[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3858586A - Surgical method and electrode therefor - Google Patents

Surgical method and electrode therefor Download PDF

Info

Publication number
US3858586A
US3858586A US366011A US36601173A US3858586A US 3858586 A US3858586 A US 3858586A US 366011 A US366011 A US 366011A US 36601173 A US36601173 A US 36601173A US 3858586 A US3858586 A US 3858586A
Authority
US
United States
Prior art keywords
electrode
tip
tube
sheath
female
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US366011A
Inventor
Martin Lessen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US366011A priority Critical patent/US3858586A/en
Application granted granted Critical
Publication of US3858586A publication Critical patent/US3858586A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/42Gynaecological or obstetrical instruments or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1485Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/42Gynaecological or obstetrical instruments or methods
    • A61B2017/4233Operations on Fallopian tubes, e.g. sterilization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1226Generators therefor powered by a battery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M3/00Medical syringes, e.g. enemata; Irrigators
    • A61M3/02Enemata; Irrigators
    • A61M3/0279Cannula; Nozzles; Tips; their connection means

Definitions

  • ABSTRACT A surgical electrode is described. This instrument is adapted to fit into a body cavity, to be directed by the surgeon to an operative area in the cavity and then to emit a cauterizing electric current, Several embodiments are disclosed. In one, a blind electrode is positioned and pulsed. In another, an electrode is coupled with optics to permit directing it by sight or by CRT display. In another, a forked or dual electrode is shaped to the body cavity and can be properly positioned with excellent reliability. Preferably, at least the portion of the instrument inserted in the body cavity is disposable. The present invention includes method and apparatus for female sterilization using the electrode for cauterization of fallopian tubes.
  • This invention relates to a new surgical instrument and to its use and operation.
  • the present invention comprises a surgical electrode adapted to be operated for female sterilization by insertion of an electrode tip well within the walls of the fallopian tubes.
  • the electrode When properly positioned, the electrode is energized, causing a spark which in turn causes scar tissue, blocking the fallopian tube.
  • a high percentage of success can be achieved, and within a few days of the operation, a clinical or medical test can be performed to determine whether it was or was not successful. No hospital visit is required and the operation can be carried out in a few minutes essentially painlessly in the doctors office. If desired, clinic or field operations can be carried out to treat a large number of people quickly, easily, painlessly and effectively.
  • FIG. 1 is a diagrammatic view of a surgical instrument according to one embodiment of the invention.
  • FIG. 2 is an enlarged fragmentary view in crosssection of one form of an electrode for the device of FIG. I;-
  • FIG. 3 is an enlarged fragmentary view in crosssection of another form of an electrode for the device of FIG. 1;
  • FIG. 4 is a side view of an electrode according'to an other embodiment of the invention.
  • FIG. 5 is a front view of the electrode of FIG. 4 in partly closed position
  • FIG. 6 is a front view of the electrode of FIG. 4 in open position
  • FIG. 7 is a diagrammatic view of an electrode according to another embodiment of the invention.
  • FIG. 8 is a diagrammatic view of another form of an electrode
  • FIG. 9 is a diagrammatic view of three electrode portions of an electrode according to another electrode embodiment.
  • FIG. 10 is a view of a surgical electrode for sterilization according to another embodiment of the invention.
  • FIG. 11 is a diagrammatic view of the operating end of the electrode of FIG. 10;
  • FIG. 12 is the electrodev of one embodiment of the invention positioned to perform cautery inside a fallopian tube;
  • FIG. 13 is an enlargement in section of the end of the electrode of FIG. 12;
  • FIG. 14 is an enlargement in section of the eyepiece efid of the electrode of FIG. 12;
  • FIG. 15 is a cross section view of the assembly of FIG. 13.
  • the surgical instrument according to this invention may be a general purpose instrument, but preferably, it has shape and configuration specifically adapting it to a single preferred type of application. The presently.
  • the preferred device is adapted to sterilization of the female human being or female animal, as the present invention now is believed to have as its most important aspects a method and instrument for sterilizatiomln certain instances, it is desired to have simply a surgical electrode which can be manipulated to position its operative electrode tip at a desired position within a body cavity, which position can be readily determined by a practiced and experienced surgeon from a position external to the body.
  • the experienced surgeon need merely employ a single elongated electrode such as that shown in FIGS. 1, 2 and 3 which he can, by practice, and experience, manipulate to the desired position within the body cavity.
  • the manipulation can be assisted visually either by looking into the body cavity from an external position or by optical means.
  • FIG. 7 In this figure is illustrated a surgical instrument including a flexible maneu-.
  • verable electrode having an operable electrode tip and including flexible optical means such as the fiber optics member illustrated in the figure.
  • surgeon employing such an instrument can direct it to a precise position within the body cavity and can with confident assurance,.position the operable electrode tip at precisely the right location for electric cauterization to produce the desired scar tissue.
  • the surgical electrode according to this embodiment of the invention has universal application and can be employed in the simplest of operations at or near the surface of the body and in the most difficulty accessible positions within the most tortuous body cavities. It is to be observed in particular that this electrode can be employed deeply within nasal passages or within the throat and even to the extent of being employed in the stomach or abdominal passages.
  • surgical electrodes according to this invention may be specifically designed for common surgical procedures repeatedly employing essentially a standard technique, it is still possible to employ this embodiment of the invention including both operative electrode tip and optical means in essentially any and all surgical procedures contemplated by the present invention.
  • FIGS. 4, 5 and 6 there is also shown a special purpose surgical electrode which may be appropriately designed for an operation requiring two (or more than two) electric cauterizations in a standardized surgical operation which may be carried out time and time again.
  • Such an operation typically may be animal sterilization in which a predetermined size and shape electrode including at least two operative electrode tips is appropriately positioned to trigger simultaneously two or more electric cauterization discharges which will produce scar tissue appropriately sealingfine body passages at uniformly predictable positions within a body cavity.
  • the use of the electric cauterization instrument and technique according to the present invention has many obvious advantages.
  • the primary advantage is that a surgical result can be achieved at a difficultly accessible or otherwise inaccessible portion of the body without cutting or surgically opening body tissue. In this way, it is possible to accomplish surgery without hospitalization for operations which might otherwise require several or many days recuperation in a hospital.
  • FIG. 1 is a schematic representation'in very simple form of an electrode according to the concept of this invention.
  • the device includes a handle 11 having an elongated flexible electrode tip 12.
  • the handle may for example, have'gripping means 13 to permit it to be conveniently held in the hand of the surgeon. It may have an external electric cord 14 adapted to be plugged into a conventional electric outlet or it may have self-contained electric circuitry suitable mounted within the handle.
  • the flexible electrode 12 may consist of a double electrode wire as illustrated in other figures orthere may be a ground lead 15 extending from the deviceand terminating in a ground plate or clamp (not shown) adapted to be positioned against the skin of the animal or patient as close as possible to the point of surgery.
  • an electric switch or button which is adapted to be thrown or pressed to operate the electric circuitry to produce a pulse at the tip of electrode 12 when desired.
  • the circuitry to produce the pulse is completely conventional and may comprise any desired electrical mechanism to produce a pulse or spark at a tip of the electrode.
  • a conventional high frequency or a capacitance circuit may be triggered by switch or button 16 to produce such a pulse and the circuit can be energized by an internal battery-operated electric means or by electric means connectable to a conventional and convenient power outlet.
  • FIG. 2 is shown in enlarged partial cross-section one form of electrode 12 of the device of FIG. 1.
  • This flexible electrode comprises an electrically conductive wire 21 terminating in a tip 22 and surrounded by a plastic sheath 23.
  • the wire 21 is longitudinally moveable within the sheath and in such case, it is also desired that the wire 21 have a thin coating of plastic or other insulator along its length except the tip 22.
  • the flexible electrode 12 is inserted into the body cavity until it is at the desired position. Electrode wire 21 is then advanced in sheath 23, or sheath 23 is then retracted from the tip to assure proper mechanical contact with the tissue to be cauterized.
  • switch or button 16 is activated to create an electric pulse or electric spark at tipp 22 of electrode 12.
  • FIG. 3 a modified and presently preferred embodiment of flexible electrode 12.
  • a pair of insulated wires 31 and 32 terminate in tips 33 and 34 and are encased in a plastic shield or sheath 35.
  • the wires may or may not be longitudinally movable in the sheath 35.
  • the electrode according to this embodiment of the invention is employed in the same way as the electrode according to FIG. 2. It
  • the insulated conductors 31, 32 and tips 33, 34 may be coaxial in geometry.
  • Size and shape of the flexible electrode 12 is material to the function of the device, inasmuch as it relates significantly to size and shape of a natural body cavity of a human or other animal.
  • a purpose to be achieved by the present invention is to permit easy and simple operation within a body cavity of an animal or human being and generally speaking, it is expected that such operations will be carried out within a tightly confined cavity or at a precisely positioned location within the cavity.
  • the electrode 12 generally will be long enough to reach into the body cavity and to the right location therein and to extend completely outside the cavity. For most purposes, the electrode will be roughly six to twelve inches long. Also, obviously, longer or shorter may be acceptable or necessary for certain purposes.
  • the electrode 12 generally will be quite thin and it will be only unusual cases that the width or diameter'of the electrode will exceed /8 inch or at the most A inch. Obviously, thicker electrodes can be used for certain purposes, but the convenience of the present surgical instrument generally will not be realized except with an extremely thin electrode which can reach positions within a body cavity where conventional instruments cannot find access.
  • electrode tips 33 and 34 should be positioned as close together as possible consistent with producing a workable and effective electric spark or electric pulse by the tips. Generally speaking, the electrode tips will be spaced a small fraction of an inch apart to produce a highly concentrated localized pulse or spark, thus permitting accurate position and location of the electric cauterization.
  • the electrode 12 will have a spring-like resiliency permitting it to be positioned within a body cavity without bending out of shape and without being'so rigid as to harm the tissue which it contacts. This result can be achieved with'the use of conventionally available spring steel electrode wires.
  • the wires together with an electrically insulating coating canbe appropriately thin and still have the desired degree of strength and flexibility. Accordingly, it is to be realized that the sections of electrode 12 illustrated in FIGS. 2 and 3 have been distorted in shape and do not represent a reasonable depiction of the preferred electrode length or preferred electrode dimensions.
  • FIGS. 4 and 5 and 6 are illustrated another embodiment of the invention employing a forked electrode adapted to cauterize locations within a body cavity.
  • This form of the electrode is presently preferred for an operation in which cauterization is desired at two predictably spaced locations within a single body cavity.
  • One preferred purpose of the instrument is cauterization of fallopian tubes and, accordingly, for this purpose, the preferred instrument is that shown schematically in FIGS. 4, 5 and 6.
  • FIG. 4 illustrates the sideview of a bifurcated electrode generally designated 41.
  • the electrode has a single body section 42 from which extend two divergent electrode 43 terminating at electrode tips 44.
  • the electrode illustrated in FIG. 4 tapers slightly from the body 42 to the tip 44 and generally curves gradually to conform with a typical body cavity.
  • a sheath preferably a plastic sheath 46 retractably covers the two electrode sections 43 and can extend close to or if desired over electrode tips 44.
  • the insulated conductors are longitudinally movable within the electrodes 43 to advance the tips 44 to their desired position.
  • the device according to FIG. 4 is first closed and protected with sheath 46 extending essentially to the electrode tips. It is then inserted into the body cavity after which sheath 44 is withdrawn to permit electrodes 43 to spread apart to their natural position. The device is then manipulated by the skilled operator until electrode tips 44 are both at the desired position and then the two electrodes 43 are simultaneously or sequentially pulsed to produce a cauterizing electric pulse or spark at tips 44.
  • a first electrode 43 is energized to produce a cauterizing pulse and the pulse preferably will be indicated by suitable dials, gauges or other signals externally positioned. After the first pulse has been produced at one electrode, a second pulse is produced at another electrode and again is signaled appropriately externally.
  • the device of FIG. 1 in conjunction with the electrodes shown in FIGS. 2 through 6 can be extremely inexpensively manufactured particularly in moderate or large quantities. Accordingly, their cost can be so low as to make it economically feasible for the electrodes to be used once and thrown away. Disposable electrodes, accordingly, are contemplated and it is to be expected thatat least that portion of the device which operates within the body cavity may be disposable to permit a single use, although, of course, the device may be sterilized and reused if so desired.
  • FIG. 7 is illustrated another embodiment of the invention including self-contained optical means to permit a skilled operator or surgeon to position the operating tip of the electrode by sight or by other visual means.
  • a flexible protective sheath 71 encases a plurality of electrode wires 72 suitably insulated and positioned in generally the same manner as shown in the other figures.
  • a fiber optics bundle 73 for viewing the position of the electrode tips, optionally with a second fiber optics bundle 73A to carry light into the body cavity to illuminate the field of vision.
  • bundle 73 can operate to carry light both ways and to serve both the illumination and viewing purposes.
  • an optical imaging means such as a maneuverable mirror 74 which may, for example, be rotatable around pivot 75.
  • a control mechanism such as a control wire 76 can adjust the mirror 74.
  • an outer disposable sheath 78 permits a flow of water or other fluid to the end of the electrode to flush out the field of vi- SlOn.
  • Associated with the electrode of FIG. 7 can be extremely small light sources or other devices to assist in viewing and positioning the electrode tip.
  • sheath 71 may be partially retracted to bring electrode 72 into the proper location and the electrode may then be pulsed.
  • the surgical instrument according to the present invention can be employed for any desired electrical cauterization operation within the body cavity of a human being or other animal.
  • the presently preferred purpose is in connection with female sterilization for birth control where it is expected that a simple and convenient operation can be performed in a few minutes withoutthe necessity for incision with other surgical instruments. It is also expected that a careful, skilled operator can achieve a successful result in excess of 95 percent of the occasions of use. Furthermore, with a medical check after the operation to detect incomplete success, it is expected that essentially 100 percent effectiveness can result from a single or once-repeated operation. It is also expected that the cost of such operation both in terms of money and in terms of patient care can be reduced perhaps at least to about 1 percent of the time and cost of conventional operations. 7
  • FIG. 8 is shown another form of electrode probe according to this invention including an elongated electrode body 81 which may be one of the electrodes of a previous figure such as the electrode of FIG. 7.
  • the electrode body 81 has electrode tips 82 at the point thereof and means (not shown) for pulsing the tips.
  • An outer sheath 83 retractably covers electrode body 81.
  • a ring or handle 84 At the end of the sheath furthest from the tip is a ring or handle 84 forming a finger grip to retract the sheath from the electrode tip and a cooperating base or finger grip 85 on the electrode body forms convenient means associated with the electrode to expose the electrode tips in operative position for a cauterizing electric pulse.
  • FIG. 9 diagrammatically a portion of an electrode adapted to be positioned within a disposable plastic sheath like, for example, the electrode of FIG. 7, or adapted to be encased in a plastic shield like, for example, the electrode structure-of FIG. 3.
  • a pair of electrodes 91 and 92 are positioned on each side of a central electrode 93.
  • the tip of central electrode is a ring tip 94. All but the tips of electrodes 91 and 92 are insulated, preferably being covered with plastic insulators 95 and 96 which may, if desired, be a single unitary elongated plastic body in which are embedded the three electrodes 91, 92 and 93. If electrode 93 is not embedded in a plastic body, it is covered along its length with insulator 97.
  • FIGS. and 11 a specific electrode structure expressly designed for a surgical or medical method or process of rendering the human female sterile.
  • a fiber optic core generally designated 101 for a surgical electrode specifically adapted for sterilization of the human female.
  • the point 101A of this fiber optic core 101 in combination with other structures as will be described in connection with FIG. 11 is adapted to be maneuvered to a position proximate to the fallopian tube opening.
  • the other end 101B is mounted into a handle 102 on which is an eyepiece 103, as for example, a rubber eyepiece.
  • the entire instrument is approximately 24 inches long and the fiber optic core approximately A inch in diameter.
  • the fiber optic core 101 is sheathed within a plastic sheath 105 to form a surgical electrode generally designated 106 and a lens 107 optionally of glass or plastic is mounted at the end of the core 101 and adapted to focus an image onto the ends of the optical fibers.
  • a lens 107 optionally of glass or plastic is mounted at the end of the core 101 and adapted to focus an image onto the ends of the optical fibers.
  • Mounted piggy back on sheath 105 is an electrode sheath 108 in which is positioned an electrode wire 109 terminating in an electrode tip 110.
  • the wire 109 is easily slidable within the electrode sheath 108 so that the electrode tip may be withdrawn into resting contact with the end of the electrode sheath or, as shown, may be extended from the electrode sheath 109 into an operating position.
  • the electrode 106 is inserted within the uterus and guided by the doctors eye into position at the entrance to the fallopian tube.
  • the electrode tip 110 is then extended from its sheath 108 and maneuvered with optical guidance a short distance into the tube.
  • the electrode is then energized causing electrical cauterization wholly within the fallopian tube. Scarring results, causing complete sealing of the tube.
  • FIGS. 12, 13, 14, and 15 is illustrated another specific electrode structure expressly designed for a surgical or medical method or process of rendering the human female sterile.
  • the electrode or fiber optic scope including sheath assembly 141, electrode 142, light source 143, power 144 and fluid supplies 145, eyepiece focusing lenses 146 is shown in place in the uterus with electrode 140 extended as in use for cauterizing a fallopian tube 148 via the cervix 147.
  • the cauterizing and objective end of the sheath assembly 141 which consists of an outer sheath 149, an electrode sheath 150 containing a retractable and advanceable electrode 151 which is coated with electrical insulating material along its length but not at the tip, a fiber optics sheath 152 and an objective lens or lens assembly 153.
  • the fiber optics 154 consists of a coherent bundle
  • a single objective lens will distribute the light from the bundle to the field of view and also conduct the image back to the eyepiece 146.
  • a more complex lens 153 or lens assembly would be used.
  • the electrode sheath, fiber optics sheath and outer sheath are made of tubing and may be bonded or fused together.
  • the objective lens is fabricated separately and bonded or fused to the fiber optics sheath.
  • the objective lens is so designed that when the fiber optics are in place, they abut the edge of the lens protruding into the fiber optics sheath 152 to so provide for the proper separations between the end of the fiber optics and the optical surface of the lens.
  • the space 158 between the fiber optics sheath 152, the electrode sheath 150 and the outer sheath 149 may be used to conduct a solution into the uterus to clean the visual field at the objective lens 153.
  • a fluid-tight seal 155 may be provided concentric to the electrode and its sheath after the electrode sheath emerges through the outer sheath proximate to the eyepiece end of the sheath assembly.
  • a seal 156 is also provided to close off the water conducting space between the fiber optic sheath 152 and the outer sheath 149 at the eyepiece end of the sheath assembly.
  • a method of sterilization of a female human being comprising guiding a source of electric discharge under direct vision to the fallopian tubes of said female, generating a cauterizing electric discharge essentially completely, within the fallopian tubes removed'from the uterus proper and allowing interior scar tissue to form, thus sealing said tubes.
  • a method of sterilization of a female human being comprising inserting a fine electrode tip from the uterus into each fallopian tube in a manner to locate said active electrode tip within said tube essentially at the narrowest portion of said tube, and generating a cauterizing electric discharge from said electrode tip to cauterize the tissue within said tube, and allowing scar tissue to form.
  • a method of sterilization of a female animal comprising guiding a source of electric discharge under direct vision to the fallopian tubes of said female, gener ating a cauterizing electric discharge essentially completely within the fallopian tubes, avoiding the uterus wall with said discharge and sealing said tube by allowing scar tissue to form.
  • a surgical instrument for female sterilization by sealing the fallopian tubes means for providing a cauterizing electric generated discharge wholly within the fallopian tube to cause tissue wall scarring and permanent blocking of said fallopian tubes comprising an elongated electrode ofa size to fit well within said fallopian tubes, means for providing direct vision of the tip of said electrode to guide said electrode to a precise position adjacent the entrance of said tube, means to insert said tip into said tube, and means to supply an electric discharge pulse to said electrode tip, essentially completely within said tube.
  • a surgical instrument comprising a fiber optics bundle for optical illumination and observation of the position of said electrode tip and said electrode includes means for maneuvering said electrode tip in response to said optical observation, said maneuvering being from a position outside the body.
  • a surgical instrument according to claim 5, wherein said instrument includes means to flush the op tical tip and visual field.
  • a surgical instrument including a removable sheath completely surround said fiber optics device to protect said fiber optics device from contamination and containing a movable electrode and an optical tip positionable adjacent to the fiber optics tip and means in said sheath for fluid flush ing of said optical tip and field of observation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Surgical Instruments (AREA)

Abstract

A surgical electrode is described. This instrument is adapted to fit into a body cavity, to be directed by the surgeon to an operative area in the cavity and then to emit a cauterizing electric current. Several embodiments are disclosed. In one, a blind electrode is positioned and pulsed. In another, an electrode is coupled with optics to permit directing it by sight or by CRT display. In another, a forked or dual electrode is shaped to the body cavity and can be properly positioned with excellent reliability. Preferably, at least the portion of the instrument inserted in the body cavity is disposable. The present invention includes method and apparatus for female sterilization using the electrode for cauterization of fallopian tubes.

Description

United States Patent 11 1 Lessen 1 Jan.7,l975
[76] Inventor: Martin Lessen, 9 ldlewood Rd.,
Rochester, N.Y. 14618 [22] Filed: June 1, 1973 [21] Appl. No.: 366,011
Related US. Application Data [63] Continuation-impart of Ser. No. 123,194, March 11,
3,163,165 12/1964 lsikawa 128/303.17 3,294,085 12/1966 Wallace 128/6 3,357,433 12/1967 Fourestier et a1 l28/303.17
Primary Examiner-Aldrich F. Medbery Attorney, Agent, or Firm-Frank A. Steinhilper; Alfred H. Rosen [57] ABSTRACT A surgical electrode is described. This instrument is adapted to fit into a body cavity, to be directed by the surgeon to an operative area in the cavity and then to emit a cauterizing electric current, Several embodiments are disclosed. In one, a blind electrode is positioned and pulsed. In another, an electrode is coupled with optics to permit directing it by sight or by CRT display. In another, a forked or dual electrode is shaped to the body cavity and can be properly positioned with excellent reliability. Preferably, at least the portion of the instrument inserted in the body cavity is disposable. The present invention includes method and apparatus for female sterilization using the electrode for cauterization of fallopian tubes.
7 Claims, 15 Drawing Figures TO FLUID 4g SUPPLY I45 L TO CAUTERY POWER SUPPLY I44 TO LIGHT /43 SOURCE PATENTEDJAN SHEET 20F 4 /4 I I I I I I I I I I I! PATENTED 3,858,586
SHEET 3 or a E TOF'D SUP Y/45 TO CAUTERY POWER SUPPLY /44 SURGICAL METHOD AND ELECTRODE THEREFOR CROSS-REFERENCE TO CO-PENDING APPLICATION This present application is a continuation-in-part of co-pending US. Pat. Application Ser. No. 123,194
filed Mar. 11, 1971 and now abandoned.
BACKGROUND OF THE INVENTION This invention relates to a new surgical instrument and to its use and operation.
This is a continuation-in-part of application Ser. No. 123,194 wherein it was disclosed that a fine electrode member is placed into a natural body cavity, the tip of the electrode positioned 'at a constricted point of such cavity, and that the electrode tip then is energized to cause a cauterizing spark. A consequence of the cauterizing spark is the cleaning or sterilization of the constriction or fine passageway. One specific consequence of such spark well within a fine passage is that scar tissue forms, thus sealing, healing or blocking the passageway. Thus, if the passage is the consequence of an injury or other physical or physiological defect, illness, infection or the like, the electrode can be a healing mechanism. In one embodiment of the invention,'a natural passageway can be blocked by proper use of this electrode. In particular, fallopian tubes can be blocked by use of this electrode with the consequence that female sterilization can be brought about. The present invention is directed to such female sterilization.
At the present time, there is a great need for a quick, easy and effective mechanism for female sterilization. This need is abundantly clear in the United States and is perhaps even more pressing in other countries, particularly, poverty striken countries. Birth control and population reduction are easily and non-surgically accomplished by a wide variety of means dependent on continual cooperation by the people involved. Sterilization, however, has generally been a serious surgical operation requiring hospitalization and use of a surgical operating room. Obviously, therefore, the need is clear for a sterilization procedure which can be carried out for example, in the doctors office. Even more pressing is the need for some form of mass sterilization techniques in which a doctor or a team of medical personnel can operate a sterilization technique at temporary field quarters. The present invention provides such a technique.
GENERAL NATURE OF THE INVENTION The present invention comprises a surgical electrode adapted to be operated for female sterilization by insertion of an electrode tip well within the walls of the fallopian tubes. When properly positioned, the electrode is energized, causing a spark which in turn causes scar tissue, blocking the fallopian tube. A high percentage of success can be achieved, and within a few days of the operation, a clinical or medical test can be performed to determine whether it was or was not successful. No hospital visit is required and the operation can be carried out in a few minutes essentially painlessly in the doctors office. If desired, clinic or field operations can be carried out to treat a large number of people quickly, easily, painlessly and effectively.
Operations intended to block fine passages such as fallopian tubes have been employed previously with a substantial lack of success, at least for the purpose of human sterilization. The problem is that side effects may result and also that sterilization is uncertain. In particular, if blockage of the passage occurs essentially at the mouth of the passage, then there is too large a likelihood that the passage will not be effectively blocked and that physiological disorders will result. Accordingly, in use of the electrode according to the present invention, it is essential that the tip of the electrode be sufficiently fine to fit well within the passage being blocked and it is essential that it be so positioned.
' SPECIFIC DESCRIPTION OF THE INVENTION The nature of the invention is more particularly set forth and apparent from the drawings, in which:
FIG. 1 is a diagrammatic view of a surgical instrument according to one embodiment of the invention;
FIG. 2 is an enlarged fragmentary view in crosssection of one form of an electrode for the device of FIG. I;-
FIG. 3 is an enlarged fragmentary view in crosssection of another form of an electrode for the device of FIG. 1;
FIG. 4 is a side view of an electrode according'to an other embodiment of the invention;
FIG. 5 is a front view of the electrode of FIG. 4 in partly closed position;
FIG. 6 is a front view of the electrode of FIG. 4 in open position;
FIG. 7 is a diagrammatic view of an electrode according to another embodiment of the invention;
FIG. 8 is a diagrammatic view of another form of an electrode;
FIG. 9'is a diagrammatic view of three electrode portions of an electrode according to another electrode embodiment;
FIG. 10 is a view of a surgical electrode for sterilization according to another embodiment of the invention;
FIG. 11 is a diagrammatic view of the operating end of the electrode of FIG. 10;
FIG. 12 is the electrodev of one embodiment of the invention positioned to perform cautery inside a fallopian tube;
FIG. 13 is an enlargement in section of the end of the electrode of FIG. 12;
FIG. 14 is an enlargement in section of the eyepiece efid of the electrode of FIG. 12;
FIG. 15 is a cross section view of the assembly of FIG. 13.
The surgical instrument according to this invention may be a general purpose instrument, but preferably, it has shape and configuration specifically adapting it to a single preferred type of application. The presently.
preferred device is adapted to sterilization of the female human being or female animal, as the present invention now is believed to have as its most important aspects a method and instrument for sterilizatiomln certain instances, it is desired to have simply a surgical electrode which can be manipulated to position its operative electrode tip at a desired position within a body cavity, which position can be readily determined by a practiced and experienced surgeon from a position external to the body. In this situation, the experienced surgeon need merely employ a single elongated electrode such as that shown in FIGS. 1, 2 and 3 which he can, by practice, and experience, manipulate to the desired position within the body cavity. In many instances, the manipulation can be assisted visually either by looking into the body cavity from an external position or by optical means. In this way, for example, it is possible to employ the surgical instrument for many. forms of corrective surgery where a relatively large body cavity is being treated or where a passage is accessible directly from outside the body. Certain cysts and infected channels can be treated in this manner and it is observed that electrical cauterization not only produces healing scar tissue, but also cleans or sterilizes the passage being treated.
In many instances, however, it is necessary to treat a fine passage positioned well within a cavity in the human body at a position which cannot be readily located with accuracy from outside the body. In such instances, it may be desirable to employ the electrode combination illustrated in FIG. 7. In this figure is illustrated a surgical instrument including a flexible maneu-.
verable electrode having an operable electrode tip and including flexible optical means such as the fiber optics member illustrated in the figure. The surgeon employing such an instrument can direct it to a precise position within the body cavity and can with confident assurance,.position the operable electrode tip at precisely the right location for electric cauterization to produce the desired scar tissue. The surgical electrode according to this embodiment of the invention has universal application and can be employed in the simplest of operations at or near the surface of the body and in the most difficulty accessible positions within the most tortuous body cavities. It is to be observed in particular that this electrode can be employed deeply within nasal passages or within the throat and even to the extent of being employed in the stomach or abdominal passages. Although certain embodiments of surgical electrodes according to this invention may be specifically designed for common surgical procedures repeatedly employing essentially a standard technique, it is still possible to employ this embodiment of the invention including both operative electrode tip and optical means in essentially any and all surgical procedures contemplated by the present invention.
In FIGS. 4, 5 and 6, there is also shown a special purpose surgical electrode which may be appropriately designed for an operation requiring two (or more than two) electric cauterizations in a standardized surgical operation which may be carried out time and time again. Such an operation typically may be animal sterilization in which a predetermined size and shape electrode including at least two operative electrode tips is appropriately positioned to trigger simultaneously two or more electric cauterization discharges which will produce scar tissue appropriately sealingfine body passages at uniformly predictable positions within a body cavity. It is possible according to this embodiment of the invention to produce simple, inexpensive surgical electrodes having a plurality of operable electrode tips and to produce these electrodes at a cost essentially the same as or perhaps even less than the cost of sterilization after use. Accordingly, a new and unused, and therefore sterilized, electrode may be employed on one animal and immediately thrown away to permit the use of another new, and therefore sterilized, electrode for at least those portions of surgical apparatus which are employed within a body cavity.
' The use of the electric cauterization instrument and technique according to the present invention has many obvious advantages. The primary advantage is that a surgical result can be achieved at a difficultly accessible or otherwise inaccessible portion of the body without cutting or surgically opening body tissue. In this way, it is possible to accomplish surgery without hospitalization for operations which might otherwise require several or many days recuperation in a hospital.
Certain specific embodiments-of devices according to this invention are illustrated in the drawings accompanying this description. It is to be understood, of course, that various modifications will be obvious to one skilled in the art.
FIG. 1 is a schematic representation'in very simple form of an electrode according to the concept of this invention. As illustrated in FIG. 1, the device includes a handle 11 having an elongated flexible electrode tip 12. The handle may for example, have'gripping means 13 to permit it to be conveniently held in the hand of the surgeon. It may have an external electric cord 14 adapted to be plugged into a conventional electric outlet or it may have self-contained electric circuitry suitable mounted within the handle. The flexible electrode 12 may consist of a double electrode wire as illustrated in other figures orthere may be a ground lead 15 extending from the deviceand terminating in a ground plate or clamp (not shown) adapted to be positioned against the skin of the animal or patient as close as possible to the point of surgery.
Conventionally mounted on the handle 11 is an electric switch or button which is adapted to be thrown or pressed to operate the electric circuitry to produce a pulse at the tip of electrode 12 when desired. It is understood that the circuitry to produce the pulse is completely conventional and may comprise any desired electrical mechanism to produce a pulse or spark at a tip of the electrode. A conventional high frequency or a capacitance circuit may be triggered by switch or button 16 to produce such a pulse and the circuit can be energized by an internal battery-operated electric means or by electric means connectable to a conventional and convenient power outlet.
In FIG. 2 is shown in enlarged partial cross-section one form of electrode 12 of the device of FIG. 1. This flexible electrode comprises an electrically conductive wire 21 terminating in a tip 22 and surrounded by a plastic sheath 23. Desirably, the wire 21 is longitudinally moveable within the sheath and in such case, it is also desired that the wire 21 have a thin coating of plastic or other insulator along its length except the tip 22. In use and operation, the flexible electrode 12 is inserted into the body cavity until it is at the desired position. Electrode wire 21 is then advanced in sheath 23, or sheath 23 is then retracted from the tip to assure proper mechanical contact with the tissue to be cauterized. When the tip is properly positioned, switch or button 16 is activated to create an electric pulse or electric spark at tipp 22 of electrode 12.
In FIG. 3 is shown a modified and presently preferred embodiment of flexible electrode 12. According to this embodiment, a pair of insulated wires 31 and 32 terminate in tips 33 and 34 and are encased in a plastic shield or sheath 35. The wires may or may not be longitudinally movable in the sheath 35. The electrode according to this embodiment of the invention is employed in the same way as the electrode according to FIG. 2. It
is inserted into the body cavity properly positioned and then an electric pulse is generated to produce a spark or similar pulse between electrode tip 33 and electrode tip 34 that produces electric cauterization of the tissue. The insulated conductors 31, 32 and tips 33, 34 may be coaxial in geometry.
Size and shape of the flexible electrode 12 is material to the function of the device, inasmuch as it relates significantly to size and shape of a natural body cavity of a human or other animal. A purpose to be achieved by the present inventionis to permit easy and simple operation within a body cavity of an animal or human being and generally speaking, it is expected that such operations will be carried out within a tightly confined cavity or at a precisely positioned location within the cavity. Accordingly, the electrode 12 generally will be long enough to reach into the body cavity and to the right location therein and to extend completely outside the cavity. For most purposes, the electrode will be roughly six to twelve inches long. Also, obviously, longer or shorter may be acceptable or necessary for certain purposes. In addition, the electrode 12 generally will be quite thin and it will be only unusual cases that the width or diameter'of the electrode will exceed /8 inch or at the most A inch. Obviously, thicker electrodes can be used for certain purposes, but the convenience of the present surgical instrument generally will not be realized except with an extremely thin electrode which can reach positions within a body cavity where conventional instruments cannot find access. Likewise, electrode tips 33 and 34 (where a dual electrode is used) should be positioned as close together as possible consistent with producing a workable and effective electric spark or electric pulse by the tips. Generally speaking, the electrode tips will be spaced a small fraction of an inch apart to produce a highly concentrated localized pulse or spark, thus permitting accurate position and location of the electric cauterization.
Generally speaking, the electrode 12 will have a spring-like resiliency permitting it to be positioned within a body cavity without bending out of shape and without being'so rigid as to harm the tissue which it contacts. This result can be achieved with'the use of conventionally available spring steel electrode wires. The wires together with an electrically insulating coating canbe appropriately thin and still have the desired degree of strength and flexibility. Accordingly, it is to be realized that the sections of electrode 12 illustrated in FIGS. 2 and 3 have been distorted in shape and do not represent a reasonable depiction of the preferred electrode length or preferred electrode dimensions.
In FIGS. 4 and 5 and 6 are illustrated another embodiment of the invention employing a forked electrode adapted to cauterize locations within a body cavity. This form of the electrode is presently preferred for an operation in which cauterization is desired at two predictably spaced locations within a single body cavity. One preferred purpose of the instrument is cauterization of fallopian tubes and, accordingly, for this purpose, the preferred instrument is that shown schematically in FIGS. 4, 5 and 6.
FIG. 4 illustrates the sideview of a bifurcated electrode generally designated 41. The electrode has a single body section 42 from which extend two divergent electrode 43 terminating at electrode tips 44. The electrode illustrated in FIG. 4 tapers slightly from the body 42 to the tip 44 and generally curves gradually to conform with a typical body cavity. As seen in FIG. 5, and FIG. 6, a sheath preferably a plastic sheath 46 retractably covers the two electrode sections 43 and can extend close to or if desired over electrode tips 44. The insulated conductors are longitudinally movable within the electrodes 43 to advance the tips 44 to their desired position.
In operation, the device according to FIG. 4 is first closed and protected with sheath 46 extending essentially to the electrode tips. It is then inserted into the body cavity after which sheath 44 is withdrawn to permit electrodes 43 to spread apart to their natural position. The device is then manipulated by the skilled operator until electrode tips 44 are both at the desired position and then the two electrodes 43 are simultaneously or sequentially pulsed to produce a cauterizing electric pulse or spark at tips 44. Generally, it will be preferred to have individual operating electric circuits for each of electrodes 43 and to employ dual wires in each as shown in FIG. 3. In this way, a first electrode 43 is energized to produce a cauterizing pulse and the pulse preferably will be indicated by suitable dials, gauges or other signals externally positioned. After the first pulse has been produced at one electrode, a second pulse is produced at another electrode and again is signaled appropriately externally.
The device of FIG. 1 in conjunction with the electrodes shown in FIGS. 2 through 6 can be extremely inexpensively manufactured particularly in moderate or large quantities. Accordingly, their cost can be so low as to make it economically feasible for the electrodes to be used once and thrown away. Disposable electrodes, accordingly, are contemplated and it is to be expected thatat least that portion of the device which operates within the body cavity may be disposable to permit a single use, although, of course, the device may be sterilized and reused if so desired.
In FIG. 7 is illustrated another embodiment of the invention including self-contained optical means to permit a skilled operator or surgeon to position the operating tip of the electrode by sight or by other visual means. As schematically illustrated in FIG. 7, a flexible protective sheath 71 encases a plurality of electrode wires 72 suitably insulated and positioned in generally the same manner as shown in the other figures. Also positioned within the sheath 71 is a fiber optics bundle 73 for viewing the position of the electrode tips, optionally with a second fiber optics bundle 73A to carry light into the body cavity to illuminate the field of vision. Optionally, bundle 73 can operate to carry light both ways and to serve both the illumination and viewing purposes. Near the end of the fiber optics bundle 73 is an optical imaging means such as a maneuverable mirror 74 which may, for example, be rotatable around pivot 75. A control mechanism such as a control wire 76 can adjust the mirror 74. Optionally, an outer disposable sheath 78 permits a flow of water or other fluid to the end of the electrode to flush out the field of vi- SlOn.
Associated with the electrode of FIG. 7 can be extremely small light sources or other devices to assist in viewing and positioning the electrode tip. In use and operation, after the electrode of FIG. 7 is properly positioned, sheath 71 may be partially retracted to bring electrode 72 into the proper location and the electrode may then be pulsed.
The surgical instrument according to the present invention can be employed for any desired electrical cauterization operation within the body cavity of a human being or other animal. The presently preferred purpose, however, is in connection with female sterilization for birth control where it is expected that a simple and convenient operation can be performed in a few minutes withoutthe necessity for incision with other surgical instruments. It is also expected that a careful, skilled operator can achieve a successful result in excess of 95 percent of the occasions of use. Furthermore, with a medical check after the operation to detect incomplete success, it is expected that essentially 100 percent effectiveness can result from a single or once-repeated operation. It is also expected that the cost of such operation both in terms of money and in terms of patient care can be reduced perhaps at least to about 1 percent of the time and cost of conventional operations. 7
In FIG. 8 is shown another form of electrode probe according to this invention including an elongated electrode body 81 which may be one of the electrodes of a previous figure such as the electrode of FIG. 7. The electrode body 81 has electrode tips 82 at the point thereof and means (not shown) for pulsing the tips. An outer sheath 83 retractably covers electrode body 81. At the end of the sheath furthest from the tip is a ring or handle 84 forming a finger grip to retract the sheath from the electrode tip and a cooperating base or finger grip 85 on the electrode body forms convenient means associated with the electrode to expose the electrode tips in operative position for a cauterizing electric pulse.
in FIG. 9 is shown diagrammatically a portion of an electrode adapted to be positioned within a disposable plastic sheath like, for example, the electrode of FIG. 7, or adapted to be encased in a plastic shield like, for example, the electrode structure-of FIG. 3. In FIG. 9, a pair of electrodes 91 and 92 are positioned on each side of a central electrode 93. The tip of central electrode is a ring tip 94. All but the tips of electrodes 91 and 92 are insulated, preferably being covered with plastic insulators 95 and 96 which may, if desired, be a single unitary elongated plastic body in which are embedded the three electrodes 91, 92 and 93. If electrode 93 is not embedded in a plastic body, it is covered along its length with insulator 97.
in FIGS. and 11 is illustrated a specific electrode structure expressly designed for a surgical or medical method or process of rendering the human female sterile. In FIG. 10 is illustrated a fiber optic core, generally designated 101 for a surgical electrode specifically adapted for sterilization of the human female. The point 101A of this fiber optic core 101 in combination with other structures as will be described in connection with FIG. 11 is adapted to be maneuvered to a position proximate to the fallopian tube opening. The other end 101B is mounted into a handle 102 on which is an eyepiece 103, as for example, a rubber eyepiece. The entire instrument is approximately 24 inches long and the fiber optic core approximately A inch in diameter.
In FIG. 11, the fiber optic core 101 is sheathed within a plastic sheath 105 to form a surgical electrode generally designated 106 and a lens 107 optionally of glass or plastic is mounted at the end of the core 101 and adapted to focus an image onto the ends of the optical fibers. Mounted piggy back on sheath 105 is an electrode sheath 108 in which is positioned an electrode wire 109 terminating in an electrode tip 110. The wire 109 is easily slidable within the electrode sheath 108 so that the electrode tip may be withdrawn into resting contact with the end of the electrode sheath or, as shown, may be extended from the electrode sheath 109 into an operating position.
In use and operation, the electrode 106 is inserted within the uterus and guided by the doctors eye into position at the entrance to the fallopian tube. The electrode tip 110 is then extended from its sheath 108 and maneuvered with optical guidance a short distance into the tube. The electrode is then energized causing electrical cauterization wholly within the fallopian tube. Scarring results, causing complete sealing of the tube. When the purpose of the treatment is individual and when it is important to know with certainty whether sterilization has been achieved, it is important to maintain post-operative tests and to be preapred for hospitalized surgery if the treatment was not .effective. However, if the purpose of the treatment is solely economic, or if the patients are not willing or able to be checked subsequently, it is still possible to achieve a high ratio of success and to avoid in many instances the need for hospitalization.
In FIGS. 12, 13, 14, and 15, is illustrated another specific electrode structure expressly designed for a surgical or medical method or process of rendering the human female sterile. I
Referring-now to FIG. 12 in particular, the electrode or fiber optic scope including sheath assembly 141, electrode 142, light source 143, power 144 and fluid supplies 145, eyepiece focusing lenses 146 is shown in place in the uterus with electrode 140 extended as in use for cauterizing a fallopian tube 148 via the cervix 147.
Referring now to FIG. 13 in particular, there is shown the cauterizing and objective end of the sheath assembly 141 which consists of an outer sheath 149, an electrode sheath 150 containing a retractable and advanceable electrode 151 which is coated with electrical insulating material along its length but not at the tip, a fiber optics sheath 152 and an objective lens or lens assembly 153. In the case where the fiber optics 154 consists of a coherent bundle, a single objective lens will distribute the light from the bundle to the field of view and also conduct the image back to the eyepiece 146. In the case where an incoherent bundle is used to light the field and a separate coherent bundle is used to conduct the image, a more complex lens 153 or lens assembly would be used. The electrode sheath, fiber optics sheath and outer sheath are made of tubing and may be bonded or fused together. The objective lens is fabricated separately and bonded or fused to the fiber optics sheath. The objective lens is so designed that when the fiber optics are in place, they abut the edge of the lens protruding into the fiber optics sheath 152 to so provide for the proper separations between the end of the fiber optics and the optical surface of the lens. The space 158 between the fiber optics sheath 152, the electrode sheath 150 and the outer sheath 149 may be used to conduct a solution into the uterus to clean the visual field at the objective lens 153. In order to prevent fiuid leakage about the electrode, a fluid-tight seal 155 may be provided concentric to the electrode and its sheath after the electrode sheath emerges through the outer sheath proximate to the eyepiece end of the sheath assembly. A seal 156 is also provided to close off the water conducting space between the fiber optic sheath 152 and the outer sheath 149 at the eyepiece end of the sheath assembly.
It is possible, according to this embodiment of the invention, to produce simple, inexpensive surgical electrode sheath assemblies at a cost essentially comparable to the cost of sterilizing these sheaths. Accordingly, a new and unused and therefore sterilized electrode sheath assembly 141 may be employed on one human or animal and immediately thereafter thrown away to permit the immediate use ofa new, and therefore sterilized electrode sheath assembly 141. Since the electrode sheath assembly encloses that portion of the fiber optics core inserted into the body cavity, the fiber optics need not be sterilized.
I claim:
1. A method of sterilization of a female human being, comprising guiding a source of electric discharge under direct vision to the fallopian tubes of said female, generating a cauterizing electric discharge essentially completely, within the fallopian tubes removed'from the uterus proper and allowing interior scar tissue to form, thus sealing said tubes.
2. A method of sterilization of a female human being, comprising inserting a fine electrode tip from the uterus into each fallopian tube in a manner to locate said active electrode tip within said tube essentially at the narrowest portion of said tube, and generating a cauterizing electric discharge from said electrode tip to cauterize the tissue within said tube, and allowing scar tissue to form.
3. A method of sterilization of a female animal comprising guiding a source of electric discharge under direct vision to the fallopian tubes of said female, gener ating a cauterizing electric discharge essentially completely within the fallopian tubes, avoiding the uterus wall with said discharge and sealing said tube by allowing scar tissue to form.
4. A surgical instrument for female sterilization by sealing the fallopian tubes, means for providing a cauterizing electric generated discharge wholly within the fallopian tube to cause tissue wall scarring and permanent blocking of said fallopian tubes comprising an elongated electrode ofa size to fit well within said fallopian tubes, means for providing direct vision of the tip of said electrode to guide said electrode to a precise position adjacent the entrance of said tube, means to insert said tip into said tube, and means to supply an electric discharge pulse to said electrode tip, essentially completely within said tube.
5. A surgical instrument according to claim 4, wherein said means to guide said electrode comprises a fiber optics bundle for optical illumination and observation of the position of said electrode tip and said electrode includes means for maneuvering said electrode tip in response to said optical observation, said maneuvering being from a position outside the body.
6. A surgical instrument according to claim 5, wherein said instrument includes means to flush the op tical tip and visual field.
7. In a surgical instrument according to claim 5, including a removable sheath completely surround said fiber optics device to protect said fiber optics device from contamination and containing a movable electrode and an optical tip positionable adjacent to the fiber optics tip and means in said sheath for fluid flush ing of said optical tip and field of observation.

Claims (7)

1. A method of sterilization of a female human being, comprising guiding a source of electric discharge under direct vision to the fallopian tubes of said female, generating a cauterizing electric discharge essentially completely, within the fallopian tubes removed from the uterus proper and allowing interior scar tissue to form, thus sealing said tubes.
2. A method of sterilization of a female human being, comprising inserting a fine electrode tip from the uterus into each fallopian tube in a manner to locate said active electrode tip within said tube essentially at the narrowest portion of said tube, and generating a cauterizing electric discharge from said electrode tip to cauterize the tissue within said tube, and allowing scar tissue to form.
3. A method of sterilization of a female animal comprising guiding a source of electric discharge under direct vision to the fallopian tubes of said female, generating a cauterizing electric discharge essentially completely within the fallopian tubes, avoiding the uterus wall with said discharge and sealing said tube by allowing scar tissue to form.
4. A surgical instrument for female sterilization by sealing the fallopian tubes, means for providing a cauterizing electric generated discharge wholly within the fallopian tube to cause tissue wall scarring and permanent blocking of said fallopian tubes comprising an elongated electrode of a size to fit well within said fallopian tubes, means for providing direct vision of the tip of said electrode to guide said electrode to a precise position adjacent the entrance of said tube, means to insert said tip into said tube, and means to supply an electric discharge pulse to said electrode tip, essentially completely within said tube.
5. A surgical instrument according to claim 4, wherein said means to guide said electrode comprises a fiber optics bundle for optical illumination and observation of the position of said electrode tip and said electrode includes means for maneuvering said electrode tip in response to said optical observation, said maneuvering being from a position outside the body.
6. A surgical instrument according to claim 5, wherein said instrument includes means to flush the optical tip and visual field.
7. In a surgical instrument according to claim 5, including a removable sheath completely surround said fiber optics device to protect said fiber optics device from contamination and containing a movable electrode and an optical tip positionable adjacent to the fiber optics tip and means in said sheath for fluid flushing of said optical tip and field of observation.
US366011A 1971-03-11 1973-06-01 Surgical method and electrode therefor Expired - Lifetime US3858586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US366011A US3858586A (en) 1971-03-11 1973-06-01 Surgical method and electrode therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12319471A 1971-03-11 1971-03-11
US366011A US3858586A (en) 1971-03-11 1973-06-01 Surgical method and electrode therefor

Publications (1)

Publication Number Publication Date
US3858586A true US3858586A (en) 1975-01-07

Family

ID=26821329

Family Applications (1)

Application Number Title Priority Date Filing Date
US366011A Expired - Lifetime US3858586A (en) 1971-03-11 1973-06-01 Surgical method and electrode therefor

Country Status (1)

Country Link
US (1) US3858586A (en)

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938527A (en) * 1973-07-04 1976-02-17 Centre De Recherche Industrielle De Quebec Instrument for laparoscopic tubal cauterization
US3970088A (en) * 1974-08-28 1976-07-20 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US4003380A (en) * 1974-09-05 1977-01-18 F.L. Fisher Bipolar coagulation instrument
US4011872A (en) * 1974-04-01 1977-03-15 Olympus Optical Co., Ltd. Electrical apparatus for treating affected part in a coeloma
US4033351A (en) * 1974-06-14 1977-07-05 Siemens Aktiengesellschaft Bipolar cutting electrode for high-frequency surgery
US4057063A (en) * 1975-04-11 1977-11-08 U.S. Philips Corporation Device for sterilization by transuterine tube coagulation
US4103688A (en) * 1976-04-29 1978-08-01 John Edwards Method and apparatus for sterilization
US4161950A (en) * 1975-08-01 1979-07-24 The United States Of America As Represented By The United States Department Of Energy Electrosurgical knife
US4245623A (en) * 1978-06-06 1981-01-20 Erb Robert A Method and apparatus for the hysteroscopic non-surgical sterilization of females
US4269174A (en) * 1979-08-06 1981-05-26 Medical Dynamics, Inc. Transcutaneous vasectomy apparatus and method
EP0070309A1 (en) * 1981-01-23 1983-01-26 William S Walker Electrosurgery instrument.
US4374517A (en) * 1980-06-10 1983-02-22 Olympus Optical Co., Ltd. Endoscope type high frequency surgical apparatus
US4474174A (en) * 1979-05-21 1984-10-02 American Hospital Supply Corporation Surgical instrument for an endoscope
US4557272A (en) * 1980-03-31 1985-12-10 Microwave Associates, Inc. Microwave endoscope detection and treatment system
US4643186A (en) * 1985-10-30 1987-02-17 Rca Corporation Percutaneous transluminal microwave catheter angioplasty
US4654028A (en) * 1985-03-14 1987-03-31 Hisayoshi Suma Incision opening expansion holder for inosculation
US4658816A (en) * 1984-11-14 1987-04-21 Concept Incorporated Lighted canaliculus intubation sets
EP0315730A2 (en) * 1987-11-12 1989-05-17 Peter Dr. Ing. Osypka Device for dilating and/or opening blood vessels
US4919147A (en) * 1986-10-27 1990-04-24 Josef Reinhardt Esophagus probe
US5009656A (en) * 1989-08-17 1991-04-23 Mentor O&O Inc. Bipolar electrosurgical instrument
US5041108A (en) * 1981-12-11 1991-08-20 Pillco Limited Partnership Method for laser treatment of body lumens
EP0465449A2 (en) * 1990-07-02 1992-01-08 Heart Technology, Inc. Tissue dissipative recanalization catheter.
US5103804A (en) * 1990-07-03 1992-04-14 Boston Scientific Corporation Expandable tip hemostatic probes and the like
EP0486177A1 (en) * 1990-10-26 1992-05-20 Hamamatsu Photonics K.K. Apparatus for current-assisted nerve cell connection
US5147353A (en) * 1990-03-23 1992-09-15 Myriadlase, Inc. Medical method for applying high energy light and heat for gynecological sterilization procedures
US5158086A (en) * 1990-07-20 1992-10-27 W. L. Gore & Associates, Inc. Invasive probe system
WO1993001758A1 (en) * 1991-07-15 1993-02-04 Jerome Canady Surgical coagulation device
US5246440A (en) * 1990-09-13 1993-09-21 Noord Andrew J Van Electrosurgical knife
US5271385A (en) * 1990-03-29 1993-12-21 United States Surgical Corporation Abdominal cavity organ retractor
US5303719A (en) * 1992-08-14 1994-04-19 Wilk Peter J Surgical method and associated instrument assembly
US5322507A (en) * 1992-08-11 1994-06-21 Myriadlase, Inc. Endoscope for treatment of prostate
US5364393A (en) * 1990-07-02 1994-11-15 Heart Technology, Inc. Tissue dissipative recanalization catheter
EP0637218A1 (en) * 1992-04-21 1995-02-08 St. Jude Medical, Inc. Electrosurgical apparatus and method
US5401272A (en) * 1992-09-25 1995-03-28 Envision Surgical Systems, Inc. Multimodality probe with extendable bipolar electrodes
EP0646361A1 (en) * 1993-10-05 1995-04-05 DELMA ELEKTRO-UND MEDIZINISCHE APPARATEBAU GESELLSCHAFT mbH Electrosurgical high-frequence instrument
US5419312A (en) * 1993-04-20 1995-05-30 Wildflower Communications, Inc. Multi-function endoscope apparatus
US5437664A (en) * 1994-01-18 1995-08-01 Endovascular, Inc. Apparatus and method for venous ligation
US5441498A (en) * 1994-02-16 1995-08-15 Envision Surgical Systems, Inc. Method of using a multimodality probe with extendable bipolar electrodes
US5449356A (en) * 1991-10-18 1995-09-12 Birtcher Medical Systems, Inc. Multifunctional probe for minimally invasive surgery
US5486154A (en) * 1993-06-08 1996-01-23 Kelleher; Brian S. Endoscope
WO1996004860A1 (en) * 1994-08-12 1996-02-22 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
US5507744A (en) * 1992-04-23 1996-04-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US5554112A (en) * 1992-10-09 1996-09-10 Birtcher Medical Systems, Inc. Minimally invasive irrigator/aspirator surgical probe and method of using same
US5556396A (en) * 1994-01-18 1996-09-17 Endovascular, Inc. Method for tubal electroligation
US5658282A (en) * 1994-01-18 1997-08-19 Endovascular, Inc. Apparatus for in situ saphenous vein bypass and less-invasive varicose vein treatment
US5669934A (en) * 1991-02-13 1997-09-23 Fusion Medical Technologies, Inc. Methods for joining tissue by applying radiofrequency energy to performed collagen films and sheets
WO1997043944A1 (en) * 1996-05-17 1997-11-27 Conceptus, Inc. Transcervical ostium access device and method
US5700262A (en) * 1995-10-16 1997-12-23 Neuro Navigational, L.L.C. Bipolar electrode with fluid channels for less invasive neurosurgery
US5749895A (en) * 1991-02-13 1998-05-12 Fusion Medical Technologies, Inc. Method for bonding or fusion of biological tissue and material
US5766166A (en) * 1995-03-07 1998-06-16 Enable Medical Corporation Bipolar Electrosurgical scissors
US5782747A (en) * 1996-04-22 1998-07-21 Zimmon Science Corporation Spring based multi-purpose medical instrument
US5807389A (en) * 1991-08-16 1998-09-15 Myriadlase, Inc. Laterally reflecting tip for laser transmitting fiber
US5810810A (en) * 1992-04-23 1998-09-22 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US5824015A (en) * 1991-02-13 1998-10-20 Fusion Medical Technologies, Inc. Method for welding biological tissue
US5827276A (en) * 1995-03-24 1998-10-27 Board Of Regents Of Univ Of Nebraksa Apparatus for volumetric tissue ablation
US5897551A (en) * 1990-03-23 1999-04-27 Myriadlase, Inc. Medical device for applying high energy light and heat for gynecological sterilization procedures
US5913855A (en) * 1995-08-15 1999-06-22 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5919189A (en) * 1996-05-21 1999-07-06 Benderev; Theodore V. Electrosurgical instrument and method of use
US5925045A (en) * 1993-11-10 1999-07-20 Mentor Corporation Bipolar electrosurgical instrument
US5925042A (en) * 1995-08-15 1999-07-20 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5928229A (en) * 1993-11-08 1999-07-27 Rita Medical Systems, Inc. Tumor ablation apparatus
US5951547A (en) * 1995-08-15 1999-09-14 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5954715A (en) * 1997-06-05 1999-09-21 Adiana, Inc. Method and apparatus for tubal occlusion
US5980517A (en) * 1995-08-15 1999-11-09 Rita Medical Systems, Inc. Cell necrosis apparatus
US6030365A (en) * 1998-06-10 2000-02-29 Laufer; Michael D. Minimally invasive sterile surgical access device and method
US6059780A (en) * 1995-08-15 2000-05-09 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method with cooling element
US6063085A (en) * 1992-04-23 2000-05-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US6066139A (en) * 1996-05-14 2000-05-23 Sherwood Services Ag Apparatus and method for sterilization and embolization
US6071280A (en) * 1993-11-08 2000-06-06 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
US6080150A (en) * 1995-08-15 2000-06-27 Rita Medical Systems, Inc. Cell necrosis apparatus
US6090105A (en) * 1995-08-15 2000-07-18 Rita Medical Systems, Inc. Multiple electrode ablation apparatus and method
WO2000044323A1 (en) * 1999-02-01 2000-08-03 Adiana, Inc. Method and apparatus for tubal occlusion
US6132425A (en) * 1995-08-15 2000-10-17 Gough; Edward J. Cell necrosis apparatus
US6145505A (en) * 1995-06-07 2000-11-14 Conceptus, Inc. Electrically affixed transcervical fallopian tube occlusion devices
US6179837B1 (en) 1995-03-07 2001-01-30 Enable Medical Corporation Bipolar electrosurgical scissors
US6391029B1 (en) 1995-03-07 2002-05-21 Enable Medical Corporation Bipolar electrosurgical scissors
US6464701B1 (en) 1995-03-07 2002-10-15 Enable Medical Corporation Bipolar electrosurgical scissors
US20020165541A1 (en) * 2001-04-20 2002-11-07 Whitman Michael P. Bipolar or ultrasonic surgical device
US6526979B1 (en) 1995-06-07 2003-03-04 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
WO2002085205A3 (en) * 2001-04-20 2003-05-01 Bard Inc C R Telescoping tip electrode catheter
US6575967B1 (en) 1995-03-24 2003-06-10 The Board Of Regents Of The University Of Nebraska Method and systems for volumetric tissue ablation
EP1366729A2 (en) * 1995-06-07 2003-12-03 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices having mechanical fallopian tube attachment
US6709667B1 (en) 1999-08-23 2004-03-23 Conceptus, Inc. Deployment actuation system for intrafallopian contraception
US6763833B1 (en) 1999-08-23 2004-07-20 Conceptus, Inc. Insertion/deployment catheter system for intrafallopian contraception
US20040147828A1 (en) * 2002-04-22 2004-07-29 Gibson Charles A. Telescoping tip electrode catheter
US20040200483A1 (en) * 2001-10-22 2004-10-14 Faries Durward I. Surgical drape and method of detecting fluid and leaks in thermal treatment system basins
US20050033281A1 (en) * 2002-05-23 2005-02-10 Adiana, Inc. Catheter placement detection system and operator interface
US20050061329A1 (en) * 2003-09-18 2005-03-24 Conceptus, Inc. Catheter for intrafallopian contraceptive delivery
US6958062B1 (en) 1993-11-08 2005-10-25 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US20060015093A1 (en) * 2003-01-04 2006-01-19 Endocare, Inc. Open system heat exchange catheters and methods of use
US20060135956A1 (en) * 2004-12-20 2006-06-22 Sampson Russel M Method and system for transcervical tubal occlusion
US20060235376A1 (en) * 2003-02-04 2006-10-19 Cardiodex Ltd. Methods and apparatus for hemostasis following arterial catheterization
US20060247614A1 (en) * 2005-04-28 2006-11-02 Sampson Russel M Hemostasis device
US7160295B1 (en) * 2003-12-22 2007-01-09 Garito Jon C Flexible electrosurgical electrode for treating tissue
US20070023534A1 (en) * 2005-07-22 2007-02-01 Mingsheng Liu Water-source heat pump control system and method
US20070055223A1 (en) * 2003-02-04 2007-03-08 Cardiodex, Ltd. Methods and apparatus for hemostasis following arterial catheterization
US20070250051A1 (en) * 2006-04-25 2007-10-25 Gaston Kerry R Heating via microwave and millimeter-wave transmission using a hypodermic needle
US20070261699A1 (en) * 2006-05-11 2007-11-15 Callister Jeffrey P Methods and Apparatus for Occluding Reproductive Tracts to Effect Contraception
US20080071257A1 (en) * 2006-09-18 2008-03-20 Cytyc Corporation Power Ramping During RF Ablation
US20080071269A1 (en) * 2006-09-18 2008-03-20 Cytyc Corporation Curved Endoscopic Medical Device
US20080154259A1 (en) * 1995-08-15 2008-06-26 Angiodynamics, Inc. Ablation apparatus and method
US20080167643A1 (en) * 2004-11-22 2008-07-10 Cardiodex Ltd. Techniques for Heating-Treating Varicose Veins
US20090036840A1 (en) * 2006-11-22 2009-02-05 Cytyc Corporation Atraumatic ball tip and side wall opening
US20090054884A1 (en) * 1997-09-11 2009-02-26 Farley Brian E Method of ligating hollow anatomical structures
US20090056722A1 (en) * 2007-08-28 2009-03-05 Betsy Swann Methods and devices for occluding an ovarian pathway
US20090125023A1 (en) * 2007-11-13 2009-05-14 Cytyc Corporation Electrosurgical Instrument
USRE40863E1 (en) * 1992-04-23 2009-07-21 Boston Scientific Scimed, Inc. Apparatus and method for sealing vascular punctures
US20100036372A1 (en) * 1996-04-12 2010-02-11 Csaba Truckai Moisture transport system for contact electrocoagulation
US20100063360A1 (en) * 2006-11-28 2010-03-11 Adiana, Inc. Side-arm Port Introducer
US20100086492A1 (en) * 2008-10-03 2010-04-08 Kathy Lee-Sepsick Methods and devices for sonographic imaging
US20100094074A1 (en) * 2008-10-10 2010-04-15 Hologic Inc. Brachytherapy apparatus and methods employing expandable medical devices comprising fixation elements
US20100094075A1 (en) * 2008-10-10 2010-04-15 Hologic Inc. Expandable medical devices with reinforced elastomeric members and methods employing the same
US7846160B2 (en) 2006-12-21 2010-12-07 Cytyc Corporation Method and apparatus for sterilization
US20110180073A1 (en) * 2010-01-22 2011-07-28 David Callaghan Sterilization Device and Method
US8048086B2 (en) 2004-02-25 2011-11-01 Femasys Inc. Methods and devices for conduit occlusion
US8048101B2 (en) 2004-02-25 2011-11-01 Femasys Inc. Methods and devices for conduit occlusion
US8052669B2 (en) 2004-02-25 2011-11-08 Femasys Inc. Methods and devices for delivery of compositions to conduits
US20110319889A1 (en) * 2010-06-28 2011-12-29 Salient Surgical Technologies, Inc. Electrode Sheath For Electrosurgical Device
US8366706B2 (en) 2007-08-15 2013-02-05 Cardiodex, Ltd. Systems and methods for puncture closure
US20130046139A1 (en) * 2011-08-19 2013-02-21 Harold I. Daily Hysteroscopes with curved tips
US8551082B2 (en) 1998-05-08 2013-10-08 Cytyc Surgical Products Radio-frequency generator for powering an ablation device
US8550086B2 (en) 2010-05-04 2013-10-08 Hologic, Inc. Radiopaque implant
US8702727B1 (en) 1999-02-01 2014-04-22 Hologic, Inc. Delivery catheter with implant ejection mechanism
US20150148799A1 (en) * 2013-11-27 2015-05-28 Daryoosh Samimi Apparatus and method for performing intrastromalabdominal hysterectomy as bloodless nerve sparing method
US9238127B2 (en) 2004-02-25 2016-01-19 Femasys Inc. Methods and devices for delivering to conduit
US9554826B2 (en) 2008-10-03 2017-01-31 Femasys, Inc. Contrast agent injection system for sonographic imaging
US10143831B2 (en) 2013-03-14 2018-12-04 Cynosure, Inc. Electrosurgical systems and methods
CN109310860A (en) * 2016-06-06 2019-02-05 宝雅医疗科技集团公司 Monopole casing
US10492849B2 (en) 2013-03-15 2019-12-03 Cynosure, Llc Surgical instruments and systems with multimodes of treatments and electrosurgical operation
US11135032B2 (en) 2016-04-04 2021-10-05 Gyrus Acmi, Inc. Electrosurgical illuminating instrument
USD1005484S1 (en) 2019-07-19 2023-11-21 Cynosure, Llc Handheld medical instrument and docking base
US11819259B2 (en) 2018-02-07 2023-11-21 Cynosure, Inc. Methods and apparatus for controlled RF treatments and RF generator system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1945327A (en) * 1932-06-30 1934-01-30 Willis B Morse Combined tongue depressor and electrode for electrocoagulation of tonsils
US2008526A (en) * 1932-11-03 1935-07-16 Wappler Frederick Charles Method and means for treating living tissue
US2022065A (en) * 1932-07-07 1935-11-26 Frederick C Wappler Therapeutic applicator device
US2047535A (en) * 1932-10-07 1936-07-14 Frederick C Wappler Surgical electrodes
US2102270A (en) * 1935-11-29 1937-12-14 Mortimer N Hyams Electrosurgical device
US2382109A (en) * 1943-08-06 1945-08-14 William J Cameron Diagnostic and electrosurgical appliance
US3163165A (en) * 1960-09-12 1964-12-29 Islkawa Humio Uterotube-closing instrument
US3294085A (en) * 1963-09-27 1966-12-27 American Cystoscope Makers Inc Endoscope
US3357433A (en) * 1962-12-04 1967-12-12 Centre Nat Rech Scient Endoscope for illumination and observation of contacting distal regions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1945327A (en) * 1932-06-30 1934-01-30 Willis B Morse Combined tongue depressor and electrode for electrocoagulation of tonsils
US2022065A (en) * 1932-07-07 1935-11-26 Frederick C Wappler Therapeutic applicator device
US2047535A (en) * 1932-10-07 1936-07-14 Frederick C Wappler Surgical electrodes
US2008526A (en) * 1932-11-03 1935-07-16 Wappler Frederick Charles Method and means for treating living tissue
US2102270A (en) * 1935-11-29 1937-12-14 Mortimer N Hyams Electrosurgical device
US2382109A (en) * 1943-08-06 1945-08-14 William J Cameron Diagnostic and electrosurgical appliance
US3163165A (en) * 1960-09-12 1964-12-29 Islkawa Humio Uterotube-closing instrument
US3357433A (en) * 1962-12-04 1967-12-12 Centre Nat Rech Scient Endoscope for illumination and observation of contacting distal regions
US3294085A (en) * 1963-09-27 1966-12-27 American Cystoscope Makers Inc Endoscope

Cited By (267)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938527A (en) * 1973-07-04 1976-02-17 Centre De Recherche Industrielle De Quebec Instrument for laparoscopic tubal cauterization
US4011872A (en) * 1974-04-01 1977-03-15 Olympus Optical Co., Ltd. Electrical apparatus for treating affected part in a coeloma
US4033351A (en) * 1974-06-14 1977-07-05 Siemens Aktiengesellschaft Bipolar cutting electrode for high-frequency surgery
US3970088A (en) * 1974-08-28 1976-07-20 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US3987795A (en) * 1974-08-28 1976-10-26 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US4003380A (en) * 1974-09-05 1977-01-18 F.L. Fisher Bipolar coagulation instrument
US4057063A (en) * 1975-04-11 1977-11-08 U.S. Philips Corporation Device for sterilization by transuterine tube coagulation
US4161950A (en) * 1975-08-01 1979-07-24 The United States Of America As Represented By The United States Department Of Energy Electrosurgical knife
US4103688A (en) * 1976-04-29 1978-08-01 John Edwards Method and apparatus for sterilization
US4245623A (en) * 1978-06-06 1981-01-20 Erb Robert A Method and apparatus for the hysteroscopic non-surgical sterilization of females
US4474174A (en) * 1979-05-21 1984-10-02 American Hospital Supply Corporation Surgical instrument for an endoscope
US4269174A (en) * 1979-08-06 1981-05-26 Medical Dynamics, Inc. Transcutaneous vasectomy apparatus and method
US4557272A (en) * 1980-03-31 1985-12-10 Microwave Associates, Inc. Microwave endoscope detection and treatment system
US4374517A (en) * 1980-06-10 1983-02-22 Olympus Optical Co., Ltd. Endoscope type high frequency surgical apparatus
EP0070309A1 (en) * 1981-01-23 1983-01-26 William S Walker Electrosurgery instrument.
EP0070309A4 (en) * 1981-01-23 1985-02-28 William S Walker Electrosurgery instrument.
US5041108A (en) * 1981-12-11 1991-08-20 Pillco Limited Partnership Method for laser treatment of body lumens
US4658816A (en) * 1984-11-14 1987-04-21 Concept Incorporated Lighted canaliculus intubation sets
US4654028A (en) * 1985-03-14 1987-03-31 Hisayoshi Suma Incision opening expansion holder for inosculation
US4643186A (en) * 1985-10-30 1987-02-17 Rca Corporation Percutaneous transluminal microwave catheter angioplasty
US4919147A (en) * 1986-10-27 1990-04-24 Josef Reinhardt Esophagus probe
EP0315730A2 (en) * 1987-11-12 1989-05-17 Peter Dr. Ing. Osypka Device for dilating and/or opening blood vessels
EP0315730A3 (en) * 1987-11-12 1990-02-07 Peter Dr. Ing. Osypka Device for dilating and/or opening blood vessels
US5009656A (en) * 1989-08-17 1991-04-23 Mentor O&O Inc. Bipolar electrosurgical instrument
US5147353A (en) * 1990-03-23 1992-09-15 Myriadlase, Inc. Medical method for applying high energy light and heat for gynecological sterilization procedures
US5897551A (en) * 1990-03-23 1999-04-27 Myriadlase, Inc. Medical device for applying high energy light and heat for gynecological sterilization procedures
US6352549B1 (en) * 1990-03-23 2002-03-05 Myriadlase, Inc. Medical device for applying high energy light and heat for gynecological sterilization procedures
US5271385A (en) * 1990-03-29 1993-12-21 United States Surgical Corporation Abdominal cavity organ retractor
EP0465449A3 (en) * 1990-07-02 1992-03-18 Heart Technology, Inc. Tissue dissipative recanalization catheter
US5364393A (en) * 1990-07-02 1994-11-15 Heart Technology, Inc. Tissue dissipative recanalization catheter
EP0465449A2 (en) * 1990-07-02 1992-01-08 Heart Technology, Inc. Tissue dissipative recanalization catheter.
US5103804A (en) * 1990-07-03 1992-04-14 Boston Scientific Corporation Expandable tip hemostatic probes and the like
US5158086A (en) * 1990-07-20 1992-10-27 W. L. Gore & Associates, Inc. Invasive probe system
US5246440A (en) * 1990-09-13 1993-09-21 Noord Andrew J Van Electrosurgical knife
US5224477A (en) * 1990-10-26 1993-07-06 Hamamatsu Photonics K.K. Current-assisted nerve cell connection
EP0486177A1 (en) * 1990-10-26 1992-05-20 Hamamatsu Photonics K.K. Apparatus for current-assisted nerve cell connection
US5824015A (en) * 1991-02-13 1998-10-20 Fusion Medical Technologies, Inc. Method for welding biological tissue
US5749895A (en) * 1991-02-13 1998-05-12 Fusion Medical Technologies, Inc. Method for bonding or fusion of biological tissue and material
US5669934A (en) * 1991-02-13 1997-09-23 Fusion Medical Technologies, Inc. Methods for joining tissue by applying radiofrequency energy to performed collagen films and sheets
US5207675A (en) * 1991-07-15 1993-05-04 Jerome Canady Surgical coagulation device
WO1993001758A1 (en) * 1991-07-15 1993-02-04 Jerome Canady Surgical coagulation device
US5807389A (en) * 1991-08-16 1998-09-15 Myriadlase, Inc. Laterally reflecting tip for laser transmitting fiber
US5449356A (en) * 1991-10-18 1995-09-12 Birtcher Medical Systems, Inc. Multifunctional probe for minimally invasive surgery
EP0637218A1 (en) * 1992-04-21 1995-02-08 St. Jude Medical, Inc. Electrosurgical apparatus and method
EP0637218A4 (en) * 1992-04-21 1995-12-06 St Jude Medical Electrosurgical apparatus and method.
US5810810A (en) * 1992-04-23 1998-09-22 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US6063085A (en) * 1992-04-23 2000-05-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US5507744A (en) * 1992-04-23 1996-04-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
USRE40863E1 (en) * 1992-04-23 2009-07-21 Boston Scientific Scimed, Inc. Apparatus and method for sealing vascular punctures
US5593404A (en) * 1992-08-11 1997-01-14 Myriadlase, Inc. Method of treatment of prostate
US5322507A (en) * 1992-08-11 1994-06-21 Myriadlase, Inc. Endoscope for treatment of prostate
US5303719A (en) * 1992-08-14 1994-04-19 Wilk Peter J Surgical method and associated instrument assembly
US5401272A (en) * 1992-09-25 1995-03-28 Envision Surgical Systems, Inc. Multimodality probe with extendable bipolar electrodes
US5554112A (en) * 1992-10-09 1996-09-10 Birtcher Medical Systems, Inc. Minimally invasive irrigator/aspirator surgical probe and method of using same
US5419312A (en) * 1993-04-20 1995-05-30 Wildflower Communications, Inc. Multi-function endoscope apparatus
USRE37772E1 (en) 1993-06-08 2002-06-25 Endonetics, Inc. Endoscope
US5486154A (en) * 1993-06-08 1996-01-23 Kelleher; Brian S. Endoscope
EP0646361A1 (en) * 1993-10-05 1995-04-05 DELMA ELEKTRO-UND MEDIZINISCHE APPARATEBAU GESELLSCHAFT mbH Electrosurgical high-frequence instrument
US6958062B1 (en) 1993-11-08 2005-10-25 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6071280A (en) * 1993-11-08 2000-06-06 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
US5536267A (en) * 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5928229A (en) * 1993-11-08 1999-07-27 Rita Medical Systems, Inc. Tumor ablation apparatus
US5972416A (en) * 1993-11-10 1999-10-26 Mentor Corporation Bipolar electrosurgical instrument and method for making the instrument
US5925045A (en) * 1993-11-10 1999-07-20 Mentor Corporation Bipolar electrosurgical instrument
US5437664A (en) * 1994-01-18 1995-08-01 Endovascular, Inc. Apparatus and method for venous ligation
US6267758B1 (en) * 1994-01-18 2001-07-31 Esc Medical Systems Ltd. Apparatus for in situ saphenous vein bypass and less-invasive varicose vein treatment
US5658282A (en) * 1994-01-18 1997-08-19 Endovascular, Inc. Apparatus for in situ saphenous vein bypass and less-invasive varicose vein treatment
US5643257A (en) * 1994-01-18 1997-07-01 Endovascular, Inc. Apparatus and method for venous ligation
US5556396A (en) * 1994-01-18 1996-09-17 Endovascular, Inc. Method for tubal electroligation
US5441498A (en) * 1994-02-16 1995-08-15 Envision Surgical Systems, Inc. Method of using a multimodality probe with extendable bipolar electrodes
EP1366725A1 (en) * 1994-08-12 2003-12-03 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
WO1996004860A1 (en) * 1994-08-12 1996-02-22 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
EP0908156A1 (en) * 1994-08-12 1999-04-14 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
US6464701B1 (en) 1995-03-07 2002-10-15 Enable Medical Corporation Bipolar electrosurgical scissors
US6391029B1 (en) 1995-03-07 2002-05-21 Enable Medical Corporation Bipolar electrosurgical scissors
US6350264B1 (en) 1995-03-07 2002-02-26 Enable Medical Corporation Bipolar electrosurgical scissors
US5766166A (en) * 1995-03-07 1998-06-16 Enable Medical Corporation Bipolar Electrosurgical scissors
US6179837B1 (en) 1995-03-07 2001-01-30 Enable Medical Corporation Bipolar electrosurgical scissors
US5868740A (en) * 1995-03-24 1999-02-09 Board Of Regents-Univ Of Nebraska Method for volumetric tissue ablation
US6454765B1 (en) 1995-03-24 2002-09-24 The Board Of Regents Of The University Of Nebraska Methods for volumetric tissue ablation
US5855576A (en) * 1995-03-24 1999-01-05 Board Of Regents Of University Of Nebraska Method for volumetric tissue ablation
US5827276A (en) * 1995-03-24 1998-10-27 Board Of Regents Of Univ Of Nebraksa Apparatus for volumetric tissue ablation
US6575967B1 (en) 1995-03-24 2003-06-10 The Board Of Regents Of The University Of Nebraska Method and systems for volumetric tissue ablation
US6468273B1 (en) 1995-03-24 2002-10-22 The Board Of Regents Of The University Of Nebraska Methods for volumetric tissue ablation
US20040163651A1 (en) * 1995-06-07 2004-08-26 Conceptus, Inc. Transcervical fallopian tube occlusion devices and their delivery
US6705323B1 (en) 1995-06-07 2004-03-16 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
US7428904B2 (en) 1995-06-07 2008-09-30 Alien Technology Corporation Contraceptive transcervical fallopian tube occlusion devices and their delivery
US7686020B2 (en) 1995-06-07 2010-03-30 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
US20110030696A1 (en) * 1995-06-07 2011-02-10 Nikolchev Julian N Contraceptive transcervical fallopian tube occlusion devices and methods
US7921848B2 (en) 1995-06-07 2011-04-12 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
US6145505A (en) * 1995-06-07 2000-11-14 Conceptus, Inc. Electrically affixed transcervical fallopian tube occlusion devices
US6176240B1 (en) * 1995-06-07 2001-01-23 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and their delivery
US8066007B2 (en) 1995-06-07 2011-11-29 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and their delivery
US20070144528A1 (en) * 1995-06-07 2007-06-28 Julian Nikolchev Contraceptive transcervical fallopian tube occlusion devices and their delivery
US20070062542A1 (en) * 1995-06-07 2007-03-22 Nikolchev Julian N Contraceptive transcervical fallopian tube occlusion devices and methods
US8171936B2 (en) 1995-06-07 2012-05-08 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
US20070044808A1 (en) * 1995-06-07 2007-03-01 Conceptus, Inc., A California Corporation Contraceptive transcervical fallopian tube occlusion devices and their delivery
US20070000496A1 (en) * 1995-06-07 2007-01-04 Nikolchev Julian N Contraceptive transcervical fallopian tube occlusion devices and methods
US8327852B2 (en) 1995-06-07 2012-12-11 Conceptus, Inc. Occlusion devices and methods
US8356599B2 (en) 1995-06-07 2013-01-22 Conceptus, Inc. Occlusion devices and methods
US20060144406A1 (en) * 1995-06-07 2006-07-06 Nikolchev Julian N Contraceptive transcervical fallopian tube occlusion devices and methods
US8733361B2 (en) 1995-06-07 2014-05-27 Bayer Essure Inc. Occlusion devices and methods
US20040211429A1 (en) * 1995-06-07 2004-10-28 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and their delivery
US20040206358A1 (en) * 1995-06-07 2004-10-21 Conceptus, Inc., A California Corporation Contraceptive transcervical fallopian tube occlusion devices and their delivery
US6526979B1 (en) 1995-06-07 2003-03-04 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
US20040159324A1 (en) * 1995-06-07 2004-08-19 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and their delivery
US20040127918A1 (en) * 1995-06-07 2004-07-01 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
US6634361B1 (en) 1995-06-07 2003-10-21 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
EP1366729A2 (en) * 1995-06-07 2003-12-03 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices having mechanical fallopian tube attachment
US20040079377A1 (en) * 1995-06-07 2004-04-29 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
EP1366729A3 (en) * 1995-06-07 2003-12-10 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices having mechanical fallopian tube attachment
US6684884B2 (en) 1995-06-07 2004-02-03 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
US8734439B2 (en) 1995-08-15 2014-05-27 Angiodynamics, Inc Ablation apparatus and method
US5925042A (en) * 1995-08-15 1999-07-20 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6080150A (en) * 1995-08-15 2000-06-27 Rita Medical Systems, Inc. Cell necrosis apparatus
US20080154259A1 (en) * 1995-08-15 2008-06-26 Angiodynamics, Inc. Ablation apparatus and method
US6090105A (en) * 1995-08-15 2000-07-18 Rita Medical Systems, Inc. Multiple electrode ablation apparatus and method
US5913855A (en) * 1995-08-15 1999-06-22 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6132425A (en) * 1995-08-15 2000-10-17 Gough; Edward J. Cell necrosis apparatus
US6059780A (en) * 1995-08-15 2000-05-09 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method with cooling element
US5980517A (en) * 1995-08-15 1999-11-09 Rita Medical Systems, Inc. Cell necrosis apparatus
US5951547A (en) * 1995-08-15 1999-09-14 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5700262A (en) * 1995-10-16 1997-12-23 Neuro Navigational, L.L.C. Bipolar electrode with fluid channels for less invasive neurosurgery
US8506563B2 (en) 1996-04-12 2013-08-13 Cytyc Surgical Products Moisture transport system for contact electrocoagulation
US8998898B2 (en) 1996-04-12 2015-04-07 Cytyc Surgical Products Moisture transport system for contact electrocoagulation
US9095348B2 (en) 1996-04-12 2015-08-04 Cytyc Surgical Products Moisture transport system for contact electrocoagulation
US20100036372A1 (en) * 1996-04-12 2010-02-11 Csaba Truckai Moisture transport system for contact electrocoagulation
US9247989B2 (en) 1996-04-12 2016-02-02 Cytyc Surgical Products Moisture transport system for contact electrocoagulation
US5782747A (en) * 1996-04-22 1998-07-21 Zimmon Science Corporation Spring based multi-purpose medical instrument
US6066139A (en) * 1996-05-14 2000-05-23 Sherwood Services Ag Apparatus and method for sterilization and embolization
WO1997043944A1 (en) * 1996-05-17 1997-11-27 Conceptus, Inc. Transcervical ostium access device and method
US5807239A (en) * 1996-05-17 1998-09-15 Conceptus, Inc. Transcervical ostium access device and method
US6030383A (en) * 1996-05-21 2000-02-29 Benderev; Theodore V. Electrosurgical instrument and method of use
US5919189A (en) * 1996-05-21 1999-07-06 Benderev; Theodore V. Electrosurgical instrument and method of use
US6068626A (en) * 1997-06-05 2000-05-30 Adiana, Inc. Method and apparatus for tubal occlusion
US20040204720A1 (en) * 1997-06-05 2004-10-14 Adiana, Inc. Method and apparatus for tubal occlusion
US7220259B2 (en) 1997-06-05 2007-05-22 Adiana, Inc. Method and apparatus for tubal occlusion
US5954715A (en) * 1997-06-05 1999-09-21 Adiana, Inc. Method and apparatus for tubal occlusion
US7905880B2 (en) 1997-06-05 2011-03-15 Cytyc Corporation Method and apparatus for tubal occlusion
US20070215163A1 (en) * 1997-06-05 2007-09-20 Adiana, Inc. Method and Apparatus for Tubal Occlusion
US6346102B1 (en) 1997-06-05 2002-02-12 Adiana, Inc. Method and apparatus for tubal occlusion
US6726682B2 (en) 1997-06-05 2004-04-27 Adiana, Inc. Method and apparatus for tubal occlusion
US8679110B2 (en) 1997-09-11 2014-03-25 Covidien Lp Expandable vein ligator catheter having multiple electrode leads, and method
US8267931B2 (en) 1997-09-11 2012-09-18 Tyco Healthcare Group Lp Method of ligating hollow anatomical structures
US20090137998A1 (en) * 1997-09-11 2009-05-28 Zikorus Arthur W Expandable vein ligator catheter having multiple electrode leads, and method
US20090054884A1 (en) * 1997-09-11 2009-02-26 Farley Brian E Method of ligating hollow anatomical structures
US8613282B2 (en) 1997-09-24 2013-12-24 Conceptus, Inc. Occlusion devices and methods
US8733360B2 (en) 1997-09-24 2014-05-27 Bayer Essure Inc. Occlusion devices and methods
US9554853B2 (en) 1998-05-08 2017-01-31 Hologic, Inc. Radio-frequency generator for powering an ablation device
US8551082B2 (en) 1998-05-08 2013-10-08 Cytyc Surgical Products Radio-frequency generator for powering an ablation device
US6030365A (en) * 1998-06-10 2000-02-29 Laufer; Michael D. Minimally invasive sterile surgical access device and method
WO2000044323A1 (en) * 1999-02-01 2000-08-03 Adiana, Inc. Method and apparatus for tubal occlusion
CN100360098C (en) * 1999-02-01 2008-01-09 艾迪安那公司 Method and apparatus for tubal occlusion
US7842035B2 (en) 1999-02-01 2010-11-30 Cytyc Corporation Method and apparatus for tubal occlusion
US6309384B1 (en) * 1999-02-01 2001-10-30 Adiana, Inc. Method and apparatus for tubal occlusion
US8226645B2 (en) 1999-02-01 2012-07-24 Cytyc Corporation Apparatus for tubal occlusion
US8702727B1 (en) 1999-02-01 2014-04-22 Hologic, Inc. Delivery catheter with implant ejection mechanism
US6712810B2 (en) 1999-02-01 2004-03-30 Adiana, Inc. Method and apparatus for tubal occlusion
US20040255958A1 (en) * 1999-02-01 2004-12-23 Adiana, Inc. Method and apparatus for tubal occlusion
US9662514B2 (en) 1999-06-02 2017-05-30 Covidien Lp Bipolar or ultrasonic surgical device
US20050232961A1 (en) * 1999-08-23 2005-10-20 Conceptus, Inc. Deployment actuation system for intrafallopian contraception
US6709667B1 (en) 1999-08-23 2004-03-23 Conceptus, Inc. Deployment actuation system for intrafallopian contraception
US8695604B2 (en) 1999-08-23 2014-04-15 Bayer Essure Inc. Deployment actuation system
US7237552B2 (en) * 1999-08-23 2007-07-03 Conceptus, Inc. Insertion/deployment catheter system for intrafallopian contraception
US8584679B2 (en) 1999-08-23 2013-11-19 Conceptus, Inc. Deployment actuation system
US7934504B2 (en) 1999-08-23 2011-05-03 Conceptus, Inc. Deployment actuation system for intrafallopian contraception
US7591268B2 (en) 1999-08-23 2009-09-22 Conceptus, Inc. Deployment actuation system for intrafallopian contraception
US20090277463A1 (en) * 1999-08-23 2009-11-12 Conceptus, Inc., A California Corporation Deployment Actuation System for Intrafallopian Contraception
US7506650B2 (en) 1999-08-23 2009-03-24 Conceptus, Inc. Deployment actuation system for intrafallopian contraception
US8079364B2 (en) 1999-08-23 2011-12-20 Conceptus, Inc. Deployment actuation system for intrafallopian contraception
US6763833B1 (en) 1999-08-23 2004-07-20 Conceptus, Inc. Insertion/deployment catheter system for intrafallopian contraception
US20050045184A1 (en) * 1999-08-23 2005-03-03 Conceptus, Inc. Insertion/deployment catheter system for intrafallopian contraception
US9597224B2 (en) 1999-08-23 2017-03-21 Bayer Healthcare Llc Deployment actuation system
US20040163650A1 (en) * 1999-08-23 2004-08-26 Conceptus, Inc. Deployment actuation system for intrafallopian contraception
US8381733B2 (en) 1999-08-23 2013-02-26 Conceptus, Inc. Deployment actuation system
WO2002085205A3 (en) * 2001-04-20 2003-05-01 Bard Inc C R Telescoping tip electrode catheter
US20020165541A1 (en) * 2001-04-20 2002-11-07 Whitman Michael P. Bipolar or ultrasonic surgical device
US8292888B2 (en) 2001-04-20 2012-10-23 Tyco Healthcare Group Lp Bipolar or ultrasonic surgical device
US8845665B2 (en) 2001-04-20 2014-09-30 Covidien Lp Bipolar or ultrasonic surgical device
US8523890B2 (en) 2001-04-20 2013-09-03 Covidien Lp Bipolar or ultrasonic surgical device
US20040200483A1 (en) * 2001-10-22 2004-10-14 Faries Durward I. Surgical drape and method of detecting fluid and leaks in thermal treatment system basins
US20040147828A1 (en) * 2002-04-22 2004-07-29 Gibson Charles A. Telescoping tip electrode catheter
US20050033281A1 (en) * 2002-05-23 2005-02-10 Adiana, Inc. Catheter placement detection system and operator interface
US7582085B2 (en) 2002-05-23 2009-09-01 Cytyc Corporation Catheter placement detection system and operator interface
US20060015093A1 (en) * 2003-01-04 2006-01-19 Endocare, Inc. Open system heat exchange catheters and methods of use
US20060235376A1 (en) * 2003-02-04 2006-10-19 Cardiodex Ltd. Methods and apparatus for hemostasis following arterial catheterization
US20070055223A1 (en) * 2003-02-04 2007-03-08 Cardiodex, Ltd. Methods and apparatus for hemostasis following arterial catheterization
US8372072B2 (en) 2003-02-04 2013-02-12 Cardiodex Ltd. Methods and apparatus for hemostasis following arterial catheterization
US20100228241A1 (en) * 2003-02-04 2010-09-09 Cardiodex Ltd. Methods and apparatus for hemostasis following arterial catheterization
US20070213710A1 (en) * 2003-02-04 2007-09-13 Hayim Lindenbaum Methods and apparatus for hemostasis following arterial catheterization
US20050061329A1 (en) * 2003-09-18 2005-03-24 Conceptus, Inc. Catheter for intrafallopian contraceptive delivery
US7160295B1 (en) * 2003-12-22 2007-01-09 Garito Jon C Flexible electrosurgical electrode for treating tissue
US8316853B2 (en) 2004-02-25 2012-11-27 Femasys Inc. Method and devices for conduit occlusion
US9220880B2 (en) 2004-02-25 2015-12-29 Femasys Inc. Methods and devices for delivery of compositions to conduits
US11779372B2 (en) 2004-02-25 2023-10-10 Femasys Inc. Methods and devices for conduit occlusion
US9238127B2 (en) 2004-02-25 2016-01-19 Femasys Inc. Methods and devices for delivering to conduit
US9034053B2 (en) 2004-02-25 2015-05-19 Femasys Inc. Methods and devices for conduit occlusion
US9308023B2 (en) 2004-02-25 2016-04-12 Femasys Inc. Methods and devices for conduit occlusion
US8726906B2 (en) 2004-02-25 2014-05-20 Femasys Inc. Methods and devices for conduit occlusion
US8316854B2 (en) 2004-02-25 2012-11-27 Femasys Inc. Methods and devices for conduit occlusion
US8324193B2 (en) 2004-02-25 2012-12-04 Femasys Inc. Methods and devices for delivery of compositions to conduits
US8695606B2 (en) 2004-02-25 2014-04-15 Femasys Inc. Methods and devices for conduit occlusion
US8336552B2 (en) 2004-02-25 2012-12-25 Femasys Inc. Methods and devices for conduit occlusion
US8052669B2 (en) 2004-02-25 2011-11-08 Femasys Inc. Methods and devices for delivery of compositions to conduits
US10292732B2 (en) 2004-02-25 2019-05-21 Femasys, Inc. Methods and devices for conduit occlusion
US8048101B2 (en) 2004-02-25 2011-11-01 Femasys Inc. Methods and devices for conduit occlusion
US10111687B2 (en) 2004-02-25 2018-10-30 Femasys, Inc. Methods and devices for conduit occlusion
US9402762B2 (en) 2004-02-25 2016-08-02 Femasys Inc. Methods and devices for conduit occlusion
US8048086B2 (en) 2004-02-25 2011-11-01 Femasys Inc. Methods and devices for conduit occlusion
US9839444B2 (en) 2004-02-25 2017-12-12 Femasys Inc. Methods and devices for conduit occlusion
US8435236B2 (en) 2004-11-22 2013-05-07 Cardiodex, Ltd. Techniques for heat-treating varicose veins
US20080167643A1 (en) * 2004-11-22 2008-07-10 Cardiodex Ltd. Techniques for Heating-Treating Varicose Veins
WO2006068808A1 (en) * 2004-12-20 2006-06-29 Cytyc Corporation Method and system for transcervical tubal occlusion
US20060135956A1 (en) * 2004-12-20 2006-06-22 Sampson Russel M Method and system for transcervical tubal occlusion
US7731712B2 (en) 2004-12-20 2010-06-08 Cytyc Corporation Method and system for transcervical tubal occlusion
US20100228245A1 (en) * 2004-12-20 2010-09-09 Sampson Russel M Method and System for Transcervical Tubal Occlusion
US7674260B2 (en) 2005-04-28 2010-03-09 Cytyc Corporation Emergency hemostasis device utilizing energy
US20060247614A1 (en) * 2005-04-28 2006-11-02 Sampson Russel M Hemostasis device
US20070023534A1 (en) * 2005-07-22 2007-02-01 Mingsheng Liu Water-source heat pump control system and method
US20070250051A1 (en) * 2006-04-25 2007-10-25 Gaston Kerry R Heating via microwave and millimeter-wave transmission using a hypodermic needle
US8550085B2 (en) 2006-05-11 2013-10-08 Conceptus, Inc. Methods and apparatus for occluding reproductive tracts to effect contraception
US7975697B2 (en) 2006-05-11 2011-07-12 Conceptus, Inc. Methods and apparatus for occluding reproductive tracts to effect contraception
US20070261699A1 (en) * 2006-05-11 2007-11-15 Callister Jeffrey P Methods and Apparatus for Occluding Reproductive Tracts to Effect Contraception
US8486060B2 (en) 2006-09-18 2013-07-16 Cytyc Corporation Power ramping during RF ablation
US20080071269A1 (en) * 2006-09-18 2008-03-20 Cytyc Corporation Curved Endoscopic Medical Device
US20080071257A1 (en) * 2006-09-18 2008-03-20 Cytyc Corporation Power Ramping During RF Ablation
US20090036840A1 (en) * 2006-11-22 2009-02-05 Cytyc Corporation Atraumatic ball tip and side wall opening
US20100063360A1 (en) * 2006-11-28 2010-03-11 Adiana, Inc. Side-arm Port Introducer
US7846160B2 (en) 2006-12-21 2010-12-07 Cytyc Corporation Method and apparatus for sterilization
US8366706B2 (en) 2007-08-15 2013-02-05 Cardiodex, Ltd. Systems and methods for puncture closure
US8100129B2 (en) 2007-08-28 2012-01-24 Conceptus, Inc. Methods and devices for occluding an ovarian pathway
US8726905B2 (en) 2007-08-28 2014-05-20 Bayer Essure Inc. Methods and devices for occluding an ovarian pathway
US20090056722A1 (en) * 2007-08-28 2009-03-05 Betsy Swann Methods and devices for occluding an ovarian pathway
US20090125023A1 (en) * 2007-11-13 2009-05-14 Cytyc Corporation Electrosurgical Instrument
US10258375B2 (en) 2008-10-03 2019-04-16 Femasys, Inc. Methods and devices for sonographic imaging
US11648033B2 (en) 2008-10-03 2023-05-16 Femasys Inc. Methods and devices for sonographic imaging
US11154326B2 (en) 2008-10-03 2021-10-26 Femasys Inc. Methods and devices for sonographic imaging
US9554826B2 (en) 2008-10-03 2017-01-31 Femasys, Inc. Contrast agent injection system for sonographic imaging
US20100086492A1 (en) * 2008-10-03 2010-04-08 Kathy Lee-Sepsick Methods and devices for sonographic imaging
US11980395B2 (en) 2008-10-03 2024-05-14 Femasys Inc. Methods and devices for sonographic imaging
US10172643B2 (en) 2008-10-03 2019-01-08 Femasys, Inc. Contrast agent generation and injection system for sonographic imaging
US10070888B2 (en) 2008-10-03 2018-09-11 Femasys, Inc. Methods and devices for sonographic imaging
US20100094075A1 (en) * 2008-10-10 2010-04-15 Hologic Inc. Expandable medical devices with reinforced elastomeric members and methods employing the same
US20100094074A1 (en) * 2008-10-10 2010-04-15 Hologic Inc. Brachytherapy apparatus and methods employing expandable medical devices comprising fixation elements
US8231619B2 (en) 2010-01-22 2012-07-31 Cytyc Corporation Sterilization device and method
US20110180073A1 (en) * 2010-01-22 2011-07-28 David Callaghan Sterilization Device and Method
US8550086B2 (en) 2010-05-04 2013-10-08 Hologic, Inc. Radiopaque implant
US20150320490A1 (en) * 2010-06-28 2015-11-12 Medtronic Advanced Energy Llc Electrode sheath for electrosurgical device
US9895191B2 (en) * 2010-06-28 2018-02-20 Medtronic Advanced Energy Llc Electrode sheath for electrosurgical device
US20110319889A1 (en) * 2010-06-28 2011-12-29 Salient Surgical Technologies, Inc. Electrode Sheath For Electrosurgical Device
US9138289B2 (en) * 2010-06-28 2015-09-22 Medtronic Advanced Energy Llc Electrode sheath for electrosurgical device
US11291351B2 (en) * 2011-08-19 2022-04-05 Harold I. Daily Hysteroscopes with curved tips
US20130046139A1 (en) * 2011-08-19 2013-02-21 Harold I. Daily Hysteroscopes with curved tips
US20220167832A1 (en) * 2011-08-19 2022-06-02 Hd Medical Electronic Products, Inc. Hysteroscopes with curved tips
US10143831B2 (en) 2013-03-14 2018-12-04 Cynosure, Inc. Electrosurgical systems and methods
US11389226B2 (en) 2013-03-15 2022-07-19 Cynosure, Llc Surgical instruments and systems with multimodes of treatments and electrosurgical operation
US10492849B2 (en) 2013-03-15 2019-12-03 Cynosure, Llc Surgical instruments and systems with multimodes of treatments and electrosurgical operation
US20170020595A1 (en) * 2013-11-27 2017-01-26 Daryoosh Samimi System for performing intrastromalabdominal hysterectomy as bloodless nerve sparing method
US9498250B2 (en) * 2013-11-27 2016-11-22 Daryoosh Samimi Apparatus and method for performing intrastromalabdominal hysterectomy as bloodless nerve sparing method
US20150148799A1 (en) * 2013-11-27 2015-05-28 Daryoosh Samimi Apparatus and method for performing intrastromalabdominal hysterectomy as bloodless nerve sparing method
US11135032B2 (en) 2016-04-04 2021-10-05 Gyrus Acmi, Inc. Electrosurgical illuminating instrument
US11191564B2 (en) * 2016-06-06 2021-12-07 Pajunk GmbH Medizintechnologie Unipolar cannula
IL262527B (en) * 2016-06-06 2022-08-01 Pajunk GmbH Medizintechnologie Monopolar cannula
CN109310860A (en) * 2016-06-06 2019-02-05 宝雅医疗科技集团公司 Monopole casing
US11819259B2 (en) 2018-02-07 2023-11-21 Cynosure, Inc. Methods and apparatus for controlled RF treatments and RF generator system
USD1005484S1 (en) 2019-07-19 2023-11-21 Cynosure, Llc Handheld medical instrument and docking base
USD1025356S1 (en) 2019-07-19 2024-04-30 Cynosure, Llc Handheld medical instrument and optional docking base

Similar Documents

Publication Publication Date Title
US3858586A (en) Surgical method and electrode therefor
US4493320A (en) Bipolar electrocautery surgical snare
US6193714B1 (en) Medical probe device with transparent distal extremity
US5667488A (en) Transurethral needle ablation device and method for the treatment of the prostate
US4836189A (en) Video hysteroscope
JP4460567B2 (en) Deflectable interstitial ablation device
US5807309A (en) Transurethral needle ablation device and method for the treatment of the prostate
US4765331A (en) Electrosurgical device with treatment arc of less than 360 degrees
ES2398365T3 (en) Endoscope power supply device
EP2526993A2 (en) Treatment tool
WO2008156623A1 (en) Flexible infrared delivery apparatus and method
JP2005118101A (en) High-frequency treatment instrument for endoscope
PT637436E (en) MEDICAL PROBE DEVICE WITH OPTICAL OBSERVATION CAPACITY
JPS63272320A (en) Catheter and its production
KR19990007842A (en) Medical Probe Device and Electrode Assembly Used in the Device
US20220054222A1 (en) Electrosurgical illuminating instrument
GB2044104A (en) Improvements in or relating to coagulator devices
JP2004057815A (en) Treatment instrument for endoscope
JP5861002B2 (en) Medical instruments
US3269387A (en) Endoscope with rigid fiberscope illuminating means
US6749603B2 (en) Electrical probe
JP2021084032A (en) Surgical instruments with integrated lighting systems
JPH04354929A (en) Endscope
US20220265340A1 (en) Electrosurgical handheld device, and contact body for an electrosurgical handheld device
WO1996022739A1 (en) Medical probe device with scope and proximal aspiraton openings and method for treatment of the prostate with same