catalyst compositions and process for preparing polyolefins |
AU689915B2 (en) * | 1994-06-20 | 1998-04-09 | Montell Technology Company B.V. | Ethylene copolymers, process for the preparation of ethylene-based polymers and catalyst system used therein |
US5770753A (en) * | 1992-06-27 | 1998-06-23 | Targor Gmbh | Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts |
US5795838A (en) * | 1994-08-09 | 1998-08-18 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst and process for olefin polymerization |
US5840948A (en) * | 1991-11-30 | 1998-11-24 | Targor Gmbh | Process for the preparation of substituted indenes and their use as ligand systems for metallocene catalysts |
US5869570A (en) * | 1996-03-19 | 1999-02-09 | Energy & Environmental International, L.C. | Composition of and process for forming polyalphaolefin drag reducing agents |
US5908903A (en) * | 1995-12-27 | 1999-06-01 | Basf Aktiengesellschaft | Metallocene catalyst systems containing lewis bases |
US6048950A (en) * | 1988-07-30 | 2000-04-11 | Targor Gmbh | Polymer having long isotactic sequences and randomly-distributed ethylene content obtained by polymerizing propylene in presence of specific catalysts |
US6107501A (en) * | 1997-01-30 | 2000-08-22 | Fina Technology, Inc. | Synthesis of metallocenes and enrichment of their rac isomer |
US6143911A (en) * | 1991-08-20 | 2000-11-07 | Mitsubishi Petrochemical Company Limited | Catalyst useful for the polymerization of olefins |
US6174930B1 (en) | 1999-04-16 | 2001-01-16 | Exxon Chemical Patents, Inc. | Foamable polypropylene polymer |
US6207750B1 (en) | 1998-05-13 | 2001-03-27 | Exxon Chemical Patents, Inc. | Propylene homopolymers and methods of making the same |
US6306960B1 (en) | 1998-05-13 | 2001-10-23 | Exxonmobil Chemical Patents Inc. | Articles formed from foamable polypropylene polymer |
US6342565B1 (en) | 1999-05-13 | 2002-01-29 | Exxonmobil Chemical Patent Inc. | Elastic fibers and articles made therefrom, including crystalline and crystallizable polymers of propylene |
US6348547B1 (en) | 1996-04-30 | 2002-02-19 | Basf Aktiengesellschaft | Oxidized metallocene-polyolefin waxes |
USRE37573E1 (en) * | 1990-11-12 | 2002-03-05 | Basell Polyolefin Gmbh | Process for the preparation of an olefin polymer using metallocenes containing specifically substituted indenyl ligands |
US6500563B1 (en) | 1999-05-13 | 2002-12-31 | Exxonmobil Chemical Patents Inc. | Elastic films including crystalline polymer and crystallizable polymers of propylene |
US6512019B1 (en) | 1999-11-04 | 2003-01-28 | Exxonmobil Chemical Patents Inc. | Polypropylene copolymer foams and their use |
US6537478B1 (en) | 1997-09-01 | 2003-03-25 | Basell Polyolefine Gmbh | Injection moulding articles made of metallocene polypropylene |
US6558808B1 (en) | 1994-02-21 | 2003-05-06 | Basell Polyolefine Gmbh | Heat-sealable, polyolefinic multilayer film, process for the production thereof, and the use thereof |
US20030114608A1 (en) * | 2001-12-03 | 2003-06-19 | Fina Technology, Inc. | Method for transitioning between Ziegler-Natta and metallocene catalysts in a bulk loop reactor for the production of polyproylene |
AU764778B2 (en) * | 1998-12-30 | 2003-08-28 | Union Carbide Chemicals & Plastics Technology Corporation | Compositions of preactivated unsupported catalyst having a given concentration and methods of using them |
US20030220190A1 (en) * | 2000-02-08 | 2003-11-27 | Rix Francis C | Method of preparing group 14 bridged biscyclopentadienyl ligands |
US20030236365A1 (en) * | 2002-06-24 | 2003-12-25 | Fina Technology, Inc. | Polyolefin production with a high performance support for a metallocene catalyst system |
US20040077806A1 (en) * | 1999-12-10 | 2004-04-22 | Weiqing Weng | Propylene diene copolymerized polymers |
US6730752B2 (en) | 1996-03-19 | 2004-05-04 | Energy & Environmental International, L.C. | Methods for forming amorphous ultra-high molecular weight polyolefins and drag reducing compositions comprising amorphous ultra-high molecular weight polyolefins |
US6730750B2 (en) | 2001-01-16 | 2004-05-04 | Energy & Environmental International, L.C. | Methods for forming amorphous ultra-high molecular weight polyolefins for use as drag reducing agents |
US20040087750A1 (en) * | 1999-12-10 | 2004-05-06 | Agarwal Pawan Kumar | Propylene diene copolymers |
US20040087749A1 (en) * | 1999-12-10 | 2004-05-06 | Agarwal Pawan Kumar | Articles formed from propylene diene copolymers |
US20040110886A1 (en) * | 1999-12-22 | 2004-06-10 | Karandinos Anthony G. | Polypropylene-based adhesive compositions |
US6750284B1 (en) | 1999-05-13 | 2004-06-15 | Exxonmobil Chemical Patents Inc. | Thermoplastic filled membranes of propylene copolymers |
US6784269B2 (en) | 1998-05-13 | 2004-08-31 | Exxonmobil Chemical Patents Inc. | Polypropylene compositions methods of making the same |
US6787618B1 (en) | 1995-12-01 | 2004-09-07 | Basell Polypropylen Gmbh | Metallocene compound and high molecular weight copolymers of propylene and olefins having two or four to thirty-two carbon atoms |
US6815011B2 (en) | 2000-11-27 | 2004-11-09 | Energy & Environmental International, L.C. | Alpha olefin monomer partitioning agents for drag reducing agents and methods of forming drag reducing agents using alpha olefin monomer partitioning agents |
US20040236025A1 (en) * | 2003-01-17 | 2004-11-25 | Fina Technology, Inc. | High gloss polyethylene articles |
US20050234198A1 (en) * | 2004-04-20 | 2005-10-20 | Fina Technology, Inc. | Heterophasic copolymer and metallocene catalyst system and method of producing the heterophasic copolymer using the metallocene catalyst system |
US7012046B2 (en) | 2001-06-08 | 2006-03-14 | Eaton Gerald B | Drag reducing agent slurries having alfol alcohols and processes for forming drag reducing agent slurries having alfol alcohols |
US20060116490A1 (en) * | 2004-12-01 | 2006-06-01 | Paczkowski Nicola S | Metallocene catalysts, their synthesis and their use for the polymerization of olefins |
US20060264587A1 (en) * | 2005-05-17 | 2006-11-23 | Thorsten Sell | Catalyst composition for olefin polymerization |
WO2008124040A1 (en) | 2007-04-09 | 2008-10-16 | Exxonmobil Chemical Patents Inc. | Soft heterogeneous isotactic polyroplene compositions |
US20090053959A1 (en) * | 2007-08-21 | 2009-02-26 | Sudhin Datta | Soft and Elastic Nonwoven Polypropylene Compositions |
US20090111946A1 (en) * | 2007-10-26 | 2009-04-30 | Sudhin Datta | Soft Heterogeneous Isotactic Polypropylene Compositions |
US20090153546A1 (en) * | 2003-08-28 | 2009-06-18 | Sharp Kabushiki Kaisha | Driving circuit for display device, and display device |
US7582708B2 (en) | 2001-06-13 | 2009-09-01 | Beta Technologie Ag | Bulk polymerization reactor methods |
US20100168364A1 (en) * | 2006-04-18 | 2010-07-01 | Borealis Technology Oy | Multi-branched polypropylene |
WO2011159400A1 (en) | 2010-06-15 | 2011-12-22 | Exxonmobil Chemical Patents Inc. | Nonwoven fabrics made from polymer blends and methods for making same |
WO2012149391A1 (en) | 2011-04-28 | 2012-11-01 | Adherent Laboratories, Inc. | Polyolefin based hot melt adhesive composition |
EP2573091A1 (en) | 2011-09-23 | 2013-03-27 | Lummus Novolen Technology Gmbh | Process for recycling of free ligand from their corresponding metallocene complexes |
WO2015161241A1 (en) | 2014-04-18 | 2015-10-22 | IFS Industries Inc. | Low density and high performance packaging hot melt |
WO2020056119A1 (en) | 2018-09-14 | 2020-03-19 | Fina Technology, Inc. | Polyethylene and controlled rheology polypropylene polymer blends and methods of use |
WO2020172306A1 (en) | 2019-02-20 | 2020-08-27 | Fina Technology, Inc. | Polymer compositions with low warpage |
WO2021083309A1 (en) | 2019-10-30 | 2021-05-06 | 中国石油化工股份有限公司 | Metallocene compound, and preparation method therefor and application thereof |
WO2022232123A1 (en) | 2021-04-26 | 2022-11-03 | Fina Technology, Inc. | Thin single-site catalyzed polymer sheets |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5466766A (en) * | 1991-05-09 | 1995-11-14 | Phillips Petroleum Company | Metallocenes and processes therefor and therewith |
JPH072936A (en) * | 1992-07-10 | 1995-01-06 | Fina Technol Inc | Polyvinylidene fluoride with good mechanical characteristics and good thermochemical stability and its production |
DE59310131D1 (en) * | 1992-08-03 | 2001-01-25 | Targor Gmbh | Process for the preparation of an olefin polymer using special metallocenes |
USRE39156E1 (en) * | 1992-08-15 | 2006-07-04 | Basell Polyolefine Gmbh | Process for the preparation of polyolefins |
EP0882731A3 (en) * | 1992-08-15 | 2000-05-31 | TARGOR GmbH | Bridged metallocene compounds and their use as olefin polymerization catalysts |
TW275076B (en) * | 1992-12-02 | 1996-05-01 | Hoechst Ag | |
JPH06271594A (en) * | 1993-03-22 | 1994-09-27 | Mitsui Petrochem Ind Ltd | Process for producing cyclopentadienyl group-containing silicon compound or cyclopentadienyl group-containing germanium compound |
DE69426043T3 (en) * | 1993-06-07 | 2015-06-18 | Mitsui Chemicals, Inc. | polypropylene |
CA2125246C (en) * | 1993-06-07 | 2001-07-03 | Junichi Imuta | Transition metal compound and olefin polymerization catalyst using the same |
IT1264483B1 (en) * | 1993-06-30 | 1996-09-23 | Spherilene Srl | ELASTOMERIC COPOLYMERS OF ETHYLENE WITH PROPYLENE |
IT1271406B (en) * | 1993-09-13 | 1997-05-28 | Spherilene Srl | PROCEDURE FOR THE PREPARATION OF ETHYLENE POLYMERS AND OBTAINED PRODUCTS |
DE4333128A1 (en) * | 1993-09-29 | 1995-03-30 | Hoechst Ag | Process for the preparation of polyolefins |
DE4333569A1 (en) * | 1993-10-01 | 1995-04-06 | Hoechst Ag | Process for olefin polymerization |
JP3423378B2 (en) * | 1993-11-12 | 2003-07-07 | 三井化学株式会社 | Novel transition metal compound, olefin polymerization catalyst component comprising the transition metal compound, olefin polymerization catalyst containing the olefin polymerization catalyst component, and olefin polymerization method |
ES2154664T3 (en) * | 1993-11-24 | 2001-04-16 | Targor Gmbh | METALOCENOS, PROCEDURES FOR OBTAINING, AND YOUR EMPLOYMENT AS CATALYSTS. |
DE4344688A1 (en) * | 1993-12-27 | 1995-06-29 | Hoechst Ag | Metallocene compound |
CA2149724A1 (en) * | 1994-05-19 | 1995-11-20 | Yoshinao Ito | Method for purification of .alpha. olefins for polymerization use and methd for production of poly-.alpha.-olefins |
KR100378973B1 (en) * | 1994-06-24 | 2003-08-19 | 엑손모빌 케미칼 패턴츠 인코포레이티드 | Polymerization catalyst systems, their production and use |
RU2153507C2 (en) * | 1994-06-24 | 2000-07-27 | Эксон Кемикэл Пейтентс Инк. | Catalyst system for polymerization of olefins, preparation thereof, and propylene polymerization process |
EP0739897A1 (en) | 1995-04-27 | 1996-10-30 | Hoechst Aktiengesellschaft | Polynuclear metallocene compound, process for preparing it and its use as catalyst |
DE19544709A1 (en) * | 1995-11-30 | 1997-06-05 | Basf Ag | Biaxially oriented polypropylene film made of metallocene polypropylene |
DE19548788A1 (en) | 1995-12-27 | 1997-07-03 | Hoechst Ag | Foils and layers |
US6225426B1 (en) | 1996-04-10 | 2001-05-01 | Uniroyal Chemical Company, Inc. | Process for producing polyolefin elastomer employing a metallocene catalyst |
US5945365A (en) * | 1996-05-20 | 1999-08-31 | Fina Technology, Inc. | Stereorigid bis-fluorenyl metallocenes |
US6211300B1 (en) | 1998-04-10 | 2001-04-03 | Chisso Corporation | Propylene-ethylene block copolymer compositions and processes for production thereof |
CA2341167A1 (en) * | 1998-08-26 | 2000-03-09 | Exxon Chemical Patents Inc. | Branched polypropylene compositions |
US6225427B1 (en) | 1998-10-15 | 2001-05-01 | Uniroyal Chemical Company, Inc. | Olefin polymerization process employing metallocene catalyst provided by cocatalyst activation of a metallocene procatalyst |
US6858767B1 (en) | 2000-08-11 | 2005-02-22 | Uniroyal Chemical Company, Inc. | Process for producing liquid polyalphaolefin polymer, metallocene catalyst therefor, the resulting polymer and lubricant containing same |
MXPA03001587A (en) * | 2000-08-22 | 2003-09-10 | Exxonmobil Chem Patents Inc | POLYPROPYLENE POLYMERS. |
US7037615B2 (en) * | 2001-02-12 | 2006-05-02 | Delphi Technologies, Inc. | Trapping method and system for energy conversion devices |
DE10126265A1 (en) | 2001-05-29 | 2002-12-05 | Basell Polyolefine Gmbh | Process for the depletion of inorganic by-products and organometallic by-products in the production of metallocenes and the economic recovery of the starting materials used |
US20080153997A1 (en) * | 2006-12-20 | 2008-06-26 | Exxonmobil Research And Engineering | Polymer production at supercritical conditions |
US8008412B2 (en) * | 2002-09-20 | 2011-08-30 | Exxonmobil Chemical Patents Inc. | Polymer production at supersolution conditions |
US7868197B2 (en) | 2005-12-14 | 2011-01-11 | Exxonmobil Chemical Patents Inc. | Halogen substituted heteroatom-containing metallocene compounds for olefin polymerization |
US7601255B2 (en) | 2006-09-06 | 2009-10-13 | Chemtura Corporation | Process for removal of residual catalyst components |
US8242237B2 (en) | 2006-12-20 | 2012-08-14 | Exxonmobil Chemical Patents Inc. | Phase separator and monomer recycle for supercritical polymerization process |
ES2446294T3 (en) * | 2007-06-04 | 2014-03-07 | Exxonmobil Chemical Patents Inc. | Polymerization of propylene in a homogeneous system under super dissolution conditions |
US7812104B2 (en) * | 2008-01-18 | 2010-10-12 | Exxonmobil Chemical Patents Inc. | Production of propylene-based polymers |
US8318875B2 (en) | 2008-01-18 | 2012-11-27 | Exxonmobil Chemical Patents Inc. | Super-solution homogeneous propylene polymerization and polypropylenes made therefrom |
US7872080B2 (en) | 2008-03-06 | 2011-01-18 | Sumitomo Chemical Company, Limited | Processes for producing a catalyst component for addition polymerization, a catalyst and an addition polymer |
DE102008040736B4 (en) | 2008-07-25 | 2019-03-28 | Symrise Ag | Process for the preparation of alkoxy-substituted 1-indanones |
JP5181104B2 (en) * | 2008-12-10 | 2013-04-10 | 株式会社プライムポリマー | Propylene block copolymer |
KR101359198B1 (en) | 2009-03-30 | 2014-02-05 | 미쓰이 가가쿠 가부시키가이샤 | Copolymer of olefin and conjugated diene, and process for producing same |
US8067652B2 (en) | 2009-08-13 | 2011-11-29 | Chemtura Corporation | Processes for controlling the viscosity of polyalphaolefins |
JP2011213804A (en) | 2010-03-31 | 2011-10-27 | Sumitomo Chemical Co Ltd | Preliminary polymerization method, preliminary polymerized catalyst component for addition polymerization, and method for producing addition polymer using the same |
JP2013082891A (en) | 2011-09-28 | 2013-05-09 | Sumitomo Chemical Co Ltd | Washing method, addition polymerization method, prepolymerization method, prepolymerized catalytic component for addition polymerization, and method for producing addition polymer using the same |
JP6295506B2 (en) | 2011-12-07 | 2018-03-20 | 住友化学株式会社 | Polymerization method using surfactant-containing particles |
EP2824107B1 (en) | 2012-05-08 | 2017-01-18 | Lg Chem, Ltd. | Ansa-metallocene compound and method for preparing supported catalyst using same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3726067A1 (en) * | 1987-08-06 | 1989-02-16 | Hoechst Ag | METHOD FOR PRODUCING 1-OLEFIN POLYMERS |
DE3826075A1 (en) * | 1988-07-30 | 1990-02-01 | Hoechst Ag | 1-OLEFIN ISO BLOCK POLYMER AND METHOD FOR THE PRODUCTION THEREOF |
EP0363029A2 (en) * | 1988-09-14 | 1990-04-11 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst component, olefin polymerization catalyst and process for the polymerization of olefins |
US5017714A (en) * | 1988-03-21 | 1991-05-21 | Exxon Chemical Patents Inc. | Silicon-bridged transition metal compounds |
US5132262A (en) * | 1990-02-26 | 1992-07-21 | Basf Aktiengesellschaft | Soluble catalyst systems for the polymerization of C2 - to C10 -alk-l-enes |
EP0336128B1 (en) * | 1988-03-12 | 1993-01-27 | Hoechst Aktiengesellschaft | Process for preparing an alpha-olefin polymer |
US5243001A (en) * | 1990-11-12 | 1993-09-07 | Hoechst Aktiengesellschaft | Process for the preparation of a high molecular weight olefin polymer |
US5278264A (en) * | 1991-08-26 | 1994-01-11 | Hoechst Ag | Process for the preparation of an olefin polymer |
US5296434A (en) * | 1991-06-18 | 1994-03-22 | Basf Aktiengesellschaft | Soluble catalyst systems for the preparation of polyalk-1-enes having high molecular weights |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE754556A (en) * | 1969-08-08 | 1971-02-08 | Merck & Co Inc | INDENYL-ACETIC ACIDS AND PROCESS FOR THE |
DE2244761A1 (en) * | 1972-09-09 | 1974-03-14 | Schering Ag | INDAN AND TETRALINE DERIVATIVES |
JPS5684748A (en) * | 1979-12-14 | 1981-07-10 | Japan Atom Energy Res Inst | Radiation-resistant resin composition |
JPS6015655B2 (en) * | 1979-12-14 | 1985-04-20 | 日本原子力研究所 | Method for producing a flame-retardant polymer composition molded article |
IL89525A0 (en) * | 1988-03-21 | 1989-09-10 | Exxon Chemical Patents Inc | Silicon-bridged transition metal compounds |
DE4121368A1 (en) * | 1991-06-28 | 1993-01-07 | Hoechst Ag | CATALYST AND METHOD FOR THE PRODUCTION OF HIGH-MOLECULAR POLYOLEFINES |
DE59210001D1 (en) * | 1991-10-15 | 2005-02-17 | Basell Polyolefine Gmbh | Process for the preparation of an olefin polymer using metallocenes with specifically substituted indenyl ligands |
ZA929213B (en) * | 1991-11-30 | 1993-05-24 | Hoechst Ag | Metallocenes having benzo-fusen indenyl derivatives as ligands, processes for their preparation and their use as catalysts. |
-
1992
- 1992-09-30 TW TW081107757A patent/TW318184B/zh active
- 1992-11-24 US US07/980,643 patent/US5328969A/en not_active Expired - Lifetime
- 1992-11-27 CA CA002084015A patent/CA2084015A1/en not_active Abandoned
- 1992-11-27 EP EP92120288A patent/EP0545303B1/en not_active Expired - Lifetime
- 1992-11-27 AT AT97101673T patent/ATE321015T1/en not_active IP Right Cessation
- 1992-11-27 DE DE59208944T patent/DE59208944D1/en not_active Expired - Fee Related
- 1992-11-27 ES ES92120288T patent/ES2108072T3/en not_active Expired - Lifetime
- 1992-11-27 DE DE59210004T patent/DE59210004D1/en not_active Expired - Fee Related
- 1992-11-27 ES ES97101673T patent/ES2256866T3/en not_active Expired - Lifetime
- 1992-11-27 JP JP31910092A patent/JP3464231B2/en not_active Expired - Fee Related
- 1992-11-27 ZA ZA929214A patent/ZA929214B/en unknown
- 1992-11-27 AU AU29726/92A patent/AU651914B2/en not_active Ceased
- 1992-11-27 EP EP97101673A patent/EP0770587B1/en not_active Expired - Lifetime
- 1992-11-27 AT AT92120288T patent/ATE158800T1/en not_active IP Right Cessation
- 1992-11-28 KR KR1019920022690A patent/KR100261362B1/en not_active Expired - Fee Related
- 1992-11-30 RU RU92004481A patent/RU2111211C1/en not_active IP Right Cessation
-
1994
- 1994-04-25 US US08/232,368 patent/US5374752A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3726067A1 (en) * | 1987-08-06 | 1989-02-16 | Hoechst Ag | METHOD FOR PRODUCING 1-OLEFIN POLYMERS |
EP0336128B1 (en) * | 1988-03-12 | 1993-01-27 | Hoechst Aktiengesellschaft | Process for preparing an alpha-olefin polymer |
US5017714A (en) * | 1988-03-21 | 1991-05-21 | Exxon Chemical Patents Inc. | Silicon-bridged transition metal compounds |
DE3826075A1 (en) * | 1988-07-30 | 1990-02-01 | Hoechst Ag | 1-OLEFIN ISO BLOCK POLYMER AND METHOD FOR THE PRODUCTION THEREOF |
EP0363029A2 (en) * | 1988-09-14 | 1990-04-11 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst component, olefin polymerization catalyst and process for the polymerization of olefins |
US5132262A (en) * | 1990-02-26 | 1992-07-21 | Basf Aktiengesellschaft | Soluble catalyst systems for the polymerization of C2 - to C10 -alk-l-enes |
US5243001A (en) * | 1990-11-12 | 1993-09-07 | Hoechst Aktiengesellschaft | Process for the preparation of a high molecular weight olefin polymer |
US5296434A (en) * | 1991-06-18 | 1994-03-22 | Basf Aktiengesellschaft | Soluble catalyst systems for the preparation of polyalk-1-enes having high molecular weights |
US5278264A (en) * | 1991-08-26 | 1994-01-11 | Hoechst Ag | Process for the preparation of an olefin polymer |
Non-Patent Citations (2)
Title |
---|
Ewen, J. A., et al., J. Am. Chem. Soc. 109:6544 6545 (1987). * |
Ewen, J. A., et al., J. Am. Chem. Soc. 109:6544-6545 (1987). |
Cited By (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048950A (en) * | 1988-07-30 | 2000-04-11 | Targor Gmbh | Polymer having long isotactic sequences and randomly-distributed ethylene content obtained by polymerizing propylene in presence of specific catalysts |
USRE37573E1 (en) * | 1990-11-12 | 2002-03-05 | Basell Polyolefin Gmbh | Process for the preparation of an olefin polymer using metallocenes containing specifically substituted indenyl ligands |
US6143911A (en) * | 1991-08-20 | 2000-11-07 | Mitsubishi Petrochemical Company Limited | Catalyst useful for the polymerization of olefins |
US5929264A (en) * | 1991-11-30 | 1999-07-27 | Targor Gmbh | Process for the preparation of substituted indenes and their use as ligand systems for metallocene catalysts |
US5840948A (en) * | 1991-11-30 | 1998-11-24 | Targor Gmbh | Process for the preparation of substituted indenes and their use as ligand systems for metallocene catalysts |
US5770753A (en) * | 1992-06-27 | 1998-06-23 | Targor Gmbh | Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts |
US6255506B1 (en) * | 1992-06-27 | 2001-07-03 | Targor Gmbh | Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts |
US5840644A (en) * | 1992-06-27 | 1998-11-24 | Targor Gmbh | Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts |
US6242544B1 (en) | 1992-06-27 | 2001-06-05 | Targor Gmbh | Metallocenes containing aryl-substituted indenyl ligands and their use as catalysts |
US6051727A (en) * | 1992-06-27 | 2000-04-18 | Targor Gmbh | Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts |
US5869584A (en) * | 1992-08-03 | 1999-02-09 | Targor Gmbh | Process for the preparation of an olefin polymer using metallocenes containing specifically substituted indenyl ligands |
US5455365A (en) * | 1992-08-03 | 1995-10-03 | Hoechst Ag | Process for the preparation of an olefin polymer using metallocenes containing specifically substituted indenyl ligands |
US5714425A (en) * | 1992-09-04 | 1998-02-03 | Bp Chemicals Limited | Catalyst compositions and process for preparing polyolefins |
US5714555A (en) * | 1992-09-04 | 1998-02-03 | Bp Chemicals Limited | Catalyst compositions and process for preparing polyolefins |
US5612428A (en) * | 1993-12-27 | 1997-03-18 | Hoechst Aktiengesellschaft | Process for preparing olefin polymer with catalyst containing metallocene |
US5576260A (en) * | 1993-12-27 | 1996-11-19 | Hoechst Aktiengesellschaft | Metallocene-based catalysts |
US5532396A (en) * | 1993-12-27 | 1996-07-02 | Hoechst Aktiengesellschaft | Metallocene compound |
US6558808B1 (en) | 1994-02-21 | 2003-05-06 | Basell Polyolefine Gmbh | Heat-sealable, polyolefinic multilayer film, process for the production thereof, and the use thereof |
AU689915B2 (en) * | 1994-06-20 | 1998-04-09 | Montell Technology Company B.V. | Ethylene copolymers, process for the preparation of ethylene-based polymers and catalyst system used therein |
US5795838A (en) * | 1994-08-09 | 1998-08-18 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst and process for olefin polymerization |
US5646323A (en) * | 1994-09-09 | 1997-07-08 | Phillips Petroleum Company | Process for preparing metallocene compounds |
US6787618B1 (en) | 1995-12-01 | 2004-09-07 | Basell Polypropylen Gmbh | Metallocene compound and high molecular weight copolymers of propylene and olefins having two or four to thirty-two carbon atoms |
US5908903A (en) * | 1995-12-27 | 1999-06-01 | Basf Aktiengesellschaft | Metallocene catalyst systems containing lewis bases |
US5869570A (en) * | 1996-03-19 | 1999-02-09 | Energy & Environmental International, L.C. | Composition of and process for forming polyalphaolefin drag reducing agents |
US6730752B2 (en) | 1996-03-19 | 2004-05-04 | Energy & Environmental International, L.C. | Methods for forming amorphous ultra-high molecular weight polyolefins and drag reducing compositions comprising amorphous ultra-high molecular weight polyolefins |
US6348547B1 (en) | 1996-04-30 | 2002-02-19 | Basf Aktiengesellschaft | Oxidized metallocene-polyolefin waxes |
US6107501A (en) * | 1997-01-30 | 2000-08-22 | Fina Technology, Inc. | Synthesis of metallocenes and enrichment of their rac isomer |
US6537478B1 (en) | 1997-09-01 | 2003-03-25 | Basell Polyolefine Gmbh | Injection moulding articles made of metallocene polypropylene |
US6784269B2 (en) | 1998-05-13 | 2004-08-31 | Exxonmobil Chemical Patents Inc. | Polypropylene compositions methods of making the same |
US6476173B1 (en) | 1998-05-13 | 2002-11-05 | Exxon Mobil Chemical Patents Inc. | Propylene homopolymers and methods of making the same |
US6207750B1 (en) | 1998-05-13 | 2001-03-27 | Exxon Chemical Patents, Inc. | Propylene homopolymers and methods of making the same |
US6306960B1 (en) | 1998-05-13 | 2001-10-23 | Exxonmobil Chemical Patents Inc. | Articles formed from foamable polypropylene polymer |
AU764778B2 (en) * | 1998-12-30 | 2003-08-28 | Union Carbide Chemicals & Plastics Technology Corporation | Compositions of preactivated unsupported catalyst having a given concentration and methods of using them |
US6174930B1 (en) | 1999-04-16 | 2001-01-16 | Exxon Chemical Patents, Inc. | Foamable polypropylene polymer |
US6750284B1 (en) | 1999-05-13 | 2004-06-15 | Exxonmobil Chemical Patents Inc. | Thermoplastic filled membranes of propylene copolymers |
US6342565B1 (en) | 1999-05-13 | 2002-01-29 | Exxonmobil Chemical Patent Inc. | Elastic fibers and articles made therefrom, including crystalline and crystallizable polymers of propylene |
US7727638B2 (en) | 1999-05-13 | 2010-06-01 | Exxonmobil Chemical Patents Inc. | Films of propylene copolymers |
US7026403B2 (en) | 1999-05-13 | 2006-04-11 | Exxonmobil Chemical Patents Inc. | Thermoplastic filled membranes of propylene copolymers |
US6500563B1 (en) | 1999-05-13 | 2002-12-31 | Exxonmobil Chemical Patents Inc. | Elastic films including crystalline polymer and crystallizable polymers of propylene |
US20040198912A1 (en) * | 1999-05-13 | 2004-10-07 | Dharmarajan N. Raja | Thermoplastic filled membranes of propylene copolymers |
US6512019B1 (en) | 1999-11-04 | 2003-01-28 | Exxonmobil Chemical Patents Inc. | Polypropylene copolymer foams and their use |
US20040087750A1 (en) * | 1999-12-10 | 2004-05-06 | Agarwal Pawan Kumar | Propylene diene copolymers |
US6809168B2 (en) | 1999-12-10 | 2004-10-26 | Exxonmobil Chemical Patents Inc. | Articles formed from propylene diene copolymers |
US20040077806A1 (en) * | 1999-12-10 | 2004-04-22 | Weiqing Weng | Propylene diene copolymerized polymers |
US20040087749A1 (en) * | 1999-12-10 | 2004-05-06 | Agarwal Pawan Kumar | Articles formed from propylene diene copolymers |
US7005491B2 (en) | 1999-12-10 | 2006-02-28 | Exxonmobil Chemical Patents Inc. | Propylene diene copolymerized polymers |
US6977287B2 (en) | 1999-12-10 | 2005-12-20 | Exxonmobil Chemical Patents Inc. | Propylene diene copolymers |
US7521507B2 (en) | 1999-12-22 | 2009-04-21 | Exxonmobil Chemical Patents Inc. | Polypropylene-based adhesive compositions |
US8383731B2 (en) | 1999-12-22 | 2013-02-26 | Exxonmobil Chemical Patents Inc. | Polypropylene-based adhesive compositions |
US20040110886A1 (en) * | 1999-12-22 | 2004-06-10 | Karandinos Anthony G. | Polypropylene-based adhesive compositions |
EP2045304A2 (en) | 1999-12-22 | 2009-04-08 | ExxonMobil Chemical Patents Inc. | Polypropylene-Based Adhesive Compositions |
US6960676B2 (en) | 2000-02-08 | 2005-11-01 | Exxonmobil Chemical Patents Inc. | Method of preparing group 14 bridged biscyclopentadienyl ligands |
US20050250956A1 (en) * | 2000-02-08 | 2005-11-10 | Rix Francis C | Bridged biscyclopentadienyl ligands and method of preparation |
US20030220190A1 (en) * | 2000-02-08 | 2003-11-27 | Rix Francis C | Method of preparing group 14 bridged biscyclopentadienyl ligands |
US7081543B2 (en) | 2000-02-08 | 2006-07-25 | Exxonmobil Chemical Patents Inc. | Bridged biscyclopentadienyl ligands and method of preparation |
US6815011B2 (en) | 2000-11-27 | 2004-11-09 | Energy & Environmental International, L.C. | Alpha olefin monomer partitioning agents for drag reducing agents and methods of forming drag reducing agents using alpha olefin monomer partitioning agents |
US6730750B2 (en) | 2001-01-16 | 2004-05-04 | Energy & Environmental International, L.C. | Methods for forming amorphous ultra-high molecular weight polyolefins for use as drag reducing agents |
US7012046B2 (en) | 2001-06-08 | 2006-03-14 | Eaton Gerald B | Drag reducing agent slurries having alfol alcohols and processes for forming drag reducing agent slurries having alfol alcohols |
US7582708B2 (en) | 2001-06-13 | 2009-09-01 | Beta Technologie Ag | Bulk polymerization reactor methods |
US20030114608A1 (en) * | 2001-12-03 | 2003-06-19 | Fina Technology, Inc. | Method for transitioning between Ziegler-Natta and metallocene catalysts in a bulk loop reactor for the production of polyproylene |
US6916892B2 (en) | 2001-12-03 | 2005-07-12 | Fina Technology, Inc. | Method for transitioning between Ziegler-Natta and metallocene catalysts in a bulk loop reactor for the production of polypropylene |
US20030236365A1 (en) * | 2002-06-24 | 2003-12-25 | Fina Technology, Inc. | Polyolefin production with a high performance support for a metallocene catalyst system |
US20040236025A1 (en) * | 2003-01-17 | 2004-11-25 | Fina Technology, Inc. | High gloss polyethylene articles |
US7195806B2 (en) | 2003-01-17 | 2007-03-27 | Fina Technology, Inc. | High gloss polyethylene articles |
US20090153546A1 (en) * | 2003-08-28 | 2009-06-18 | Sharp Kabushiki Kaisha | Driving circuit for display device, and display device |
US20050234198A1 (en) * | 2004-04-20 | 2005-10-20 | Fina Technology, Inc. | Heterophasic copolymer and metallocene catalyst system and method of producing the heterophasic copolymer using the metallocene catalyst system |
US20070082806A1 (en) * | 2004-12-01 | 2007-04-12 | Paczkowski Nicola S | Metallocene catalysts, their synthesis and their use for the polymerization of olefins |
US20080287286A1 (en) * | 2004-12-01 | 2008-11-20 | Paczkowski Nicola S | Metallocene catalysts, their synthesis and their use for the polymerization of olefins |
US20060116490A1 (en) * | 2004-12-01 | 2006-06-01 | Paczkowski Nicola S | Metallocene catalysts, their synthesis and their use for the polymerization of olefins |
US7169864B2 (en) | 2004-12-01 | 2007-01-30 | Novolen Technology Holdings, C.V. | Metallocene catalysts, their synthesis and their use for the polymerization of olefins |
US7468416B2 (en) | 2005-05-17 | 2008-12-23 | Lummus Technology Inc. | Catalyst composition for olefin polymerization |
US20070249799A1 (en) * | 2005-05-17 | 2007-10-25 | Thorsten Sell | Catalyst composition for olefin polymerization |
US7232869B2 (en) | 2005-05-17 | 2007-06-19 | Novolen Technology Holdings, C.V. | Catalyst composition for olefin polymerization |
US20060264587A1 (en) * | 2005-05-17 | 2006-11-23 | Thorsten Sell | Catalyst composition for olefin polymerization |
US8153745B2 (en) | 2006-04-18 | 2012-04-10 | Borealis Technology Oy | Multi-branched polypropylene |
US20100168364A1 (en) * | 2006-04-18 | 2010-07-01 | Borealis Technology Oy | Multi-branched polypropylene |
WO2008124040A1 (en) | 2007-04-09 | 2008-10-16 | Exxonmobil Chemical Patents Inc. | Soft heterogeneous isotactic polyroplene compositions |
US20090053959A1 (en) * | 2007-08-21 | 2009-02-26 | Sudhin Datta | Soft and Elastic Nonwoven Polypropylene Compositions |
US7906588B2 (en) | 2007-10-26 | 2011-03-15 | Exxonmobil Chemical Patents Inc. | Soft heterogeneous isotactic polypropylene compositions |
US20090111946A1 (en) * | 2007-10-26 | 2009-04-30 | Sudhin Datta | Soft Heterogeneous Isotactic Polypropylene Compositions |
WO2011159400A1 (en) | 2010-06-15 | 2011-12-22 | Exxonmobil Chemical Patents Inc. | Nonwoven fabrics made from polymer blends and methods for making same |
WO2012149391A1 (en) | 2011-04-28 | 2012-11-01 | Adherent Laboratories, Inc. | Polyolefin based hot melt adhesive composition |
WO2013041619A1 (en) | 2011-09-23 | 2013-03-28 | Lummus Novolen Technology Gmbh | Process for recycling of free ligand from their corresponding metallocene complexes |
EP2573091A1 (en) | 2011-09-23 | 2013-03-27 | Lummus Novolen Technology Gmbh | Process for recycling of free ligand from their corresponding metallocene complexes |
WO2015161241A1 (en) | 2014-04-18 | 2015-10-22 | IFS Industries Inc. | Low density and high performance packaging hot melt |
WO2020056119A1 (en) | 2018-09-14 | 2020-03-19 | Fina Technology, Inc. | Polyethylene and controlled rheology polypropylene polymer blends and methods of use |
US11993699B2 (en) | 2018-09-14 | 2024-05-28 | Fina Technology, Inc. | Polyethylene and controlled rheology polypropylene polymer blends and methods of use |
WO2020172306A1 (en) | 2019-02-20 | 2020-08-27 | Fina Technology, Inc. | Polymer compositions with low warpage |
WO2021083309A1 (en) | 2019-10-30 | 2021-05-06 | 中国石油化工股份有限公司 | Metallocene compound, and preparation method therefor and application thereof |
WO2022232123A1 (en) | 2021-04-26 | 2022-11-03 | Fina Technology, Inc. | Thin single-site catalyzed polymer sheets |
Also Published As
Publication number | Publication date |
---|---|
DE59208944D1 (en) | 1997-11-06 |
ES2108072T3 (en) | 1997-12-16 |
ZA929214B (en) | 1993-05-26 |
JP3464231B2 (en) | 2003-11-05 |
EP0770587B1 (en) | 2006-03-22 |
AU2972692A (en) | 1993-06-03 |
EP0770587A3 (en) | 1997-08-20 |
DE59210004D1 (en) | 2006-05-11 |
EP0770587A2 (en) | 1997-05-02 |
ES2256866T3 (en) | 2006-07-16 |
EP0545303A1 (en) | 1993-06-09 |
KR930010061A (en) | 1993-06-22 |
ATE158800T1 (en) | 1997-10-15 |
JPH07258321A (en) | 1995-10-09 |
US5328969A (en) | 1994-07-12 |
EP0545303B1 (en) | 1997-10-01 |
AU651914B2 (en) | 1994-08-04 |
TW318184B (en) | 1997-10-21 |
ATE321015T1 (en) | 2006-04-15 |
KR100261362B1 (en) | 2000-07-01 |
RU2111211C1 (en) | 1998-05-20 |
CA2084015A1 (en) | 1993-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5374752A (en) | Process for the preparation of a high molecular weight olefin polymer | |
US5455366A (en) | Metallocenes having benzo-fused indenyl derivatives as ligands, processes for their preparation and their use as catalysts | |
US5304614A (en) | Process for the preparation of an olefin polymer using metallocenes having specifically substituted indenyl ligands | |
US5276208A (en) | Metallocenes containing ligands of 2-substituted idenyl derivatives, process for their preparation, and their use as catalysts | |
US5504232A (en) | Process for the preparation of an olefin polymer using specific metallocenes | |
US5239022A (en) | Process for the preparation of a syndiotactic polyolefin | |
US5145819A (en) | 2-substituted disindenylmetallocenes, process for their preparation, and their use as catalysts in the polymerization of olefins | |
US5576260A (en) | Metallocene-based catalysts | |
RU2144539C1 (en) | Metallocenes, catalytic system containing thereof, method of preparing polyolefins, polyolefin | |
US5391789A (en) | Bridged, chiral metallocenes, processes for their preparation and their use as catalysts | |
US5830821A (en) | Process for olefin preparation using metallocenes having benzo-fused indenyl derivatives as ligands | |
US5869584A (en) | Process for the preparation of an olefin polymer using metallocenes containing specifically substituted indenyl ligands | |
US5243001A (en) | Process for the preparation of a high molecular weight olefin polymer | |
US5329033A (en) | Process for the preparation of an olefin polymer | |
US6090739A (en) | Transition metal compound | |
US5840948A (en) | Process for the preparation of substituted indenes and their use as ligand systems for metallocene catalysts | |
US5268495A (en) | Metallocenes having bicyclic cyclopentadiene derivatives as ligands, processes for their preparation and their use as catalysts | |
JP3143174B2 (en) | Method for producing olefin polymer | |
US5840947A (en) | Organometallic compound | |
US5932669A (en) | Metallocenes having benzo-fused indenyl derivatives as ligands, processes for their preparation and their use as catalysts | |
JP2001525801A (en) | Stereorigid metallocene compounds | |
USRE37573E1 (en) | Process for the preparation of an olefin polymer using metallocenes containing specifically substituted indenyl ligands | |
US6069264A (en) | Transition metal compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: TARGOR GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOECHST AKTIENGESELLSCHAFT;REEL/FRAME:009453/0441 Effective date: 19980710 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: BASELL POLYOLEFINE GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOECHST GMBH (F/K/A HOECHST AKTIENGESELLSCHAFT);REEL/FRAME:017366/0728 Effective date: 20060210 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND PATENT APPLICATIONS;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:020704/0562 Effective date: 20071220 Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK Free format text: GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND PATENT APPLICATIONS;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:020704/0562 Effective date: 20071220 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:021354/0708 Effective date: 20071220 Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:021354/0708 Effective date: 20071220 |
|
AS | Assignment |
Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P.,DELAWARE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705 Effective date: 20100430 Owner name: EQUISTAR CHEMICALS, LP,TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705 Effective date: 20100430 Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P.,DELAWARE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856 Effective date: 20100430 Owner name: EQUISTAR CHEMICALS, LP,TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856 Effective date: 20100430 Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705 Effective date: 20100430 Owner name: EQUISTAR CHEMICALS, LP, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705 Effective date: 20100430 Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856 Effective date: 20100430 Owner name: EQUISTAR CHEMICALS, LP, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856 Effective date: 20100430 |