US20230227503A1 - Polypeptide expressed in the stratum corneum and use thereof - Google Patents
Polypeptide expressed in the stratum corneum and use thereof Download PDFInfo
- Publication number
- US20230227503A1 US20230227503A1 US17/933,502 US202217933502A US2023227503A1 US 20230227503 A1 US20230227503 A1 US 20230227503A1 US 202217933502 A US202217933502 A US 202217933502A US 2023227503 A1 US2023227503 A1 US 2023227503A1
- Authority
- US
- United States
- Prior art keywords
- lce6a
- polypeptide
- seq
- skin
- agents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 126
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 111
- 210000000434 stratum corneum Anatomy 0.000 title claims description 15
- 229920001184 polypeptide Polymers 0.000 title abstract description 102
- 239000012634 fragment Substances 0.000 claims abstract description 44
- 210000002615 epidermis Anatomy 0.000 claims abstract description 24
- 239000002537 cosmetic Substances 0.000 claims abstract description 20
- 230000004888 barrier function Effects 0.000 claims abstract description 9
- 150000001413 amino acids Chemical class 0.000 claims description 46
- 210000003491 skin Anatomy 0.000 claims description 45
- 108060008539 Transglutaminase Proteins 0.000 claims description 21
- 102000003601 transglutaminase Human genes 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- 239000004472 Lysine Substances 0.000 claims description 13
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims description 13
- 230000003014 reinforcing effect Effects 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 3
- 101710091045 Envelope protein Proteins 0.000 claims 1
- 101710188315 Protein X Proteins 0.000 claims 1
- 102100021696 Syncytin-1 Human genes 0.000 claims 1
- 208000027866 inflammatory disease Diseases 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 31
- 102000004169 proteins and genes Human genes 0.000 abstract description 19
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 16
- 230000037365 barrier function of the epidermis Effects 0.000 abstract description 10
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 7
- 230000001225 therapeutic effect Effects 0.000 abstract description 5
- 230000036620 skin dryness Effects 0.000 abstract 1
- 230000003313 weakening effect Effects 0.000 abstract 1
- 101100181435 Homo sapiens LCE6A gene Proteins 0.000 description 61
- 102100024569 Late cornified envelope protein 6A Human genes 0.000 description 61
- 239000000203 mixture Substances 0.000 description 53
- 239000003795 chemical substances by application Substances 0.000 description 38
- 235000001014 amino acid Nutrition 0.000 description 29
- 229940024606 amino acid Drugs 0.000 description 29
- 150000007523 nucleic acids Chemical group 0.000 description 28
- 238000011534 incubation Methods 0.000 description 25
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 24
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 23
- 238000002474 experimental method Methods 0.000 description 22
- 210000002510 keratinocyte Anatomy 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 20
- -1 ε-(γ-glutamyl) lysyl Chemical group 0.000 description 20
- 239000000284 extract Substances 0.000 description 19
- 238000003786 synthesis reaction Methods 0.000 description 19
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 18
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 235000018102 proteins Nutrition 0.000 description 18
- 108020004635 Complementary DNA Proteins 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 239000000843 powder Substances 0.000 description 15
- 230000001580 bacterial effect Effects 0.000 description 14
- 238000010804 cDNA synthesis Methods 0.000 description 13
- 239000002299 complementary DNA Substances 0.000 description 13
- 230000014509 gene expression Effects 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- IGAZHQIYONOHQN-UHFFFAOYSA-N Alexa Fluor 555 Chemical compound C=12C=CC(=N)C(S(O)(=O)=O)=C2OC2=C(S(O)(=O)=O)C(N)=CC=C2C=1C1=CC=C(C(O)=O)C=C1C(O)=O IGAZHQIYONOHQN-UHFFFAOYSA-N 0.000 description 12
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 12
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 12
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 12
- 239000011575 calcium Substances 0.000 description 12
- 229910052791 calcium Inorganic materials 0.000 description 12
- 239000001110 calcium chloride Substances 0.000 description 12
- 229910001628 calcium chloride Inorganic materials 0.000 description 12
- 235000004554 glutamine Nutrition 0.000 description 12
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 11
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 150000002148 esters Chemical class 0.000 description 11
- 238000002372 labelling Methods 0.000 description 11
- 102000039446 nucleic acids Human genes 0.000 description 11
- 108020004707 nucleic acids Proteins 0.000 description 11
- 238000000159 protein binding assay Methods 0.000 description 11
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 10
- 102100038095 Protein-glutamine gamma-glutamyltransferase 2 Human genes 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- MLEBFEHOJICQQS-UHFFFAOYSA-N monodansylcadaverine Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(=O)(=O)NCCCCCN MLEBFEHOJICQQS-UHFFFAOYSA-N 0.000 description 10
- 239000000049 pigment Substances 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 206010013786 Dry skin Diseases 0.000 description 9
- 102100038094 Protein-glutamine gamma-glutamyltransferase E Human genes 0.000 description 9
- 239000007983 Tris buffer Substances 0.000 description 9
- 230000002788 anti-peptide Effects 0.000 description 9
- 238000010367 cloning Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 235000014113 dietary fatty acids Nutrition 0.000 description 9
- 230000004069 differentiation Effects 0.000 description 9
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 9
- 230000037336 dry skin Effects 0.000 description 9
- 238000010828 elution Methods 0.000 description 9
- 239000000194 fatty acid Substances 0.000 description 9
- 229930195729 fatty acid Natural products 0.000 description 9
- 150000004665 fatty acids Chemical class 0.000 description 9
- 239000000945 filler Substances 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 239000002953 phosphate buffered saline Substances 0.000 description 9
- 238000003752 polymerase chain reaction Methods 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 235000019198 oils Nutrition 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 238000001262 western blot Methods 0.000 description 8
- 230000003321 amplification Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 239000006166 lysate Substances 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000013615 primer Substances 0.000 description 7
- 229920002477 rna polymer Polymers 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 150000002191 fatty alcohols Chemical class 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000010166 immunofluorescence Methods 0.000 description 6
- 239000013642 negative control Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 239000013641 positive control Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 235000013311 vegetables Nutrition 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 102000005720 Glutathione transferase Human genes 0.000 description 5
- 108010070675 Glutathione transferase Proteins 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 229960005091 chloramphenicol Drugs 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 230000003902 lesion Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000006224 matting agent Substances 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 235000010755 mineral Nutrition 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 208000017520 skin disease Diseases 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 4
- 102100021587 Embryonic testis differentiation protein homolog A Human genes 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 102100028314 Filaggrin Human genes 0.000 description 4
- 101710088660 Filaggrin Proteins 0.000 description 4
- 101000898120 Homo sapiens Embryonic testis differentiation protein homolog A Proteins 0.000 description 4
- 102400001347 LCE family Human genes 0.000 description 4
- 108700039882 Protein Glutamine gamma Glutamyltransferase 2 Proteins 0.000 description 4
- 101710182788 Protein-glutamine gamma-glutamyltransferase E Proteins 0.000 description 4
- 201000004681 Psoriasis Diseases 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 206010048222 Xerosis Diseases 0.000 description 4
- 230000003187 abdominal effect Effects 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 4
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 229940106189 ceramide Drugs 0.000 description 4
- 150000001783 ceramides Chemical class 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 210000000736 corneocyte Anatomy 0.000 description 4
- 230000006003 cornification Effects 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000000539 dimer Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 4
- 229920002674 hyaluronan Polymers 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 230000004807 localization Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 108040007629 peroxidase activity proteins Proteins 0.000 description 4
- 102000013415 peroxidase activity proteins Human genes 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 230000009759 skin aging Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 235000012222 talc Nutrition 0.000 description 4
- 230000001228 trophic effect Effects 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 244000215068 Acacia senegal Species 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102100035068 Fructosamine-3-kinase Human genes 0.000 description 3
- 229920000084 Gum arabic Polymers 0.000 description 3
- 101001022433 Homo sapiens Fructosamine-3-kinase Proteins 0.000 description 3
- 206010020649 Hyperkeratosis Diseases 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 241000219745 Lupinus Species 0.000 description 3
- 240000003183 Manihot esculenta Species 0.000 description 3
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 3
- 239000004909 Moisturizer Substances 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- YBGZDTIWKVFICR-JLHYYAGUSA-N Octyl 4-methoxycinnamic acid Chemical compound CCCCC(CC)COC(=O)\C=C\C1=CC=C(OC)C=C1 YBGZDTIWKVFICR-JLHYYAGUSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- 244000273928 Zingiber officinale Species 0.000 description 3
- 235000006886 Zingiber officinale Nutrition 0.000 description 3
- 235000010489 acacia gum Nutrition 0.000 description 3
- 230000021736 acetylation Effects 0.000 description 3
- 238000006640 acetylation reaction Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- BQMNFPBUAQPINY-UHFFFAOYSA-N azane;2-methyl-2-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound [NH4+].[O-]S(=O)(=O)CC(C)(C)NC(=O)C=C BQMNFPBUAQPINY-UHFFFAOYSA-N 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 239000007844 bleaching agent Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 235000019197 fats Nutrition 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000003349 gelling agent Substances 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 235000008397 ginger Nutrition 0.000 description 3
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 3
- 229960003160 hyaluronic acid Drugs 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 230000000887 hydrating effect Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 238000003364 immunohistochemistry Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000012160 loading buffer Substances 0.000 description 3
- 235000009973 maize Nutrition 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000004089 microcirculation Effects 0.000 description 3
- 230000001333 moisturizer Effects 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 229960001679 octinoxate Drugs 0.000 description 3
- 239000002304 perfume Substances 0.000 description 3
- 239000000419 plant extract Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 230000004481 post-translational protein modification Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 230000035807 sensation Effects 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 239000011537 solubilization buffer Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- 235000010384 tocopherol Nutrition 0.000 description 3
- 229960001295 tocopherol Drugs 0.000 description 3
- 229930003799 tocopherol Natural products 0.000 description 3
- 239000011732 tocopherol Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- OSCJHTSDLYVCQC-UHFFFAOYSA-N 2-ethylhexyl 4-[[4-[4-(tert-butylcarbamoyl)anilino]-6-[4-(2-ethylhexoxycarbonyl)anilino]-1,3,5-triazin-2-yl]amino]benzoate Chemical compound C1=CC(C(=O)OCC(CC)CCCC)=CC=C1NC1=NC(NC=2C=CC(=CC=2)C(=O)NC(C)(C)C)=NC(NC=2C=CC(=CC=2)C(=O)OCC(CC)CCCC)=N1 OSCJHTSDLYVCQC-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- DHFUFHYLYSCIJY-WSGIOKLISA-N CCCCCCCCCCCCCCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O Chemical compound CCCCCCCCCCCCCCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O DHFUFHYLYSCIJY-WSGIOKLISA-N 0.000 description 2
- 235000013912 Ceratonia siliqua Nutrition 0.000 description 2
- 240000008886 Ceratonia siliqua Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229920002683 Glycosaminoglycan Polymers 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 206010021197 Ichthyoses Diseases 0.000 description 2
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- MLSJBGYKDYSOAE-DCWMUDTNSA-N L-Ascorbic acid-2-glucoside Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)=C1O MLSJBGYKDYSOAE-DCWMUDTNSA-N 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 102000016943 Muramidase Human genes 0.000 description 2
- 108010014251 Muramidase Proteins 0.000 description 2
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 2
- 240000004713 Pisum sativum Species 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 102000016611 Proteoglycans Human genes 0.000 description 2
- 108010067787 Proteoglycans Proteins 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 206010040844 Skin exfoliation Diseases 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 241000589499 Thermus thermophilus Species 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 208000014306 Trophic disease Diseases 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229960000458 allantoin Drugs 0.000 description 2
- 229940061720 alpha hydroxy acid Drugs 0.000 description 2
- 150000001280 alpha hydroxy acids Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000002260 anti-inflammatory agent Substances 0.000 description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 229940067599 ascorbyl glucoside Drugs 0.000 description 2
- 125000003289 ascorbyl group Chemical class [H]O[C@@]([H])(C([H])([H])O*)[C@@]1([H])OC(=O)C(O*)=C1O* 0.000 description 2
- 239000003212 astringent agent Substances 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 229920001525 carrageenan Polymers 0.000 description 2
- 235000010418 carrageenan Nutrition 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 210000004207 dermis Anatomy 0.000 description 2
- 230000035618 desquamation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000012149 elution buffer Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 235000001785 ferulic acid Nutrition 0.000 description 2
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 description 2
- 229940114124 ferulic acid Drugs 0.000 description 2
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- BJRNKVDFDLYUGJ-RMPHRYRLSA-N hydroquinone O-beta-D-glucopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=C(O)C=C1 BJRNKVDFDLYUGJ-RMPHRYRLSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 206010021198 ichthyosis Diseases 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000003410 keratolytic agent Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 229940069445 licorice extract Drugs 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 235000010335 lysozyme Nutrition 0.000 description 2
- 239000004325 lysozyme Substances 0.000 description 2
- 229960000274 lysozyme Drugs 0.000 description 2
- 229940078752 magnesium ascorbyl phosphate Drugs 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229940068041 phytic acid Drugs 0.000 description 2
- 235000002949 phytic acid Nutrition 0.000 description 2
- 239000000467 phytic acid Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009465 prokaryotic expression Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000002731 protein assay Methods 0.000 description 2
- 230000001185 psoriatic effect Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000003352 sequestering agent Substances 0.000 description 2
- 235000004400 serine Nutrition 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- YRWWOAFMPXPHEJ-OFBPEYICSA-K sodium L-ascorbic acid 2-phosphate Chemical compound [Na+].[Na+].[Na+].OC[C@H](O)[C@H]1OC(=O)C(OP([O-])([O-])=O)=C1[O-] YRWWOAFMPXPHEJ-OFBPEYICSA-K 0.000 description 2
- 229940048058 sodium ascorbyl phosphate Drugs 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 229940075554 sorbate Drugs 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 210000000498 stratum granulosum Anatomy 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 description 2
- HTJNEBVCZXHBNJ-XCTPRCOBSA-H trimagnesium;(2r)-2-[(1s)-1,2-dihydroxyethyl]-3,4-dihydroxy-2h-furan-5-one;diphosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.OC[C@H](O)[C@H]1OC(=O)C(O)=C1O HTJNEBVCZXHBNJ-XCTPRCOBSA-H 0.000 description 2
- 239000012137 tryptone Substances 0.000 description 2
- 230000001173 tumoral effect Effects 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- WTVHAMTYZJGJLJ-UHFFFAOYSA-N (+)-(4S,8R)-8-epi-beta-bisabolol Natural products CC(C)=CCCC(C)C1(O)CCC(C)=CC1 WTVHAMTYZJGJLJ-UHFFFAOYSA-N 0.000 description 1
- RGZSQWQPBWRIAQ-CABCVRRESA-N (-)-alpha-Bisabolol Chemical compound CC(C)=CCC[C@](C)(O)[C@H]1CCC(C)=CC1 RGZSQWQPBWRIAQ-CABCVRRESA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 1
- WSGCRSMLXFHGRM-DEVHWETNSA-N (2s)-2-[[(2s)-6-amino-2-[[(2s,3r)-2-[[(2s,3r)-2-[[(2s)-6-amino-2-(hexadecanoylamino)hexanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxybutanoyl]amino]hexanoyl]amino]-3-hydroxypropanoic acid Chemical group CCCCCCCCCCCCCCCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O WSGCRSMLXFHGRM-DEVHWETNSA-N 0.000 description 1
- WCDDVEOXEIYWFB-VXORFPGASA-N (2s,3s,4r,5r,6r)-3-[(2s,3r,5s,6r)-3-acetamido-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1C[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O)[C@H](O)[C@H]1O WCDDVEOXEIYWFB-VXORFPGASA-N 0.000 description 1
- OIQXFRANQVWXJF-QBFSEMIESA-N (2z)-2-benzylidene-4,7,7-trimethylbicyclo[2.2.1]heptan-3-one Chemical class CC1(C)C2CCC1(C)C(=O)\C2=C/C1=CC=CC=C1 OIQXFRANQVWXJF-QBFSEMIESA-N 0.000 description 1
- WSWCOQWTEOXDQX-MQQKCMAXSA-M (E,E)-sorbate Chemical compound C\C=C\C=C\C([O-])=O WSWCOQWTEOXDQX-MQQKCMAXSA-M 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- WIIZWVCIJKGZOK-IUCAKERBSA-N 2,2-dichloro-n-[(1s,2s)-1,3-dihydroxy-1-(4-nitrophenyl)propan-2-yl]acetamide Chemical compound ClC(Cl)C(=O)N[C@@H](CO)[C@@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-IUCAKERBSA-N 0.000 description 1
- ZSZRUEAFVQITHH-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CC(=C)C(=O)OCCOP([O-])(=O)OCC[N+](C)(C)C ZSZRUEAFVQITHH-UHFFFAOYSA-N 0.000 description 1
- IVLXQGJVBGMLRR-UHFFFAOYSA-N 2-aminoacetic acid;hydron;chloride Chemical compound Cl.NCC(O)=O IVLXQGJVBGMLRR-UHFFFAOYSA-N 0.000 description 1
- TYYHDKOVFSVWON-UHFFFAOYSA-N 2-butyl-2-methoxy-1,3-diphenylpropane-1,3-dione Chemical compound C=1C=CC=CC=1C(=O)C(OC)(CCCC)C(=O)C1=CC=CC=C1 TYYHDKOVFSVWON-UHFFFAOYSA-N 0.000 description 1
- GTJOHISYCKPIMT-UHFFFAOYSA-N 2-methylundecane Chemical compound CCCCCCCCCC(C)C GTJOHISYCKPIMT-UHFFFAOYSA-N 0.000 description 1
- DWYHDSLIWMUSOO-UHFFFAOYSA-N 2-phenyl-1h-benzimidazole Chemical class C1=CC=CC=C1C1=NC2=CC=CC=C2N1 DWYHDSLIWMUSOO-UHFFFAOYSA-N 0.000 description 1
- MSPJNHHBNOLHOC-UHFFFAOYSA-N 3,3-dimethylcyclopropane-1,2-dicarboxylic acid Chemical compound CC1(C)C(C(O)=O)C1C(O)=O MSPJNHHBNOLHOC-UHFFFAOYSA-N 0.000 description 1
- KZMRYBLIGYQPPP-UHFFFAOYSA-N 3-[[[4-[(2-chlorophenyl)-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]cyclohexa-2,5-dien-1-ylidene]methyl]phenyl]-ethylazaniumyl]methyl]benzenesulfonate Chemical compound C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)Cl)C=CC=1[NH+](CC)CC1=CC=CC(S([O-])(=O)=O)=C1 KZMRYBLIGYQPPP-UHFFFAOYSA-N 0.000 description 1
- GNKZMNRKLCTJAY-UHFFFAOYSA-N 4'-Methylacetophenone Chemical compound CC(=O)C1=CC=C(C)C=C1 GNKZMNRKLCTJAY-UHFFFAOYSA-N 0.000 description 1
- AXDJCCTWPBKUKL-UHFFFAOYSA-N 4-[(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]aniline;hydron;chloride Chemical compound Cl.C1=CC(=N)C(C)=CC1=C(C=1C=CC(N)=CC=1)C1=CC=C(N)C=C1 AXDJCCTWPBKUKL-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- IUWVYVOQTFVXKL-UHFFFAOYSA-N 4-decyl-1,3-oxazolidin-2-one Chemical compound CCCCCCCCCCC1COC(=O)N1 IUWVYVOQTFVXKL-UHFFFAOYSA-N 0.000 description 1
- BVNWQSXXRMNYKH-UHFFFAOYSA-N 4-phenyl-2h-benzotriazole Chemical class C1=CC=CC=C1C1=CC=CC2=C1NN=N2 BVNWQSXXRMNYKH-UHFFFAOYSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- XDGPRIQAERKLFM-UHFFFAOYSA-N 5-oxohept-6-ene-3-sulfonic acid Chemical compound CCC(S(O)(=O)=O)CC(=O)C=C XDGPRIQAERKLFM-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 241000157282 Aesculus Species 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 102100022712 Alpha-1-antitrypsin Human genes 0.000 description 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 1
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 244000125300 Argania sideroxylon Species 0.000 description 1
- 235000016108 Argania sideroxylon Nutrition 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 200000000007 Arterial disease Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 102100027839 Aryl hydrocarbon receptor nuclear translocator 2 Human genes 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000195940 Bryophyta Species 0.000 description 1
- 241000565319 Butea monosperma Species 0.000 description 1
- 244000197813 Camelina sativa Species 0.000 description 1
- 235000014595 Camelina sativa Nutrition 0.000 description 1
- 240000001548 Camellia japonica Species 0.000 description 1
- 235000006467 Camellia japonica Nutrition 0.000 description 1
- 240000007436 Cananga odorata Species 0.000 description 1
- 240000005209 Canarium indicum Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 235000014037 Castanea sativa Nutrition 0.000 description 1
- 240000007857 Castanea sativa Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- DMKDRSIXSDKEFQ-KDXMTYKHSA-N Cephaline Natural products CCCCCCCCCCCCCCCCCOC(=O)C[C@@H](COP(=O)(O)CCN)C(=O)OCCCCCCCC=CCCCCCCCC DMKDRSIXSDKEFQ-KDXMTYKHSA-N 0.000 description 1
- 102100035437 Ceramide transfer protein Human genes 0.000 description 1
- 101710119334 Ceramide transfer protein Proteins 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 241000206575 Chondrus crispus Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241001491621 Corallina officinalis Species 0.000 description 1
- 240000009226 Corylus americana Species 0.000 description 1
- 235000001543 Corylus americana Nutrition 0.000 description 1
- 235000007466 Corylus avellana Nutrition 0.000 description 1
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- JDRSMPFHFNXQRB-CMTNHCDUSA-N Decyl beta-D-threo-hexopyranoside Chemical compound CCCCCCCCCCO[C@@H]1O[C@H](CO)C(O)[C@H](O)C1O JDRSMPFHFNXQRB-CMTNHCDUSA-N 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- AFSDNFLWKVMVRB-UHFFFAOYSA-N Ellagic acid Chemical compound OC1=C(O)C(OC2=O)=C3C4=C2C=C(O)C(O)=C4OC(=O)C3=C1 AFSDNFLWKVMVRB-UHFFFAOYSA-N 0.000 description 1
- ATJXMQHAMYVHRX-CPCISQLKSA-N Ellagic acid Natural products OC1=C(O)[C@H]2OC(=O)c3cc(O)c(O)c4OC(=O)C(=C1)[C@H]2c34 ATJXMQHAMYVHRX-CPCISQLKSA-N 0.000 description 1
- 229920002079 Ellagic acid Polymers 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 1
- 244000303040 Glycyrrhiza glabra Species 0.000 description 1
- 241000208690 Hamamelis Species 0.000 description 1
- 235000005206 Hibiscus Nutrition 0.000 description 1
- 235000007185 Hibiscus lunariifolius Nutrition 0.000 description 1
- 244000284380 Hibiscus rosa sinensis Species 0.000 description 1
- 101000823116 Homo sapiens Alpha-1-antitrypsin Proteins 0.000 description 1
- 101000768838 Homo sapiens Aryl hydrocarbon receptor nuclear translocator 2 Proteins 0.000 description 1
- 101001010513 Homo sapiens Leukocyte elastase inhibitor Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 206010020648 Hyperkeratoses Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- SGVYKUFIHHTIFL-UHFFFAOYSA-N Isobutylhexyl Natural products CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 208000001126 Keratosis Diseases 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 150000000996 L-ascorbic acids Chemical class 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 101150090436 LCE6A gene Proteins 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 1
- 244000043158 Lens esculenta Species 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 102100031784 Loricrin Human genes 0.000 description 1
- 235000019493 Macadamia oil Nutrition 0.000 description 1
- 108010091175 Matriptase Proteins 0.000 description 1
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 1
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 1
- 235000017822 Melilotus officinalis Nutrition 0.000 description 1
- 240000000366 Melilotus officinalis Species 0.000 description 1
- 244000179886 Moringa oleifera Species 0.000 description 1
- 235000011347 Moringa oleifera Nutrition 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 240000004371 Panax ginseng Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 206010051246 Photodermatosis Diseases 0.000 description 1
- 208000012641 Pigmentation disease Diseases 0.000 description 1
- 235000016067 Polianthes tuberosa Nutrition 0.000 description 1
- 244000014047 Polianthes tuberosa Species 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920000289 Polyquaternium Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 201000001947 Reflex Sympathetic Dystrophy Diseases 0.000 description 1
- QNVSXXGDAPORNA-UHFFFAOYSA-N Resveratrol Natural products OC1=CC=CC(C=CC=2C=C(O)C(O)=CC=2)=C1 QNVSXXGDAPORNA-UHFFFAOYSA-N 0.000 description 1
- 241001165494 Rhodiola Species 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000605385 Ruscus Species 0.000 description 1
- 244000082988 Secale cereale Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- 206010040799 Skin atrophy Diseases 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical class [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- 102100037942 Suppressor of tumorigenicity 14 protein Human genes 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 102100024547 Tensin-1 Human genes 0.000 description 1
- 101710100613 Tensin-1 Proteins 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- GYDJEQRTZSCIOI-UHFFFAOYSA-N Tranexamic acid Chemical class NCC1CCC(C(O)=O)CC1 GYDJEQRTZSCIOI-UHFFFAOYSA-N 0.000 description 1
- LUKBXSAWLPMMSZ-OWOJBTEDSA-N Trans-resveratrol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC(O)=CC(O)=C1 LUKBXSAWLPMMSZ-OWOJBTEDSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 235000004240 Triticum spelta Nutrition 0.000 description 1
- 240000003834 Triticum spelta Species 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 206010046996 Varicose vein Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229930003537 Vitamin B3 Natural products 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 241001135917 Vitellaria paradoxa Species 0.000 description 1
- 235000013030 Voandzeia subterranea Nutrition 0.000 description 1
- 244000170226 Voandzeia subterranea Species 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- NWGKJDSIEKMTRX-BFWOXRRGSA-N [(2r)-2-[(3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)C1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-BFWOXRRGSA-N 0.000 description 1
- OEWBEINAQKIQLZ-CMRBMDBWSA-N [(2s)-2-[(2r)-3,4-bis(2-hexyldecanoyloxy)-5-oxo-2h-furan-2-yl]-2-(2-hexyldecanoyloxy)ethyl] 2-hexyldecanoate Chemical compound CCCCCCCCC(CCCCCC)C(=O)OC[C@H](OC(=O)C(CCCCCC)CCCCCCCC)[C@H]1OC(=O)C(OC(=O)C(CCCCCC)CCCCCCCC)=C1OC(=O)C(CCCCCC)CCCCCCCC OEWBEINAQKIQLZ-CMRBMDBWSA-N 0.000 description 1
- SZYSLWCAWVWFLT-UTGHZIEOSA-N [(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxolan-2-yl]methyl octadecanoate Chemical compound O([C@@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@]1(COC(=O)CCCCCCCCCCCCCCCCC)O[C@H](CO)[C@@H](O)[C@@H]1O SZYSLWCAWVWFLT-UTGHZIEOSA-N 0.000 description 1
- 230000037386 abnormal desquamation Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 208000030961 allergic reaction Diseases 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- RGZSQWQPBWRIAQ-LSDHHAIUSA-N alpha-Bisabolol Natural products CC(C)=CCC[C@@](C)(O)[C@@H]1CCC(C)=CC1 RGZSQWQPBWRIAQ-LSDHHAIUSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012735 amaranth Nutrition 0.000 description 1
- 239000004178 amaranth Substances 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 229960000271 arbutin Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 229960005193 avobenzone Drugs 0.000 description 1
- UHHXUPJJDHEMGX-UHFFFAOYSA-K azanium;manganese(3+);phosphonato phosphate Chemical compound [NH4+].[Mn+3].[O-]P([O-])(=O)OP([O-])([O-])=O UHHXUPJJDHEMGX-UHFFFAOYSA-K 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229940110830 beheneth-25 methacrylate Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 150000001277 beta hydroxy acids Chemical class 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 239000012148 binding buffer Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229940036350 bisabolol Drugs 0.000 description 1
- HHGZABIIYIWLGA-UHFFFAOYSA-N bisabolol Natural products CC1CCC(C(C)(O)CCC=C(C)C)CC1 HHGZABIIYIWLGA-UHFFFAOYSA-N 0.000 description 1
- 229940073609 bismuth oxychloride Drugs 0.000 description 1
- 239000010473 blackcurrant seed oil Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000012730 carminic acid Nutrition 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 150000001851 cinnamic acid derivatives Chemical class 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 108010006161 conchiolin Proteins 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000003581 cosmetic carrier Substances 0.000 description 1
- 239000008406 cosmetic ingredient Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229940073499 decyl glucoside Drugs 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000022811 deglycosylation Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- NZZIMKJIVMHWJC-UHFFFAOYSA-N dibenzoylmethane Chemical class C=1C=CC=CC=1C(=O)CC(=O)C1=CC=CC=C1 NZZIMKJIVMHWJC-UHFFFAOYSA-N 0.000 description 1
- PKPOVTYZGGYDIJ-UHFFFAOYSA-N dioctyl carbonate Chemical compound CCCCCCCCOC(=O)OCCCCCCCC PKPOVTYZGGYDIJ-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000004862 elemi Substances 0.000 description 1
- 229960002852 ellagic acid Drugs 0.000 description 1
- 235000004132 ellagic acid Nutrition 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 150000002193 fatty amides Chemical class 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 229960004279 formaldehyde Drugs 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical class OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 150000002305 glucosylceramides Chemical class 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 229940075529 glyceryl stearate Drugs 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 229960004949 glycyrrhizic acid Drugs 0.000 description 1
- 235000019410 glycyrrhizin Nutrition 0.000 description 1
- LPLVUJXQOOQHMX-QWBHMCJMSA-N glycyrrhizinic acid Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O LPLVUJXQOOQHMX-QWBHMCJMSA-N 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 229940005740 hexametaphosphate Drugs 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 235000010181 horse chestnut Nutrition 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 1
- 229940099552 hyaluronan Drugs 0.000 description 1
- 229940014041 hyaluronate Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 1
- 239000003230 hygroscopic agent Substances 0.000 description 1
- 230000001329 hyperkeratotic effect Effects 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 102000007236 involucrin Human genes 0.000 description 1
- 108010033564 involucrin Proteins 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- VKPSKYDESGTTFR-UHFFFAOYSA-N isododecane Natural products CC(C)(C)CC(C)CC(C)(C)C VKPSKYDESGTTFR-UHFFFAOYSA-N 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- BEJNERDRQOWKJM-UHFFFAOYSA-N kojic acid Chemical compound OCC1=CC(=O)C(O)=CO1 BEJNERDRQOWKJM-UHFFFAOYSA-N 0.000 description 1
- 229960004705 kojic acid Drugs 0.000 description 1
- WZNJWVWKTVETCG-UHFFFAOYSA-N kojic acid Natural products OC(=O)C(N)CN1C=CC(=O)C(O)=C1 WZNJWVWKTVETCG-UHFFFAOYSA-N 0.000 description 1
- 210000001821 langerhans cell Anatomy 0.000 description 1
- 229940094522 laponite Drugs 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- PYIDGJJWBIBVIA-UYTYNIKBSA-N lauryl glucoside Chemical compound CCCCCCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PYIDGJJWBIBVIA-UYTYNIKBSA-N 0.000 description 1
- 229940048848 lauryl glucoside Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- JDWYRSDDJVCWPB-LURJTMIESA-N leucodopachrome Chemical compound OC1=C(O)C=C2N[C@H](C(=O)O)CC2=C1 JDWYRSDDJVCWPB-LURJTMIESA-N 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 description 1
- 235000019136 lipoic acid Nutrition 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 1
- 108010079309 loricrin Proteins 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229960005375 lutein Drugs 0.000 description 1
- KBPHJBAIARWVSC-RGZFRNHPSA-N lutein Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C KBPHJBAIARWVSC-RGZFRNHPSA-N 0.000 description 1
- 239000010469 macadamia oil Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- FAARLWTXUUQFSN-UHFFFAOYSA-N methylellagic acid Natural products O1C(=O)C2=CC(O)=C(O)C3=C2C2=C1C(OC)=C(O)C=C2C(=O)O3 FAARLWTXUUQFSN-UHFFFAOYSA-N 0.000 description 1
- ZJBHFQKJEBGFNL-UHFFFAOYSA-N methylsilanetriol Chemical compound C[Si](O)(O)O ZJBHFQKJEBGFNL-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- VYQNWZOUAUKGHI-UHFFFAOYSA-N monobenzone Chemical compound C1=CC(O)=CC=C1OCC1=CC=CC=C1 VYQNWZOUAUKGHI-UHFFFAOYSA-N 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 235000011929 mousse Nutrition 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 239000007908 nanoemulsion Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical class C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical class CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- BARWIPMJPCRCTP-CLFAGFIQSA-N oleyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCCOC(=O)CCCCCCC\C=C/CCCCCCCC BARWIPMJPCRCTP-CLFAGFIQSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920006136 organohydrogenpolysiloxane Polymers 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- BJRNKVDFDLYUGJ-UHFFFAOYSA-N p-hydroxyphenyl beta-D-alloside Natural products OC1C(O)C(O)C(CO)OC1OC1=CC=C(O)C=C1 BJRNKVDFDLYUGJ-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000026792 palmitoylation Effects 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 229940055726 pantothenic acid Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007119 pathological manifestation Effects 0.000 description 1
- 229940100460 peg-100 stearate Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000008845 photoaging Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 235000003784 poor nutrition Nutrition 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 229940079889 pyrrolidonecarboxylic acid Drugs 0.000 description 1
- 235000012752 quinoline yellow Nutrition 0.000 description 1
- 239000004172 quinoline yellow Substances 0.000 description 1
- 229940051201 quinoline yellow Drugs 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 229960001755 resorcinol Drugs 0.000 description 1
- 235000021283 resveratrol Nutrition 0.000 description 1
- 229940016667 resveratrol Drugs 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229940016590 sarkosyl Drugs 0.000 description 1
- 108700004121 sarkosyl Proteins 0.000 description 1
- 210000002374 sebum Anatomy 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 229940057910 shea butter Drugs 0.000 description 1
- 150000004819 silanols Chemical class 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229940119463 sunflower seed extract Drugs 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 235000012756 tartrazine Nutrition 0.000 description 1
- 239000004149 tartrazine Substances 0.000 description 1
- UJMBCXLDXJUMFB-GLCFPVLVSA-K tartrazine Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=NN(C=2C=CC(=CC=2)S([O-])(=O)=O)C(=O)C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 UJMBCXLDXJUMFB-GLCFPVLVSA-K 0.000 description 1
- 229960000943 tartrazine Drugs 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229960002663 thioctic acid Drugs 0.000 description 1
- 238000006177 thiolation reaction Methods 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 229940042585 tocopherol acetate Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- GYDJEQRTZSCIOI-LJGSYFOKSA-N tranexamic acid Chemical compound NC[C@H]1CC[C@H](C(O)=O)CC1 GYDJEQRTZSCIOI-LJGSYFOKSA-N 0.000 description 1
- 229960000401 tranexamic acid Drugs 0.000 description 1
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 235000002374 tyrosine Nutrition 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 208000027185 varicose disease Diseases 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 235000010374 vitamin B1 Nutrition 0.000 description 1
- 239000011691 vitamin B1 Substances 0.000 description 1
- 235000019164 vitamin B2 Nutrition 0.000 description 1
- 239000011716 vitamin B2 Substances 0.000 description 1
- 235000019160 vitamin B3 Nutrition 0.000 description 1
- 239000011708 vitamin B3 Substances 0.000 description 1
- 235000019158 vitamin B6 Nutrition 0.000 description 1
- 239000011726 vitamin B6 Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- FJHBOVDFOQMZRV-XQIHNALSSA-N xanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C=C(C)C(O)CC2(C)C FJHBOVDFOQMZRV-XQIHNALSSA-N 0.000 description 1
- 235000008210 xanthophylls Nutrition 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 229960001296 zinc oxide Drugs 0.000 description 1
- 239000001841 zingiber officinale Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/64—Proteins; Peptides; Derivatives or degradation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/007—Preparations for dry skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/08—Anti-ageing preparations
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to a novel polypeptide of the stratum corneum, designated LCE6A hereinafter, as well as to applications thereof, both cosmetic and therapeutic.
- the skin consists mainly of three layers, namely, starting from the outermost: epidermis, dermis and hypodermis.
- the epidermis consists in particular of keratinocytes (primarily), melanocytes (involved in skin pigmentation) and Langerhans cells. Its function is to protect the body from the external environment and ensure its integrity, and notably to block the penetration of microorganisms or of chemical substances, and prevent evaporation of the water contained in the skin.
- the keratinocytes undergo a continuous process of directed maturation, in which the keratinocytes located in the basal layer of the epidermis form, in the terminal stage of their differentiation, corneocytes, which are cells resulting from cornification (a particular form of apoptosis).
- corneocytes are very inter-cohesive, fully keratinized in the form of cornified envelopes and surrounded by an extracellular medium that is very rich in lipids.
- the constituent elements of these cells, as well as the enzymes that regulate their detachment to permit desquamation, are mainly synthesized by the keratinocytes of the underlying cellular layer, the stratum granulosum or granular layer.
- the granular keratinocytes correspond to the last nucleated stage of keratinocyte differentiation, before cornification, which is accompanied by nuclear lysis with stoppage of all activity of transcription and translation. It is at this stage that there is culmination of the production of the precursors of the cornified envelope and other specific cellular constituents indispensable to the barrier function of the epidermis such as ceramides, cholesterol and free fatty acids.
- the cornified envelope formed during cornification replaces the lipid bilayer of granular keratinocytes. It represents 7% of the dry weight of the stratum corneum.
- Epidermal differentiation is a complex phenomenon requiring fine regulation of the expression of the genes permitting manufacture of the various constituents of the keratinocytes and then of the corneocytes. A great many transcription factors are involved in this process.
- the genes of numerous proteins of the cornified envelope are localized within one and the same cluster of 2.5 Mb called the “Epidermal Differentiation Complex” (EDC) in position 1q21.3.
- EDC Epidermal Differentiation Complex
- the EDC comprises more than 50 different genes, expressed principally in the epidermis. Most of the genes coding for the structural proteins necessary for terminal differentiation, such as loricrin, filaggrin and involucrin, are found there.
- the EDC also contains several families of genes, at least 18 of which code for the late proteins of the Late Cornified Envelope (LCE) (Marshall et al. 2001, Differentially expressed late constituents of the epidermal cornified envelope. Proc Natl Acad Sci USA. 98: 13031-6).
- LCE Late Cornified Envelope
- these proteins of the LCE family are incorporated in the cornified envelope owing to the action of transglutaminases, which establish an ⁇ -( ⁇ -glutamyl) lysyl linkage between a donor glutamine residue and an acceptor amine group, in a calcium-dependent manner.
- the barrier function of the epidermis may be disturbed in certain climatic conditions (under the effect of cold and/or wind, for example); under the effect of stress or fatigue; under the effect of certain chemical factors (pollution, ultraviolet radiation, alcohol, irritating soaps, domestic cleaning products, detergents, etc.).
- hyperkeratosis can occur on all anatomic skin areas and in very varied clinical contexts. Its underlying physiopathology and its causes are varied. As examples we may mention: xerosis (or dry skin), ichthyoses, psoriasis, certain benign or malignant tumoral lesions, reactive hyperkeratoses. Conversely, certain pathological manifestations involve thinning of the epidermis and especially of the stratum corneum, which is reflected in excessive fragility of the skin.
- trophic skin disorders of the lower limbs in patients with vascular disorders can occur in various anatomical regions, its cause is variable and it can be constitutional or acquired.
- trophic skin disorders of the lower limbs in patients with vascular disorders varices, arteriopathies (diabetes, arteriosclerosis, etc.), trophic skin disorders in the context of an algodystrophic syndrome, trophic disorders following abnormal healing.
- the barrier function of the epidermis may also be disturbed during aging.
- older subjects, and notably those over 50 years of age are often found to have a xerosis or a dryness of the mucosae, linked to a decrease in secretion of sebum, hormonal changes or to slowing of the flow of water through the epidermis.
- These disturbances of the barrier of the epidermis cause a decrease in the amount of organized water, a desynchronization of the synthesis or a change in the structure and/or composition of the bilayers of the granular layer.
- compositions containing hygroscopic agents, such as sugars or polyols, or urea and lactic acid (components of the NMF, Natural Moisturizer Factor) intended to capture the water present in the skin and thus block its evaporation.
- hygroscopic agents such as sugars or polyols, or urea and lactic acid (components of the NMF, Natural Moisturizer Factor) intended to capture the water present in the skin and thus block its evaporation.
- urea and lactic acid components of the NMF, Natural Moisturizer Factor
- compositions frequently incorporate active ingredients acting on one or more of the various biological targets involved either in the processes of regeneration of the skin, in particular in the differentiation of the keratinocytes, synthesis of the epidermal lipids and cohesion of the corneocytes, or in the endogenous synthesis of constituents of the natural moisturizer factor (NMF) of the skin, in particular in the synthesis of proteoglycans.
- NMF natural moisturizer factor
- LCE Late Cornified Envelope
- the polypeptide sequence corresponding to LCE6A displays little homology with the sequences of the other proteins of this same family and constitutes a new group among the 5 groups currently known in the LCE family.
- the polypeptide sequence of the LCE6A protein is of 80 amino acids. It contains 8 glutamine residues and 6 lysine residues.
- the polypeptide sequence of the LCE6A protein is of 80 amino acids. It contains 8 glutamine residues and 6 lysine residues.
- a panel of 17 human complementary DNAs of healthy tissues or organs (heart, brain, placenta, lung, liver, muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, colon, leukocytes, epidermis), expression of the LCE6A gene was only found in the epidermis.
- the present invention relates to a natural or synthetic isolated polypeptide, said polypeptide belonging to the family of late proteins of the cornified envelope (LCE), said polypeptide being selected from:
- the present invention relates to a cosmetic or nontherapeutic use, of an effective amount:
- the present invention also relates to the use:
- the present invention also relates to one of the polypeptides described above for use for preventing and/or treating the aforementioned disorders.
- the present invention also relates to a cosmetic or pharmaceutical composition
- a cosmetic or pharmaceutical composition comprising, in a physiologically acceptable medium, at least one natural or synthetic isolated polypeptide, said polypeptide comprising at least the amino acid sequence represented by SEQ ID NO: 2, or a fragment of the latter, or an analog of SEQ ID NO: 2 or of one of its fragments, said fragments and analogs having at least one glutamine (Gln)-lysine (Lys) domain.
- the present invention also relates to an isolated polynucleotide comprising at least the sequence SEQ ID NO: 1, said polynucleotide coding for a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2, a fragment of SEQ ID NO: 1, or an analog of SEQ ID NO: 1 or of one of its fragments.
- FIG. 1 Represents in vitro crosslinking binding assay with peptide PEVQKG (SEQ ID NO: 10), having more than 80% homology with peptide PEVQKP (SEQ ID NO: 15) of LCE6A and one glutamine (Gln, Q)-Lysine (Lys, K) domain.
- “Reinforcing the barrier function of the skin” means ensuring that the barrier function of the skin is maintained at a minimum level of effectiveness corresponding to its normal level of effectiveness, i.e. the level at which it performs its function of protecting the body.
- “Signs of dry skin” means all the changes in the outward appearance of the skin due notably to dehydration of the epidermis, such as dull, rough, nonsilky, reddish and/or scaly appearance, as well as loss of flexibility and a decrease in thickness of the skin.
- the signs of dry skin include the sensations associated with the phenomenon of dryness, such as itching, tingling and/or tightness, which can lead to the development of actual disorders, such as hypersensitivity, skin atrophy, atopic dermatitides or winter xeroses.
- Preventing and/or treating the signs of dry skin consequently means reinforcing, preserving and/or restoring the epidermal barrier, notably its protective or regulatory function, improving and/or reinforcing the cellular cohesion of the epidermis, increasing epidermal resistance to aggressive agents, improving and/or reinforcing the structure of the epidermis, increasing its thickness, and/or guaranteeing the integrity of the skin.
- Preventing and/or treating the signs of skin aging preferably means light-induced aging or photo-aging.
- “Signs of skin aging” means all the changes of the outward appearance of the skin due to aging, for example wrinkles and lines, withered skin, soft skin, thin skin, lack of elasticity and/or firmness of the skin, dull skin without radiance.
- Effective amount in the sense of the present invention, means the minimum amount necessary for observing the expected effect, namely a cosmetic effect or a therapeutic effect, it being understood that the effective amounts required for obtaining a cosmetic effect or a therapeutic effect may be identical or different, depending on circumstances.
- Trophobic skin disorders means disorders that are notably of vascular origin, abnormalities of the skin (epidermis, dermis and hypodermis) or lesions caused by microcirculatory insufficiency of arterial or venous origin. They are called trophic disorders because they result from poor nutrition of the skin, which is poorly perfused.
- Polypeptide means a molecule comprising a linear chain of amino acids that are joined to one another by peptide bonds.
- polypeptide will also be used for denoting a protein or a peptide.
- polypeptides according to the invention have a length less than or equal to 80 amino acids.
- the polypeptide consists of 4 to 20, more preferably 7 to 15 amino acids.
- this polypeptide must have at least one glutamine (Q, Gln)-lysine (K, Lys) domain so that it can serve as a substrate for the transglutaminases.
- the polypeptide is selected from the amino acid sequence SEQ ID NO: 2, the fragments of SEQ ID NO: 2 and the analogs of SEQ ID NO: 2 or of its fragments, said fragments and analogs having at least one glutamine (Gln)-lysine (Lys) domain.
- analogs of SEQ ID NO: 2 fragments are analogs of:
- PEVQKP fragment PEVQKP (SEQ ID NO: 15) which corresponds to the amino-acids 49 to 54 of SEQ ID NO: 2.
- Such analogs have e.g. the amino-acid sequence PGVQKP (SEQ ID NO: 7), PEGQKP (SEQ ID NO: 8), GEVQKP (SEQ ID NO: 9), PEVQKG (SEQ ID NO: 10);
- SQQKQQS fragments of SQQKQQS (SEQ ID NO: 16) which corresponds to amino-acids 2 to 8 of SEQ ID NO: 2.
- Such analogs have e.g. the amino-acid sequence QKQTS (SEQ ID NO: 11), STQKQ (SEQ ID NO: 12), SQQKT (SEQ ID NO: 13), and QKTQS (SEQ ID NO: 14).
- LCE6A is generally intended to denote, unless stated otherwise, the sequence SEQ ID NO: 2 of the protein, which may or may not have undergone post-translational modifications.
- polypeptide according to the invention is an isolated polypeptide.
- isolated polypeptide means a polypeptide isolated from the human body or from a living organism, preferably in purified form.
- “Analog of a polypeptide” is intended to denote any polypeptide having (a) a homology of amino acid sequence, in particular with respect to one of the sequences characteristic of said polypeptide or of its fragments, as well as (b) a biological activity of the same nature.
- the homology can be at least 80%, for example at least 85%, and for example at least 95%.
- This sequence homology can result from changes due to one or more mutations (substitutions, insertions or deletions) in the sequences of the polypeptides according to the invention.
- said polypeptides comprise only mutations of the substitution type. These substitutions can be conservative or not.
- Percentage homology means the number of identical residues between two sequences, said sequences being aligned so as to obtain maximum correspondence.
- Various algorithms known from the prior art can be used for measuring the homology between two sequences. For example, polynucleotide sequences can be compared using FASTA, Gap or Bestfit, which are programs from Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wis.
- FASTA Altschul et al., J. Mol. Biol. 215: 403-410 (1990); Gish and States, Nature Genet. 3: 266-272 (1993); Madden et al., Meth. Enzymol.
- Bio activity of the same nature denotes in particular an analog or a fragment of amino acid sequence of polypeptide according to the invention having at least one of the functional characteristics or properties of the polypeptides according to the invention, notably in that: (i) it is capable of being recognized by a specific antibody of a polypeptide according to the invention; (ii) it has at least one of the domains or regions as defined below; (iii) it is capable of binding the transglutaminases (TGM) such as human TGM 1, 3 and 5 that participate in the formation of the cornified envelope.
- TGM transglutaminases
- the analog of the polypeptide according to the invention differs from the sequence of the LCE6A protein (SEQ ID NO: 2) only by the presence of conservative substitutions.
- conservative mutations that can be considered in the present invention, we may mention, nonexhaustively, replacement of one or more amino acid residues with amino acids of the same class, such as substitutions of amino acids on the uncharged side chains (such as asparagine, glutamine, serine, cysteine and tyrosine), of amino acids on the basic side chains (such as lysine, arginine, and histidine), of amino acids on the acidic side chains (such as aspartic acid and glutamic acid), of amino acids on the nonpolar side chains (such as alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine and tryptophan).
- the present invention also relates to a polypeptide or analog that can be a polypeptide that has undergone one or more post-translational modification(s).
- post-translational modification(s) is intended to comprise all the modifications that a polypeptide can undergo following its synthesis in a cell, such as, for example, one or more phosphorylation(s), one or more thiolation(s), one or more acetylation(s), one or more glycosylation(s), one or more lipidation(s), such as a palmitoylation, a structural rearrangement of the type of formation of disulfide bridges within the peptide sequence.
- polypeptide fragment is intended to denote any portion of a polypeptide according to the invention comprising at least 5, preferably at least 7, preferably at least 9, and more particularly at least 15 consecutive amino acids of said polypeptide, said portion having, in addition, a biological activity of the same nature.
- a polypeptide fragment suitable for the invention is selected from the sequences SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, and mixtures thereof.
- a polypeptide suitable for carrying out the invention is also a polypeptide as defined above, fused with another polypeptide, a hydrophilic or hydrophobic targeting agent, a bioconversion precursor, a luminescent, radioactive or colorimetric labeling agent.
- a polypeptide according to the invention we may mention fluorescent proteins, fluorescent chemicals such as rhodamine, fluorescein, phosphorescent compounds, radioactive elements or colorimetric labeling agents such as chromogenic substrates that are sensitive to the action of certain enzymes such as galactosidase, peroxidase, acetyltransferase.
- the coupling can be performed by chemical methods, notably by means of reactive chemical functions or by methods of molecular biology known by a person skilled in the art.
- the polypeptide according to the invention can further comprise one or more chemical modification(s) that improve its resistance to degradation or its bioavailability.
- This modification must be biologically compatible and must be compatible with use in the area of cosmetics or pharmacy.
- chemical or enzymatic modifications are well known by a person skilled in the art.
- modifications of the C- or N-terminal ends of the polypeptides acetylation
- modifications of the bond between two amino acids acylation or alkylation
- changes of chirality Preferably, protection is used that is based either on acylation or acetylation of the amino-terminal end, or on amidation or esterification of the carboxy-terminal end, or both.
- the invention relates to a polypeptide as defined above, said polypeptide being in protected or unprotected form.
- the geometry of the molecules is such that they can theoretically be in the form of different optical isomers.
- a molecular conformation of the amino acid (AA) such that it rotates the plane of polarization of light to the right (dextrorotatory conformation or D-aa)
- a molecular conformation of the amino acid (aa) such that it rotates the plane of polarization of light to the left (laevorotatory conformation or L-aa).
- AA amino acid
- aa molecular conformation of the amino acid
- L-aa laevorotatory conformation
- amino acids constituting the polypeptide according to the invention can be in L- and D-configuration; preferably, the amino acids are in the L form.
- the polypeptide according to the invention can therefore be in the L-, D- or DL-form.
- polypeptides according to the invention can be of natural or synthetic origin. They can be synthesized by any method well known by a person skilled in the art. Such methods notably include classical chemical synthesis (in solid phase or in liquid homogeneous phase), enzymatic synthesis (Kullman et al., J. Biol. Chem. 1980, 225, 8234) from constitutive amino acids or derivatives thereof.
- polypeptides according to the invention can also be obtained by methods of biological production such as fermentation of a strain of modified or unmodified bacteria, by genetic engineering to produce the polypeptides or fragments according to the invention using recombinant techniques (cf. examples), or by extraction of proteins of animal or vegetable origin followed by controlled hydrolysis that liberates the medium-sized and small peptide fragments according to the invention.
- Other simpler or more complex methods can be envisaged by a person skilled in the art familiar with the synthesis, extraction and purification of proteins and of peptides.
- the polypeptides according to the invention are obtained by chemical synthesis, this technology being particularly advantageous for reasons of purity, antigen specificity, absence of undesirable reaction byproducts and for its ease of production.
- the aforementioned polypeptides according to the invention are first dissolved in one or more cosmetically or pharmaceutically acceptable solvents.
- solvents are used conventionally by a person skilled in the art, such as water, glycerol, ethanol, propylene glycol, butylene glycol, dipropylene glycol, ethoxylated or propoxylated diglycols, cyclic polyols, petroleum jelly, a vegetable oil or any mixture of these solvents.
- the aforementioned polypeptides are first dissolved in a cosmetic or pharmaceutical carrier such as liposomes or adsorbed on powdered organic polymers, mineral supports such as talcs and bentonites, and more generally dissolved in, or fixed on, any cosmetically or pharmaceutically acceptable carrier.
- a cosmetic or pharmaceutical carrier such as liposomes or adsorbed on powdered organic polymers, mineral supports such as talcs and bentonites, and more generally dissolved in, or fixed on, any cosmetically or pharmaceutically acceptable carrier.
- the present invention also relates to nucleic acid sequences coding for a polypeptide of the invention and application thereof in the various uses according to the invention.
- nucleic acid denotes a chain (strands) of at least two deoxyribonucleotides or ribonucleotides optionally comprising at least one modified nucleotide permitting hybridization, comprising for example a modified bond, a modified purine or pyrimidine base, or a modified sugar.
- the nucleic acid can be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), or a mixture of the two. It can be in the form of a single chain (single-stranded) or double chain (double-stranded), or a mixture of the two.
- the present invention also relates to the use of nucleic acid sequences coding for a polypeptide according to the invention, notably the sequences corresponding at least to a nucleic acid sequence represented by SEQ ID NO: 1, analogs of the latter or a fragment of the latter for preparing a composition according to the invention.
- fragment of nucleic acid sequence means a nucleic acid sequence coding for a part of a polypeptide according to the invention, or an analog of the latter, and in particular a sequence represented by SEQ ID NO: 1 or an analog of the latter.
- “Analog of a nucleic acid sequence” means any nucleic acid sequence, optionally resulting from the degeneration of the nucleic acid code, and coding for a polypeptide of sequence identical or similar to that of the polypeptide encoded by said nucleic acid sequence.
- the nucleic acid can be natural or synthetic, an oligonucleotide, a polynucleotide, a fragment of nucleic acid, a messenger RNA, a nucleic acid obtained by a technique of enzymatic amplification such as PCR (Polymerase Chain Reaction).
- the nucleic acid sequences can be derived from all possible origins, namely either animal, in particular mammalian and even more particularly human, or vegetable, or from microorganisms (viruses, phages, bacteria among others) or from fungi, without prejudging whether or not they are present naturally in said original organism.
- the polynucleotides according to the invention can be used as primer and/or probe in methods notably employing the PCR technique.
- This technique requires choosing pairs of oligonucleotide primers flanking the fragment that is to be amplified.
- the amplified fragments can be identified, for example after agarose or polyacrylamide gel electrophoresis, or after a chromatographic technique such as gel filtration or ion exchange chromatography.
- the specificity of amplification can be controlled by molecular hybridization using, as probe, the nucleotide sequences of polynucleotides of the invention, plasmids containing these sequences or amplification products thereof.
- the amplified nucleotide fragments can be used as reagents in hybridization reactions for detecting the presence, in a biological sample, of a target nucleic acid with sequence complementary to that of said amplified nucleotide fragments.
- the invention also relates to the nucleotide fragments obtainable by amplification using primers according to the invention.
- PCR-like will denote all methods using direct or indirect reproduction of nucleic acid sequences, or else in which the labeling systems have been amplified, these techniques are of course known, in general it is a matter of amplifying DNA by a polymerase; if the original sample is an RNA, a reverse transcription should be carried out first.
- the target polynucleotide to be detected is an RNA, for example an mRNA
- an enzyme of the reverse transcriptase type in order to obtain a complementary DNA (cDNA) from the RNA contained in the biological sample.
- the cDNA obtained will then serve as target for the primers or the probes employed in the method of amplification or of detection according to the invention.
- the invention also relates to the use of isolated and purified nucleic acid fragments coding for the polypeptides considered according to the invention.
- a nucleic acid sequence according to the invention can comprise a sense, antisense or interference sequence corresponding to a sequence coding for a polypeptide according to the invention.
- the present invention also relates to the use of sequences of nucleic acids, notably of deoxyribonucleic acids, or of ribonucleic acids, coding for a polypeptide according to the invention.
- the nucleic acid sequences according to the invention can notably be used for preparing sequences of corresponding, sense or antisense ribonucleic acids.
- the invention also relates to the use of a polynucleotide of ribonucleic acid or deoxyribonucleic acid sequence comprising a sense or antisense sequence, notably “small interfering RNA” (siRNA) corresponding at least to the nucleic acid sequence SEQ ID NO: 1 or an analog of the latter.
- siRNA small interfering RNA
- a composition according to the invention can contain a polypeptide or a nucleic acid sequence according to the invention in an amount representing from 0.00001% to 20% of the total weight of the composition, in particular in an amount representing from 0.0001% to 5% of the total weight of the composition, and more particularly in an amount representing from 0.003% to 3% of the total weight of the composition.
- the composition according to the invention is applied on pathological or nonpathological dry skin. It can advantageously be applied on the skin of the face, neck and optionally of the cleavage or as a variant on any part of the body.
- the cosmetic and/or pharmaceutical composition can be applied in the morning and/or in the evening, on all of the face, of the neck and optionally of the cleavage or even of the body.
- the cosmetic and/or pharmaceutical composition employed according to the invention generally comprises a physiologically acceptable and preferably cosmetically acceptable medium, i.e. it is suitable for use in contact with human skin without risk of toxicity, incompatibility, instability, allergic reaction and notably does not cause sensations of discomfort (redness, tightness, tingling, etc.) that are unacceptable for the user.
- the physiologically acceptable medium consists of water.
- the cosmetic and/or pharmaceutical composition used according to the invention can be in any form that is suitable for topical application on the skin and in particular in the form of oil-in-water, water-in-oil or multiple (W/O/W or O/W/O) emulsion, which can optionally be microemulsions or nanoemulsions, or in the form of aqueous dispersion, solution, aqueous gel or powder.
- said composition is in the form of an oil-in-water emulsion.
- This composition when used as a care or cleaning product for the skin of the face and/or of the body, can notably be in the form of fluid, gel or mousse, packaged for example in a pump-action spray bottle, an aerosol or a tube, or cream packaged for example in a pot. As a variant, it can be in the form of a makeup product and in particular a foundation or a loose or compacted powder.
- the cosmetic and/or pharmaceutical composition according to the invention can also comprise at least one additive that is usual in the area of cosmetics or pharmacy, for example a compound selected from a gelling agent and/or thickener, a surfactant or co-surfactant, a liquid fat or an oil, a wax, a silicone elastomer, a sun filter, a dye, a matting agent or a filler, a pigment, a lifting agent, a preservative, a sequestering agent, a perfume and mixtures thereof.
- a compound selected from a gelling agent and/or thickener for example a compound selected from a gelling agent and/or thickener, a surfactant or co-surfactant, a liquid fat or an oil, a wax, a silicone elastomer, a sun filter, a dye, a matting agent or a filler, a pigment, a lifting agent, a preservative, a sequestering agent, a perfume and mixtures thereof.
- the cosmetic composition according to the invention can comprise, nonexhaustively, one or more of the following additives:
- Fillers are to be understood as colorless or white particles, mineral or synthetic, lamellar or nonlamellar, for giving body or stiffness to the composition and/or softness, a matte finish and immediate uniformity on application. These fillers can notably modify or even mask wrinkles by a camouflage effect, or a blurring effect.
- the matting agents can be selected from matting polymers (in solution, in dispersion or in the form of particles) and inorganic particles that reduce the sheen of the skin and unify the complexion.
- the matting agent can notably be selected from a starch, talc, cellulose microbeads, vegetable fibers, synthetic fibers, in particular of polyamides (Nylon® powders such as Nylon-12 (Orgasol® marketed by the company Atochem), microspheres of acrylic copolymers notably of polymethyl (meth)acrylate (PMMA particles or the Micropearl® M310 particles sold by the company Seppic), silica powders, silicone resin powders, powders of acrylic polymers, polyethylene powders, elastomeric crosslinked organopolysiloxanes (marketed notably under the names KSG® by the company Shin-Etsu, under the names Trefil®, BY29® or EPSX® by the company Dow Corning or under the names Gransil® by the company Grant Industries), talc
- the filler with a “soft focus” effect can give transparency to the complexion and a blurred effect.
- “soft focus” fillers have an average particle size less than or equal to 30 microns, more preferably less than or equal to 15 microns.
- These “soft focus” fillers can be of any shape and in particular can be spherical or nonspherical.
- silica and silicates notably alumina, powders of the polymethyl methacrylate type (PMMA or Micropearl® M310), talc, silica/TiO 2 or silica/zinc oxide composites, polyethylene powders, starch powders, polyamide powders, powders of styrene/acrylic copolymers, silicone elastomers, and mixtures thereof.
- these matting agents or fillers with a soft-focus effect are used at a rate from 0.1 to about 10 wt %, relative to the total weight of the composition, preferably at a rate from 0.1 to about 7 wt %.
- They can be of usual size or nanometric.
- the mineral pigments we may mention titanium dioxide, optionally surface-treated, oxides of iron or of chromium, manganese violet, ultramarine blue, chromium hydroxide and ferric blue.
- the organic pigments we may mention carbon black, pigments of the D&C type, and lakes based on carmine, barium, strontium, calcium, aluminum.
- the nacreous pigments or nacres are iridescent particles that reflect light.
- nacreous pigments can be selected from white nacreous pigments such as mica coated with titanium, or with bismuth oxychloride, colored nacreous pigments such as titanium mica with iron oxides.
- the pigments can have undergone a surface treatment.
- these pigments are used at a rate from 0.1 to about 10 wt %, relative to the total weight of the composition, preferably at a rate from 0.1 to about 5 wt %.
- a person skilled in the art is capable of selecting, from all these possible additives, both the composition and the amount of those to be added to the composition, in such a way that the latter retains all of its properties.
- composition according to the present invention can optionally contain various active agents, which can be selected from the group consisting of vitamins, antioxidants, hydrating agents, antipollution agents, keratolytic agents, astringents, anti-inflammatory agents, bleaching agents and agents promoting the microcirculation.
- active agents can be selected from the group consisting of vitamins, antioxidants, hydrating agents, antipollution agents, keratolytic agents, astringents, anti-inflammatory agents, bleaching agents and agents promoting the microcirculation.
- vitamins examples include vitamins A, B1, B2, B6, C and E and derivatives thereof, pantothenic acid and derivatives thereof and biotin.
- antioxidants include ascorbic acid and derivatives thereof such as ascorbyl palmitate, ascorbyl tetraisopalmitate, ascorbyl glucoside, magnesium ascorbyl phosphate, sodium ascorbyl phosphate and ascorbyl sorbate; tocopherol and derivatives thereof, such as tocopherol acetate, tocopherol sorbate and other esters of tocopherol; BHT and BHA; gallic acid esters, phosphoric acid, citric acid, maleic acid, malonic acid, succinic acid, fumaric acid, cephaline, hexametaphosphate, phytic acid, and plant extracts, for example from roots of Zingiber officinale (ginger) such as Blue Malagasy Ginger marketed by the company BIOLANDES, from Chondrus crispus, Rhodiola, Thermus thermophilus , maté leaf, oak wood, bark of Rapet Kayu, Sakura leaves and ylang-ylang leaves.
- hydrating agents include polyethylene glycol, propylene glycol, dipropylene glycol, glycerin, butylene glycol, xylitol, sorbitol, maltitol, mucopolysaccharides, such as chondroitin sulfuric acid, hyaluronic acid of high or of low molecular weight or hyaluronic acid potentiated with a silanol derivative such as the active ingredient Epidermosil® marketed by the company Exymol, and mucoitinsulfuric acid; caronic acid; bile salts, a principal component of NMF (natural moisturizer factor) such as a salt of pyrrolidone carboxylic acid and a salt of lactic acid, an amino acid analog such as urea, cysteine and serine; a soluble short-chain collagen, the PPG diglycerins, the homo- and copolymers of 2-methacryloyloxyethylphosphorylcholine such as Lipidure HM and
- hydrating agents include compounds that stimulate the expression of matriptase MT/SP1, such as an extract of carob pulp, as well as agents that stimulate expression of FN3K; agents that increase the proliferation or differentiation of keratinocytes such as extracts of Thermus thermophilus or of Camellia Japonica Alba Plena flower or of shells of Theobroma cacao beans, water-soluble maize extracts, peptide extracts of Voandzeia subterranea and niacinamide; epidermal lipids and agents that increase the synthesis of epidermal lipids, either directly, or by stimulating certain ⁇ -glucosidases that modulate the deglycosylation of lipid precursors such as glucosylceramide to ceramides, such as phospholipids, ceramides, lupine protein hydrolyzates.
- matriptase MT/SP1 such as an extract of carob pulp
- antipollution agents include the extract of Moringa pterygosperma seeds (for example Purisoft® from LSN); shea butter extract (for example Detoxyl® from Silab), a mixture of ivy extract, phytic acid, sunflower seed extract (for example Osmopur® from Sederma).
- keratolytic agents include the ⁇ -hydroxy acids (for example glycolic, lactic, citric, malic, mandelic, or tartaric acids) and the ⁇ -hydroxy acids (for example salicylic acid), and esters thereof, such as the C12-13 alkyl lactates, and plant extracts containing these hydroxy acids, such as extracts of Hibiscus sabdriffa.
- ⁇ -hydroxy acids for example glycolic, lactic, citric, malic, mandelic, or tartaric acids
- ⁇ -hydroxy acids for example salicylic acid
- esters thereof such as the C12-13 alkyl lactates
- plant extracts containing these hydroxy acids such as extracts of Hibiscus sabdriffa.
- anti-inflammatory agents examples include bisabolol, allantoin, tranexamic acid, zinc oxide, sulfur oxide and derivatives thereof, chondroitin sulfate, glycyrrhizinic acid and derivatives thereof such as the glycyrrhizinates.
- Examples of astringents include extracts of hamamelis.
- bleaching agents include arbutin and derivatives thereof, ferulic acid (such as Cytovector®: water, glycol, lecithin, ferulic acid, hydroxyethylcellulose, marketed by BASF) and derivatives thereof, kojic acid, resorcinol, lipoic acid and derivatives thereof such as resveratrol diacetate monolipoate as described in patent application WO2006134282, ellagic acid, leukodopachrome and derivatives thereof, vitamin B3, linoleic acid and derivatives thereof, ceramides and their homologs, a peptide as described in patent application WO2009010356, a bioprecursor as described in patent application WO2006134282 or a tranexamate salt such as the hydrochloride salt of cetyl tranexamate, a licorice extract (extract of Glycyrrhiza glabra ), which is sold notably by the company Maruzen under the trade name
- agents promoting the microcirculation include an extract of lupine (such as Eclaline® from Silab), of ruscus, of horse chestnut, of ivy, of ginseng or of melilot, caffeine, nicotinate and derivatives thereof, an extract of alga of Corallina officinalis such as that marketed by CODIF; and mixtures thereof.
- agents that act on the microcirculation of the skin can be used for preventing dulling of the complexion and/or for improving the uniformity and radiance of the complexion.
- composition used according to the invention can further comprise, in addition to the polypeptide according to the invention, at least one active ingredient selected from: agents that stimulate the expression of tensin 1 such as an elemi extract; agents that stimulate the expression of FN3K and/or of FN3K RP such as an extract of Butea frondosa ; agents that stimulate the expression of CERT or of ARNT2; agents that stimulate the production of growth factors; antiglycation agents or deglycating agents; agents for increasing the synthesis of collagen or preventing its degradation (anti-collagenase agents, notably inhibitors of matrix metalloproteinases), in particular agents for increasing the synthesis of collagen IV and/or of hyaluronan and/or of fibronectin, such as at least one acylated oligopeptide, notably that marketed by the company SEDERMA under the trade name Matrixyl® 3000; agents for increasing the synthesis of elastin or preventing its degradation (anti-elastase agents); agents
- FIG. 1 Represents in vitro crosslinking binding assay with peptide PEVQKG (SEQ ID NO: 10), having more than 80% homology with peptide PEVQKP (SEQ ID NO: 15) of LCE6A and one glutamine (Gln, Q)-Lysine (Lys, K) domain.
- the strong labelling of the contour of the granular keratinocytes in (A) shows that the peptide PEVQKG (SEQ ID NO: 10) possesses the ability to bind cornified envelopes, similarly to the positive control (C). Absence of labelling when the assays are performed in the presence of EDTA (B, D) shows that the endogenous transglutaminases, which are calcium-dependent, are necessary for the crosslink.
- the applicant cloned the complementary DNA (cDNA) coding for human LCE6A, and produced, in bacterial recombinant form, the LCE6A protein fused with glutathione S transferase (GST).
- cDNA complementary DNA
- GST glutathione S transferase
- cDNAs produced from a fraction enriched in human granular keratinocytes, as described in previously published works (Toulza et al., Large scale identification of human genes implicated in epidermal barrier function, Genome Biology 2007, 8: R107). These cDNAs were used for cloning the cDNA coding for LCE6A by polymerase chain reaction (PCR) using the primers 5′atgtcacagcagaagcagca3′ and 5′gtcgccttcacactcttcctc3′.
- PCR polymerase chain reaction
- the PCR product with a size of 240 base pairs, was inserted in the vector pCR®2.1-TOPO® using the cloning kit TOPO TA Cloning® (Invitrogen), according to the manufacturer's instructions.
- a positive clone was selected and was designated pCR2.1-TOPO-LCE6A.
- the plasmid pCR2.1-TOPO-LCE6A was digested by the restriction enzyme EcoRI, and the fragment corresponding to the cDNA LCE6A with 258 base pairs was purified and subcloned into the prokaryotic expression vector pGEX6P1 (GE Healthcare) digested by EcoRI. Directed screening of the clones obtained enabled a clone to be selected, designated pGEX6P1-LCE6A.
- E. coli BL21-CodonPlus®-DE3-RIL bacteria (Stratagene) were transformed by the plasmid pGEX6P1-LCE6A and production of the LCE6A recombinant protein was carried out as follows: the transformed bacteria were cultured overnight with stirring at 2 revolutions per minute (rpm) at 37° C. in 10 ml of LB-ampicillin-chloramphenicol medium (10 g/l NaCl, 10 g/l tryptone, 8 g/l yeast extract, 100 mg/l ampicillin, 50 mg/ml chloramphenicol, pH7).
- LB-ampicillin-chloramphenicol medium (10 g/l NaCl, 10 g/l tryptone, 8 g/l yeast extract, 100 mg/l ampicillin, 50 mg/ml chloramphenicol, pH7.
- This culture is used next day for seeding 500 ml of LB-ampicillin-chloramphenicol medium and to continue culture for about 2 h, until the culture has an optical density at 600 nm of between 0.6 and 0.8.
- Production of the recombinant LCE6A protein fused with glutathione-S-transferase (GST) at its N-terminal end (called GST-LCE6A hereinafter) is then induced by continuing culture for 4 h in the presence of 0.1 mM isopropyl thio- ⁇ -D-galactoside (IPTG).
- IPTG isopropyl thio- ⁇ -D-galactoside
- the bacterial culture is then placed on ice for 10 minutes, and then centrifuged for 10 minutes at 6000 rpm at +4° C. After removing the supernatant, the pellet is stored for at least 12 h at ⁇ 20° C.
- the bacterial lysate is obtained as follows: the bacterial pellet is suspended in 50 ml of solubilization buffer (20 mM Tris, 150 mM NaCl, 1 mM EDTA, with addition of 100 ⁇ l of cocktail of bacterial protease inhibitors (P8465, Sigma)), then centrifuged for 10 minutes at 13 000 rpm at +4° C. The supernatant is removed, and the pellet is suspended in 50 ml of solubilization buffer. 5 ml of lysozyme at 100 mg/ml is added and it is incubated for 15 minutes on ice.
- solubilization buffer 20 mM Tris, 150 mM NaCl, 1 mM EDTA, with addition of 100 ⁇ l of cocktail of bacterial protease inhibitors (P8465, Sigma)
- GST-LCE6A is purified from this bacterial lysate by affinity on a “glutathione-sepharose 4 fast flow” column (2.5 ml of matrix) (GE-Healthcare Amersham) according to the manufacturer's instructions. The filtrate is deposited on the column and the fraction not retained is discarded.
- the column is rinsed with 40 ml of phosphate buffered saline (PBS) (1.47 mM KH 2 PO 4 , 4.3 mM Na 2 HPO 4 , 137 mM NaCl, 2.7 mM KCl, 0.9 mM CaCl 2 , pH 7.4) and elution is performed by applying 8 ml of glutathione at 10 mM in buffer Tris 50 mM pH8, then 4 ml of PBS. Twelve 1-ml elution fractions are collected at column outlet.
- PBS phosphate buffered saline
- the primary antibody is a monoclonal antibody recognizing GST (mouse mAb 26H1, Cell Signaling Technology) used at 1/10 000th
- the secondary antibody coupled to peroxidase (horseradish peroxidase conjugated-goat anti-mouse IgG (H+L), Zymed) is used at 1/10 000th and detection is performed with the reagent ECL (Amersham Pharmacia Biotech).
- the elution fractions containing the bacterial recombinant protein are combined, dialyzed against 1000 volume of PBS using dialysis bags (MWCO 3500) overnight at +4° C. with stirring.
- the dialysate is then assayed by Bradford's method using the “BioRad protein assay” kit (BioRad).
- the yield is on average 3 mg of recombinant protein per 500 ml of bacterial culture.
- the applicant After analyzing the primary sequence of the LCE6A protein, the applicant selected the polypeptide with 15 amino acids CHSSSQRPEVQKPRR, corresponding to residues 42 to 56 of LCE6A, not homologous with the other proteins of the LCE family, designated SEQ ID NO: 6 hereinafter.
- This polypeptide was produced and used for immunizing two rabbits (4 successive injections at week 1, 4, 7 and 9). The antiserum is collected in the 11th week. These steps were performed by the company Génosphère Biotechnologies. The antipeptide serum was then purified by affinity by the applicant. For this, the polypeptide corresponding to the amino acid sequence SEQ ID NO: 6 was immobilized on agarose beads using the Sulfolink® kit (Pierce).
- the beads are incubated with 10 ml of antiserum diluted to 1 ⁇ 2 in loading buffer “Gentle Ag/Ab binding buffer” (Pierce) for 1 h at room temperature with gentle stirring.
- the beads are sedimented in a column and the liquid not retained is discarded.
- the column is rinsed with 25 ml of loading buffer with addition of 0.5 M NaCl, and then 5 ml of loading buffer.
- the antipeptide serum LCE6A is eluted by depositing 9 ml of “Gentle Ag/Ab elution buffer” (Pierce) on the column, and the reactivity of each of the 9 elution fractions is tested by Western blotting on the GST-LCE6A recombinant protein.
- LCE6A protein The expression and localization of the LCE6A protein in the normal human epidermis was analyzed by immunohistochemistry and immunofluorescence using LCE6A antipeptide serum. Samples of normal human abdominal skin were fixed in formol for 24 h and embedded in paraffin. Immunodetection is performed on the sections after unmasking the antigen by incubation for 40 minutes in 50 mM glycine-HCl pH 3.5 at 95° C.
- immunodetection is performed with the “Impress rabbit” kit (Vector Laboratories) according to the manufacturer's instructions, using the LCE6A antipeptide serum diluted to 1/250th.
- the labeling obtained by immunohistochemistry or immunofluorescence with the LCE6A antipeptide serum appears late during epidermal differentiation, at the stratum granulosum /stratum corneum transition and in the lower part of the stratum corneum.
- Comparison of the labeling obtained with the LCE6A antipeptide serum and the anti(pro)filaggrin monoclonal antibody in immunofluorescence showed that the two proteins, LCE6A and filaggrin, are expressed in the granular layer and at the bottom of the stratum corneum of the human epidermis.
- the rabbit antiserum specifically recognizing the human LCE6A protein used is the same as that for which the production and purification were described in example 2.
- the expression and localization of the LCE6A protein in normal human epidermis was analyzed by indirect immunofluorescence using the LCE6A antipeptide serum.
- the samples are from normal human abdominal skin or from psoriatic lesions taken from 15 subjects with psoriasis. These skin samples were cryofixed and stored at ⁇ 80° C. Cryosections were obtained, dried in the open air for about 2 hours, fixed with acetone for 10 minutes, and then stored at ⁇ 80° C. Immunodetection is performed by immunofluorescence on the sections after unmasking the antigen by incubation for 20 minutes in “target retrieval solution pH9” (Dako) at 95° C.
- the LCE6A antipeptide serum is used at a dilution of 1/250th.
- the secondary antibody is an anti-rabbit immunoglobulin immunoglobulin coupled to AlexaFluor555 (Invitrogen), used at 1/1000th.
- the applicant carried out transglutaminase binding assays in vitro using recombinant LCE6A possessing a C-terminal histidine tag (LCE-His).
- the LCE6A cDNA was amplified by PCR starting from the pGEX6P1-LCE6A vector using the primers 5′catatgtcacagcagaagcagcaa3′ and 5′ctcgaggtcgccttcacactc3′.
- the PCR product with a size of 248 base pairs, was inserted in the vector pCR®2.1-TOPO® using the TOPO TA Cloning® cloning kit (Invitrogen), according to the manufacturer's instructions.
- a positive clone was selected and was designated pCR2.1-TOPO-LCE6A-NdeI-XhoI.
- This plasmid was digested by the restriction enzymes NdeI and XhoI, and the fragment corresponding to the LCE6A cDNA with 248 base pairs was purified and subcloned into the prokaryotic expression vector pET41b (Novagen) digested by NdeI and XhoI. Screening of the clones obtained made it possible to select a clone that was designated pET41b-LCE6A-His.
- E. coli BL21-CodonPlus®-DE3-RIL bacteria (Stratagene) were transformed by the pET41b-LCE6A-His plasmid and production of the recombinant protein was carried out as follows: the transformed bacteria were cultured overnight with stirring at 250 rpm at 37° C. in 10 ml of LB-kanamycin-chloramphenicol medium (10 g/l NaCl, g/1 tryptone, 8 g/l yeast extract, 50 mg/l kanamycin, 50 mg/l chloramphenicol, pH7).
- This culture is used the next day for seeding 500 ml of LB-kanamycin-chloramphenicol medium and culture is continued for about 2 h, until the culture has an optical density at 600 nm of between 0.6 and 0.8.
- Production of the recombinant LCE6A-His protein is then induced by continuing culture for 4 h in the presence of 0.1 mM isopropyl thio- ⁇ -D-galactoside (IPTG).
- IPTG isopropyl thio- ⁇ -D-galactoside
- the bacterial culture is then placed on ice for 10 minutes, and then centrifuged for 10 minutes at 6000 rpm at +4° C. After removing the supernatant, the pellet is stored for at least 12 h at ⁇ 20° C.
- the bacterial lysate is obtained as follows: the bacterial pellet is suspended in 100 ml of lysis buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 10 mM imidazole, pH8, 0.1 mg/ml lysozyme, with addition of 100 ⁇ l of cocktail of bacterial protease inhibitors (P8465, Sigma)) and incubated for 1.5 h with gentle stirring at +4° C.
- the lysate is sonicated (ultrasonic cell disruptor XL2000, Misonix) 6 times for 5 seconds with return on ice for 5 minutes between each sonication, then centrifuged for 30 minutes at 14 000 rpm +4° C.
- the supernatant is recovered and filtered (pores with diameter of 0.45 ⁇ m) prior to purification by affinity on a nickel column (1 ml of matrix) “His-Trap High Performance” (Amersham Biosciences).
- the column is equilibrated with 10 volumes of lysis buffer, then the lysate is loaded. The liquid not retained is discarded and the column is rinsed with 15 volumes of washing buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 20 mM imidazole, pH8). Elution is performed with 10 volumes of elution buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 0.5 M imidazole, pH8).
- the presence of the recombinant protein in the elution fractions is detected by Western Blot.
- the primary antibody is an antitetra-His monoclonal antibody (mouse monoclonal IgG1 “Tetra-His antibody”, Qiagen) used at 1/2000th
- the secondary antibody coupled to peroxidase is used at 1/10 000th and detection is performed with the reagent ECL (Amersham Pharmacia Biotech).
- the elution fractions containing the bacterial recombinant protein are combined and dialyzed against 1000 volumes of PBS using dialysis bags (MWCO 3500) overnight at +4° C. with stirring. The dialysate is then assayed by Bradford's method using the “BioRad protein assay” kit (BioRad). The yield is on average 3 mg of recombinant protein per 500 ml of bacterial culture.
- TGM2 In-Vitro Transglutaminase 2 Binding Assay
- transglutaminase 2 transglutaminase purified from guinea pig liver, Sigma T5398 was performed in vitro.
- TGM2 In a first experiment, the applicant tested the capacity of TGM2 to form bridges between LCE-His and a molecule bearing an amine bond, monodansyl cadaverine (MDC). For this, TGM2 (10 ng/ ⁇ L) was incubated in the presence of 0.35 ⁇ g of LCE6A-His in solution in a buffer 50 mM Tris, 100 mM DTT, pH 7.4, with addition of 10 mM CaCl 2 and 500 ⁇ M MDC (Fluka). After incubation for 2 h or 18 h at 37° C., the reaction is stopped by adding EDTA to final 25 mM. The negative control corresponds to the same experiment performed in the absence of CaCl 2 and in the presence of 100 mM of ETDA after incubation for 18 h. The reaction product is separated by SDS-PAGE 15%, then visualized by illumination with UV.
- MDC monodansyl cadaverine
- TGM2 (10 ng/ ⁇ L) was incubated in the presence of 0.35 ⁇ g of LCE6A-His in a buffer 50 mM Tris, 100 mM DTT, pH 7.4, with addition of 10 mM CaCl 2 . After incubation for 2 h or 18 h at 37° C., the reaction is stopped by adding EDTA to final 25 mM. The negative control corresponds to the same experiment performed in the absence of CaCl 2 and in the presence of 100 mM of ETDA after incubation for 18 h. The reaction product is separated by SDS-PAGE 15% and transferred onto a nitrocellulose membrane. The intermolecular bonds are visualized by Western Blot as described above with an anti-His antibody (mouse monoclonal IgG1 “Tetra-His antibody”, Qiagen).
- the result of the Western Blot shows a band of about 17 kDa corresponding to monomeric LCE6A-His, and several bands of higher molecular weight migrating to a size equivalent to dimers or multimers of LCE6A-His. Only the band corresponding to monomeric LCE6A-His is detected when the experiment is performed in the same conditions but in the absence of calcium and in the presence of 100 mM of EDTA.
- LCE6A behaves both as donor and an acceptor of amino acid residues necessary for binding ⁇ -( ⁇ -glutamyl)lysyl to the transglutaminase.
- TGM3 In-Vitro Transglutaminase 3 Binding Assay
- transglutaminase 3 human recombinant transglutaminase 3, R&D Systems
- TGM3 In a first experiment, the applicant tested the capacity of TGM3 to form bridges between LCE-His and monodansyl cadaverine (MDC). For this, TGM3 (10 ng/ ⁇ L) was incubated in the presence of 0.35 ⁇ g of LCE6A-His in solution in a buffer 50 mM Tris, 100 mM DTT, pH 7.4, with addition of 10 mM CaCl 2 and 500 ⁇ M MDC (Fluka). After incubation for 2 h or 18 h at 37° C., the reaction is stopped by adding EDTA to final 25 mM. The negative control corresponds to the same experiment performed in the absence of CaCl 2 and in the presence of 100 mM of ETDA after incubation for 18 h. The reaction product is separated by SDS-PAGE 15%, then visualized by illumination with UV.
- TGM3 (10 ng/ ⁇ L) was incubated in the presence of 0.35 ⁇ g of LCE6A-His in a buffer 50 mM Tris, 100 mM DTT, pH 7.4, with addition of 10 mM CaCl 2 . After incubation for 2 h or 18 h at 37° C., the reaction is stopped by adding EDTA to final 25 mM. The negative control corresponds to the same experiment performed in the absence of CaCl 2 and in the presence of 100 mM of ETDA after incubation for 18 h. The reaction product is separated by SDS-PAGE 15% and transferred onto a nitrocellulose membrane. The intermolecular bonds are visualized by Western Blot as described above with an anti-His antibody (mouse monoclonal IgG1 “Tetra-His antibody”, Qiagen).
- the result of the Western Blot shows a band of about 17 kDa corresponding to monomeric LCE6A-His, and several bands of higher molecular weight migrating to a size equivalent to dimers or multimers of LCE6A-His. Only the band corresponding to monomeric LCE6A-His is detected when the experiment is performed in the same conditions but in the absence of calcium and in the presence of 100 mM of EDTA.
- LCE6A behaves both as donor and an acceptor of amino acid residues necessary for binding ⁇ -( ⁇ -glutamyl)lysyl to transglutaminase.
- the transglutaminases 1, 3 and 5, which catalyze the same reaction as TGM2, are involved in vivo in formation of the stratum corneum and in formation of the isopeptide bonds necessary for the strength and insolubility of the cornified envelope.
- LCE6A is therefore, in vitro, the substrate of at least one of the transglutaminases involved, in vivo, in formation of the cornified envelope.
- the applicant arranged for the company MilleGen to synthesize various polypeptides, biotinylated at their N-terminal end, with a length of 9 to 13 amino acids, corresponding to different regions of the amino acid sequence of LCE6A.
- biotinylated polypeptides bound to the cornified envelopes by the transglutaminases that are present and active in the tissue is detected by incubation of the sections with streptavidin-AlexaFluor555 at 5 ⁇ g/ml (Invitrogen) and visualization in the confocal microscope.
- a positive control is performed in a similar experiment but by incubating the sections with 100 ⁇ M of cadaverine coupled to AlexaFluor555 (Invitrogen) instead of the polypeptides.
- the cryosections are incubated with each biotinylated polypeptide or with cadaverine coupled to AlexaFluor555 but incubation is carried out in the presence of 100 mM of EDTA and in the absence of calcium.
- the positive control shows marking of the contour of the granular keratinocytes, corresponding to the region of the section where there are active transglutaminases.
- the polypeptides corresponding to the amino acid sequences SEQ ID NO: 3, 4 and 5 show similar marking to that obtained after incubation with cadaverine-AlexaFluor555, whereas no marking is obtained when these same polypeptides or cadaverine-AlexaFluor555 are incubated in the presence of EDTA and in the absence of calcium.
- amino acid sequences SEQ ID NO: 3, 4 and 5 contain the residues necessary for the transglutaminases present in the granular layer of the human epidermis for establishing covalent bonds with the cornified envelope.
- the loss of capacity for binding the cornified envelopes of the polypeptides corresponding to the mutated SEQ ID NO: 1 and No. 3 suggests that linking of a glutamine residue (Q) and a lysine residue (K) in the sequence of the LCE6A protein is necessary to permit said binding.
- composition can be prepared conventionally by a person skilled in the art.
- quantities stated below are expressed in percentages by weight.
- the ingredients shown in capital letters are identified according to the INCI names.
- This composition can be applied daily, in the morning and/or in the evening, on skin that is particularly dehydrated and/or exposed to aggressive environmental factors, to improve comfort and make the complexion uniform.
- Aim To determine if short peptides derived from SEQ ID NO: 2, having at least one glutamine (Gln, Q)-Lysine (Lys, K) domain and having at least 80% homology with fragments of SEQ ID NO:2, still possess the ability to be crosslinked to cornified envelopes by endogenous transglutaminase.
- biotinylated polypeptides bound to the cornified envelopes by the transglutaminases that are present and active in the tissue was detected by incubation of the sections with streptavidin-AlexaFluor555 at 5 ⁇ g/ml (Invitrogen) and visualization in the fluorescence microscope.
- streptavidin-AlexaFluor555 at 5 ⁇ g/ml (Invitrogen) and visualization in the fluorescence microscope.
- a positive control was performed in a similar experiment but by incubating the sections with 100 ⁇ M of the peptide PEVQKP of LCE6A (amino-acids 49 to 54 of SEQ ID NO: 2).
- the cryosections were incubated with each biotinylated polypeptide but incubation was carried out in the presence of 100 mM of EDTA and in the absence of calcium.
- the positive control shows labelling of the contour of the granular keratinocytes, corresponding to the region of the section where there are active transglutaminases.
- the tested peptides show similar labelling (see e.g. FIG. 1 for peptide PEVQKG (SEQ ID No: 10) to that obtained after incubation with the positive control, whereas no labelling is obtained when these same peptides are incubated in the presence of EDTA and in the absence of calcium.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Dermatology (AREA)
- Birds (AREA)
- Gerontology & Geriatric Medicine (AREA)
- Epidemiology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Cosmetics (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- This application is a Continuation of application Ser. No. 16/138,124, filed on Sep. 21, 2018, which is a Continuation of application Ser. No. 15/447,968, filed on Mar. 2, 2017, which is a Continuation-in-Part of application Ser. No. 14/736,666, filed on Jun. 11, 2015, which is a Divisional of application Ser. No. 13/695,458, filed on Oct. 31, 2012, which is the National Phase under 35 U.S.C. § 371 of International Application No. PCT/FR2011/050953, filed on Apr. 27, 2011, which claims the benefit under 35 U.S.C. § 119(a) to Patent Application No. 1053225, filed in France on Apr. 27, 2010, all of which are hereby expressly incorporated by reference into the present application.
- The contents of the electronic sequence listing (7179-0428 Sequence Listing.xml; Size: 25,138 bytes; and Date of Creation: Mar. 21, 2023) is herein incorporated by reference in its entirety.
- The present invention relates to a novel polypeptide of the stratum corneum, designated LCE6A hereinafter, as well as to applications thereof, both cosmetic and therapeutic.
- The skin consists mainly of three layers, namely, starting from the outermost: epidermis, dermis and hypodermis.
- The epidermis consists in particular of keratinocytes (primarily), melanocytes (involved in skin pigmentation) and Langerhans cells. Its function is to protect the body from the external environment and ensure its integrity, and notably to block the penetration of microorganisms or of chemical substances, and prevent evaporation of the water contained in the skin.
- For this purpose, the keratinocytes undergo a continuous process of directed maturation, in which the keratinocytes located in the basal layer of the epidermis form, in the terminal stage of their differentiation, corneocytes, which are cells resulting from cornification (a particular form of apoptosis). These corneocytes are very inter-cohesive, fully keratinized in the form of cornified envelopes and surrounded by an extracellular medium that is very rich in lipids. The constituent elements of these cells, as well as the enzymes that regulate their detachment to permit desquamation, are mainly synthesized by the keratinocytes of the underlying cellular layer, the stratum granulosum or granular layer. The granular keratinocytes correspond to the last nucleated stage of keratinocyte differentiation, before cornification, which is accompanied by nuclear lysis with stoppage of all activity of transcription and translation. It is at this stage that there is culmination of the production of the precursors of the cornified envelope and other specific cellular constituents indispensable to the barrier function of the epidermis such as ceramides, cholesterol and free fatty acids. The cornified envelope formed during cornification replaces the lipid bilayer of granular keratinocytes. It represents 7% of the dry weight of the stratum corneum. It consists of proteins that are bound to one another or to the lamellar lipid envelope covalently by transglutaminases, forming a macromolecular complex that is particularly stable, insoluble and impermeable, which is essential for the physical strength and the barrier function of the stratum corneum.
- Epidermal differentiation is a complex phenomenon requiring fine regulation of the expression of the genes permitting manufacture of the various constituents of the keratinocytes and then of the corneocytes. A great many transcription factors are involved in this process. The genes of numerous proteins of the cornified envelope are localized within one and the same cluster of 2.5 Mb called the “Epidermal Differentiation Complex” (EDC) in position 1q21.3. The EDC comprises more than 50 different genes, expressed principally in the epidermis. Most of the genes coding for the structural proteins necessary for terminal differentiation, such as loricrin, filaggrin and involucrin, are found there. The EDC also contains several families of genes, at least 18 of which code for the late proteins of the Late Cornified Envelope (LCE) (Marshall et al. 2001, Differentially expressed late constituents of the epidermal cornified envelope. Proc Natl Acad Sci USA. 98: 13031-6). In the course of cornification, these proteins of the LCE family are incorporated in the cornified envelope owing to the action of transglutaminases, which establish an ε-(γ-glutamyl) lysyl linkage between a donor glutamine residue and an acceptor amine group, in a calcium-dependent manner.
- The barrier function of the epidermis may be disturbed in certain climatic conditions (under the effect of cold and/or wind, for example); under the effect of stress or fatigue; under the effect of certain chemical factors (pollution, ultraviolet radiation, alcohol, irritating soaps, domestic cleaning products, detergents, etc.).
- Many skin disorders that are characterized by production of a thickened stratum corneum and by abnormal desquamation, i.e. hyperkeratosis, also display an altered barrier function. Hyperkeratosis can occur on all anatomic skin areas and in very varied clinical contexts. Its underlying physiopathology and its causes are varied. As examples we may mention: xerosis (or dry skin), ichthyoses, psoriasis, certain benign or malignant tumoral lesions, reactive hyperkeratoses. Conversely, certain pathological manifestations involve thinning of the epidermis and especially of the stratum corneum, which is reflected in excessive fragility of the skin. The latter can occur in various anatomical regions, its cause is variable and it can be constitutional or acquired. As examples we may mention: trophic skin disorders of the lower limbs in patients with vascular disorders, varices, arteriopathies (diabetes, arteriosclerosis, etc.), trophic skin disorders in the context of an algodystrophic syndrome, trophic disorders following abnormal healing.
- The barrier function of the epidermis may also be disturbed during aging. Thus, older subjects, and notably those over 50 years of age, are often found to have a xerosis or a dryness of the mucosae, linked to a decrease in secretion of sebum, hormonal changes or to slowing of the flow of water through the epidermis. These disturbances of the barrier of the epidermis cause a decrease in the amount of organized water, a desynchronization of the synthesis or a change in the structure and/or composition of the bilayers of the granular layer. These changes thus promote desquamation of the stratum corneum, penetration of allergens, of irritants or of microorganisms, which thus cause dry skin, which may give rise to sensations of discomfort such as tightness or redness, as well as affecting the radiance of the complexion and the flexibility of the skin.
- To prevent this phenomenon or correct it, it is known to apply cosmetic or pharmaceutical compositions on the skin, said compositions containing hygroscopic agents, such as sugars or polyols, or urea and lactic acid (components of the NMF, Natural Moisturizer Factor) intended to capture the water present in the skin and thus block its evaporation. Classically, fats have also been used for forming an occlusive film on the skin, such as petroleum jelly, which helps to block the evaporation of water. Moreover, these compositions frequently incorporate active ingredients acting on one or more of the various biological targets involved either in the processes of regeneration of the skin, in particular in the differentiation of the keratinocytes, synthesis of the epidermal lipids and cohesion of the corneocytes, or in the endogenous synthesis of constituents of the natural moisturizer factor (NMF) of the skin, in particular in the synthesis of proteoglycans.
- However, there is still a need for new cosmetic or pharmaceutical active ingredients for more effectively combating dry skin, disorders of the barrier function and/or development of fragility of the epidermis.
- Now, following the analysis of the transcriptome of the human granular keratinocyte that was performed by the applicant (Toulza et al., Large-scale identification of human genes implicated in epidermal barrier function, Genome Biology 2007, 8: R107), the applicant identified a new gene located in the EDC on human chromosome 1q21, coding for a polypeptide of 80 amino acids, which it decided to designate as LCE6A, and whose complementary DNA has been isolated and cloned (Human Gene Nomenclature, GenBank DQ991251).
- Based on the sequence of the gene corresponding to this novel LCE6A protein, with a length of 1130 kb, it can be asserted that it belongs to the “Late Cornified Envelope” (LCE) family, a family of genes coding for proteins of the cornified envelope. The expression of this gene is very strongly induced in the fraction that is rich in granular keratinocytes, which corresponds to a late stage of keratinocyte differentiation. Although belonging to the LCE family, the polypeptide sequence corresponding to LCE6A displays little homology with the sequences of the other proteins of this same family and constitutes a new group among the 5 groups currently known in the LCE family.
- The polypeptide sequence of the LCE6A protein is of 80 amino acids. It contains 8 glutamine residues and 6 lysine residues. Among a panel of 17 human complementary DNAs of healthy tissues or organs (heart, brain, placenta, lung, liver, muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, colon, leukocytes, epidermis), expression of the LCE6A gene was only found in the epidermis.
- Consequently, according to one aspect, the present invention relates to a natural or synthetic isolated polypeptide, said polypeptide belonging to the family of late proteins of the cornified envelope (LCE), said polypeptide being selected from:
-
- the sequence SEQ ID NO: 2,
- fragments of SEQ ID NO: 2, said fragments having at least one glutamine (Gln)-lysine (Lys) domain, and
- analogs of SEQ ID NO: 2 or of one of its fragments, said analogs having at least one glutamine (Gln)-lysine (Lys) domain.
- According to another aspect, the present invention relates to a cosmetic or nontherapeutic use, of an effective amount:
-
- of at least one polypeptide selected from the sequence SEQ ID NO: 2, fragments of SEQ ID NO: 2, and analogs of SEQ ID NO: 2 or of one of its fragments, said fragments and analogs having at least one glutamine (Gln)-lysine (Lys) domain and/or
- of at least one polypeptide of sequence encoded by a nucleic acid sequence selected from the sequence SEQ ID NO: 1, fragments of SEQ ID NO: 1 and analogs of SEQ ID NO: 1 or of one of its fragments, and/or
- of at least one nucleotide sequence coding for said polypeptide,
as an agent useful for reinforcing the barrier function of the epidermis and/or preventing and/or treating the signs of dry skin and/or preventing and/or treating the signs of skin aging.
- According to another aspect, the present invention also relates to the use:
-
- of at least one polypeptide selected from the sequence SEQ ID NO: 2, fragments of SEQ ID NO: 2, and analogs of SEQ ID NO: 2 or of one of its fragments, said fragments and analogs having at least one glutamine (Gln)-lysine (Lys) domain and/or
- of at least one polypeptide of sequence encoded by a nucleic acid sequence selected from the sequence SEQ ID NO: 1, fragments of SEQ ID NO: 1, and analogs of SEQ ID NO: 1 or of one of its fragments, and/or
- of at least one nucleotide sequence coding for said polypeptide,
for manufacturing a therapeutic composition intended for: - reinforcing the barrier function of the epidermis and preventing and/or treating the signs of dry skin or preventing and/or treating the signs of skin aging; and/or
- preventing and/or treating trophic skin disorders or those following disorders of healing; and/or
- preventing and/or treating thinning of the epidermis and in particular of the stratum corneum and/or for treating excessive fragility of the skin and/or for inducing thickening of the stratum corneum; and/or
- treating hyperkeratosis, xerosis, ichthyoses, psoriasis, benign or malignant hyperkeratotic tumoral lesions or reactive keratoses.
- The present invention also relates to one of the polypeptides described above for use for preventing and/or treating the aforementioned disorders.
- According to another of its aspects, the present invention also relates to a cosmetic or pharmaceutical composition comprising, in a physiologically acceptable medium, at least one natural or synthetic isolated polypeptide, said polypeptide comprising at least the amino acid sequence represented by SEQ ID NO: 2, or a fragment of the latter, or an analog of SEQ ID NO: 2 or of one of its fragments, said fragments and analogs having at least one glutamine (Gln)-lysine (Lys) domain.
- According to another aspect, the present invention also relates to an isolated polynucleotide comprising at least the sequence SEQ ID NO: 1, said polynucleotide coding for a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2, a fragment of SEQ ID NO: 1, or an analog of SEQ ID NO: 1 or of one of its fragments.
-
FIG. 1 : Represents in vitro crosslinking binding assay with peptide PEVQKG (SEQ ID NO: 10), having more than 80% homology with peptide PEVQKP (SEQ ID NO: 15) of LCE6A and one glutamine (Gln, Q)-Lysine (Lys, K) domain. - “Reinforcing the barrier function of the skin” means ensuring that the barrier function of the skin is maintained at a minimum level of effectiveness corresponding to its normal level of effectiveness, i.e. the level at which it performs its function of protecting the body.
- “Signs of dry skin” means all the changes in the outward appearance of the skin due notably to dehydration of the epidermis, such as dull, rough, nonsilky, reddish and/or scaly appearance, as well as loss of flexibility and a decrease in thickness of the skin. In severe cases, the signs of dry skin include the sensations associated with the phenomenon of dryness, such as itching, tingling and/or tightness, which can lead to the development of actual disorders, such as hypersensitivity, skin atrophy, atopic dermatitides or winter xeroses.
- “Preventing and/or treating the signs of dry skin” consequently means reinforcing, preserving and/or restoring the epidermal barrier, notably its protective or regulatory function, improving and/or reinforcing the cellular cohesion of the epidermis, increasing epidermal resistance to aggressive agents, improving and/or reinforcing the structure of the epidermis, increasing its thickness, and/or guaranteeing the integrity of the skin.
- “Preventing and/or treating the signs of skin aging” preferably means light-induced aging or photo-aging. “Signs of skin aging” means all the changes of the outward appearance of the skin due to aging, for example wrinkles and lines, withered skin, soft skin, thin skin, lack of elasticity and/or firmness of the skin, dull skin without radiance.
- “Effective amount”, in the sense of the present invention, means the minimum amount necessary for observing the expected effect, namely a cosmetic effect or a therapeutic effect, it being understood that the effective amounts required for obtaining a cosmetic effect or a therapeutic effect may be identical or different, depending on circumstances.
- “Trophic skin disorders” means disorders that are notably of vascular origin, abnormalities of the skin (epidermis, dermis and hypodermis) or lesions caused by microcirculatory insufficiency of arterial or venous origin. They are called trophic disorders because they result from poor nutrition of the skin, which is poorly perfused.
- “Polypeptide” means a molecule comprising a linear chain of amino acids that are joined to one another by peptide bonds.
- In the present description, the term polypeptide will also be used for denoting a protein or a peptide.
- The polypeptides according to the invention have a length less than or equal to 80 amino acids. Preferably, the polypeptide consists of 4 to 20, more preferably 7 to 15 amino acids.
- One of the essential characteristics of this polypeptide is that it must have at least one glutamine (Q, Gln)-lysine (K, Lys) domain so that it can serve as a substrate for the transglutaminases.
- According to the invention, the polypeptide is selected from the amino acid sequence SEQ ID NO: 2, the fragments of SEQ ID NO: 2 and the analogs of SEQ ID NO: 2 or of its fragments, said fragments and analogs having at least one glutamine (Gln)-lysine (Lys) domain.
- Examples of analogs of SEQ ID NO: 2 fragments are analogs of:
- fragment PEVQKP (SEQ ID NO: 15) which corresponds to the amino-acids 49 to 54 of SEQ ID NO: 2. Such analogs have e.g. the amino-acid sequence PGVQKP (SEQ ID NO: 7), PEGQKP (SEQ ID NO: 8), GEVQKP (SEQ ID NO: 9), PEVQKG (SEQ ID NO: 10);
- fragments of SQQKQQS (SEQ ID NO: 16) which corresponds to amino-acids 2 to 8 of SEQ ID NO: 2. Such analogs have e.g. the amino-acid sequence QKQTS (SEQ ID NO: 11), STQKQ (SEQ ID NO: 12), SQQKT (SEQ ID NO: 13), and QKTQS (SEQ ID NO: 14).
- In the sense of the present invention, LCE6A is generally intended to denote, unless stated otherwise, the sequence SEQ ID NO: 2 of the protein, which may or may not have undergone post-translational modifications.
- The polypeptide according to the invention is an isolated polypeptide. “Isolated” polypeptide means a polypeptide isolated from the human body or from a living organism, preferably in purified form.
- “Analog of a polypeptide” is intended to denote any polypeptide having (a) a homology of amino acid sequence, in particular with respect to one of the sequences characteristic of said polypeptide or of its fragments, as well as (b) a biological activity of the same nature. The homology can be at least 80%, for example at least 85%, and for example at least 95%. This sequence homology can result from changes due to one or more mutations (substitutions, insertions or deletions) in the sequences of the polypeptides according to the invention. Preferably, said polypeptides comprise only mutations of the substitution type. These substitutions can be conservative or not. Percentage homology means the number of identical residues between two sequences, said sequences being aligned so as to obtain maximum correspondence. Various algorithms known from the prior art can be used for measuring the homology between two sequences. For example, polynucleotide sequences can be compared using FASTA, Gap or Bestfit, which are programs from Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wis. Alternatively, the sequences can be compared using the BLAST program (Altschul et al., J. Mol. Biol. 215: 403-410 (1990); Gish and States, Nature Genet. 3: 266-272 (1993); Madden et al., Meth. Enzymol. 266: 131-141 (1996); Altschul et al., Nucleic Acids Res. 25: 3389-3402 (1997); Zhang and Madden, Genome Res. 7: 649-656 (1997)), in particular blastp or tblastn (Altschul et al., Nucleic Acids Res. 25: 3389-3402 (1997)).
- “Biological activity of the same nature” denotes in particular an analog or a fragment of amino acid sequence of polypeptide according to the invention having at least one of the functional characteristics or properties of the polypeptides according to the invention, notably in that: (i) it is capable of being recognized by a specific antibody of a polypeptide according to the invention; (ii) it has at least one of the domains or regions as defined below; (iii) it is capable of binding the transglutaminases (TGM) such as human TGM 1, 3 and 5 that participate in the formation of the cornified envelope.
- According to a preferred embodiment, the analog of the polypeptide according to the invention differs from the sequence of the LCE6A protein (SEQ ID NO: 2) only by the presence of conservative substitutions. As examples of conservative mutations that can be considered in the present invention, we may mention, nonexhaustively, replacement of one or more amino acid residues with amino acids of the same class, such as substitutions of amino acids on the uncharged side chains (such as asparagine, glutamine, serine, cysteine and tyrosine), of amino acids on the basic side chains (such as lysine, arginine, and histidine), of amino acids on the acidic side chains (such as aspartic acid and glutamic acid), of amino acids on the nonpolar side chains (such as alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine and tryptophan).
- The present invention also relates to a polypeptide or analog that can be a polypeptide that has undergone one or more post-translational modification(s).
- The term “post-translational modification(s)” is intended to comprise all the modifications that a polypeptide can undergo following its synthesis in a cell, such as, for example, one or more phosphorylation(s), one or more thiolation(s), one or more acetylation(s), one or more glycosylation(s), one or more lipidation(s), such as a palmitoylation, a structural rearrangement of the type of formation of disulfide bridges within the peptide sequence.
- In the sense of the invention, “polypeptide fragment” is intended to denote any portion of a polypeptide according to the invention comprising at least 5, preferably at least 7, preferably at least 9, and more particularly at least 15 consecutive amino acids of said polypeptide, said portion having, in addition, a biological activity of the same nature.
- According to a preferred embodiment, a polypeptide fragment suitable for the invention is selected from the sequences SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, and mixtures thereof.
- According to another embodiment, a polypeptide suitable for carrying out the invention is also a polypeptide as defined above, fused with another polypeptide, a hydrophilic or hydrophobic targeting agent, a bioconversion precursor, a luminescent, radioactive or colorimetric labeling agent. Non-exhaustively, as examples of compounds that can be coupled to a polypeptide according to the invention we may mention fluorescent proteins, fluorescent chemicals such as rhodamine, fluorescein, phosphorescent compounds, radioactive elements or colorimetric labeling agents such as chromogenic substrates that are sensitive to the action of certain enzymes such as galactosidase, peroxidase, acetyltransferase.
- Depending on the nature of the compounds that can be coupled to a polypeptide according to the invention, the coupling can be performed by chemical methods, notably by means of reactive chemical functions or by methods of molecular biology known by a person skilled in the art.
- The polypeptide according to the invention can further comprise one or more chemical modification(s) that improve its resistance to degradation or its bioavailability. This modification must be biologically compatible and must be compatible with use in the area of cosmetics or pharmacy. These chemical or enzymatic modifications are well known by a person skilled in the art. Non-exhaustively, we may mention for example: modifications of the C- or N-terminal ends of the polypeptides (acetylation); modifications of the bond between two amino acids (acylation or alkylation); changes of chirality. Preferably, protection is used that is based either on acylation or acetylation of the amino-terminal end, or on amidation or esterification of the carboxy-terminal end, or both.
- Thus, the invention relates to a polypeptide as defined above, said polypeptide being in protected or unprotected form.
- In the area of amino acids, the geometry of the molecules is such that they can theoretically be in the form of different optical isomers. There is, in fact, a molecular conformation of the amino acid (AA) such that it rotates the plane of polarization of light to the right (dextrorotatory conformation or D-aa), and a molecular conformation of the amino acid (aa) such that it rotates the plane of polarization of light to the left (laevorotatory conformation or L-aa). For natural amino acids, nature has only adopted the laevorotatory conformation. Consequently, a polypeptide of natural origin will only be constituted of amino acids of the L-aa type. However, chemical synthesis in the laboratory makes it possible to prepare amino acids having both possible conformations. Starting from this base material, it is thus also possible to incorporate, during polypeptide synthesis, amino acids in the form of dextrorotatory or laevorotatory optical isomers.
- Thus, the amino acids constituting the polypeptide according to the invention can be in L- and D-configuration; preferably, the amino acids are in the L form. The polypeptide according to the invention can therefore be in the L-, D- or DL-form.
- The polypeptides according to the invention can be of natural or synthetic origin. They can be synthesized by any method well known by a person skilled in the art. Such methods notably include classical chemical synthesis (in solid phase or in liquid homogeneous phase), enzymatic synthesis (Kullman et al., J. Biol. Chem. 1980, 225, 8234) from constitutive amino acids or derivatives thereof.
- The polypeptides according to the invention can also be obtained by methods of biological production such as fermentation of a strain of modified or unmodified bacteria, by genetic engineering to produce the polypeptides or fragments according to the invention using recombinant techniques (cf. examples), or by extraction of proteins of animal or vegetable origin followed by controlled hydrolysis that liberates the medium-sized and small peptide fragments according to the invention. Other simpler or more complex methods can be envisaged by a person skilled in the art familiar with the synthesis, extraction and purification of proteins and of peptides.
- Preferably, the polypeptides according to the invention are obtained by chemical synthesis, this technology being particularly advantageous for reasons of purity, antigen specificity, absence of undesirable reaction byproducts and for its ease of production.
- According to an advantageous embodiment of the invention, the aforementioned polypeptides according to the invention are first dissolved in one or more cosmetically or pharmaceutically acceptable solvents. Such solvents are used conventionally by a person skilled in the art, such as water, glycerol, ethanol, propylene glycol, butylene glycol, dipropylene glycol, ethoxylated or propoxylated diglycols, cyclic polyols, petroleum jelly, a vegetable oil or any mixture of these solvents.
- According to another advantageous embodiment of the invention, the aforementioned polypeptides are first dissolved in a cosmetic or pharmaceutical carrier such as liposomes or adsorbed on powdered organic polymers, mineral supports such as talcs and bentonites, and more generally dissolved in, or fixed on, any cosmetically or pharmaceutically acceptable carrier.
- According to one embodiment, the present invention also relates to nucleic acid sequences coding for a polypeptide of the invention and application thereof in the various uses according to the invention.
- The term “nucleic acid” denotes a chain (strands) of at least two deoxyribonucleotides or ribonucleotides optionally comprising at least one modified nucleotide permitting hybridization, comprising for example a modified bond, a modified purine or pyrimidine base, or a modified sugar.
- The nucleic acid can be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), or a mixture of the two. It can be in the form of a single chain (single-stranded) or double chain (double-stranded), or a mixture of the two.
- Thus, the present invention also relates to the use of nucleic acid sequences coding for a polypeptide according to the invention, notably the sequences corresponding at least to a nucleic acid sequence represented by SEQ ID NO: 1, analogs of the latter or a fragment of the latter for preparing a composition according to the invention.
- In the sense of the present invention, “fragment of nucleic acid sequence” means a nucleic acid sequence coding for a part of a polypeptide according to the invention, or an analog of the latter, and in particular a sequence represented by SEQ ID NO: 1 or an analog of the latter.
- “Analog of a nucleic acid sequence” means any nucleic acid sequence, optionally resulting from the degeneration of the nucleic acid code, and coding for a polypeptide of sequence identical or similar to that of the polypeptide encoded by said nucleic acid sequence.
- The nucleic acid can be natural or synthetic, an oligonucleotide, a polynucleotide, a fragment of nucleic acid, a messenger RNA, a nucleic acid obtained by a technique of enzymatic amplification such as PCR (Polymerase Chain Reaction).
- The nucleic acid sequences can be derived from all possible origins, namely either animal, in particular mammalian and even more particularly human, or vegetable, or from microorganisms (viruses, phages, bacteria among others) or from fungi, without prejudging whether or not they are present naturally in said original organism.
- According to a preferred embodiment, the polynucleotides according to the invention can be used as primer and/or probe in methods notably employing the PCR technique.
- This technique requires choosing pairs of oligonucleotide primers flanking the fragment that is to be amplified. The amplified fragments can be identified, for example after agarose or polyacrylamide gel electrophoresis, or after a chromatographic technique such as gel filtration or ion exchange chromatography. The specificity of amplification can be controlled by molecular hybridization using, as probe, the nucleotide sequences of polynucleotides of the invention, plasmids containing these sequences or amplification products thereof.
- The amplified nucleotide fragments can be used as reagents in hybridization reactions for detecting the presence, in a biological sample, of a target nucleic acid with sequence complementary to that of said amplified nucleotide fragments.
- The invention also relates to the nucleotide fragments obtainable by amplification using primers according to the invention.
- Other techniques for amplification of the target nucleic acid can be used advantageously as an alternative to PCR (PCR-like) using primer pairs with nucleotide sequences according to the invention. PCR-like will denote all methods using direct or indirect reproduction of nucleic acid sequences, or else in which the labeling systems have been amplified, these techniques are of course known, in general it is a matter of amplifying DNA by a polymerase; if the original sample is an RNA, a reverse transcription should be carried out first.
- In the case when the target polynucleotide to be detected is an RNA, for example an mRNA, it will be advantageous to use, prior to application of a reaction of amplification by means of the primers according to the invention or to application of a method of detection by means of the probes of the invention, an enzyme of the reverse transcriptase type in order to obtain a complementary DNA (cDNA) from the RNA contained in the biological sample. The cDNA obtained will then serve as target for the primers or the probes employed in the method of amplification or of detection according to the invention.
- In that case, the invention also relates to the use of isolated and purified nucleic acid fragments coding for the polypeptides considered according to the invention.
- A nucleic acid sequence according to the invention can comprise a sense, antisense or interference sequence corresponding to a sequence coding for a polypeptide according to the invention.
- Thus, the present invention also relates to the use of sequences of nucleic acids, notably of deoxyribonucleic acids, or of ribonucleic acids, coding for a polypeptide according to the invention. The nucleic acid sequences according to the invention can notably be used for preparing sequences of corresponding, sense or antisense ribonucleic acids.
- The invention also relates to the use of a polynucleotide of ribonucleic acid or deoxyribonucleic acid sequence comprising a sense or antisense sequence, notably “small interfering RNA” (siRNA) corresponding at least to the nucleic acid sequence SEQ ID NO: 1 or an analog of the latter.
- The amount of polypeptide or of nucleic acid sequence according to the invention contained in a composition according to the invention, also called “effective amount”, is of course a function of the nature of the compound and of the required effect and can therefore vary widely. To give an order of magnitude, a composition can contain a polypeptide or a nucleic acid sequence according to the invention in an amount representing from 0.00001% to 20% of the total weight of the composition, in particular in an amount representing from 0.0001% to 5% of the total weight of the composition, and more particularly in an amount representing from 0.003% to 3% of the total weight of the composition.
- Preferably, the composition according to the invention is applied on pathological or nonpathological dry skin. It can advantageously be applied on the skin of the face, neck and optionally of the cleavage or as a variant on any part of the body.
- The cosmetic and/or pharmaceutical composition can be applied in the morning and/or in the evening, on all of the face, of the neck and optionally of the cleavage or even of the body.
- The cosmetic and/or pharmaceutical composition employed according to the invention generally comprises a physiologically acceptable and preferably cosmetically acceptable medium, i.e. it is suitable for use in contact with human skin without risk of toxicity, incompatibility, instability, allergic reaction and notably does not cause sensations of discomfort (redness, tightness, tingling, etc.) that are unacceptable for the user.
- Preferably, the physiologically acceptable medium consists of water.
- The cosmetic and/or pharmaceutical composition used according to the invention can be in any form that is suitable for topical application on the skin and in particular in the form of oil-in-water, water-in-oil or multiple (W/O/W or O/W/O) emulsion, which can optionally be microemulsions or nanoemulsions, or in the form of aqueous dispersion, solution, aqueous gel or powder. Preferably, said composition is in the form of an oil-in-water emulsion.
- This composition, when used as a care or cleaning product for the skin of the face and/or of the body, can notably be in the form of fluid, gel or mousse, packaged for example in a pump-action spray bottle, an aerosol or a tube, or cream packaged for example in a pot. As a variant, it can be in the form of a makeup product and in particular a foundation or a loose or compacted powder.
- Besides the polypeptide described above, the cosmetic and/or pharmaceutical composition according to the invention can also comprise at least one additive that is usual in the area of cosmetics or pharmacy, for example a compound selected from a gelling agent and/or thickener, a surfactant or co-surfactant, a liquid fat or an oil, a wax, a silicone elastomer, a sun filter, a dye, a matting agent or a filler, a pigment, a lifting agent, a preservative, a sequestering agent, a perfume and mixtures thereof.
- Notably, according to a preferred embodiment, the cosmetic composition according to the invention can comprise, nonexhaustively, one or more of the following additives:
-
- one or more gelling agent(s) and/or thickener(s) of the aqueous phase, selected for example from crosslinked or noncrosslinked, hydrophilic or amphiphilic homo- and copolymers of acryloylmethylpropane sulfonic acid (AMPS) and/or of acrylamide and/or of acrylic acid and/or of salts or of esters of acrylic acid such as ammonium acryloyldimethyltaurate/VP copolymer and ammonium acryloyldimethyltaurate/beheneth-25 methacrylate copolymer, notably those sold under the names Aristoflex® AVC and HMB from Clariant, or the acrylates/C10-30 Alkyl Acrylate Crosspolymers sold under the trade name PEMULEN® TR-1 or TR-2, Carbopol® 1382, Carbopol® Ultrez by the company Novéon, cellulose derivatives, gums of vegetable origin (gum acacia or gum arabic, agar, guar, carob, alginates, carrageenans, pectin) or of microbial origin (xanthan, pullulan), clays (laponite). Said gelling agent and/or thickener can be present in the composition at a content of the order of 0.01 to 5 wt %, relative to the total weight of the composition;
- one or more surfactant(s), preferably emulsifiers, whether nonionic, anionic, cationic or amphoteric, and in particular the esters of fatty acids and of polyols such as the alkoxylated (more particularly polyethoxylated) esters of fatty acids and of glycerol, the alkoxylated esters of fatty acids and of sorbitan, the alkoxylated (ethoxylated and/or propoxylated) esters of fatty acids such as the mixture PEG-100 Stearate/Glyceryl Stearate marketed for example by the company Croda under the name Arlacel® 165 and the esters of fatty acids and of sucrose such as sucrose stearate; the ethers of fatty alcohol and of sugar, notably the alkylpolyglucosides (APG) such as decylglucoside and laurylglucoside, ketostearylglucoside optionally mixed with ketostearyl alcohol, marketed for example under the name Montanov® 68 by the company Seppic, as well as arachidyl glucoside, for example in the form of the mixture of arachidic and behenic alcohols and of arachidylglucoside marketed under the name Montanov® 202 by the company Seppic; ethers of fatty alcohols and of polyethyleneglycol; the polysiloxanes modified polyethers; betaine and derivatives thereof; the polyquaterniums; the ethoxylated sulfate salts of fatty alcohols; the sulfosuccinates; sarcosinates; alkyl- and dialkylphosphates and salts thereof; and the soaps of fatty acids. Said surfactant can be present in the composition at a content of the order of 0.1 to 8%, preferably 0.5 to 3 wt %, relative to the total weight of the composition;
- one or more co-surfactant(s) such as the linear fatty alcohols with a long carbon chain (C14-C20) and in particular cetyl and stearyl alcohols, said surfactant being present in the composition at a rate from 0.1 to 5 wt %, preferably 0.5 to 2 wt %, relative to the total weight of the composition;
- one or more fats that are liquid at room temperature, commonly called oils(s), volatile or nonvolatile, hydrocarbon, silicone, linear, cyclic or branched, for example silicone oils such as polydimethylsiloxanes (dimethicones), polyalkylcyclosiloxanes (cyclomethicones) and polyalkylphenylsiloxanes (phenyldimethicones); synthetic oils such as fluorinated oils, alkyl benzoates and branched hydrocarbons such as polyisobutylene, isododecane; mineral oils (paraffin); vegetable oils (sweet almond oil, macadamia oil, blackcurrant seed oil, jojoba oil or oil of Camelina sativa such as the oil sold under the trade name Lipex® Omega 3/6 by the company Unipex); fatty alcohols, fatty amides, fatty acids or esters such as the benzoate of C12-C15 alcohols sold under the trade name Finsolv® TN by the company Innospec, triglycerides including those of capric/caprylic acids, dicaprylyl carbonate sold under the name Cetiol® CC by the company Cognis; preferably at a rate from 0.1 to about 10 wt %, preferably from 0.5 to 5 wt %, relative to the total weight of the composition;
- one or more waxes (compounds that are solid or substantially solid at room temperature), and whose melting point is generally above 35° C., such as ozokerite, polyethylene wax, beeswax or carnauba wax, preferably at a rate from 0.01 to about 5 wt %, preferably 0.5 to 5 wt %, relative to the total weight of the composition;
- one or more silicone elastomer(s) obtained notably by reaction, in the presence of a catalyst, of a polysiloxane having at least one reactive group (hydrogen or vinyl, notably) and bearing at least one alkyl (notably methyl) or phenyl end group or side group, with an organosilicone such as an organohydrogen-polysiloxane, preferably at a rate from 0.1 to about 20 wt %, preferably 0.25 to 15 wt %, relative to the total weight of the composition;
- one or more sun filters, notably organic filters, such as derivatives of dibenzoylmethane (including butyl methoxydibenzoylmethane sold in particular by DSM under the trade name Parsol® 1789), derivatives of cinnamic acid (including ethylhexyl methoxycinnamate sold in particular by DSM under the trade name Parsol® MCX), salicylates, para-aminobenzoic acids, (β-β-diphenylacrylates, benzophenones, derivatives of benzylidene camphor, phenylbenzimidazoles, triazines, phenylbenzotriazoles and anthranilic derivatives; or inorganic filters, based on mineral oxides in the form of pigments or of nanopigments, coated or uncoated, and in particular based on titanium dioxide or zinc oxide; preferably at a rate from 0.1 to about 30 wt %, better still from 0.5 to 20 wt %, relative to the total weight of the composition;
- one or more water-soluble dyes, such as the disodium salt of ponceau, the disodium salt of alizarin green, quinoline yellow, the trisodium salt of amaranth, the disodium salt of tartrazine, the monosodium salt of rhodamine, the disodium salt of fuchsine or xanthophyll, preferably at a rate from 0.1 to about 2 wt %, relative to the total weight of the composition;
- one or more fillers, in particular matting agents or fillers with a blurring effect, and in particular powders with a soft-focus effect.
- Fillers are to be understood as colorless or white particles, mineral or synthetic, lamellar or nonlamellar, for giving body or stiffness to the composition and/or softness, a matte finish and immediate uniformity on application. These fillers can notably modify or even mask wrinkles by a camouflage effect, or a blurring effect.
- The matting agents can be selected from matting polymers (in solution, in dispersion or in the form of particles) and inorganic particles that reduce the sheen of the skin and unify the complexion. The matting agent can notably be selected from a starch, talc, cellulose microbeads, vegetable fibers, synthetic fibers, in particular of polyamides (Nylon® powders such as Nylon-12 (Orgasol® marketed by the company Atochem), microspheres of acrylic copolymers notably of polymethyl (meth)acrylate (PMMA particles or the Micropearl® M310 particles sold by the company Seppic), silica powders, silicone resin powders, powders of acrylic polymers, polyethylene powders, elastomeric crosslinked organopolysiloxanes (marketed notably under the names KSG® by the company Shin-Etsu, under the names Trefil®, BY29® or EPSX® by the company Dow Corning or under the names Gransil® by the company Grant Industries), talc/titanium dioxide/alumina/silica composite powders, powders of silicates, and mixtures thereof.
- The filler with a “soft focus” effect can give transparency to the complexion and a blurred effect. Preferably, “soft focus” fillers have an average particle size less than or equal to 30 microns, more preferably less than or equal to 15 microns. These “soft focus” fillers can be of any shape and in particular can be spherical or nonspherical. They can be selected from powdered silica and silicates, notably alumina, powders of the polymethyl methacrylate type (PMMA or Micropearl® M310), talc, silica/TiO2 or silica/zinc oxide composites, polyethylene powders, starch powders, polyamide powders, powders of styrene/acrylic copolymers, silicone elastomers, and mixtures thereof.
- Preferably these matting agents or fillers with a soft-focus effect are used at a rate from 0.1 to about 10 wt %, relative to the total weight of the composition, preferably at a rate from 0.1 to about 7 wt %.
- One or more pigments—white or colored, nacreous or non-nacreous, mineral and/or organic, coated or uncoated, insoluble in the medium, intended to color and/or opacify the composition. They can be of usual size or nanometric. Among the mineral pigments, we may mention titanium dioxide, optionally surface-treated, oxides of iron or of chromium, manganese violet, ultramarine blue, chromium hydroxide and ferric blue. Among the organic pigments, we may mention carbon black, pigments of the D&C type, and lakes based on carmine, barium, strontium, calcium, aluminum. The nacreous pigments or nacres are iridescent particles that reflect light. These nacreous pigments can be selected from white nacreous pigments such as mica coated with titanium, or with bismuth oxychloride, colored nacreous pigments such as titanium mica with iron oxides. The pigments can have undergone a surface treatment. Preferably, these pigments are used at a rate from 0.1 to about 10 wt %, relative to the total weight of the composition, preferably at a rate from 0.1 to about 5 wt %.
-
- one or more lifting agents. “Lifting agent” means a compound that is able to stretch the skin and, as a result of this stretching effect, smooth the skin and reduce wrinkles and lines or even make them disappear immediately. As lifting agents, we may mention polymers of natural origin; mixed silicates; colloidal particles of inorganic fillers; synthetic polymers; and mixtures thereof. We may notably mention: polymers of vegetable or microbial origin, polymers derived from the appendages of the skin, egg proteins and latices of natural origin. These polymers are preferably hydrophilic. As polymers of vegetable origin, we may mention in particular proteins and hydrolyzates of proteins, and more particularly extracts of cereals, of leguminous plants and of oleaginous plants, such as extracts of maize, rye, wheat, buckwheat, sesame, spelt, pea, tapioca, bean, lentil, soybean and lupine. Other lifting agents that can be used according to the invention are the polysaccharides of natural origin, notably starch derived notably from rice, maize, tapioca, potato, cassava, pea; carrageenans, acacia gums (gum arabic), alginates, agars, gellan gums, xanthan gums, cellulosic polymers and pectins, advantageously in aqueous dispersion of gel microparticles, cellulose derivatives, and mixtures thereof. The synthetic polymers are generally in the form of a latex or a pseudolatex and can be of the polycondensate type or can be obtained by radical polymerization. We may notably mention dispersions of polyester/polyurethane and of polyether/polyurethane. Preferably, the lifting agent is a copolymer of PVP/dimethiconylacrylate and of hydrophilic polyurethane (Aquamere® S-2011® from the company Hydromer).
- one or more preservative(s);
- sequestering agents such as the salts of EDTA;
- perfumes;
- and mixtures thereof.
- one or more lifting agents. “Lifting agent” means a compound that is able to stretch the skin and, as a result of this stretching effect, smooth the skin and reduce wrinkles and lines or even make them disappear immediately. As lifting agents, we may mention polymers of natural origin; mixed silicates; colloidal particles of inorganic fillers; synthetic polymers; and mixtures thereof. We may notably mention: polymers of vegetable or microbial origin, polymers derived from the appendages of the skin, egg proteins and latices of natural origin. These polymers are preferably hydrophilic. As polymers of vegetable origin, we may mention in particular proteins and hydrolyzates of proteins, and more particularly extracts of cereals, of leguminous plants and of oleaginous plants, such as extracts of maize, rye, wheat, buckwheat, sesame, spelt, pea, tapioca, bean, lentil, soybean and lupine. Other lifting agents that can be used according to the invention are the polysaccharides of natural origin, notably starch derived notably from rice, maize, tapioca, potato, cassava, pea; carrageenans, acacia gums (gum arabic), alginates, agars, gellan gums, xanthan gums, cellulosic polymers and pectins, advantageously in aqueous dispersion of gel microparticles, cellulose derivatives, and mixtures thereof. The synthetic polymers are generally in the form of a latex or a pseudolatex and can be of the polycondensate type or can be obtained by radical polymerization. We may notably mention dispersions of polyester/polyurethane and of polyether/polyurethane. Preferably, the lifting agent is a copolymer of PVP/dimethiconylacrylate and of hydrophilic polyurethane (Aquamere® S-2011® from the company Hydromer).
- Examples of such additives are notably listed in the CTFA Dictionary (International Cosmetic Ingredient Dictionary and Handbook published by The Cosmetic, Toiletry and Fragrance Association, 11th Edition, 2006), which describes, non-exhaustively, a great variety of cosmetic and pharmaceutical ingredients usually employed in the skin care industry, which are suitable for use as additional ingredients in the compositions according to the present invention.
- A person skilled in the art is capable of selecting, from all these possible additives, both the composition and the amount of those to be added to the composition, in such a way that the latter retains all of its properties.
- Moreover, the composition according to the present invention can optionally contain various active agents, which can be selected from the group consisting of vitamins, antioxidants, hydrating agents, antipollution agents, keratolytic agents, astringents, anti-inflammatory agents, bleaching agents and agents promoting the microcirculation.
- Examples of vitamins include vitamins A, B1, B2, B6, C and E and derivatives thereof, pantothenic acid and derivatives thereof and biotin.
- Examples of antioxidants include ascorbic acid and derivatives thereof such as ascorbyl palmitate, ascorbyl tetraisopalmitate, ascorbyl glucoside, magnesium ascorbyl phosphate, sodium ascorbyl phosphate and ascorbyl sorbate; tocopherol and derivatives thereof, such as tocopherol acetate, tocopherol sorbate and other esters of tocopherol; BHT and BHA; gallic acid esters, phosphoric acid, citric acid, maleic acid, malonic acid, succinic acid, fumaric acid, cephaline, hexametaphosphate, phytic acid, and plant extracts, for example from roots of Zingiber officinale (ginger) such as Blue Malagasy Ginger marketed by the company BIOLANDES, from Chondrus crispus, Rhodiola, Thermus thermophilus, maté leaf, oak wood, bark of Rapet Kayu, Sakura leaves and ylang-ylang leaves.
- Examples of hydrating agents include polyethylene glycol, propylene glycol, dipropylene glycol, glycerin, butylene glycol, xylitol, sorbitol, maltitol, mucopolysaccharides, such as chondroitin sulfuric acid, hyaluronic acid of high or of low molecular weight or hyaluronic acid potentiated with a silanol derivative such as the active ingredient Epidermosil® marketed by the company Exymol, and mucoitinsulfuric acid; caronic acid; bile salts, a principal component of NMF (natural moisturizer factor) such as a salt of pyrrolidone carboxylic acid and a salt of lactic acid, an amino acid analog such as urea, cysteine and serine; a soluble short-chain collagen, the PPG diglycerins, the homo- and copolymers of 2-methacryloyloxyethylphosphorylcholine such as Lipidure HM and Lipidure PBM from NOF; allantoin; glycerin derivatives such as PEG/PPG/Polybutylene Glycol-8/5/3 Glycerin from NOF sold under the trade name Wilbride®S753 or the glyceryl-polymethacrylate from Sederma sold under the trade name Lubragel®MS; trimethylglycine sold under the trade name Aminocoat® by the company Asahi Kasei Chemicals and various plant extracts such as extracts of Castanea sativa, hydrolyzed hazelnut proteins, polysaccharides from Polianthes tuberosa, Argania spinosa kernel oil and the extracts of nacre containing a conchiolin that are sold notably by the company Maruzen (Japan) under the trade name Pearl Extract®.
- Other examples of hydrating agents include compounds that stimulate the expression of matriptase MT/SP1, such as an extract of carob pulp, as well as agents that stimulate expression of FN3K; agents that increase the proliferation or differentiation of keratinocytes such as extracts of Thermus thermophilus or of Camellia Japonica Alba Plena flower or of shells of Theobroma cacao beans, water-soluble maize extracts, peptide extracts of Voandzeia subterranea and niacinamide; epidermal lipids and agents that increase the synthesis of epidermal lipids, either directly, or by stimulating certain β-glucosidases that modulate the deglycosylation of lipid precursors such as glucosylceramide to ceramides, such as phospholipids, ceramides, lupine protein hydrolyzates.
- Examples of antipollution agents include the extract of Moringa pterygosperma seeds (for example Purisoft® from LSN); shea butter extract (for example Detoxyl® from Silab), a mixture of ivy extract, phytic acid, sunflower seed extract (for example Osmopur® from Sederma).
- Examples of keratolytic agents include the α-hydroxy acids (for example glycolic, lactic, citric, malic, mandelic, or tartaric acids) and the β-hydroxy acids (for example salicylic acid), and esters thereof, such as the C12-13 alkyl lactates, and plant extracts containing these hydroxy acids, such as extracts of Hibiscus sabdriffa.
- Examples of anti-inflammatory agents include bisabolol, allantoin, tranexamic acid, zinc oxide, sulfur oxide and derivatives thereof, chondroitin sulfate, glycyrrhizinic acid and derivatives thereof such as the glycyrrhizinates.
- Examples of astringents include extracts of hamamelis.
- Examples of bleaching agents include arbutin and derivatives thereof, ferulic acid (such as Cytovector®: water, glycol, lecithin, ferulic acid, hydroxyethylcellulose, marketed by BASF) and derivatives thereof, kojic acid, resorcinol, lipoic acid and derivatives thereof such as resveratrol diacetate monolipoate as described in patent application WO2006134282, ellagic acid, leukodopachrome and derivatives thereof, vitamin B3, linoleic acid and derivatives thereof, ceramides and their homologs, a peptide as described in patent application WO2009010356, a bioprecursor as described in patent application WO2006134282 or a tranexamate salt such as the hydrochloride salt of cetyl tranexamate, a licorice extract (extract of Glycyrrhiza glabra), which is sold notably by the company Maruzen under the trade name Licorice extract®, a bleaching agent that also has an antioxidant effect, such as the compounds of vitamin C, including the ascorbate salts, the ascorbyl esters of fatty acids or of sorbic acid, and other derivatives of ascorbic acid, for example, ascorbyl phosphates, such as magnesium ascorbyl phosphate and sodium ascorbyl phosphate, or the esters of saccharide of ascorbic acid, which include, for example, ascorbyl-2-glucoside, L-ascorbate of 2-O-alpha-D-glucopyranosyl, or L-ascorbate of 6-O-beta-D-galactopyranosyl. An active agent of this type is sold in particular by the company DKSH under the trade name Ascorbyl glucoside®.
- Examples of agents promoting the microcirculation include an extract of lupine (such as Eclaline® from Silab), of ruscus, of horse chestnut, of ivy, of ginseng or of melilot, caffeine, nicotinate and derivatives thereof, an extract of alga of Corallina officinalis such as that marketed by CODIF; and mixtures thereof. These agents that act on the microcirculation of the skin can be used for preventing dulling of the complexion and/or for improving the uniformity and radiance of the complexion.
- The composition used according to the invention can further comprise, in addition to the polypeptide according to the invention, at least one active ingredient selected from: agents that stimulate the expression of tensin 1 such as an elemi extract; agents that stimulate the expression of FN3K and/or of FN3K RP such as an extract of Butea frondosa; agents that stimulate the expression of CERT or of ARNT2; agents that stimulate the production of growth factors; antiglycation agents or deglycating agents; agents for increasing the synthesis of collagen or preventing its degradation (anti-collagenase agents, notably inhibitors of matrix metalloproteinases), in particular agents for increasing the synthesis of collagen IV and/or of hyaluronan and/or of fibronectin, such as at least one acylated oligopeptide, notably that marketed by the company SEDERMA under the trade name Matrixyl® 3000; agents for increasing the synthesis of elastin or preventing its degradation (anti-elastase agents); agents for increasing the synthesis of glycosaminoglycans or of proteoglycans or preventing their degradation (anti-proteoglycanase agents) such as the active ingredient Epidermosil® (hyaluronic acid associated with methylsilanetriol) marketed by the company Exsymol; agents for stimulating the synthesis of integrins by the fibroblasts; agents for increasing the proliferation of the fibroblasts; agents facilitating percutaneous absorption such as alcohols, fatty alcohols and fatty acids and the ester or ether derivatives thereof, pyrrolidones, 4-alkyl-oxazolidin-2-ones such as 4-decyloxazolidin-2-one; terpenes, essential oils and α-hydroxy acids; and mixtures thereof, without this list being exhaustive.
-
FIG. 1 : Represents in vitro crosslinking binding assay with peptide PEVQKG (SEQ ID NO: 10), having more than 80% homology with peptide PEVQKP (SEQ ID NO: 15) of LCE6A and one glutamine (Gln, Q)-Lysine (Lys, K) domain. Representative images of human skin cryosections observed with a fluorescence microscope after in vitro crosslinking assay performed with peptide PEVQKG (SEQ ID NO: 10) (A, B) or with peptide PEVQKP (SEQ ID NO: 15) (C, D) in the presence of 5 mM CaCl2 (A, C) or in the presence of EDTA (B, D). The strong labelling of the contour of the granular keratinocytes in (A) shows that the peptide PEVQKG (SEQ ID NO: 10) possesses the ability to bind cornified envelopes, similarly to the positive control (C). Absence of labelling when the assays are performed in the presence of EDTA (B, D) shows that the endogenous transglutaminases, which are calcium-dependent, are necessary for the crosslink. - The invention will now be illustrated by the following nonlimiting examples.
- The applicant cloned the complementary DNA (cDNA) coding for human LCE6A, and produced, in bacterial recombinant form, the LCE6A protein fused with glutathione S transferase (GST).
- The applicant obtained cDNAs produced from a fraction enriched in human granular keratinocytes, as described in previously published works (Toulza et al., Large scale identification of human genes implicated in epidermal barrier function, Genome Biology 2007, 8: R107). These cDNAs were used for cloning the cDNA coding for LCE6A by polymerase chain reaction (PCR) using the primers 5′atgtcacagcagaagcagca3′ and 5′gtcgccttcacactcttcctc3′. The PCR product, with a size of 240 base pairs, was inserted in the vector pCR®2.1-TOPO® using the cloning kit TOPO TA Cloning® (Invitrogen), according to the manufacturer's instructions. A positive clone was selected and was designated pCR2.1-TOPO-LCE6A. The plasmid pCR2.1-TOPO-LCE6A was digested by the restriction enzyme EcoRI, and the fragment corresponding to the cDNA LCE6A with 258 base pairs was purified and subcloned into the prokaryotic expression vector pGEX6P1 (GE Healthcare) digested by EcoRI. Directed screening of the clones obtained enabled a clone to be selected, designated pGEX6P1-LCE6A.
- E. coli BL21-CodonPlus®-DE3-RIL bacteria (Stratagene) were transformed by the plasmid pGEX6P1-LCE6A and production of the LCE6A recombinant protein was carried out as follows: the transformed bacteria were cultured overnight with stirring at 2 revolutions per minute (rpm) at 37° C. in 10 ml of LB-ampicillin-chloramphenicol medium (10 g/l NaCl, 10 g/l tryptone, 8 g/l yeast extract, 100 mg/l ampicillin, 50 mg/ml chloramphenicol, pH7). This culture is used next day for seeding 500 ml of LB-ampicillin-chloramphenicol medium and to continue culture for about 2 h, until the culture has an optical density at 600 nm of between 0.6 and 0.8. Production of the recombinant LCE6A protein fused with glutathione-S-transferase (GST) at its N-terminal end (called GST-LCE6A hereinafter) is then induced by continuing culture for 4 h in the presence of 0.1 mM isopropyl thio-β-D-galactoside (IPTG). The bacterial culture is then placed on ice for 10 minutes, and then centrifuged for 10 minutes at 6000 rpm at +4° C. After removing the supernatant, the pellet is stored for at least 12 h at −20° C.
- The bacterial lysate is obtained as follows: the bacterial pellet is suspended in 50 ml of solubilization buffer (20 mM Tris, 150 mM NaCl, 1 mM EDTA, with addition of 100 μl of cocktail of bacterial protease inhibitors (P8465, Sigma)), then centrifuged for 10 minutes at 13 000 rpm at +4° C. The supernatant is removed, and the pellet is suspended in 50 ml of solubilization buffer. 5 ml of lysozyme at 100 mg/ml is added and it is incubated for 15 minutes on ice. Then 500 μl of 1M dithiothreitol and 7.75 ml of Sarkosyl 10% are added, it is mixed by inversion and the suspension is sonicated (ultrasonic cell disruptor XL2000, Misonix) 3 times for 20 seconds with return on ice for 5 minutes between each sonication. The lysate is then centrifuged for 30 minutes at 10 000 rpm+4° C. The supernatant is recovered and 20 ml of Triton-X-100 at 10% and 16.75 ml of solubilization buffer are added to it. Lysis is completed with incubation of this solution for 30 minutes with gentle stirring at room temperature, and then the lysate is filtered (pores with diameter of 0.45 μm).
- GST-LCE6A is purified from this bacterial lysate by affinity on a “glutathione-sepharose 4 fast flow” column (2.5 ml of matrix) (GE-Healthcare Amersham) according to the manufacturer's instructions. The filtrate is deposited on the column and the fraction not retained is discarded. The column is rinsed with 40 ml of phosphate buffered saline (PBS) (1.47 mM KH2PO4, 4.3 mM Na2HPO4, 137 mM NaCl, 2.7 mM KCl, 0.9 mM CaCl2, pH 7.4) and elution is performed by applying 8 ml of glutathione at 10 mM in buffer Tris 50 mM pH8, then 4 ml of PBS. Twelve 1-ml elution fractions are collected at column outlet. An aliquot of 12.5 μl of each of these fractions is separated by electrophoresis in denaturing conditions SDS-PAGE 15% (“SDS-polyacrylamide gel electrophoresis”) and transferred onto a nitrocellulose membrane by electrotransfer. This membrane is then used for testing by Western blotting (immunotransfer) for the presence of the recombinant protein in the elution fractions. The primary antibody is a monoclonal antibody recognizing GST (mouse mAb 26H1, Cell Signaling Technology) used at 1/10 000th, the secondary antibody coupled to peroxidase (horseradish peroxidase conjugated-goat anti-mouse IgG (H+L), Zymed) is used at 1/10 000th and detection is performed with the reagent ECL (Amersham Pharmacia Biotech). The elution fractions containing the bacterial recombinant protein are combined, dialyzed against 1000 volume of PBS using dialysis bags (MWCO 3500) overnight at +4° C. with stirring. The dialysate is then assayed by Bradford's method using the “BioRad protein assay” kit (BioRad).
- The yield is on average 3 mg of recombinant protein per 500 ml of bacterial culture.
- After analyzing the primary sequence of the LCE6A protein, the applicant selected the polypeptide with 15 amino acids CHSSSQRPEVQKPRR, corresponding to residues 42 to 56 of LCE6A, not homologous with the other proteins of the LCE family, designated SEQ ID NO: 6 hereinafter. This polypeptide was produced and used for immunizing two rabbits (4 successive injections at week 1, 4, 7 and 9). The antiserum is collected in the 11th week. These steps were performed by the company Génosphère Biotechnologies. The antipeptide serum was then purified by affinity by the applicant. For this, the polypeptide corresponding to the amino acid sequence SEQ ID NO: 6 was immobilized on agarose beads using the Sulfolink® kit (Pierce). The beads are incubated with 10 ml of antiserum diluted to ½ in loading buffer “Gentle Ag/Ab binding buffer” (Pierce) for 1 h at room temperature with gentle stirring. The beads are sedimented in a column and the liquid not retained is discarded. The column is rinsed with 25 ml of loading buffer with addition of 0.5 M NaCl, and then 5 ml of loading buffer. The antipeptide serum LCE6A is eluted by depositing 9 ml of “Gentle Ag/Ab elution buffer” (Pierce) on the column, and the reactivity of each of the 9 elution fractions is tested by Western blotting on the GST-LCE6A recombinant protein. Incubation is performed with an aliquot of each of the elution fractions diluted to 1/50th, then with a secondary rabbit anti-immunoglobulin antibody coupled to peroxidase diluted to 1/10 000th (Zymed). Detection is performed with the ECL kit (Amersham Pharmacia Biotech). The fractions displaying the highest reactivity against the recombinant protein are combined and dialyzed against 1000 volumes of TBS buffer (0.05 M Tris, 0.15 M NaCl, pH 7.6) using dialysis bags (MWCO 3500) overnight at +4° C. with stirring. The dialysate is concentrated approx. 20-fold by ultrafiltration (Vivaspin 15R, 30000 MWCO, Vivascience). The concentrated dialysate, corresponding to the purified antiserum, is titrated on the recombinant protein by Western Blot. It recognizes 100 ng of GST-LCE6A down to a dilution of 1/2000th.
- The expression and localization of the LCE6A protein in the normal human epidermis was analyzed by immunohistochemistry and immunofluorescence using LCE6A antipeptide serum. Samples of normal human abdominal skin were fixed in formol for 24 h and embedded in paraffin. Immunodetection is performed on the sections after unmasking the antigen by incubation for 40 minutes in 50 mM glycine-HCl pH 3.5 at 95° C.
- In the immunohistochemistry experiments, immunodetection is performed with the “Impress rabbit” kit (Vector Laboratories) according to the manufacturer's instructions, using the LCE6A antipeptide serum diluted to 1/250th.
- In the immunofluorescence experiments, double labeling was carried out using the LCE6A antipeptide serum diluted to 1/100th and a mouse monoclonal antibody directed against (pro)filaggrin (AHF3, Simon et al., J Invest Dermatol 1995, 105: 432) diluted to 1/1000th. The secondary antibodies are anti-mouse immunoglobulin immunoglobulins coupled to AlexaFluor488 and anti-rabbit immunoglobulin immunoglobulins coupled to AlexaFluor555 (Invitrogen), used at 1/1000th.
- The labeling obtained by immunohistochemistry or immunofluorescence with the LCE6A antipeptide serum appears late during epidermal differentiation, at the stratum granulosum/stratum corneum transition and in the lower part of the stratum corneum. Comparison of the labeling obtained with the LCE6A antipeptide serum and the anti(pro)filaggrin monoclonal antibody in immunofluorescence showed that the two proteins, LCE6A and filaggrin, are expressed in the granular layer and at the bottom of the stratum corneum of the human epidermis.
- The rabbit antiserum specifically recognizing the human LCE6A protein used is the same as that for which the production and purification were described in example 2.
- The expression and localization of the LCE6A protein in normal human epidermis was analyzed by indirect immunofluorescence using the LCE6A antipeptide serum. The samples are from normal human abdominal skin or from psoriatic lesions taken from 15 subjects with psoriasis. These skin samples were cryofixed and stored at −80° C. Cryosections were obtained, dried in the open air for about 2 hours, fixed with acetone for 10 minutes, and then stored at −80° C. Immunodetection is performed by immunofluorescence on the sections after unmasking the antigen by incubation for 20 minutes in “target retrieval solution pH9” (Dako) at 95° C. The LCE6A antipeptide serum is used at a dilution of 1/250th. The secondary antibody is an anti-rabbit immunoglobulin immunoglobulin coupled to AlexaFluor555 (Invitrogen), used at 1/1000th.
- Observation of the sections of skin with lesions obtained from the 15 subjects with psoriasis shows a large drop in expression of LCE6A in the granular layer and the bottom of the stratum corneum of the epidermis, compared with normal skin. It therefore appears that this disease, which displays profound disturbance of keratinocyte proliferation and differentiation, as well as a considerable disturbance of the barrier function of the epidermis, shows a greatly reduced amount of LCE6A protein, expressed by the granular keratinocyte and then incorporated in the cornified envelope.
- The applicant carried out transglutaminase binding assays in vitro using recombinant LCE6A possessing a C-terminal histidine tag (LCE-His).
- For cloning the cDNA coding for LCE6A-His, the LCE6A cDNA was amplified by PCR starting from the pGEX6P1-LCE6A vector using the primers 5′catatgtcacagcagaagcagcaa3′ and 5′ctcgaggtcgccttcacactc3′. The PCR product, with a size of 248 base pairs, was inserted in the vector pCR®2.1-TOPO® using the TOPO TA Cloning® cloning kit (Invitrogen), according to the manufacturer's instructions. A positive clone was selected and was designated pCR2.1-TOPO-LCE6A-NdeI-XhoI. This plasmid was digested by the restriction enzymes NdeI and XhoI, and the fragment corresponding to the LCE6A cDNA with 248 base pairs was purified and subcloned into the prokaryotic expression vector pET41b (Novagen) digested by NdeI and XhoI. Screening of the clones obtained made it possible to select a clone that was designated pET41b-LCE6A-His.
- E. coli BL21-CodonPlus®-DE3-RIL bacteria (Stratagene) were transformed by the pET41b-LCE6A-His plasmid and production of the recombinant protein was carried out as follows: the transformed bacteria were cultured overnight with stirring at 250 rpm at 37° C. in 10 ml of LB-kanamycin-chloramphenicol medium (10 g/l NaCl, g/1 tryptone, 8 g/l yeast extract, 50 mg/l kanamycin, 50 mg/l chloramphenicol, pH7). This culture is used the next day for seeding 500 ml of LB-kanamycin-chloramphenicol medium and culture is continued for about 2 h, until the culture has an optical density at 600 nm of between 0.6 and 0.8. Production of the recombinant LCE6A-His protein is then induced by continuing culture for 4 h in the presence of 0.1 mM isopropyl thio-β-D-galactoside (IPTG). The bacterial culture is then placed on ice for 10 minutes, and then centrifuged for 10 minutes at 6000 rpm at +4° C. After removing the supernatant, the pellet is stored for at least 12 h at −20° C.
- The bacterial lysate is obtained as follows: the bacterial pellet is suspended in 100 ml of lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH8, 0.1 mg/ml lysozyme, with addition of 100 μl of cocktail of bacterial protease inhibitors (P8465, Sigma)) and incubated for 1.5 h with gentle stirring at +4° C. The lysate is sonicated (ultrasonic cell disruptor XL2000, Misonix) 6 times for 5 seconds with return on ice for 5 minutes between each sonication, then centrifuged for 30 minutes at 14 000 rpm +4° C. The supernatant is recovered and filtered (pores with diameter of 0.45 μm) prior to purification by affinity on a nickel column (1 ml of matrix) “His-Trap High Performance” (Amersham Biosciences). The column is equilibrated with 10 volumes of lysis buffer, then the lysate is loaded. The liquid not retained is discarded and the column is rinsed with 15 volumes of washing buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH8). Elution is performed with 10 volumes of elution buffer (50 mM NaH2PO4, 300 mM NaCl, 0.5 M imidazole, pH8). The presence of the recombinant protein in the elution fractions is detected by Western Blot. The primary antibody is an antitetra-His monoclonal antibody (mouse monoclonal IgG1 “Tetra-His antibody”, Qiagen) used at 1/2000th, the secondary antibody coupled to peroxidase (horseradish peroxidase conjugated-goat anti-mouse IgG (H+L), Zymed) is used at 1/10 000th and detection is performed with the reagent ECL (Amersham Pharmacia Biotech). The elution fractions containing the bacterial recombinant protein are combined and dialyzed against 1000 volumes of PBS using dialysis bags (MWCO 3500) overnight at +4° C. with stirring. The dialysate is then assayed by Bradford's method using the “BioRad protein assay” kit (BioRad). The yield is on average 3 mg of recombinant protein per 500 ml of bacterial culture.
- A binding assay of LCE6A by transglutaminase 2 (transglutaminase purified from guinea pig liver, Sigma T5398) was performed in vitro.
- In a first experiment, the applicant tested the capacity of TGM2 to form bridges between LCE-His and a molecule bearing an amine bond, monodansyl cadaverine (MDC). For this, TGM2 (10 ng/μL) was incubated in the presence of 0.35 μg of LCE6A-His in solution in a buffer 50 mM Tris, 100 mM DTT, pH 7.4, with addition of 10 mM CaCl2 and 500 μM MDC (Fluka). After incubation for 2 h or 18 h at 37° C., the reaction is stopped by adding EDTA to final 25 mM. The negative control corresponds to the same experiment performed in the absence of CaCl2 and in the presence of 100 mM of ETDA after incubation for 18 h. The reaction product is separated by SDS-PAGE 15%, then visualized by illumination with UV.
- In a second experiment, the applicant also tested the capacity of TGM2 to form bridges of LCE6A with itself. For this, TGM2 (10 ng/μL) was incubated in the presence of 0.35 μg of LCE6A-His in a buffer 50 mM Tris, 100 mM DTT, pH 7.4, with addition of 10 mM CaCl2. After incubation for 2 h or 18 h at 37° C., the reaction is stopped by adding EDTA to final 25 mM. The negative control corresponds to the same experiment performed in the absence of CaCl2 and in the presence of 100 mM of ETDA after incubation for 18 h. The reaction product is separated by SDS-PAGE 15% and transferred onto a nitrocellulose membrane. The intermolecular bonds are visualized by Western Blot as described above with an anti-His antibody (mouse monoclonal IgG1 “Tetra-His antibody”, Qiagen).
- In the first experiment, starting from 2 h of incubation, several fluorescent bands were detected, migrating to the height of the free MDC (migration front), or of LCE6A-His (about 17 kDa). Other bands with higher molecular weight, of low intensity, migrate to the size of dimers or multimers of LCE6A-His. No fluorescent band, apart from that corresponding to the free MDC, is detected when the same experiment is performed in the presence of 100 mM EDTA and in the absence of calcium.
- In the second experiment, the result of the Western Blot shows a band of about 17 kDa corresponding to monomeric LCE6A-His, and several bands of higher molecular weight migrating to a size equivalent to dimers or multimers of LCE6A-His. Only the band corresponding to monomeric LCE6A-His is detected when the experiment is performed in the same conditions but in the absence of calcium and in the presence of 100 mM of EDTA.
- Consequently, these experiments are able to confirm that the LCE6A protein is indeed a substrate of transglutaminase 2. LCE6A behaves both as donor and an acceptor of amino acid residues necessary for binding ε-(γ-glutamyl)lysyl to the transglutaminase.
- A binding assay of LCE6A by transglutaminase 3 (human recombinant transglutaminase 3, R&D Systems) was performed in vitro. These assays are carried out according to the same experimental protocol as that described in example 4 paragraph 2 with transglutaminase 2.
- In a first experiment, the applicant tested the capacity of TGM3 to form bridges between LCE-His and monodansyl cadaverine (MDC). For this, TGM3 (10 ng/μL) was incubated in the presence of 0.35 μg of LCE6A-His in solution in a buffer 50 mM Tris, 100 mM DTT, pH 7.4, with addition of 10 mM CaCl2 and 500 μM MDC (Fluka). After incubation for 2 h or 18 h at 37° C., the reaction is stopped by adding EDTA to final 25 mM. The negative control corresponds to the same experiment performed in the absence of CaCl2 and in the presence of 100 mM of ETDA after incubation for 18 h. The reaction product is separated by SDS-PAGE 15%, then visualized by illumination with UV.
- In a second experiment, the applicant tested the capacity of TGM3 to form bridges of LCE6A with itself. For this, TGM3 (10 ng/μL) was incubated in the presence of 0.35 μg of LCE6A-His in a buffer 50 mM Tris, 100 mM DTT, pH 7.4, with addition of 10 mM CaCl2. After incubation for 2 h or 18 h at 37° C., the reaction is stopped by adding EDTA to final 25 mM. The negative control corresponds to the same experiment performed in the absence of CaCl2 and in the presence of 100 mM of ETDA after incubation for 18 h. The reaction product is separated by SDS-PAGE 15% and transferred onto a nitrocellulose membrane. The intermolecular bonds are visualized by Western Blot as described above with an anti-His antibody (mouse monoclonal IgG1 “Tetra-His antibody”, Qiagen).
- In the first experiment, starting from 2 h of incubation, several fluorescent bands were detected, migrating to the height of the free MDC (migration front), or of LCE6A-His (about 17 kDa). Other bands with higher molecular weight, of low intensity, migrate to the size of dimers or multimers of LCE6A-His. No fluorescent band, apart from that corresponding to the free MDC, is detected when the same experiment is performed in the presence of 100 mM EDTA and in the absence of calcium.
- In the second experiment, the result of the Western Blot shows a band of about 17 kDa corresponding to monomeric LCE6A-His, and several bands of higher molecular weight migrating to a size equivalent to dimers or multimers of LCE6A-His. Only the band corresponding to monomeric LCE6A-His is detected when the experiment is performed in the same conditions but in the absence of calcium and in the presence of 100 mM of EDTA.
- Consequently, these experiments are able to confirm that the LCE6A protein is indeed a substrate of transglutaminase 3. LCE6A behaves both as donor and an acceptor of amino acid residues necessary for binding ε-(γ-glutamyl)lysyl to transglutaminase. The transglutaminases 1, 3 and 5, which catalyze the same reaction as TGM2, are involved in vivo in formation of the stratum corneum and in formation of the isopeptide bonds necessary for the strength and insolubility of the cornified envelope. LCE6A is therefore, in vitro, the substrate of at least one of the transglutaminases involved, in vivo, in formation of the cornified envelope.
- To determine what region of the LCE6A protein is necessary for binding by the transglutaminases, the applicant arranged for the company MilleGen to synthesize various polypeptides, biotinylated at their N-terminal end, with a length of 9 to 13 amino acids, corresponding to different regions of the amino acid sequence of LCE6A.
- These polypeptides were used in binding assays in situ. Cryosections of human abdominal skin, saturated by incubation in the presence of bovine albumin at 1% in PBS for 30 minutes at room temperature, were brought into contact with 100 mM Tris (pH 7.4) containing 100 μM of biotinylated polypeptide and 5 mM of CaCl2. After incubation for 2 h at room temperature, the reaction is stopped by adding EDTA at 25 mM for 5 minutes. The sections are then incubated in PBS containing 1% of SDS to destroy the noncovalent bonds.
- The presence of biotinylated polypeptides bound to the cornified envelopes by the transglutaminases that are present and active in the tissue is detected by incubation of the sections with streptavidin-AlexaFluor555 at 5 μg/ml (Invitrogen) and visualization in the confocal microscope.
- A positive control is performed in a similar experiment but by incubating the sections with 100 μM of cadaverine coupled to AlexaFluor555 (Invitrogen) instead of the polypeptides. For the negative controls, the cryosections are incubated with each biotinylated polypeptide or with cadaverine coupled to AlexaFluor555 but incubation is carried out in the presence of 100 mM of EDTA and in the absence of calcium.
- The positive control shows marking of the contour of the granular keratinocytes, corresponding to the region of the section where there are active transglutaminases. The polypeptides corresponding to the amino acid sequences SEQ ID NO: 3, 4 and 5 show similar marking to that obtained after incubation with cadaverine-AlexaFluor555, whereas no marking is obtained when these same polypeptides or cadaverine-AlexaFluor555 are incubated in the presence of EDTA and in the absence of calcium. Incubation of the sections in the presence of calcium with the polypeptide RPAPPPISGGGYRAR (SEQ ID NO: 19), whose sequence does not correspond to any fragment of LCE6A, does not give any pericellular marking of the keratinocytes of the granular layer. Finally, the polypeptide MSQAKQQSW (SEQ ID NO: 17) corresponding to the mutated SEQ ID NO: 3, and the polypeptide EVAKPRRARQALR (SEQ ID NO: 18) corresponding to the mutated SEQ ID NO: 5, does not give any pericellular marking of the keratinocytes of the granular layer.
- Consequently, the amino acid sequences SEQ ID NO: 3, 4 and 5 contain the residues necessary for the transglutaminases present in the granular layer of the human epidermis for establishing covalent bonds with the cornified envelope. The loss of capacity for binding the cornified envelopes of the polypeptides corresponding to the mutated SEQ ID NO: 1 and No. 3 suggests that linking of a glutamine residue (Q) and a lysine residue (K) in the sequence of the LCE6A protein is necessary to permit said binding.
- The following composition can be prepared conventionally by a person skilled in the art. The quantities stated below are expressed in percentages by weight. The ingredients shown in capital letters are identified according to the INCI names.
-
INCI Name % (w/w) Water Q.S. 100.00 Chelating agent 0.05 pH adjuster 0.05 Preservative 0.05 Glycol 3.25 AMMONIUM ACRYLOYLDIMETHYLTAURATE/VP 1.20 COPOLYMER ACRYLATES/C10-30 ALKYL ACRYLATE 0.20 CROSSPOLYMER GLYCERIN 3.00 GLYCERYLPOLYMETHACRYLATE 4.18 SODIUM ACETYLATED HYALURONATE 0.05 Oil 10.00 ALCOHOL 8.00 PERFUMES 0.30 Polypeptide SEQ ID NO: 4 obtained according to example 0.05 4 - This composition can be applied daily, in the morning and/or in the evening, on skin that is particularly dehydrated and/or exposed to aggressive environmental factors, to improve comfort and make the complexion uniform.
- Aim: To determine if short peptides derived from SEQ ID NO: 2, having at least one glutamine (Gln, Q)-Lysine (Lys, K) domain and having at least 80% homology with fragments of SEQ ID NO:2, still possess the ability to be crosslinked to cornified envelopes by endogenous transglutaminase.
- Protocol: The following short peptides derived from the amino acid sequences PEVQKP of LCE6A (amino-acids 49 to 54 of SEQ ID NO:2), which sequences meet the criteria defined above and are biotinylated at their amino-terminus, were synthesized: PGVQKP (SEQ ID NO: 7), PEGQKP (SEQ ID NO: 8), GEVQKP (SEQ ID No: 9), PEVQKG (SEQ ID No: 10).
- These peptides were used at a concentration of 100 μM in in situ binding assays. Cryosections of human abdominal skin, saturated by incubation in the presence of bovine albumin at 1% in PBS for 30 minutes at room temperature, were brought into contact with 100 mM Tris (pH 7.4) containing 100 μM of biotinylated polypeptide and 5 mM of CaCl2). After incubation for 2 h at room temperature, the reaction was stopped by adding EDTA at 25 mM for 20 minutes. The sections were then incubated in PBS containing 1% of SDS to destroy the noncovalent bonds. The presence of biotinylated polypeptides bound to the cornified envelopes by the transglutaminases that are present and active in the tissue was detected by incubation of the sections with streptavidin-AlexaFluor555 at 5 μg/ml (Invitrogen) and visualization in the fluorescence microscope. A positive control was performed in a similar experiment but by incubating the sections with 100 μM of the peptide PEVQKP of LCE6A (amino-acids 49 to 54 of SEQ ID NO: 2). For the negative control, the cryosections were incubated with each biotinylated polypeptide but incubation was carried out in the presence of 100 mM of EDTA and in the absence of calcium.
- Results: The positive control shows labelling of the contour of the granular keratinocytes, corresponding to the region of the section where there are active transglutaminases. The tested peptides show similar labelling (see e.g.
FIG. 1 for peptide PEVQKG (SEQ ID No: 10) to that obtained after incubation with the positive control, whereas no labelling is obtained when these same peptides are incubated in the presence of EDTA and in the absence of calcium. Consequently, the tested peptides derived from SEQ ID NO:2, having at least one glutamine (Gln, Q)-Lysine (Lys, K) domain and having at least 80% homology with said fragment of SEQ ID NO: 2, still possess the ability to bind cornified envelopes.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/933,502 US20230227503A1 (en) | 2010-04-27 | 2022-09-20 | Polypeptide expressed in the stratum corneum and use thereof |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1053225A FR2959230B1 (en) | 2010-04-27 | 2010-04-27 | POLYPEPTIDE EXPRESSED IN CORNEA LAYER AND USE THEREOF |
FR1053225 | 2010-04-27 | ||
PCT/FR2011/050953 WO2011135253A1 (en) | 2010-04-27 | 2011-04-27 | Polypeptide expressed in the stratum corneum and use thereof |
US201213695458A | 2012-10-31 | 2012-10-31 | |
US14/736,666 US9617307B2 (en) | 2010-04-27 | 2015-06-11 | Polypeptide expressed in the stratum corneum and use thereof |
US15/447,968 US20170260235A1 (en) | 2010-04-27 | 2017-03-02 | Polypeptide expressed in the stratum corneum and use thereof |
US16/138,124 US11479580B2 (en) | 2010-04-27 | 2018-09-21 | Polypeptide expressed in the stratum corneum and use thereof |
US17/933,502 US20230227503A1 (en) | 2010-04-27 | 2022-09-20 | Polypeptide expressed in the stratum corneum and use thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/138,124 Continuation US11479580B2 (en) | 2010-04-27 | 2018-09-21 | Polypeptide expressed in the stratum corneum and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230227503A1 true US20230227503A1 (en) | 2023-07-20 |
Family
ID=59786261
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/447,968 Abandoned US20170260235A1 (en) | 2010-04-27 | 2017-03-02 | Polypeptide expressed in the stratum corneum and use thereof |
US16/138,124 Active US11479580B2 (en) | 2010-04-27 | 2018-09-21 | Polypeptide expressed in the stratum corneum and use thereof |
US17/933,502 Abandoned US20230227503A1 (en) | 2010-04-27 | 2022-09-20 | Polypeptide expressed in the stratum corneum and use thereof |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/447,968 Abandoned US20170260235A1 (en) | 2010-04-27 | 2017-03-02 | Polypeptide expressed in the stratum corneum and use thereof |
US16/138,124 Active US11479580B2 (en) | 2010-04-27 | 2018-09-21 | Polypeptide expressed in the stratum corneum and use thereof |
Country Status (1)
Country | Link |
---|---|
US (3) | US20170260235A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU665789B2 (en) * | 1991-10-28 | 1996-01-18 | Cytran Ltd. | Pharmaceutical lysine-containing polypeptide compositions and methods of use thereof |
US5939385A (en) | 1993-08-13 | 1999-08-17 | Zymogenetics, Inc. | Transglutaminase cross-linkable polypeptides and methods relating thereto |
US6958148B1 (en) | 1998-01-20 | 2005-10-25 | Pericor Science, Inc. | Linkage of agents to body tissue using microparticles and transglutaminase |
AU2002246502A1 (en) | 2000-11-17 | 2002-08-06 | Hyseq, Inc. | Nucleic acids and polypeptides |
US20030113322A1 (en) * | 2001-12-18 | 2003-06-19 | Cedric Bes | CDR-H1-derived peptide CB11, pharmaceutical compositions made therefrom and methods of treating disorders in mammals |
EP1342474A1 (en) | 2002-03-08 | 2003-09-10 | Universiteit Leiden | The use of proline, poly-proline peptides and proline-rich proteins to quench reactive oxygen species |
WO2008016356A2 (en) | 2006-08-02 | 2008-02-07 | Genizon Biosciences | Genemap of the human genes associated with psoriasis |
-
2017
- 2017-03-02 US US15/447,968 patent/US20170260235A1/en not_active Abandoned
-
2018
- 2018-09-21 US US16/138,124 patent/US11479580B2/en active Active
-
2022
- 2022-09-20 US US17/933,502 patent/US20230227503A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20190010191A1 (en) | 2019-01-10 |
US11479580B2 (en) | 2022-10-25 |
US20170260235A1 (en) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100637934B1 (en) | Stimulation of the synthesis and the activity of an isoform of lysyl oxidase-like LOXL for stimulating the formulation of elastic fibres | |
AU2015202010B2 (en) | Hatching fluid enzymes and uses thereof | |
KR100844914B1 (en) | Stimulation of the activity of an isoform of lysyl oxidase for combating against some pathologies due to an incomplete, absent or disorganized elastogenesis | |
CA2692190C (en) | Novel compounds, use thereof in cosmetic and cosmeceutic applications, and compositions comprising same | |
US8933035B2 (en) | Transglutaminase-activating peptide and cosmetic or pharmaceutical composition containing same | |
KR20140083999A (en) | Substance for restoring normal co-expression and interaction between lox and nrage proteins | |
US7098004B2 (en) | Isolated polypeptide of the stratum corneum and its use | |
US9617307B2 (en) | Polypeptide expressed in the stratum corneum and use thereof | |
US20230227503A1 (en) | Polypeptide expressed in the stratum corneum and use thereof | |
EP2349319A1 (en) | Cosmetic and therapeutic use of proteins of dj-1 type for treating skin dryness | |
US8304392B2 (en) | Pharmaceutical and/or cosmetic composition containing an active principle activator of cytochrome C | |
GB2443036A (en) | Composition for controlling FGF-2-related skin alteration | |
US8530406B2 (en) | HMG-CoA reductase derived peptide and cosmetic or pharmaceutical composition containing same | |
KR20080034756A (en) | Use of substances to protect fgf-2 or fgf-beta growth factor | |
US20090012002A1 (en) | Cosmetic or pharmaceutical composition comprising peptides, uses and treatment processes | |
JP2004217662A (en) | Composition containing at least one polypeptide of hydrolase family having amidase activity and locally applicable and/or product capable of controlling the activity | |
US9566222B2 (en) | Peptidyl arginine deiminase 1 and/or 3 activator compounds in the epidermis and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITE PAUL SABATIER TOULOUSE III, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JONCA, NATHALIE;TOULZA, EVE;SAINTIGNY, GAELLE;AND OTHERS;SIGNING DATES FROM 20121210 TO 20121213;REEL/FRAME:061146/0147 Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - CNRS, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JONCA, NATHALIE;TOULZA, EVE;SAINTIGNY, GAELLE;AND OTHERS;SIGNING DATES FROM 20121210 TO 20121213;REEL/FRAME:061146/0147 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |