[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20230094489A1 - Lighting Fixture Having an Environmental Detection System - Google Patents

Lighting Fixture Having an Environmental Detection System Download PDF

Info

Publication number
US20230094489A1
US20230094489A1 US17/903,729 US202217903729A US2023094489A1 US 20230094489 A1 US20230094489 A1 US 20230094489A1 US 202217903729 A US202217903729 A US 202217903729A US 2023094489 A1 US2023094489 A1 US 2023094489A1
Authority
US
United States
Prior art keywords
power supply
sensor
lighting fixture
environmental parameter
environmental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/903,729
Inventor
Douglas Matthew Hamilton
Blake Ashton Nickles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Progress Lighting LLC
Original Assignee
Hubbell Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubbell Inc filed Critical Hubbell Inc
Priority to US17/903,729 priority Critical patent/US20230094489A1/en
Publication of US20230094489A1 publication Critical patent/US20230094489A1/en
Assigned to PROGRESS LIGHTING, LLC reassignment PROGRESS LIGHTING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUBBELL INCORPORATED
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PROGRESS LIGHTING, LLC
Assigned to TCW ASSET MANAGEMENT COMPANY LLC reassignment TCW ASSET MANAGEMENT COMPANY LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PROGRESS LIGHTING, LLC
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • F21V23/0442Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • F21V33/0064Health, life-saving or fire-fighting equipment
    • F21V33/0076Safety or security signalisation, e.g. smoke or burglar alarms, earthquake detectors; Self-defence devices
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/12Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms
    • G08B21/14Toxic gas alarms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • H02J9/065Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads for lighting purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates generally to lighting fixtures.
  • a lighting fixture can include a light source that provides illumination for a room or area in which the lighting fixture is mounted.
  • the light source can be selectively coupled to a power supply (e.g., mains power supply) via manipulation of a wall switch that is movable between at least a first position and a second position.
  • a power supply e.g., mains power supply
  • the switch When the switch is in the first position, the light source can receive electrical power from the power supply and can use the electrical power to illuminate the room or area.
  • the switch is in the second position, however, the light source cannot receive electrical power from the power supply. In this way, operation of the light source can be controlled via manipulation of the switch.
  • a smoke detector can be mounted in the room or area in which the lighting fixture is mounted.
  • the smoke detector can include one or more sensors that receive electrical power from a battery positioned onboard the smoke detection.
  • the sensors receive electrical power from a battery, a user must regularly replace the battery to ensure proper operation of the smoke detector. Replacing the battery can be a rather burdensome task, especially when the smoke detector is mounted to the ceiling.
  • the present disclosure is directed to lighting fixture that includes a sensor, a first power circuit configured to produce a first driving current for the sensor, a second power circuit a first power circuit configured to produce a second driving current for the sensor, and a switching device connected to the power supply.
  • the switching device is configured to move between a first position and a second position, and to connect the first power circuit to a power supply in the first position, and connect the second power circuit to the power supply in the second position.
  • the present disclosure is directed to a method including receiving, at one or more control devices, data from a sensor of a light fixture, and manipulating a switching device between a first position and a second position based on the data.
  • a switching device When the switching device is in a first position, a first power circuit configured to produce a first driving current for the sensor is coupled to the power supply, and when the switching device is in a second position, that is different than the first position, a second power circuit configured to produce a second driving current for the sensor is coupled to the power supply.
  • the present disclosure is directed to a system for detecting an environmental condition associated with a room or area.
  • the system includes a lighting fixture disposed within the room or area, the lighting fixture including a switching device and a sensor.
  • a first power circuit is connected to the switching device and configured to produce a first driving current for the sensor.
  • a second power circuit connected to the switching device and configured to produce a second driving current for the sensor.
  • the switching device configured to move between a first position and a second position, and to connect the first power circuit to a power supply in the first position, and connect the second power circuit to the power supply in the second position.
  • FIG. 1 provides a lighting fixture according to example embodiments of the present disclosure
  • FIG. 2 provide a schematic of a circuit according to example embodiments of the present disclosure
  • FIG. 3 provides an environmental detection system for a lighting fixture according to example embodiments of the present disclosure
  • FIG. 4 provides a block diagram of an example control device according to example embodiments of the present disclosure
  • FIG. 5 provides a schematic of a circuit according to example embodiments of the present disclosure
  • FIG. 6 provides a schematic of a circuit according to example embodiments of the present disclosure.
  • FIG. 7 provides a schematic of a circuit according to example embodiments of the present disclosure.
  • FIG. 8 provides a schematic of a circuit according to example embodiments of the present disclosure.
  • FIG. 9 provides a flow diagram of a method for according to example embodiments of the present disclosure.
  • Example aspects of the present disclosure are directed to a lighting fixture.
  • the lighting fixture can include one or more light sources (e.g., light emitting diode (LED) light sources) configured to illuminate a room in which the lighting fixture is mounted or located.
  • the primary functionality of the lighting fixture can be to illuminate a space.
  • LED light emitting diode
  • the lighting fixture can include an environmental detection system.
  • the environmental detection system can receive electrical power (e.g., alternating current (AC) power, direct current (DC) power).
  • the electrical power can be a continuous source of electrical power, irrespective of a position of a switching device used to control power to the light source of the lighting fixture.
  • the environmental detection system can be used to detect an environmental condition (e.g., fire, carbon monoxide, etc.) occurring within the room. As discussed below, the environmental detection system can take one or more actions based on the detected environmental condition.
  • the environmental detection system can include one or more sensors configured to detect an environmental parameter associated with the room.
  • the environmental parameter can include, without limitation, a temperature of the room, a humidity of the room, presence and/or concentration of toxins (e.g., carbon monoxide) or other harmful substances in the room, or any other suitable parameter indicative of an environmental condition occurring within the room.
  • the environmental detection system can also include one or more control devices.
  • a control device refers to components used to perform computations and can include one or more processors and one or more memory devices, etc.
  • the control device can be used in communication with the sensors. In this way, the control device can receive one or more data signals from the sensors.
  • the control device can be communicatively coupled to other devices (e.g., servers, user devices, control systems, etc.). In this way, the control device can communicate information (e.g., data signals collected from the sensors) to the other devices (e.g., servers, user devices, control systems etc.).
  • the control device can communicate data from the sensors to a user device (e.g., smartphone, tablet, wearable device, etc.) for observation by the user.
  • a user device e.g., smartphone, tablet, wearable device, etc.
  • the control device of the environmental detection system can communicate directly with other devices (e.g., using peer-to-peer communication) and/or with other devices over a network.
  • the network can be any suitable type of network, such as a local area network (e.g., intranet), wide area network (e.g., internet), low power wireless network (e.g., Bluetooth Low Energy (BLE), Zigbee, etc.), cellular network, or some combination thereof and can include any number of wired or wireless links.
  • communication over the network can be implemented via any type of wired or wireless connection, using a wide variety of communication protocols, encodings or formats, and/or protection schemes.
  • Example communication technologies used in accordance with example aspects of the present disclosure can include, for instance, Bluetooth low energy, Bluetooth mesh networking, near-field communication, Thread, TLS (Transport Layer Security), Wi-Fi (e.g., IEEE, 802.11), Wi-Fi Direct (for peer-to-peer communication), Z-Wave, Zigbee, Halow, cellular communication, LTE, low-power wide area networking, VSAT, Ethernet, MoCA (Multimedia over Coax Alliance), PLC (Power-line communication), DLT (digital line transmission), etc.
  • TLS Transport Layer Security
  • Wi-Fi e.g., IEEE, 802.11
  • Wi-Fi Direct for peer-to-peer communication
  • Z-Wave Zigbee
  • Halow cellular communication
  • LTE low-power wide area networking
  • VSAT low-power wide area networking
  • Ethernet Ethernet
  • MoCA Multimedia over Coax Alliance
  • PLC Power-line communication
  • DLT digital line transmission
  • control device can be configured to control operation of various output devices (e.g., a speaker, display screen, visual indicator, etc.) based, at least in part, on data collected via the sensors of the environmental detection system.
  • control device can be configured to perform a control action associated with emitting an audible alert or notification via the speaker of the environmental detection system.
  • control device can be configured to perform a control action associated with communicating a notification (e.g., SMS text message, email, etc.) to a user device (e.g., smartphone, laptop, etc.).
  • a notification e.g., SMS text message, email, etc.
  • user device e.g., smartphone, laptop, etc.
  • control device can be configured to control operation of the one or more light sources of the light fixture based on data signals from the sensor(s).
  • the one or more control devices can be configured to flash the one or more light sources in response to a detected environmental condition.
  • the detected environmental condition can be a fire occurring within the room or area in which the lighting fixture is located.
  • the detected environmental condition can be a carbon monoxide (CO) leak occurring in the room or area.
  • CO carbon monoxide
  • FIG. 1 depicts a lighting fixture 100 disposed within a ceiling 120 that extends between a first surface 122 and a second surface 124 along a vertical direction V.
  • the ceiling 120 can separate a first space 130 (e.g., positioned beneath the ceiling 110 ) from a second space 140 (e.g., positioned above the ceiling 110 ) along the vertical direction V.
  • the first space 130 can include a room (e.g., kitchen, living room, etc.) of a residential home
  • the second space 140 can include an attic positioned above the room.
  • the lighting fixture 100 can include a light source 110 to provide illumination for the first space 130 .
  • the light source 110 can be disposed within the lighting fixture 100 .
  • the light source 110 can include one or more light emitting diodes (LED) devices or any other suitable light source.
  • operation of the light source 110 can be controlled via manipulation of a wall switch 150 .
  • the light source 110 can include a power circuit 112 configured to receive an input power from a power supply 160 (e.g., an AC or DC power supply) and convert the input power to an output power suitable for powering the light source 110 .
  • a power supply 160 e.g., an AC or DC power supply
  • the power supply 160 can be a mains power supply (e.g., AC power supply).
  • the power supply 160 can comprise a backup power supply (e.g., uninterruptable power supply) configured to provide electrical power in the event the mains power supply becomes inoperable due to, for instance, a power outage.
  • the light source 110 can include an array of LED light sources, and the power circuit 112 can be configured to provide different driver currents to each of the LED light sources.
  • the power circuit 112 can include one or more of a multi-channel driver circuit, a current splitter circuit, one or more current regulators, and/or other devices that can be used to independently provide a driver current to each of the LED light sources.
  • the switch 150 can be used to control operation of the light source 110 . More specifically, the switch 150 can be used to selectively couple the light source 110 to the power supply 160 .
  • the switch 150 can be a single pole single throw (SPST) switch movable between a first position 152 and a second position 154 .
  • SPST single pole single throw
  • the switch 150 is in the first position 152 , the light source 110 is decoupled (e.g., not in electrical communication) from the power supply 160 .
  • the switch 150 is in the second position 154 , the light source 110 is coupled to the power supply 160 .
  • the switch 150 can be used to activate (e.g., turn on) and deactivate (e.g., turn off) the light source 110 .
  • the lighting fixture 100 can include an environmental detection system 200 according to example embodiments of the present disclosure.
  • the environmental detection system 200 can include one or more sensors 210 coupled to the lighting fixture 100 and operable to sense an environmental parameter associated with the first space 130 .
  • the environmental parameter sensed by the sensors(s) 210 can include an amount of smoke present within the first space 130 .
  • the sensor(s) 210 can collect data that can be used to determine whether an environmental condition (e.g., fire) is occurring within the first space 130 .
  • an environmental condition e.g., fire
  • the sensor(s) 210 can be configured to detect any suitable environmental parameter.
  • the sensors(s) 210 can be operable to detect an amount of carbon monoxide (CO) present within the first space 130 . In this way, the sensor(s) 210 can collect data that can be used to determine whether there is a CO leak within the first space 130 .
  • CO carbon monoxide
  • the environmental detection system 200 can include a speaker 220 . More specifically, the speaker 220 can be coupled to or located within the lighting fixture 100 . The speaker 220 can convert electrical signals into audible sounds. In some implementations, the speaker 220 can be used to emit audible notifications (e.g., warnings) to one or more persons within the first space 130 . For instance, the speaker 220 can emit an audible alert when it is determined that an environmental condition, such as a fire, is occurring within the first space 130 .
  • an environmental condition such as a fire
  • the environmental detection system 200 can include one or more control devices 230 .
  • the control device(s) 230 can be coupled to the lighting fixture 100 .
  • the control device(s) 230 can perform one or more control actions based on data signals received from the sensors(s) 210 .
  • FIG. 4 illustrates one embodiment of suitable components of the control device(s) 230 .
  • the control device(s) 230 can include at least one processor 232 and associated memory device 234 configured to perform a variety of computer-implemented functions (e.g., performing the methods, steps, calculations and the like disclosed herein).
  • the term “processor” refers not only to integrated circuits referred to in the art as being included in a computer, but also refers to a controller, microcontroller, a microcomputer, a programmable logic controller (PLC), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), and other programmable circuits.
  • the memory device 234 can include computer-readable media including, but not limited to, non-transitory computer-readable media, such as RAM, ROM, hard drives, flash drives, or other suitable memory devices.
  • the memory device 234 can store information accessible by the processor(s) 232 , including computer-readable instructions 236 that can be executed by the processor(s) 232 .
  • the computer-readable instructions 236 can be any set of instructions that, when executed by the processor(s) 232 , cause the processor(s) 232 to perform operations.
  • the computer-readable instructions 236 can be software written in any suitable programming language or can be implemented in hardware.
  • the computer-readable instructions 236 can be executed by the processor(s) 232 to perform operations, such as performing a control action associated with presenting an alarm or notification based on an environmental parameter associated with the room or space in which the lighting fixture 100 is located.
  • the processor(s) 232 can perform the control action when the environmental parameter falls outside a range of approved values.
  • the memory device 234 can further store data 238 that can be accessed by the control device(s) 230 .
  • the data 238 can include data indicative of the environmental parameter detected by the sensor(s) 210 .
  • the control device(s) 230 can include a communications interface 240 .
  • the communications interface 240 can include associated electronic circuitry that can be used to communicatively couple the control device(s) 230 with other devices, such as the sensor(s) 210 and the speaker 220 .
  • the communication interface 240 can allow the control device(s) 230 to communicate directly with other devices.
  • the communication interface 240 can provide for communication with other devices over a network 170 ( FIG. 3 ).
  • the network 170 can be any suitable type of network.
  • the network 170 can be any suitable type of network, such as a local area network (e.g., intranet), wide area network (e.g., internet), low power wireless network (e.g., Bluetooth Low Energy (BLE), Zigbee, etc.), or some combination thereof and can include any number of wired or wireless links.
  • communication over the network 170 can be implemented via any type of wired or wireless connection, using a wide variety of communication protocols, encodings or formats, and/or protection schemes.
  • Example communication technologies used in accordance with example aspects of the present disclosure can include, for instance, Bluetooth low energy, Bluetooth mesh networking, near-field communication, Thread, TLS (Transport Layer Security), Wi-Fi (e.g., IEEE, 802.11), Wi-Fi Direct (for peer-to-peer communication), Z-Wave, Zigbee, Halow, cellular communication, LTE, low-power wide area networking, VSAT, Ethernet, MoCA (Multimedia over Coax Alliance), PLC (Power-line communication), DLT (digital line transmission), etc.
  • TLS Transport Layer Security
  • Wi-Fi e.g., IEEE, 802.11
  • Wi-Fi Direct for peer-to-peer communication
  • Z-Wave Zigbee
  • Halow cellular communication
  • LTE low-power wide area networking
  • VSAT low-power wide area networking
  • Ethernet Ethernet
  • MoCA Multimedia over Coax Alliance
  • PLC Power-line communication
  • DLT digital line transmission
  • control device(s) 230 can perform one or more control actions associated with controlling operation of the light source 110 .
  • control action(s) can include activating (e.g., turn on) or deactivating (e.g., turn off) the light source 110 .
  • control device(s) 230 can perform a control action associated with flashing (e.g., blinking) the light source 110 at a predetermined frequency. In this way, the light source 110 can be used to provide a visual cue indicative of a detected environmental condition (e.g. fire).
  • control device 230 can perform a control action associated with notifying an emergency provider of the detected environmental condition.
  • the control action can comprise providing an automated message to a 911 operator.
  • an emergency provider e.g., policeman, fireman, emergency medical technician (EMT), etc.
  • EMT emergency medical technician
  • the control device(s) 230 can perform a control action associated with operation of the power supply 160 .
  • the control action can comprise deactivating the power supply 160 subsequent to notifying the emergency provider.
  • the control device(s) 230 can communicate with a user device 180 over the network 170 .
  • the user device 180 can be any suitable type of device, such as, for example, a personal computing device (e.g., laptop or desktop), a mobile computing device (e.g., smartphone or tablet), a wearable computing device, an embedded computing device, a remote computing device, or any other suitable type of computing device.
  • the user device 180 can include one or more computing device(s) 184 with the same or similar components as described above with regard to the control device(s) 230 .
  • the computing device 184 of the user device 180 can include one or more processors and one or more memory devices that store instructions that are executable by the processor to cause user device 180 to perform operations, such as e.g., communicating one or more control signals over the network 170 to the control device(s) 230 . In this way, a user can control operation of the light source 110 via the user device 180 .
  • control device(s) 230 can communicate data to the user device 180 via the communication interface 240 .
  • the control device(s) 230 can provide data captured by the sensor(s) 210 to the user device 180 .
  • the information e.g., data
  • the information can be displayed (e.g., via a display device) or otherwise presented (e.g., via audio speakers) to the user through a suitable interface 182 . In this way, a user can observe data collected by the sensor(s) 210 .
  • control device(s) 230 can communicate a notification or alert indicative of the detected environmental condition (e.g., fire) to the user device 180 via the communication interface 240 .
  • the computing device(s) 230 can communicate an electronic message (e.g., email, short message service (SMS) text message, etc.) indicating the detected environmental condition.
  • SMS short message service
  • the environmental detection system 200 can include a power circuit 250 configured to receive an input power from the power supply 160 and convert the input power to an output power suitable for powering the sensor(s) 210 , the speaker 220 , and the control device(s) 230 .
  • the power circuit 250 can be configured to provide different driving currents to the sensor(s) 210 , speaker 220 , and the control device(s) 230 .
  • the power circuit 250 can include one or more of a multi-channel driver circuit, a current splitter circuit, one or more current regulators, and/or other devices that can be used to independently provide a driver current to the sensor(s) 210 , the speaker 220 , and the control device(s) 230 .
  • the circuit 500 can include a switch 510 .
  • the switch 510 can be a single pole double throw (SPDT) switch movable between a first position 520 and a second position 530 .
  • SPDT single pole double throw
  • the switch 510 can be the switch 150 discussed above and depicted in FIGS. 1 and 2 .
  • the switch 510 When the switch 510 is in the first position 520 , the environmental detection system 200 can receive electrical power from the power supply 160 .
  • both the environmental detection system 200 and the light source 100 can receive electrical power from the power supply 160 . In this way, the environmental detection system 200 can receive a continuous supply of electrical power from the power supply 160 (e.g., mains power supply or backup power supply) regardless of whether the light source 110 of the lighting fixture 100 ( FIG. 1 ) is activated.
  • the power supply 160 e.g., mains power supply or backup power supply
  • the power supply 160 can comprise a mains power supply (e.g. AC mains) for a building.
  • the environmental detection system 200 can be coupled to the mains power supply via the switch 510 .
  • the mains power supply for the building may become inoperable due to, for instance, a power outage.
  • the environmental detection system 200 can be coupled to a backup power supply (e.g., uninterruptable power supply) via the switch 510 . In this manner, the environmental detection system can remain coupled to a continuous supply of electrical power.
  • a backup power supply e.g., uninterruptable power supply
  • the circuit 600 can include a switch 610 movable between at least a first position 620 and a second position 630 .
  • the circuit 600 also includes a first power circuit 640 and a second power circuit 650 .
  • the first power circuit 640 can receive an input power (e.g., AC power) from the power supply 160 and can convert the input power to a suitable output power (e.g., DC power) for the environmental detection system 200 .
  • the first power circuit 640 can be configured to provide a driver current I to the environmental detection system 200 .
  • the second power circuit 650 can receive an input power (e.g., AC power) from the power supply 160 (e.g., AC mains or backup power supply) and can convert the input power to a suitable output power (e.g., DC power) for both the environmental detection system 200 and the light source 110 .
  • the second power circuit 650 can be configured to provide different driving currents to the light source 110 and the environmental detection system 200 .
  • the second power circuit 650 can include one or more of a multi-channel driver circuit, a current splitter circuit, one or more current regulators, and/or other devices that can be used to independently provide a first driver current I 1 to the light source 110 and a second driver current I 2 to the environmental detection system 200 .
  • the environmental detection system 200 can receive a continuous supply of electrical power from the power supply 160 (e.g., mains power supply or backup power supply) regardless of whether the light source 110 of the lighting fixture 100 ( FIG. 1 ) is activated.
  • the power supply 160 e.g., mains power supply or backup power supply
  • the power supply 160 can comprise a mains power supply (e.g. AC mains) for a building.
  • the environmental detection system 200 can be coupled to the mains power supply via the switch 610 .
  • the mains power supply for the building may become inoperable due to, for instance, a power outage.
  • the environmental detection system 200 can be coupled to a backup power supply (e.g., uninterruptable power supply) via the switch 610 . In this manner, the environmental detection system can remain coupled to a continuous supply of electrical power.
  • a backup power supply e.g., uninterruptable power supply
  • FIG. 9 a flow diagram of one example method 900 for determining a condition associated with a room or area via an environmental detection system of a lighting fixture is provided according to example embodiments of the present disclosure.
  • the method 900 will be discussed with reference to the lighting fixture 100 and environmental detection system 200 described above with reference to FIGS. 1 through 3 .
  • the disclosed method 900 can generally be implemented with lighting fixtures having any other suitable configuration.
  • FIG. 9 depicts steps performed in a particular order for purposes of illustration and discussion, the method discussed herein can be omitted, rearranged, combined, and/or adapted in various ways without deviating from the scope of the present disclosure.
  • the method 900 can include receiving, at a control device of the environmental detection system, data indicative of an environmental parameter associated with the room or area in which the lighting fixture is located.
  • the control device can receive a data signal from a sensor of the environmental detection system.
  • the data signal can be indicative of the environmental parameter associated with a room or area in which the lighting fixture is located.
  • the data signal can indicate an amount of CO present within the room or area.
  • the method 900 can include comparing, by the control device, the environmental parameter received at ( 902 ) against a range of approved values for the environmental parameter. In some implementations, the method 900 can revert to ( 902 ) when the control device determines the environmental parameter associated with the room or area is within the range of approved values. Alternatively, the method 900 can proceed to ( 906 ) when the control device determines the environmental parameter associated with the room or area falls outside the range of approved values for the environmental parameter.
  • the method 900 can include performing, by the control device, one or more control actions associated with providing a notification indicative of an environmental condition occurring within the room or area.
  • the control action(s) can be associated with controlling operation of the light source of the lighting fixture.
  • the control action can include blinking (e.g., flashing) the light source at a predetermined frequency.
  • the light source can provide a visual indicator to one or more person within the room or area.
  • the visual cue can indicate presence of an environmental condition (e.g., fire) detected based, at least in part, on the comparison of the environmental parameter against the range of approved values for the environmental parameter at ( 904 ).
  • control action(s) can include controlling operation of the speaker of the environmental detection system.
  • the control action can include broadcasting an audible indicator or alert over the speaker.
  • the speaker can provide an audible indicator or cue to one or more persons within the room or area.
  • the audible indicator can indicate occurrence of the environmental condition (e.g., fire) within the rom or area.
  • control action(s) can include communicating an electronic message (e.g., email, short message service (SMS) text message, etc.) over the network to one or more user devices. More specifically, the electronic message can be provided to interested parties (e.g., homeowner, 911 dispatch operator, etc.). In this way, the interested parties can become apprised of the detected environmental condition and take the appropriate actions to resolve the environmental condition.
  • SMS short message service

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Security & Cryptography (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A lighting fixture is provided. The lighting fixture includes a sensor, a first power circuit configured to produce a first driving current for the sensor, a second power circuit a first power circuit configured to produce a second driving current for the sensor, and a switching device connected to the power supply. The switching device is configured to move between a first position and a second position, and to connect the first power circuit to a power supply in the first position, and connect the second power circuit to the power supply in the second position.

Description

    PRIORITY CLAIM
  • The present application is a continuation of U.S. application Ser. No. 17/108,058, titled “Lighting Fixture Having an Environmental Detection System,” having a filing date of Dec. 1, 2020, and U.S. application Ser. No. 16/123,498 having a filing date of Sep. 6, 2018 which is based on and claims priority to U.S. Provisional Application No. 62/562,762, titled “Lighting Fixture Having an Environmental Detection System,” having a filing date of Sep. 25, 2017, which is incorporated by reference herein.
  • FIELD
  • The present disclosure relates generally to lighting fixtures.
  • BACKGROUND
  • A lighting fixture can include a light source that provides illumination for a room or area in which the lighting fixture is mounted. The light source can be selectively coupled to a power supply (e.g., mains power supply) via manipulation of a wall switch that is movable between at least a first position and a second position. When the switch is in the first position, the light source can receive electrical power from the power supply and can use the electrical power to illuminate the room or area. When the switch is in the second position, however, the light source cannot receive electrical power from the power supply. In this way, operation of the light source can be controlled via manipulation of the switch.
  • A smoke detector can be mounted in the room or area in which the lighting fixture is mounted. The smoke detector can include one or more sensors that receive electrical power from a battery positioned onboard the smoke detection. However, since the sensors receive electrical power from a battery, a user must regularly replace the battery to ensure proper operation of the smoke detector. Replacing the battery can be a rather burdensome task, especially when the smoke detector is mounted to the ceiling.
  • BRIEF DESCRIPTION
  • Aspects and advantages of embodiments of the present disclosure will be set forth in part in the following description, or may be learned from the description, or may be learned through practice of the embodiments.
  • In one aspect, the present disclosure is directed to lighting fixture that includes a sensor, a first power circuit configured to produce a first driving current for the sensor, a second power circuit a first power circuit configured to produce a second driving current for the sensor, and a switching device connected to the power supply. The switching device is configured to move between a first position and a second position, and to connect the first power circuit to a power supply in the first position, and connect the second power circuit to the power supply in the second position.
  • In another aspect, the present disclosure is directed to a method including receiving, at one or more control devices, data from a sensor of a light fixture, and manipulating a switching device between a first position and a second position based on the data. When the switching device is in a first position, a first power circuit configured to produce a first driving current for the sensor is coupled to the power supply, and when the switching device is in a second position, that is different than the first position, a second power circuit configured to produce a second driving current for the sensor is coupled to the power supply.
  • In yet another aspect, the present disclosure is directed to a system for detecting an environmental condition associated with a room or area. The system includes a lighting fixture disposed within the room or area, the lighting fixture including a switching device and a sensor. A first power circuit is connected to the switching device and configured to produce a first driving current for the sensor. A second power circuit connected to the switching device and configured to produce a second driving current for the sensor. The switching device configured to move between a first position and a second position, and to connect the first power circuit to a power supply in the first position, and connect the second power circuit to the power supply in the second position.
  • These and other features, aspects and advantages of the present disclosure will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and, together with the description, serve to explain the principles of the disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Detailed discussion of embodiments directed to one of ordinary skill in the art are set forth in the specification, which makes reference to the appended figures, in which:
  • FIG. 1 provides a lighting fixture according to example embodiments of the present disclosure;
  • FIG. 2 provide a schematic of a circuit according to example embodiments of the present disclosure;
  • FIG. 3 provides an environmental detection system for a lighting fixture according to example embodiments of the present disclosure;
  • FIG. 4 provides a block diagram of an example control device according to example embodiments of the present disclosure;
  • FIG. 5 provides a schematic of a circuit according to example embodiments of the present disclosure;
  • FIG. 6 provides a schematic of a circuit according to example embodiments of the present disclosure;
  • FIG. 7 provides a schematic of a circuit according to example embodiments of the present disclosure;
  • FIG. 8 provides a schematic of a circuit according to example embodiments of the present disclosure; and
  • FIG. 9 provides a flow diagram of a method for according to example embodiments of the present disclosure.
  • DETAILED DESCRIPTION
  • Reference now will be made in detail to embodiments, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the embodiments, not limitation of the present disclosure. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments without departing from the scope or spirit of the present disclosure. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that aspects of the present disclosure cover such modifications and variations.
  • Example aspects of the present disclosure are directed to a lighting fixture. The lighting fixture can include one or more light sources (e.g., light emitting diode (LED) light sources) configured to illuminate a room in which the lighting fixture is mounted or located. The primary functionality of the lighting fixture can be to illuminate a space.
  • In addition, the lighting fixture can include an environmental detection system. The environmental detection system can receive electrical power (e.g., alternating current (AC) power, direct current (DC) power). In some embodiments, the electrical power can be a continuous source of electrical power, irrespective of a position of a switching device used to control power to the light source of the lighting fixture. The environmental detection system can be used to detect an environmental condition (e.g., fire, carbon monoxide, etc.) occurring within the room. As discussed below, the environmental detection system can take one or more actions based on the detected environmental condition.
  • In some implementations, the environmental detection system can include one or more sensors configured to detect an environmental parameter associated with the room. The environmental parameter can include, without limitation, a temperature of the room, a humidity of the room, presence and/or concentration of toxins (e.g., carbon monoxide) or other harmful substances in the room, or any other suitable parameter indicative of an environmental condition occurring within the room.
  • The environmental detection system can also include one or more control devices. As used herein, a control device refers to components used to perform computations and can include one or more processors and one or more memory devices, etc. The control device can be used in communication with the sensors. In this way, the control device can receive one or more data signals from the sensors. In addition, the control device can be communicatively coupled to other devices (e.g., servers, user devices, control systems, etc.). In this way, the control device can communicate information (e.g., data signals collected from the sensors) to the other devices (e.g., servers, user devices, control systems etc.). For instance, the control device can communicate data from the sensors to a user device (e.g., smartphone, tablet, wearable device, etc.) for observation by the user.
  • The control device of the environmental detection system can communicate directly with other devices (e.g., using peer-to-peer communication) and/or with other devices over a network. The network can be any suitable type of network, such as a local area network (e.g., intranet), wide area network (e.g., internet), low power wireless network (e.g., Bluetooth Low Energy (BLE), Zigbee, etc.), cellular network, or some combination thereof and can include any number of wired or wireless links. In general, communication over the network can be implemented via any type of wired or wireless connection, using a wide variety of communication protocols, encodings or formats, and/or protection schemes.
  • Example communication technologies used in accordance with example aspects of the present disclosure can include, for instance, Bluetooth low energy, Bluetooth mesh networking, near-field communication, Thread, TLS (Transport Layer Security), Wi-Fi (e.g., IEEE, 802.11), Wi-Fi Direct (for peer-to-peer communication), Z-Wave, Zigbee, Halow, cellular communication, LTE, low-power wide area networking, VSAT, Ethernet, MoCA (Multimedia over Coax Alliance), PLC (Power-line communication), DLT (digital line transmission), etc. Other suitable wired and/or wireless communication technologies can be used without deviating from the scope of the present disclosure.
  • In some implementations, the control device can be configured to control operation of various output devices (e.g., a speaker, display screen, visual indicator, etc.) based, at least in part, on data collected via the sensors of the environmental detection system. For instance, the control device can be configured to perform a control action associated with emitting an audible alert or notification via the speaker of the environmental detection system. Alternatively or additionally, the control device can be configured to perform a control action associated with communicating a notification (e.g., SMS text message, email, etc.) to a user device (e.g., smartphone, laptop, etc.). In this manner, a user can become apprised of an environmental condition (e.g., fire) occurring within a room or area in which the lighting fixture is mounted.
  • In some embodiments, the control device can be configured to control operation of the one or more light sources of the light fixture based on data signals from the sensor(s). For instance, the one or more control devices can be configured to flash the one or more light sources in response to a detected environmental condition. More specifically, the detected environmental condition can be a fire occurring within the room or area in which the lighting fixture is located. Alternatively, the detected environmental condition can be a carbon monoxide (CO) leak occurring in the room or area.
  • Referring now to the FIGS., FIG. 1 depicts a lighting fixture 100 disposed within a ceiling 120 that extends between a first surface 122 and a second surface 124 along a vertical direction V. As shown, the ceiling 120 can separate a first space 130 (e.g., positioned beneath the ceiling 110) from a second space 140 (e.g., positioned above the ceiling 110) along the vertical direction V. In some implementations, the first space 130 can include a room (e.g., kitchen, living room, etc.) of a residential home, and the second space 140 can include an attic positioned above the room.
  • The lighting fixture 100 can include a light source 110 to provide illumination for the first space 130. As shown, the light source 110 can be disposed within the lighting fixture 100. In some implementations, the light source 110 can include one or more light emitting diodes (LED) devices or any other suitable light source. As discussed below, operation of the light source 110 can be controlled via manipulation of a wall switch 150.
  • Referring briefly now to FIG. 2 , the light source 110 can include a power circuit 112 configured to receive an input power from a power supply 160 (e.g., an AC or DC power supply) and convert the input power to an output power suitable for powering the light source 110. In example embodiments, the power supply 160 can be a mains power supply (e.g., AC power supply). Alternatively and/or additionally, the power supply 160 can comprise a backup power supply (e.g., uninterruptable power supply) configured to provide electrical power in the event the mains power supply becomes inoperable due to, for instance, a power outage.
  • In some instances, the light source 110 can include an array of LED light sources, and the power circuit 112 can be configured to provide different driver currents to each of the LED light sources. For instance, the power circuit 112 can include one or more of a multi-channel driver circuit, a current splitter circuit, one or more current regulators, and/or other devices that can be used to independently provide a driver current to each of the LED light sources.
  • As mentioned above, the switch 150 can be used to control operation of the light source 110. More specifically, the switch 150 can be used to selectively couple the light source 110 to the power supply 160. For instance, in some implementations, the switch 150 can be a single pole single throw (SPST) switch movable between a first position 152 and a second position 154. When the switch 150 is in the first position 152, the light source 110 is decoupled (e.g., not in electrical communication) from the power supply 160. In contrast, when the switch 150 is in the second position 154, the light source 110 is coupled to the power supply 160. In this way, the switch 150 can be used to activate (e.g., turn on) and deactivate (e.g., turn off) the light source 110.
  • Referring now to FIG. 3 , the lighting fixture 100 can include an environmental detection system 200 according to example embodiments of the present disclosure. As shown, the environmental detection system 200 can include one or more sensors 210 coupled to the lighting fixture 100 and operable to sense an environmental parameter associated with the first space 130. For instance, the environmental parameter sensed by the sensors(s) 210 can include an amount of smoke present within the first space 130. In this way, the sensor(s) 210 can collect data that can be used to determine whether an environmental condition (e.g., fire) is occurring within the first space 130. It should be appreciated, however, that the sensor(s) 210 can be configured to detect any suitable environmental parameter. For example, the sensors(s) 210 can be operable to detect an amount of carbon monoxide (CO) present within the first space 130. In this way, the sensor(s) 210 can collect data that can be used to determine whether there is a CO leak within the first space 130.
  • As shown, the environmental detection system 200 can include a speaker 220. More specifically, the speaker 220 can be coupled to or located within the lighting fixture 100. The speaker 220 can convert electrical signals into audible sounds. In some implementations, the speaker 220 can be used to emit audible notifications (e.g., warnings) to one or more persons within the first space 130. For instance, the speaker 220 can emit an audible alert when it is determined that an environmental condition, such as a fire, is occurring within the first space 130.
  • As shown, the environmental detection system 200 can include one or more control devices 230. In some implementations, the control device(s) 230 can be coupled to the lighting fixture 100. As will be discussed below in more detail, the control device(s) 230 can perform one or more control actions based on data signals received from the sensors(s) 210.
  • FIG. 4 illustrates one embodiment of suitable components of the control device(s) 230. As shown, the control device(s) 230 can include at least one processor 232 and associated memory device 234 configured to perform a variety of computer-implemented functions (e.g., performing the methods, steps, calculations and the like disclosed herein). As used herein, the term “processor” refers not only to integrated circuits referred to in the art as being included in a computer, but also refers to a controller, microcontroller, a microcomputer, a programmable logic controller (PLC), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), and other programmable circuits. Examples of the memory device 234 can include computer-readable media including, but not limited to, non-transitory computer-readable media, such as RAM, ROM, hard drives, flash drives, or other suitable memory devices.
  • The memory device 234 can store information accessible by the processor(s) 232, including computer-readable instructions 236 that can be executed by the processor(s) 232. The computer-readable instructions 236 can be any set of instructions that, when executed by the processor(s) 232, cause the processor(s) 232 to perform operations. The computer-readable instructions 236 can be software written in any suitable programming language or can be implemented in hardware. In some implementations, the computer-readable instructions 236 can be executed by the processor(s) 232 to perform operations, such as performing a control action associated with presenting an alarm or notification based on an environmental parameter associated with the room or space in which the lighting fixture 100 is located. For instance, the processor(s) 232 can perform the control action when the environmental parameter falls outside a range of approved values. The memory device 234 can further store data 238 that can be accessed by the control device(s) 230. In example embodiments, the data 238 can include data indicative of the environmental parameter detected by the sensor(s) 210.
  • Additionally, as shown in FIG. 4 , the control device(s) 230 can include a communications interface 240. In example embodiments, the communications interface 240 can include associated electronic circuitry that can be used to communicatively couple the control device(s) 230 with other devices, such as the sensor(s) 210 and the speaker 220. In some embodiments, the communication interface 240 can allow the control device(s) 230 to communicate directly with other devices. In some embodiments, the communication interface 240 can provide for communication with other devices over a network 170 (FIG. 3 ).
  • Referring again to FIG. 3 , the network 170 can be any suitable type of network. The network 170 can be any suitable type of network, such as a local area network (e.g., intranet), wide area network (e.g., internet), low power wireless network (e.g., Bluetooth Low Energy (BLE), Zigbee, etc.), or some combination thereof and can include any number of wired or wireless links. In general, communication over the network 170 can be implemented via any type of wired or wireless connection, using a wide variety of communication protocols, encodings or formats, and/or protection schemes.
  • Example communication technologies used in accordance with example aspects of the present disclosure can include, for instance, Bluetooth low energy, Bluetooth mesh networking, near-field communication, Thread, TLS (Transport Layer Security), Wi-Fi (e.g., IEEE, 802.11), Wi-Fi Direct (for peer-to-peer communication), Z-Wave, Zigbee, Halow, cellular communication, LTE, low-power wide area networking, VSAT, Ethernet, MoCA (Multimedia over Coax Alliance), PLC (Power-line communication), DLT (digital line transmission), etc. Other suitable wired and/or wireless communication technologies can be used without deviating from the scope of the present disclosure.
  • In some implementations, the control device(s) 230 can perform one or more control actions associated with controlling operation of the light source 110. For instance, the control action(s) can include activating (e.g., turn on) or deactivating (e.g., turn off) the light source 110. More specifically, the control device(s) 230 can perform a control action associated with flashing (e.g., blinking) the light source 110 at a predetermined frequency. In this way, the light source 110 can be used to provide a visual cue indicative of a detected environmental condition (e.g. fire).
  • Alternatively or additionally, the control device 230 can perform a control action associated with notifying an emergency provider of the detected environmental condition. For instance, the control action can comprise providing an automated message to a 911 operator. In this way, an emergency provider (e.g., policeman, fireman, emergency medical technician (EMT), etc.) can be dispatched to the first space 130. In addition, the control device(s) 230 can perform a control action associated with operation of the power supply 160. For instance, the control action can comprise deactivating the power supply 160 subsequent to notifying the emergency provider.
  • In some implementations, the control device(s) 230 can communicate with a user device 180 over the network 170. The user device 180 can be any suitable type of device, such as, for example, a personal computing device (e.g., laptop or desktop), a mobile computing device (e.g., smartphone or tablet), a wearable computing device, an embedded computing device, a remote computing device, or any other suitable type of computing device. The user device 180 can include one or more computing device(s) 184 with the same or similar components as described above with regard to the control device(s) 230. For instance, the computing device 184 of the user device 180 can include one or more processors and one or more memory devices that store instructions that are executable by the processor to cause user device 180 to perform operations, such as e.g., communicating one or more control signals over the network 170 to the control device(s) 230. In this way, a user can control operation of the light source 110 via the user device 180.
  • In some implementations, the control device(s) 230 can communicate data to the user device 180 via the communication interface 240. For instance, the control device(s) 230 can provide data captured by the sensor(s) 210 to the user device 180. The information (e.g., data) can be displayed (e.g., via a display device) or otherwise presented (e.g., via audio speakers) to the user through a suitable interface 182. In this way, a user can observe data collected by the sensor(s) 210.
  • In some implementations, the control device(s) 230 can communicate a notification or alert indicative of the detected environmental condition (e.g., fire) to the user device 180 via the communication interface 240. For instance, the computing device(s) 230 can communicate an electronic message (e.g., email, short message service (SMS) text message, etc.) indicating the detected environmental condition. In this way, a person using the user device 180, such as a homeowner, can become apprised of the detected environmental condition.
  • As shown, the environmental detection system 200 can include a power circuit 250 configured to receive an input power from the power supply 160 and convert the input power to an output power suitable for powering the sensor(s) 210, the speaker 220, and the control device(s) 230. In some embodiments, the power circuit 250 can be configured to provide different driving currents to the sensor(s) 210, speaker 220, and the control device(s) 230. For instance, the power circuit 250 can include one or more of a multi-channel driver circuit, a current splitter circuit, one or more current regulators, and/or other devices that can be used to independently provide a driver current to the sensor(s) 210, the speaker 220, and the control device(s) 230.
  • Referring now to FIGS. 5 and 6 , a schematic of a circuit 500 is provided according to example embodiments of the present disclosure. As shown, the circuit 500 can include a switch 510. In some implementations, the switch 510 can be a single pole double throw (SPDT) switch movable between a first position 520 and a second position 530. It should be appreciated that the switch 510 can be the switch 150 discussed above and depicted in FIGS. 1 and 2 . When the switch 510 is in the first position 520, the environmental detection system 200 can receive electrical power from the power supply 160. However, when the switch 510 is in the second position 530, both the environmental detection system 200 and the light source 100 can receive electrical power from the power supply 160. In this way, the environmental detection system 200 can receive a continuous supply of electrical power from the power supply 160 (e.g., mains power supply or backup power supply) regardless of whether the light source 110 of the lighting fixture 100 (FIG. 1 ) is activated.
  • As mentioned above, the power supply 160 can comprise a mains power supply (e.g. AC mains) for a building. In example embodiments, the environmental detection system 200 can be coupled to the mains power supply via the switch 510. However, in some instances, the mains power supply for the building may become inoperable due to, for instance, a power outage. In such instances, the environmental detection system 200 can be coupled to a backup power supply (e.g., uninterruptable power supply) via the switch 510. In this manner, the environmental detection system can remain coupled to a continuous supply of electrical power.
  • Referring now to FIGS. 7 and 8 , a schematic of another circuit 600 is provided according to example embodiments of the present disclosure. As shown, the circuit 600 can include a switch 610 movable between at least a first position 620 and a second position 630. The circuit 600 also includes a first power circuit 640 and a second power circuit 650. When the switch 610 is in the first position 620, the first power circuit 640 can receive an input power (e.g., AC power) from the power supply 160 and can convert the input power to a suitable output power (e.g., DC power) for the environmental detection system 200. More specifically, the first power circuit 640 can be configured to provide a driver current I to the environmental detection system 200.
  • When the switch 610 is in the second position 630, however, the second power circuit 650 can receive an input power (e.g., AC power) from the power supply 160 (e.g., AC mains or backup power supply) and can convert the input power to a suitable output power (e.g., DC power) for both the environmental detection system 200 and the light source 110. In some implementations, the second power circuit 650 can be configured to provide different driving currents to the light source 110 and the environmental detection system 200. For instance, the second power circuit 650 can include one or more of a multi-channel driver circuit, a current splitter circuit, one or more current regulators, and/or other devices that can be used to independently provide a first driver current I1 to the light source 110 and a second driver current I2 to the environmental detection system 200. In this way, the environmental detection system 200 can receive a continuous supply of electrical power from the power supply 160 (e.g., mains power supply or backup power supply) regardless of whether the light source 110 of the lighting fixture 100 (FIG. 1 ) is activated.
  • As mentioned above, the power supply 160 can comprise a mains power supply (e.g. AC mains) for a building. In example embodiments, the environmental detection system 200 can be coupled to the mains power supply via the switch 610. However, in some instances, the mains power supply for the building may become inoperable due to, for instance, a power outage. In such instances, the environmental detection system 200 can be coupled to a backup power supply (e.g., uninterruptable power supply) via the switch 610. In this manner, the environmental detection system can remain coupled to a continuous supply of electrical power.
  • Referring now to FIG. 9 , a flow diagram of one example method 900 for determining a condition associated with a room or area via an environmental detection system of a lighting fixture is provided according to example embodiments of the present disclosure. In general, the method 900 will be discussed with reference to the lighting fixture 100 and environmental detection system 200 described above with reference to FIGS. 1 through 3 . However, it should be appreciated by those of ordinary skill in the art that the disclosed method 900 can generally be implemented with lighting fixtures having any other suitable configuration. In addition, although FIG. 9 depicts steps performed in a particular order for purposes of illustration and discussion, the method discussed herein can be omitted, rearranged, combined, and/or adapted in various ways without deviating from the scope of the present disclosure.
  • At (902), the method 900 can include receiving, at a control device of the environmental detection system, data indicative of an environmental parameter associated with the room or area in which the lighting fixture is located. In example embodiments, the control device can receive a data signal from a sensor of the environmental detection system. The data signal can be indicative of the environmental parameter associated with a room or area in which the lighting fixture is located. In some implementations, the data signal can indicate an amount of CO present within the room or area.
  • At (904), the method 900 can include comparing, by the control device, the environmental parameter received at (902) against a range of approved values for the environmental parameter. In some implementations, the method 900 can revert to (902) when the control device determines the environmental parameter associated with the room or area is within the range of approved values. Alternatively, the method 900 can proceed to (906) when the control device determines the environmental parameter associated with the room or area falls outside the range of approved values for the environmental parameter.
  • At (906), the method 900 can include performing, by the control device, one or more control actions associated with providing a notification indicative of an environmental condition occurring within the room or area. In example embodiments, the control action(s) can be associated with controlling operation of the light source of the lighting fixture. For instance, the control action can include blinking (e.g., flashing) the light source at a predetermined frequency. In this way, the light source can provide a visual indicator to one or more person within the room or area. More specifically, the visual cue can indicate presence of an environmental condition (e.g., fire) detected based, at least in part, on the comparison of the environmental parameter against the range of approved values for the environmental parameter at (904).
  • Alternatively or additionally, the control action(s) can include controlling operation of the speaker of the environmental detection system. For instance, the control action can include broadcasting an audible indicator or alert over the speaker. In this way, the speaker can provide an audible indicator or cue to one or more persons within the room or area. More specifically, the audible indicator can indicate occurrence of the environmental condition (e.g., fire) within the rom or area.
  • In some implementations, the control action(s) can include communicating an electronic message (e.g., email, short message service (SMS) text message, etc.) over the network to one or more user devices. More specifically, the electronic message can be provided to interested parties (e.g., homeowner, 911 dispatch operator, etc.). In this way, the interested parties can become apprised of the detected environmental condition and take the appropriate actions to resolve the environmental condition.
  • While the present subject matter has been described in detail with respect to specific example embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, the scope of the present disclosure is by way of example rather than by way of limitation, and the subject disclosure does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art.

Claims (20)

What is claimed is:
1. A lighting fixture, comprising:
a sensor;
a first power circuit configured to produce a first driving current for the sensor;
a second power circuit a first power circuit configured to produce a second driving current for the sensor; and
a switching device connected to the power supply,
wherein the switching device is configured to
move between a first position and a second position,
connect the first power circuit to a power supply in the first position, and
connect the second power circuit to the power supply in the second position.
2. The lighting fixture of claim 1, further comprising a light emitting diode (LED) light source connected to the first power circuit.
3. The lighting fixture of claim 1, wherein sensor is configured to detect an environmental parameter associated with a space in which the lighting fixture is located, wherein the environmental parameter includes at least one of a presence of mold spores, pollen, dust, natural gas, radon, radiation, or chemical fumes within a room or area in which the lighting fixture is mounted.
4. The lighting fixture of claim 1, wherein the second power circuit includes one or more of a multi-channel driver circuit, a current splitter circuit, one or more current regulators.
5. The lighting fixture of claim 1, wherein the second power circuit is connected to a light source and is configured to independently provide the second driving current to the sensor, and a third driving current to the light source.
6. The lighting fixture of claim 1, wherein the power supply is a mains power supply, and wherein when the mains power supply is inoperable, the sensor is coupled to a backup power supply via the switching device, the backup power supply configured to provide the continuous supply of electrical power.
7. The lighting fixture of claim 1, wherein the sensor is part of environmental detection system, the environmental detection system comprising one or more control devices having one or more processors and one or more memory devices, the one or more memory devices storing instructions that, when executed by the one or more processors, cause the one or more processors to perform operations, the operations comprising:
receiving data indicative of an environmental parameter associated with a room or area in which the lighting fixture is mounted;
determining whether the environmental parameter is within a predefined range of values associated with the environmental parameter; and
responsive to determining the environmental parameter is not within the predefined range of values, providing a notification indicative of an environmental condition occurring within the room or area.
8. A method comprising:
receiving, at one or more control devices, data from a sensor of a light fixture; and
manipulating a switching device between a first position and a second position based on the data,
wherein, when the switching device is in a first position, a first power circuit configured to produce a first driving current for the sensor is coupled to the power supply, and
wherein, when the switching device is in a second position, that is different than the first position, a second power circuit configured to produce a second driving current for the sensor is coupled to the power supply.
9. The method of claim 8, wherein the sensor is configured to detect an environmental parameter associated with a space in which the lighting fixture is located, wherein the environmental parameter includes at least one of a presence of mold spores, pollen, dust, natural gas, radon, radiation, or chemical fumes within a room or area in which the lighting fixture is mounted.
10. The method of claim 8, wherein the second power circuit includes one or more of a multi-channel driver circuit, a current splitter circuit, one or more current regulators.
11. The method of claim 10, wherein the second power circuit is connected to a light source and is configured to independently provide the second driving current to the sensor, and a third driving current to the light source.
12. The method of claim 8, wherein the power supply is a mains power supply, and wherein when the mains power supply is inoperable, the sensor is coupled to a backup power supply via the switching device, the backup power supply configured to provide the continuous supply of electrical power.
13. The method of claim 8, wherein the sensor is part of environmental detection system, the environmental detection system comprising one or more control devices having one or more processors and one or more memory devices, the one or more memory devices storing instructions that, when executed by the one or more processors, cause the one or more processors to perform operations, the operations comprising:
receiving data indicative of an environmental parameter associated with a room or area in which the lighting fixture is mounted;
determining whether the environmental parameter is within a predefined range of values associated with the environmental parameter; and
responsive to determining the environmental parameter is not within the predefined range of values, providing a notification indicative of an environmental condition occurring within the room or area.
14. A system for detecting an environmental condition associated with a room or area, the system comprising:
a lighting fixture disposed within the room or area, the lighting fixture including a switching device and a sensor;
a first power circuit connected to the switching device and configured to produce a first driving current for the sensor; and,
a second power circuit connected to the switching device and configured to produce a second driving current for the sensor,
wherein the switching device configured to
move between a first position and a second position,
connect the first power circuit to a power supply in the first position, and
connect the second power circuit to the power supply in the second position.
15. The lighting fixture of claim 14, further comprising a light emitting diode (LED) light source connected to the first power circuit.
16. The system of claim 14, wherein the sensor is configured to detect an environmental parameter associated with the room or area, wherein the environmental parameter includes at least one of a presence of mold spores, pollen, dust, natural gas, radon, radiation, or chemical fumes within a room or area in which the lighting fixture is mounted.
17. The lighting fixture of claim 14, wherein the second power circuit includes one or more of a multi-channel driver circuit, a current splitter circuit, one or more current regulators.
18. The system of claim 14, wherein the second power circuit is connected to a light source and is configured to independently provide the second driving current to the sensor, and a third driving current to the light source.
19. The system of claim 14, wherein the power supply is a mains power supply, and wherein when the mains power supply is inoperable, the sensor is coupled to a backup power supply via the switching device, the backup power supply configured to provide the continuous supply of electrical power.
20. The system of claim 14, wherein the sensor is part of environmental detection system, the environmental detection system comprising one or more control devices having one or more processors and one or more memory devices, the one or more memory devices storing instructions that, when executed by the one or more processors, cause the one or more processors to perform operations, the operations comprising:
receiving data indicative of an environmental parameter associated with a room or area in which the lighting fixture is mounted;
determining whether the environmental parameter is within a predefined range of values associated with the environmental parameter; and
responsive to determining the environmental parameter is not within the predefined range of values, providing a notification indicative of an environmental condition occurring within the room or area.
US17/903,729 2017-09-25 2022-09-06 Lighting Fixture Having an Environmental Detection System Pending US20230094489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/903,729 US20230094489A1 (en) 2017-09-25 2022-09-06 Lighting Fixture Having an Environmental Detection System

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762562762P 2017-09-25 2017-09-25
US16/123,498 US10854052B2 (en) 2017-09-25 2018-09-06 Lighting fixture having an environmental detection system
US17/108,058 US11436902B2 (en) 2017-09-25 2020-12-01 Lighting fixture having an environmental detection system
US17/903,729 US20230094489A1 (en) 2017-09-25 2022-09-06 Lighting Fixture Having an Environmental Detection System

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/108,058 Continuation US11436902B2 (en) 2017-09-25 2020-12-01 Lighting fixture having an environmental detection system

Publications (1)

Publication Number Publication Date
US20230094489A1 true US20230094489A1 (en) 2023-03-30

Family

ID=65807743

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/123,498 Active 2038-09-29 US10854052B2 (en) 2017-09-25 2018-09-06 Lighting fixture having an environmental detection system
US17/108,058 Active US11436902B2 (en) 2017-09-25 2020-12-01 Lighting fixture having an environmental detection system
US17/903,729 Pending US20230094489A1 (en) 2017-09-25 2022-09-06 Lighting Fixture Having an Environmental Detection System

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/123,498 Active 2038-09-29 US10854052B2 (en) 2017-09-25 2018-09-06 Lighting fixture having an environmental detection system
US17/108,058 Active US11436902B2 (en) 2017-09-25 2020-12-01 Lighting fixture having an environmental detection system

Country Status (1)

Country Link
US (3) US10854052B2 (en)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167688A (en) * 1977-03-16 1979-09-11 Stirling-White Company, Inc. Composite illumination fixture and control circuit therefor
US20050135103A1 (en) * 2003-10-14 2005-06-23 Evans Donald F. Apparatus and methods for providing emergency safety lighting
US20120043889A1 (en) * 2006-03-28 2012-02-23 Wireless Environment, Llc. Off-Grid LED Power Failure Lights
US8251558B1 (en) * 2009-08-06 2012-08-28 Ibis Tek, Llc Headlamp system and kit providing on-road and off-road illumination
US20120262093A1 (en) * 2011-04-15 2012-10-18 Recker Michael V Lighting device capable of maintaining light intensity in demand response applications
KR101253034B1 (en) * 2012-08-24 2013-04-10 유니온라이트 주식회사 Emergency led illumination device for fire prevention
US20130234595A1 (en) * 2012-03-09 2013-09-12 C-M Glo, Llc Emergency Lighting Device
US20140015442A1 (en) * 2011-08-18 2014-01-16 Sayaka Nishi Lighting device
US20140097758A1 (en) * 2011-10-06 2014-04-10 Michael V. Recker Wireless lighting device with charging port
CN203563248U (en) * 2013-12-02 2014-04-23 宁波市乐星感应电器有限公司 Control circuit for lighting-emergency dual-purpose sensor light
US20140265845A1 (en) * 2011-03-31 2014-09-18 Litonics Limited Lighting device
US20140268697A1 (en) * 2013-03-14 2014-09-18 C-M Glo, Llc Dual AC-LED/DC-LED Lamp With Alternating Power Sources
US20150091451A1 (en) * 2012-05-04 2015-04-02 Litonics Limited Lighting device
US20150214759A1 (en) * 2014-01-27 2015-07-30 Ivani, LLC Reconfigurable power control system
US20160242260A1 (en) * 2013-07-02 2016-08-18 Corey D. RAY Lighting Control Module
US20160377276A1 (en) * 2015-06-23 2016-12-29 Kevin A. Furry In-wall occupancy sensor night light with alternate activation
US20170066382A1 (en) * 2011-11-18 2017-03-09 Jac Products, Inc. Vehicle article carrier with integrated camera and solar powered lighting
US20180017248A1 (en) * 2015-01-27 2018-01-18 Mas Active Trading Pvt Limited Visibility-enhancing device
US10091854B1 (en) * 2017-07-25 2018-10-02 Energizer Brands, Llc Portable light control apparatus
US20190027958A1 (en) * 2017-07-24 2019-01-24 Magtech Industries Corporation Emergency lighting system with integrated testing and reporting functionality
US20190191534A1 (en) * 2016-08-22 2019-06-20 Signify Holding B.V. Lighting device for powering from a main power supply and an auxiliary power supply

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258291A (en) * 1978-11-01 1981-03-24 Robert J. Scott Smoke alarm activated portable lamp
US4380760A (en) * 1980-02-21 1983-04-19 General Electric Company Smoke detector with delayed alarm after change to stand-by power
US4896145A (en) * 1986-10-06 1990-01-23 Life Light, Inc. Fixture for mounting a lampholder and fire detector
US4980672A (en) * 1989-10-17 1990-12-25 Generation 2, Inc. Overhead socket smoke detector with theft alarm
US6448888B1 (en) * 2000-05-16 2002-09-10 Sylvia Horner Carbon monoxide sensor for vehicle compartment
US6492907B1 (en) * 2000-09-01 2002-12-10 Mccracken Robert E. Detector system
US7463160B2 (en) * 2004-10-12 2008-12-09 Crook Gary W Remote control of a hydrogen sulfide gas alarm system
CA2572067C (en) * 2006-01-05 2014-08-19 Canlyte Inc. Sensing light fixture device
US8400061B2 (en) * 2007-07-17 2013-03-19 I/O Controls Corporation Control network for LED-based lighting system in a transit vehicle
DE102009010180A1 (en) * 2009-02-23 2010-10-28 Osram Gesellschaft mit beschränkter Haftung Lighting device with at least one semiconductor light source
US20110084844A1 (en) * 2009-10-14 2011-04-14 Carnation Richard E Smoke and carbon monoxide detector device
EP3723457B1 (en) * 2011-11-03 2022-09-07 Digital Lumens Incorporated Methods, systems, and apparatus for intelligent lighting
US20130169430A1 (en) * 2011-12-28 2013-07-04 Joe Shook Apparatus and method for smoke detection & alarm
US20140104067A1 (en) * 2012-10-16 2014-04-17 Jung-Tang Huang Smoke Sensor
US9087447B2 (en) * 2013-02-05 2015-07-21 Encore Controls, Llc Method and apparatus for detecting a hazard alarm signal
US9349262B2 (en) * 2013-03-15 2016-05-24 Vivint, Inc. Security system providing a localized humanly-perceivable alert for identifying a facility to emergency personnel
US20140266747A1 (en) * 2013-03-15 2014-09-18 Cyril Patrick Prendergast Smoke and carbon monoxide detector electrically coupled to a light source, and positioned in a light fixture
US9046235B2 (en) * 2013-08-12 2015-06-02 Oswald A. Wilson LED renewable energy lighting unit having a polygonal solar panel configuration about a horizontal or vertical pole
US9593843B2 (en) * 2013-11-04 2017-03-14 Knuckledragger Design, Inc. Concealed surveillance camera system for lighting devices
US9119254B2 (en) * 2013-12-16 2015-08-25 Richtek Technology Corporation Light emitting device power supply circuit with dimming function and control circuit thereof
US11651258B2 (en) * 2014-01-08 2023-05-16 Yechezkal Evan Spero Integrated docking system for intelligent devices
US9453620B2 (en) * 2014-10-08 2016-09-27 Orion Energy Systems, Inc. Strip fixture retrofit systems and methods
CN108140292A (en) 2015-05-13 2018-06-08 彼得·欧内斯特·拜尔 Lighting system with integrated smoke detector
US9854642B2 (en) * 2015-05-18 2017-12-26 DMF, Inc. Daylight harvesting light fixture and control system for same
US10342101B2 (en) * 2016-08-01 2019-07-02 Centurylink Intellectual Property Llc Light socket WiFi device
US9831673B1 (en) * 2016-10-21 2017-11-28 Chao-Cheng Yu Control device for power supply time of timers

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167688A (en) * 1977-03-16 1979-09-11 Stirling-White Company, Inc. Composite illumination fixture and control circuit therefor
US20050135103A1 (en) * 2003-10-14 2005-06-23 Evans Donald F. Apparatus and methods for providing emergency safety lighting
US20120043889A1 (en) * 2006-03-28 2012-02-23 Wireless Environment, Llc. Off-Grid LED Power Failure Lights
US8251558B1 (en) * 2009-08-06 2012-08-28 Ibis Tek, Llc Headlamp system and kit providing on-road and off-road illumination
US20140265845A1 (en) * 2011-03-31 2014-09-18 Litonics Limited Lighting device
US20120262093A1 (en) * 2011-04-15 2012-10-18 Recker Michael V Lighting device capable of maintaining light intensity in demand response applications
US20140015442A1 (en) * 2011-08-18 2014-01-16 Sayaka Nishi Lighting device
US20140097758A1 (en) * 2011-10-06 2014-04-10 Michael V. Recker Wireless lighting device with charging port
US20170066382A1 (en) * 2011-11-18 2017-03-09 Jac Products, Inc. Vehicle article carrier with integrated camera and solar powered lighting
US20130234595A1 (en) * 2012-03-09 2013-09-12 C-M Glo, Llc Emergency Lighting Device
US20150091451A1 (en) * 2012-05-04 2015-04-02 Litonics Limited Lighting device
KR101253034B1 (en) * 2012-08-24 2013-04-10 유니온라이트 주식회사 Emergency led illumination device for fire prevention
US20140268697A1 (en) * 2013-03-14 2014-09-18 C-M Glo, Llc Dual AC-LED/DC-LED Lamp With Alternating Power Sources
US20160242260A1 (en) * 2013-07-02 2016-08-18 Corey D. RAY Lighting Control Module
CN203563248U (en) * 2013-12-02 2014-04-23 宁波市乐星感应电器有限公司 Control circuit for lighting-emergency dual-purpose sensor light
US20150214759A1 (en) * 2014-01-27 2015-07-30 Ivani, LLC Reconfigurable power control system
US20180017248A1 (en) * 2015-01-27 2018-01-18 Mas Active Trading Pvt Limited Visibility-enhancing device
US20160377276A1 (en) * 2015-06-23 2016-12-29 Kevin A. Furry In-wall occupancy sensor night light with alternate activation
US20190191534A1 (en) * 2016-08-22 2019-06-20 Signify Holding B.V. Lighting device for powering from a main power supply and an auxiliary power supply
US20190027958A1 (en) * 2017-07-24 2019-01-24 Magtech Industries Corporation Emergency lighting system with integrated testing and reporting functionality
US10091854B1 (en) * 2017-07-25 2018-10-02 Energizer Brands, Llc Portable light control apparatus

Also Published As

Publication number Publication date
US20210082262A1 (en) 2021-03-18
US20190096201A1 (en) 2019-03-28
US11436902B2 (en) 2022-09-06
US10854052B2 (en) 2020-12-01

Similar Documents

Publication Publication Date Title
US10049280B2 (en) Video guidance for smart-home device installation
US11545171B2 (en) Voice responsive in-wall device
US9466226B1 (en) General purpose device to assist the hard of hearing
US9922529B2 (en) Remote management of electronic and electrical devices
US10777064B2 (en) Lighting with air quality and hazard monitoring
EP3889789B1 (en) Control system, apparatus management system, control method, and program
US20240136910A1 (en) Switch for a lighting system
JP2021128576A (en) Alarm unit
US20230094489A1 (en) Lighting Fixture Having an Environmental Detection System
US20210348731A1 (en) Residential emergency lighting system
CN104076786A (en) Intelligent home control system used for detecting window closing state
JP6814985B2 (en) Master unit and automatic fire alarm system
JP2011204409A (en) Emergency lighting system
JP6646835B2 (en) Master unit and automatic fire alarm system
JP2020087363A (en) Control system, alarm system, program, and control method

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: SENT TO CLASSIFICATION CONTRACTOR

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: PROGRESS LIGHTING, LLC, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUBBELL INCORPORATED;REEL/FRAME:065572/0891

Effective date: 20231110

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, ARIZONA

Free format text: SECURITY INTEREST;ASSIGNOR:PROGRESS LIGHTING, LLC;REEL/FRAME:066433/0314

Effective date: 20240209

Owner name: TCW ASSET MANAGEMENT COMPANY LLC, MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNOR:PROGRESS LIGHTING, LLC;REEL/FRAME:066429/0529

Effective date: 20240209

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED