US3459746A - 7 - heteromonocyclic-substituted acylamido derivatives of desacetyl cephalosporanic acid - Google Patents
7 - heteromonocyclic-substituted acylamido derivatives of desacetyl cephalosporanic acid Download PDFInfo
- Publication number
- US3459746A US3459746A US492911A US3459746DA US3459746A US 3459746 A US3459746 A US 3459746A US 492911 A US492911 A US 492911A US 3459746D A US3459746D A US 3459746DA US 3459746 A US3459746 A US 3459746A
- Authority
- US
- United States
- Prior art keywords
- acid
- solution
- cephalosporadesic
- heteromonocyclic
- desacetyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- YGBFLZPYDUKSPT-MRVPVSSYSA-N cephalosporanic acid Chemical compound S1CC(COC(=O)C)=C(C(O)=O)N2C(=O)C[C@H]21 YGBFLZPYDUKSPT-MRVPVSSYSA-N 0.000 title description 2
- -1 N-pyridyl Chemical group 0.000 description 26
- 239000000243 solution Substances 0.000 description 19
- 239000002253 acid Substances 0.000 description 16
- HOKIDJSKDBPKTQ-GLXFQSAKSA-N cephalosporin C Chemical compound S1CC(COC(=O)C)=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CCC[C@@H](N)C(O)=O)[C@@H]12 HOKIDJSKDBPKTQ-GLXFQSAKSA-N 0.000 description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000010933 acylation Effects 0.000 description 8
- 238000005917 acylation reaction Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- HSHGZXNAXBPPDL-HZGVNTEJSA-N 7beta-aminocephalosporanic acid Chemical compound S1CC(COC(=O)C)=C(C([O-])=O)N2C(=O)[C@@H]([NH3+])[C@@H]12 HSHGZXNAXBPPDL-HZGVNTEJSA-N 0.000 description 4
- 108010013043 Acetylesterase Proteins 0.000 description 4
- 241000207199 Citrus Species 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 102100036617 Monoacylglycerol lipase ABHD2 Human genes 0.000 description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 4
- 235000011130 ammonium sulphate Nutrition 0.000 description 4
- 235000020971 citrus fruits Nutrition 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 150000001718 carbodiimides Chemical class 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 2
- 239000006286 aqueous extract Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000003682 3-furyl group Chemical group O1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000001541 3-thienyl group Chemical group S1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- ABFDTYJJUSUWRB-UHFFFAOYSA-N 4-[[4-(dimethylamino)phenyl]iminomethylideneamino]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1N=C=NC1=CC=C(N(C)C)C=C1 ABFDTYJJUSUWRB-UHFFFAOYSA-N 0.000 description 1
- NXNZBSJCMSODTO-UHFFFAOYSA-N 5,6-dihydro-2h-1,3-thiazine Chemical group C1CC=NCS1 NXNZBSJCMSODTO-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004157 Nitrosyl chloride Substances 0.000 description 1
- QMGVPVSNSZLJIA-UHFFFAOYSA-N Nux Vomica Natural products C1C2C3C4N(C=5C6=CC=CC=5)C(=O)CC3OCC=C2CN2C1C46CC2 QMGVPVSNSZLJIA-UHFFFAOYSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000607760 Shigella sonnei Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000001263 acyl chlorides Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical class C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000006380 bromopyridyl group Chemical group 0.000 description 1
- RRKTZKIUPZVBMF-IBTVXLQLSA-N brucine Chemical compound O([C@@H]1[C@H]([C@H]2C3)[C@@H]4N(C(C1)=O)C=1C=C(C(=CC=11)OC)OC)CC=C2CN2[C@@H]3[C@]41CC2 RRKTZKIUPZVBMF-IBTVXLQLSA-N 0.000 description 1
- RRKTZKIUPZVBMF-UHFFFAOYSA-N brucine Natural products C1=2C=C(OC)C(OC)=CC=2N(C(C2)=O)C3C(C4C5)C2OCC=C4CN2C5C31CC2 RRKTZKIUPZVBMF-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- KMPWYEUPVWOPIM-UHFFFAOYSA-N cinchonidine Natural products C1=CC=C2C(C(C3N4CCC(C(C4)C=C)C3)O)=CC=NC2=C1 KMPWYEUPVWOPIM-UHFFFAOYSA-N 0.000 description 1
- KMPWYEUPVWOPIM-LSOMNZGLSA-N cinchonine Chemical compound C1=CC=C2C([C@@H]([C@H]3N4CC[C@H]([C@H](C4)C=C)C3)O)=CC=NC2=C1 KMPWYEUPVWOPIM-LSOMNZGLSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000000532 dioxanyl group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 244000000058 gram-negative pathogen Species 0.000 description 1
- 244000000059 gram-positive pathogen Species 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 125000002911 monocyclic heterocycle group Chemical group 0.000 description 1
- UXOUKMQIEVGVLY-UHFFFAOYSA-N morin Natural products OC1=CC(O)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UXOUKMQIEVGVLY-UHFFFAOYSA-N 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- VPCDQGACGWYTMC-UHFFFAOYSA-N nitrosyl chloride Chemical compound ClN=O VPCDQGACGWYTMC-UHFFFAOYSA-N 0.000 description 1
- 235000019392 nitrosyl chloride Nutrition 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 125000004307 pyrazin-2-yl group Chemical group [H]C1=C([H])N=C(*)C([H])=N1 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 229960000948 quinine Drugs 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 229940115939 shigella sonnei Drugs 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D501/00—Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
- C07D501/14—Compounds having a nitrogen atom directly attached in position 7
- C07D501/16—Compounds having a nitrogen atom directly attached in position 7 with a double bond between positions 2 and 3
- C07D501/20—7-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids
- C07D501/24—7-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids with hydrocarbon radicals, substituted by hetero atoms or hetero rings, attached in position 3
- C07D501/26—Methylene radicals, substituted by oxygen atoms; Lactones thereof with the 2-carboxyl group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/542—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
- A61K31/545—Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- This invention relates to novel organic compounds and to methods for their preparation.
- novel compounds of the present invention are 7- (heteromonocyclic-substituted acylamido) derivatives of desacetylcephalosporanic acid, having the following formula:
- R is a monocyclic ring having at least one hetero atom of the class consisting of 'O, S, and N; and n is zero or 1.
- R can be dioxanyl, 2-furyl, 3-furyl, imidazolyl, isoxazolyl, morpholinyl, oxazolyl, pyranyl, pyrazinyl, pyrazolyl, N-pyridyl Z-pyridyl, 3-pyridyl, pyrimidyl, N- pyrryl, Z-pyrryl, 3-pyrryl, thiazolyl, Z-thienyl, 3-thienyl, triazinyl, triazolyl and the like; the partially and completely hydrogenated derivatives thereof such as tetrahydrofuryl imidazolinyl, imidazolidyl, piperidyl, tetrahydropyrimidyl, pyrrolidyl, and the like; and the derivatives thereof having chlorine, fluorine, bromine, iodine nitro, methoxy, methyl, ethyl, n-propyl, isopropyl,
- novel compounds of the present invention are related to cephalosporin C insofar as they contain the 2,3- dihydro-6H-1,5-thiazine ring with a fused B-lactam ring in the 5,6 position, which is characteristic of cephalosporin C.
- cephalosporin C which contains the -amino-N'-adipamy1 group in the 7 position
- the compounds of the present invention are characterized by a heteromonocylic-substituted acylamido group in the 7 position.
- the compounds of the present invention contain hydroxymethyl in the 3 position, and may thus be termed derivatives of desacetylcephalosporanic acid," a term sometimes shortened to cephalosporadesic acid.
- the compounds of the present invention are highly effective antibacterial agents. They are characterized by penicillinase-resistance, acid stability, and activity against a broad range of microorganisms, including both grampositive and gram-negative pathogens, and are considerably less subject to serum binding than are the analogous 3-acetoxymethyl compounds. They are conveniently prepared and administered in the form of the salts of the carboxyl group with pharmaceutically acceptable cations, including, for example, water-soluble salts such as the sodium, potassium, lithium, ammonium, and substituted ammonium salts, as well as the less water-soluble salts such as the calcium, barium, procaine, quinine, and dibenzylethylenediamine salts. Administration is preferably by intramuscular injection in isotonic saline at a dose (for adults) around 0.25 to 0.50 g. every four to six hours.
- the source material for the compounds of the present invention is cephalosporin C, more precisely known as 7- (5'-amino-adipamido)cephalosporanic acid, which can be prepared by cultivating a cephalosporin C-producing organism in a suitable nutrient medium, as described in British patent specification 810,196, published Mar. 11, 1958.
- Cephalosporin C is readily converted into the corresponding nucleus compound, 7-aminocephalosporanic acid, by cleaving the 5'-amino-N-adipamyl side chain between its amido carbonyl group and its amido nitrogen, suitably by reacting cephalosporin C with nitrosyl chloride in formic acid, then hydrolytically cleaving, according to the method of Morin et al. described in U.S. Patent 3,188,311 (June 8, 1965).
- the nucleus thus obtained is conveniently converted into a 7-acylamidocephalosporanic acid as desired by acylation.
- any of the conventional acylation procedures can be employed, utilizing any of the various types of known acylating agents having the composition WhlCh yields the desired side chain.
- a convenient acylating agent is the appropriate acyl chloride or bromide.
- the acylation is carried out in water or an appropriate organic solvent, preferably under substantially neutral conditions, and preferably at reduced temperature, i.e.,
- 7-aminocephalosporanic acid is dissolved in water with a sufficient quantity of sodium bicarbonate or other appropriate alkali to promote solution, the concentration of the 7-aminocephalosporanic acid being about 1 to about 4 percent by weight.
- the solution is cooled to around to 5 C., and a solution of the acylating agent is added in about 20 percent excess, with stirring and cooling.
- the pH of the mixture can be maintained, if it tends to vary, around the neutral level by bubbling carbon dioxide therein.
- stirring of the reaction mixture is continued and the mixture is allowed to warm to room temperature.
- the reaction product is then acidified to around pH 2 and extracted with an organic solvent such as ethyl acetate.
- the ethyl acetate extract is back-extracted with water at pH 5.5 to 6, employing for pH adjustment a base containing the cation of the desired final product.
- the water solution is separated and evaporated substantially to dryness.
- the residue is taken up in a minimum quantity of water and the acylation product is precipitated by adding a large excess of acetone, and if necessary ether.
- the crystalline product obtained thereby is filtered, washed with acetone, and dried.
- the acylation can also be carried out with the corresponding carboxylic acid, employed in conjunction with an equimolar proportion of a carbodiimide such as N,N'- diisopropylcarbodiimide, N,N' dicyclohexylcarbodiimide, N,N' bis (p dimethylaminophenyl)carbodiimide, N-ethyl-N-(4"-ethylmorpholinyl)carbodiimide, or the like, and the acylation proceeds at ordinary temperatures in such cases.
- a carbodiimide such as N,N'- diisopropylcarbodiimide, N,N' dicyclohexylcarbodiimide, N,N' bis (p dimethylaminophenyl)carbodiimide, N-ethyl-N-(4"-ethylmorpholinyl)carbodiimide, or the like, and the acylation proceeds at ordinary temperatures in such cases.
- the carboxylic acid can be converted into the corresponding acid anhydride, or into the azide, or into an activated ester, and any of these derivatives can be used to etfect the desired acylation.
- Other agents can readily be ascertained from the art.
- the acylating agent may contain one or more asymmetric carbon atoms and thus exist in optically active forms.
- such compounds are ordinarily obtained in racemic form i.e., an equimolar mixture of the optical isomers, having no optical rotation.
- the acylating agent can be resolved in a conventional manner such as by reacting the free acid with cinchonine, strychnine, brucine, or the like, then fractionally crystallizing to separate the diasteroisomeric salts, and separately acidifying the solid phase and the liquid phase to liberate the optical isomers.
- the free acids thus obtained can be employed as such for the acylation, preferably in conjunction with a carbodiimide, or may be converted by conventional means into the corresponding acid halide or into a mixed anhydride, care being exercised to avoid extremes of conditions which might produce racemization.
- the 7-acylamidocephalosporanic acids obtained in the foregoing manner are conveniently converted into the desired 7-acylamidocephalosporadesic acids by treatment with citrus acetylesterase for several hours in aqueous phosphate buffer at pH 6.5-7 according to the method of Jansen, Jang, and MacDonnell, Archiv. Biochem., 15 (1947), 415-31.
- Example 7-aminocephalosporanic acid (12 g.) was suspended in a mixture of 200 ml. of water and 160 ml. of acetone and cooled in an ice bath. To the suspension were added 7.5 g. of sodium bicarbonate with stirring, as a result of which the solids went into solution. To the cooled solution were 4 added 6.5 g. of ot-thienylacetyl chloride dissolved in 40 ml. of acetone over a period of one hour, after which the reaction mixture was stirred in the cold for two additional hours. The reaction product mixture was then stripped of acetone under vacuum, and 200 ml. of ethyl acetate were added, followed by 1 N hydrochloric acid to pH 2.
- the mixture was filtered and the aqueous phase was separated and discarded.
- the ethyl acetate phase was stirred with 100 ml. of water and adjusted to pH 6.5 with aqueous 1 N potassium hydroxide solution, 45 ml. being required.
- the resulting aqueous extract was separated and evaporated to dryness under vacuum. The residue was recrystallized from a mixture of methanol and isopropyl alcohol.
- the resulting intermediate, 7-a-thienylacetamidocephalosporanic acid potassium salt weighed 9.1 g.
- the Warburg control was run in the following manner. Into the body of a Warburg flask were placed 0.4 ml. of the original solution of 7 oz thienylacetamidocephalosporanic acid potassium salt and 1.3 ml. of Water. Into the side arm was placed 0.2 ml. of the citrus acetylesterase preparation. An aqueous 1 M solution of sodium bicarbonate was saturated with carbon dioxide, and 0.25 ml. was added to the body of the flask, and 0.05 ml. to the side arm. The manometer, having been purged with carbon dioxide, was immediately attached. The gas was allowed to flow for 15 minutes at room tempearture, and was then turned off.
- the apparatus was allowed to equilibrate 15 minutes in the 37 C. constant-temperature bath, the side arm being open at first to permit venting, then closed. The contents of the side arm were then poured into the body of the flask and rinsed back and forth, thus initiating the desacetylation reaction, as evidenced by the evolution of carbon dioxide. Gas evolution ceased at the end of 3 hours, and it was determined that a total of 377 ml. (corrected) of carbon dioxide had been evolved, corresponding to 16.8 millimoles or 84 percent of theory.
- the product solution (approximately 400 ml.) was salted with sodium chloride (40 g.), cooled, overlayered with an equal volume of ethyl acetate, and acidified to pH 2.0 with 1 N hydrochloric acid. The mixture was filtered to break the suspension and the layers were separated.
- Minimum inhibitory Minimum inhibitory Organism concentration, meg/ml. Shigella sonnei 62 Escherichia coli N-lO 134 E. coli N-26 89 I claim:
- R is a monocyclic ring having at least one hetero atom of the class consisting of O, S, and N selected from the group consisting of B-thienyl, a-thienyl, a-furyl, 2- pyranyl, 2'-morpholinyl, 3'-bromo-2'-pyridyl, 5-methoxy- 3-pyridyl, 2-pyrazinyl, 2'-pyridyl, a-picolyl, p-furyl, 2'- triazinyl, 4-(5')-imidazolyl, 2-piperidyl, 5'-pyrimidyl, 2'- methyl-3'-furyl, 5-oxazolyl, 3-methyl-2-thienyl, 5-nitro- 2'-pyridyl, 5-fluoro-2-pyridyl, 5-imidazolinyl, and 2- thiazolyl.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Cephalosporin Compounds (AREA)
Description
U.S. Cl. 260-243 2 Claims ABSTRACT OF THE DISCLOSURE Derivatives of 7 heteromonocyclic substituted acylamido desacetylcephalosporanic acid are disclosed. These compounds are useful antibacterial agents.
This application is a continuation-in-part of my applications Serial No. 115,612, filed June 8, 1961, now abandoned and Serial No. 220,855 filed Aug. 31, 1962, now U.S. Patent 3,218,318 issued Nov. 16, 1965.
This invention relates to novel organic compounds and to methods for their preparation.
The novel compounds of the present invention are 7- (heteromonocyclic-substituted acylamido) derivatives of desacetylcephalosporanic acid, having the following formula:
and the salts thereof with pharmaceutically acceptable cations, in which:
R is a monocyclic ring having at least one hetero atom of the class consisting of 'O, S, and N; and n is zero or 1.
Thus, R can be dioxanyl, 2-furyl, 3-furyl, imidazolyl, isoxazolyl, morpholinyl, oxazolyl, pyranyl, pyrazinyl, pyrazolyl, N-pyridyl Z-pyridyl, 3-pyridyl, pyrimidyl, N- pyrryl, Z-pyrryl, 3-pyrryl, thiazolyl, Z-thienyl, 3-thienyl, triazinyl, triazolyl and the like; the partially and completely hydrogenated derivatives thereof such as tetrahydrofuryl imidazolinyl, imidazolidyl, piperidyl, tetrahydropyrimidyl, pyrrolidyl, and the like; and the derivatives thereof having chlorine, fluorine, bromine, iodine nitro, methoxy, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, or other C -C alkyl substituent at one or more positions on the ring, e.g., the picolyls, the methylfuryls, the methylthienyls, nitrofuryl, nitropyridyl, nitrothienyl, chlorofuryl, bromopyridyl, fluoropyrryl, methoxypyrimidyl, and the like.
The novel compounds of the present invention are related to cephalosporin C insofar as they contain the 2,3- dihydro-6H-1,5-thiazine ring with a fused B-lactam ring in the 5,6 position, which is characteristic of cephalosporin C. However, unlike cephalosporin C, which contains the -amino-N'-adipamy1 group in the 7 position, the compounds of the present invention are characterized by a heteromonocylic-substituted acylamido group in the 7 position. Moreover, unlike cephalosporin C, which contains acetoxyrnethyl in the 3 position, the compounds of the present invention contain hydroxymethyl in the 3 position, and may thus be termed derivatives of desacetylcephalosporanic acid," a term sometimes shortened to cephalosporadesic acid.
3,459,746 Patented Aug. 5, 1969 The compounds of the present invention are highly effective antibacterial agents. They are characterized by penicillinase-resistance, acid stability, and activity against a broad range of microorganisms, including both grampositive and gram-negative pathogens, and are considerably less subject to serum binding than are the analogous 3-acetoxymethyl compounds. They are conveniently prepared and administered in the form of the salts of the carboxyl group with pharmaceutically acceptable cations, including, for example, water-soluble salts such as the sodium, potassium, lithium, ammonium, and substituted ammonium salts, as well as the less water-soluble salts such as the calcium, barium, procaine, quinine, and dibenzylethylenediamine salts. Administration is preferably by intramuscular injection in isotonic saline at a dose (for adults) around 0.25 to 0.50 g. every four to six hours.
The following examples will illustrate the types of compounds available in accordance with the present invention:
7-fi-thienylacetamidocephalosporadesic acid 7-;8-thienylcarboxamidocephalosporadesic acid 7-a-furylacetamidocephalosporadesic acid 7-a-furylcarboxamidocephalosporadesic acid 7- (2'-pyranylacetamid0 cephalosporadesic acid 7- (2'-morpholinylacetamido) cephalosporadesic acid 7-(3-bromo-2'-pyridylacetamid0) cephalosporadesic acid 7- 5-methoxy-3'-pyridylacetarnido cephalosporadesic acid 7-uthienylcarboxamidocephalosporadesic acid 7-(2-pyrazinylacetamido)cephalosporadesic acid 7-(2-pyridylacetamido) cephalosporadesic acid 7- (or-picolyl-3 '-acetamido cephalosporadesic acid 7-fl-furylcarboxamidocephalosporadesic acid 7- (2'-triazinylacetamido cephalosporadesic acid 7- (4 5 -imidazolylacetamido cephalo sporadesic acid 7- (2'-piperidylacetamido)cephalosporadesic acid 7-fl-(5-pyrimidyl)acetamidocephalosporadesic acid 7-fi-furylacetamidocephalosporadesic acid 7- (2'-methyl-3 -furylacetamido cephalosporadesic acid 7- 5 -oxazolylacetamido cephalosporadesic acid 7- 3'methyl-2'-thienylacetamido) cephalosporadesic acid 7- 5 -nitro-2'-thienylacetamido cephalosporadesic acid 7-,8-(5'-fluoro-2'-pyridy1)acetamidocephalosporadesic acid 7- 5'-imidazolinylacetamido) cephalosporadesic acid 7-(2-thiazolylacetamido)cephalosporadesic acid and the like.
The source material for the compounds of the present invention is cephalosporin C, more precisely known as 7- (5'-amino-adipamido)cephalosporanic acid, which can be prepared by cultivating a cephalosporin C-producing organism in a suitable nutrient medium, as described in British patent specification 810,196, published Mar. 11, 1959.
Cephalosporin C is readily converted into the corresponding nucleus compound, 7-aminocephalosporanic acid, by cleaving the 5'-amino-N-adipamyl side chain between its amido carbonyl group and its amido nitrogen, suitably by reacting cephalosporin C with nitrosyl chloride in formic acid, then hydrolytically cleaving, according to the method of Morin et al. described in U.S. Patent 3,188,311 (June 8, 1965).
The nucleus thus obtained is conveniently converted into a 7-acylamidocephalosporanic acid as desired by acylation. For this purpose, any of the conventional acylation procedures can be employed, utilizing any of the various types of known acylating agents having the composition WhlCh yields the desired side chain. A convenient acylating agent is the appropriate acyl chloride or bromide. The acylation is carried out in water or an appropriate organic solvent, preferably under substantially neutral conditions, and preferably at reduced temperature, i.e.,
above the freezing point of the reaction mixture and up to about 20 C. In a typical procedure, 7-aminocephalosporanic acid is dissolved in water with a sufficient quantity of sodium bicarbonate or other appropriate alkali to promote solution, the concentration of the 7-aminocephalosporanic acid being about 1 to about 4 percent by weight. The solution is cooled to around to 5 C., and a solution of the acylating agent is added in about 20 percent excess, with stirring and cooling. The pH of the mixture can be maintained, if it tends to vary, around the neutral level by bubbling carbon dioxide therein. After addition of the acylating agent has been completed, stirring of the reaction mixture is continued and the mixture is allowed to warm to room temperature. The reaction product is then acidified to around pH 2 and extracted with an organic solvent such as ethyl acetate. The ethyl acetate extract is back-extracted with water at pH 5.5 to 6, employing for pH adjustment a base containing the cation of the desired final product. The water solution is separated and evaporated substantially to dryness. The residue is taken up in a minimum quantity of water and the acylation product is precipitated by adding a large excess of acetone, and if necessary ether. The crystalline product obtained thereby is filtered, washed with acetone, and dried.
The acylation can also be carried out with the corresponding carboxylic acid, employed in conjunction with an equimolar proportion of a carbodiimide such as N,N'- diisopropylcarbodiimide, N,N' dicyclohexylcarbodiimide, N,N' bis (p dimethylaminophenyl)carbodiimide, N-ethyl-N-(4"-ethylmorpholinyl)carbodiimide, or the like, and the acylation proceeds at ordinary temperatures in such cases. Alternatively, the carboxylic acid can be converted into the corresponding acid anhydride, or into the azide, or into an activated ester, and any of these derivatives can be used to etfect the desired acylation. Other agents can readily be ascertained from the art.
Many of the acylating agents, together with methods for their preparation, are described in the literature, and a number of them are commercially available. All of them are readily prepared by methods well known in the art.
In many cases, the acylating agent may contain one or more asymmetric carbon atoms and thus exist in optically active forms. When prepared by ordinary chemical means, such compounds are ordinarily obtained in racemic form i.e., an equimolar mixture of the optical isomers, having no optical rotation. When the separate optical isomers are desired, the acylating agent can be resolved in a conventional manner such as by reacting the free acid with cinchonine, strychnine, brucine, or the like, then fractionally crystallizing to separate the diasteroisomeric salts, and separately acidifying the solid phase and the liquid phase to liberate the optical isomers. The free acids thus obtained can be employed as such for the acylation, preferably in conjunction with a carbodiimide, or may be converted by conventional means into the corresponding acid halide or into a mixed anhydride, care being exercised to avoid extremes of conditions which might produce racemization.
The 7-acylamidocephalosporanic acids obtained in the foregoing manner are conveniently converted into the desired 7-acylamidocephalosporadesic acids by treatment with citrus acetylesterase for several hours in aqueous phosphate buffer at pH 6.5-7 according to the method of Jansen, Jang, and MacDonnell, Archiv. Biochem., 15 (1947), 415-31.
The invention will be more readily understood from the following operating example, which is submitted only as an illustration, and not by way of limitation.
Example 7-aminocephalosporanic acid (12 g.) was suspended in a mixture of 200 ml. of water and 160 ml. of acetone and cooled in an ice bath. To the suspension were added 7.5 g. of sodium bicarbonate with stirring, as a result of which the solids went into solution. To the cooled solution were 4 added 6.5 g. of ot-thienylacetyl chloride dissolved in 40 ml. of acetone over a period of one hour, after which the reaction mixture was stirred in the cold for two additional hours. The reaction product mixture was then stripped of acetone under vacuum, and 200 ml. of ethyl acetate were added, followed by 1 N hydrochloric acid to pH 2. The mixture was filtered and the aqueous phase was separated and discarded. The ethyl acetate phase was stirred with 100 ml. of water and adjusted to pH 6.5 with aqueous 1 N potassium hydroxide solution, 45 ml. being required. The resulting aqueous extract was separated and evaporated to dryness under vacuum. The residue was recrystallized from a mixture of methanol and isopropyl alcohol. The resulting intermediate, 7-a-thienylacetamidocephalosporanic acid potassium salt, weighed 9.1 g.
An orange flavedo solution which had been prepared by the method of Jansen, Jang, and MacDonnell, referred to above, was further purified in the following way. To the solution (approximately 340 ml.) were added 17.5 g. of Darco G60 activated carbon, and the mixture was stirred slowly for 15 minutes in the cold, then centrifuged in the cold at 15,000 rpm. The supernatant liquid (285 ml.) was poured off, and to it were slowly added 49.9 g. of ammonium sulfate crystals with stirring, giving a solution 30 percent saturated with ammonium sulfate. The mixture was again centrifuged and the solid was discarded. To the supernatant liquid (305 ml.) were slowly added 60 g. of ammonium sulfate with cooling and stirring, giving a solution 60 percent saturated with ammonium sulfate. The mixture was again centrifuged, and the supernatant liquid was discarded. The solids were dissolved in cold water and brought to a volume of ml. The result was a stable solution of purified citrus acetylesterase.
7 u-thienylacetamidocephalosporanic acid potassium salt (2.0 g.) was dissolved in water, adjusted to pH 7 with aqueous 1 N sodium hydroxide solution, and diluted to 86 ml. with water. The resulting solution was 0.05 molar in the dissolved compound. The solution was commingled with 21.5 ml. of 0.1 M phosphate buffer at pH 7, then with 43 ml. of citrus acetylesterase which had been prepared and purified as described above and adjusted to pH 7. The solution volume was adjusted to 430 ml. with water, then held in a beaker at 37 C. with slow stirring. The pH was maintained at 7 by dropwise addition of aqueous 1 N sodium hydroxide solution. Exposure to these conditions was continued for a period of 4 hours, this being one hour past the time at which a parallel Warburg control (described below) indicated completion of the reaction.
The Warburg control was run in the following manner. Into the body of a Warburg flask were placed 0.4 ml. of the original solution of 7 oz thienylacetamidocephalosporanic acid potassium salt and 1.3 ml. of Water. Into the side arm was placed 0.2 ml. of the citrus acetylesterase preparation. An aqueous 1 M solution of sodium bicarbonate was saturated with carbon dioxide, and 0.25 ml. was added to the body of the flask, and 0.05 ml. to the side arm. The manometer, having been purged with carbon dioxide, was immediately attached. The gas was allowed to flow for 15 minutes at room tempearture, and was then turned off. The apparatus was allowed to equilibrate 15 minutes in the 37 C. constant-temperature bath, the side arm being open at first to permit venting, then closed. The contents of the side arm were then poured into the body of the flask and rinsed back and forth, thus initiating the desacetylation reaction, as evidenced by the evolution of carbon dioxide. Gas evolution ceased at the end of 3 hours, and it was determined that a total of 377 ml. (corrected) of carbon dioxide had been evolved, corresponding to 16.8 millimoles or 84 percent of theory.
The product solution (approximately 400 ml.) was salted with sodium chloride (40 g.), cooled, overlayered with an equal volume of ethyl acetate, and acidified to pH 2.0 with 1 N hydrochloric acid. The mixture was filtered to break the suspension and the layers were separated. The
organic phase was adjusted in the cold to pH 5.8 with aqueous 1 N potassium hydroxide solution and the layers were separated. The aqueous extract was evaporated to dryness at reduced pressure and mildly elevated temperature. The residue was dissolved in hot methanol, filtered, diluted with isopropyl alcohol, and concentrated. The resulting white solid was filtered oil and dried. Yield, 0.95 g. The filtrate was further concentrated and chilled, and a second crop was obtained weighing 200 mg.
'lhe product, 7 a-thienylacetamidocephalosporadesic acid potassium salt, was found to be effective against penicillin-resistant Staphylococcus aureus, having the following minimum inhibitory concentrations, both in the presence and in the absence of human blood serum, against four clinical isolates, as measured by the gradient-plate technique and expressed in micrograms per milliliter:
Strain V-30 V-32 V-41 V-84 Without serum 0. 5 4 0. 5 2 With serum 2 2 2 3 The product was also shown to be effective in varying degrees against a variety of other organisms.
Minimum inhibitory Minimum inhibitory Organism: concentration, meg/ml. Shigella sonnei 62 Escherichia coli N-lO 134 E. coli N-26 89 I claim:
1. An antibiotic substance having the following formula:
wherein R is a monocyclic ring having at least one hetero atom of the class consisting of O, S, and N selected from the group consisting of B-thienyl, a-thienyl, a-furyl, 2- pyranyl, 2'-morpholinyl, 3'-bromo-2'-pyridyl, 5-methoxy- 3-pyridyl, 2-pyrazinyl, 2'-pyridyl, a-picolyl, p-furyl, 2'- triazinyl, 4-(5')-imidazolyl, 2-piperidyl, 5'-pyrimidyl, 2'- methyl-3'-furyl, 5-oxazolyl, 3-methyl-2-thienyl, 5-nitro- 2'-pyridyl, 5-fluoro-2-pyridyl, 5-imidazolinyl, and 2- thiazolyl.
2. 7-a-thienylacetamidocephalosporadesic acid.
References Cited UNITED STATES PATENTS 3,196,151 7/1965 Hoover et a1. 3,218,318 11/1965 Flynn.
NICHOLAS S. RIZZO, Primary Examiner US. Cl. X.R. 260-999
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US49291165A | 1965-10-04 | 1965-10-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3459746A true US3459746A (en) | 1969-08-05 |
Family
ID=23958108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US492911A Expired - Lifetime US3459746A (en) | 1965-10-04 | 1965-10-04 | 7 - heteromonocyclic-substituted acylamido derivatives of desacetyl cephalosporanic acid |
Country Status (1)
Country | Link |
---|---|
US (1) | US3459746A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3891635A (en) * | 1970-11-06 | 1975-06-24 | Koninklijke Gist Spiritus | 7-{8 3-(Phenyl)-isoxazol-5-yl{9 acetamido-cephalosporanic acids |
US3956288A (en) * | 1973-11-07 | 1976-05-11 | Richardson-Merrell Inc. | 7-[(2,4-Dioxo-1-pyrimidinyl)acylamino]cephalosporin derivatives |
US3956287A (en) * | 1973-11-07 | 1976-05-11 | Richardson-Merrell Inc. | 7-[(2-Oxo-1-pyridinyl)acylamino]cephalosporin derivatives |
US4031085A (en) * | 1974-10-23 | 1977-06-21 | Merck & Co., Inc. | Preparation of 3-hydroxymethyl-7β-aminoadipoyl-7α-methoxy-3-cephem-4-carboxylic acid |
US4122260A (en) * | 1977-10-04 | 1978-10-24 | Yeda Research And Development Co., Ltd. | Cephalosporin derivatives |
US4148998A (en) * | 1977-10-04 | 1979-04-10 | Yeda Research And Development Co., Ltd. | Pyrrole cephalosporin derivatives |
DE2848912A1 (en) * | 1977-11-14 | 1979-05-17 | Fujisawa Pharmaceutical Co | CEPHALOSPORANIC ACID DERIVATIVES, THE PROCESS FOR THEIR MANUFACTURING AND THE PHARMACEUTICAL PRODUCT CONTAINING THEM |
EP0010667A1 (en) * | 1978-10-17 | 1980-05-14 | Fujisawa Pharmaceutical Co., Ltd. | Cepham compounds, pharmaceutical compositions containing them and processes for the preparation thereof and of known cephem compounds |
US4474879A (en) * | 1982-11-16 | 1984-10-02 | Eli Lilly And Company | Process for 3-hydroxymethyl cephalosporin sulfones |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3196151A (en) * | 1960-11-08 | 1965-07-20 | Smith Kline French Lab | Derivatives of 7-aminocephalosporanic acid |
US3218318A (en) * | 1962-08-31 | 1965-11-16 | Lilly Co Eli | 7-heterocyclic-substituted-acylamido cephalosporins |
-
1965
- 1965-10-04 US US492911A patent/US3459746A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3196151A (en) * | 1960-11-08 | 1965-07-20 | Smith Kline French Lab | Derivatives of 7-aminocephalosporanic acid |
US3218318A (en) * | 1962-08-31 | 1965-11-16 | Lilly Co Eli | 7-heterocyclic-substituted-acylamido cephalosporins |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3891635A (en) * | 1970-11-06 | 1975-06-24 | Koninklijke Gist Spiritus | 7-{8 3-(Phenyl)-isoxazol-5-yl{9 acetamido-cephalosporanic acids |
US3956288A (en) * | 1973-11-07 | 1976-05-11 | Richardson-Merrell Inc. | 7-[(2,4-Dioxo-1-pyrimidinyl)acylamino]cephalosporin derivatives |
US3956287A (en) * | 1973-11-07 | 1976-05-11 | Richardson-Merrell Inc. | 7-[(2-Oxo-1-pyridinyl)acylamino]cephalosporin derivatives |
US4031085A (en) * | 1974-10-23 | 1977-06-21 | Merck & Co., Inc. | Preparation of 3-hydroxymethyl-7β-aminoadipoyl-7α-methoxy-3-cephem-4-carboxylic acid |
US4122260A (en) * | 1977-10-04 | 1978-10-24 | Yeda Research And Development Co., Ltd. | Cephalosporin derivatives |
US4148998A (en) * | 1977-10-04 | 1979-04-10 | Yeda Research And Development Co., Ltd. | Pyrrole cephalosporin derivatives |
DE2848912A1 (en) * | 1977-11-14 | 1979-05-17 | Fujisawa Pharmaceutical Co | CEPHALOSPORANIC ACID DERIVATIVES, THE PROCESS FOR THEIR MANUFACTURING AND THE PHARMACEUTICAL PRODUCT CONTAINING THEM |
EP0010667A1 (en) * | 1978-10-17 | 1980-05-14 | Fujisawa Pharmaceutical Co., Ltd. | Cepham compounds, pharmaceutical compositions containing them and processes for the preparation thereof and of known cephem compounds |
US4474879A (en) * | 1982-11-16 | 1984-10-02 | Eli Lilly And Company | Process for 3-hydroxymethyl cephalosporin sulfones |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3828037A (en) | Trifluoromethylmercaptoacetamidocephalosporins | |
US3218318A (en) | 7-heterocyclic-substituted-acylamido cephalosporins | |
CH634578A5 (en) | METHOD FOR PRODUCING NEW CEPHALOSPORINE DERIVATIVES. | |
JPS633868B2 (en) | ||
US3459746A (en) | 7 - heteromonocyclic-substituted acylamido derivatives of desacetyl cephalosporanic acid | |
US3335136A (en) | Halophenylmercaptomethyl cephalosporins | |
SU1155159A3 (en) | Method of obtaining cephalosporin derivatives or their salts with alkali metals | |
US4406898A (en) | Oxazole and oxadiazole cephalosporins | |
US3880848A (en) | 7-Trifluorome thylsulfinylacetamido cephalosporins | |
SU847922A3 (en) | Method of preparing d-7-/alpha-(4-oxy-6-methylnicotineamido)-3-(1-methyl)acetamido/-3-(1-methyltetrazol-5-yl)thiomethyl-3-cephem-4-carboxylic acid | |
US4382932A (en) | Isoquinolinium substituted cephalosporins | |
US3719673A (en) | Derivatives of 7-aminocephalosporanic acid | |
US3270009A (en) | Carbocyclic-substituted aliphatic cephalosporins | |
US3222362A (en) | Arylaminoalkyl cephalosporins | |
US3297692A (en) | 7-alkylmercaptoacetamidocephalosporanic acid | |
US4059578A (en) | 7-Substituted mercaptoacetamido cephamycins | |
US3445463A (en) | 3-(cyclic acyl)oxymethyl cephalosporins | |
US3382241A (en) | Certain orally active cephalosporin antibiotics | |
NO142914B (en) | ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPEUTICALLY EFFECTIVE CEPHALOSPORINES | |
US4160830A (en) | Cephalosporins | |
US3884915A (en) | 7-Alkylmercaptoacetamido cephalosporins | |
US3222363A (en) | Carbocycloxyalkyl cephalosporins | |
NO138375B (en) | ANALOGICAL PROCEDURE FOR THE PREPARATION OF THERAPEUTICALLY EFFECTIVE CEPHALOSPORINE DERIVATIVES | |
US3943128A (en) | 7-Trifluoromethylsulfinylacetamido cephalosporins | |
US3929782A (en) | 1,2,4-Oxadiazolonylacetyl cephalosporins |