US3468092A - Composite strip shingle - Google Patents
Composite strip shingle Download PDFInfo
- Publication number
- US3468092A US3468092A US688195A US3468092DA US3468092A US 3468092 A US3468092 A US 3468092A US 688195 A US688195 A US 688195A US 3468092D A US3468092D A US 3468092DA US 3468092 A US3468092 A US 3468092A
- Authority
- US
- United States
- Prior art keywords
- shingle
- edge
- composition
- strip
- shingles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D1/00—Roof covering by making use of tiles, slates, shingles, or other small roofing elements
- E04D1/26—Strip-shaped roofing elements simulating a repetitive pattern, e.g. appearing as a row of shingles
- E04D1/265—Strip-shaped roofing elements simulating a repetitive pattern, e.g. appearing as a row of shingles the roofing elements being rigid, e.g. made of metal, wood or concrete
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D1/00—Roof covering by making use of tiles, slates, shingles, or other small roofing elements
- E04D1/28—Roofing elements comprising two or more layers, e.g. for insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/92—Fire or heat protection feature
- Y10S428/921—Fire or flameproofing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/2419—Fold at edge
- Y10T428/24264—Particular fold structure [e.g., beveled, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24372—Particulate matter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24612—Composite web or sheet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24777—Edge feature
Definitions
- the strip shingle has a single layer of asphalt saturated felt which is substantially longer than high.
- a novel and defined composition which is both adhesive and fire retardant is applied over the base to a thickness which, at the lower edge of the shingle is very much greater than the saturated felt, but which tapers in thickness from the lower edge to very little at the upper edge.
- a thin aluminum sheath is disposed over the lower approximately half of the base, and the lower metal edge is bent around the thick lower edge of the base and then reversely, to form a thick butt edge which is say onequarter inch thick.
- the sheet metal is strongly secured to the base because of the highly adhesive character of the composition.
- the metal sheath and the base are somewhat indented on transverse lines at intervals, and the indentations are darkened in color to simulate the edges of adjacent individual shingles. Both the metal sheath and the base are upwardly notched at the lower ends of these darkened indentations, to break up the continuity of the shadow line at the thick lower edge of the strip. These notches are well rounded or semicircular in outline to avoid sharp inside corners.
- the bottom of the shingle is coated with thin aluminum foil or paper backed foil which is strongly adhered to the felt, and the lower edge of which is received and clamped beneath the reversely folded edge of the metal sheath.
- the foil provides heat reflection and a moisture seal.
- Strip shingles of the asphalt saturated felt type lack a rich heavy appearance, because they are thin at the exposed lower edge. It has been proposed to make strip shingles of formed hollow metal with a thick butt edge, but such shingles are not good for sound and heat insulation, and need many special fittings at valleys and corners.
- a strip shingle has been suggested which is a composite of multiple layers of saturated felt and a metal sheath, combining the advantages of both. The present strip shingle is an improvement on such composite strip shingles.
- the present strip shingle has a single layer of asphalt saturated felt which is substantially longer than high.
- a composition which is both fire retardant and adhesive is applied over the base to a thickness which, at the lower edge of the shingle is very much greater than the saturated felt, say three or more times the thickness of the felt, but which tapers in thickness from the lower edge to very little at the upper edge.
- the composition and felt together form a solid filling for the strip shingle.
- a thin sheet metal sheath is disposed over the lower 3,468,092 Patented Sept. 23, 1969 ice approximately half of the base, and the lower metal edge is bent around the thick lower edge of the base and reversely to form a thick butt edge, which is say onequarter inch thick.
- the sheet metal is strongly secured to the base because of the highly adhesive character of the composition, the metal being pressed forcibly against the composition as the base is being clad With the metal.
- the metal sheath and the base are somewhat indented on transverse lines at intervals, and the indentations are darkened in color to simulate the edges of adjacent individual shingles. Both the metal sheath and the base are upwardly notched at the lower ends of these darkened indentations, to break up the continuity of the shadow line at the thick lower edge of the strip. These notches are rounded and even semicircular in outline in order to avoid sharp inside corners.
- the fire retardant and adhesive composition used is made up of a mixture of coating asphalt, a mineral filler, asbestos fibre, perlite, soya bean oil, and mica, used in a preferred ratio.
- the filler may be slate or stone or equivalent mineral filler.
- the bottom of the asphalt saturated felt is preferable coated with thin metal foil which is strongly adhered to the felt by an adhesive asphalt.
- the lower edge of the foil is received and clamped beneath the reversely folded edge of the metal sheath.
- the sheath is preferably made of thin sheet aluminum, preliminarily coated with a vinyl resin paint to give the shingle strip a desired color. Such a paint has been found to be durable and so flexible that the metal may be fabricated into the shingle strip without spoiling the coating.
- the metal foil applied to the bottom also is preferably made of aluminum, and may be paper backed.
- the lower butt edge of an upper row overlies the upper portion of the metal sheath of the next lower row, and the bottom of the upper row rests directly on and is strongly adhered to the exposed adhesive composition area of the lower row, thereby securing the upper row against wind lift.
- FIG. 1 is a perspective view showing the appearance of a small piece of roof covered with strip shingles
- FIG. 2 is a front elevation of a single strip shingle embodying features of the invention
- FIG. 3 is a vertical section taken approximately on the line 33 of FIG. 3, and also shows the relation of a row to the next lower and higher rows of strip shingle;
- FIG. 3A shows a part of FIG. 3 drawn to enlarged scale
- FIG. 4 is a fragmentary section taken approximately on the line 4-4 of FIG. 2, drawn to larger scale;
- FIG. 5 is a fragmentary section taken approximately on the line 55 of FIG. 2, drawn to larger scale.
- the roofing simulates the appearance of individual shingles 12, having a relatively thick exposed butt edge 14.
- the butt edge is interrupted at intervals by notches 16.
- the strip shingles are indented and darkened on a transverse line above each notch, as is indicated at 18.
- the strip shingles are laid in staggered formation, as is usual in roofing.
- the strip shingle comprises a single layer of asphalt saturated felt 22, this being substantially longer than high, as shown in FIG. 2.
- the strip shingle is three feet long, and one foot high, and has the darkened lines 18 at intervals of one foot to simulate shingles one foot wide, but of course different widths may be simulated by changing the spacing.
- a so-called thirty pound asphalt felt which is commercially available and has a thickness of close to A inch may be used. A range from 20 pound to 60 pound felt is usable.
- the highly adhesive and fire-retardant composition 24 is applied over the felt 22 to a thickness which, at the lower butt edge is very much greater than that of the saturated felt.
- the composition at the lower edge builds the base up to a thickness of about A inch, and the composition tapers from the lower edge to very little at the upper edge, but it is definitely continued all the way to the upper edge, and may have a thickness there up to say /1 inch.
- the thickness of the composition may be comparable to that of the single layer of felt.
- a thin metal sheath 26 is applied over the lower approximately half of the base, and the lower metal edge is bent around the thick lower edge of the base as shown at 28, and reversely as shown at 30, at the thick butt edge. This sheet metal is thin but is strongly secured to the base because of the adhesive character of the composition 24.
- the metal sheath and the base are somewhat indented by the transverse lines 18 at intervals, and the indentations are darkened in color to simulate the edges of or the shadow line between adjacent individual shingles.
- the top metal 26, the composition base, and the bottom metal 30 all are punched away to form the notches 16.
- These notches are rounded in outline, in order to avoid sharp inside corners, and in preferred form they may be semicircular, or slightly deeper but terminated at the top by a semicircle. It has been found that if the notches are rectangular, the resulting sharp inside corners become points of weakness, in that there is a tendency to tear at the corners during the punching operation.
- the half-round notches accommodate expansion and contraction with changes of temperature, which otherwise cause metal fatigue and the formation of cracks radiating from the sharp corners as a result of repeated expansion and contraction over a period of years.
- the coating on the indented lines 18 and around the edge of the rounded notches 16 is black, or a dark color which is related to the shingle color may be used, that is, very dark brown for a brown shingle, very dark green for a green shingle, etc.
- the fire-retardant and adhesive composition 24 preferably comprises a mixture of coating asphalt, mineral filler, asbestos, perlite, soya bean oil, and mica. More specifically, in a preferred formulation it comprises 75 parts of coating asphalt to 30 parts of mineral filler to 10 parts of asbestos fibre to 10 parts of perlite to 5 parts of soya bean oil, and 5 parts of mica, this proportion being by weight.
- the asbestos fibre may be sized as 7R8 type.
- the soya bean oil may be alkali refined or it may be raw, the latter being less expensive.
- This composition may initially burn, but in burning it cokes and forms a skeletal insulated blanket which prevents spread of flame, so that the undersurface is preserved and therefore the usual wood roof deck is preserved.
- the weights given in the above formulation may vary a reasonable mount, say plus or minus 20 percent.
- the bottom of the shingle is preferably coated with a thin metal foil 32, this being adhered to the asphalt saturated felt 22 by an adhesive asphalt.
- the asphalt is applied hot and includes in it a hot melt adhesive, so that the foil is strongly adhered.
- the foil is preferably applied before the metal sheath 26 is added, the lower edge of the foil 32 then being received and clamped beneath the reversely folded edge 30 of the metal sheath.
- the metal sheath is preferably sheet aluminum having a thickness of between six and twelve thousandths of an inch. This is thin enough so that a shingle strip is readily cut on the job to desired length to fit a roof end or a valley, etc. as by scoring with a knife, or by using shears.
- the aluminum may be utility grade sheet aluminum.
- the No. 3105 alloy treated to be half hard. It is preferably embossed to give it a wood grain finish, as is suggested at 34. in FIGS. 1 and 2. This embossing is only partially shown in FIG. 2, but is used over the entire surface, but not in the indentations 18. The embossing increases the adherence of the sheet metal to the composition.
- the shingles may be given any desired color, and for this purpose a Plastisol vinyl resin paint is used, this being so flexible that the sheet aluminum may be coated before being fabricated around and embossed as a part of the strip shingle, and it is so durable that it has a life expectancy of twenty years or more.
- the solid filling of the sheath by the base results in a sturdy strip shingle. For example, it may be walked on without denting or spoiling the shape of the metal on the shingle.
- the foil 32 is preferably aluminum foil and it may have a thickness of the order of 0.00035 inch. It provides a desirable heat reflection in addition to that provided by the aluminum sheath, and it also acts as a vapor barrier to prevent moisture from penetrating through the shingle from the bottom and working its way upward.
- the foil may be a commercially available paper backed or laminated foil, which is easier to handle and apply.
- FIG. 2 it will be seen that there is a line of small round indentations 36 near the upper portion of the metal sheath. These result from pressure by a feed wheel or feed chain as the materials are fed in strip form during application of the metal sheath to the base. They help adhere the sheath to the composition, in addition to helping feed the material.
- the top edge of the sheath is preferably indented somewhat into the composition as shown at 38 in FIG. 5. This too is accomplished during fabrication of the shingle. These things result in strong adherence of the thin sheet aluminum to the base, as is desired.
- the line of indentations 36 acts also as a nailing guide when applying the strip shingle in rows. Very few nails are needed to anchor the shingles to the roof deck, and it is sufficient to use four nails on a strip shingle three feet long, one nail being driven near each end, and two more being located above the upper ends of the indented shadow lines 18, as indicated in FIG. 2 by the numerals 40. If desired, more nails may be used, say three more, one in the middle of each simulated shingle, making seven in all.
- the nail guide 36 would serve for any number of nails.
- FIGS. 3 and 3A The overlapped relation of the strip shingles is shown in FIGS. 3 and 3A.
- the shingle is twelve inches high, and the overlap is such that only five inches are exposed.
- the metal 26 is wider, say 6% inches wide, leaving 5% inches of adhesive composition exposed above the metal.
- the nails are driven in the concealed upper part of the metal sheath which part is 1% inches wide, the nails being protected by the next higher row of strip shingles.
- the nail 40 for the row 42 is covered by the next row 44
- nail 40 for the row 44 is covered by the next row 46, shown in broken lines.
- Each nail goes through two shingles, that is, it passes through the exposed composition area of the next lower row, in addition to passing through the metal sheath of the row being nailed.
- the upper edge of the metal sheath shown at 38 in FIG. 5 also is exaggerated in thickness in the drawing, and in practice is readily pressed to a flush relationship with the composition material.
- the nailing operation itself increases the adhesion. In consequence there is a firm adherence of shingle-to-shingle without the use of a special extra adhesive strip, or a mechanical interlock.
- the strip shingles are covered with a socalled release paper during storage and shipment.
- the release paper has an area at least coextensive with the exposed composition area shown in FIG. 2, and in practice is preferably a little larger in both length and width so that it is readily applied and readily peeled off.
- a portion of the release paper is shown at 50, as though being removed by being pulled from the right toward the left, but with much of the paper broken away as indicated at the irregular broken line 52. A possible dimension for such paper is suggested in broken lines.
- alternate strip shingles are reversed when stacking and storing the shingles, so that the thick butt edge of one shingle is at the thin edge of the subjacent and superjacent shingles.
- the shingles complement one another to compensate for their taper, and are protected against undesired adhesion by the release aper.
- the shingles are shown applied to a generalized deck 52, with no attempt made to show the structure of the deck.
- This may comprise wooden planks, or large area waterproof plywood boards.
- the wood surface is preliminarily covered with long continuous lengths of asphalt-impregnated roofing felt, to provide an underlayment beneath the shingles.
- This underlayment is purposely not shown here on the deck 52 in order to more clearly show the parts of the present strip shingles.
- the shingles may be used as siding as well as roofing.
- a shingle comprising a single base layer of asphalt saturated felt which is substantially longer than wide, an adhesive composition applied over the felt to a thickness which is very much greater than that of the saturated felt at the lower edge of the shingle and which tapers in thickness toward the upper edge, said adhesive composition extending and tapering all the way from the lower edge to the upper edge, a thin metal foil coating secured to the bottom of the felt by an adhesive, said foil covering substantially the entire bottom of the shingle, a thin sheet metal sheath over only the lower approximately half of the base, said composition and felt forming a solid filling for the metal sheath, the lower metal edge being bent around the thick lower edge of the base and reversely to form a thick butt edge, the sheet metal sheath being strongly secured to the base because of the adhesive character of the composition, and the upper half of the base having exposed adhesive composition to receive and adhesively hold the lower half of a next higher shingle when the shingles are laid.
- a shingle as defined in claim 3, in which the fireretardant and adhesive composition comprises coatingasphalt, mineral filler, asbestos, perlite, soya bean oil, and
- a shingle as defined in claim 3, in which the fireretardant and adhesive composition comprises coatingasphalt, mineral filler, asbestos, perlite, soya bean oil, and mica in a ratio of approximately 75, 30, l0, l0, 5 and 5 parts by weight respectively.
- the adhesive composition comprises a coating-asphalt, mineral filler, asbestos, perlite, soya bean oil, and mica in a ratio of approximately 75, 30, 10, 10, 5 and 5 parts by weight respectively, said composition being fire retardant as well as adhesive.
- each shingle comprising a single base layer of asphalt saturated felt which is substantially longer than wide, an adhesive composition applied over the felt to a thickness which is very much greater than that of the saturated felt at the lower edge of the shingle and which tapers in thickness toward the upper edge, said adhesive composition extending and tapering all the way from the lower edge to the upper edge, a thin metal foil coating secured to the bottom of the felt by an adhesive, said foil covering substantially the entire bottom of the shingle, a thin sheet metal sheath over only the lower approximately half of the base, said composition and felt forming a solid filling for the metal sheath, the lower metal edge being bent around the thick lower edge of the base and reversely to form a thick butt edge, the sheet metal sheath being strongly secured to the base because of the adhesive character of the composition, and the upper half of the base having exposed adhesive composition, the lower butt edge of an upper row overlying the upper portion of the metal sheath of a next lower row, the bottom of
- the adhesive composition is also a fire retardant composition
- said composition comprising coating-asphalt, mineral filler, asbestos, perlite, soya bean oil, and mica, in a ratio of approximately 75, 30, 10, 10, 5 and 5 parts by weight respectively, and in which the metal sheath is somewhat indented on transverse lines at intervals, and the said indentations are darkened in color to simulate the edges of a plurality of adjacent individual shingles, and in which the metal sheath and the base are upwardly notched at the lower ends of the darkened indentations in order to break up the continuity of the shadow line at the thick in outline in order to avoid sharp inside corners.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
Description
Sept. 1969 A. A. CHALMERS COMPOSITE STRIP SHINGLE Filed Dec. 5, 1967 KADHESIVE AND FIRE RETARDANT COMPOSITWN INV ENTOR ALEXANDER A. cHALMERs ATTORNEYS United States Patent U.S. Cl. 52-543 11 Claims ABSTRACT OF THE DISCLOSURE The strip shingle has a single layer of asphalt saturated felt which is substantially longer than high. A novel and defined composition which is both adhesive and fire retardant is applied over the base to a thickness which, at the lower edge of the shingle is very much greater than the saturated felt, but which tapers in thickness from the lower edge to very little at the upper edge. A thin aluminum sheath is disposed over the lower approximately half of the base, and the lower metal edge is bent around the thick lower edge of the base and then reversely, to form a thick butt edge which is say onequarter inch thick. The sheet metal is strongly secured to the base because of the highly adhesive character of the composition. The metal sheath and the base are somewhat indented on transverse lines at intervals, and the indentations are darkened in color to simulate the edges of adjacent individual shingles. Both the metal sheath and the base are upwardly notched at the lower ends of these darkened indentations, to break up the continuity of the shadow line at the thick lower edge of the strip. These notches are well rounded or semicircular in outline to avoid sharp inside corners. The bottom of the shingle is coated with thin aluminum foil or paper backed foil which is strongly adhered to the felt, and the lower edge of which is received and clamped beneath the reversely folded edge of the metal sheath. The foil provides heat reflection and a moisture seal. When the shingle strips are applied to a roof deck the lower butt edge of an upper row overlies the upper portion of the metal sheath of the next lower row. The bottom surface of the upper row rests directly on and is adhered to the exposed adhesive composition area of the lower row, thereby adhesively securing the upper row against wind lift.
BACKGROUND OF THE INVENTION Strip shingles of the asphalt saturated felt type lack a rich heavy appearance, because they are thin at the exposed lower edge. It has been proposed to make strip shingles of formed hollow metal with a thick butt edge, but such shingles are not good for sound and heat insulation, and need many special fittings at valleys and corners. A strip shingle has been suggested which is a composite of multiple layers of saturated felt and a metal sheath, combining the advantages of both. The present strip shingle is an improvement on such composite strip shingles.
SUMMARY OF THE INVENTION The present strip shingle has a single layer of asphalt saturated felt which is substantially longer than high. A composition which is both fire retardant and adhesive is applied over the base to a thickness which, at the lower edge of the shingle is very much greater than the saturated felt, say three or more times the thickness of the felt, but which tapers in thickness from the lower edge to very little at the upper edge. The composition and felt together form a solid filling for the strip shingle. A thin sheet metal sheath is disposed over the lower 3,468,092 Patented Sept. 23, 1969 ice approximately half of the base, and the lower metal edge is bent around the thick lower edge of the base and reversely to form a thick butt edge, which is say onequarter inch thick. The sheet metal is strongly secured to the base because of the highly adhesive character of the composition, the metal being pressed forcibly against the composition as the base is being clad With the metal.
The metal sheath and the base are somewhat indented on transverse lines at intervals, and the indentations are darkened in color to simulate the edges of adjacent individual shingles. Both the metal sheath and the base are upwardly notched at the lower ends of these darkened indentations, to break up the continuity of the shadow line at the thick lower edge of the strip. These notches are rounded and even semicircular in outline in order to avoid sharp inside corners.
The fire retardant and adhesive composition used is made up of a mixture of coating asphalt, a mineral filler, asbestos fibre, perlite, soya bean oil, and mica, used in a preferred ratio. The filler may be slate or stone or equivalent mineral filler.
The bottom of the asphalt saturated felt is preferable coated with thin metal foil which is strongly adhered to the felt by an adhesive asphalt. The lower edge of the foil is received and clamped beneath the reversely folded edge of the metal sheath. The sheath is preferably made of thin sheet aluminum, preliminarily coated with a vinyl resin paint to give the shingle strip a desired color. Such a paint has been found to be durable and so flexible that the metal may be fabricated into the shingle strip without spoiling the coating. The metal foil applied to the bottom also is preferably made of aluminum, and may be paper backed.
When the strip shingles are applied to a roof deck the lower butt edge of an upper row overlies the upper portion of the metal sheath of the next lower row, and the bottom of the upper row rests directly on and is strongly adhered to the exposed adhesive composition area of the lower row, thereby securing the upper row against wind lift.
The foregoing and additional features are described in the following detailed specification, which is accompanied by a drawing in which:
FIG. 1 is a perspective view showing the appearance of a small piece of roof covered with strip shingles;
FIG. 2 is a front elevation of a single strip shingle embodying features of the invention;
FIG. 3 is a vertical section taken approximately on the line 33 of FIG. 3, and also shows the relation of a row to the next lower and higher rows of strip shingle;
FIG. 3A shows a part of FIG. 3 drawn to enlarged scale;
FIG. 4 is a fragmentary section taken approximately on the line 4-4 of FIG. 2, drawn to larger scale; and
FIG. 5 is a fragmentary section taken approximately on the line 55 of FIG. 2, drawn to larger scale.
Referring to FIG. 1, the roofing simulates the appearance of individual shingles 12, having a relatively thick exposed butt edge 14. The butt edge is interrupted at intervals by notches 16. The strip shingles are indented and darkened on a transverse line above each notch, as is indicated at 18. The strip shingles are laid in staggered formation, as is usual in roofing.
Referring now to the other figures of the drawing, the strip shingle comprises a single layer of asphalt saturated felt 22, this being substantially longer than high, as shown in FIG. 2. In the specific case shown, the strip shingle is three feet long, and one foot high, and has the darkened lines 18 at intervals of one foot to simulate shingles one foot wide, but of course different widths may be simulated by changing the spacing. A so-called thirty pound asphalt felt which is commercially available and has a thickness of close to A inch may be used. A range from 20 pound to 60 pound felt is usable.
The highly adhesive and fire-retardant composition 24 is applied over the felt 22 to a thickness which, at the lower butt edge is very much greater than that of the saturated felt. As here shown, the composition at the lower edge builds the base up to a thickness of about A inch, and the composition tapers from the lower edge to very little at the upper edge, but it is definitely continued all the way to the upper edge, and may have a thickness there up to say /1 inch. At the upper edge the thickness of the composition may be comparable to that of the single layer of felt. A thin metal sheath 26 is applied over the lower approximately half of the base, and the lower metal edge is bent around the thick lower edge of the base as shown at 28, and reversely as shown at 30, at the thick butt edge. This sheet metal is thin but is strongly secured to the base because of the adhesive character of the composition 24.
Referring to FIGS. 2 and 4, the metal sheath and the base are somewhat indented by the transverse lines 18 at intervals, and the indentations are darkened in color to simulate the edges of or the shadow line between adjacent individual shingles.
The top metal 26, the composition base, and the bottom metal 30 all are punched away to form the notches 16. These notches are rounded in outline, in order to avoid sharp inside corners, and in preferred form they may be semicircular, or slightly deeper but terminated at the top by a semicircle. It has been found that if the notches are rectangular, the resulting sharp inside corners become points of weakness, in that there is a tendency to tear at the corners during the punching operation. Moreover, the half-round notches accommodate expansion and contraction with changes of temperature, which otherwise cause metal fatigue and the formation of cracks radiating from the sharp corners as a result of repeated expansion and contraction over a period of years.
The coating on the indented lines 18 and around the edge of the rounded notches 16 is black, or a dark color which is related to the shingle color may be used, that is, very dark brown for a brown shingle, very dark green for a green shingle, etc.
The fire-retardant and adhesive composition 24 preferably comprises a mixture of coating asphalt, mineral filler, asbestos, perlite, soya bean oil, and mica. More specifically, in a preferred formulation it comprises 75 parts of coating asphalt to 30 parts of mineral filler to 10 parts of asbestos fibre to 10 parts of perlite to 5 parts of soya bean oil, and 5 parts of mica, this proportion being by weight. The asbestos fibre may be sized as 7R8 type. the soya bean oil may be alkali refined or it may be raw, the latter being less expensive. This composition may initially burn, but in burning it cokes and forms a skeletal insulated blanket which prevents spread of flame, so that the undersurface is preserved and therefore the usual wood roof deck is preserved. The weights given in the above formulation may vary a reasonable mount, say plus or minus 20 percent.
In preferred form the bottom of the shingle is preferably coated with a thin metal foil 32, this being adhered to the asphalt saturated felt 22 by an adhesive asphalt. The asphalt is applied hot and includes in it a hot melt adhesive, so that the foil is strongly adhered. The foil is preferably applied before the metal sheath 26 is added, the lower edge of the foil 32 then being received and clamped beneath the reversely folded edge 30 of the metal sheath.
The metal sheath is preferably sheet aluminum having a thickness of between six and twelve thousandths of an inch. This is thin enough so that a shingle strip is readily cut on the job to desired length to fit a roof end or a valley, etc. as by scoring with a knife, or by using shears. The aluminum may be utility grade sheet aluminum. A
good example is the No. 3105 alloy, treated to be half hard. It is preferably embossed to give it a wood grain finish, as is suggested at 34. in FIGS. 1 and 2. This embossing is only partially shown in FIG. 2, but is used over the entire surface, but not in the indentations 18. The embossing increases the adherence of the sheet metal to the composition.
The shingles may be given any desired color, and for this purpose a Plastisol vinyl resin paint is used, this being so flexible that the sheet aluminum may be coated before being fabricated around and embossed as a part of the strip shingle, and it is so durable that it has a life expectancy of twenty years or more.
The solid filling of the sheath by the base results in a sturdy strip shingle. For example, it may be walked on without denting or spoiling the shape of the metal on the shingle.
The foil 32 is preferably aluminum foil and it may have a thickness of the order of 0.00035 inch. It provides a desirable heat reflection in addition to that provided by the aluminum sheath, and it also acts as a vapor barrier to prevent moisture from penetrating through the shingle from the bottom and working its way upward. The foil may be a commercially available paper backed or laminated foil, which is easier to handle and apply.
In FIG. 2 it will be seen that there is a line of small round indentations 36 near the upper portion of the metal sheath. These result from pressure by a feed wheel or feed chain as the materials are fed in strip form during application of the metal sheath to the base. They help adhere the sheath to the composition, in addition to helping feed the material. The top edge of the sheath is preferably indented somewhat into the composition as shown at 38 in FIG. 5. This too is accomplished during fabrication of the shingle. These things result in strong adherence of the thin sheet aluminum to the base, as is desired.
The line of indentations 36 acts also as a nailing guide when applying the strip shingle in rows. Very few nails are needed to anchor the shingles to the roof deck, and it is sufficient to use four nails on a strip shingle three feet long, one nail being driven near each end, and two more being located above the upper ends of the indented shadow lines 18, as indicated in FIG. 2 by the numerals 40. If desired, more nails may be used, say three more, one in the middle of each simulated shingle, making seven in all. The nail guide 36 would serve for any number of nails.
The overlapped relation of the strip shingles is shown in FIGS. 3 and 3A. In the specific case shown the shingle is twelve inches high, and the overlap is such that only five inches are exposed. The metal 26 is wider, say 6% inches wide, leaving 5% inches of adhesive composition exposed above the metal. The nails are driven in the concealed upper part of the metal sheath which part is 1% inches wide, the nails being protected by the next higher row of strip shingles. In FIG. 3 the nail 40 for the row 42 is covered by the next row 44, and nail 40 for the row 44 is covered by the next row 46, shown in broken lines. Each nail goes through two shingles, that is, it passes through the exposed composition area of the next lower row, in addition to passing through the metal sheath of the row being nailed.
There is a minimum thickness of two superposed shingles, and at the nailing line there are three superposed shingles, two of which receive the nail, and the third of which is disposed over and covers the nails.
In the drawing it will be seen that the bottom of shingle 44- rests directly on and therefore becomes adhered to the exposed adhesive composition area of the lower shingle 42. Similarly the bottom of the next higher shingle 46 rests directly on and becomes adhered to the exposed ad hesive composition area of shingle 44. This requires direct surface-to-surface contact, and there is no interference with such contact because the heads of the nails 40 and 40 are readily sunk, the thin aluminum and the composition both yielding enough to receive the nail heads. The reversely folded edge 30 of the aluminum sheath is greatly exaggerated in thickness in the drawing, and in practice is very thin and presses against the base of the shingle enough to provide a flush or fiat bottom surface for the entire shingle. The upper edge of the metal sheath shown at 38 in FIG. 5 also is exaggerated in thickness in the drawing, and in practice is readily pressed to a flush relationship with the composition material. The nailing operation itself increases the adhesion. In consequence there is a firm adherence of shingle-to-shingle without the use of a special extra adhesive strip, or a mechanical interlock.
In ordinary asphalt-felt shingles the asphalt material is initially protected by granules, but the granules erode away, and then the exposed asphalt dries out and deteriorates. In the present construction the composition area in the upper half of the shingle is permanently covered by the next higher row of shingles, and the exposed lower half of the shingle is permanently protected by the metal sheath cemented thereon.
Because of the highly adhesive nature of the composition material, the strip shingles are covered with a socalled release paper during storage and shipment. The release paper has an area at least coextensive with the exposed composition area shown in FIG. 2, and in practice is preferably a little larger in both length and width so that it is readily applied and readily peeled off. In FIG. 2 a portion of the release paper is shown at 50, as though being removed by being pulled from the right toward the left, but with much of the paper broken away as indicated at the irregular broken line 52. A possible dimension for such paper is suggested in broken lines.
It will be understood that alternate strip shingles are reversed when stacking and storing the shingles, so that the thick butt edge of one shingle is at the thin edge of the subjacent and superjacent shingles. The shingles complement one another to compensate for their taper, and are protected against undesired adhesion by the release aper.
P In FIGS. 3 and 3A, the shingles are shown applied to a generalized deck 52, with no attempt made to show the structure of the deck. This may comprise wooden planks, or large area waterproof plywood boards. Usually the wood surface is preliminarily covered with long continuous lengths of asphalt-impregnated roofing felt, to provide an underlayment beneath the shingles. This underlayment is purposely not shown here on the deck 52 in order to more clearly show the parts of the present strip shingles. The shingles may be used as siding as well as roofing.
It is believed that the construction and method of use of my improved strip shingle, as Well as the advantages thereof, will be apparent from the foregoing detailed description. It will also be understood that while I have shown and described the shingle in a preferred form, changes may be made without departing from the scope of the invention.
I claim:
1. A shingle comprising a single base layer of asphalt saturated felt which is substantially longer than wide, an adhesive composition applied over the felt to a thickness which is very much greater than that of the saturated felt at the lower edge of the shingle and which tapers in thickness toward the upper edge, said adhesive composition extending and tapering all the way from the lower edge to the upper edge, a thin metal foil coating secured to the bottom of the felt by an adhesive, said foil covering substantially the entire bottom of the shingle, a thin sheet metal sheath over only the lower approximately half of the base, said composition and felt forming a solid filling for the metal sheath, the lower metal edge being bent around the thick lower edge of the base and reversely to form a thick butt edge, the sheet metal sheath being strongly secured to the base because of the adhesive character of the composition, and the upper half of the base having exposed adhesive composition to receive and adhesively hold the lower half of a next higher shingle when the shingles are laid.
2. A shingle as defined in claim 1, in which the adhesive composition is also a fire retardant composition, and in which the metal sheath is somewhat indented on transverse lines at intervals, and the indentations are darkened in color to simulate the edges of a plurality of adjacent individual shingles.
3. A shingle as defined in claim 2, in which the metal sheath and the base are upwardly notched at the lower ends of the darkened indentations in order to break up the continuity of the shadow line at the thick lower edge of the strip, said notches being rounded in outline in order to avoid sharp inside corners.
4. A shingle as defined in claim 3, in which the fireretardant and adhesive composition comprises coatingasphalt, mineral filler, asbestos, perlite, soya bean oil, and
m1ca.
5. A shingle as defined in claim 3, in which the fireretardant and adhesive composition comprises coatingasphalt, mineral filler, asbestos, perlite, soya bean oil, and mica in a ratio of approximately 75, 30, l0, l0, 5 and 5 parts by weight respectively.
6. A shingle as defined in claim 4, in which the metal sheath is made of sheet aluminum having a thickness of between six and twelve thousandths of an inch, the saidv aluminum being coated with a flexible coating of desired color, and in which the metal foil at the bottom of the shingle is aluminum foil having a thickness of the order of 0.00035 inch.
7. A shingle as defined in claim 1, in which the adhesive composition comprises a coating-asphalt, mineral filler, asbestos, perlite, soya bean oil, and mica in a ratio of approximately 75, 30, 10, 10, 5 and 5 parts by weight respectively, said composition being fire retardant as well as adhesive.
8. A shingle as defined in claim 1, in which the metal sheath is made of sheet aluminum having a thickness of between six and twelve thousandths of an inch, the said aluminum being coated with a flexible durable coating of desired color.
9. A shingle as defined in claim 1, in which the metal sheath and the base are upwardly notched at intervals in order to break up continuity of the shadow line at the thick lower edge of the strip, said notches being rounded in outline in order to avoid sharp inside corners.
10. In combination, a plurality of rows of strip shingles, each shingle comprising a single base layer of asphalt saturated felt which is substantially longer than wide, an adhesive composition applied over the felt to a thickness which is very much greater than that of the saturated felt at the lower edge of the shingle and which tapers in thickness toward the upper edge, said adhesive composition extending and tapering all the way from the lower edge to the upper edge, a thin metal foil coating secured to the bottom of the felt by an adhesive, said foil covering substantially the entire bottom of the shingle, a thin sheet metal sheath over only the lower approximately half of the base, said composition and felt forming a solid filling for the metal sheath, the lower metal edge being bent around the thick lower edge of the base and reversely to form a thick butt edge, the sheet metal sheath being strongly secured to the base because of the adhesive character of the composition, and the upper half of the base having exposed adhesive composition, the lower butt edge of an upper row overlying the upper portion of the metal sheath of a next lower row, the bottom of the upper row resting directly on and being adhered to the exposed adhesive composition area of the lower row, the adhesive quality of the composition of the lower row securing the upper row against wind lift, each row being secured by widely spaced nails driven through that upper part of the metal sheath that is subsequently covered by the lower the unsheathed upper part of the next lower row.
11. The combination defined in claim 10, in which the adhesive composition is also a fire retardant composition, said composition comprising coating-asphalt, mineral filler, asbestos, perlite, soya bean oil, and mica, in a ratio of approximately 75, 30, 10, 10, 5 and 5 parts by weight respectively, and in which the metal sheath is somewhat indented on transverse lines at intervals, and the said indentations are darkened in color to simulate the edges of a plurality of adjacent individual shingles, and in which the metal sheath and the base are upwardly notched at the lower ends of the darkened indentations in order to break up the continuity of the shadow line at the thick in outline in order to avoid sharp inside corners.
References Cited STATES PATENTS UNITED 4/1891 Osborn 11732 11/1922 Davis 52-420 8/1927 Robinson 52556 5/1938 Ellis 52515 3/1939 6 Mac Donald 5242() 11/ 1963 Chamberland 52420 6/1964 McCorkle 1l732 6/1967 Batterfield 1 173 2 HENRY C. SUTHERLAND, Primary Examiner U.S. Cl. X.R.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68819567A | 1967-12-05 | 1967-12-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3468092A true US3468092A (en) | 1969-09-23 |
Family
ID=24763500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US688195A Expired - Lifetime US3468092A (en) | 1967-12-05 | 1967-12-05 | Composite strip shingle |
Country Status (1)
Country | Link |
---|---|
US (1) | US3468092A (en) |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3760546A (en) * | 1971-08-24 | 1973-09-25 | Holiday Recreation Prod Inc | Modular roof construction |
US3844878A (en) * | 1972-02-28 | 1974-10-29 | Reynolds Metals Co | Composite flexible sheet material |
US4039706A (en) * | 1972-02-19 | 1977-08-02 | Tajima Roofing Co., Ltd. | Laminated bituminous roofing membrane |
US4091135A (en) * | 1972-02-19 | 1978-05-23 | Tajima Roofing Co., Ltd. | Laminated bituminous roofing membrane |
US4817358A (en) * | 1983-07-18 | 1989-04-04 | Owens-Corning Fiberglas Corporation | Asphalt shingle with foamed asphalt layer under tabs |
US4856251A (en) * | 1987-02-20 | 1989-08-15 | Buck Donald A | Self-gauging, anti-ice damming, double sealed shingle system |
US5181361A (en) * | 1987-10-20 | 1993-01-26 | Certainteed Corporation | Multi-layer shingle |
US5232530A (en) * | 1987-12-04 | 1993-08-03 | Elk Corporation Of Dallas | Method of making a thick shingle |
US5305569A (en) * | 1989-04-19 | 1994-04-26 | Elk Corporation Of Dallas | Thick shingle |
US5426902A (en) * | 1987-10-20 | 1995-06-27 | Certainteed Corporation | Composite shingle having shading zones in different planes |
USD369421S (en) | 1995-03-17 | 1996-04-30 | Elk Corporation Of Dallas | Random cut laminated shingle |
US5577361A (en) * | 1996-01-16 | 1996-11-26 | Grabek, Jr.; Joseph F. | Roofing shingle |
US5611186A (en) | 1994-02-01 | 1997-03-18 | Elk Corporation Of Dallas | Laminated roofing shingle |
US5666776A (en) | 1991-09-18 | 1997-09-16 | Elk Corporation Of Dallas | Laminated roofing shingle |
US6195951B1 (en) | 1988-03-28 | 2001-03-06 | Certainteed Corporation | Composite shingle having shading zones in different planes |
US6305138B1 (en) | 1987-10-20 | 2001-10-23 | Certainteed Corp. | Composite shingle having shading zones in different planes |
US20040231252A1 (en) * | 2003-05-19 | 2004-11-25 | Benjamin Michael Putti | Building material and method of making and installing the same |
WO2005085546A1 (en) * | 2004-03-08 | 2005-09-15 | Vince Guerra | Stone, metal and tar laminate for exterior cladding |
US20050210806A1 (en) * | 2004-03-08 | 2005-09-29 | Vince Guerra | Stone, metal and tar laminate for exterior cladding |
US20060032174A1 (en) * | 2004-08-16 | 2006-02-16 | Floyd Charles T | Roofing shingle |
US20070039274A1 (en) * | 2005-08-05 | 2007-02-22 | Harrington Edward R Jr | Roofing shingle including sheet as headlap |
US20070042158A1 (en) * | 2005-08-05 | 2007-02-22 | Belt James S | Shingle with reinforced nail zone and method of manufacturing |
US20070175153A1 (en) * | 2006-01-06 | 2007-08-02 | O'hara Timothy Kevin | Radiant barrier shingles |
US20090114481A1 (en) * | 2007-10-29 | 2009-05-07 | Nelson Tejada | Greeting Card and Merchandise Retail Store System and Related Fixtures and Displays |
US20100212246A1 (en) * | 2009-02-25 | 2010-08-26 | Grubka Lawrence J | Hip and ridge roofing material |
US20110139366A1 (en) * | 2005-08-05 | 2011-06-16 | Belt James S | Shingle with reinforced nail zone and method of manufacturing |
US20110151170A1 (en) * | 2008-05-13 | 2011-06-23 | Owens Corning Intellectual Capital, Llc | Hip and ridge roofing material |
US20110197534A1 (en) * | 2005-08-05 | 2011-08-18 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US20110209428A1 (en) * | 2000-02-29 | 2011-09-01 | Owens Corning Intellectual Capital, Llc. | Shingle having different color tabs without predominate color for optically simulating a slate roof |
US20110214378A1 (en) * | 2010-03-04 | 2011-09-08 | Grubka Lawrence J | Hip and ridge roofing shingle |
US8430983B2 (en) | 2011-07-29 | 2013-04-30 | Owens Corning Intellectual Capital, Llc | Method of manufacturing a shingle with reinforced nail zone |
US8713883B2 (en) | 2011-04-25 | 2014-05-06 | Owens Corning Intellectual Capital, Llc | Shingle with impact resistant layer |
US20140334897A1 (en) * | 2009-10-14 | 2014-11-13 | Thomas R. Mathieson | System and method for repairing and sealing portions of a roof structure, method and apparatus for manufacturing sealing elements |
US9212487B2 (en) | 2005-09-28 | 2015-12-15 | Elk Premium Building Products, Inc. | Enhanced single layer roofing material |
US9290943B2 (en) | 2012-01-05 | 2016-03-22 | Owens Corning Intellectual Capital, Llc | Hip and ridge roofing shingle |
US9290942B2 (en) | 2013-01-04 | 2016-03-22 | Certainteed Corporation | Roofing shingle with enhanced shadowline appearance |
USD755997S1 (en) | 2014-02-27 | 2016-05-10 | Owens Corning Intellectual Capital, Llc | Shingle |
US9482007B2 (en) | 2009-03-20 | 2016-11-01 | Owens Corning Intellectual Capital, Llc | Flexible laminated hip and ridge shingle |
US9631383B1 (en) | 2015-12-10 | 2017-04-25 | Thomas R. Mathieson | Shingle patch for hail damage repair of asphalt shingles and an integral nail/disk structure for eliminating exposed roof nails |
US9758970B2 (en) | 2014-02-25 | 2017-09-12 | Owens Corning Intellectual Capital, Llc | Laminated hip and ridge shingle |
US10072418B2 (en) | 2015-12-10 | 2018-09-11 | Thomas R. Mathieson | Integral nail/disk structure for eliminating exposed roof nails |
US10138919B2 (en) | 2015-12-10 | 2018-11-27 | Thomas R. Mathieson | Waterproof nail and screw with enlarged head and protective gasket |
US10190316B2 (en) | 2015-12-10 | 2019-01-29 | Thomas R. Mathieson | One-piece and two-piece shingle repair patch |
US10653904B2 (en) | 2017-12-02 | 2020-05-19 | M-Fire Holdings, Llc | Methods of suppressing wild fires raging across regions of land in the direction of prevailing winds by forming anti-fire (AF) chemical fire-breaking systems using environmentally clean anti-fire (AF) liquid spray applied using GPS-tracking techniques |
US10814150B2 (en) | 2017-12-02 | 2020-10-27 | M-Fire Holdings Llc | Methods of and system networks for wireless management of GPS-tracked spraying systems deployed to spray property and ground surfaces with environmentally-clean wildfire inhibitor to protect and defend against wildfires |
US10899038B2 (en) | 2017-12-02 | 2021-01-26 | M-Fire Holdings, Llc | Class-A fire-protected wood products inhibiting ignition and spread of fire along class-A fire-protected wood surfaces and development of smoke from such fire |
US11313127B2 (en) | 2009-02-25 | 2022-04-26 | Owens Corning Intellectual Capital, Llc | Hip and ridge roofing material |
US11395931B2 (en) | 2017-12-02 | 2022-07-26 | Mighty Fire Breaker Llc | Method of and system network for managing the application of fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition |
US11826592B2 (en) | 2018-01-09 | 2023-11-28 | Mighty Fire Breaker Llc | Process of forming strategic chemical-type wildfire breaks on ground surfaces to proactively prevent fire ignition and flame spread, and reduce the production of smoke in the presence of a wild fire |
US11836807B2 (en) | 2017-12-02 | 2023-12-05 | Mighty Fire Breaker Llc | System, network and methods for estimating and recording quantities of carbon securely stored in class-A fire-protected wood-framed and mass-timber buildings on construction job-sites, and class-A fire-protected wood-framed and mass timber components in factory environments |
US11865390B2 (en) | 2017-12-03 | 2024-01-09 | Mighty Fire Breaker Llc | Environmentally-clean water-based fire inhibiting biochemical compositions, and methods of and apparatus for applying the same to protect property against wildfire |
US11865394B2 (en) | 2017-12-03 | 2024-01-09 | Mighty Fire Breaker Llc | Environmentally-clean biodegradable water-based concentrates for producing fire inhibiting and fire extinguishing liquids for fighting class A and class B fires |
US11911643B2 (en) | 2021-02-04 | 2024-02-27 | Mighty Fire Breaker Llc | Environmentally-clean fire inhibiting and extinguishing compositions and products for sorbing flammable liquids while inhibiting ignition and extinguishing fire |
US11970859B2 (en) | 2015-12-10 | 2024-04-30 | Thomas R. Mathieson | One-piece shingle repair patch |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US450087A (en) * | 1891-04-07 | Luke w | ||
US1403392A (en) * | 1921-01-03 | 1922-01-10 | Davis Cecil | Shingle |
US1638746A (en) * | 1924-06-26 | 1927-08-09 | Anaconda Sales Co | Roofing element |
US2117763A (en) * | 1937-05-17 | 1938-05-17 | Insulite Co | Wall |
US2150004A (en) * | 1926-03-13 | 1939-03-07 | Patent & Licensing Corp | Shingle element |
US3111787A (en) * | 1960-12-16 | 1963-11-26 | Koppers Co Inc | Sandwich roofing element |
US3138897A (en) * | 1959-11-06 | 1964-06-30 | Johns Manville | Self-sealing shingle |
US3326366A (en) * | 1963-04-08 | 1967-06-20 | Flintkote Co | Rolled waterproofing material |
-
1967
- 1967-12-05 US US688195A patent/US3468092A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US450087A (en) * | 1891-04-07 | Luke w | ||
US1403392A (en) * | 1921-01-03 | 1922-01-10 | Davis Cecil | Shingle |
US1638746A (en) * | 1924-06-26 | 1927-08-09 | Anaconda Sales Co | Roofing element |
US2150004A (en) * | 1926-03-13 | 1939-03-07 | Patent & Licensing Corp | Shingle element |
US2117763A (en) * | 1937-05-17 | 1938-05-17 | Insulite Co | Wall |
US3138897A (en) * | 1959-11-06 | 1964-06-30 | Johns Manville | Self-sealing shingle |
US3111787A (en) * | 1960-12-16 | 1963-11-26 | Koppers Co Inc | Sandwich roofing element |
US3326366A (en) * | 1963-04-08 | 1967-06-20 | Flintkote Co | Rolled waterproofing material |
Cited By (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3760546A (en) * | 1971-08-24 | 1973-09-25 | Holiday Recreation Prod Inc | Modular roof construction |
US4039706A (en) * | 1972-02-19 | 1977-08-02 | Tajima Roofing Co., Ltd. | Laminated bituminous roofing membrane |
US4091135A (en) * | 1972-02-19 | 1978-05-23 | Tajima Roofing Co., Ltd. | Laminated bituminous roofing membrane |
US3844878A (en) * | 1972-02-28 | 1974-10-29 | Reynolds Metals Co | Composite flexible sheet material |
US4817358A (en) * | 1983-07-18 | 1989-04-04 | Owens-Corning Fiberglas Corporation | Asphalt shingle with foamed asphalt layer under tabs |
US4856251A (en) * | 1987-02-20 | 1989-08-15 | Buck Donald A | Self-gauging, anti-ice damming, double sealed shingle system |
US5181361A (en) * | 1987-10-20 | 1993-01-26 | Certainteed Corporation | Multi-layer shingle |
US5426902A (en) * | 1987-10-20 | 1995-06-27 | Certainteed Corporation | Composite shingle having shading zones in different planes |
US5901517A (en) * | 1987-10-20 | 1999-05-11 | Certainteed Corporation | Composite shingle having shading zones in different planes |
US6523316B2 (en) | 1987-10-20 | 2003-02-25 | Certainteed | Composite shingle having shading zones in different planes |
US6305138B1 (en) | 1987-10-20 | 2001-10-23 | Certainteed Corp. | Composite shingle having shading zones in different planes |
US5660014A (en) * | 1987-10-20 | 1997-08-26 | Certainteed Corporation | Composite shingle having shading zones in different planes |
US5232530A (en) * | 1987-12-04 | 1993-08-03 | Elk Corporation Of Dallas | Method of making a thick shingle |
US6195951B1 (en) | 1988-03-28 | 2001-03-06 | Certainteed Corporation | Composite shingle having shading zones in different planes |
US5305569A (en) * | 1989-04-19 | 1994-04-26 | Elk Corporation Of Dallas | Thick shingle |
US5666776A (en) | 1991-09-18 | 1997-09-16 | Elk Corporation Of Dallas | Laminated roofing shingle |
US5611186A (en) | 1994-02-01 | 1997-03-18 | Elk Corporation Of Dallas | Laminated roofing shingle |
USD369421S (en) | 1995-03-17 | 1996-04-30 | Elk Corporation Of Dallas | Random cut laminated shingle |
US5577361A (en) * | 1996-01-16 | 1996-11-26 | Grabek, Jr.; Joseph F. | Roofing shingle |
US20110209428A1 (en) * | 2000-02-29 | 2011-09-01 | Owens Corning Intellectual Capital, Llc. | Shingle having different color tabs without predominate color for optically simulating a slate roof |
US20040231252A1 (en) * | 2003-05-19 | 2004-11-25 | Benjamin Michael Putti | Building material and method of making and installing the same |
US7600356B2 (en) | 2003-05-19 | 2009-10-13 | James Hardie International Finance B.V. | Building material and method of making and installing the same |
US20090320400A1 (en) * | 2003-05-19 | 2009-12-31 | Michael Putti Benjamin | Building material and method of making and installing the same |
US20050210806A1 (en) * | 2004-03-08 | 2005-09-29 | Vince Guerra | Stone, metal and tar laminate for exterior cladding |
WO2005085546A1 (en) * | 2004-03-08 | 2005-09-15 | Vince Guerra | Stone, metal and tar laminate for exterior cladding |
US8241728B2 (en) | 2004-03-08 | 2012-08-14 | Vince Guerra | Stone, metal and tar laminate for exterior cladding |
CN100491664C (en) * | 2004-03-08 | 2009-05-27 | æ–‡æ–¯Â·æ ¼æ‹‰ | Stone, metal and asphalt laminate for exterior cladding |
US20060032174A1 (en) * | 2004-08-16 | 2006-02-16 | Floyd Charles T | Roofing shingle |
US7281358B2 (en) * | 2004-08-16 | 2007-10-16 | Floyd Charles T | Roofing shingle |
US11976466B2 (en) | 2005-08-05 | 2024-05-07 | Owens Corning Intellectual Capital, Llc | Shingle with reinforcement member |
US20070039274A1 (en) * | 2005-08-05 | 2007-02-22 | Harrington Edward R Jr | Roofing shingle including sheet as headlap |
US9605434B2 (en) | 2005-08-05 | 2017-03-28 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US9624670B2 (en) | 2005-08-05 | 2017-04-18 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US7836654B2 (en) | 2005-08-05 | 2010-11-23 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US20110016812A1 (en) * | 2005-08-05 | 2011-01-27 | Belt James S | Shingle with reinforced nail zone and method of manufacturing |
US20110139366A1 (en) * | 2005-08-05 | 2011-06-16 | Belt James S | Shingle with reinforced nail zone and method of manufacturing |
US20110146185A1 (en) * | 2005-08-05 | 2011-06-23 | Belt James S | Shingle with reinforced nail zone and method of manufacturing |
US9657478B2 (en) | 2005-08-05 | 2017-05-23 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US20110197534A1 (en) * | 2005-08-05 | 2011-08-18 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US10000929B2 (en) | 2005-08-05 | 2018-06-19 | Owens Corning Intellectual Capital, Llc | Shingle with reinforcement member |
US11661744B2 (en) | 2005-08-05 | 2023-05-30 | Owens Corning Intellectual Capital, Llc | Shingle with reinforcement member |
US20110232220A1 (en) * | 2005-08-05 | 2011-09-29 | Belt James S | Roofing shingle including sheet as headlap |
US8156704B2 (en) | 2005-08-05 | 2012-04-17 | Owens-Corning Fiberglas Technology, Inc. | Reducing humping of stacked roofing shingles |
US8181413B2 (en) | 2005-08-05 | 2012-05-22 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US8240102B2 (en) | 2005-08-05 | 2012-08-14 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US20070042158A1 (en) * | 2005-08-05 | 2007-02-22 | Belt James S | Shingle with reinforced nail zone and method of manufacturing |
US11377312B2 (en) | 2005-08-05 | 2022-07-05 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US8557366B2 (en) | 2005-08-05 | 2013-10-15 | Owens Corning Intellectual Capital, Llc | Roofing shingle including sheet as headlap |
US8607521B2 (en) | 2005-08-05 | 2013-12-17 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US8623164B2 (en) | 2005-08-05 | 2014-01-07 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US11028589B2 (en) | 2005-08-05 | 2021-06-08 | Owens Corning Intellectual Capital, Llc | Shingle with reinforcement member |
US8752351B2 (en) | 2005-08-05 | 2014-06-17 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US10858203B2 (en) | 2005-08-05 | 2020-12-08 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US8991130B2 (en) | 2005-08-05 | 2015-03-31 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US10189656B2 (en) | 2005-08-05 | 2019-01-29 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US10753097B2 (en) | 2005-08-05 | 2020-08-25 | Owens Corning Intellectual Capital, Llc | Shingle with reinforcement member |
US9121178B2 (en) | 2005-08-05 | 2015-09-01 | Owens Corning Intellectual Capital, Llc | Shingle with reinforcement nail zone and method of manufacturing |
US20090293404A1 (en) * | 2005-08-05 | 2009-12-03 | Owens Corning Intellectual Capital ., Llc | Shingle With Reinforced Nail Zone And Method Of Manufacturing |
US10428525B2 (en) | 2005-08-05 | 2019-10-01 | Owens Corning Intellectual Capital, Llc | Shingle with reinforcement member |
US10308448B2 (en) | 2005-08-05 | 2019-06-04 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US10322889B2 (en) | 2005-08-05 | 2019-06-18 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US10315863B2 (en) | 2005-08-05 | 2019-06-11 | Owens Corning Intellectual Capital, Llc | Shingle with reinforced nail zone and method of manufacturing |
US9212487B2 (en) | 2005-09-28 | 2015-12-15 | Elk Premium Building Products, Inc. | Enhanced single layer roofing material |
US20070175153A1 (en) * | 2006-01-06 | 2007-08-02 | O'hara Timothy Kevin | Radiant barrier shingles |
US20090114481A1 (en) * | 2007-10-29 | 2009-05-07 | Nelson Tejada | Greeting Card and Merchandise Retail Store System and Related Fixtures and Displays |
US9017791B2 (en) | 2008-05-13 | 2015-04-28 | Owens Corning Intellectual Capital, Llc | Shingle blank having formation of individual hip and ridge roofing shingles |
US20110151170A1 (en) * | 2008-05-13 | 2011-06-23 | Owens Corning Intellectual Capital, Llc | Hip and ridge roofing material |
US9151055B2 (en) | 2009-02-25 | 2015-10-06 | Owens Corning Intellectual Capital, Llc | Hip and ridge roofing material |
US11313127B2 (en) | 2009-02-25 | 2022-04-26 | Owens Corning Intellectual Capital, Llc | Hip and ridge roofing material |
US9890534B2 (en) | 2009-02-25 | 2018-02-13 | Owens Corning Intellectual Capital, Llc | Hip and ridge roofing material |
US20100212246A1 (en) * | 2009-02-25 | 2010-08-26 | Grubka Lawrence J | Hip and ridge roofing material |
US9574350B2 (en) | 2009-03-20 | 2017-02-21 | Owens Corning Intellectual Capital, Llc | Sealant composition for releasable shingle |
US9482007B2 (en) | 2009-03-20 | 2016-11-01 | Owens Corning Intellectual Capital, Llc | Flexible laminated hip and ridge shingle |
US10273392B2 (en) | 2009-03-20 | 2019-04-30 | Owens Corning Intellectual Capital, Llc | Sealant composition for releasable shingle |
US20140334897A1 (en) * | 2009-10-14 | 2014-11-13 | Thomas R. Mathieson | System and method for repairing and sealing portions of a roof structure, method and apparatus for manufacturing sealing elements |
US9206835B2 (en) * | 2009-10-14 | 2015-12-08 | Thomas R. Mathieson | System and method for repairing and sealing portions of a roof structure, method and apparatus for manufacturing sealing elements |
US20110214378A1 (en) * | 2010-03-04 | 2011-09-08 | Grubka Lawrence J | Hip and ridge roofing shingle |
US9097020B2 (en) | 2010-03-04 | 2015-08-04 | Owens Corning Intellectual Capital, Llc | Hip and ridge roofing shingle |
US8713883B2 (en) | 2011-04-25 | 2014-05-06 | Owens Corning Intellectual Capital, Llc | Shingle with impact resistant layer |
USRE46177E1 (en) | 2011-07-29 | 2016-10-11 | Owens Corning Intellectual Capital, Llc | Method of manufacturing a shingle with reinforced nail zone |
US8430983B2 (en) | 2011-07-29 | 2013-04-30 | Owens Corning Intellectual Capital, Llc | Method of manufacturing a shingle with reinforced nail zone |
US9290943B2 (en) | 2012-01-05 | 2016-03-22 | Owens Corning Intellectual Capital, Llc | Hip and ridge roofing shingle |
US9290942B2 (en) | 2013-01-04 | 2016-03-22 | Certainteed Corporation | Roofing shingle with enhanced shadowline appearance |
US10584493B2 (en) | 2013-01-04 | 2020-03-10 | Certainteed Corporation | Roofing shingle with enhanced shadowline appearance |
US9758970B2 (en) | 2014-02-25 | 2017-09-12 | Owens Corning Intellectual Capital, Llc | Laminated hip and ridge shingle |
USD755997S1 (en) | 2014-02-27 | 2016-05-10 | Owens Corning Intellectual Capital, Llc | Shingle |
US10138919B2 (en) | 2015-12-10 | 2018-11-27 | Thomas R. Mathieson | Waterproof nail and screw with enlarged head and protective gasket |
US9695595B1 (en) | 2015-12-10 | 2017-07-04 | Thomas R. Mathieson | Method for hail damage repair of asphalt shingles |
US11970859B2 (en) | 2015-12-10 | 2024-04-30 | Thomas R. Mathieson | One-piece shingle repair patch |
US10072418B2 (en) | 2015-12-10 | 2018-09-11 | Thomas R. Mathieson | Integral nail/disk structure for eliminating exposed roof nails |
US9631383B1 (en) | 2015-12-10 | 2017-04-25 | Thomas R. Mathieson | Shingle patch for hail damage repair of asphalt shingles and an integral nail/disk structure for eliminating exposed roof nails |
US10190316B2 (en) | 2015-12-10 | 2019-01-29 | Thomas R. Mathieson | One-piece and two-piece shingle repair patch |
US11395931B2 (en) | 2017-12-02 | 2022-07-26 | Mighty Fire Breaker Llc | Method of and system network for managing the application of fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition |
US11697041B2 (en) | 2017-12-02 | 2023-07-11 | Mighty Fire Breaker Llc | Method of proactively defending combustible property against fire ignition and flame spread in the presence of wild fire |
US11400324B2 (en) | 2017-12-02 | 2022-08-02 | Mighty Fire Breaker Llc | Method of protecting life, property, homes and businesses from wild fire by proactively applying environmentally-clean anti-fire (AF) chemical liquid spray in advance of wild fire arrival and managed using a wireless network with GPS-tracking |
US11633636B2 (en) | 2017-12-02 | 2023-04-25 | Mighty Fire Breaker Llc | Wireless neighborhood wildfire defense system network supporting proactive protection of life and property in a neighborhood through GPS-tracking and mapping of environmentally-clean anti-fire (AF) chemical liquid spray applied to the property before wild fires reach the neighborhood |
US11638844B2 (en) | 2017-12-02 | 2023-05-02 | Mighty Fire Breaker Llc | Method of proactively protecting property from wild fire by spraying environmentally-clean anti-fire chemical liquid on property surfaces prior to wild fire arrival using remote sensing and GPS-tracking and mapping enabled spraying |
US11642555B2 (en) | 2017-12-02 | 2023-05-09 | Mighty Fire Breaker Llc | Wireless wildfire defense system network for proactively defending homes and neighborhoods against wild fires by spraying environmentally-clean anti-fire chemical liquid on property and buildings and forming GPS-tracked and mapped chemical fire breaks about the property |
US11654313B2 (en) | 2017-12-02 | 2023-05-23 | Mighty Fire Breaker Llc | Wireless communication network, GPS-tracked ground-based spraying tanker vehicles and command center configured for proactively spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire |
US11654314B2 (en) | 2017-12-02 | 2023-05-23 | Mighty Fire Breaker Llc | Method of managing the proactive spraying of environment ally-clean anti-fire chemical liquid on GPS-specified property surfaces so as to inhibit fire ignition and flame spread in the presence of wild fire |
US10919178B2 (en) | 2017-12-02 | 2021-02-16 | M-Fire Holdings, Llc | Class-A fire-protected oriented strand board (OSB) sheathing, and method of and automated factory for producing the same |
US11697040B2 (en) | 2017-12-02 | 2023-07-11 | Mighty Fire Breaker Llc | Wild fire defense system network using a command center, spraying systems and mobile computing systems configured to proactively defend homes and neighborhoods against threat of wild fire by spraying environmentally-safe anti-fire chemical liquid on property surfaces before presence of wild fire |
US11697039B2 (en) | 2017-12-02 | 2023-07-11 | Mighty Fire Breaker Llc | Wireless communication network, GPS-tracked back-pack spraying systems and command center configured for proactively spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire |
US10814150B2 (en) | 2017-12-02 | 2020-10-27 | M-Fire Holdings Llc | Methods of and system networks for wireless management of GPS-tracked spraying systems deployed to spray property and ground surfaces with environmentally-clean wildfire inhibitor to protect and defend against wildfires |
US11707639B2 (en) | 2017-12-02 | 2023-07-25 | Mighty Fire Breaker Llc | Wireless communication network, GPS-tracked mobile spraying systems, and a command system configured for proactively spraying environmentally-safe anti-fire chemical liquid on combustible property surfaces to protect property against fire ignition and flame spread in the presence of wild fire |
US11730987B2 (en) | 2017-12-02 | 2023-08-22 | Mighty Fire Breaker Llc | GPS tracking and mapping wildfire defense system network for proactively defending homes and neighborhoods against threat of wild fire by spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire |
US11794044B2 (en) | 2017-12-02 | 2023-10-24 | Mighty Fire Breaker Llc | Method of proactively forming and maintaining GPS-tracked and mapped environmentally-clean chemical firebreaks and fire protection zones that inhibit fire ignition and flame spread in the presence of wild fire |
US10653904B2 (en) | 2017-12-02 | 2020-05-19 | M-Fire Holdings, Llc | Methods of suppressing wild fires raging across regions of land in the direction of prevailing winds by forming anti-fire (AF) chemical fire-breaking systems using environmentally clean anti-fire (AF) liquid spray applied using GPS-tracking techniques |
US11836807B2 (en) | 2017-12-02 | 2023-12-05 | Mighty Fire Breaker Llc | System, network and methods for estimating and recording quantities of carbon securely stored in class-A fire-protected wood-framed and mass-timber buildings on construction job-sites, and class-A fire-protected wood-framed and mass timber components in factory environments |
US10899038B2 (en) | 2017-12-02 | 2021-01-26 | M-Fire Holdings, Llc | Class-A fire-protected wood products inhibiting ignition and spread of fire along class-A fire-protected wood surfaces and development of smoke from such fire |
US11865394B2 (en) | 2017-12-03 | 2024-01-09 | Mighty Fire Breaker Llc | Environmentally-clean biodegradable water-based concentrates for producing fire inhibiting and fire extinguishing liquids for fighting class A and class B fires |
US11865390B2 (en) | 2017-12-03 | 2024-01-09 | Mighty Fire Breaker Llc | Environmentally-clean water-based fire inhibiting biochemical compositions, and methods of and apparatus for applying the same to protect property against wildfire |
US11826592B2 (en) | 2018-01-09 | 2023-11-28 | Mighty Fire Breaker Llc | Process of forming strategic chemical-type wildfire breaks on ground surfaces to proactively prevent fire ignition and flame spread, and reduce the production of smoke in the presence of a wild fire |
US11911643B2 (en) | 2021-02-04 | 2024-02-27 | Mighty Fire Breaker Llc | Environmentally-clean fire inhibiting and extinguishing compositions and products for sorbing flammable liquids while inhibiting ignition and extinguishing fire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3468092A (en) | Composite strip shingle | |
US4468909A (en) | Building panel | |
US2219450A (en) | Strip shingle | |
US2099131A (en) | Thick butt shingle | |
US2130911A (en) | Building unit | |
US2863405A (en) | Asphalt shingle with sealing elements | |
US2113644A (en) | Shingle | |
US3377762A (en) | Composite shingle | |
CA1298453C (en) | Composite roofing substrate panel | |
US4322928A (en) | Asphalt composition shingles | |
US4468903A (en) | Building panel | |
US2231007A (en) | Surface covering and assembly thereof | |
US20040111996A1 (en) | Composite shingle and method of manufacture, method of packaging, and method of installation | |
US3720031A (en) | Structural surface covering and method of making a cover element therefor | |
US2062149A (en) | Composition roofing | |
WO1983003865A1 (en) | Building panel | |
US20050072092A1 (en) | High profile composition shingles for roofs | |
US2148167A (en) | Roofing or siding material | |
US2151794A (en) | Roof construction and roofing element therefor | |
US2705209A (en) | Roofing | |
US1765796A (en) | Sealed laminated roofing element | |
US1939004A (en) | Air, moisture, and sound proof material | |
US2359845A (en) | Surface covering material and process of making the same | |
US2021578A (en) | Ornamented wall board for outside weatherproofing | |
US2232786A (en) | Shingle structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALCAN ALUMINUM CORPORATION Free format text: MERGER;ASSIGNORS:ALCAN ALUMINUM CORPORATION A CORP. OF NY (MERGED INTO);ALCAN PROPERTIES, INC., A CORP OF OHIO (CHANGED TO);REEL/FRAME:004536/0724 Effective date: 19860220 |