US20190359980A1 - Oligonucleotide compositions and uses thereof - Google Patents
Oligonucleotide compositions and uses thereof Download PDFInfo
- Publication number
- US20190359980A1 US20190359980A1 US16/382,883 US201916382883A US2019359980A1 US 20190359980 A1 US20190359980 A1 US 20190359980A1 US 201916382883 A US201916382883 A US 201916382883A US 2019359980 A1 US2019359980 A1 US 2019359980A1
- Authority
- US
- United States
- Prior art keywords
- lts
- das
- lcs
- las
- mir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108091034117 Oligonucleotide Proteins 0.000 title claims abstract description 339
- 239000000203 mixture Substances 0.000 title claims abstract description 47
- 239000003112 inhibitor Substances 0.000 claims abstract description 335
- 108091033773 MiR-155 Proteins 0.000 claims abstract description 231
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 62
- 238000000034 method Methods 0.000 claims abstract description 55
- 201000011510 cancer Diseases 0.000 claims abstract description 54
- 210000001744 T-lymphocyte Anatomy 0.000 claims abstract description 50
- 230000035755 proliferation Effects 0.000 claims abstract description 32
- 206010042971 T-cell lymphoma Diseases 0.000 claims abstract description 10
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 claims abstract description 10
- 210000004027 cell Anatomy 0.000 claims description 225
- 230000000694 effects Effects 0.000 claims description 81
- 125000001921 locked nucleotide group Chemical group 0.000 claims description 45
- 239000008194 pharmaceutical composition Substances 0.000 claims description 13
- 230000005764 inhibitory process Effects 0.000 claims description 12
- 230000006907 apoptotic process Effects 0.000 claims description 10
- 125000002637 deoxyribonucleotide group Chemical group 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 8
- 239000005547 deoxyribonucleotide Substances 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 7
- 230000002829 reductive effect Effects 0.000 claims description 7
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 claims description 7
- 102000011727 Caspases Human genes 0.000 claims description 6
- 108010076667 Caspases Proteins 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 6
- 231100000673 dose–response relationship Toxicity 0.000 claims 2
- 230000006052 T cell proliferation Effects 0.000 claims 1
- 230000003211 malignant effect Effects 0.000 abstract description 33
- 230000002401 inhibitory effect Effects 0.000 abstract description 13
- 125000003729 nucleotide group Chemical group 0.000 description 238
- 239000002773 nucleotide Substances 0.000 description 200
- 201000005962 mycosis fungoides Diseases 0.000 description 151
- 108090000623 proteins and genes Proteins 0.000 description 122
- 230000014509 gene expression Effects 0.000 description 117
- 150000001875 compounds Chemical class 0.000 description 103
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 87
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 87
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 87
- 102000053602 DNA Human genes 0.000 description 76
- 108020004414 DNA Proteins 0.000 description 76
- 238000011282 treatment Methods 0.000 description 76
- 108091083308 miR-155 stem-loop Proteins 0.000 description 63
- 108091091301 miR-155-1 stem-loop Proteins 0.000 description 63
- 108091041686 miR-155-2 stem-loop Proteins 0.000 description 63
- 230000004048 modification Effects 0.000 description 46
- 238000012986 modification Methods 0.000 description 46
- 230000004044 response Effects 0.000 description 45
- 230000000295 complement effect Effects 0.000 description 37
- 230000001105 regulatory effect Effects 0.000 description 29
- 235000000346 sugar Nutrition 0.000 description 28
- 239000002679 microRNA Substances 0.000 description 25
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 24
- 108700011259 MicroRNAs Proteins 0.000 description 23
- -1 ethyl nucleic acid Chemical class 0.000 description 22
- 239000002585 base Substances 0.000 description 21
- 230000006870 function Effects 0.000 description 18
- 230000000699 topical effect Effects 0.000 description 18
- 239000003276 histone deacetylase inhibitor Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 208000009359 Sezary Syndrome Diseases 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 16
- 102000047934 Caspase-3/7 Human genes 0.000 description 14
- 108700037887 Caspase-3/7 Proteins 0.000 description 14
- 208000021388 Sezary disease Diseases 0.000 description 14
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical group C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 13
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 13
- 229940121372 histone deacetylase inhibitor Drugs 0.000 description 13
- 108060001084 Luciferase Proteins 0.000 description 12
- 125000002619 bicyclic group Chemical group 0.000 description 12
- 239000002502 liposome Substances 0.000 description 12
- 102000039446 nucleic acids Human genes 0.000 description 12
- 108020004707 nucleic acids Proteins 0.000 description 12
- 239000013612 plasmid Substances 0.000 description 12
- 210000003491 skin Anatomy 0.000 description 12
- 239000013598 vector Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000005089 Luciferase Substances 0.000 description 11
- 239000003814 drug Substances 0.000 description 11
- 230000003278 mimic effect Effects 0.000 description 11
- 150000007523 nucleic acids Chemical group 0.000 description 11
- 238000002560 therapeutic procedure Methods 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- 101000616502 Homo sapiens Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 Proteins 0.000 description 10
- 101150095793 PICALM gene Proteins 0.000 description 10
- 102100021797 Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 Human genes 0.000 description 10
- 239000003974 emollient agent Substances 0.000 description 10
- 239000000839 emulsion Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000006071 cream Substances 0.000 description 9
- 239000000499 gel Substances 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 239000006210 lotion Substances 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- 125000001424 substituent group Chemical group 0.000 description 8
- 238000001890 transfection Methods 0.000 description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 235000012000 cholesterol Nutrition 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 230000009977 dual effect Effects 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 7
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 239000002674 ointment Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 206010040882 skin lesion Diseases 0.000 description 6
- 231100000444 skin lesion Toxicity 0.000 description 6
- 241000282412 Homo Species 0.000 description 5
- 101000726740 Homo sapiens Homeobox protein cut-like 1 Proteins 0.000 description 5
- 101000761460 Homo sapiens Protein CASP Proteins 0.000 description 5
- 102100024933 Protein CASP Human genes 0.000 description 5
- 210000003719 b-lymphocyte Anatomy 0.000 description 5
- 229940126214 compound 3 Drugs 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 125000005647 linker group Chemical group 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 230000008506 pathogenesis Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 150000003431 steroids Chemical class 0.000 description 5
- 206010017533 Fungal infection Diseases 0.000 description 4
- 102000003964 Histone deacetylase Human genes 0.000 description 4
- 108090000353 Histone deacetylase Proteins 0.000 description 4
- 101100459301 Mus musculus Myl4 gene Proteins 0.000 description 4
- 108010052090 Renilla Luciferases Proteins 0.000 description 4
- 208000000453 Skin Neoplasms Diseases 0.000 description 4
- NAVMQTYZDKMPEU-UHFFFAOYSA-N Targretin Chemical compound CC1=CC(C(CCC2(C)C)(C)C)=C2C=C1C(=C)C1=CC=C(C(O)=O)C=C1 NAVMQTYZDKMPEU-UHFFFAOYSA-N 0.000 description 4
- 101150040313 Wee1 gene Proteins 0.000 description 4
- ZTOJFFHGPLIVKC-CLFAGFIQSA-N abts Chemical compound S/1C2=CC(S(O)(=O)=O)=CC=C2N(CC)C\1=N\N=C1/SC2=CC(S(O)(=O)=O)=CC=C2N1CC ZTOJFFHGPLIVKC-CLFAGFIQSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229960002938 bexarotene Drugs 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 239000002537 cosmetic Substances 0.000 description 4
- 229940104302 cytosine Drugs 0.000 description 4
- 238000010195 expression analysis Methods 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 208000024386 fungal infectious disease Diseases 0.000 description 4
- 239000003349 gelling agent Substances 0.000 description 4
- 210000002443 helper t lymphocyte Anatomy 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 210000003071 memory t lymphocyte Anatomy 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 4
- 201000000849 skin cancer Diseases 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 230000003827 upregulation Effects 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 3
- 229930024421 Adenine Natural products 0.000 description 3
- 210000004366 CD4-positive T-lymphocyte Anatomy 0.000 description 3
- 239000004166 Lanolin Substances 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 244000236580 Psidium pyriferum Species 0.000 description 3
- 235000013929 Psidium pyriferum Nutrition 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 229960000643 adenine Drugs 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 3
- 230000004547 gene signature Effects 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 125000001475 halogen functional group Chemical group 0.000 description 3
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 210000004969 inflammatory cell Anatomy 0.000 description 3
- 229940039717 lanolin Drugs 0.000 description 3
- 235000019388 lanolin Nutrition 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 239000002777 nucleoside Substances 0.000 description 3
- 239000006072 paste Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 238000001959 radiotherapy Methods 0.000 description 3
- 125000002652 ribonucleotide group Chemical group 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229940035893 uracil Drugs 0.000 description 3
- WAEXFXRVDQXREF-UHFFFAOYSA-N vorinostat Chemical compound ONC(=O)CCCCCCC(=O)NC1=CC=CC=C1 WAEXFXRVDQXREF-UHFFFAOYSA-N 0.000 description 3
- 229960000237 vorinostat Drugs 0.000 description 3
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- RYVNIFSIEDRLSJ-UHFFFAOYSA-N 5-(hydroxymethyl)cytosine Chemical compound NC=1NC(=O)N=CC=1CO RYVNIFSIEDRLSJ-UHFFFAOYSA-N 0.000 description 2
- PEHVGBZKEYRQSX-UHFFFAOYSA-N 7-deaza-adenine Chemical compound NC1=NC=NC2=C1C=CN2 PEHVGBZKEYRQSX-UHFFFAOYSA-N 0.000 description 2
- HCGHYQLFMPXSDU-UHFFFAOYSA-N 7-methyladenine Chemical compound C1=NC(N)=C2N(C)C=NC2=N1 HCGHYQLFMPXSDU-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 2
- 102100034798 CCAAT/enhancer-binding protein beta Human genes 0.000 description 2
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 2
- 101150004620 Cebpb gene Proteins 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 101710177611 DNA polymerase II large subunit Proteins 0.000 description 2
- 101710184669 DNA polymerase II small subunit Proteins 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 108090000331 Firefly luciferases Proteins 0.000 description 2
- 101000945963 Homo sapiens CCAAT/enhancer-binding protein beta Proteins 0.000 description 2
- 101001043809 Homo sapiens Interleukin-7 receptor subunit alpha Proteins 0.000 description 2
- 101000825182 Homo sapiens Transcription factor Spi-B Proteins 0.000 description 2
- 108091065981 Homo sapiens miR-155 stem-loop Proteins 0.000 description 2
- 241000598436 Human T-cell lymphotropic virus Species 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102100021593 Interleukin-7 receptor subunit alpha Human genes 0.000 description 2
- 108010024121 Janus Kinases Proteins 0.000 description 2
- 102000015617 Janus Kinases Human genes 0.000 description 2
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000013614 RNA sample Substances 0.000 description 2
- 102000000574 RNA-Induced Silencing Complex Human genes 0.000 description 2
- 108010016790 RNA-Induced Silencing Complex Proteins 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 102100022281 Transcription factor Spi-B Human genes 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000003432 anti-folate effect Effects 0.000 description 2
- 229940127074 antifolate Drugs 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000000090 biomarker Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229960000455 brentuximab vedotin Drugs 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 2
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 239000003581 cosmetic carrier Substances 0.000 description 2
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical class O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000005549 deoxyribonucleoside Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000009274 differential gene expression Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 238000005315 distribution function Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- INVTYAOGFAGBOE-UHFFFAOYSA-N entinostat Chemical compound NC1=CC=CC=C1NC(=O)C(C=C1)=CC=C1CNC(=O)OCC1=CC=CN=C1 INVTYAOGFAGBOE-UHFFFAOYSA-N 0.000 description 2
- 239000004052 folic acid antagonist Substances 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical class ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 2
- 229960004961 mechlorethamine Drugs 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 108091070501 miRNA Proteins 0.000 description 2
- 210000000274 microglia Anatomy 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 229950007699 mogamulizumab Drugs 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 150000003833 nucleoside derivatives Chemical class 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 238000001126 phototherapy Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 108091007428 primary miRNA Proteins 0.000 description 2
- 239000002510 pyrogen Substances 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 210000003289 regulatory T cell Anatomy 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 238000007390 skin biopsy Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000010199 sorbic acid Nutrition 0.000 description 2
- 239000004334 sorbic acid Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- YIMATHOGWXZHFX-WCTZXXKLSA-N (2r,3r,4r,5r)-5-(hydroxymethyl)-3-(2-methoxyethoxy)oxolane-2,4-diol Chemical compound COCCO[C@H]1[C@H](O)O[C@H](CO)[C@H]1O YIMATHOGWXZHFX-WCTZXXKLSA-N 0.000 description 1
- CUNWUEBNSZSNRX-RKGWDQTMSA-N (2r,3r,4r,5s)-hexane-1,2,3,4,5,6-hexol;(z)-octadec-9-enoic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O CUNWUEBNSZSNRX-RKGWDQTMSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- HOVAGTYPODGVJG-UVSYOFPXSA-N (3s,5r)-2-(hydroxymethyl)-6-methoxyoxane-3,4,5-triol Chemical compound COC1OC(CO)[C@@H](O)C(O)[C@H]1O HOVAGTYPODGVJG-UVSYOFPXSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- SVJQCVOKYJWUBC-OWOJBTEDSA-N (e)-3-(2,3,4,5-tetrabromophenyl)prop-2-enoic acid Chemical compound OC(=O)\C=C\C1=CC(Br)=C(Br)C(Br)=C1Br SVJQCVOKYJWUBC-OWOJBTEDSA-N 0.000 description 1
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- 0 *C[C@]1(C(C2*)C3OC1)[C@@]2O[C@]3C#* Chemical compound *C[C@]1(C(C2*)C3OC1)[C@@]2O[C@]3C#* 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- 102100040605 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase Human genes 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 102100040685 14-3-3 protein zeta/delta Human genes 0.000 description 1
- UHUHBFMZVCOEOV-UHFFFAOYSA-N 1h-imidazo[4,5-c]pyridin-4-amine Chemical compound NC1=NC=CC2=C1N=CN2 UHUHBFMZVCOEOV-UHFFFAOYSA-N 0.000 description 1
- 102100036413 2',5'-phosphodiesterase 12 Human genes 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- FLPJVCMIKUWSDR-UHFFFAOYSA-N 2-(4-formylphenoxy)acetamide Chemical compound NC(=O)COC1=CC=C(C=O)C=C1 FLPJVCMIKUWSDR-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WKMPTBDYDNUJLF-UHFFFAOYSA-N 2-fluoroadenine Chemical compound NC1=NC(F)=NC2=C1N=CN2 WKMPTBDYDNUJLF-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- 102100022313 2-iminobutanoate/2-iminopropanoate deaminase Human genes 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- 102100040961 26S proteasome non-ATPase regulatory subunit 12 Human genes 0.000 description 1
- 102100027283 28S ribosomal protein S9, mitochondrial Human genes 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- 102100027824 3'(2'),5'-bisphosphate nucleotidase 1 Human genes 0.000 description 1
- MAUCONCHVWBMHK-UHFFFAOYSA-N 3-[(dimethylamino)methyl]-N-[2-[4-[(hydroxyamino)-oxomethyl]phenoxy]ethyl]-2-benzofurancarboxamide Chemical compound O1C2=CC=CC=C2C(CN(C)C)=C1C(=O)NCCOC1=CC=C(C(=O)NO)C=C1 MAUCONCHVWBMHK-UHFFFAOYSA-N 0.000 description 1
- 102100029103 3-ketoacyl-CoA thiolase Human genes 0.000 description 1
- 102100020971 39S ribosomal protein L10, mitochondrial Human genes 0.000 description 1
- 102100026146 39S ribosomal protein L13, mitochondrial Human genes 0.000 description 1
- 102100028103 39S ribosomal protein L18, mitochondrial Human genes 0.000 description 1
- 102100034141 39S ribosomal protein L42, mitochondrial Human genes 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- PJWBTAIPBFWVHX-FJGDRVTGSA-N 4-amino-1-[(2r,3s,4r,5r)-3-fluoro-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@](F)(O)[C@H](O)[C@@H](CO)O1 PJWBTAIPBFWVHX-FJGDRVTGSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- 102100027278 4-trimethylaminobutyraldehyde dehydrogenase Human genes 0.000 description 1
- 102100038684 5'-nucleotidase domain-containing protein 1 Human genes 0.000 description 1
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 1
- UJBCLAXPPIDQEE-UHFFFAOYSA-N 5-prop-1-ynyl-1h-pyrimidine-2,4-dione Chemical compound CC#CC1=CNC(=O)NC1=O UJBCLAXPPIDQEE-UHFFFAOYSA-N 0.000 description 1
- KXBCLNRMQPRVTP-UHFFFAOYSA-N 6-amino-1,5-dihydroimidazo[4,5-c]pyridin-4-one Chemical compound O=C1NC(N)=CC2=C1N=CN2 KXBCLNRMQPRVTP-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- 102100038954 60S ribosomal export protein NMD3 Human genes 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- HRYKDUPGBWLLHO-UHFFFAOYSA-N 8-azaadenine Chemical compound NC1=NC=NC2=NNN=C12 HRYKDUPGBWLLHO-UHFFFAOYSA-N 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- 102100039720 A-kinase-interacting protein 1 Human genes 0.000 description 1
- 108091007504 ADAM10 Proteins 0.000 description 1
- 102100027783 ADP-ribose glycohydrolase OARD1 Human genes 0.000 description 1
- 102100023826 ADP-ribosylation factor 4 Human genes 0.000 description 1
- 102100023971 ADP-ribosylation factor-like protein 13B Human genes 0.000 description 1
- 102100023961 ADP-ribosylation factor-like protein 2-binding protein Human genes 0.000 description 1
- 102100022870 ADP-ribosylation factor-like protein 5B Human genes 0.000 description 1
- 102100028357 ADP-ribosylation factor-like protein 8B Human genes 0.000 description 1
- 108060000255 AIM2 Proteins 0.000 description 1
- 102100036605 AN1-type zinc finger protein 6 Human genes 0.000 description 1
- 102100033938 AP-1 complex subunit gamma-1 Human genes 0.000 description 1
- 102100040060 AP-5 complex subunit mu-1 Human genes 0.000 description 1
- 102100023157 AT-rich interactive domain-containing protein 2 Human genes 0.000 description 1
- 102100022933 ATM interactor Human genes 0.000 description 1
- 102100020969 ATP-binding cassette sub-family E member 1 Human genes 0.000 description 1
- 102100021222 ATP-dependent Clp protease proteolytic subunit, mitochondrial Human genes 0.000 description 1
- 102100028221 Abl interactor 2 Human genes 0.000 description 1
- 102100024005 Acid ceramidase Human genes 0.000 description 1
- 102100021581 Actin-related protein 10 Human genes 0.000 description 1
- 102100036464 Activated RNA polymerase II transcriptional coactivator p15 Human genes 0.000 description 1
- 102100021305 Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 Human genes 0.000 description 1
- 102100022714 Acyl-coenzyme A thioesterase 13 Human genes 0.000 description 1
- 102100025845 Acyl-coenzyme A thioesterase 9, mitochondrial Human genes 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 102100032873 Adenosine 3'-phospho 5'-phosphosulfate transporter 2 Human genes 0.000 description 1
- 102100020925 Adenosylhomocysteinase Human genes 0.000 description 1
- 102100031830 Afadin- and alpha-actinin-binding protein Human genes 0.000 description 1
- 102100028443 Aflatoxin B1 aldehyde reductase member 2 Human genes 0.000 description 1
- 102100036457 Akirin-1 Human genes 0.000 description 1
- 102100034452 Alternative prion protein Human genes 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102100040038 Amyloid beta precursor like protein 2 Human genes 0.000 description 1
- 102100021697 Anamorsin Human genes 0.000 description 1
- 102000052567 Anaphase-Promoting Complex-Cyclosome Apc1 Subunit Human genes 0.000 description 1
- 108700004581 Anaphase-Promoting Complex-Cyclosome Apc1 Subunit Proteins 0.000 description 1
- 102100040006 Annexin A1 Human genes 0.000 description 1
- 102100034613 Annexin A2 Human genes 0.000 description 1
- 102000006306 Antigen Receptors Human genes 0.000 description 1
- 108010083359 Antigen Receptors Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 102100024044 Aprataxin Human genes 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 102100030287 Arfaptin-1 Human genes 0.000 description 1
- 102100026442 Arrestin domain-containing protein 2 Human genes 0.000 description 1
- 102100023245 Asparagine-tRNA ligase, cytoplasmic Human genes 0.000 description 1
- 102000007372 Ataxin-1 Human genes 0.000 description 1
- 108010032963 Ataxin-1 Proteins 0.000 description 1
- 102100035021 Ataxin-1-like Human genes 0.000 description 1
- 102000002785 Ataxin-10 Human genes 0.000 description 1
- 108010043914 Ataxin-10 Proteins 0.000 description 1
- 108010061408 Autophagy-Related Protein 12 Proteins 0.000 description 1
- 102000012035 Autophagy-Related Protein 12 Human genes 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 102100028046 BAG family molecular chaperone regulator 5 Human genes 0.000 description 1
- 102100021247 BCL-6 corepressor Human genes 0.000 description 1
- 102100032427 BCLAF1 and THRAP3 family member 3 Human genes 0.000 description 1
- 102100024507 BMP-2-inducible protein kinase Human genes 0.000 description 1
- 102100037210 BRCA1-A complex subunit RAP80 Human genes 0.000 description 1
- 102100022045 BTB/POZ domain-containing protein 10 Human genes 0.000 description 1
- ISJFAKCSQPKSLZ-DKWGHJKFSA-N B[C@@H]1O[C@@]2(CO)COC1[C@H]2O.B[C@@H]1O[C@@]2(CO)COC[C@H]1C2O.COC[C@]12O[C@@H](C)[C@H](OC1C)[C@@H]2OC Chemical compound B[C@@H]1O[C@@]2(CO)COC1[C@H]2O.B[C@@H]1O[C@@]2(CO)COC[C@H]1C2O.COC[C@]12O[C@@H](C)[C@H](OC1C)[C@@H]2OC ISJFAKCSQPKSLZ-DKWGHJKFSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108700003785 Baculoviral IAP Repeat-Containing 3 Proteins 0.000 description 1
- 102100021662 Baculoviral IAP repeat-containing protein 3 Human genes 0.000 description 1
- 102100025616 Beta-1,3-N-acetylglucosaminyltransferase manic fringe Human genes 0.000 description 1
- 102100032843 Beta-2-syntrophin Human genes 0.000 description 1
- 102100034321 Beta-centractin Human genes 0.000 description 1
- 102100028845 Biogenesis of lysosome-related organelles complex 1 subunit 2 Human genes 0.000 description 1
- 102100033565 Biogenesis of lysosome-related organelles complex 1 subunit 6 Human genes 0.000 description 1
- 101150104237 Birc3 gene Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102100024791 Breast cancer metastasis-suppressor 1-like protein Human genes 0.000 description 1
- 102100029892 Bromodomain and WD repeat-containing protein 1 Human genes 0.000 description 1
- 241000195940 Bryophyta Species 0.000 description 1
- 102100027154 Butyrophilin subfamily 3 member A3 Human genes 0.000 description 1
- 102100030630 C-myc promoter-binding protein Human genes 0.000 description 1
- 102100025752 CASP8 and FADD-like apoptosis regulator Human genes 0.000 description 1
- 108010056102 CD100 antigen Proteins 0.000 description 1
- 101150075764 CD4 gene Proteins 0.000 description 1
- 102000014578 CDC26 Human genes 0.000 description 1
- 102000056162 CELF1 Human genes 0.000 description 1
- 108700015925 CELF1 Proteins 0.000 description 1
- 101150107790 CELF1 gene Proteins 0.000 description 1
- 102100021786 CMP-N-acetylneuraminate-poly-alpha-2,8-sialyltransferase Human genes 0.000 description 1
- 102100033787 CMP-sialic acid transporter Human genes 0.000 description 1
- FVHOSMVGFQPSQE-BJUHUSMOSA-N COC[C@@]12CCO[C@@H]([C@H](C)O1)[C@@H]2OC.COC[C@@]12C[C@H](C)[C@@H]([C@H](C)O1)[C@@H]2OC.COC[C@]12O[C@@H](C)[C@H](O[C@H]1C)[C@@H]2OC Chemical compound COC[C@@]12CCO[C@@H]([C@H](C)O1)[C@@H]2OC.COC[C@@]12C[C@H](C)[C@@H]([C@H](C)O1)[C@@H]2OC.COC[C@]12O[C@@H](C)[C@H](O[C@H]1C)[C@@H]2OC FVHOSMVGFQPSQE-BJUHUSMOSA-N 0.000 description 1
- 102100024311 COMM domain-containing protein 2 Human genes 0.000 description 1
- 102100024305 COMM domain-containing protein 4 Human genes 0.000 description 1
- 102100028245 COP9 signalosome complex subunit 7a Human genes 0.000 description 1
- 102100029930 CST complex subunit STN1 Human genes 0.000 description 1
- 102100031625 CTTNBP2 N-terminal-like protein Human genes 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 101000909256 Caldicellulosiruptor bescii (strain ATCC BAA-1888 / DSM 6725 / Z-1320) DNA polymerase I Proteins 0.000 description 1
- 102100025926 Calmodulin-3 Human genes 0.000 description 1
- 102100036338 Calmodulin-like protein 4 Human genes 0.000 description 1
- 102100029226 Cancer-related nucleoside-triphosphatase Human genes 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102100034357 Casein kinase I isoform alpha Human genes 0.000 description 1
- 102100037397 Casein kinase I isoform gamma-1 Human genes 0.000 description 1
- 102100023060 Casein kinase I isoform gamma-2 Human genes 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- 108090000567 Caspase 7 Proteins 0.000 description 1
- 102100029855 Caspase-3 Human genes 0.000 description 1
- 102100038902 Caspase-7 Human genes 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102100021633 Cathepsin B Human genes 0.000 description 1
- 102100032219 Cathepsin D Human genes 0.000 description 1
- 102100037182 Cation-independent mannose-6-phosphate receptor Human genes 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 101150008735 Cdc26 gene Proteins 0.000 description 1
- 102100024490 Cdc42 effector protein 3 Human genes 0.000 description 1
- 102100032346 Cell cycle progression protein 1 Human genes 0.000 description 1
- 102100034744 Cell division cycle 7-related protein kinase Human genes 0.000 description 1
- 108010091675 Cellular Apoptosis Susceptibility Protein Proteins 0.000 description 1
- 102100037633 Centrin-3 Human genes 0.000 description 1
- 102100023443 Centromere protein H Human genes 0.000 description 1
- 102100038122 Centromere protein R Human genes 0.000 description 1
- 102100023310 Centrosomal protein of 128 kDa Human genes 0.000 description 1
- 101710170458 Centrosomal protein of 128 kDa Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- 102100029318 Chondroitin sulfate synthase 1 Human genes 0.000 description 1
- 101150008206 Cilk1 gene Proteins 0.000 description 1
- 102100036444 Clathrin interactor 1 Human genes 0.000 description 1
- 102100030954 Cleavage and polyadenylation specificity factor subunit 3 Human genes 0.000 description 1
- 102100023666 Coiled-coil domain-containing protein 117 Human genes 0.000 description 1
- 102100026768 Coiled-coil domain-containing protein 71L Human genes 0.000 description 1
- 102100023689 Coiled-coil-helix-coiled-coil-helix domain-containing protein 7 Human genes 0.000 description 1
- 102100023774 Cold-inducible RNA-binding protein Human genes 0.000 description 1
- 102000008147 Core Binding Factor beta Subunit Human genes 0.000 description 1
- 108010060313 Core Binding Factor beta Subunit Proteins 0.000 description 1
- 102100034528 Core histone macro-H2A.1 Human genes 0.000 description 1
- 108010024986 Cyclin-Dependent Kinase 2 Proteins 0.000 description 1
- 102000009506 Cyclin-Dependent Kinase Inhibitor p19 Human genes 0.000 description 1
- 108010009361 Cyclin-Dependent Kinase Inhibitor p19 Proteins 0.000 description 1
- 102100036883 Cyclin-H Human genes 0.000 description 1
- 102100036273 Cyclin-Y-like protein 1 Human genes 0.000 description 1
- 102100036239 Cyclin-dependent kinase 2 Human genes 0.000 description 1
- 108010037462 Cyclooxygenase 2 Proteins 0.000 description 1
- 102100029079 Cytochrome c oxidase assembly protein COX15 homolog Human genes 0.000 description 1
- 102100027475 Cytochrome c oxidase assembly protein COX18, mitochondrial Human genes 0.000 description 1
- 102100038800 Cytochrome c oxidase assembly protein COX20, mitochondrial Human genes 0.000 description 1
- 102100038835 Cytochrome c oxidase subunit 7B, mitochondrial Human genes 0.000 description 1
- 102100039061 Cytokine receptor common subunit beta Human genes 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 102100028523 Cytoplasmic dynein 1 intermediate chain 2 Human genes 0.000 description 1
- 102100036318 Cytoplasmic phosphatidylinositol transfer protein 1 Human genes 0.000 description 1
- 102100023759 Cytosolic iron-sulfur assembly component 2A Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 102100033212 DAZ-associated protein 2 Human genes 0.000 description 1
- 102100026981 DCN1-like protein 3 Human genes 0.000 description 1
- 102100025282 DENN domain-containing protein 2D Human genes 0.000 description 1
- 102100037753 DEP domain-containing protein 1A Human genes 0.000 description 1
- 102100021122 DNA damage-binding protein 2 Human genes 0.000 description 1
- 102100026139 DNA damage-inducible transcript 4 protein Human genes 0.000 description 1
- 102100029905 DNA polymerase epsilon subunit 3 Human genes 0.000 description 1
- 102100034484 DNA repair protein RAD51 homolog 3 Human genes 0.000 description 1
- 102100034483 DNA repair protein RAD51 homolog 4 Human genes 0.000 description 1
- 102100033589 DNA topoisomerase 2-beta Human genes 0.000 description 1
- 102100039886 DNA-directed RNA polymerase III subunit RPC4 Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 101100444938 Danio rerio eif3ja gene Proteins 0.000 description 1
- 102100038713 Death domain-containing protein CRADD Human genes 0.000 description 1
- 102100037101 Deoxycytidylate deaminase Human genes 0.000 description 1
- 102100024730 Deoxynucleotidyltransferase terminal-interacting protein 1 Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 206010012455 Dermatitis exfoliative Diseases 0.000 description 1
- 102100037417 Dexamethasone-induced protein Human genes 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102100022735 Diacylglycerol kinase alpha Human genes 0.000 description 1
- 102100036968 Dipeptidyl peptidase 8 Human genes 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 102100039673 Disintegrin and metalloproteinase domain-containing protein 10 Human genes 0.000 description 1
- 102100037870 Divergent protein kinase domain 1A Human genes 0.000 description 1
- 102100029721 DnaJ homolog subfamily B member 1 Human genes 0.000 description 1
- 102100034108 DnaJ homolog subfamily C member 12 Human genes 0.000 description 1
- 102100024096 DnaJ homolog subfamily C member 30, mitochondrial Human genes 0.000 description 1
- 102100029952 Double-strand-break repair protein rad21 homolog Human genes 0.000 description 1
- 102100028027 Double-stranded RNA-binding protein Staufen homolog 1 Human genes 0.000 description 1
- 102100031480 Dual specificity mitogen-activated protein kinase kinase 1 Human genes 0.000 description 1
- 102100027085 Dual specificity protein phosphatase 4 Human genes 0.000 description 1
- 238000003718 Dual-Luciferase Reporter Assay System Methods 0.000 description 1
- 102100024827 Dynamin-1-like protein Human genes 0.000 description 1
- 102100024749 Dynein light chain Tctex-type 1 Human genes 0.000 description 1
- 102100035989 E3 SUMO-protein ligase PIAS1 Human genes 0.000 description 1
- 102100037038 E3 ubiquitin-protein ligase CCNB1IP1 Human genes 0.000 description 1
- 102100034116 E3 ubiquitin-protein ligase RNF123 Human genes 0.000 description 1
- 102100036275 E3 ubiquitin-protein ligase RNF149 Human genes 0.000 description 1
- 102100029503 E3 ubiquitin-protein ligase TRIM32 Human genes 0.000 description 1
- 102100040085 E3 ubiquitin-protein ligase TRIM38 Human genes 0.000 description 1
- 102100030796 E3 ubiquitin-protein ligase rififylin Human genes 0.000 description 1
- 102100021758 E3 ubiquitin-protein transferase MAEA Human genes 0.000 description 1
- 102100029493 EKC/KEOPS complex subunit TP53RK Human genes 0.000 description 1
- 102100037245 EP300-interacting inhibitor of differentiation 2 Human genes 0.000 description 1
- 102100032443 ER degradation-enhancing alpha-mannosidase-like protein 3 Human genes 0.000 description 1
- 102100023794 ETS domain-containing protein Elk-3 Human genes 0.000 description 1
- 102100021977 Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 Human genes 0.000 description 1
- 102100030801 Elongation factor 1-alpha 1 Human genes 0.000 description 1
- 102100031726 Endoplasmic reticulum junction formation protein lunapark Human genes 0.000 description 1
- 102100030377 Endoplasmic reticulum metallopeptidase 1 Human genes 0.000 description 1
- 102100028565 Epimerase family protein SDR39U1 Human genes 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 102100027270 Etoposide-induced protein 2.4 homolog Human genes 0.000 description 1
- 102100034226 Eukaryotic translation initiation factor 3 subunit J Human genes 0.000 description 1
- 102100022466 Eukaryotic translation initiation factor 4E-binding protein 1 Human genes 0.000 description 1
- 102100021002 Eukaryotic translation initiation factor 5A-2 Human genes 0.000 description 1
- 102100026045 Exosome complex component RRP42 Human genes 0.000 description 1
- 102100035977 Exostosin-like 2 Human genes 0.000 description 1
- 102100029091 Exportin-2 Human genes 0.000 description 1
- 102100032839 Exportin-5 Human genes 0.000 description 1
- 102100037319 F-box/SPRY domain-containing protein 1 Human genes 0.000 description 1
- 102100028166 FACT complex subunit SSRP1 Human genes 0.000 description 1
- 102100038547 FSD1-like protein Human genes 0.000 description 1
- 102100034553 Fanconi anemia group J protein Human genes 0.000 description 1
- 102100037679 Fasciculation and elongation protein zeta-2 Human genes 0.000 description 1
- 102100022366 Fatty acyl-CoA reductase 1 Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102100020760 Ferritin heavy chain Human genes 0.000 description 1
- 102100032790 Flotillin-1 Human genes 0.000 description 1
- 108010009307 Forkhead Box Protein O3 Proteins 0.000 description 1
- 102100035421 Forkhead box protein O3 Human genes 0.000 description 1
- 102100028875 Formylglycine-generating enzyme Human genes 0.000 description 1
- 102100027681 Fructose-2,6-bisphosphatase TIGAR Human genes 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102100020976 G kinase-anchoring protein 1 Human genes 0.000 description 1
- 102100023685 G protein-coupled receptor kinase 5 Human genes 0.000 description 1
- 102100037854 G1/S-specific cyclin-E2 Human genes 0.000 description 1
- 102100033324 GATA zinc finger domain-containing protein 1 Human genes 0.000 description 1
- 102100024515 GDP-L-fucose synthase Human genes 0.000 description 1
- 102100037121 GSK-3-binding protein FRAT2 Human genes 0.000 description 1
- 102100027541 GTP-binding protein Rheb Human genes 0.000 description 1
- 102100028496 Galactocerebrosidase Human genes 0.000 description 1
- 241000272496 Galliformes Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 102100034004 Gamma-adducin Human genes 0.000 description 1
- 102100040004 Gamma-glutamylcyclotransferase Human genes 0.000 description 1
- 102100030916 Gamma-soluble NSF attachment protein Human genes 0.000 description 1
- 102100028593 Gamma-tubulin complex component 4 Human genes 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102100039956 Geminin Human genes 0.000 description 1
- 102100036536 General transcription factor 3C polypeptide 2 Human genes 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 102100023303 Germ cell-less protein-like 1 Human genes 0.000 description 1
- 102100041013 Glia maturation factor beta Human genes 0.000 description 1
- 102100028689 Glucocorticoid-induced transcript 1 protein Human genes 0.000 description 1
- 102100041034 Glucosamine-6-phosphate isomerase 1 Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102100035902 Glutamate decarboxylase 1 Human genes 0.000 description 1
- 102100034009 Glutamate dehydrogenase 1, mitochondrial Human genes 0.000 description 1
- 102100032923 Glutathione-specific gamma-glutamylcyclotransferase 2 Human genes 0.000 description 1
- 102100022556 Glycerol-3-phosphate dehydrogenase 1-like protein Human genes 0.000 description 1
- 102100039280 Glycogenin-1 Human genes 0.000 description 1
- 102100034223 Golgi apparatus protein 1 Human genes 0.000 description 1
- 102100036700 Golgi reassembly-stacking protein 2 Human genes 0.000 description 1
- 102100036675 Golgi-associated PDZ and coiled-coil motif-containing protein Human genes 0.000 description 1
- 102100023683 GrpE protein homolog 2, mitochondrial Human genes 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical class C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- 102100025594 Guided entry of tail-anchored proteins factor CAMLG Human genes 0.000 description 1
- 102100034477 H(+)/Cl(-) exchange transporter 3 Human genes 0.000 description 1
- 108091059596 H3F3A Proteins 0.000 description 1
- 108010081348 HRT1 protein Hairy Proteins 0.000 description 1
- 102100021881 Hairy/enhancer-of-split related with YRPW motif protein 1 Human genes 0.000 description 1
- 102100039392 Haloacid dehalogenase-like hydrolase domain-containing protein 2 Human genes 0.000 description 1
- 102100031624 Heat shock protein 105 kDa Human genes 0.000 description 1
- 102100027489 Helicase-like transcription factor Human genes 0.000 description 1
- 102100035669 Heterogeneous nuclear ribonucleoprotein A3 Human genes 0.000 description 1
- 102100024228 High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8A Human genes 0.000 description 1
- 102100039236 Histone H3.3 Human genes 0.000 description 1
- 102100032838 Histone chaperone ASF1A Human genes 0.000 description 1
- 102100022103 Histone-lysine N-methyltransferase 2A Human genes 0.000 description 1
- 102100032826 Homeodomain-interacting protein kinase 3 Human genes 0.000 description 1
- 102100023603 Homer protein homolog 3 Human genes 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 101000966793 Homo sapiens 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase Proteins 0.000 description 1
- 101000964898 Homo sapiens 14-3-3 protein zeta/delta Proteins 0.000 description 1
- 101001072024 Homo sapiens 2',5'-phosphodiesterase 12 Proteins 0.000 description 1
- 101000681020 Homo sapiens 2-iminobutanoate/2-iminopropanoate deaminase Proteins 0.000 description 1
- 101000612528 Homo sapiens 26S proteasome non-ATPase regulatory subunit 12 Proteins 0.000 description 1
- 101000694240 Homo sapiens 28S ribosomal protein S9, mitochondrial Proteins 0.000 description 1
- 101000935623 Homo sapiens 3'(2'),5'-bisphosphate nucleotidase 1 Proteins 0.000 description 1
- 101000841262 Homo sapiens 3-ketoacyl-CoA thiolase Proteins 0.000 description 1
- 101000854440 Homo sapiens 39S ribosomal protein L10, mitochondrial Proteins 0.000 description 1
- 101000691550 Homo sapiens 39S ribosomal protein L13, mitochondrial Proteins 0.000 description 1
- 101001079807 Homo sapiens 39S ribosomal protein L18, mitochondrial Proteins 0.000 description 1
- 101000711517 Homo sapiens 39S ribosomal protein L42, mitochondrial Proteins 0.000 description 1
- 101000836407 Homo sapiens 4-trimethylaminobutyraldehyde dehydrogenase Proteins 0.000 description 1
- 101000604528 Homo sapiens 5'-nucleotidase domain-containing protein 1 Proteins 0.000 description 1
- 101000603190 Homo sapiens 60S ribosomal export protein NMD3 Proteins 0.000 description 1
- 101000959553 Homo sapiens A-kinase-interacting protein 1 Proteins 0.000 description 1
- 101001008861 Homo sapiens ADP-ribose glycohydrolase OARD1 Proteins 0.000 description 1
- 101000684189 Homo sapiens ADP-ribosylation factor 4 Proteins 0.000 description 1
- 101000757620 Homo sapiens ADP-ribosylation factor-like protein 13B Proteins 0.000 description 1
- 101000757692 Homo sapiens ADP-ribosylation factor-like protein 2-binding protein Proteins 0.000 description 1
- 101000974439 Homo sapiens ADP-ribosylation factor-like protein 5B Proteins 0.000 description 1
- 101000769042 Homo sapiens ADP-ribosylation factor-like protein 8B Proteins 0.000 description 1
- 101000782083 Homo sapiens AN1-type zinc finger protein 6 Proteins 0.000 description 1
- 101000779234 Homo sapiens AP-1 complex subunit gamma-1 Proteins 0.000 description 1
- 101000890223 Homo sapiens AP-5 complex subunit mu-1 Proteins 0.000 description 1
- 101000685261 Homo sapiens AT-rich interactive domain-containing protein 2 Proteins 0.000 description 1
- 101000902754 Homo sapiens ATM interactor Proteins 0.000 description 1
- 101000783786 Homo sapiens ATP-binding cassette sub-family E member 1 Proteins 0.000 description 1
- 101000750222 Homo sapiens ATP-dependent Clp protease proteolytic subunit, mitochondrial Proteins 0.000 description 1
- 101000724231 Homo sapiens Abl interactor 2 Proteins 0.000 description 1
- 101000975753 Homo sapiens Acid ceramidase Proteins 0.000 description 1
- 101000754209 Homo sapiens Actin-related protein 10 Proteins 0.000 description 1
- 101000713904 Homo sapiens Activated RNA polymerase II transcriptional coactivator p15 Proteins 0.000 description 1
- 101001042227 Homo sapiens Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 Proteins 0.000 description 1
- 101000678865 Homo sapiens Acyl-coenzyme A thioesterase 13 Proteins 0.000 description 1
- 101000720385 Homo sapiens Acyl-coenzyme A thioesterase 9, mitochondrial Proteins 0.000 description 1
- 101000716952 Homo sapiens Adenosylhomocysteinase Proteins 0.000 description 1
- 101000775477 Homo sapiens Afadin- and alpha-actinin-binding protein Proteins 0.000 description 1
- 101000928511 Homo sapiens Akirin-1 Proteins 0.000 description 1
- 101000924727 Homo sapiens Alternative prion protein Proteins 0.000 description 1
- 101000890401 Homo sapiens Amyloid beta precursor like protein 2 Proteins 0.000 description 1
- 101000896743 Homo sapiens Anamorsin Proteins 0.000 description 1
- 101000959738 Homo sapiens Annexin A1 Proteins 0.000 description 1
- 101000924474 Homo sapiens Annexin A2 Proteins 0.000 description 1
- 101000757586 Homo sapiens Aprataxin Proteins 0.000 description 1
- 101000792706 Homo sapiens Arfaptin-1 Proteins 0.000 description 1
- 101000785765 Homo sapiens Arrestin domain-containing protein 2 Proteins 0.000 description 1
- 101000624939 Homo sapiens Asparagine-tRNA ligase, cytoplasmic Proteins 0.000 description 1
- 101000873101 Homo sapiens Ataxin-1-like Proteins 0.000 description 1
- 101000697498 Homo sapiens BAG family molecular chaperone regulator 5 Proteins 0.000 description 1
- 101000798486 Homo sapiens BCLAF1 and THRAP3 family member 3 Proteins 0.000 description 1
- 101100165236 Homo sapiens BCOR gene Proteins 0.000 description 1
- 101000762370 Homo sapiens BMP-2-inducible protein kinase Proteins 0.000 description 1
- 101000807630 Homo sapiens BRCA1-A complex subunit RAP80 Proteins 0.000 description 1
- 101000896834 Homo sapiens BTB/POZ domain-containing protein 10 Proteins 0.000 description 1
- 101000575420 Homo sapiens Beta-1,3-N-acetylglucosaminyltransferase manic fringe Proteins 0.000 description 1
- 101000868446 Homo sapiens Beta-2-syntrophin Proteins 0.000 description 1
- 101000780230 Homo sapiens Beta-centractin Proteins 0.000 description 1
- 101000935458 Homo sapiens Biogenesis of lysosome-related organelles complex 1 subunit 2 Proteins 0.000 description 1
- 101000872147 Homo sapiens Biogenesis of lysosome-related organelles complex 1 subunit 6 Proteins 0.000 description 1
- 101000761835 Homo sapiens Breast cancer metastasis-suppressor 1-like protein Proteins 0.000 description 1
- 101000794040 Homo sapiens Bromodomain and WD repeat-containing protein 1 Proteins 0.000 description 1
- 101000984916 Homo sapiens Butyrophilin subfamily 3 member A3 Proteins 0.000 description 1
- 101000584310 Homo sapiens C-myc promoter-binding protein Proteins 0.000 description 1
- 101000914211 Homo sapiens CASP8 and FADD-like apoptosis regulator Proteins 0.000 description 1
- 101000616698 Homo sapiens CMP-N-acetylneuraminate-poly-alpha-2,8-sialyltransferase Proteins 0.000 description 1
- 101000909581 Homo sapiens COMM domain-containing protein 2 Proteins 0.000 description 1
- 101000909571 Homo sapiens COMM domain-containing protein 4 Proteins 0.000 description 1
- 101000860484 Homo sapiens COP9 signalosome complex subunit 7a Proteins 0.000 description 1
- 101000585157 Homo sapiens CST complex subunit STN1 Proteins 0.000 description 1
- 101000940745 Homo sapiens CTTNBP2 N-terminal-like protein Proteins 0.000 description 1
- 101000933777 Homo sapiens Calmodulin-3 Proteins 0.000 description 1
- 101000714684 Homo sapiens Calmodulin-like protein 4 Proteins 0.000 description 1
- 101001124534 Homo sapiens Cancer-related nucleoside-triphosphatase Proteins 0.000 description 1
- 101000994700 Homo sapiens Casein kinase I isoform alpha Proteins 0.000 description 1
- 101001026384 Homo sapiens Casein kinase I isoform gamma-1 Proteins 0.000 description 1
- 101001049881 Homo sapiens Casein kinase I isoform gamma-2 Proteins 0.000 description 1
- 101000898449 Homo sapiens Cathepsin B Proteins 0.000 description 1
- 101000869010 Homo sapiens Cathepsin D Proteins 0.000 description 1
- 101001028831 Homo sapiens Cation-independent mannose-6-phosphate receptor Proteins 0.000 description 1
- 101000762414 Homo sapiens Cdc42 effector protein 3 Proteins 0.000 description 1
- 101000868629 Homo sapiens Cell cycle progression protein 1 Proteins 0.000 description 1
- 101000945740 Homo sapiens Cell division cycle 7-related protein kinase Proteins 0.000 description 1
- 101000880522 Homo sapiens Centrin-3 Proteins 0.000 description 1
- 101000907934 Homo sapiens Centromere protein H Proteins 0.000 description 1
- 101000884559 Homo sapiens Centromere protein R Proteins 0.000 description 1
- 101000989500 Homo sapiens Chondroitin sulfate synthase 1 Proteins 0.000 description 1
- 101000851951 Homo sapiens Clathrin interactor 1 Proteins 0.000 description 1
- 101000727101 Homo sapiens Cleavage and polyadenylation specificity factor subunit 3 Proteins 0.000 description 1
- 101000978253 Homo sapiens Coiled-coil domain-containing protein 117 Proteins 0.000 description 1
- 101000910811 Homo sapiens Coiled-coil domain-containing protein 71L Proteins 0.000 description 1
- 101000906984 Homo sapiens Coiled-coil-helix-coiled-coil-helix domain-containing protein 7 Proteins 0.000 description 1
- 101000906744 Homo sapiens Cold-inducible RNA-binding protein Proteins 0.000 description 1
- 101001067929 Homo sapiens Core histone macro-H2A.1 Proteins 0.000 description 1
- 101000713120 Homo sapiens Cyclin-H Proteins 0.000 description 1
- 101000716073 Homo sapiens Cyclin-Y-like protein 1 Proteins 0.000 description 1
- 101000770637 Homo sapiens Cytochrome c oxidase assembly protein COX15 homolog Proteins 0.000 description 1
- 101000725462 Homo sapiens Cytochrome c oxidase assembly protein COX18, mitochondrial Proteins 0.000 description 1
- 101000957223 Homo sapiens Cytochrome c oxidase assembly protein COX20, mitochondrial Proteins 0.000 description 1
- 101000957492 Homo sapiens Cytochrome c oxidase subunit 7B, mitochondrial Proteins 0.000 description 1
- 101001033280 Homo sapiens Cytokine receptor common subunit beta Proteins 0.000 description 1
- 101000915292 Homo sapiens Cytoplasmic dynein 1 intermediate chain 2 Proteins 0.000 description 1
- 101001074657 Homo sapiens Cytoplasmic phosphatidylinositol transfer protein 1 Proteins 0.000 description 1
- 101000906806 Homo sapiens Cytosolic iron-sulfur assembly component 2A Proteins 0.000 description 1
- 101000871240 Homo sapiens DAZ-associated protein 2 Proteins 0.000 description 1
- 101000911716 Homo sapiens DCN1-like protein 3 Proteins 0.000 description 1
- 101000722280 Homo sapiens DENN domain-containing protein 2D Proteins 0.000 description 1
- 101000950642 Homo sapiens DEP domain-containing protein 1A Proteins 0.000 description 1
- 101001041466 Homo sapiens DNA damage-binding protein 2 Proteins 0.000 description 1
- 101000912753 Homo sapiens DNA damage-inducible transcript 4 protein Proteins 0.000 description 1
- 101000864175 Homo sapiens DNA polymerase epsilon subunit 3 Proteins 0.000 description 1
- 101001132271 Homo sapiens DNA repair protein RAD51 homolog 3 Proteins 0.000 description 1
- 101001132266 Homo sapiens DNA repair protein RAD51 homolog 4 Proteins 0.000 description 1
- 101000669237 Homo sapiens DNA-directed RNA polymerase III subunit RPC4 Proteins 0.000 description 1
- 101000669171 Homo sapiens DNA-directed RNA polymerases I and III subunit RPAC2 Proteins 0.000 description 1
- 101000957914 Homo sapiens Death domain-containing protein CRADD Proteins 0.000 description 1
- 101000955042 Homo sapiens Deoxycytidylate deaminase Proteins 0.000 description 1
- 101000626101 Homo sapiens Deoxynucleotidyltransferase terminal-interacting protein 1 Proteins 0.000 description 1
- 101000806442 Homo sapiens Dexamethasone-induced protein Proteins 0.000 description 1
- 101001044817 Homo sapiens Diacylglycerol kinase alpha Proteins 0.000 description 1
- 101000804947 Homo sapiens Dipeptidyl peptidase 8 Proteins 0.000 description 1
- 101000806063 Homo sapiens Divergent protein kinase domain 1A Proteins 0.000 description 1
- 101000866018 Homo sapiens DnaJ homolog subfamily B member 1 Proteins 0.000 description 1
- 101000870234 Homo sapiens DnaJ homolog subfamily C member 12 Proteins 0.000 description 1
- 101001054001 Homo sapiens DnaJ homolog subfamily C member 30, mitochondrial Proteins 0.000 description 1
- 101000584942 Homo sapiens Double-strand-break repair protein rad21 homolog Proteins 0.000 description 1
- 101000697574 Homo sapiens Double-stranded RNA-binding protein Staufen homolog 1 Proteins 0.000 description 1
- 101001057621 Homo sapiens Dual specificity protein phosphatase 4 Proteins 0.000 description 1
- 101000909218 Homo sapiens Dynamin-1-like protein Proteins 0.000 description 1
- 101000908688 Homo sapiens Dynein light chain Tctex-type 1 Proteins 0.000 description 1
- 101000737896 Homo sapiens E3 ubiquitin-protein ligase CCNB1IP1 Proteins 0.000 description 1
- 101000711573 Homo sapiens E3 ubiquitin-protein ligase RNF123 Proteins 0.000 description 1
- 101000634982 Homo sapiens E3 ubiquitin-protein ligase TRIM32 Proteins 0.000 description 1
- 101000610492 Homo sapiens E3 ubiquitin-protein ligase TRIM38 Proteins 0.000 description 1
- 101000703348 Homo sapiens E3 ubiquitin-protein ligase rififylin Proteins 0.000 description 1
- 101000616009 Homo sapiens E3 ubiquitin-protein transferase MAEA Proteins 0.000 description 1
- 101001125560 Homo sapiens EKC/KEOPS complex subunit TP53RK Proteins 0.000 description 1
- 101000830812 Homo sapiens EKC/KEOPS complex subunit TPRKB Proteins 0.000 description 1
- 101000881675 Homo sapiens EP300-interacting inhibitor of differentiation 2 Proteins 0.000 description 1
- 101001016391 Homo sapiens ER degradation-enhancing alpha-mannosidase-like protein 3 Proteins 0.000 description 1
- 101000897035 Homo sapiens Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 Proteins 0.000 description 1
- 101000920078 Homo sapiens Elongation factor 1-alpha 1 Proteins 0.000 description 1
- 101000941029 Homo sapiens Endoplasmic reticulum junction formation protein lunapark Proteins 0.000 description 1
- 101001063315 Homo sapiens Endoplasmic reticulum metallopeptidase 1 Proteins 0.000 description 1
- 101000915432 Homo sapiens Epimerase family protein SDR39U1 Proteins 0.000 description 1
- 101001057564 Homo sapiens Etoposide-induced protein 2.4 homolog Proteins 0.000 description 1
- 101000678280 Homo sapiens Eukaryotic translation initiation factor 4E-binding protein 1 Proteins 0.000 description 1
- 101001002419 Homo sapiens Eukaryotic translation initiation factor 5A-2 Proteins 0.000 description 1
- 101001055992 Homo sapiens Exosome complex component RRP42 Proteins 0.000 description 1
- 101000875558 Homo sapiens Exostosin-like 2 Proteins 0.000 description 1
- 101000847058 Homo sapiens Exportin-5 Proteins 0.000 description 1
- 101001026907 Homo sapiens F-box/SPRY domain-containing protein 1 Proteins 0.000 description 1
- 101000697353 Homo sapiens FACT complex subunit SSRP1 Proteins 0.000 description 1
- 101001030528 Homo sapiens FSD1-like protein Proteins 0.000 description 1
- 101000848171 Homo sapiens Fanconi anemia group J protein Proteins 0.000 description 1
- 101001027414 Homo sapiens Fasciculation and elongation protein zeta-2 Proteins 0.000 description 1
- 101000824458 Homo sapiens Fatty acyl-CoA reductase 1 Proteins 0.000 description 1
- 101001002987 Homo sapiens Ferritin heavy chain Proteins 0.000 description 1
- 101000847538 Homo sapiens Flotillin-1 Proteins 0.000 description 1
- 101000648611 Homo sapiens Formylglycine-generating enzyme Proteins 0.000 description 1
- 101000651314 Homo sapiens Fructose-2,6-bisphosphatase TIGAR Proteins 0.000 description 1
- 101001075222 Homo sapiens G kinase-anchoring protein 1 Proteins 0.000 description 1
- 101000829476 Homo sapiens G protein-coupled receptor kinase 5 Proteins 0.000 description 1
- 101000738575 Homo sapiens G1/S-specific cyclin-E2 Proteins 0.000 description 1
- 101000926786 Homo sapiens GATA zinc finger domain-containing protein 1 Proteins 0.000 description 1
- 101001052793 Homo sapiens GDP-L-fucose synthase Proteins 0.000 description 1
- 101001029171 Homo sapiens GSK-3-binding protein FRAT2 Proteins 0.000 description 1
- 101000860395 Homo sapiens Galactocerebrosidase Proteins 0.000 description 1
- 101000799011 Homo sapiens Gamma-adducin Proteins 0.000 description 1
- 101000886680 Homo sapiens Gamma-glutamylcyclotransferase Proteins 0.000 description 1
- 101000702693 Homo sapiens Gamma-soluble NSF attachment protein Proteins 0.000 description 1
- 101001058965 Homo sapiens Gamma-tubulin complex component 4 Proteins 0.000 description 1
- 101000886596 Homo sapiens Geminin Proteins 0.000 description 1
- 101000714246 Homo sapiens General transcription factor 3C polypeptide 2 Proteins 0.000 description 1
- 101000830085 Homo sapiens Germ cell-less protein-like 1 Proteins 0.000 description 1
- 101001039387 Homo sapiens Glia maturation factor beta Proteins 0.000 description 1
- 101001058426 Homo sapiens Glucocorticoid-induced transcript 1 protein Proteins 0.000 description 1
- 101001039324 Homo sapiens Glucosamine-6-phosphate isomerase 1 Proteins 0.000 description 1
- 101000873546 Homo sapiens Glutamate decarboxylase 1 Proteins 0.000 description 1
- 101000870042 Homo sapiens Glutamate dehydrogenase 1, mitochondrial Proteins 0.000 description 1
- 101000942766 Homo sapiens Glutathione-specific gamma-glutamylcyclotransferase 2 Proteins 0.000 description 1
- 101000900194 Homo sapiens Glycerol-3-phosphate dehydrogenase 1-like protein Proteins 0.000 description 1
- 101000888201 Homo sapiens Glycogenin-1 Proteins 0.000 description 1
- 101001069963 Homo sapiens Golgi apparatus protein 1 Proteins 0.000 description 1
- 101001072495 Homo sapiens Golgi reassembly-stacking protein 2 Proteins 0.000 description 1
- 101001072499 Homo sapiens Golgi-associated PDZ and coiled-coil motif-containing protein Proteins 0.000 description 1
- 101000829465 Homo sapiens GrpE protein homolog 2, mitochondrial Proteins 0.000 description 1
- 101000932902 Homo sapiens Guided entry of tail-anchored proteins factor CAMLG Proteins 0.000 description 1
- 101000710223 Homo sapiens H(+)/Cl(-) exchange transporter 3 Proteins 0.000 description 1
- 101001035680 Homo sapiens Haloacid dehalogenase-like hydrolase domain-containing protein 2 Proteins 0.000 description 1
- 101000866478 Homo sapiens Heat shock protein 105 kDa Proteins 0.000 description 1
- 101001081105 Homo sapiens Helicase-like transcription factor Proteins 0.000 description 1
- 101000854041 Homo sapiens Heterogeneous nuclear ribonucleoprotein A3 Proteins 0.000 description 1
- 101001117261 Homo sapiens High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8A Proteins 0.000 description 1
- 101000923139 Homo sapiens Histone chaperone ASF1A Proteins 0.000 description 1
- 101001045846 Homo sapiens Histone-lysine N-methyltransferase 2A Proteins 0.000 description 1
- 101001066389 Homo sapiens Homeodomain-interacting protein kinase 3 Proteins 0.000 description 1
- 101001048461 Homo sapiens Homer protein homolog 3 Proteins 0.000 description 1
- 101000777670 Homo sapiens Hsp90 co-chaperone Cdc37 Proteins 0.000 description 1
- 101001042781 Homo sapiens Hydroxysteroid dehydrogenase-like protein 2 Proteins 0.000 description 1
- 101001046870 Homo sapiens Hypoxia-inducible factor 1-alpha Proteins 0.000 description 1
- 101000839066 Homo sapiens Hypoxia-inducible lipid droplet-associated protein Proteins 0.000 description 1
- 101001003310 Homo sapiens Immediate early response gene 5 protein Proteins 0.000 description 1
- 101001001462 Homo sapiens Importin subunit alpha-5 Proteins 0.000 description 1
- 101000852539 Homo sapiens Importin-5 Proteins 0.000 description 1
- 101000902205 Homo sapiens Inactive cytidine monophosphate-N-acetylneuraminic acid hydroxylase Proteins 0.000 description 1
- 101001042782 Homo sapiens Inactive hydroxysteroid dehydrogenase-like protein 1 Proteins 0.000 description 1
- 101001043772 Homo sapiens Inhibitor of nuclear factor kappa-B kinase-interacting protein Proteins 0.000 description 1
- 101000975428 Homo sapiens Inositol 1,4,5-trisphosphate receptor type 1 Proteins 0.000 description 1
- 101001001429 Homo sapiens Inositol monophosphatase 1 Proteins 0.000 description 1
- 101001054645 Homo sapiens Integrator complex subunit 13 Proteins 0.000 description 1
- 101000997642 Homo sapiens Integrin beta-1-binding protein 1 Proteins 0.000 description 1
- 101001077835 Homo sapiens Interferon regulatory factor 2-binding protein 2 Proteins 0.000 description 1
- 101001032341 Homo sapiens Interferon regulatory factor 9 Proteins 0.000 description 1
- 101001125123 Homo sapiens Interferon-inducible double-stranded RNA-dependent protein kinase activator A Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101000862611 Homo sapiens Intron Large complex component GCFC2 Proteins 0.000 description 1
- 101000875582 Homo sapiens Isoleucine-tRNA ligase, cytoplasmic Proteins 0.000 description 1
- 101001027190 Homo sapiens Kelch-like protein 42 Proteins 0.000 description 1
- 101001008853 Homo sapiens Kelch-like protein 5 Proteins 0.000 description 1
- 101001008914 Homo sapiens Kelch-like protein 8 Proteins 0.000 description 1
- 101000971697 Homo sapiens Kinesin-like protein KIF1B Proteins 0.000 description 1
- 101001027621 Homo sapiens Kinesin-like protein KIF20A Proteins 0.000 description 1
- 101001004946 Homo sapiens Lactoylglutathione lyase Proteins 0.000 description 1
- 101000619616 Homo sapiens Leucine-rich repeat-containing protein 47 Proteins 0.000 description 1
- 101000619643 Homo sapiens Ligand-dependent nuclear receptor-interacting factor 1 Proteins 0.000 description 1
- 101001065832 Homo sapiens Low-density lipoprotein receptor class A domain-containing protein 4 Proteins 0.000 description 1
- 101001063392 Homo sapiens Lymphocyte function-associated antigen 3 Proteins 0.000 description 1
- 101001026900 Homo sapiens Lysine-rich coiled-coil protein 1 Proteins 0.000 description 1
- 101001025945 Homo sapiens Lysine-specific demethylase 7A Proteins 0.000 description 1
- 101000922402 Homo sapiens Lysosomal membrane ascorbate-dependent ferrireductase CYB561A3 Proteins 0.000 description 1
- 101000615509 Homo sapiens MBT domain-containing protein 1 Proteins 0.000 description 1
- 101000991061 Homo sapiens MHC class I polypeptide-related sequence B Proteins 0.000 description 1
- 101000730540 Homo sapiens MOB-like protein phocein Proteins 0.000 description 1
- 101001045534 Homo sapiens MTRF1L release factor glutamine methyltransferase Proteins 0.000 description 1
- 101000573901 Homo sapiens Major prion protein Proteins 0.000 description 1
- 101001039753 Homo sapiens Malignant T-cell-amplified sequence 1 Proteins 0.000 description 1
- 101000669513 Homo sapiens Metalloproteinase inhibitor 1 Proteins 0.000 description 1
- 101000623878 Homo sapiens Metaxin-2 Proteins 0.000 description 1
- 101000578830 Homo sapiens Methionine aminopeptidase 1 Proteins 0.000 description 1
- 101000578877 Homo sapiens Mid1-interacting protein 1 Proteins 0.000 description 1
- 101000669640 Homo sapiens Mitochondrial import inner membrane translocase subunit TIM14 Proteins 0.000 description 1
- 101000637762 Homo sapiens Mitochondrial import inner membrane translocase subunit Tim9 Proteins 0.000 description 1
- 101000577080 Homo sapiens Mitochondrial-processing peptidase subunit alpha Proteins 0.000 description 1
- 101001052493 Homo sapiens Mitogen-activated protein kinase 1 Proteins 0.000 description 1
- 101001055092 Homo sapiens Mitogen-activated protein kinase kinase kinase 7 Proteins 0.000 description 1
- 101000794228 Homo sapiens Mitotic checkpoint serine/threonine-protein kinase BUB1 beta Proteins 0.000 description 1
- 101000591936 Homo sapiens Molybdopterin synthase catalytic subunit Proteins 0.000 description 1
- 101000963255 Homo sapiens Molybdopterin synthase sulfur carrier subunit Proteins 0.000 description 1
- 101000969546 Homo sapiens Mortality factor 4-like protein 1 Proteins 0.000 description 1
- 101000591295 Homo sapiens Myocardin-related transcription factor B Proteins 0.000 description 1
- 101000886220 Homo sapiens N-acetylgalactosaminyltransferase 7 Proteins 0.000 description 1
- 101000730680 Homo sapiens N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase Proteins 0.000 description 1
- 101000636582 Homo sapiens N-alpha-acetyltransferase 50 Proteins 0.000 description 1
- 101000973157 Homo sapiens NEDD4 family-interacting protein 1 Proteins 0.000 description 1
- 101000979357 Homo sapiens NEDD4 family-interacting protein 2 Proteins 0.000 description 1
- 101000644669 Homo sapiens NEDD8-conjugating enzyme Ubc12 Proteins 0.000 description 1
- 101000970023 Homo sapiens NUAK family SNF1-like kinase 1 Proteins 0.000 description 1
- 101000979293 Homo sapiens Negative elongation factor C/D Proteins 0.000 description 1
- 101000636811 Homo sapiens Neudesin Proteins 0.000 description 1
- 101000581961 Homo sapiens Neurocalcin-delta Proteins 0.000 description 1
- 101001072765 Homo sapiens Neutral alpha-glucosidase AB Proteins 0.000 description 1
- 101000655246 Homo sapiens Neutral amino acid transporter A Proteins 0.000 description 1
- 101000859679 Homo sapiens Non-lysosomal glucosylceramidase Proteins 0.000 description 1
- 101000973615 Homo sapiens Nuclear envelope integral membrane protein 1 Proteins 0.000 description 1
- 101000973177 Homo sapiens Nuclear factor interleukin-3-regulated protein Proteins 0.000 description 1
- 101000634707 Homo sapiens Nucleolar complex protein 3 homolog Proteins 0.000 description 1
- 101000991945 Homo sapiens Nucleotide triphosphate diphosphatase NUDT15 Proteins 0.000 description 1
- 101001109278 Homo sapiens NudC domain-containing protein 2 Proteins 0.000 description 1
- 101000996087 Homo sapiens Omega-amidase NIT2 Proteins 0.000 description 1
- 101000613806 Homo sapiens Osteopetrosis-associated transmembrane protein 1 Proteins 0.000 description 1
- 101000887280 Homo sapiens Outer mitochondrial transmembrane helix translocase Proteins 0.000 description 1
- 101000986810 Homo sapiens P2Y purinoceptor 8 Proteins 0.000 description 1
- 101000597273 Homo sapiens PHD finger protein 11 Proteins 0.000 description 1
- 101000583141 Homo sapiens PITH domain-containing protein 1 Proteins 0.000 description 1
- 101000741956 Homo sapiens PRA1 family protein 3 Proteins 0.000 description 1
- 101000759160 Homo sapiens Palmitoyltransferase ZDHHC6 Proteins 0.000 description 1
- 101001095231 Homo sapiens Peptidyl-prolyl cis-trans isomerase D Proteins 0.000 description 1
- 101001060744 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP1A Proteins 0.000 description 1
- 101000579342 Homo sapiens Peroxisome assembly protein 12 Proteins 0.000 description 1
- 101000842043 Homo sapiens Phenylalanine-tRNA ligase, mitochondrial Proteins 0.000 description 1
- 101001094028 Homo sapiens Phosphatase and actin regulator 2 Proteins 0.000 description 1
- 101000987493 Homo sapiens Phosphatidylethanolamine-binding protein 1 Proteins 0.000 description 1
- 101000869517 Homo sapiens Phosphatidylinositol-3-phosphatase SAC1 Proteins 0.000 description 1
- 101000583474 Homo sapiens Phosphatidylinositol-binding clathrin assembly protein Proteins 0.000 description 1
- 101001133637 Homo sapiens Phosphofurin acidic cluster sorting protein 2 Proteins 0.000 description 1
- 101000829725 Homo sapiens Phospholipid hydroperoxide glutathione peroxidase Proteins 0.000 description 1
- 101000595920 Homo sapiens Plasminogen-like protein A Proteins 0.000 description 1
- 101001096177 Homo sapiens Pleckstrin homology domain-containing family A member 3 Proteins 0.000 description 1
- 101001113440 Homo sapiens Poly [ADP-ribose] polymerase 2 Proteins 0.000 description 1
- 101000872170 Homo sapiens Polycomb complex protein BMI-1 Proteins 0.000 description 1
- 101000829538 Homo sapiens Polypeptide N-acetylgalactosaminyltransferase 15 Proteins 0.000 description 1
- 101000595375 Homo sapiens Porimin Proteins 0.000 description 1
- 101001105692 Homo sapiens Pre-mRNA-processing factor 6 Proteins 0.000 description 1
- 101000914035 Homo sapiens Pre-mRNA-splicing regulator WTAP Proteins 0.000 description 1
- 101000795624 Homo sapiens Pre-rRNA-processing protein TSR1 homolog Proteins 0.000 description 1
- 101000874142 Homo sapiens Probable ATP-dependent RNA helicase DDX46 Proteins 0.000 description 1
- 101000864677 Homo sapiens Probable ATP-dependent RNA helicase DHX40 Proteins 0.000 description 1
- 101000914051 Homo sapiens Probable cytosolic iron-sulfur protein assembly protein CIAO1 Proteins 0.000 description 1
- 101000951118 Homo sapiens Probable dimethyladenosine transferase Proteins 0.000 description 1
- 101000702559 Homo sapiens Probable global transcription activator SNF2L2 Proteins 0.000 description 1
- 101000659685 Homo sapiens Probable tRNA pseudouridine synthase 1 Proteins 0.000 description 1
- 101001072059 Homo sapiens Programmed cell death protein 2-like Proteins 0.000 description 1
- 101000611943 Homo sapiens Programmed cell death protein 4 Proteins 0.000 description 1
- 101001117509 Homo sapiens Prostaglandin E2 receptor EP4 subtype Proteins 0.000 description 1
- 101001114111 Homo sapiens Protease-associated domain-containing protein 1 Proteins 0.000 description 1
- 101001104570 Homo sapiens Proteasome assembly chaperone 2 Proteins 0.000 description 1
- 101000736929 Homo sapiens Proteasome subunit alpha type-1 Proteins 0.000 description 1
- 101000610781 Homo sapiens Proteasome subunit alpha type-2 Proteins 0.000 description 1
- 101001124667 Homo sapiens Proteasome subunit alpha type-5 Proteins 0.000 description 1
- 101000933607 Homo sapiens Protein BTG3 Proteins 0.000 description 1
- 101000876829 Homo sapiens Protein C-ets-1 Proteins 0.000 description 1
- 101000859935 Homo sapiens Protein CREG1 Proteins 0.000 description 1
- 101000722011 Homo sapiens Protein DENND6A Proteins 0.000 description 1
- 101000911753 Homo sapiens Protein FAM107B Proteins 0.000 description 1
- 101000854603 Homo sapiens Protein FAM168A Proteins 0.000 description 1
- 101000848930 Homo sapiens Protein FAM199X Proteins 0.000 description 1
- 101000911483 Homo sapiens Protein FAM210B, mitochondrial Proteins 0.000 description 1
- 101000882228 Homo sapiens Protein FAM32A Proteins 0.000 description 1
- 101000848919 Homo sapiens Protein FAM72B Proteins 0.000 description 1
- 101000911386 Homo sapiens Protein FAM8A1 Proteins 0.000 description 1
- 101000878468 Homo sapiens Protein FMC1 homolog Proteins 0.000 description 1
- 101000998434 Homo sapiens Protein ILRUN Proteins 0.000 description 1
- 101001056567 Homo sapiens Protein Jumonji Proteins 0.000 description 1
- 101001059604 Homo sapiens Protein MAK16 homolog Proteins 0.000 description 1
- 101000625256 Homo sapiens Protein Mis18-beta Proteins 0.000 description 1
- 101000634179 Homo sapiens Protein N-terminal glutamine amidohydrolase Proteins 0.000 description 1
- 101000801270 Homo sapiens Protein O-mannosyl-transferase TMTC2 Proteins 0.000 description 1
- 101001133654 Homo sapiens Protein PALS1 Proteins 0.000 description 1
- 101000848498 Homo sapiens Protein POLR1D, isoform 2 Proteins 0.000 description 1
- 101000653788 Homo sapiens Protein S100-A11 Proteins 0.000 description 1
- 101000819227 Homo sapiens Protein YIF1A Proteins 0.000 description 1
- 101000793247 Homo sapiens Protein YIPF6 Proteins 0.000 description 1
- 101000915575 Homo sapiens Protein ZNRD2 Proteins 0.000 description 1
- 101000873615 Homo sapiens Protein bicaudal D homolog 2 Proteins 0.000 description 1
- 101000900767 Homo sapiens Protein cornichon homolog 1 Proteins 0.000 description 1
- 101000971404 Homo sapiens Protein kinase C iota type Proteins 0.000 description 1
- 101001004288 Homo sapiens Protein lin-52 homolog Proteins 0.000 description 1
- 101000987488 Homo sapiens Protein pelota homolog Proteins 0.000 description 1
- 101000659522 Homo sapiens Protein unc-119 homolog A Proteins 0.000 description 1
- 101001029173 Homo sapiens Proto-oncogene FRAT1 Proteins 0.000 description 1
- 101001008492 Homo sapiens Putative RNA-binding protein Luc7-like 2 Proteins 0.000 description 1
- 101000609336 Homo sapiens Pyrroline-5-carboxylate reductase 2 Proteins 0.000 description 1
- 101001069891 Homo sapiens RAS guanyl-releasing protein 1 Proteins 0.000 description 1
- 101000580720 Homo sapiens RNA-binding protein 25 Proteins 0.000 description 1
- 101001099195 Homo sapiens RNA-binding protein 4B Proteins 0.000 description 1
- 101000591128 Homo sapiens RNA-binding protein Musashi homolog 2 Proteins 0.000 description 1
- 101000709121 Homo sapiens Ral guanine nucleotide dissociation stimulator-like 1 Proteins 0.000 description 1
- 101001081220 Homo sapiens RanBP-type and C3HC4-type zinc finger-containing protein 1 Proteins 0.000 description 1
- 101000848745 Homo sapiens Rap guanine nucleotide exchange factor 6 Proteins 0.000 description 1
- 101000893689 Homo sapiens Ras GTPase-activating protein-binding protein 1 Proteins 0.000 description 1
- 101000712964 Homo sapiens Ras association domain-containing protein 3 Proteins 0.000 description 1
- 101000686227 Homo sapiens Ras-related protein R-Ras2 Proteins 0.000 description 1
- 101001130308 Homo sapiens Ras-related protein Rab-21 Proteins 0.000 description 1
- 101001077405 Homo sapiens Ras-related protein Rab-5C Proteins 0.000 description 1
- 101001077400 Homo sapiens Ras-related protein Rab-6A Proteins 0.000 description 1
- 101001130458 Homo sapiens Ras-related protein Ral-B Proteins 0.000 description 1
- 101000584600 Homo sapiens Ras-related protein Rap-1b Proteins 0.000 description 1
- 101001130441 Homo sapiens Ras-related protein Rap-2a Proteins 0.000 description 1
- 101000849747 Homo sapiens Regulation of nuclear pre-mRNA domain-containing protein 1A Proteins 0.000 description 1
- 101001075466 Homo sapiens Regulatory factor X-associated protein Proteins 0.000 description 1
- 101000709305 Homo sapiens Replication protein A 14 kDa subunit Proteins 0.000 description 1
- 101001078087 Homo sapiens Reticulocalbin-2 Proteins 0.000 description 1
- 101000686915 Homo sapiens Reticulophagy regulator 2 Proteins 0.000 description 1
- 101001090901 Homo sapiens Retroelement silencing factor 1 Proteins 0.000 description 1
- 101000581129 Homo sapiens Rho GTPase-activating protein 19 Proteins 0.000 description 1
- 101000927799 Homo sapiens Rho guanine nucleotide exchange factor 6 Proteins 0.000 description 1
- 101001093905 Homo sapiens Ribitol-5-phosphate xylosyltransferase 1 Proteins 0.000 description 1
- 101001078484 Homo sapiens Ribonuclease H1 Proteins 0.000 description 1
- 101000729289 Homo sapiens Ribose-5-phosphate isomerase Proteins 0.000 description 1
- 101000945090 Homo sapiens Ribosomal protein S6 kinase alpha-3 Proteins 0.000 description 1
- 101001051706 Homo sapiens Ribosomal protein S6 kinase beta-1 Proteins 0.000 description 1
- 101001051707 Homo sapiens Ribosomal protein S6 kinase delta-1 Proteins 0.000 description 1
- 101000683584 Homo sapiens Ribosome-binding protein 1 Proteins 0.000 description 1
- 101000742883 Homo sapiens Roquin-2 Proteins 0.000 description 1
- 101000693903 Homo sapiens S phase cyclin A-associated protein in the endoplasmic reticulum Proteins 0.000 description 1
- 101001092917 Homo sapiens SAM domain-containing protein SAMSN-1 Proteins 0.000 description 1
- 101000963987 Homo sapiens SH3 domain-binding protein 5 Proteins 0.000 description 1
- 101000688582 Homo sapiens SH3 domain-containing kinase-binding protein 1 Proteins 0.000 description 1
- 101000864837 Homo sapiens SIN3-HDAC complex-associated factor Proteins 0.000 description 1
- 101000701497 Homo sapiens STE20/SPS1-related proline-alanine-rich protein kinase Proteins 0.000 description 1
- 101000740400 Homo sapiens Secretory carrier-associated membrane protein 1 Proteins 0.000 description 1
- 101000587820 Homo sapiens Selenide, water dikinase 1 Proteins 0.000 description 1
- 101000828738 Homo sapiens Selenide, water dikinase 2 Proteins 0.000 description 1
- 101000692225 Homo sapiens Selenocysteine insertion sequence-binding protein 2 Proteins 0.000 description 1
- 101000873446 Homo sapiens Selenoprotein S Proteins 0.000 description 1
- 101000836650 Homo sapiens Selenoprotein W Proteins 0.000 description 1
- 101000644537 Homo sapiens Sequestosome-1 Proteins 0.000 description 1
- 101000707471 Homo sapiens Serine incorporator 3 Proteins 0.000 description 1
- 101000701401 Homo sapiens Serine/threonine-protein kinase 38 Proteins 0.000 description 1
- 101000605835 Homo sapiens Serine/threonine-protein kinase PINK1, mitochondrial Proteins 0.000 description 1
- 101000756066 Homo sapiens Serine/threonine-protein kinase RIO1 Proteins 0.000 description 1
- 101000620662 Homo sapiens Serine/threonine-protein phosphatase 6 catalytic subunit Proteins 0.000 description 1
- 101000780111 Homo sapiens Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit A Proteins 0.000 description 1
- 101000700752 Homo sapiens Serum response factor-binding protein 1 Proteins 0.000 description 1
- 101000929936 Homo sapiens Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000688665 Homo sapiens Sideroflexin-2 Proteins 0.000 description 1
- 101000629635 Homo sapiens Signal recognition particle receptor subunit alpha Proteins 0.000 description 1
- 101000701334 Homo sapiens Sodium/potassium-transporting ATPase subunit alpha-1 Proteins 0.000 description 1
- 101000923531 Homo sapiens Sodium/potassium-transporting ATPase subunit gamma Proteins 0.000 description 1
- 101000820460 Homo sapiens Stomatin Proteins 0.000 description 1
- 101000829168 Homo sapiens Succinate-semialdehyde dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000626379 Homo sapiens Synaptotagmin-11 Proteins 0.000 description 1
- 101000740519 Homo sapiens Syndecan-4 Proteins 0.000 description 1
- 101000706175 Homo sapiens Syntaxin-17 Proteins 0.000 description 1
- 101000740523 Homo sapiens Syntenin-1 Proteins 0.000 description 1
- 101000835670 Homo sapiens T-cell activation inhibitor, mitochondrial Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 101000653503 Homo sapiens TATA box-binding protein-like 1 Proteins 0.000 description 1
- 101000625846 Homo sapiens TBC domain-containing protein kinase-like protein Proteins 0.000 description 1
- 101000665419 Homo sapiens TBC1 domain family member 14 Proteins 0.000 description 1
- 101000653597 Homo sapiens TBC1 domain family member 23 Proteins 0.000 description 1
- 101000674728 Homo sapiens TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 Proteins 0.000 description 1
- 101000835665 Homo sapiens TRPM8 channel-associated factor 1 Proteins 0.000 description 1
- 101000800495 Homo sapiens Telomere length and silencing protein 1 homolog Proteins 0.000 description 1
- 101000759889 Homo sapiens Tetraspanin-14 Proteins 0.000 description 1
- 101000845183 Homo sapiens Tetratricopeptide repeat protein 5 Proteins 0.000 description 1
- 101000844686 Homo sapiens Thioredoxin reductase 1, cytoplasmic Proteins 0.000 description 1
- 101000773151 Homo sapiens Thioredoxin-like protein 4B Proteins 0.000 description 1
- 101000819111 Homo sapiens Trans-acting T-cell-specific transcription factor GATA-3 Proteins 0.000 description 1
- 101000702545 Homo sapiens Transcription activator BRG1 Proteins 0.000 description 1
- 101000800580 Homo sapiens Transcription factor 19 Proteins 0.000 description 1
- 101000708741 Homo sapiens Transcription factor RelB Proteins 0.000 description 1
- 101000653542 Homo sapiens Transcription factor-like 5 protein Proteins 0.000 description 1
- 101000788172 Homo sapiens Transcription initiation factor TFIID subunit 12 Proteins 0.000 description 1
- 101000715157 Homo sapiens Transcription initiation factor TFIID subunit 9B Proteins 0.000 description 1
- 101000894871 Homo sapiens Transcription regulator protein BACH1 Proteins 0.000 description 1
- 101000626636 Homo sapiens Transcriptional adapter 2-beta Proteins 0.000 description 1
- 101000801209 Homo sapiens Transducin-like enhancer protein 4 Proteins 0.000 description 1
- 101001071076 Homo sapiens Translation factor GUF1, mitochondrial Proteins 0.000 description 1
- 101000649115 Homo sapiens Translocating chain-associated membrane protein 1 Proteins 0.000 description 1
- 101000798717 Homo sapiens Transmembrane 9 superfamily member 1 Proteins 0.000 description 1
- 101000798731 Homo sapiens Transmembrane 9 superfamily member 3 Proteins 0.000 description 1
- 101000798700 Homo sapiens Transmembrane protease serine 3 Proteins 0.000 description 1
- 101000798702 Homo sapiens Transmembrane protease serine 4 Proteins 0.000 description 1
- 101000763456 Homo sapiens Transmembrane protein 138 Proteins 0.000 description 1
- 101000831515 Homo sapiens Transmembrane protein 186 Proteins 0.000 description 1
- 101000851611 Homo sapiens Transmembrane protein 263 Proteins 0.000 description 1
- 101000798689 Homo sapiens Transmembrane protein 33 Proteins 0.000 description 1
- 101000831825 Homo sapiens Transmembrane protein 41B Proteins 0.000 description 1
- 101000640986 Homo sapiens Tryptophan-tRNA ligase, mitochondrial Proteins 0.000 description 1
- 101000788607 Homo sapiens Tubulin alpha-3C chain Proteins 0.000 description 1
- 101000788608 Homo sapiens Tubulin alpha-3D chain Proteins 0.000 description 1
- 101000835634 Homo sapiens Tubulin-folding cofactor B Proteins 0.000 description 1
- 101000835622 Homo sapiens Tubulin-specific chaperone A Proteins 0.000 description 1
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 1
- 101000610980 Homo sapiens Tumor protein D52 Proteins 0.000 description 1
- 101000830843 Homo sapiens Tumor protein p63-regulated gene 1 protein Proteins 0.000 description 1
- 101000659267 Homo sapiens Tumor suppressor candidate 2 Proteins 0.000 description 1
- 101000659324 Homo sapiens Twinfilin-1 Proteins 0.000 description 1
- 101000807631 Homo sapiens UAP56-interacting factor Proteins 0.000 description 1
- 101000945528 Homo sapiens UPF0461 protein C5orf24 Proteins 0.000 description 1
- 101000946012 Homo sapiens UPF0488 protein C8orf33 Proteins 0.000 description 1
- 101000794443 Homo sapiens UPF0688 protein C1orf174 Proteins 0.000 description 1
- 101000607626 Homo sapiens Ubiquilin-1 Proteins 0.000 description 1
- 101000809243 Homo sapiens Ubiquitin carboxyl-terminal hydrolase 10 Proteins 0.000 description 1
- 101000748141 Homo sapiens Ubiquitin carboxyl-terminal hydrolase 32 Proteins 0.000 description 1
- 101000759918 Homo sapiens Ubiquitin carboxyl-terminal hydrolase isozyme L3 Proteins 0.000 description 1
- 101000644689 Homo sapiens Ubiquitin-conjugating enzyme E2 K Proteins 0.000 description 1
- 101000837581 Homo sapiens Ubiquitin-conjugating enzyme E2 T Proteins 0.000 description 1
- 101000808753 Homo sapiens Ubiquitin-conjugating enzyme E2 variant 1 Proteins 0.000 description 1
- 101000608584 Homo sapiens Ubiquitin-like modifier-activating enzyme 5 Proteins 0.000 description 1
- 101000775709 Homo sapiens V-type proton ATPase subunit C 1 Proteins 0.000 description 1
- 101000806424 Homo sapiens V-type proton ATPase subunit G 1 Proteins 0.000 description 1
- 101000649946 Homo sapiens Vacuolar protein sorting-associated protein 29 Proteins 0.000 description 1
- 101000803689 Homo sapiens Vacuolar protein sorting-associated protein 4B Proteins 0.000 description 1
- 101000621529 Homo sapiens Vacuolar protein-sorting-associated protein 36 Proteins 0.000 description 1
- 101000767597 Homo sapiens Vascular endothelial zinc finger 1 Proteins 0.000 description 1
- 101000871912 Homo sapiens Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 1 Proteins 0.000 description 1
- 101000743129 Homo sapiens WASH complex subunit 5 Proteins 0.000 description 1
- 101000771655 Homo sapiens WD repeat and FYVE domain-containing protein 1 Proteins 0.000 description 1
- 101000954820 Homo sapiens WD repeat domain phosphoinositide-interacting protein 4 Proteins 0.000 description 1
- 101000955098 Homo sapiens WD repeat-containing protein 41 Proteins 0.000 description 1
- 101000650035 Homo sapiens WD repeat-containing protein 91 Proteins 0.000 description 1
- 101000650000 Homo sapiens WW domain binding protein 1-like Proteins 0.000 description 1
- 101000621390 Homo sapiens Wee1-like protein kinase Proteins 0.000 description 1
- 101000916084 Homo sapiens YrdC domain-containing protein, mitochondrial Proteins 0.000 description 1
- 101000781942 Homo sapiens Zinc finger CCCH domain-containing protein 8 Proteins 0.000 description 1
- 101000976569 Homo sapiens Zinc finger CCHC-type and RNA-binding motif-containing protein 1 Proteins 0.000 description 1
- 101000788738 Homo sapiens Zinc finger MYM-type protein 6 Proteins 0.000 description 1
- 101000915470 Homo sapiens Zinc finger MYND domain-containing protein 11 Proteins 0.000 description 1
- 101000802350 Homo sapiens Zinc finger SWIM domain-containing protein 6 Proteins 0.000 description 1
- 101000964419 Homo sapiens Zinc finger and BTB domain-containing protein 10 Proteins 0.000 description 1
- 101000782132 Homo sapiens Zinc finger protein 217 Proteins 0.000 description 1
- 101000964571 Homo sapiens Zinc finger protein 69 homolog B Proteins 0.000 description 1
- 101000723609 Homo sapiens Zinc finger protein 691 Proteins 0.000 description 1
- 101000730643 Homo sapiens Zinc finger protein PLAGL1 Proteins 0.000 description 1
- 101000634977 Homo sapiens Zinc finger protein RFP Proteins 0.000 description 1
- 101000915742 Homo sapiens Zinc finger protein ZPR1 Proteins 0.000 description 1
- 101000818884 Homo sapiens Zinc finger-containing ubiquitin peptidase 1 Proteins 0.000 description 1
- 101000655533 Homo sapiens dTDP-D-glucose 4,6-dehydratase Proteins 0.000 description 1
- 101000926525 Homo sapiens eIF-2-alpha kinase GCN2 Proteins 0.000 description 1
- 101000797207 Homo sapiens tRNA (adenine(58)-N(1))-methyltransferase non-catalytic subunit TRM6 Proteins 0.000 description 1
- 101000766249 Homo sapiens tRNA (guanine(10)-N2)-methyltransferase homolog Proteins 0.000 description 1
- 101000940142 Homo sapiens tRNA wybutosine-synthesizing protein 5 Proteins 0.000 description 1
- 102100031568 Hsp90 co-chaperone Cdc37 Human genes 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 102100021656 Hydroxysteroid dehydrogenase-like protein 2 Human genes 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102100022875 Hypoxia-inducible factor 1-alpha Human genes 0.000 description 1
- 102100028891 Hypoxia-inducible lipid droplet-associated protein Human genes 0.000 description 1
- 101150080778 INPP5D gene Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102100020688 Immediate early response gene 5 protein Human genes 0.000 description 1
- 108700002232 Immediate-Early Genes Proteins 0.000 description 1
- 102100036186 Importin subunit alpha-5 Human genes 0.000 description 1
- 102100036340 Importin-5 Human genes 0.000 description 1
- 102100022247 Inactive cytidine monophosphate-N-acetylneuraminic acid hydroxylase Human genes 0.000 description 1
- 102100021647 Inactive hydroxysteroid dehydrogenase-like protein 1 Human genes 0.000 description 1
- 102100021595 Inhibitor of nuclear factor kappa-B kinase-interacting protein Human genes 0.000 description 1
- 102100024039 Inositol 1,4,5-trisphosphate receptor type 1 Human genes 0.000 description 1
- 102100035679 Inositol monophosphatase 1 Human genes 0.000 description 1
- 102100027019 Integrator complex subunit 13 Human genes 0.000 description 1
- 102100033335 Integrin beta-1-binding protein 1 Human genes 0.000 description 1
- 102100025356 Interferon regulatory factor 2-binding protein 2 Human genes 0.000 description 1
- 102100038251 Interferon regulatory factor 9 Human genes 0.000 description 1
- 102100029408 Interferon-inducible double-stranded RNA-dependent protein kinase activator A Human genes 0.000 description 1
- 102100024064 Interferon-inducible protein AIM2 Human genes 0.000 description 1
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 1
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 1
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 1
- 102100030498 Intron Large complex component GCFC2 Human genes 0.000 description 1
- 102100036015 Isoleucine-tRNA ligase, cytoplasmic Human genes 0.000 description 1
- 230000004163 JAK-STAT signaling pathway Effects 0.000 description 1
- 101710043141 KIAA0930 Proteins 0.000 description 1
- 108090000484 Kelch-Like ECH-Associated Protein 1 Proteins 0.000 description 1
- 102000004034 Kelch-Like ECH-Associated Protein 1 Human genes 0.000 description 1
- 102100037641 Kelch-like protein 42 Human genes 0.000 description 1
- 102100027785 Kelch-like protein 5 Human genes 0.000 description 1
- 102100027615 Kelch-like protein 8 Human genes 0.000 description 1
- 102100021524 Kinesin-like protein KIF1B Human genes 0.000 description 1
- 102100037694 Kinesin-like protein KIF20A Human genes 0.000 description 1
- 238000001276 Kolmogorov–Smirnov test Methods 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 102100026004 Lactoylglutathione lyase Human genes 0.000 description 1
- 102100022181 Leucine-rich repeat-containing protein 47 Human genes 0.000 description 1
- 102100022172 Ligand-dependent nuclear receptor-interacting factor 1 Human genes 0.000 description 1
- 102100032094 Low-density lipoprotein receptor class A domain-containing protein 4 Human genes 0.000 description 1
- 102100030984 Lymphocyte function-associated antigen 3 Human genes 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 102100037307 Lysine-rich coiled-coil protein 1 Human genes 0.000 description 1
- 102100037465 Lysine-specific demethylase 7A Human genes 0.000 description 1
- 102100031659 Lysosomal membrane ascorbate-dependent ferrireductase CYB561A3 Human genes 0.000 description 1
- 108010009254 Lysosomal-Associated Membrane Protein 1 Proteins 0.000 description 1
- 108010009491 Lysosomal-Associated Membrane Protein 2 Proteins 0.000 description 1
- 102100035133 Lysosome-associated membrane glycoprotein 1 Human genes 0.000 description 1
- 102100038225 Lysosome-associated membrane glycoprotein 2 Human genes 0.000 description 1
- 108010068342 MAP Kinase Kinase 1 Proteins 0.000 description 1
- 102100028397 MAP kinase-activated protein kinase 3 Human genes 0.000 description 1
- 108010041980 MAP-kinase-activated kinase 3 Proteins 0.000 description 1
- 102100021282 MBT domain-containing protein 1 Human genes 0.000 description 1
- 102100030300 MHC class I polypeptide-related sequence B Human genes 0.000 description 1
- 102100032587 MOB-like protein phocein Human genes 0.000 description 1
- 102100022211 MTRF1L release factor glutamine methyltransferase Human genes 0.000 description 1
- 102100040888 Malignant T-cell-amplified sequence 1 Human genes 0.000 description 1
- 206010064912 Malignant transformation Diseases 0.000 description 1
- 102100039364 Metalloproteinase inhibitor 1 Human genes 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 102100023138 Metaxin-2 Human genes 0.000 description 1
- 102100028379 Methionine aminopeptidase 1 Human genes 0.000 description 1
- 102100028338 Mid1-interacting protein 1 Human genes 0.000 description 1
- 102100039325 Mitochondrial import inner membrane translocase subunit TIM14 Human genes 0.000 description 1
- 102100032107 Mitochondrial import inner membrane translocase subunit Tim9 Human genes 0.000 description 1
- 102100030108 Mitochondrial ornithine transporter 1 Human genes 0.000 description 1
- 102100025321 Mitochondrial-processing peptidase subunit alpha Human genes 0.000 description 1
- 102100024193 Mitogen-activated protein kinase 1 Human genes 0.000 description 1
- 102100026888 Mitogen-activated protein kinase kinase kinase 7 Human genes 0.000 description 1
- 102100030144 Mitotic checkpoint serine/threonine-protein kinase BUB1 beta Human genes 0.000 description 1
- 102100039428 Molybdopterin synthase sulfur carrier subunit Human genes 0.000 description 1
- 102100021395 Mortality factor 4-like protein 1 Human genes 0.000 description 1
- 102100030610 Mothers against decapentaplegic homolog 5 Human genes 0.000 description 1
- 101710143113 Mothers against decapentaplegic homolog 5 Proteins 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 101100107199 Mus musculus Znf541 gene Proteins 0.000 description 1
- 102100034100 Myocardin-related transcription factor B Human genes 0.000 description 1
- HRNLUBSXIHFDHP-UHFFFAOYSA-N N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide Chemical compound NC1=CC=CC=C1NC(=O)C(C=C1)=CC=C1CNC1=NC=CC(C=2C=NC=CC=2)=N1 HRNLUBSXIHFDHP-UHFFFAOYSA-N 0.000 description 1
- 102100032979 N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase Human genes 0.000 description 1
- 102100031957 N-alpha-acetyltransferase 50 Human genes 0.000 description 1
- 102100022547 NEDD4 family-interacting protein 1 Human genes 0.000 description 1
- 102100023052 NEDD4 family-interacting protein 2 Human genes 0.000 description 1
- 102100020710 NEDD8-conjugating enzyme Ubc12 Human genes 0.000 description 1
- 108010071382 NF-E2-Related Factor 2 Proteins 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 102000003945 NF-kappa B Human genes 0.000 description 1
- 102100021732 NUAK family SNF1-like kinase 1 Human genes 0.000 description 1
- 102100023069 Negative elongation factor C/D Human genes 0.000 description 1
- 102100031903 Neudesin Human genes 0.000 description 1
- 102100027348 Neurocalcin-delta Human genes 0.000 description 1
- 101000996085 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) Nitrogen catabolic enzyme regulatory protein Proteins 0.000 description 1
- 102100036592 Neutral alpha-glucosidase AB Human genes 0.000 description 1
- 108010064862 Nicotinamide phosphoribosyltransferase Proteins 0.000 description 1
- 102000015532 Nicotinamide phosphoribosyltransferase Human genes 0.000 description 1
- 102100027814 Non-lysosomal glucosylceramidase Human genes 0.000 description 1
- 108010029782 Nuclear Cap-Binding Protein Complex Proteins 0.000 description 1
- 102100032342 Nuclear cap-binding protein subunit 2 Human genes 0.000 description 1
- 102100022220 Nuclear envelope integral membrane protein 1 Human genes 0.000 description 1
- 102100031701 Nuclear factor erythroid 2-related factor 2 Human genes 0.000 description 1
- 102100022163 Nuclear factor interleukin-3-regulated protein Human genes 0.000 description 1
- 102100022883 Nuclear receptor coactivator 3 Human genes 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 102100029099 Nucleolar complex protein 3 homolog Human genes 0.000 description 1
- 102100030661 Nucleotide triphosphate diphosphatase NUDT15 Human genes 0.000 description 1
- 102100022473 NudC domain-containing protein 2 Human genes 0.000 description 1
- 102100034446 Omega-amidase NIT2 Human genes 0.000 description 1
- 102100040559 Osteopetrosis-associated transmembrane protein 1 Human genes 0.000 description 1
- 102100039867 Outer mitochondrial transmembrane helix translocase Human genes 0.000 description 1
- 102100028069 P2Y purinoceptor 8 Human genes 0.000 description 1
- 102100035126 PHD finger protein 11 Human genes 0.000 description 1
- 102100030392 PITH domain-containing protein 1 Human genes 0.000 description 1
- 102100038660 PRA1 family protein 3 Human genes 0.000 description 1
- 102100023403 Palmitoyltransferase ZDHHC6 Human genes 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102100037827 Peptidyl-prolyl cis-trans isomerase D Human genes 0.000 description 1
- 102100027913 Peptidyl-prolyl cis-trans isomerase FKBP1A Human genes 0.000 description 1
- 102100028224 Peroxisome assembly protein 12 Human genes 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 102100029354 Phenylalanine-tRNA ligase, mitochondrial Human genes 0.000 description 1
- 102100035266 Phosphatase and actin regulator 2 Human genes 0.000 description 1
- 102100028489 Phosphatidylethanolamine-binding protein 1 Human genes 0.000 description 1
- 102100032286 Phosphatidylinositol-3-phosphatase SAC1 Human genes 0.000 description 1
- 102100031014 Phosphatidylinositol-binding clathrin assembly protein Human genes 0.000 description 1
- 102100034077 Phosphofurin acidic cluster sorting protein 2 Human genes 0.000 description 1
- 102100023410 Phospholipid hydroperoxide glutathione peroxidase Human genes 0.000 description 1
- 102100035201 Plasminogen-like protein A Human genes 0.000 description 1
- 102100037867 Pleckstrin homology domain-containing family A member 3 Human genes 0.000 description 1
- 102100023652 Poly [ADP-ribose] polymerase 2 Human genes 0.000 description 1
- 102100023229 Polypeptide N-acetylgalactosaminyltransferase 15 Human genes 0.000 description 1
- 102100036026 Porimin Human genes 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 101710163348 Potassium voltage-gated channel subfamily H member 8 Proteins 0.000 description 1
- 102100021232 Pre-mRNA-processing factor 6 Human genes 0.000 description 1
- 102100026431 Pre-mRNA-splicing regulator WTAP Human genes 0.000 description 1
- 102100031564 Pre-rRNA-processing protein TSR1 homolog Human genes 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100035725 Probable ATP-dependent RNA helicase DDX46 Human genes 0.000 description 1
- 102100030094 Probable ATP-dependent RNA helicase DHX40 Human genes 0.000 description 1
- 102100026405 Probable cytosolic iron-sulfur protein assembly protein CIAO1 Human genes 0.000 description 1
- 102100038011 Probable dimethyladenosine transferase Human genes 0.000 description 1
- 102100031021 Probable global transcription activator SNF2L2 Human genes 0.000 description 1
- 102100036287 Probable tRNA pseudouridine synthase 1 Human genes 0.000 description 1
- 102100036370 Programmed cell death protein 2-like Human genes 0.000 description 1
- 102100040992 Programmed cell death protein 4 Human genes 0.000 description 1
- 102100024450 Prostaglandin E2 receptor EP4 subtype Human genes 0.000 description 1
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102100023223 Protease-associated domain-containing protein 1 Human genes 0.000 description 1
- 102100041008 Proteasome assembly chaperone 2 Human genes 0.000 description 1
- 102100036042 Proteasome subunit alpha type-1 Human genes 0.000 description 1
- 102100040364 Proteasome subunit alpha type-2 Human genes 0.000 description 1
- 102100029270 Proteasome subunit alpha type-5 Human genes 0.000 description 1
- 102100026035 Protein BTG3 Human genes 0.000 description 1
- 102100035251 Protein C-ets-1 Human genes 0.000 description 1
- 102100027796 Protein CREG1 Human genes 0.000 description 1
- 102100025389 Protein DENND6A Human genes 0.000 description 1
- 102100026983 Protein FAM107B Human genes 0.000 description 1
- 102100020938 Protein FAM168A Human genes 0.000 description 1
- 102100034511 Protein FAM199X Human genes 0.000 description 1
- 102100026731 Protein FAM210B, mitochondrial Human genes 0.000 description 1
- 102100038922 Protein FAM32A Human genes 0.000 description 1
- 102100034521 Protein FAM72B Human genes 0.000 description 1
- 102100026751 Protein FAM8A1 Human genes 0.000 description 1
- 102100037769 Protein FMC1 homolog Human genes 0.000 description 1
- 102100033275 Protein ILRUN Human genes 0.000 description 1
- 108010038241 Protein Inhibitors of Activated STAT Proteins 0.000 description 1
- 102100025733 Protein Jumonji Human genes 0.000 description 1
- 108010003506 Protein Kinase D2 Proteins 0.000 description 1
- 102100028815 Protein MAK16 homolog Human genes 0.000 description 1
- 102100025034 Protein Mis18-beta Human genes 0.000 description 1
- 102100029278 Protein N-terminal glutamine amidohydrolase Human genes 0.000 description 1
- 102100033745 Protein O-mannosyl-transferase TMTC2 Human genes 0.000 description 1
- 102100034054 Protein PALS1 Human genes 0.000 description 1
- 102100034616 Protein POLR1D, isoform 2 Human genes 0.000 description 1
- 102100029811 Protein S100-A11 Human genes 0.000 description 1
- 102100021294 Protein YIF1A Human genes 0.000 description 1
- 102100030938 Protein YIPF6 Human genes 0.000 description 1
- 102100028588 Protein ZNRD2 Human genes 0.000 description 1
- 102100035900 Protein bicaudal D homolog 2 Human genes 0.000 description 1
- 102100022049 Protein cornichon homolog 1 Human genes 0.000 description 1
- 102100021557 Protein kinase C iota type Human genes 0.000 description 1
- 102100025689 Protein lin-52 homolog Human genes 0.000 description 1
- 102100028485 Protein pelota homolog Human genes 0.000 description 1
- 102100036228 Protein unc-119 homolog A Human genes 0.000 description 1
- 102100037072 Proto-oncogene FRAT1 Human genes 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 102100027435 Putative RNA-binding protein Luc7-like 2 Human genes 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 101000902592 Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1) DNA polymerase Proteins 0.000 description 1
- 102100039450 Pyrroline-5-carboxylate reductase 2 Human genes 0.000 description 1
- 101150079931 RANBP10 gene Proteins 0.000 description 1
- 102100034220 RAS guanyl-releasing protein 1 Human genes 0.000 description 1
- 101150020518 RHEB gene Proteins 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010078067 RNA Polymerase III Proteins 0.000 description 1
- 102000014450 RNA Polymerase III Human genes 0.000 description 1
- 102100027478 RNA-binding protein 25 Human genes 0.000 description 1
- 102100038911 RNA-binding protein 4B Human genes 0.000 description 1
- 102100034027 RNA-binding protein Musashi homolog 2 Human genes 0.000 description 1
- 108091007335 RNF149 Proteins 0.000 description 1
- 102000020146 Rab21 Human genes 0.000 description 1
- 102100032665 Ral guanine nucleotide dissociation stimulator-like 1 Human genes 0.000 description 1
- 102100023856 Ran-binding protein 10 Human genes 0.000 description 1
- 102100027716 RanBP-type and C3HC4-type zinc finger-containing protein 1 Human genes 0.000 description 1
- 102100034587 Rap guanine nucleotide exchange factor 6 Human genes 0.000 description 1
- 102100040854 Ras GTPase-activating protein-binding protein 1 Human genes 0.000 description 1
- 102100033244 Ras association domain-containing protein 3 Human genes 0.000 description 1
- 102100025003 Ras-related protein R-Ras2 Human genes 0.000 description 1
- 102100039099 Ras-related protein Rab-4A Human genes 0.000 description 1
- 102100025138 Ras-related protein Rab-5C Human genes 0.000 description 1
- 102100025219 Ras-related protein Rab-6A Human genes 0.000 description 1
- 102100031425 Ras-related protein Ral-B Human genes 0.000 description 1
- 102100030705 Ras-related protein Rap-1b Human genes 0.000 description 1
- 102100031420 Ras-related protein Rap-2a Human genes 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102100033797 Regulation of nuclear pre-mRNA domain-containing protein 1A Human genes 0.000 description 1
- 102100021043 Regulatory factor X-associated protein Human genes 0.000 description 1
- 241000242739 Renilla Species 0.000 description 1
- 102100034372 Replication protein A 14 kDa subunit Human genes 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 102100025337 Reticulocalbin-2 Human genes 0.000 description 1
- 102100024733 Reticulophagy regulator 2 Human genes 0.000 description 1
- 102100034981 Retroelement silencing factor 1 Human genes 0.000 description 1
- 102100027604 Rho GTPase-activating protein 19 Human genes 0.000 description 1
- 102100033202 Rho guanine nucleotide exchange factor 6 Human genes 0.000 description 1
- 102100035179 Ribitol-5-phosphate xylosyltransferase 1 Human genes 0.000 description 1
- 102100025290 Ribonuclease H1 Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 102100031139 Ribose-5-phosphate isomerase Human genes 0.000 description 1
- 102100033643 Ribosomal protein S6 kinase alpha-3 Human genes 0.000 description 1
- 102100024908 Ribosomal protein S6 kinase beta-1 Human genes 0.000 description 1
- 102100024913 Ribosomal protein S6 kinase delta-1 Human genes 0.000 description 1
- 102100023542 Ribosome-binding protein 1 Human genes 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 102100038059 Roquin-2 Human genes 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 102100027219 S phase cyclin A-associated protein in the endoplasmic reticulum Human genes 0.000 description 1
- 102100036195 SAM domain-containing protein SAMSN-1 Human genes 0.000 description 1
- 102100040119 SH3 domain-binding protein 5 Human genes 0.000 description 1
- 102100024244 SH3 domain-containing kinase-binding protein 1 Human genes 0.000 description 1
- 102100030066 SIN3-HDAC complex-associated factor Human genes 0.000 description 1
- 108091006161 SLC17A5 Proteins 0.000 description 1
- 102000012978 SLC1A4 Human genes 0.000 description 1
- 108091006411 SLC25A15 Proteins 0.000 description 1
- 108091006512 SLC26A11 Proteins 0.000 description 1
- 108091006505 SLC26A2 Proteins 0.000 description 1
- 108091006298 SLC2A3 Proteins 0.000 description 1
- 108091006540 SLC35A1 Proteins 0.000 description 1
- 108091006949 SLC35B3 Proteins 0.000 description 1
- 108091006969 SLC35F2 Proteins 0.000 description 1
- 108091006941 SLC39A10 Proteins 0.000 description 1
- 102000008935 SMN Complex Proteins Human genes 0.000 description 1
- 108010049037 SMN Complex Proteins Proteins 0.000 description 1
- 108010044012 STAT1 Transcription Factor Proteins 0.000 description 1
- 108010017324 STAT3 Transcription Factor Proteins 0.000 description 1
- 102100030491 STE20/SPS1-related proline-alanine-rich protein kinase Human genes 0.000 description 1
- 229910004444 SUB1 Inorganic materials 0.000 description 1
- 101100379220 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) API2 gene Proteins 0.000 description 1
- 102100037230 Secretory carrier-associated membrane protein 1 Human genes 0.000 description 1
- 102100031163 Selenide, water dikinase 1 Human genes 0.000 description 1
- 102100023522 Selenide, water dikinase 2 Human genes 0.000 description 1
- 102100026077 Selenocysteine insertion sequence-binding protein 2 Human genes 0.000 description 1
- 102100034940 Selenoprotein S Human genes 0.000 description 1
- 102100027054 Selenoprotein W Human genes 0.000 description 1
- 102100027744 Semaphorin-4D Human genes 0.000 description 1
- 241000252141 Semionotiformes Species 0.000 description 1
- 102100020814 Sequestosome-1 Human genes 0.000 description 1
- 102100031727 Serine incorporator 3 Human genes 0.000 description 1
- 102100030514 Serine/threonine-protein kinase 38 Human genes 0.000 description 1
- 102100037312 Serine/threonine-protein kinase D2 Human genes 0.000 description 1
- 102100038376 Serine/threonine-protein kinase PINK1, mitochondrial Human genes 0.000 description 1
- 102100022261 Serine/threonine-protein kinase RIO1 Human genes 0.000 description 1
- 102100022345 Serine/threonine-protein phosphatase 6 catalytic subunit Human genes 0.000 description 1
- 102100034285 Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit A Human genes 0.000 description 1
- 102100029282 Serum response factor-binding protein 1 Human genes 0.000 description 1
- 102100035766 Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial Human genes 0.000 description 1
- 102100023105 Sialin Human genes 0.000 description 1
- 102100024225 Sideroflexin-2 Human genes 0.000 description 1
- 102100026900 Signal recognition particle receptor subunit alpha Human genes 0.000 description 1
- 102100027315 Signal recognition particle subunit SRP72 Human genes 0.000 description 1
- 101710132545 Signal recognition particle subunit SRP72 Proteins 0.000 description 1
- 102100029904 Signal transducer and activator of transcription 1-alpha/beta Human genes 0.000 description 1
- 102100024040 Signal transducer and activator of transcription 3 Human genes 0.000 description 1
- 108010074687 Signaling Lymphocytic Activation Molecule Family Member 1 Proteins 0.000 description 1
- 102100029215 Signaling lymphocytic activation molecule Human genes 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 102100034803 Small nuclear ribonucleoprotein-associated protein N Human genes 0.000 description 1
- 102100030109 Sodium-independent sulfate anion transporter Human genes 0.000 description 1
- 102100030458 Sodium/potassium-transporting ATPase subunit alpha-1 Human genes 0.000 description 1
- 102100034351 Sodium/potassium-transporting ATPase subunit gamma Human genes 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 102100022722 Solute carrier family 2, facilitated glucose transporter member 3 Human genes 0.000 description 1
- 102100030097 Solute carrier family 35 member F2 Human genes 0.000 description 1
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 102100030435 Sp110 nuclear body protein Human genes 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 102100021685 Stomatin Human genes 0.000 description 1
- 102100037172 Store-operated calcium entry-associated regulatory factor Human genes 0.000 description 1
- 101710181351 Store-operated calcium entry-associated regulatory factor Proteins 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- 102100023673 Succinate-semialdehyde dehydrogenase, mitochondrial Human genes 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102100030113 Sulfate transporter Human genes 0.000 description 1
- 102100024609 Synaptotagmin-11 Human genes 0.000 description 1
- 102100037220 Syndecan-4 Human genes 0.000 description 1
- 102100031101 Syntaxin-17 Human genes 0.000 description 1
- 102100037219 Syntenin-1 Human genes 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 102100026356 T-cell activation inhibitor, mitochondrial Human genes 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- 102100030838 TAF5-like RNA polymerase II p300/CBP-associated factor-associated factor 65 kDa subunit 5L Human genes 0.000 description 1
- 101710192270 TAF5-like RNA polymerase II p300/CBP-associated factor-associated factor 65 kDa subunit 5L Proteins 0.000 description 1
- 102100030633 TATA box-binding protein-like 1 Human genes 0.000 description 1
- 102100024750 TBC domain-containing protein kinase-like protein Human genes 0.000 description 1
- 102100038190 TBC1 domain family member 14 Human genes 0.000 description 1
- 102100029850 TBC1 domain family member 23 Human genes 0.000 description 1
- 102100021227 TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 Human genes 0.000 description 1
- 102000004398 TNF receptor-associated factor 1 Human genes 0.000 description 1
- 108090000920 TNF receptor-associated factor 1 Proteins 0.000 description 1
- 102100026351 TRPM8 channel-associated factor 1 Human genes 0.000 description 1
- 102100033113 Telomere length and silencing protein 1 homolog Human genes 0.000 description 1
- 108010033711 Telomeric Repeat Binding Protein 1 Proteins 0.000 description 1
- 102100036497 Telomeric repeat-binding factor 1 Human genes 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 102100024995 Tetraspanin-14 Human genes 0.000 description 1
- 102100031280 Tetratricopeptide repeat protein 5 Human genes 0.000 description 1
- 210000000447 Th1 cell Anatomy 0.000 description 1
- 102100031208 Thioredoxin reductase 1, cytoplasmic Human genes 0.000 description 1
- 102100030273 Thioredoxin-like protein 4B Human genes 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- 229940123384 Toll-like receptor (TLR) agonist Drugs 0.000 description 1
- 102100021386 Trans-acting T-cell-specific transcription factor GATA-3 Human genes 0.000 description 1
- 102100031027 Transcription activator BRG1 Human genes 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102100033159 Transcription factor 19 Human genes 0.000 description 1
- 102100027654 Transcription factor PU.1 Human genes 0.000 description 1
- 102100032727 Transcription factor RelB Human genes 0.000 description 1
- 102100030647 Transcription factor-like 5 protein Human genes 0.000 description 1
- 102100025171 Transcription initiation factor TFIID subunit 12 Human genes 0.000 description 1
- 102100036653 Transcription initiation factor TFIID subunit 9B Human genes 0.000 description 1
- 102100024858 Transcriptional adapter 2-beta Human genes 0.000 description 1
- 102100033763 Transducin-like enhancer protein 4 Human genes 0.000 description 1
- 102100033663 Transforming growth factor beta receptor type 3 Human genes 0.000 description 1
- 102100033095 Translation factor GUF1, mitochondrial Human genes 0.000 description 1
- 102100032463 Transmembrane 9 superfamily member 1 Human genes 0.000 description 1
- 102100032504 Transmembrane 9 superfamily member 3 Human genes 0.000 description 1
- 102100032454 Transmembrane protease serine 3 Human genes 0.000 description 1
- 102100027026 Transmembrane protein 138 Human genes 0.000 description 1
- 102100024328 Transmembrane protein 186 Human genes 0.000 description 1
- 102100036747 Transmembrane protein 263 Human genes 0.000 description 1
- 102100032461 Transmembrane protein 33 Human genes 0.000 description 1
- 102100024196 Transmembrane protein 41B Human genes 0.000 description 1
- SHGAZHPCJJPHSC-NWVFGJFESA-N Tretinoin Chemical compound OC(=O)/C=C(\C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NWVFGJFESA-N 0.000 description 1
- BAECOWNUKCLBPZ-HIUWNOOHSA-N Triolein Natural products O([C@H](OCC(=O)CCCCCCC/C=C\CCCCCCCC)COC(=O)CCCCCCC/C=C\CCCCCCCC)C(=O)CCCCCCC/C=C\CCCCCCCC BAECOWNUKCLBPZ-HIUWNOOHSA-N 0.000 description 1
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 description 1
- 102100034302 Tryptophan-tRNA ligase, mitochondrial Human genes 0.000 description 1
- 102100025235 Tubulin alpha-3C chain Human genes 0.000 description 1
- 102100025236 Tubulin alpha-3D chain Human genes 0.000 description 1
- 102100026482 Tubulin-folding cofactor B Human genes 0.000 description 1
- 102100026477 Tubulin-specific chaperone A Human genes 0.000 description 1
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 1
- 102100040418 Tumor protein D52 Human genes 0.000 description 1
- 102100024934 Tumor protein p63-regulated gene 1 protein Human genes 0.000 description 1
- 102100036129 Tumor suppressor candidate 2 Human genes 0.000 description 1
- 102100036223 Twinfilin-1 Human genes 0.000 description 1
- 108010046308 Type II DNA Topoisomerases Proteins 0.000 description 1
- 102100037229 UAP56-interacting factor Human genes 0.000 description 1
- 102100034828 UPF0461 protein C5orf24 Human genes 0.000 description 1
- 102100034692 UPF0488 protein C8orf33 Human genes 0.000 description 1
- 102100030132 UPF0688 protein C1orf174 Human genes 0.000 description 1
- 102100039934 Ubiquilin-1 Human genes 0.000 description 1
- 102100038426 Ubiquitin carboxyl-terminal hydrolase 10 Human genes 0.000 description 1
- 102100025040 Ubiquitin carboxyl-terminal hydrolase isozyme L3 Human genes 0.000 description 1
- 102100020696 Ubiquitin-conjugating enzyme E2 K Human genes 0.000 description 1
- 102100028705 Ubiquitin-conjugating enzyme E2 T Human genes 0.000 description 1
- 102100038467 Ubiquitin-conjugating enzyme E2 variant 1 Human genes 0.000 description 1
- 102100039197 Ubiquitin-like modifier-activating enzyme 5 Human genes 0.000 description 1
- 102100025766 Uncharacterized protein KIAA0930 Human genes 0.000 description 1
- 102100032189 V-type proton ATPase subunit C 1 Human genes 0.000 description 1
- 102100037433 V-type proton ATPase subunit G 1 Human genes 0.000 description 1
- 102100028290 Vacuolar protein sorting-associated protein 29 Human genes 0.000 description 1
- 102100035086 Vacuolar protein sorting-associated protein 4B Human genes 0.000 description 1
- 102100022960 Vacuolar protein-sorting-associated protein 36 Human genes 0.000 description 1
- 102100028983 Vascular endothelial zinc finger 1 Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 102100033637 Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 1 Human genes 0.000 description 1
- 102000004604 Vesicle-Associated Membrane Protein 3 Human genes 0.000 description 1
- 108010017749 Vesicle-Associated Membrane Protein 3 Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 102100038142 WASH complex subunit 5 Human genes 0.000 description 1
- 102100029468 WD repeat and FYVE domain-containing protein 1 Human genes 0.000 description 1
- 102100037048 WD repeat domain phosphoinositide-interacting protein 4 Human genes 0.000 description 1
- 102100038966 WD repeat-containing protein 41 Human genes 0.000 description 1
- 102100028273 WD repeat-containing protein 91 Human genes 0.000 description 1
- 102100028277 WW domain binding protein 1-like Human genes 0.000 description 1
- 102100023037 Wee1-like protein kinase Human genes 0.000 description 1
- 102100028994 YrdC domain-containing protein, mitochondrial Human genes 0.000 description 1
- 102100036580 Zinc finger CCCH domain-containing protein 8 Human genes 0.000 description 1
- 102100023585 Zinc finger CCHC-type and RNA-binding motif-containing protein 1 Human genes 0.000 description 1
- 102100025424 Zinc finger MYM-type protein 6 Human genes 0.000 description 1
- 102100028551 Zinc finger MYND domain-containing protein 11 Human genes 0.000 description 1
- 102100034685 Zinc finger SWIM domain-containing protein 6 Human genes 0.000 description 1
- 102100040327 Zinc finger and BTB domain-containing protein 10 Human genes 0.000 description 1
- 102100036595 Zinc finger protein 217 Human genes 0.000 description 1
- 102100040797 Zinc finger protein 69 homolog B Human genes 0.000 description 1
- 102100027860 Zinc finger protein 691 Human genes 0.000 description 1
- 102100032570 Zinc finger protein PLAGL1 Human genes 0.000 description 1
- 102100029504 Zinc finger protein RFP Human genes 0.000 description 1
- 102100028959 Zinc finger protein ZPR1 Human genes 0.000 description 1
- 102100021402 Zinc finger-containing ubiquitin peptidase 1 Human genes 0.000 description 1
- 102100035243 Zinc transporter ZIP10 Human genes 0.000 description 1
- FOLJTMYCYXSPFQ-CJKAUBRRSA-N [(2r,3s,4s,5r,6r)-6-[(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-(octadecanoyloxymethyl)oxolan-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl octadecanoate Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](COC(=O)CCCCCCCCCCCCCCCCC)O[C@@H]1O[C@@]1(COC(=O)CCCCCCCCCCCCCCCCC)[C@@H](O)[C@H](O)[C@@H](CO)O1 FOLJTMYCYXSPFQ-CJKAUBRRSA-N 0.000 description 1
- KJYGRYJZFWOECQ-UHFFFAOYSA-N [2-hydroxy-3-[2-hydroxy-3-[2-hydroxy-3-(16-methylheptadecanoyloxy)propoxy]propoxy]propyl] 16-methylheptadecanoate Chemical compound CC(C)CCCCCCCCCCCCCCC(=O)OCC(O)COCC(O)COCC(O)COC(=O)CCCCCCCCCCCCCCC(C)C KJYGRYJZFWOECQ-UHFFFAOYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 229950008805 abexinostat Drugs 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 229940116342 acetylated sucrose distearate Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 108010078976 aflatoxin B1 aldehyde reductase Proteins 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 101150072346 anapc1 gene Proteins 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 239000000823 artificial membrane Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- NCNRHFGMJRPRSK-MDZDMXLPSA-N belinostat Chemical compound ONC(=O)\C=C\C1=CC=CC(S(=O)(=O)NC=2C=CC=CC=2)=C1 NCNRHFGMJRPRSK-MDZDMXLPSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 108010079292 betaglycan Proteins 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000003916 calcium stearoyl-2-lactylate Substances 0.000 description 1
- 235000010957 calcium stearoyl-2-lactylate Nutrition 0.000 description 1
- OEUVSBXAMBLPES-UHFFFAOYSA-L calcium stearoyl-2-lactylate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC(=O)OC(C)C(=O)OC(C)C([O-])=O.CCCCCCCCCCCCCCCCCC(=O)OC(C)C(=O)OC(C)C([O-])=O OEUVSBXAMBLPES-UHFFFAOYSA-L 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 229940074979 cetyl palmitate Drugs 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 150000001841 cholesterols Chemical class 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 239000002812 cholic acid derivative Substances 0.000 description 1
- 238000002487 chromatin immunoprecipitation Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000008406 cosmetic ingredient Substances 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 102100032354 dTDP-D-glucose 4,6-dehydratase Human genes 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000023077 detection of light stimulus Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 102100034175 eIF-2-alpha kinase GCN2 Human genes 0.000 description 1
- 101150029915 eIF3j gene Proteins 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 229950005837 entinostat Drugs 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 230000001973 epigenetic effect Effects 0.000 description 1
- 238000009162 epigenetic therapy Methods 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000010437 erythropoiesis Effects 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000001280 germinal center Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 1
- 229940100242 glycol stearate Drugs 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- PXDJXZJSCPSGGI-UHFFFAOYSA-N hexadecanoic acid hexadecyl ester Natural products CCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCC PXDJXZJSCPSGGI-UHFFFAOYSA-N 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229940023564 hydroxylated lanolin Drugs 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229940028435 intralipid Drugs 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002960 lipid emulsion Substances 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 102000004311 liver X receptors Human genes 0.000 description 1
- 108090000865 liver X receptors Proteins 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000036212 malign transformation Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QZIQJVCYUQZDIR-UHFFFAOYSA-N mechlorethamine hydrochloride Chemical compound Cl.ClCCN(C)CCCl QZIQJVCYUQZDIR-UHFFFAOYSA-N 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- HOVAGTYPODGVJG-UHFFFAOYSA-N methyl beta-galactoside Natural products COC1OC(CO)C(O)C(O)C1O HOVAGTYPODGVJG-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 108091074057 miR-16-1 stem-loop Proteins 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000027291 mitotic cell cycle Effects 0.000 description 1
- 229950007812 mocetinostat Drugs 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 235000011929 mousse Nutrition 0.000 description 1
- 239000007908 nanoemulsion Substances 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 229940127073 nucleoside analogue Drugs 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 229940064696 nutrilipid Drugs 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- FPOHNWQLNRZRFC-ZHACJKMWSA-N panobinostat Chemical compound CC=1NC2=CC=CC=C2C=1CCNCC1=CC=C(\C=C\C(=O)NO)C=C1 FPOHNWQLNRZRFC-ZHACJKMWSA-N 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000003836 peripheral circulation Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- ZJAOAACCNHFJAH-UHFFFAOYSA-N phosphonoformic acid Chemical compound OC(=O)P(O)(O)=O ZJAOAACCNHFJAH-UHFFFAOYSA-N 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 229920000059 polyethylene glycol stearate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229960000214 pralatrexate Drugs 0.000 description 1
- OGSBUKJUDHAQEA-WMCAAGNKSA-N pralatrexate Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CC(CC#C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OGSBUKJUDHAQEA-WMCAAGNKSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 208000014660 primary cutaneous lymphoma Diseases 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 108010008929 proto-oncogene protein Spi-1 Proteins 0.000 description 1
- 108010044923 rab4 GTP-Binding Proteins Proteins 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 150000004492 retinoid derivatives Chemical class 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- OHRURASPPZQGQM-GCCNXGTGSA-N romidepsin Chemical compound O1C(=O)[C@H](C(C)C)NC(=O)C(=C/C)/NC(=O)[C@H]2CSSCC\C=C\[C@@H]1CC(=O)N[C@H](C(C)C)C(=O)N2 OHRURASPPZQGQM-GCCNXGTGSA-N 0.000 description 1
- 229960003452 romidepsin Drugs 0.000 description 1
- OHRURASPPZQGQM-UHFFFAOYSA-N romidepsin Natural products O1C(=O)C(C(C)C)NC(=O)C(=CC)NC(=O)C2CSSCCC=CC1CC(=O)NC(C(C)C)C(=O)N2 OHRURASPPZQGQM-UHFFFAOYSA-N 0.000 description 1
- 108010091666 romidepsin Proteins 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 108010039827 snRNP Core Proteins Proteins 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000001570 sorbitan monopalmitate Substances 0.000 description 1
- 235000011071 sorbitan monopalmitate Nutrition 0.000 description 1
- 229940031953 sorbitan monopalmitate Drugs 0.000 description 1
- 229960005078 sorbitan sesquioleate Drugs 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000009121 systemic therapy Methods 0.000 description 1
- 102100032968 tRNA (adenine(58)-N(1))-methyltransferase non-catalytic subunit TRM6 Human genes 0.000 description 1
- 102100026307 tRNA (guanine(10)-N2)-methyltransferase homolog Human genes 0.000 description 1
- 102100031143 tRNA wybutosine-synthesizing protein 5 Human genes 0.000 description 1
- VAZAPHZUAVEOMC-UHFFFAOYSA-N tacedinaline Chemical compound C1=CC(NC(=O)C)=CC=C1C(=O)NC1=CC=CC=C1N VAZAPHZUAVEOMC-UHFFFAOYSA-N 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical class CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 239000003970 toll like receptor agonist Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
- C12N2310/113—Antisense targeting other non-coding nucleic acids, e.g. antagomirs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/323—Chemical structure of the sugar modified ring structure
- C12N2310/3231—Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/344—Position-specific modifications, e.g. on every purine, at the 3'-end
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/353—Nature of the modification linked to the nucleic acid via an atom other than carbon
- C12N2310/3531—Hydrogen
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/31—Combination therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- the present invention relates to oligonucleotide inhibitors of miR-155 and compositions thereof.
- the invention also provides methods for treating or preventing cancer in a subject in need thereof by administering an oligonucleotide inhibitor of miR-155.
- the activity or function of miR-155 is reduced in cancer cells of the subject following administration of the oligonucleotide inhibitor.
- MicroRNAs are small, endogenous, noncoding RNAs that act as posttranscriptional repressors of gene expression. MiRNAs act as repressors of target mRNAs by promoting their degradation, when their sequences are perfectly complementary, or by inhibiting translation, when their sequences contain mismatches.
- MiRNAs are transcribed by RNA polymerase II (pol II) or RNA polymerase III (pol III; see Qi et al. (2006) Cellular & Molecular Immunology , Vol. 3:411-419) and arise from initial transcripts, termed primary miRNA transcripts (pri-miRNAs), that are generally several thousand bases long.
- Pri-miRNAs are processed in the nucleus by the RNase Drosha into about 70- to about 100-nucleotide hairpin-shaped precursors (pre-miRNAs). Following transport to the cytoplasm, the hairpin pre-miRNA is further processed by Dicer to produce a double-stranded miRNA.
- RISC RNA-induced silencing complex
- MicroRNAs have been implicated in several diseases including cancer.
- human miRNA genes miR15a and miR16-1 are deleted or down-regulated in approximately 60% of B-cell chronic lymphocytic leukemia (CLL) cases (Calin et al., Proc Natl Acad Sci, 2002; 99:15524-15529).
- CLL chronic lymphocytic leukemia
- dysregulation of miR-155-5p has been linked to signaling events that are implicated in the pathogenesis of cutaneous T cell lymphoma (CTCL).
- CTCL cutaneous T cell lymphoma
- JNKs Janus kinases
- the present invention provides oligonucleotide inhibitors for modulating the activity or function of miR-155 in cells of a subject.
- administration of an oligonucleotide inhibitor of miR-155 down-regulates the activity or function of miR-155 in cancer cells of the subject following administration.
- cancer cells are malignant T cells including cutaneous T cell lymphoma (CTCL) cells, CD4 + T cells, CD8 + T cells, ⁇ T cells, ⁇ T cells and memory T cells.
- CTCL cutaneous T cell lymphoma
- the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the fourth nucleotide from the 3′ end of the oligonucleotide inhibitor is also a locked nucleotide.
- the first nucleotide from the 5′ end of the oligonucleotide inhibitor is a locked nucleotide.
- the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- the oligonucleotide inhibitor may contain at least 5, 6, 7, 8, 9, or 10 modified nucleotides.
- the oligonucleotide inhibitor contains 7, 8, 9, or 10 modified nucleotides. In some of these embodiments, 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitor are all locked nucleotides. In yet some other embodiments, 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitor are a combination of locked nucleotides and other modifications such as ethylene-bridged nucleotides, 2′-C-bridged bicyclic nucleotides, and sugar modifications such as 2′-substituted nucleotides.
- the second DNA nucleotide from the 5′ end of the oligonucleotide inhibitor could be an unmodified DNA nucleotide.
- the first three modified nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides.
- the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- the oligonucleotide inhibitor may contain at least 7, 8, 9, or 10 modified nucleotides.
- 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitor are all locked nucleotides.
- 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitor are a combination of locked nucleotides and other modifications such as ethylene-bridged nucleotides, 2′-C-bridged bicyclic nucleotides, and sugar modifications such as 2′-substituted nucleotides.
- the first three nucleotides from the 3′ end of the oligonucleotide inhibitor are modified nucleotides.
- the first three modified nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides.
- the second or the third nucleotide from the 3′ end of the oligonucleotide inhibitor is a DNA nucleotide.
- the second DNA nucleotide from the 5′ end of the oligonucleotide inhibitor could be an unmodified DNA nucleotide.
- the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are deoxyribonucleic acid (DNA) nucleotides.
- the oligonucleotide inhibitor may contain at least 7, 8, 9, or 10 modified nucleotides.
- 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitor are all locked nucleotides.
- the first three modified nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides.
- the fourth and/or the fifth DNA nucleotide from the 5′ end of the oligonucleotide inhibitor could be an unmodified DNA nucleotide.
- modified nucleotides that may be present in the oligonucleotide inhibitors of the present invention include, but are not limited to, locked nucleotides, ethylene-bridged nucleotides, 2′-C-bridged bicyclic nucleotides, 2′-substituted nucleotides, and other sugar and/or base modifications described herein. In some embodiments, all modified nucleotides present in the oligonucleotide inhibitors of the present invention are locked nucleotides.
- modified nucleotides present in the oligonucleotide inhibitors are a combination of locked nucleotides and other modifications such as ethylene-bridged nucleotides, 2′-C-bridged bicyclic nucleotides, and 2′-substituted nucleotides, and other sugar and/or base modifications described herein.
- the oligonucleotide inhibitor of miR-155 has a length of 12 to 14 nucleotides. In some embodiments, the oligonucleotide inhibitor contains at least 5, 6, 7, 8, 9 or 10 locked nucleotides. In some other embodiments, the oligonucleotide inhibitor contains at least 1, 2, 3, 4, 5, or more DNA nucleotides. In certain embodiments, at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a DNA nucleotide. In certain additional embodiments, at least the second and fourth nucleotides from the 5′ end of the oligonucleotide inhibitor are DNA nucleotides.
- At least the sixth and/or the eighth nucleotide from the 5′ end of the oligonucleotide inhibitor is a DNA nucleotide.
- the oligonucleotide inhibitor comprises DNA nucleotides at the second, sixth, and the eighth position from the 5′ end.
- the oligonucleotide inhibitor of miR-155 has a sequence selected from SEQ ID NOs: 3-27 and 29-120. In an exemplary embodiment, the oligonucleotide inhibitor of miR-155 has a sequence of SEQ ID NO: 25. In another exemplary embodiment, the oligonucleotide inhibitor of miR-155 has a sequence of SEQ ID NO: 22 or 23. In yet another exemplary embodiment, the oligonucleotide inhibitor of miR-155 has a sequence selected from SEQ ID NO: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120.
- oligonucleotide inhibitors of miR-155 reduce or inhibit proliferation of cancer cells and/or induce apoptosis of cancer cells. In another embodiment, oligonucleotide inhibitors up-regulate one or more target genes of miR-155 in cancer cells.
- the present invention also provides compositions comprising oligonucleotide inhibitors of miR-155 and uses thereof.
- the invention provides methods for treating cancer in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of an oligonucleotide inhibitor of miR-155 of the present invention.
- the activity or function of miR-155 is reduced in cancer cells following administration of the oligonucleotide inhibitor.
- the cancer is a cutaneous T cell lymphoma (CTCL).
- methods for treating cancer comprise administering to a subject a therapeutically effective amount of an oligonucleotide inhibitor of miR-155 of the invention and a therapeutically effective amount of a second therapeutic agent such as a retinoid or a histone deacetylase (HDAC) inhibitor.
- a second therapeutic agent such as a retinoid or a histone deacetylase (HDAC) inhibitor.
- the invention provides methods for reducing or inhibiting the proliferation of malignant T cells, comprising administering the oligonucleotide inhibitor of miR-155 according to the invention.
- the activity or function of miR-155 is reduced in malignant T cells following administration of the oligonucleotide inhibitor.
- FIG. 1 shows the absolute expression of miR-155-5p in various CTCL cell lines compared to normal peripheral CD4 + T helper cells as measured by quantitative real time PCR.
- FIG. 2 shows a “heat map” representation of gene expression changes in 9 target genes of miR-155 in various CTCL cells in response to treatment with 10 ⁇ M of one of four antimiR-155 compounds for 72 hours.
- FIG. 3A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 ⁇ M antimiR-155 compounds for 72 hours in HuT102 cells.
- FIG. 3B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 ⁇ M antimiR-155 compounds for 72 hours in HuT102 cells.
- FIG. 3C shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 ⁇ M antimiR-155 compounds for 72 hours in HuT102 cells.
- FIG. 3D shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 ⁇ M antimiR-155 compounds for 96 hours in HuT102 cells.
- FIG. 3E shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 ⁇ M antimiR-155 compounds for 96 hours in HuT102 cells.
- 3F shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 ⁇ M antimiR-155 compounds for 96 hours in HuT102 cells. * p-value ⁇ 0.0001 compared to untreated by nonparametric Mann-Whitney test.
- FIG. 4A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 ⁇ M antimiR-155 compounds for 72 hours in MJ cells.
- FIG. 4B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 ⁇ M antimiR-155 compounds for 72 hours in MJ cells.
- FIG. 4C shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 ⁇ M antimiR-155 compounds for 72 hours in MJ cells.
- FIG. 4D shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 ⁇ M antimiR-155 compounds for 96 hours in MJ cells.
- FIG. 4A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 ⁇ M antimiR-155 compounds for 72 hours in MJ cells.
- FIG. 4B shows a fold-change in the expression of four miR-
- FIG. 4E shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 ⁇ M antimiR-155 compounds for 96 hours in MJ cells.
- FIG. 4F shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 ⁇ M antimiR-155 compounds for 96 hours in MJ cells. * p-value ⁇ 0.0001 compared to untreated by nonparametric Mann-Whitney test.
- FIG. 5A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 ⁇ M antimiR-155 compounds for 72 hours in HH cells.
- FIG. 5B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 ⁇ M antimiR-155 compounds for 72 hours in HH cells.
- FIG. 5C shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 ⁇ M antimiR-155 compounds for 72 hours in HH cells.
- FIG. 5D shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 ⁇ M antimiR-155 compounds for 96 hours in HH cells.
- FIG. 5A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 ⁇ M antimiR-155 compounds for 72 hours in HH cells.
- FIG. 5B shows a fold-change in the expression of four miR-
- FIG. 5E shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 ⁇ M antimiR-155 compounds for 96 hours in HH cells.
- FIG. 5F shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 ⁇ M antimiR-155 compounds for 96 hours in HH cells. * p-value ⁇ 0.0001 compared to untreated by nonparametric Mann-Whitney test.
- FIG. 6A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2, 10, and 50 ⁇ M antimiR-155 compounds for 72 hours in My-LA cells.
- FIG. 6B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2, 10, and 50 ⁇ M antimiR-155 compounds for 96 hours in My-La cells. * p-value ⁇ 0.0001 compared to untreated by nonparametric Mann-Whitney test.
- FIG. 7A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 ⁇ M antimiR-155 compounds for 72 hours in HuT78 cells.
- FIG. 7B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 ⁇ M antimiR-155 compounds for 72 hours in HuT78 cells.
- FIG. 7C shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 ⁇ M antimiR-155 compounds for 72 hours in HuT78 cells.
- FIG. 7D shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 ⁇ M antimiR-155 compounds for 96 hours in HuT78 cells.
- FIG. 7A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 ⁇ M antimiR-155 compounds for 72 hours in HuT78 cells.
- FIG. 7B shows a fold-change in the expression
- FIG. 7E shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 ⁇ M antimiR-155 compounds for 96 hours in HuT78 cells.
- FIG. 7F shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 ⁇ M antimiR-155 compounds for 96 hours in HuT78 cells.
- FIG. 8A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 ⁇ M antimiR-155 compounds or control oligos in HuT102 cells.
- FIG. 8B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 ⁇ M antimiR-155 compounds or control oligos in MJ cells. * p-value ⁇ 0.0001 compared to untreated by nonparametric Mann-Whitney test.
- FIG. 9 shows a heat map of the differential gene expression signature in MJ cells treated with antimiR-155 compounds for 4 or 8 days. MJ cells treated with antimiR-155 were subjected to whole genome expression profiling. The differential expression signature was filtered for genes that were significantly changed with a false discovery rate corrected p-value of ⁇ 0.05.
- FIG. 10 shows a heat map of the differential gene expression signature in HuT102 cells treated with antimiR-155 compounds for 4 or 8 days.
- HuT102 cells treated with antimiR-155 were subjected to whole genome expression profiling.
- the differential expression signature was filtered for genes that were significantly changed with a false discovery rate corrected p-value of ⁇ 0.05.
- FIG. 11A shows the annotation of the gene expression profile of genes upregulated in response to antimiRs-155 in both MJ and HuT102 cells.
- the gene signature is enriched for miR-155 seed-matched direct targets with a hypergeometric p-value for enrichment of 1.6e ⁇ 25.
- the genes identified here were significantly changed with antimiR-155 treatment compared to the untreated group with a false discovery rate corrected p-value of ⁇ 0.05.
- FIG. 11B shows a cumulative distribution function graph of the differential expression of miR-155 direct target genes containing 8-, 7-, or 6-nucleotide seeds sequences, compared to non-seed containing transcripts. The p-values shown are the result of the Kolmogorov-Smirnov test to determine the significant difference between two datasets.
- FIG. 12 shows an annotated gene expression profile of genes up-regulated or down-regulated in response to treatment with antimiR-155 compounds for 8 days in both MJ and HuT102 cells.
- FIG. 13 shows an expression profile of genes upregulated or downregulated in response to 8 days of treatment with the antimiR-155 having a sequence of SEQ ID NO: 25 in CTCL cells.
- FIG. 14A shows the effect of antimiR-155 compounds on proliferation of HuT102 cells.
- FIG. 14B shows the effect of antimiR-155 compounds on caspase 3/7 activity in HuT102 cells.
- FIG. 15A shows proliferation of HuT102 cells in response to various concentrations of antimiR-155 compounds at day 8 of treatment.
- FIG. 15B shows caspase 3/7 activity in HuT102 cells in response to various concentrations of antimiR-155 compounds at day 8 of treatment.
- FIG. 16A shows the effect of antimiR-155 compounds on proliferation of HuT102 cells.
- FIG. 16B shows the effect of antimiR-155 compounds on caspase 3/7 activity in HuT102 cells.
- FIG. 17A shows the effect of antimiR-155 compounds on proliferation of My-La cells.
- FIG. 17B shows the effect of antimiR-155 compounds on caspase 3/7 activity in My-La cells.
- FIG. 18A shows proliferation of My-La cells in response to various concentrations of antimiR-155 compounds at day 8 of treatment.
- FIG. 18B shows caspase 3/7 activity in My-La cells in response to various concentrations of antimiR-155 compounds at day 8 of treatment.
- FIG. 19A shows the effect of 10 ⁇ M antimiR-155 compounds and 0.25 ⁇ M HDAC inhibitor on proliferation of HuT102 cells.
- FIG. 19B shows the effect of 10 ⁇ M antimiR-155 compounds and 0.50 ⁇ M HDAC inhibitor on proliferation of HuT102 cells.
- FIG. 20A shows the effect of 10 ⁇ M antimiR-155 compounds and 0.25 ⁇ M HDAC inhibitor on caspase 3/7 activity in HuT102 cells.
- FIG. 20B shows the effect of 10 ⁇ M antimiR-155 compounds and 0.50 ⁇ M HDAC inhibitor on caspase 3/7 activity in HuT102 cells.
- FIG. 21 shows a heat map of expression changes in 587 genes up-regulated or down-regulated in all three mycosis fungoides cell lines at day 4 or day 8 in response to compound 4 (SEQ ID NO: 25).
- FIG. 22 shows the antimiR-155 activity of oligonucleotide inhibitors of different lengths measured using a dual luciferase reporter plasmid containing the miR-155 binding site.
- FIGS. 23A, 23B, 23C, and 23D show the antimiR-155 activity of oligonucleotide inhibitors containing varying number of locked nucleotide modifications measured using a dual luciferase reporter plasmid containing the miR-155 binding site.
- FIGS. 24A, 24B, 24C, and 24D show the antimiR-155 activity of oligonucleotide inhibitors containing locked nucleotide modifications at various positions, measured using a dual luciferase reporter plasmid containing the miR-155 binding site.
- FIG. 25 shows the antimiR-155 activity of oligonucleotide inhibitors containing various nucleotide modifications, measured using a dual luciferase reporter plasmid containing the miR-155 binding site.
- FIG. 26 shows the antimiR-155 activity of various 14-nucleotide long oligonucleotide inhibitors, measured using a dual luciferase reporter plasmid containing the miR-155 binding site.
- FIG. 27 shows the antimiR-155 activity of oligonucleotide inhibitors of SEQ ID NOs: 25 and 23, measured using a dual luciferase reporter plasmid containing the miR-155 binding site.
- FIG. 28 shows the fold-change in the expression of miR-155 target genes in response to treatment with oligonucleotide inhibitors of SEQ ID NOs: 25 and 120.
- the present invention provides oligonucleotide inhibitors that inhibit the activity or function of miR-155 in cancer cells.
- miR-155 is encoded by the MIR155 host gene or MIR155HG and is located on human chromosome 21. Since both arms of pre-miR-155 can give rise to mature miRNAs, processing products of pre-miR-155 are designated as miR-155-5p (from the 5′ arm) and miR-155-3p (from the 3′ arm).
- miR-155-5p from the 5′ arm
- miR-155-3p from the 3′ arm
- miR-155-5p is expressed in hematopoietic cells including B-cells, T-cells, monocytes and granulocytes (Landgraf et al. 2007).
- miR-155-5p is an essential molecule in the control of both myelopoiesis and erythropoiesis. This miRNA is highly expressed in hematopoietic stem-progenitor cells at an early stem-progenitor stage, and blocks their differentiation into a more mature hematopoietic cell (e.g., lymphocyte, erythrocyte).
- miR-155-5p expression progressively decreases as cells mature along these lineages, and is ⁇ 200-fold lower in mature hematopoietic cells (Masaki et al. 2007; Gerloff et al. 2015).
- miR-155-5p plays an important role in mediating inflammatory and immune responses. Mice lacking miR-155-5p show normal number and distribution of T- and B-lymphocyte subpopulations, but display a deficient immune response, specifically in regulating T helper cell differentiation and the germinal center reaction to produce an optimal T-cell dependent antibody response (Rodriguez et al. 2007; Thai et al. 2007). miR-155-5p controls differentiation of CD4+ T-cells into the T helper type 1 (Th1), Th2, and Th17 subsets of T helper cells, and affects the development of regulatory T-cells (Treg) (Baumjohann and Ansel 2013).
- Th1 T helper type 1
- Th2 Th17 subsets of T helper cells
- miR-155-5p also regulates effector and memory CD8+ T-cell responses to viral infection (Dudda et al. 2013; Gracias et al. 2013), as well as normal B-cell differentiation and antibody production.
- miR-155-5p expression is low in nonlymphoid organs as well as in resting, naive CD4+ T-cells.
- miR-155-5p expression is greatly enhanced by antigen receptor stimulation of B- and T-cells (Tam 2001; Haasch et al. 2002; van den Berg et al. 2003; Rodriguez et al. 2007; Thai et al. 2007; Vigorito et al. 2007; Banerjee et al.
- MIR155HG activation involves both API- and NF- ⁇ B-mediated mechanisms.
- MF Mycosis fungoides
- SS Sezary syndrome
- MF is characterized by proliferation of atypical small- to medium-sized T lymphocytes with cerebriform nuclei that form patches, plaques, or nodular tumors in the epidermis. MF typically affects older adults (median age of diagnosis: 55-60) and has an indolent clinical course where patches and plaques precede or are concurrent with the formation of tumors. In some late tumor-stage cases, lymph node and visceral organ involvement are observed.
- SS is a more aggressive, leukemic form of CTCL, characterized by widespread redness and scaling of the skin (erythroderma), enlarged lymph nodes, and malignant cells in the peripheral circulation (Yamashita et al., 2012; Jawed et al. 2014).
- tumor stage MF Molecular analyses of tumor stage MF have revealed significant changes in gene expression compared to normal skin, inflamed skin and normal T-cells (van Kester et al. 2012), although the genetic or epigenetic origin of these differences in gene expression are unknown.
- Early skin lesions contain numerous inflammatory cells, including T cells with a normal phenotype as well as a smaller population of T cells with an abnormal morphology and a malignant phenotype.
- the infiltrate primarily consists of non-malignant Th1 cells, regulatory T cells, and cytotoxic CD8+ T cells.
- the malignant T cells are typically CD4+ memory T cells of clonal origin.
- epidermotropism is gradually lost, comcomitant with an increase in malignant CD4+ T cells and a decrease in non-malignant CD8+ T cells.
- CTCL is characterized by aberrant expression and function of transcription factors and regulators of signal transduction. It has been hypothesized that dysfunctional regulation of signal molecules and cytokines plays a key role in the malignant transformation and pathogenesis of CTCL (Girardi et al., 2004; Zhang et al., 2006; van Doom et al., 2009; Kadin and Vonderheid, 2010). Significant differences in the gene expression profiles of MF and SS cells have been observed, consistent with a distinct pathogenesis for these variants of CTCL (van Doom et al., 2009; Campbell et al., 2010). Recently, microRNAs (miRNAs) have been reported to be differentially expressed and potentially involved in the pathogenesis of CTCL.
- miRNAs microRNAs
- miR-155-5p is among the miRNAs most up-regulated in mycosis fungoides (Kopp et al, 2013a; Kopp et al., 2013b), while a distinct subset of dysregulated miRNAs distinguishes Sezary syndrome, and miR-155-5p is not up-regulated in this subtype of CTCL (Ballabio et al., 2010).
- oligonucleotide inhibitors that reduce or inhibit the activity or function of human miR-155.
- oligonucleotide inhibitor e.g., antimiR-155
- antagonist e.g., antimiR-155
- oligomer e.g., anti-microRNA oligonucleotide or AMO
- mixedmer is used broadly and encompasses an oligomer comprising ribonucleotides, deoxyribonucleotides, modified ribonucleotides, modified deoxyribonucleotides or a combination thereof, that inhibits the activity or function of the target microRNA (miRNA) by fully or partially hybridizing to the miRNA thereby repressing the function or activity of the target miRNA.
- miRNA target microRNA
- miR-155 includes pri-miR-155, pre-miR-155, miR-155-5p, and hsa-miR-155-5p.
- the present invention provides an oligonucleotide inhibitor of miR-155 that has a length of 11 to 16 nucleotides. In some other embodiments, the present invention provides an oligonucleotide inhibitor of miR-155 that has a length of 11 to 14 nucleotides. In various embodiments, the oligonucleotide inhibitor targeting miR-155 is 11, 12, 13, 14, 15, or 16 nucleotides in length. In one embodiment, the oligonucleotide inhibitor of miR-155 has a length of 12 nucleotides. In another embodiment, the oligonucleotide inhibitor of miR-155 has a length of 14 nucleotides.
- oligonucleotide inhibitor of miR-155 is sufficiently complementary to a mature sequence of miR-155-5p to hybridize to miR-155-5p under physiological conditions and inhibit the activity or function of miR-155-5p in the cells of a subject.
- oligonucleotide inhibitors comprise a sequence that is at least partially complementary to a mature sequence of miR-155-5p, e.g. at least about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% complementary to a mature sequence of miR-155-5p.
- the oligonucleotide inhibitor can be substantially complementary to a mature sequence of miR-155-5p, that is at least about 90%, 95%, 96%, 97%, 98%, or 99% complementary to a mature sequence of miR-155-5p.
- the oligonucleotide inhibitor comprises a sequence that is 100% or fully complementary to a mature sequence of miR-155-5p. It is understood that the sequence of the oligonucleotide inhibitor is considered to be complementary to miR-155 even if the oligonucleotide sequence includes a modified nucleotide instead of a naturally-occurring nucleotide.
- the oligonucleotide inhibitor may comprise a modified cytidine nucleotide, such as a locked cytidine nucleotide or 2′-fluoro-cytidine, at the corresponding position.
- the entire sequence of the oligonucleotide inhibitor of miR-155 is fully complementary to a mature sequence of human miR-155-5p.
- the mature sequence of human miR-155-5p to which the sequence of the oligonucleotide inhibitor of the present invention is partially, substantially, or fully complementary to includes nucleotides 1-17, or nucleotides 2-17, or nucleotides 2-16, or nucleotides 2-15, or nucleotides 2-14, or nucleotides 2-13, or nucleotides 2-12 from the 5′ end of SEQ ID NO: 1.
- the mature sequence of human miR-155-5p to which the sequence of the oligonucleotide inhibitor of the present invention is partially, substantially, or fully complementary to includes nucleotides 2-15 from the 5′ end of SEQ ID NO: 1.
- the mature sequence of human miR-155-5p to which the sequence of the oligonucleotide inhibitor of the present invention is partially, substantially, or fully complementary to includes nucleotides 2-13 from the 5′ end of SEQ ID NO: 1.
- the oligonucleotide inhibitor of miR-155 contains at least one backbone modification, such as at least one phosphorothioate, morpholino, or phosphonocarboxylate internucleotide linkage (see, for example, U.S. Pat. Nos. 6,693,187 and 7,067,641, which are herein incorporated by reference in their entireties).
- the oligonucleotide inhibitor of miR-155 is fully phosphorothioate-linked.
- the oligonucleotide inhibitor of miR-155 contains at least one modified nucleotide. In some embodiments, the oligonucleotide inhibitor contains at least 5, 6, 7, 8, 9, 10, or more modified nucleotides.
- modified nucleotide encompasses nucleotides with sugar, base, and/or backbone modifications.
- modified nucleotides include, but are not limited to, locked nucleotides (LNA), ethylene-bridged nucleotides (ENA), 2′-C-bridged bicyclic nucleotide (CBBN), 2′, 4′-constrained ethyl nucleic acid called S-cEt or cEt, 2′-4′-carbocyclic LNA, and 2′ substituted nucleotides.
- LNA locked nucleotides
- ENA ethylene-bridged nucleotides
- CBBN 2′-C-bridged bicyclic nucleotide
- S-cEt or cEt 2′-4′-carbocyclic LNA
- substituted nucleotides examples include, but are not limited to, locked nucleotides (LNA), ethylene-bridged nucleotides (ENA), 2′-C-bridged bicyclic nucleotide (CBBN), 2′, 4′-constrained ethyl
- locked nucleotide locked nucleic acid unit
- locked nucleic acid residue locked nucleic acid residue
- LNA unit may be used interchangeably throughout the disclosure and refer to a bicyclic nucleoside analogue.
- suitable oligonucleotide inhibitors can be comprised of one or more “conformationally constrained” or bicyclic sugar nucleoside modifications (BSN) that confer enhanced thermal stability to complexes formed between the oligonucleotide containing BSN and their complementary target strand.
- BSN bicyclic sugar nucleoside modifications
- the oligonucleotide inhibitors contain locked nucleotides or LNAs containing the 2′-O, 4′-C-methylene ribonucleoside (structure A) wherein the ribose sugar moiety is in a “locked” conformation.
- the oligonucleotide inhibitors contain at least one 2′-C, 4′-C-bridged 2′ deoxyribonucleoside (structure B). See, e.g., U.S. Pat. No. 6,403,566 and Wang et al. (1999) Bioorganic and Medicinal Chemistry Letters, Vol. 9: 1147-1150, both of which are herein incorporated by reference in their entireties.
- the oligonucleotide inhibitors contain at least one modified nucleoside having the structure shown in structure C.
- the oligonucleotide inhibitors targeting miR-155 can contain combinations of BSN (LNA, 2′-C, 4′-C-bridged 2′ deoxyribonucleoside, and the like) or other modified nucleotides, and ribonucleotides or deoxyribonucleotides.
- non-LNA nucleotide refers to a nucleotide different from a LNA nucleotide, i.e. the terms include a DNA nucleotide, an RNA nucleotide as well as a modified nucleotide where a base and/or sugar is modified except that the modification is not a LNA modification.
- the oligonucleotide inhibitor of miR-155 contains at least one nucleotide containing a non-LNA modification.
- the oligonucleotide inhibitor of miR-155 contains at least one 2′-C-bridged bicyclic nucleotide (CBBN) as described in U.S. Pre-Grant Publication No. 2016/0010090A1 (“the '090 publication”), which is hereby incorporated by reference herein in its entirety.
- the '090 publication describes a variety of CBBN modifications such as 2′-CBBN, oxoCBBN, amino CBBN, thioCBBN, etc.
- the non-LNA modification present in the oligonucleotide inhibitor of miR-155 could be an ethylene-bridged nucleic acid (ENA) modification.
- the oligonucleotide inhibitor of miR-155 contains at least one ethylene-bridged nucleic acid (ENA), also referred to herein as ethylene-bridged nucleotide.
- EAA ethylene-bridged nucleic acid
- Other bridged modifications include 2′, 4′-constrained ethyl nucleic acid called S-cEt or cEt and 2′-4′-carbocyclic LNA (carba-LNA).
- corresponding locked nucleotide is intended to mean that the DNA/RNA nucleotide has been replaced by a locked nucleotide containing the same naturally-occurring nitrogenous base as the DNA/RNA nucleotide that it has replaced or the same nitrogenous base that is chemically modified.
- the corresponding locked nucleotide of a DNA nucleotide containing the nitrogenous base C may contain the same nitrogenous base C or the same nitrogenous base C that is chemically modified, such as 5-methylcytosine.
- the oligonucleotide inhibitor of miR-155 contains at least 5, 6, 7, 8, 9, 10, or 11 locked nucleotides. In one embodiment, the oligonucleotide inhibitor of miR-155 contains at least 7, 8, 9, or 10 locked nucleotides. In one embodiment, at least the first three nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides. In another embodiment, at least the first four nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides. In yet another embodiment, the first nucleotide from the 5′ end of the oligonucleotide inhibitor is a locked nucleotide.
- the oligonucleotide inhibitor contains at least 1, at least 2, at least 3, at least 4, or at least 5 DNA nucleotides.
- at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a DNA nucleotide.
- at least the second and fourth nucleotides from the 5′ end of the oligonucleotide inhibitor are DNA nucleotides.
- Oligonucleotide inhibitors of the present invention may include modified nucleotides that have a base modification or substitution.
- the natural or unmodified bases in RNA are the purine bases adenine (A) and guanine (G), and the pyrimidine bases cytosine (C) and uracil (U) (DNA has thymine (T)).
- Modified bases also referred to as heterocyclic base moieties, include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guan
- Oligonucleotide inhibitors of the present invention may include nucleotides with modified sugar moieties.
- Representative modified sugars include carbocyclic or acyclic sugars, sugars having substituent groups at one or more of their 2′, 3′ or 4′ positions and sugars having substituents in place of one or more hydrogen atoms of the sugar.
- the sugar is modified by having a substituent group at the 2′ position.
- the sugar is modified by having a substituent group at the 3′ position.
- the sugar is modified by having a substituent group at the 4′ position.
- a sugar may have a modification at more than one of those positions, or that an oligonucleotide inhibitor may have one or more nucleotides with a sugar modification at one position and also one or more nucleotides with a sugar modification at a different position.
- Sugar modifications contemplated in the oligonucleotide inhibitors of the present invention include, but are not limited to, a substituent group selected from: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted with C 1 to C 10 alkyl or C 2 to C 10 alkenyl and alkynyl.
- a substituent group selected from: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted with C 1 to C 10 al
- the modification includes 2′-methoxyethoxy (2′-O—CH 2 CH 2 OCH 3 , which is also known as 2′-O-(2-methoxyethyl) or 2′-MOE), that is, an alkoxyalkoxy group.
- Another modification includes 2′-dimethylaminooxyethoxy, that is, a O(CH 2 ) 2 ON(CH 3 ) 2 group, also known as 2′-DMAOE and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethyl-amino-ethoxy-ethyl or 2′-DMAEOE), that is, 2′-O—CH 2 —O—CH 2 —N(CH 3 ) 2 .
- Additional sugar substituent groups include allyl (—CH 2 —CH ⁇ CH 2 ), —O-allyl, methoxy (—O—CH 3 ), aminopropoxy (—OCH 2 CH 2 CH 2 NH 2 ), and fluoro (F).
- Sugar substituent groups on the 2′ position (2′-) may be in the arabino (up) position or ribo (down) position.
- One 2′-arabino modification is 2′-F.
- Other similar modifications may also be made at other positions on the sugar moiety, particularly the 3′ position of the sugar on the 3′ terminal nucleoside or in 2′-5′ linked oligonucleotides and the 5′ position of 5′ terminal nucleotide.
- the sugar modification is a 2′-O-alkyl (e.g. 2′-O-methyl, 2′-O-methoxyethyl), 2′-halo (e.g., 2′-fluoro, 2′-chloro, 2′-bromo), and 4′ thio modifications.
- 2′-O-alkyl e.g. 2′-O-methyl, 2′-O-methoxyethyl
- 2′-halo e.g., 2′-fluoro, 2′-chloro, 2′-bromo
- 4′ thio modifications e.g., 4′ thio modifications.
- oligonucleotide inhibitors to enhance stability and improve efficacy, such as those described in U.S. Pat. No. 6,838,283, which is herein incorporated by reference in its entirety, are known in the art and are suitable for use in the methods of the invention.
- the oligonucleotide inhibitor can be linked to a steroid, such as cholesterol moiety, a vitamin, a fatty acid, a carbohydrate or glycoside, a peptide, or other small molecule ligand at its 3′ end.
- the oligonucleotide inhibitors of the present invention may be conjugated to a carrier molecule such as a steroid (cholesterol).
- a carrier molecule such as a steroid (cholesterol).
- the carrier molecule is attached to the 3′ or 5′ end of the oligonucleotide inhibitor either directly or through a linker or a spacer group.
- the carrier molecule is cholesterol, a cholesterol derivative, cholic acid or a cholic acid derivative.
- carrier molecules disclosed in U.S. Pat. No. 7,202,227, which is incorporated by reference herein in its entirety, is also envisioned.
- the hydrocarbon linker/spacer comprises an optionally substituted C2 to C15 saturated or unsaturated hydrocarbon chain (e.g. alkylene or alkenylene).
- C2 to C15 saturated or unsaturated hydrocarbon chain e.g. alkylene or alkenylene.
- linker/spacer groups described in U.S. Pre-grant Publication No. 2012/0128761, which is incorporated by reference herein in its entirety, can be used in the present invention.
- the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the fourth nucleotide from the 3′ end of the oligonucleotide inhibitor is also a locked nucleotide.
- at least the second and fourth nucleotides from the 5′ end of the oligonucleotide inhibitor are DNA nucleotides.
- the oligonucleotide inhibitor of miR-155 has a length of 12 or 14 nucleotides.
- the oligonucleotide inhibitor contains at least 5, 6, 7, 8, 9, or 10 locked nucleotides.
- At least the sixth and/or the eighth nucleotide from the 5′ end of the oligonucleotide inhibitor is a DNA nucleotide.
- the oligonucleotide inhibitor comprises DNA nucleotides at the second, sixth, and the eighth position from the 5′ end.
- the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a modified or an unmodified deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a modified or an unmodified deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are modified or unmodified deoxyribonucleic acid (DNA) nucleotides.
- the fourth and/or the fifth DNA nucleotide from the 5′ end of the oligonucleotide inhibitor are unmodified DNA nucleotides.
- the oligonucleotide inhibitor is 11 to 14 nucleotides long, said inhibitor contains at least 5, 6, 7, 8, 9, or 10 modified nucleotides. In some of these embodiments, the oligonucleotide inhibitor contains 7, 8, 9, or 10 modified nucleotides. In some embodiments where the oligonucleotide inhibitor is 11 to 14 nucleotides long, at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides. In some embodiments, all modified nucleotides are locked nucleotides.
- the 5, 6, 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitors are a combination of locked nucleotides and nucleotides containing non-LNA modifications such as ethylene-bridged nucleotides, 2′-C-bridged bicyclic nucleotides, 2′-substituted nucleotides, and other sugar and/or base modifications described herein.
- the second nucleotide from the 5′ end of the oligonucleotide inhibitor is an unmodified deoxyribonucleic acid (DNA) nucleotide.
- the oligonucleotide inhibitor of miR-155 comprises a sequence of SEQ ID NO: 25. In another embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of SEQ ID NO: 22. In yet another embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of SEQ ID NO: 23.
- the oligonucleotide inhibitor of miR-155 comprises a sequence selected from the group consisting of SEQ ID NOs: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120.
- the oligonucleotide inhibitor of miR-155-5p has a sequence selected from Table 1.
- an oligonucleotide inhibitor of the present invention reduces or inhibits the activity or function of miR-155 in cells of the subject.
- the oligonucleotide inhibitor inhibits the activity or function of miR-155 in cancer cells, cells of the immune system including B and T lymphocytes, monocytes, macrophages, microglia, NK cells, and inflammatory cells.
- the cancer cells are malignant T cells.
- Malignant T cells that can be treated with oligonucleotide inhibitors of the invention include cutaneous T cell lymphoma (CTCL) cells, CD4 + T cells, CD8 + T cells, ⁇ T cells, ⁇ T cells and memory T cells.
- the malignant T cells are cutaneous T cell lymphoma (CTCL) cells.
- certain oligonucleotide inhibitors of the present invention may show a greater inhibition of the activity or function of miR-155 in cancer cells, such as malignant T cells, compared to other miR-155 inhibitors.
- other miR-155 inhibitors includes nucleic acid inhibitors such as antisense oligonucleotides, antimiRs, antagomiRs, mixmers, gapmers, aptamers, ribozymes, small interfering RNAs, or small hairpin RNAs; antibodies or antigen binding fragments thereof; and/or drugs, which inhibit the activity or function of miR-155.
- oligonucleotide inhibitor of the present invention may show a greater inhibition of miR-155 in cancer cells, such as malignant T cells, compared to other oligonucleotide inhibitors of the present invention.
- the term “greater” as used herein refers to quantitatively more or statistically significantly more.
- oligonucleotide inhibitor of the present invention up-regulates the expression or activity of miR-155 target genes in cells of the subject.
- Target genes for miR-155 include, but are not limited to, INPP50/SHIP1, Jarid2, Picalm, Bach1, Wee1, CUX1, Cebpb, SPIB/PU. 1, and IL7R.
- oligonucleotide inhibitors of the present invention up-regulate the expression or activity of at least four target genes of miR-155 in cancer cells, cells of the immune system including B and T lymphocytes, monocytes, macrophages, microglia, NK cells, and inflammatory cells.
- four target genes up-regulated by oligonucleotide inhibitors of the present invention include Bach1, Jarid2, Picalm, and SHIP1.
- the invention encompasses using the changes in the expression of these four genes (gene expression signature) as means to determine the activity of miR-155 inhibitors.
- the oligonucleotide inhibitor of the present invention shows a greater up-regulation of miR-155 target genes in cancer cells, such as malignant T cells, compared to other miR-155 inhibitors.
- the oligonucleotide inhibitors of the present invention show a greater up-regulation of at least four target genes of miR-155 in cancer cells compared to other miR-155 inhibitors.
- the oligonucleotide inhibitors of the present invention show a greater up-regulation of the expression or activity of four genes, namely, Bach1, Jarid2, Picalm, and SHIP1, in cancer cells compared to other miR-155 inhibitors.
- “greater up-regulation” includes about 2-fold, 3-fold, 4-fold, or 5-fold, including values therebetween, increase in the expression or activity of miR-155 target genes compared to other miR-155 inhibitors.
- oligonucleotide inhibitors of the present invention reduce or inhibit proliferation of cancer cells and/or induce apoptosis of cancer cells, such as malignant T cells including cutaneous T cell lymphoma (CTCL) cells.
- Administration of oligonucleotide inhibitors of the present invention may provide up to about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 90% or 100%, including values therebetween, reduction in the number of cancer cells.
- oligonucleotide inhibitors of the present invention may provide at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50%, including values therebetween, reduction in the number of cancer cells.
- oligonucleotide inhibitors of the present invention may show a greater inhibition of proliferation of cancer cells and/or a greater induction in apoptosis of cancer cells compared to other miR-155 inhibitors.
- an oligonucleotide inhibitor of the present invention may show up to about 10%, 15%, 20%, 25%, 30%, 35%, or 40%, including values therebetween, more reduction in the number of cancer cells compared to other miR-155 inhibitors.
- the present invention provides methods for treating cancer in a subject in need thereof, comprising administering to the subject an oligonucleotide inhibitor of miR-155 according to the invention.
- the activity or function of miR-155 is reduced in cancer cells of the subject following administration of the oligonucleotide inhibitor.
- the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are deoxyribonucleic acid (DNA) nucleotides.
- DNA deoxyribonucleic acid
- cancers that can be treated according to the invention include lymphomas including a T cell lymphoma, such as cutaneous T cell lymphoma (CTCL), and a B cell lymphoma and a skin cancer.
- the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NO: 22, SEQ ID NO: 23, and SEQ ID NO: 25.
- the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NOs: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120.
- the invention provides methods for treating the mycosis fungoides (MF) form of CTCL by administering to the subject an oligonucleotide inhibitor of miR-155 according to the invention.
- the method for treating the MF form of CTCL comprises administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the invention provides methods for treating the mycosis fungoides (MF) form of CTCL comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- MF mycosis fungoides
- the invention provides methods for treating the mycosis fungoides (MF) form of CTCL comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- MF mycosis fungoides
- the invention provides methods for treating the mycosis fungoides (MF) form of CTCL comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are deoxyribonucleic acid (DNA) nucleotides.
- MF mycosis fungoides
- the method for treating the MF form of CTCL comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NO: 22, SEQ ID NO: 23, and SEQ ID NO: 25. In some other embodiments, the method for treating the MF form of CTCL comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NOs: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120.
- the invention also encompasses methods for treating CTCL comprising administering an oligonucleotide inhibitor of miR-155 according to the invention in combination with a second therapeutic agent.
- Current treatments for CTCL include skin-directed therapies such as topical steroids, topical nitrogen mustard (mechlorethamine HCL), topical retinoids, phototherapy, ultraviolet light treatment, psoralen ultraviolet light treatment, radiotherapy, electron beam therapy, etc. and systemic therapies such as administration of histone deacetylase (HDAC) inhibitors, retinoids (bexarotene), interferon, and low dose antifolates (e.g. methotrexate and pralatrexate).
- HDAC histone deacetylase
- retinoids bexarotene
- interferon e.g. methotrexate and pralatrexate
- low dose antifolates e.g. methotrexate and pralatrexate.
- Additional treatment options such as anti-CD30
- the second therapeutic agent generally comprises an agent or a therapy selected from one of these treatments.
- the invention encompasses methods for treating CTCL by administering the oligonucleotide inhibitor of miR-155 in combination with a second therapy such as treatment with HDAC inhibitors, retinoids, interferon, antifolates, topical steroids, topical retinoids, topical nitrogen mustard, phototherapy, ultraviolet light, psoralen and ultraviolet light, radiotherapy, electron beam therapy, anti-CD30 antibody (e.g. Brentuximab), anti-CCR4 antibody (e.g. mogamulizumab), and anti-PD-1 or anti-PD-L1 antibody.
- a second therapy such as treatment with HDAC inhibitors, retinoids, interferon, antifolates, topical steroids, topical retinoids, topical nitrogen mustard, phototherapy, ultraviolet light, psoralen and ultraviolet light, radiotherapy, electron beam therapy, anti-CD30 antibody (e.g. Brentuximab), anti-C
- HDAC inhibitors are known, some of which are approved by FDA for clinical use and some are being tested in clinical trials.
- the methods for treating cancer according to the invention encompass the use of HDAC inhibitors including, but not limited to, vorinostat, romidepsin, panobinostat (LBH589), mocetinostat, belinostat (PXD101), abexinostat, CI-994 (tacedinaline), and MS-275 (entinostat).
- the second therapy/agent may be administered at different times prior to or after administration of the oligonucleotide inhibitor of miR-155.
- Prior administration includes, for instance, administration of the first agent within the range of about one week to up to 30 minutes prior to administration of the second agent.
- Prior administration may also include, for instance, administration of the first agent within the range of about 2 weeks to up to 30 minutes prior to administration of the second agent.
- After or later administration includes, for instance, administration of the second agent within the range of about one week to up to 30 minutes after administration of the first agent.
- After or later administration may also include, for instance, administration of the second agent within the range of about 2 weeks to up to 30 minutes after administration of the first agent.
- the invention also provides methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells, by administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the invention provides methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells, comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the invention provides methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells, comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the invention provides methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells, comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are deoxyribonucleic acid (DNA) nucleotides.
- DNA deoxyribonucleic acid
- methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NO: 22, SEQ ID NO: 23, and SEQ ID NO: 25.
- methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NOs: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120.
- Malignant T cells include cutaneous T cell lymphoma (CTCL) cells, CD4 + T cells and memory T cells.
- CTCL cutaneous T cell lymphoma
- Administration of an oligonucleotide inhibitor of the present invention reduces the activity or function of miR-155 and/or up-regulates one or more target genes of miR-155 in malignant T cells following administration.
- Methods for reducing or inhibiting proliferation of cancer cells also include the use of second therapy/agents described above along with administration of the present oligonucleotide inhibitors.
- the methods encompassed by the invention comprise administering 18.75, 37.5, or 75 mg of the oligonucleotide inhibitor of the invention per skin lesion of the patient. In other embodiments, the methods of the invention comprise systemically administering a total of about 37.5, 75, 150, 300, 600, 900, or 1200 mg, including values therebetween, of the oligonucleotide inhibitor of the invention to the patient.
- the methods of the invention comprise systemically administering a total of about 350, 700, 1050, 1400, 1750, 2100, 2450, 2800, 3150, or 3500 mg, including values therebetween, of the oligonucleotide inhibitor of the invention to the patient.
- administration of an oligonucleotide inhibitor of the present invention to the subject results in the improvement of one or more symptoms or pathologies associated with cancer.
- administration of an oligonucleotide inhibitor of the present invention alone or in combination with a second therapeutic agent such as a HDAC inhibitor reduces the number of skin lesions; number of red, itchy patches or plaques on skin; and/or formation of new skin lesions/patches/plaques associated with CTCL.
- administration of an oligonucleotide inhibitor of the present invention alone or in combination with a second therapeutic agent such as a HDAC inhibitor reduces or inhibits migration of malignant T lymphocytes to the skin.
- administration of an oligonucleotide inhibitor of the present invention alone or in combination with a second therapeutic agent reduces total malignant T lymphocytes in the skin. In yet another embodiment, administration of an oligonucleotide inhibitor of the present invention alone or in combination with a second therapeutic agent reduces the number of malignant T cells that may escape or migrate from the skin into the periphery.
- the term “subject” or “patient” refers to any vertebrate including, without limitation, humans and other primates (e.g., chimpanzees and other apes and monkey species), farm animals (e.g., cattle, sheep, pigs, goats and horses), domestic mammals (e.g., dogs and cats), laboratory animals (e.g., rodents such as mice, rats, and guinea pigs), and birds (e.g., domestic, wild and game birds such as chickens, turkeys and other gallinaceous birds, ducks, geese, and the like).
- the subject is a mammal. In other embodiments, the subject is a human.
- any of the oligonucleotide inhibitors of miR-155 described herein can be delivered to the target cell (e.g. malignant T cells) by delivering to the cell an expression vector encoding the miR-155 oligonucleotide inhibitor.
- a “vector” is a composition of matter which can be used to deliver a nucleic acid of interest to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear polynucleotides, polynucleotides associated with ionic or amphiphilic compounds, plasmids, and viruses. Thus, the term “vector” includes an autonomously replicating plasmid or a virus.
- viral vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, and the like.
- the viral vector is a lentiviral vector or an adenoviral vector.
- An expression construct can be replicated in a living cell, or it can be made synthetically.
- the terms “expression construct,” “expression vector,” and “vector,” are used interchangeably to demonstrate the application of the invention in a general, illustrative sense, and are not intended to limit the invention.
- an expression vector for expressing an oligonucleotide inhibitor of miR-155 comprises a promoter operably linked to a polynucleotide sequence encoding the oligonucleotide inhibitor.
- operably linked or “under transcriptional control” as used herein means that the promoter is in the correct location and orientation in relation to a polynucleotide to control the initiation of transcription by RNA polymerase and expression of the polynucleotide.
- a “promoter” refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene.
- Suitable promoters include, but are not limited to RNA pol I, pol II, pol III, and viral promoters (e.g. human cytomegalovirus (CMV) immediate early gene promoter, the SV40 early promoter, and the Rous sarcoma virus long terminal repeat).
- the promoter is a T-cell specific promoter such as the proximal and distal promoters of the Ick gene or promoter and enhancer sequences of the CD4 gene, etc.
- the promoter operably linked to a polynucleotide encoding a miR-155 oligonucleotide inhibitor can be an inducible promoter.
- Inducible promoters are known in the art and include, but are not limited to, tetracycline promoter, metallothionein IIA promoter, heat shock promoter, steroid/thyroid hormone/retinoic acid response elements, the adenovirus late promoter, and the inducible mouse mammary tumor virus LTR.
- Methods of delivering expression constructs and nucleic acids to cells are known in the art and can include, for example, calcium phosphate co-precipitation, electroporation, microinjection, DEAE-dextran, lipofection, transfection employing polyamine transfection reagents, cell sonication, gene bombardment using high velocity microprojectiles, and receptor-mediated transfection.
- the present invention also provides methods for diagnosing CTCL and methods for monitoring clinical status of a patient undergoing the treatment for CTCL.
- the invention shows that administration of antimiR-155 compounds of the invention up-regulates and/or down-regulates a unique set of genes in all three MF cell lines (HuT102, MJ, and MyLa) compared to control-treated cells or Sezary syndrome cells.
- the invention contemplates using a gene expression signature based on this unique set of genes to diagnose MF subtype of CTCL as well to monitor progress of the CTCL treatment with miR-155 inhibitors. For instance, the invention shows that a set of genes listed in Table 2 are up-regulated or down-regulated in all three MF cell lines in response to antimiR-155 compounds of the invention.
- the invention provides methods for diagnosing CTCL by measuring the expression levels of one or more genes listed in Table 2 in a subject suspected of suffering from CTCL, comparing the expression levels to reference levels (e.g. expression levels in a healthy subject or expression levels in non-cancer cells of the CTCL subject), and diagnosing the subject as having CTCL if the expression levels in the subject are down-regulated or up-regulated compared to reference levels.
- reference levels e.g. expression levels in a healthy subject or expression levels in non-cancer cells of the CTCL subject
- the invention provides a method for selecting a subject for treatment of CTCL comprising determining a level of expression of one or more genes in CTCL cells of the subject, wherein the one or more genes are selected from a set of genes modulated in all MF cells, e.g. Table 2; comparing the level of the one or more genes in the CTCL cells of the subject to a reference level of the one or more genes; and selecting a subject having an increase or a decrease in the level of the one or more genes in the CTCL cells compared to the reference level for treatment of CTCL.
- a method for selecting a subject for treatment of CTCL comprises determining a level of expression of 4 or more genes selected from the group consisting of INPP50/SHIP1, Jarid2, Picalm, Bach1, Wee1, CUX1, Cebpb, SPIB/PU.1, and IL7R, in CTCL cells of the subject; comparing the level of the 4 or more genes in the CTCL cells of the subject to a reference level of the 4 or more genes; and selecting a subject having a decrease in the level of the 4 or more genes in the CTCL cells compared to the reference level for treatment of CTCL.
- the method for selecting a subject for treatment of CTCL comprises determining the level of 4 genes, Bach1, Jarid2, Picalm, and SHIP1, in CTCL cells of the subject in comparison to a reference level of the 4 genes. In certain embodiments, the method for selecting a subject for treatment of CTCL comprises determining the level of 4 genes, Bach1, Jarid2, Picalm, and SHIP1, in CTCL cells of the subject in comparison to a reference level of the 4 genes; and selecting a subject having at least 2-fold decrease in the level of the 4 genes in the CTCL cells compared to the reference level for treatment of CTCL.
- the reference level is the level of expression of the same genes in control oligonucleotide-treated cells. In another embodiment, the reference level is the level of expression of the same genes in Sezary syndrome cells. In yet another embodiment, the reference level is the level of expression of the same genes in a healthy subject (e.g., a subject that does not present with two or more symptoms of a skin cancer, a subject that has not been diagnosed with a skin cancer, and/or a subject that has no family history of skin cancer).
- a healthy subject e.g., a subject that does not present with two or more symptoms of a skin cancer, a subject that has not been diagnosed with a skin cancer, and/or a subject that has no family history of skin cancer.
- the invention also provides methods for assessing the efficacy of a treatment with antimiR-155 compounds comprising determining a level of expression of one or more genes in cells of a subject prior to the treatment with antimiR-155 compounds, wherein the one or more genes are selected from a set of genes modulated in all MF cells, e.g. Table 2; determining the level of expression of the same one or more genes in cells of the subject after treatment with antimiR-155 compounds; and determining the treatment to be effective, less effective, or not effective based on the expression levels prior to and after the treatment. That is, in one embodiment, the genes listed in Table 2 serve as a biomarker for clinical efficacy of the antimiR-155 treatment.
- the invention provides methods of diagnosing CTCL by measuring the level of miR-155 in a subject suspected of suffering from CTCL in comparison to a reference level, wherein the higher expression of miR-155 in the subject indicates the subject is suffering from CTCL.
- the level of expression of miR-155 in the subject suspected of suffering from CTCL may be determined using cells isolated from skin lesions of the subject, plasma, serum, white blood cells, or PBMCs.
- the invention provides methods of diagnosing mycosis fungoides form of CTCL by measuring the level of miR-155 in a subject in comparison to a reference level, wherein the higher expression of miR-155 in the subject indicates the subject is suffering from the MF form of CTCL.
- the invention provides methods for assessing the response to an antimiR-155 treatment by determining a level of expression of miR-155 in the subject undergoing the treatment in comparison to a reference level of miR-155.
- the reference level can be the level of miR-155 in a healthy subject or the mean or median level of miR-155 from a group of healthy subjects or the level of miR-155 in a subject having Sezary syndrome.
- the present invention also provides pharmaceutical compositions comprising an oligonucleotide inhibitor of miR-155 as disclosed herein and a pharmaceutically acceptable carrier or excipient.
- the pharmaceutical composition comprises an effective dose of an oligonucleotide inhibitor of miR-155 having a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the pharmaceutical composition comprises an effective dose of an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the pharmaceutical composition comprises an effective dose of an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- DNA deoxyribonucleic acid
- the pharmaceutical composition comprises an effective dose of an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are deoxyribonucleic acid (DNA) nucleotides.
- DNA deoxyribonucleic acid
- compositions comprise an effective dose of an oligonucleotide inhibitor having a sequence selected from the group consisting of SEQ ID NO: 22, SEQ ID NO: 23, and SEQ ID NO: 25.
- pharmaceutical compositions comprise an effective dose of an oligonucleotide inhibitor having a sequence selected from the group consisting of SEQ ID NOs: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120.
- the pharmaceutical composition comprises an oligonucleotide inhibitor having a sequence selected from the sequences listed in Table 1.
- an “effective dose” is an amount sufficient to effect a beneficial or desired clinical result.
- An effective dose of an oligonucleotide inhibitor of miR-155 of the invention may be from about 1 mg/kg to about 100 mg/kg, about 2.5 mg/kg to about 50 mg/kg, or about 5 mg/kg to about 25 mg/kg. In some embodiments, an effective dose may be about 18.75, 37.5, or 75 mg of the oligonucleotide inhibitor per skin lesion of the patient.
- the precise determination of what would be considered an effective dose may be based on factors individual to each patient, including their size, age, type of disorder, and form of inhibitor (e.g. naked oligonucleotide or an expression construct etc.). Therefore, dosages can be readily ascertained by those of ordinary skill in the art from this disclosure and the knowledge in the art.
- the invention contemplates the use of a HDAC inhibitor in combination with the oligonucleotide inhibitors of the invention.
- the HDAC inhibitor may be administered concurrently but in separate formulations or sequentially.
- the HDAC inhibitor may be administered at different times prior to or after administration of a miR-155 inhibitor.
- pharmaceutical compositions will be prepared in a form appropriate for the intended application. Generally, this will entail preparing compositions that are essentially free of pyrogens, as well as other impurities that could be harmful to humans or animals.
- the invention provides topical compositions comprising the oligonucleotide inhibitors of miR-155 and one or more cosmetically or pharmaceutically acceptable carriers or excipients.
- cosmetically acceptable means that the carriers or excipients are suitable for use in contact with tissues (e.g., the skin) without undue toxicity, incompatibility, instability, irritation, allergic response, and the like.
- Cosmetic or pharmaceutical carriers or excipients can be liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
- Topical compositions often comprise an oil-in-water or a water-in-oil emulsion.
- the invention encompasses using such emulsions for preparing topical composition of antimiR-155 compounds.
- Suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin. Suitable cosmetic carriers are described below.
- the cosmetically acceptable topical carrier is from about 50% to about 99.99%, by weight, of the composition (e.g., from about 80% to about 99%, by weight, of the composition).
- the topical compositions include, but are not limited to, solutions, lotions, creams, gels, sticks, sprays, ointments, cleansing liquid washes, solid bars, shampoos, pastes, foams, powders, mousses, shaving creams, wipes, patches, nail lacquers, wound dressing, adhesive bandages, hydrogels, and films.
- These product types may comprise several types of cosmetically acceptable topical carriers including, but not limited to solutions, emulsions (e.g., microemulsions and nanoemulsions), gels, solids and liposomes. Certain non-limitative examples of such carriers are set forth hereinbelow. Other suitable carriers may be formulated by those of ordinary skill in the art.
- Topical compositions useful in the present invention may be formulated as a solution comprising an emollient.
- Such compositions preferably contain from about 1% to about 50% of an emollient(s).
- emollient refers to materials used for the prevention or relief of dryness, as well as for the protection of the skin.
- suitable emollients are known and may be used in the present invention. For example, Sagarin, Cosmetics, Science and Technology, 2nd Edition, Vol. 1, pp. 32-43 (1972) and the International Cosmetic Ingredient Dictionary and Handbook, eds. Wenninger and McEwen, pp. 1656-61, 1626, and 1654-55 (The Cosmetic, Toiletry, and Fragrance Assoc., Washington, D.C., 7th Edition, 1997) (hereinafter “ICI Handbook”) contains numerous examples of suitable materials.
- a lotion can be made from such a solution.
- Lotions typically comprise from about 1% to about 20% (e.g., from about 5% to about 10%) of an emollient(s) and from about 50% to about 90% (e.g., from about 60% to about 80%) of water.
- a cream typically comprises from about 5% to about 50% (e.g., from about 10% to about 20%) of an emollient(s) and from about 45% to about 85% (e.g., from about 50% to about 75%) of water.
- An ointment may comprise a simple base of animal or vegetable oils or semi-solid hydrocarbons.
- An ointment may comprise from about 2% to about 10% of an emollient(s) plus from about 0.1% to about 2% of a thickening agent(s).
- thickening agents or viscosity increasing agents useful herein can be found in Sagarin, Cosmetics, Science and Technology, 2nd Edition, Vol. 1, pp. 72-73 (1972) and the ICI Handbook pp. 1693-1697.
- the topical compositions useful in the present invention may be formulated as emulsions. If the carrier is an emulsion, from about 1% to about 10% (e.g., from about 2% to about 5%) of the carrier comprises an emulsifier(s).
- Emulsifiers may be nonionic, anionic or cationic. Suitable emulsifiers are disclosed in, for example, in McCutcheon's Detergents and Emulsifiers, North American Edition, pp. 317-324 (1986), and the ICI Handbook, pp. 1673-1686.
- Lotions and creams can be formulated as emulsions.
- lotions comprise from 0.5% to about 5% of an emulsifier(s).
- Such creams would typically comprise from about 1% to about 20% (e.g., from about 5% to about 10%) of an emollient(s); from about 20% to about 80% (e.g., from 30% to about 70%) of water; and from about 1% to about 10% (e.g., from about 2% to about 5%) of an emulsifier(s).
- Multiphase emulsion compositions for example the water-in-oil-in-water type, as disclosed in U.S. Pat. Nos. 4,254,105 and 4,960,764, may also be useful in the present invention.
- such single or multiphase emulsions contain water, emollients, and emulsifiers as essential ingredients.
- the topical compositions of this invention can also be formulated as a gel (e.g., an aqueous, alcohol, alcohol/water, or oil gel using a suitable gelling agent(s)).
- suitable gelling agents for aqueous gels include, but are not limited to, natural gums, acrylic acid and acrylate polymers and copolymers, and cellulose derivatives (e.g., hydroxymethyl cellulose and hydroxypropyl cellulose).
- Suitable gelling agents for oils include, but are not limited to, hydrogenated butylene/ethylene/styrene copolymer and hydrogenated ethylene/propylene/styrene copolymer.
- Such gels typically comprise between about 0.1% and 5%, by weight, of such gelling agents.
- Liposomal formulations are also useful compositions of the subject invention.
- the oligonucleotides are contained within the liposome.
- liposomes are unilamellar, multilamellar, and paucilamellar liposomes, which may or may not contain phospholipids.
- Such compositions can be prepared by combining the oligonucleotide inhibitor with a phospholipid, such as dipalmitoylphosphatidyl choline, cholesterol and water.
- fat emulsions that may be suitable for delivering the nucleic acids of the invention to cancer cells or the skin tissue include Intralipid®, Liposyn®, Liposyn® II, Liposyn® III, Nutrilipid, and other similar lipid emulsions.
- a preferred colloidal system for use as a delivery vehicle in vivo is a liposome (i.e., an artificial membrane vesicle). The preparation and use of such systems is well known in the art. Exemplary formulations are also disclosed in U.S. Pat. Nos.
- the liposome preparation may then be incorporated into one of the above carriers (e.g., a gel or an oil-in-water emulsion) in order to produce the liposomal formulation.
- a gel or an oil-in-water emulsion e.g., a gel or an oil-in-water emulsion
- Other compositions and uses of topically applied liposomes are described in Mezei, M., “Liposomes as a Skin Drug Delivery System”, Topics in Pharmaceutical Sciences (D. Breimer and P. Suiter, eds.), Elsevier Science Publishers B. V., New York, N.Y., 1985, pp. 345-358, PCT Patent Application No. WO96/31194, Niemiec, et al., 12 Pharm. Res. 1184-88 (1995), and U.S. Pat. No. 5,260,065.
- the liposomes are present in the topical composition in an amount, based upon the total volume of the composition, of from about 5 mg/ml to about 100 mg/ml such as from about 10 mg/ml to about 50 mg/ml.
- emollients and surface active agents can be incorporated in the emulsions, including glycerol trioleate, acetylated sucrose distearate, sorbitan trioleate, polyoxyethylene (1) monostearate, glycerol monooleate, sucrose distearate, polyethylene glycol (50) monostearate, octylphenoxypoly (ethyleneoxy) ethanol, decaglycerin penta-isostearate, sorbitan sesquioleate, hydroxylated lanolin, lanolin, triglyceryl diisostearate, polyoxyethylene (2) oleyl ether, calcium stearoyl-2-lactylate, methyl glucoside sesquistearate, sorbitan monopalmitate, methoxy polyethylene glycol-22/dodecyl glycol copolymer (Elfacos E200), polyethylene glycol-45/dode
- liposomes used for delivery are amphoteric liposomes such SMARTICLES® (Marina Biotech, Inc.) which are described in detail in U.S. Pre-grant Publication No. 20110076322.
- SMARTICLES® Marina Biotech, Inc.
- the surface charge on the SMARTICLES® is fully reversible which make them particularly suitable for the delivery of nucleic acids.
- SMARTICLES® can be delivered via injection, remain stable, and aggregate free and cross cell membranes to deliver the nucleic acids.
- compositions of the present invention comprise an effective amount of the delivery vehicle comprising the inhibitor polynucleotides (e.g. liposomes or other complexes or expression vectors) dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium.
- pharmaceutically acceptable or “pharmacologically acceptable” refers to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or a human.
- “pharmaceutically acceptable carrier” includes solvents, buffers, solutions, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like acceptable for use in formulating pharmaceuticals, such as pharmaceuticals suitable for administration to humans.
- the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredients of the present invention, its use in therapeutic compositions is contemplated. Supplementary active ingredients also can be incorporated into the compositions, provided they do not inactivate the vectors or polynucleotides of the compositions.
- compositions of the present invention may include classic pharmaceutical preparations. Administration of these compositions according to the present invention may be via any common route so long as the target tissue is available via that route. This includes oral, topical, parenteral, intradermal, subcutaneous, or intravenous injection.
- compositions comprising oligonucleotide inhibitors of miR-155 as described herein may be formulated in the form suitable for a topical application such as a cream, ointment, paste, lotion, or gel.
- the active compounds may also be administered parenterally.
- solutions of the active compounds as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations generally contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical forms suitable for injectable use include, for example, sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- these preparations are sterile and fluid to the extent that easy injectability exists.
- Preparations should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- Appropriate solvents or dispersion media may contain, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- a coating such as lecithin
- surfactants for example, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions may be prepared by incorporating the active compounds in an appropriate amount into a solvent along with any other ingredients (for example as enumerated above) as desired, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the desired other ingredients, e.g., as enumerated above.
- the preferred methods of preparation include vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient(s) plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- compositions of the present invention generally may be formulated in a neutral or salt form.
- Pharmaceutically-acceptable salts include, for example, acid addition salts (formed with the free amino groups of the protein) derived from inorganic acids (e.g., hydrochloric or phosphoric acids), or from organic acids (e.g., acetic, oxalic, tartaric, mandelic, and the like). Salts formed with the free carboxyl groups of the protein can also be derived from inorganic bases (e.g., sodium, potassium, ammonium, calcium, or ferric hydroxides) or from organic bases (e.g., isopropylamine, trimethylamine, histidine, procaine and the like).
- inorganic acids e.g., hydrochloric or phosphoric acids
- organic acids e.g., acetic, oxalic, tartaric, mandelic, and the like.
- Salts formed with the free carboxyl groups of the protein can also be derived
- compositions are preferably administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective.
- the formulations may easily be administered in a variety of dosage forms such as injectable solutions, cream, ointment, paste, lotion, or gel and the like.
- aqueous solution for example, the solution generally is suitably buffered and the liquid diluent first rendered isotonic for example with sufficient saline or glucose.
- aqueous solutions may be used, for example, for intravenous, subcutaneous, and intradermal administration.
- sterile aqueous media are employed as is known to those of skill in the art, particularly in light of the present disclosure.
- the pharmaceutical compositions of the invention are packaged with or stored within a device for administration.
- Devices for injectable formulations include, but are not limited to, pre-filled syringes, injection ports, autoinjectors, injection pumps, and injection pens.
- Devices for aerosolized or powder formulations include, but are not limited to, inhalers, insufflators, aspirators, and the like.
- Devices for dermal delivery of compositions of the present invention also include dermal microneedle injection or patches.
- the present invention includes administration devices comprising a pharmaceutical composition of the invention for treating or preventing one or more of the disorders described herein.
- Example 1 Oligonucleotide Inhibitors of miR-155 (“antimiR-155”) are Active in Mycosis Fungoides Cell Lines which Show Increased miR-155 Expression
- the absolute expression of miR-155-5p in the CTCL cell lines compared to normal peripheral CD4+ helper T-cells was measured by real time PCR, using total RNA isolated from each cell type as a template. Standard curves correlating Ct value to miR-155-5p copy number were generated using a synthetic miR-155-5p RNA template. The copy number per cell of miR-155-5p was extrapolated from the Ct values determined for CTCL RNA samples or normal CD4+ T-cell RNA sample using the standard curve generated with the synthetic template, assuming 10 pg of total RNA per cell ( FIG. 1 ).
- the mycosis fungoides cell lines (HuT102, MJ, and My-La), as well as the idiopathic cell line (HH), showed high expression of miR-155-5p compared to normal CD4+ T-cells, while the cell line derived from a Sezary syndrome patient (HuT78) did not overexpress miR-155-5p.
- CTCL cell lines were cultured in complete growth medium with the addition of antimiR-155 compound 1 (SEQ ID NO: 27), compound 2 (SEQ ID NO: 22), compound 3 (SEQ ID NO: 23), and compound 4 (SEQ ID NO: 25) at concentrations ranging from 2 ⁇ M to 50 ⁇ M.
- the antimiRs were added to the medium without any additional components to enhance cellular uptake.
- Cells were harvested after 72 hours of treatment and total RNA was purified.
- Real time PCR was performed for 13 direct gene targets of miR-155 (Worm et al. 2009; O'Connell et al. 2010; Zhang et al. 2012; and miRagen unpublished data).
- FIG. 2 shows a “heat map” representation of gene expression changes in response to 72 hours of treatment with 10 ⁇ M of the indicated antimiR.
- Four predicted direct targets that lacked expression in at least one cell line were omitted.
- the gene expression fold-changes were log 10-transformed, plotted on a grayscale, representing the highest relative increase in gene expression, and conversely, the greatest reduction in gene expression.
- the heat map showed that the expression of several of the miR-155-5p target genes was modulated upon exposure to the miR-155-5p antagonists in three mycosis fungoides cell lines (MJ, HuT102, and My-La).
- Example 2 AntimiR-155 Compounds 2 (SEQ ID NO: 22) and 4 (SEQ ID NO: 25) Show Greater Activity in Mycosis Fungoides Cells Lines Compared to Other antimiR Compounds
- Example 3 Gene Expression Changes Induced by antimiR-155 Treatment are Specific to the Inhibition of miR-155
- mycosis fungoides cell lines were treated with oligos that do not target miR-155 (control oligos).
- the control oligonucleotide was a 14-nucleotide antimiR targeting a C. elegans miRNA not expressed in mammals (control 1).
- the second oligo is a scramble of the 14-nucleotide sequence of antimiR-155 compound 4 (control 2).
- the MJ and HuT102 cell lines were incubated with 10 ⁇ M antimiR-155 compounds 3 (SEQ ID NO: 23) or 4 (SEQ ID NO: 25) or the two control oligos for 72 hours.
- Example 4 Whole Genome Expression Profiling of CTCL Cell Lines Treated with antimiR-155 Confirm Target Engagement and Provide Mechanistic Insight
- the gene expression profile common to both cell lines and both compounds at Day 4 was analyzed for the enrichment of miR-155-5p seed-matched gene targets (8-, 7-, and 6-nucleotide binding sites).
- the fold-change of these genes is represented in a heat map in FIG. 11 .
- This signature of 150 up-regulated genes was significantly enriched for miR-155-5p seed-matched targets (8-, 7-, and 6-nucleotide binding sites), with a hypergeometric p-value of 1.6 ⁇ 10 ⁇ 25 ( FIG. 11A ).
- Analysis by cumulative distribution function confirmed enrichment for seed-matched targets, and demonstrated enrichment for 8mer>7mer>6mer binding sites ( FIG. 11B ).
- the gene signature was also analyzed using the DAVID bioinformatic resource for functional gene annotation enrichment (Huang da et al., 2009). There was no significant enrichment of Gene Ontology database terms as defined by a Benjamini-corrected p-value of ⁇ 0.01.
- the gene expression signature common to both cell lines and both compounds at Day 8 (677 genes in total) was subjected to analysis for enrichment of seed-matched gene targets and for functional gene annotation.
- the up-regulated gene signature was significantly enriched for seed-matched targets with a hypergeometric p-value of ⁇ 10 ⁇ 27 .
- the Day 8 signature also showed strong enrichment of two functional annotation terms: antigen presentation in the up-regulated signature, and mitotic cell cycle in the down-regulated signature ( FIG. 12 ).
- the activity of antimiR-155 compound 4 was further investigated by treating the third mycosis fungoides cell line, MyLa, with compound 4 (SEQ ID NO: 25) for 4 days and 8 days and profiling the changes in gene expression.
- compound 4 SEQ ID NO: 25
- FIG. 13 shows that the treatment of Sezary syndrome cell line HuT78 with compound 4 (SEQ ID NO: 25) did not show much change in the gene expression indicating that the gene expression changes in mycosis fungoides cell lines are indeed due to the inhibition of miR-155-5p by compound 4 (SEQ ID NO: 25).
- genes regulated by compound 4 (SEQ ID NO: 25) in all three mycosis fungoides cell lines were identified as a biomarker signature that could be used for clinical assessment of treatment with antimiR-155 compounds, such as compound 4 (SEQ ID NO: 25), of the invention.
- the identified set of genes was up-regulated in all three cell lines or down-regulated in all three cell lines. Common signatures for each time point (Day 4 and Day 8) were identified and then combined into a single gene list (Table 2). No filter was placed on the magnitude of gene expression. Therefore, Table 2 contains genes that are regulated only at Day 4, or only at Day 8, or regulated at both time points.
- Table 2 contains 587 genes comprising early (direct) targets and downstream (indirect) targets regulated by compound 4 (SEQ ID NO: 25) ( FIG. 21 ).
- the gene list in Table 2 includes the direct targets Bach1, Picalm, and Jarid2, demonstrating that these genes are robust markers of the compound 4 (SEQ ID NO: 25) activity across multiple cell lines and time points.
- Example 5 AntimiR-155 Compounds of the Invention Inhibits Cell Proliferation and Increases Apoptosis in CTCL Cells
- AntimiR-155 compounds 2 SEQ ID NO: 22
- 4 SEQ ID NO: 25
- antimiR-155 compound 3 SEQ ID NO: 23
- FIG. 14A shows the effect of antimiR-155 compound 4 (SEQ ID NO: 25) on proliferation of HuT-102 cells over time. Since the level of ATP correlates directly with cell number, ATP was measured to determine the cell number. The effect of compound 4 (SEQ ID NO: 25) on cell number was comparable to that seen with bexarotene, a standard-of-care therapy for CTCL ( FIG. 14A ). The reduction in cell number was accompanied by an increase in apoptosis as measured by caspase 3/7 activity ( FIG. 14B ).
- the caspase 3 and 7 proteins are members of the cysteine aspartic acid-specific protease (caspase) family.
- the caspase family plays key effector roles in apoptosis in mammalian cells. Caspase activity was normalized to ATP levels, as all cells have a low level of basal caspase activity that can confound the results if not normalized appropriately. Compound 4 (SEQ ID NO: 25) showed greater induction of apoptosis than bexarotene ( FIG. 14B ).
- FIGS. 17A and 17B show proliferation and activation of caspase 3/7 over time with compounds 3 (SEQ ID NO: 23) and 4 (SEQ ID NO: 25). Similar to HuT102 cells, compound 4 (SEQ ID NO: 25) showed greater activity compared to compound 3 (SEQ ID NO: 23).
- Vorinostat (chemical name: SAHA) is a standard-of-care epigenetic therapy for patients with advanced mycosis fungoides. However, the side-effects of pan-HDAC inhibitors are well-described. To determine whether a combination therapy might show enhanced activity compared to treatment with individual compounds, HuT102 cells were treated with a sub-efficacious dose of SAHA combined with antimiR-155.
- HuT102 cells were treated with 0.25 ⁇ M SAHA and 10 ⁇ M compound 3 (SEQ ID NO: 23) or 4 (SEQ ID NO: 25), individually or in combination. Cells were harvested daily to measure ATP levels and caspase 3/7 activity. ATP levels are shown in FIG. 19A . A similar experiment was performed with 0.50 ⁇ M SAHA. FIG. 19B shows ATP levels obtained when HuT102 cells were treated with 0.50 ⁇ M SAHA and 10 ⁇ M compound 3 (SEQ ID NO: 23) or 4 (SEQ ID NO: 25), individually or in combination.
- FIGS. 20A and 20B show the effect on caspase 3/7 activity.
- Compound 4 SEQ ID NO: 25
- 0.25 or 0.5 ⁇ M of SAHA resulted in increased apoptosis compared to each treatment alone.
- This data suggests that antimiR-155 oligos can be used in combination with low doses pan-HDAC inhibitor.
- a dual luciferase reporter assay system was used.
- the binding site for miR-155 was cloned into the 3′ UTR of the Renilla luciferase gene located within the commercially-available psiCHECK-2 vector system (Promega).
- the expression of Renilla luciferase protein is repressed by a miR-155 mimic.
- the expression of Renilla luciferase protein is de-repressed.
- the vector contains a firefly luciferase gene that does not contain the miR-155 binding site. Expression of either Renilla or firefly luciferase is measured through detection of light emitted by the luciferase protein.
- the miR-155 mimic was purchased from Dharmacon (miRIDIAN microRNA Human hsa-miR-155-5p mimic; Accession number MIMAT0000646; catalog # C-300647-05-0005) and contains the mature miRNA sequence: -UUAAUGCUAAUCGUGAUAGGGGU-(SEQ ID NO: 121).
- the control oligonucleotide used in the experiment had the following sequence: 5′-lCs.dTs.dAs.lGs.dAs.lAs.dAs.lGs.lAs.dGs.lTs.dAs.lGs.lA-3′ (SEQ ID NO: 122).
- FIG. 22 shows that transfection of the reporter plasmid and the mimic resulted in the maximal repression of luciferase; transfection of the reporter plasmid alone resulted in the maximum expression of luciferase; transfection of the control oligonucleotide with the reporter and the mimic did not de-repress the expression of luciferase; and transfection of the test miR-155 oligonucleotide inhibitors with the reporter and the mimic de-repressed the expression of luciferase to differing extents.
- Example 8 AntimiR-155 Activity of Oligonucleotides Containing Varying Number of Locked Nucleotides (LNAs)
- Test miR-155 oligonucleotide inhibitors used in this experiment differed in the number of LNAs contained (Tables 5-8). The results are shown in FIGS. 23A (Table 5), 23 B (Table 6), 23 C (Table 7), and 23 D (Table 8).
- Test miR-155 oligonucleotide inhibitors used in this experiment differed in the position of LNA modifications (Tables 9-12). The results are shown in FIGS. 24A (Table 9), 24 B (Table 10), 24 C (Table 11), and 24 D (Table 12).
- Test miR-155 oligonucleotide inhibitors used in this experiment were 14 nucleotides in length and each contained 9 nucleotide modifications (Table 13).
- the nucleotide modifications included locked nucleotides (LNAs), ethylene-bridged nucleic acids/ethylene-bridged nucleotides (ENAs), and 2′-C-Bridged Bicyclic Nucleotide (CBBN). The results are shown in FIG. 25 .
- Test miR-155 oligonucleotide inhibitors used in this experiment were 14 nucleotides in length and contained 9 or 10 LNA modifications (Table 14). The results are shown in FIG. 26 .
- Example 12 AntimiR-155 Activity of Oligonucleotide Inhibitors Containing SEQ ID NOs: 25 and 23
- Test miR-155 oligonucleotide inhibitors used in this experiment were oligonucleotide inhibitors of SEQ ID NOs: 25 and 23. The results are shown in FIG. 27 .
- Example 13 AntimiR-155 Activity of Oligonucleotide Inhibitors Containing SEQ ID NOs: 25 and 120
- miR-155 oligonucleotide inhibitors of SEQ ID NOs: 25 and 120 were passively transfected in the Oci-Ly3 cell line. mRNA was isolated on Day 4 and was analyzed by qPCR for the expression of miR-155 target genes (Bach1, CEBPB, CUX1, INPP5D/SHIP1, Jarid2, Picalm, and Wee1).
- FIG. 28 shows the fold-change in the expression of these genes upon transfection of the oligonucleotide inhibitors of SEQ ID NOs: 25 and 120. The order of genes from left to right in each data point in FIG. 28 is Bach1, CEBPB, CUX1, INPP5D/SHIP1, Jarid2, Picalm, and Wee1.
- SEQ ID NO: 120 contains CBBN nucleotides in the same positions as the LNA in SEQ ID NO: 25.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Plant Pathology (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Hematology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The present invention provides oligonucleotide inhibitors of miR-155 and compositions thereof. The invention further provides methods for treating cancer such as a T cell lymphoma in a subject by administering to the subject an oligonucleotide inhibitor of miR-155. The invention also provides methods for reducing or inhibiting the proliferation of malignant T cells by administering an oligonucleotide inhibitor of miR-155.
Description
- The present application is a continuation of U.S. application Ser. No. 15/976,333, filed on May 10, 2018, which is a continuation of U.S. application Ser. No. 15/714,671, filed on Sep. 25, 2017, now U.S. Pat. No. 9,994,852, which is a continuation of PCT Application No. PCT/US2016/035865, filed on Jun. 3, 2016, which claims the benefit of priority to U.S. Provisional Application No. 62/171,758, filed on Jun. 5, 2015, the contents of each of which are hereby incorporated by reference in their entirety.
- The contents of the text file submitted electronically herewith are incorporated herein by reference in their entirety: A computer readable format copy of the Sequence Listing (filename: MIRG 051_05US_SeqList_ST25.txt, date recorded Apr. 12, 2019, file size ˜112 KB).
- The present invention relates to oligonucleotide inhibitors of miR-155 and compositions thereof. The invention also provides methods for treating or preventing cancer in a subject in need thereof by administering an oligonucleotide inhibitor of miR-155. The activity or function of miR-155 is reduced in cancer cells of the subject following administration of the oligonucleotide inhibitor.
- MicroRNAs (miRNAs) are small, endogenous, noncoding RNAs that act as posttranscriptional repressors of gene expression. MiRNAs act as repressors of target mRNAs by promoting their degradation, when their sequences are perfectly complementary, or by inhibiting translation, when their sequences contain mismatches.
- MiRNAs are transcribed by RNA polymerase II (pol II) or RNA polymerase III (pol III; see Qi et al. (2006) Cellular & Molecular Immunology, Vol. 3:411-419) and arise from initial transcripts, termed primary miRNA transcripts (pri-miRNAs), that are generally several thousand bases long. Pri-miRNAs are processed in the nucleus by the RNase Drosha into about 70- to about 100-nucleotide hairpin-shaped precursors (pre-miRNAs). Following transport to the cytoplasm, the hairpin pre-miRNA is further processed by Dicer to produce a double-stranded miRNA. The mature miRNA strand is then incorporated into the RNA-induced silencing complex (RISC), where it associates with its target mRNAs by base-pair complementarity. In the relatively rare cases in which a miRNA base pairs perfectly with an mRNA target, it promotes mRNA degradation. More commonly, miRNAs form imperfect heteroduplexes with target mRNAs, affecting either mRNA stability or inhibiting mRNA translation.
- MicroRNAs have been implicated in several diseases including cancer. For example, human miRNA genes miR15a and miR16-1 are deleted or down-regulated in approximately 60% of B-cell chronic lymphocytic leukemia (CLL) cases (Calin et al., Proc Natl Acad Sci, 2002; 99:15524-15529). Similarly, dysregulation of miR-155-5p has been linked to signaling events that are implicated in the pathogenesis of cutaneous T cell lymphoma (CTCL). It has been shown that malignant T-cells constitutively express an IL-2 receptor complex and associated Janus kinases (JAKs) that activate transcription via signal transducers and activators of transcription (STAT) proteins. Chromatin immuno-precipitation experiments showed that STAT-5 was associated with the promoter of MIR155HG, a host gene for miR-155-5p. This suggests that miR-155-5p may regulate the STAT-5 signaling pathway in CTCL malignant T-cells. Inhibition of the JAK/STAT pathway resulted in the down-regulation of miR-155-5p expression whereas treatment of cells with cytokines that activate STAT-5 resulted in increased miR-155-5p levels (Kopp et al. 2013). These results suggest that miR-155-5p may play a role in the pathogenesis of CTCL.
- Currently there are no therapies that cure or prolong the survival of late-stage CTCL patients (Prince et al., 2009). Treatments for CTCL patients at an early-stage of disease are palliative and non-aggressive with careful physician monitoring. More advanced-stage CTCL patients are typically treated with systemic drugs, such as retinoids (bexarotene) or histone deacetylase inhibitors (vorinostat). Radiotherapy is typically the last line of defense and can result in partial disease regression but not full eradication. Many treatments have serious side effects or result in resistance over time. Thus, there remains an unmet medical need for new therapies to treat cutaneous T-cell lymphoma.
- The present invention provides oligonucleotide inhibitors for modulating the activity or function of miR-155 in cells of a subject. In one embodiment, administration of an oligonucleotide inhibitor of miR-155 down-regulates the activity or function of miR-155 in cancer cells of the subject following administration. In certain embodiments, cancer cells are malignant T cells including cutaneous T cell lymphoma (CTCL) cells, CD4+ T cells, CD8+ T cells, αβ T cells, γδ T cells and memory T cells.
- In one embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide. In some of these embodiments, the fourth nucleotide from the 3′ end of the oligonucleotide inhibitor is also a locked nucleotide. In some of these embodiments, the first nucleotide from the 5′ end of the oligonucleotide inhibitor is a locked nucleotide.
- In another embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide. In these embodiments, the oligonucleotide inhibitor may contain at least 5, 6, 7, 8, 9, or 10 modified nucleotides. In some of these embodiments, the oligonucleotide inhibitor contains 7, 8, 9, or 10 modified nucleotides. In some of these embodiments, 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitor are all locked nucleotides. In yet some other embodiments, 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitor are a combination of locked nucleotides and other modifications such as ethylene-bridged nucleotides, 2′-C-bridged bicyclic nucleotides, and sugar modifications such as 2′-substituted nucleotides. In some of these embodiments, the second DNA nucleotide from the 5′ end of the oligonucleotide inhibitor could be an unmodified DNA nucleotide. In some of these embodiments, the first three modified nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides.
- In yet another embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide. In these embodiments, the oligonucleotide inhibitor may contain at least 7, 8, 9, or 10 modified nucleotides. In some of these embodiments, 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitor are all locked nucleotides. In yet some other embodiments, 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitor are a combination of locked nucleotides and other modifications such as ethylene-bridged nucleotides, 2′-C-bridged bicyclic nucleotides, and sugar modifications such as 2′-substituted nucleotides. In some of these embodiments, the first three nucleotides from the 3′ end of the oligonucleotide inhibitor are modified nucleotides. In some of these embodiments, the first three modified nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides. In some of these embodiments, the second or the third nucleotide from the 3′ end of the oligonucleotide inhibitor is a DNA nucleotide. In some of these embodiments, the second DNA nucleotide from the 5′ end of the oligonucleotide inhibitor could be an unmodified DNA nucleotide.
- In yet another embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are deoxyribonucleic acid (DNA) nucleotides. In these embodiments, the oligonucleotide inhibitor may contain at least 7, 8, 9, or 10 modified nucleotides. In some of these embodiments, 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitor are all locked nucleotides. In some of these embodiments, the first three modified nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides. In some of these embodiments, the fourth and/or the fifth DNA nucleotide from the 5′ end of the oligonucleotide inhibitor could be an unmodified DNA nucleotide.
- The modified nucleotides that may be present in the oligonucleotide inhibitors of the present invention include, but are not limited to, locked nucleotides, ethylene-bridged nucleotides, 2′-C-bridged bicyclic nucleotides, 2′-substituted nucleotides, and other sugar and/or base modifications described herein. In some embodiments, all modified nucleotides present in the oligonucleotide inhibitors of the present invention are locked nucleotides. In some other embodiments, modified nucleotides present in the oligonucleotide inhibitors are a combination of locked nucleotides and other modifications such as ethylene-bridged nucleotides, 2′-C-bridged bicyclic nucleotides, and 2′-substituted nucleotides, and other sugar and/or base modifications described herein.
- In one embodiment, the oligonucleotide inhibitor of miR-155 has a length of 12 to 14 nucleotides. In some embodiments, the oligonucleotide inhibitor contains at least 5, 6, 7, 8, 9 or 10 locked nucleotides. In some other embodiments, the oligonucleotide inhibitor contains at least 1, 2, 3, 4, 5, or more DNA nucleotides. In certain embodiments, at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a DNA nucleotide. In certain additional embodiments, at least the second and fourth nucleotides from the 5′ end of the oligonucleotide inhibitor are DNA nucleotides. In further embodiments, at least the sixth and/or the eighth nucleotide from the 5′ end of the oligonucleotide inhibitor is a DNA nucleotide. In yet further embodiments, the oligonucleotide inhibitor comprises DNA nucleotides at the second, sixth, and the eighth position from the 5′ end.
- In some embodiments, the oligonucleotide inhibitor of miR-155 has a sequence selected from SEQ ID NOs: 3-27 and 29-120. In an exemplary embodiment, the oligonucleotide inhibitor of miR-155 has a sequence of SEQ ID NO: 25. In another exemplary embodiment, the oligonucleotide inhibitor of miR-155 has a sequence of SEQ ID NO: 22 or 23. In yet another exemplary embodiment, the oligonucleotide inhibitor of miR-155 has a sequence selected from SEQ ID NO: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120.
- In one embodiment, oligonucleotide inhibitors of miR-155 according to the present invention reduce or inhibit proliferation of cancer cells and/or induce apoptosis of cancer cells. In another embodiment, oligonucleotide inhibitors up-regulate one or more target genes of miR-155 in cancer cells.
- The present invention also provides compositions comprising oligonucleotide inhibitors of miR-155 and uses thereof. In one embodiment, the invention provides methods for treating cancer in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of an oligonucleotide inhibitor of miR-155 of the present invention. The activity or function of miR-155 is reduced in cancer cells following administration of the oligonucleotide inhibitor. In one embodiment, the cancer is a cutaneous T cell lymphoma (CTCL). In some embodiments, methods for treating cancer comprise administering to a subject a therapeutically effective amount of an oligonucleotide inhibitor of miR-155 of the invention and a therapeutically effective amount of a second therapeutic agent such as a retinoid or a histone deacetylase (HDAC) inhibitor.
- In one embodiment, the invention provides methods for reducing or inhibiting the proliferation of malignant T cells, comprising administering the oligonucleotide inhibitor of miR-155 according to the invention. The activity or function of miR-155 is reduced in malignant T cells following administration of the oligonucleotide inhibitor.
-
FIG. 1 shows the absolute expression of miR-155-5p in various CTCL cell lines compared to normal peripheral CD4+ T helper cells as measured by quantitative real time PCR. -
FIG. 2 shows a “heat map” representation of gene expression changes in 9 target genes of miR-155 in various CTCL cells in response to treatment with 10 μM of one of four antimiR-155 compounds for 72 hours. -
FIG. 3A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 μM antimiR-155 compounds for 72 hours in HuT102 cells. -
FIG. 3B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 μM antimiR-155 compounds for 72 hours in HuT102 cells.FIG. 3C shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 μM antimiR-155 compounds for 72 hours in HuT102 cells.FIG. 3D shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 μM antimiR-155 compounds for 96 hours in HuT102 cells.FIG. 3E shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 μM antimiR-155 compounds for 96 hours in HuT102 cells.FIG. 3F shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 μM antimiR-155 compounds for 96 hours in HuT102 cells. * p-value <0.0001 compared to untreated by nonparametric Mann-Whitney test. -
FIG. 4A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 μM antimiR-155 compounds for 72 hours in MJ cells.FIG. 4B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 μM antimiR-155 compounds for 72 hours in MJ cells.FIG. 4C shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 μM antimiR-155 compounds for 72 hours in MJ cells.FIG. 4D shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 μM antimiR-155 compounds for 96 hours in MJ cells.FIG. 4E shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 μM antimiR-155 compounds for 96 hours in MJ cells.FIG. 4F shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 μM antimiR-155 compounds for 96 hours in MJ cells. * p-value <0.0001 compared to untreated by nonparametric Mann-Whitney test. -
FIG. 5A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 μM antimiR-155 compounds for 72 hours in HH cells.FIG. 5B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 μM antimiR-155 compounds for 72 hours in HH cells.FIG. 5C shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 μM antimiR-155 compounds for 72 hours in HH cells.FIG. 5D shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 μM antimiR-155 compounds for 96 hours in HH cells.FIG. 5E shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 μM antimiR-155 compounds for 96 hours in HH cells.FIG. 5F shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 μM antimiR-155 compounds for 96 hours in HH cells. * p-value <0.0001 compared to untreated by nonparametric Mann-Whitney test. -
FIG. 6A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2, 10, and 50 μM antimiR-155 compounds for 72 hours in My-LA cells.FIG. 6B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2, 10, and 50 μM antimiR-155 compounds for 96 hours in My-La cells. * p-value <0.0001 compared to untreated by nonparametric Mann-Whitney test. -
FIG. 7A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 μM antimiR-155 compounds for 72 hours in HuT78 cells.FIG. 7B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 μM antimiR-155 compounds for 72 hours in HuT78 cells.FIG. 7C shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 μM antimiR-155 compounds for 72 hours in HuT78 cells.FIG. 7D shows a fold-change in the expression of four miR-155 target genes in response to treatment with 2 μM antimiR-155 compounds for 96 hours in HuT78 cells.FIG. 7E shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 μM antimiR-155 compounds for 96 hours in HuT78 cells.FIG. 7F shows a fold-change in the expression of four miR-155 target genes in response to treatment with 50 μM antimiR-155 compounds for 96 hours in HuT78 cells. -
FIG. 8A shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 μM antimiR-155 compounds or control oligos in HuT102 cells.FIG. 8B shows a fold-change in the expression of four miR-155 target genes in response to treatment with 10 μM antimiR-155 compounds or control oligos in MJ cells. * p-value <0.0001 compared to untreated by nonparametric Mann-Whitney test. -
FIG. 9 shows a heat map of the differential gene expression signature in MJ cells treated with antimiR-155 compounds for 4 or 8 days. MJ cells treated with antimiR-155 were subjected to whole genome expression profiling. The differential expression signature was filtered for genes that were significantly changed with a false discovery rate corrected p-value of ≤0.05. -
FIG. 10 shows a heat map of the differential gene expression signature in HuT102 cells treated with antimiR-155 compounds for 4 or 8 days. HuT102 cells treated with antimiR-155 were subjected to whole genome expression profiling. The differential expression signature was filtered for genes that were significantly changed with a false discovery rate corrected p-value of ≤0.05. -
FIG. 11A shows the annotation of the gene expression profile of genes upregulated in response to antimiRs-155 in both MJ and HuT102 cells. The gene signature is enriched for miR-155 seed-matched direct targets with a hypergeometric p-value for enrichment of 1.6e−25. The genes identified here were significantly changed with antimiR-155 treatment compared to the untreated group with a false discovery rate corrected p-value of ≤0.05.FIG. 11B shows a cumulative distribution function graph of the differential expression of miR-155 direct target genes containing 8-, 7-, or 6-nucleotide seeds sequences, compared to non-seed containing transcripts. The p-values shown are the result of the Kolmogorov-Smirnov test to determine the significant difference between two datasets. -
FIG. 12 shows an annotated gene expression profile of genes up-regulated or down-regulated in response to treatment with antimiR-155 compounds for 8 days in both MJ and HuT102 cells. -
FIG. 13 shows an expression profile of genes upregulated or downregulated in response to 8 days of treatment with the antimiR-155 having a sequence of SEQ ID NO: 25 in CTCL cells. -
FIG. 14A shows the effect of antimiR-155 compounds on proliferation of HuT102 cells.FIG. 14B shows the effect of antimiR-155 compounds oncaspase 3/7 activity in HuT102 cells. -
FIG. 15A shows proliferation of HuT102 cells in response to various concentrations of antimiR-155 compounds atday 8 of treatment.FIG. 15B showscaspase 3/7 activity in HuT102 cells in response to various concentrations of antimiR-155 compounds atday 8 of treatment. -
FIG. 16A shows the effect of antimiR-155 compounds on proliferation of HuT102 cells.FIG. 16B shows the effect of antimiR-155 compounds oncaspase 3/7 activity in HuT102 cells. -
FIG. 17A shows the effect of antimiR-155 compounds on proliferation of My-La cells.FIG. 17B shows the effect of antimiR-155 compounds oncaspase 3/7 activity in My-La cells. -
FIG. 18A shows proliferation of My-La cells in response to various concentrations of antimiR-155 compounds atday 8 of treatment.FIG. 18B showscaspase 3/7 activity in My-La cells in response to various concentrations of antimiR-155 compounds atday 8 of treatment. -
FIG. 19A shows the effect of 10 μM antimiR-155 compounds and 0.25 μM HDAC inhibitor on proliferation of HuT102 cells.FIG. 19B shows the effect of 10 μM antimiR-155 compounds and 0.50 μM HDAC inhibitor on proliferation of HuT102 cells. -
FIG. 20A shows the effect of 10 μM antimiR-155 compounds and 0.25 μM HDAC inhibitor oncaspase 3/7 activity in HuT102 cells.FIG. 20B shows the effect of 10 μM antimiR-155 compounds and 0.50 μM HDAC inhibitor oncaspase 3/7 activity in HuT102 cells. -
FIG. 21 shows a heat map of expression changes in 587 genes up-regulated or down-regulated in all three mycosis fungoides cell lines atday 4 orday 8 in response to compound 4 (SEQ ID NO: 25). -
FIG. 22 shows the antimiR-155 activity of oligonucleotide inhibitors of different lengths measured using a dual luciferase reporter plasmid containing the miR-155 binding site. -
FIGS. 23A, 23B, 23C, and 23D show the antimiR-155 activity of oligonucleotide inhibitors containing varying number of locked nucleotide modifications measured using a dual luciferase reporter plasmid containing the miR-155 binding site. -
FIGS. 24A, 24B, 24C, and 24D show the antimiR-155 activity of oligonucleotide inhibitors containing locked nucleotide modifications at various positions, measured using a dual luciferase reporter plasmid containing the miR-155 binding site. -
FIG. 25 shows the antimiR-155 activity of oligonucleotide inhibitors containing various nucleotide modifications, measured using a dual luciferase reporter plasmid containing the miR-155 binding site. -
FIG. 26 shows the antimiR-155 activity of various 14-nucleotide long oligonucleotide inhibitors, measured using a dual luciferase reporter plasmid containing the miR-155 binding site. -
FIG. 27 shows the antimiR-155 activity of oligonucleotide inhibitors of SEQ ID NOs: 25 and 23, measured using a dual luciferase reporter plasmid containing the miR-155 binding site. -
FIG. 28 shows the fold-change in the expression of miR-155 target genes in response to treatment with oligonucleotide inhibitors of SEQ ID NOs: 25 and 120. - All patent and non-patent documents referenced throughout this disclosure are incorporated by reference herein in their entirety.
- The present invention provides oligonucleotide inhibitors that inhibit the activity or function of miR-155 in cancer cells. In humans, miR-155 is encoded by the MIR155 host gene or MIR155HG and is located on human chromosome 21. Since both arms of pre-miR-155 can give rise to mature miRNAs, processing products of pre-miR-155 are designated as miR-155-5p (from the 5′ arm) and miR-155-3p (from the 3′ arm). The mature sequences for human miR-155-5p and miR-155-3p are given below:
-
Human mature miR-155-5p (SEQ ID NO: 1) 5′-UUAAUGCUAAUCGUGAUAGGGGU-3′ Human mature miR-155-3p (SEQ ID NO: 2) 5′-CUCCUACAUAUUAGCAUUAACA-3′ - miR-155-5p is expressed in hematopoietic cells including B-cells, T-cells, monocytes and granulocytes (Landgraf et al. 2007). miR-155-5p is an essential molecule in the control of both myelopoiesis and erythropoiesis. This miRNA is highly expressed in hematopoietic stem-progenitor cells at an early stem-progenitor stage, and blocks their differentiation into a more mature hematopoietic cell (e.g., lymphocyte, erythrocyte). miR-155-5p expression progressively decreases as cells mature along these lineages, and is ˜200-fold lower in mature hematopoietic cells (Masaki et al. 2007; Gerloff et al. 2015).
- miR-155-5p plays an important role in mediating inflammatory and immune responses. Mice lacking miR-155-5p show normal number and distribution of T- and B-lymphocyte subpopulations, but display a deficient immune response, specifically in regulating T helper cell differentiation and the germinal center reaction to produce an optimal T-cell dependent antibody response (Rodriguez et al. 2007; Thai et al. 2007). miR-155-5p controls differentiation of CD4+ T-cells into the T helper type 1 (Th1), Th2, and Th17 subsets of T helper cells, and affects the development of regulatory T-cells (Treg) (Baumjohann and Ansel 2013). miR-155-5p also regulates effector and memory CD8+ T-cell responses to viral infection (Dudda et al. 2013; Gracias et al. 2013), as well as normal B-cell differentiation and antibody production. In humans, miR-155-5p expression is low in nonlymphoid organs as well as in resting, naive CD4+ T-cells. miR-155-5p expression is greatly enhanced by antigen receptor stimulation of B- and T-cells (Tam 2001; Haasch et al. 2002; van den Berg et al. 2003; Rodriguez et al. 2007; Thai et al. 2007; Vigorito et al. 2007; Banerjee et al. 2010), and by Toll-like receptor agonist stimulation of macrophages and dendritic cells (Taganov et al. 2006; O'Connell et al. 2007; Ceppi et al. 2009; Mao et al. 2011). MIR155HG activation involves both API- and NF-κB-mediated mechanisms.
- Cutaneous plaques or tumors in patients diagnosed with mycosis fungoides (MF) subtype of CTCL, have elevated levels of miR-155-5p. Increased miR-155-5p in MF patient skin biopsies compared to control skin biopsies has been reported by several groups (van Kester et al. 2011; Maj et al. 2012; Kopp et al. 2013b; Moyal et al. 2013). In one study, miR-155-5p levels were 4.16-fold higher in tumor-stage biopsies compared to early MF biopsies (Moyal et al. 2013), suggesting that miR-155-5p levels may be correlated with disease progression. In a second study directed to identifying specific cell types that express miR-155-5p, the miRNA was found to be expressed in both malignant and non-malignant T-cells in the CTCL lesions (Kopp et al. 2013b).
- Mycosis fungoides (MF) is the most prevalent sub-type of CTCL, accounting for 50-70% of all primary cutaneous lymphomas. The second most prevalent sub-type is Sezary syndrome (SS), comprising 15% of CTCL cases. MF is characterized by proliferation of atypical small- to medium-sized T lymphocytes with cerebriform nuclei that form patches, plaques, or nodular tumors in the epidermis. MF typically affects older adults (median age of diagnosis: 55-60) and has an indolent clinical course where patches and plaques precede or are concurrent with the formation of tumors. In some late tumor-stage cases, lymph node and visceral organ involvement are observed. During tumor-stage MF, the dermal infiltrates become more diffuse and the epidermotropism of the atypical T-cells may be lost. In contrast, SS is a more aggressive, leukemic form of CTCL, characterized by widespread redness and scaling of the skin (erythroderma), enlarged lymph nodes, and malignant cells in the peripheral circulation (Yamashita et al., 2012; Jawed et al. 2014).
- Molecular analyses of tumor stage MF have revealed significant changes in gene expression compared to normal skin, inflamed skin and normal T-cells (van Kester et al. 2012), although the genetic or epigenetic origin of these differences in gene expression are unknown. Early skin lesions contain numerous inflammatory cells, including T cells with a normal phenotype as well as a smaller population of T cells with an abnormal morphology and a malignant phenotype. The infiltrate primarily consists of non-malignant Th1 cells, regulatory T cells, and cytotoxic CD8+ T cells. The malignant T cells are typically CD4+ memory T cells of clonal origin. During disease development, epidermotropism is gradually lost, comcomitant with an increase in malignant CD4+ T cells and a decrease in non-malignant CD8+ T cells.
- CTCL is characterized by aberrant expression and function of transcription factors and regulators of signal transduction. It has been hypothesized that dysfunctional regulation of signal molecules and cytokines plays a key role in the malignant transformation and pathogenesis of CTCL (Girardi et al., 2004; Zhang et al., 2006; van Doom et al., 2009; Kadin and Vonderheid, 2010). Significant differences in the gene expression profiles of MF and SS cells have been observed, consistent with a distinct pathogenesis for these variants of CTCL (van Doom et al., 2009; Campbell et al., 2010). Recently, microRNAs (miRNAs) have been reported to be differentially expressed and potentially involved in the pathogenesis of CTCL. miR-155-5p is among the miRNAs most up-regulated in mycosis fungoides (Kopp et al, 2013a; Kopp et al., 2013b), while a distinct subset of dysregulated miRNAs distinguishes Sezary syndrome, and miR-155-5p is not up-regulated in this subtype of CTCL (Ballabio et al., 2010).
- The present invention provides oligonucleotide inhibitors that reduce or inhibit the activity or function of human miR-155. In the context of the present invention, the term “oligonucleotide inhibitor”, “antimiR” (e.g., antimiR-155), “antagonist”, “antisense oligonucleotide or ASO”, “oligomer”, “anti-microRNA oligonucleotide or AMO”, or “mixmer” is used broadly and encompasses an oligomer comprising ribonucleotides, deoxyribonucleotides, modified ribonucleotides, modified deoxyribonucleotides or a combination thereof, that inhibits the activity or function of the target microRNA (miRNA) by fully or partially hybridizing to the miRNA thereby repressing the function or activity of the target miRNA.
- The term “miR-155” as used herein includes pri-miR-155, pre-miR-155, miR-155-5p, and hsa-miR-155-5p.
- In one embodiment, the present invention provides an oligonucleotide inhibitor of miR-155 that has a length of 11 to 16 nucleotides. In some other embodiments, the present invention provides an oligonucleotide inhibitor of miR-155 that has a length of 11 to 14 nucleotides. In various embodiments, the oligonucleotide inhibitor targeting miR-155 is 11, 12, 13, 14, 15, or 16 nucleotides in length. In one embodiment, the oligonucleotide inhibitor of miR-155 has a length of 12 nucleotides. In another embodiment, the oligonucleotide inhibitor of miR-155 has a length of 14 nucleotides.
- The sequence of an oligonucleotide inhibitor of miR-155 according to the invention is sufficiently complementary to a mature sequence of miR-155-5p to hybridize to miR-155-5p under physiological conditions and inhibit the activity or function of miR-155-5p in the cells of a subject. For instance, in some embodiments, oligonucleotide inhibitors comprise a sequence that is at least partially complementary to a mature sequence of miR-155-5p, e.g. at least about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% complementary to a mature sequence of miR-155-5p. In some embodiments, the oligonucleotide inhibitor can be substantially complementary to a mature sequence of miR-155-5p, that is at least about 90%, 95%, 96%, 97%, 98%, or 99% complementary to a mature sequence of miR-155-5p. In one embodiment, the oligonucleotide inhibitor comprises a sequence that is 100% or fully complementary to a mature sequence of miR-155-5p. It is understood that the sequence of the oligonucleotide inhibitor is considered to be complementary to miR-155 even if the oligonucleotide sequence includes a modified nucleotide instead of a naturally-occurring nucleotide. For example, if a mature sequence of miR-155 comprises a guanosine nucleotide at a specific position, the oligonucleotide inhibitor may comprise a modified cytidine nucleotide, such as a locked cytidine nucleotide or 2′-fluoro-cytidine, at the corresponding position.
- The term “about” as used herein encompasses variations of +/−10% and more preferably +/−5%, as such variations are appropriate for practicing the present invention.
- In some embodiments, the entire sequence of the oligonucleotide inhibitor of miR-155 is fully complementary to a mature sequence of human miR-155-5p. In various embodiments, the mature sequence of human miR-155-5p to which the sequence of the oligonucleotide inhibitor of the present invention is partially, substantially, or fully complementary to includes nucleotides 1-17, or nucleotides 2-17, or nucleotides 2-16, or nucleotides 2-15, or nucleotides 2-14, or nucleotides 2-13, or nucleotides 2-12 from the 5′ end of SEQ ID NO: 1. In one embodiment, the mature sequence of human miR-155-5p to which the sequence of the oligonucleotide inhibitor of the present invention is partially, substantially, or fully complementary to includes nucleotides 2-15 from the 5′ end of SEQ ID NO: 1. In another embodiment, the mature sequence of human miR-155-5p to which the sequence of the oligonucleotide inhibitor of the present invention is partially, substantially, or fully complementary to includes nucleotides 2-13 from the 5′ end of SEQ ID NO: 1.
- In one embodiment, the oligonucleotide inhibitor of miR-155 contains at least one backbone modification, such as at least one phosphorothioate, morpholino, or phosphonocarboxylate internucleotide linkage (see, for example, U.S. Pat. Nos. 6,693,187 and 7,067,641, which are herein incorporated by reference in their entireties). In certain embodiments, the oligonucleotide inhibitor of miR-155 is fully phosphorothioate-linked.
- In one embodiment, the oligonucleotide inhibitor of miR-155 contains at least one modified nucleotide. In some embodiments, the oligonucleotide inhibitor contains at least 5, 6, 7, 8, 9, 10, or more modified nucleotides. The term “modified nucleotide” as used herein encompasses nucleotides with sugar, base, and/or backbone modifications. Examples of modified nucleotides include, but are not limited to, locked nucleotides (LNA), ethylene-bridged nucleotides (ENA), 2′-C-bridged bicyclic nucleotide (CBBN), 2′, 4′-constrained ethyl nucleic acid called S-cEt or cEt, 2′-4′-carbocyclic LNA, and 2′ substituted nucleotides.
- The terms “locked nucleotide,” “locked nucleic acid unit,” “locked nucleic acid residue,” or “LNA unit” may be used interchangeably throughout the disclosure and refer to a bicyclic nucleoside analogue. For instance, suitable oligonucleotide inhibitors can be comprised of one or more “conformationally constrained” or bicyclic sugar nucleoside modifications (BSN) that confer enhanced thermal stability to complexes formed between the oligonucleotide containing BSN and their complementary target strand. In one embodiment, the oligonucleotide inhibitors contain locked nucleotides or LNAs containing the 2′-O, 4′-C-methylene ribonucleoside (structure A) wherein the ribose sugar moiety is in a “locked” conformation. In another embodiment, the oligonucleotide inhibitors contain at least one 2′-C, 4′-C-bridged 2′ deoxyribonucleoside (structure B). See, e.g., U.S. Pat. No. 6,403,566 and Wang et al. (1999) Bioorganic and Medicinal Chemistry Letters, Vol. 9: 1147-1150, both of which are herein incorporated by reference in their entireties. In yet another embodiment, the oligonucleotide inhibitors contain at least one modified nucleoside having the structure shown in structure C. The oligonucleotide inhibitors targeting miR-155 can contain combinations of BSN (LNA, 2′-C, 4′-C-bridged 2′ deoxyribonucleoside, and the like) or other modified nucleotides, and ribonucleotides or deoxyribonucleotides.
- The terms “non-LNA nucleotide”, and “non-LNA modification” as used herein refer to a nucleotide different from a LNA nucleotide, i.e. the terms include a DNA nucleotide, an RNA nucleotide as well as a modified nucleotide where a base and/or sugar is modified except that the modification is not a LNA modification.
- In some embodiments, the oligonucleotide inhibitor of miR-155 contains at least one nucleotide containing a non-LNA modification. For example, in one embodiment, the oligonucleotide inhibitor of miR-155 contains at least one 2′-C-bridged bicyclic nucleotide (CBBN) as described in U.S. Pre-Grant Publication No. 2016/0010090A1 (“the '090 publication”), which is hereby incorporated by reference herein in its entirety. The '090 publication describes a variety of CBBN modifications such as 2′-CBBN, oxoCBBN, amino CBBN, thioCBBN, etc. All CBBN modifications described in the '090 publications could be used in the oligonucleotide inhibitors of the present invention. In another embodiment, the non-LNA modification present in the oligonucleotide inhibitor of miR-155 could be an ethylene-bridged nucleic acid (ENA) modification. For example, in one embodiment, the oligonucleotide inhibitor of miR-155 contains at least one ethylene-bridged nucleic acid (ENA), also referred to herein as ethylene-bridged nucleotide. Other bridged modifications include 2′, 4′-constrained ethyl nucleic acid called S-cEt or cEt and 2′-4′-carbocyclic LNA (carba-LNA).
- When referring to substituting a DNA or RNA nucleotide by its corresponding locked nucleotide in the context of the present invention, the term “corresponding locked nucleotide” is intended to mean that the DNA/RNA nucleotide has been replaced by a locked nucleotide containing the same naturally-occurring nitrogenous base as the DNA/RNA nucleotide that it has replaced or the same nitrogenous base that is chemically modified. For example, the corresponding locked nucleotide of a DNA nucleotide containing the nitrogenous base C may contain the same nitrogenous base C or the same nitrogenous base C that is chemically modified, such as 5-methylcytosine.
- In certain embodiments, the oligonucleotide inhibitor of miR-155 contains at least 5, 6, 7, 8, 9, 10, or 11 locked nucleotides. In one embodiment, the oligonucleotide inhibitor of miR-155 contains at least 7, 8, 9, or 10 locked nucleotides. In one embodiment, at least the first three nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides. In another embodiment, at least the first four nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides. In yet another embodiment, the first nucleotide from the 5′ end of the oligonucleotide inhibitor is a locked nucleotide.
- In certain embodiments, the oligonucleotide inhibitor contains at least 1, at least 2, at least 3, at least 4, or at least 5 DNA nucleotides. In one embodiment, at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a DNA nucleotide. In another embodiment, at least the second and fourth nucleotides from the 5′ end of the oligonucleotide inhibitor are DNA nucleotides.
- Oligonucleotide inhibitors of the present invention may include modified nucleotides that have a base modification or substitution. The natural or unmodified bases in RNA are the purine bases adenine (A) and guanine (G), and the pyrimidine bases cytosine (C) and uracil (U) (DNA has thymine (T)). Modified bases, also referred to as heterocyclic base moieties, include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo (including 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines), 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. In certain embodiments, oligonucleotide inhibitors targeting miR-155 comprise one or more BSN modifications in combination with a base modification (e.g. 5-methylcytosine).
- Oligonucleotide inhibitors of the present invention may include nucleotides with modified sugar moieties. Representative modified sugars include carbocyclic or acyclic sugars, sugars having substituent groups at one or more of their 2′, 3′ or 4′ positions and sugars having substituents in place of one or more hydrogen atoms of the sugar. In certain embodiments, the sugar is modified by having a substituent group at the 2′ position. In additional embodiments, the sugar is modified by having a substituent group at the 3′ position. In other embodiments, the sugar is modified by having a substituent group at the 4′ position. It is also contemplated that a sugar may have a modification at more than one of those positions, or that an oligonucleotide inhibitor may have one or more nucleotides with a sugar modification at one position and also one or more nucleotides with a sugar modification at a different position.
- Sugar modifications contemplated in the oligonucleotide inhibitors of the present invention include, but are not limited to, a substituent group selected from: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted with C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. In one embodiment, the modification includes 2′-methoxyethoxy (2′-O—CH2CH2OCH3, which is also known as 2′-O-(2-methoxyethyl) or 2′-MOE), that is, an alkoxyalkoxy group. Another modification includes 2′-dimethylaminooxyethoxy, that is, a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethyl-amino-ethoxy-ethyl or 2′-DMAEOE), that is, 2′-O—CH2—O—CH2—N(CH3)2.
- Additional sugar substituent groups include allyl (—CH2—CH═CH2), —O-allyl, methoxy (—O—CH3), aminopropoxy (—OCH2CH2CH2NH2), and fluoro (F). Sugar substituent groups on the 2′ position (2′-) may be in the arabino (up) position or ribo (down) position. One 2′-arabino modification is 2′-F. Other similar modifications may also be made at other positions on the sugar moiety, particularly the 3′ position of the sugar on the 3′ terminal nucleoside or in 2′-5′ linked oligonucleotides and the 5′ position of 5′ terminal nucleotide. In certain embodiments, the sugar modification is a 2′-O-alkyl (e.g. 2′-O-methyl, 2′-O-methoxyethyl), 2′-halo (e.g., 2′-fluoro, 2′-chloro, 2′-bromo), and 4′ thio modifications.
- Other modifications of oligonucleotide inhibitors to enhance stability and improve efficacy, such as those described in U.S. Pat. No. 6,838,283, which is herein incorporated by reference in its entirety, are known in the art and are suitable for use in the methods of the invention. For instance, to facilitate in vivo delivery and stability, the oligonucleotide inhibitor can be linked to a steroid, such as cholesterol moiety, a vitamin, a fatty acid, a carbohydrate or glycoside, a peptide, or other small molecule ligand at its 3′ end.
- In some embodiments, the oligonucleotide inhibitors of the present invention may be conjugated to a carrier molecule such as a steroid (cholesterol). The carrier molecule is attached to the 3′ or 5′ end of the oligonucleotide inhibitor either directly or through a linker or a spacer group. In various embodiments, the carrier molecule is cholesterol, a cholesterol derivative, cholic acid or a cholic acid derivative. The use of carrier molecules disclosed in U.S. Pat. No. 7,202,227, which is incorporated by reference herein in its entirety, is also envisioned. In certain embodiments, the carrier molecule is cholesterol and it is attached to the 3′ or 5′ end of the oligonucleotide inhibitor through at least a six carbon linker. In some embodiments, the carrier molecule is attached to the 3′ or 5′ end of the oligonucleotide inhibitor through a six or nine carbon linker. In some embodiments, the linker is a cleavable linker. In various embodiments, the linker comprises a substantially linear hydrocarbon moiety. The hydrocarbon moiety may comprise from about 3 to about 15 carbon atoms and may be conjugated to cholesterol through a relatively non-polar group such as an ether or a thioether linkage. In certain embodiments, the hydrocarbon linker/spacer comprises an optionally substituted C2 to C15 saturated or unsaturated hydrocarbon chain (e.g. alkylene or alkenylene). A variety of linker/spacer groups described in U.S. Pre-grant Publication No. 2012/0128761, which is incorporated by reference herein in its entirety, can be used in the present invention.
- In one embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide. In some of these embodiments, the fourth nucleotide from the 3′ end of the oligonucleotide inhibitor is also a locked nucleotide. In some of these embodiments, at least the second and fourth nucleotides from the 5′ end of the oligonucleotide inhibitor are DNA nucleotides. In certain embodiments, the oligonucleotide inhibitor of miR-155 has a length of 12 or 14 nucleotides. In some embodiments, the oligonucleotide inhibitor contains at least 5, 6, 7, 8, 9, or 10 locked nucleotides. In further embodiments, at least the sixth and/or the eighth nucleotide from the 5′ end of the oligonucleotide inhibitor is a DNA nucleotide. In yet further embodiments, the oligonucleotide inhibitor comprises DNA nucleotides at the second, sixth, and the eighth position from the 5′ end.
- In another embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a modified or an unmodified deoxyribonucleic acid (DNA) nucleotide.
- In yet another embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a modified or an unmodified deoxyribonucleic acid (DNA) nucleotide.
- In yet another embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are modified or unmodified deoxyribonucleic acid (DNA) nucleotides. In some of these embodiments, the fourth and/or the fifth DNA nucleotide from the 5′ end of the oligonucleotide inhibitor are unmodified DNA nucleotides.
- In some embodiments where the oligonucleotide inhibitor is 11 to 14 nucleotides long, said inhibitor contains at least 5, 6, 7, 8, 9, or 10 modified nucleotides. In some of these embodiments, the oligonucleotide inhibitor contains 7, 8, 9, or 10 modified nucleotides. In some embodiments where the oligonucleotide inhibitor is 11 to 14 nucleotides long, at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides. In some embodiments, all modified nucleotides are locked nucleotides. In some embodiments, the 5, 6, 7, 8, 9, or 10 modified nucleotides present in the oligonucleotide inhibitors are a combination of locked nucleotides and nucleotides containing non-LNA modifications such as ethylene-bridged nucleotides, 2′-C-bridged bicyclic nucleotides, 2′-substituted nucleotides, and other sugar and/or base modifications described herein.
- In some embodiments, the second nucleotide from the 5′ end of the oligonucleotide inhibitor is an unmodified deoxyribonucleic acid (DNA) nucleotide.
- In one embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of SEQ ID NO: 25. In another embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of SEQ ID NO: 22. In yet another embodiment, the oligonucleotide inhibitor of miR-155 comprises a sequence of SEQ ID NO: 23.
- In some other embodiments, the oligonucleotide inhibitor of miR-155 comprises a sequence selected from the group consisting of SEQ ID NOs: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120.
- In various embodiments, the oligonucleotide inhibitor of miR-155-5p has a sequence selected from Table 1.
-
TABLE 1 SEQ ID NO. Sequence (5′-3′) with modifications1 SEQ ID NO: 3 5′-lAs.dTs.dCs.dAs.lCs.lGs.dAs.lTs.dTs.lAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 4 5′-lAs.dTs.dCs.dAs.lCs.lGs.dAs.dTs.lTs.lAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 5 5′-lAs.lTs.dCs.dAs.dCs.lGs.dAs.lTs.dTs.lAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 6 5′-lAs.lTs.dCs.dAs.dCs.lGs.lAs.dTs.dTs.lAs.lGs.lCs.dAs.lTs.dTs.lA-3′ SEQ ID NO: 7 5′-lAs.dTs.dCs.dAs.lCs.lGs.dAs.lTs.dTs.lAs.lGs.dCs.lAs.lTs.dTs.lA-3′ SEQ ID NO: 8 5′-lAs.lTs.dCs.dAs.lCs.dGs.dAs.dTs.lTs.lAs.dGs.lCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 9 5′-lAs.dTs.dCs.dAs.lCs.dGs.lAs.dTs.lTs.lAs.dGs.lCs.lAs.dTs.lTs.lA-3 SEQ ID NO: 10 5′-lAs.dTs.dCs.lAs.dCs.dGs.lAs.lTs.dTs.lAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 11 5′-lAs.dTs.lCs.dAs.dCs.lGs.dAs.lTs.lTs.dAs.dGs.lCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 12 5′-lAs.lTs.dCs.lAs.lCs.dGs.dAs.dTs.lTs.lAs.dGs.lCs.lAs.dTs.dTs.lA-3′ SEQ ID NO: 13 5′-lAs.dTs.lCs.dAs.dCs.dGs.lAs.dTs.lTs.lAs.dGs.lCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 14 5′-lAs.dTs.lCs.dAs.lCs.dGs.lAs.dTs.lTs.dAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 15 5′-lTs.dCs.dAs.lCs.dGs.dAs.lTs.dTs.dAs.lGs.dCs.lAs.lTs.dTs.lA-3′ SEQ ID NO: 16 5′-lTs.dCs.lAs.dCs.dGs.lAs.lTs.dTs.dAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 17 5′-lTs.dCs.dAs.dCs.lGs.lAs.lTs.dTs.dAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 18 5′-lTs.lCs.lAs.dCs.lGs.dAs.dTs.lTs.lAs.dGs.lCs.dAs.dTs.lTs.lA-3′ SEQ ID NO: 19 5′-lTs.dCs.dAs.lCs.dGs.dAs.dTs.lTs.lAs.lGs.lCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 20 5′-lTs.dCs.lAs.dCs.lGs.lAs.lTs.dTs.dAs.lGs.lCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 21 5′-lGs.lAs.lTs.lTs.lAs.lGs.dCs.lAs.lTs.dTs.lA-3′ SEQ ID NO: 22 5′-lCs.dGs.lAs.lTs.lTs.lAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 23 5′-lCs.dGs.lAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 24 5′-lCs.lAs.dCs.lGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 25 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 26 5′-lTs.dCs.lAs.mdCs.lGs.lAs.lTs.dTs.dAs.lGs.lCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 27 5′-lTs.lAs.lGslCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 29 5′-lCs.dAs.lCs.dGs.lAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 30 5′-lCs.dAs.lCs.dGs.lAs.dTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 31 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.lAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 32 5′-dCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 33 5′-lCs.lAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 34 5′-lCs.dAs.dCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 35 5′-lCs.dAs.lCs.lGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 36 5′-lCs.dAs.lCs.dGs.lAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 37 5′-lCs.dAs.lCs.dGs.dAs.dTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 38 5′-lCs.dAs.lCs.dGs.dAs.lTs.dTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 39 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.lAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 40 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.dGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 41 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 42 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.dAs.lTs.lTs.lA-3′ SEQ ID NO: 43 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 44 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.dTs.lA-3′ SEQ ID NO: 45 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.dA-3′ SEQ ID NO: 46 5′-dCs.lAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 47 5′-lCs.lAs.dCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 48 5′-lCs.dAs.dCs.lGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 49 5′-lCs.dAs.lCs.dGs.lAs.dTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 50 5′-lCs.dAs.lCs.dGs.dAs.lTs.dTs.lAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 51 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.lAs.dGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 52 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.dGs.lCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 53 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.dAs.lTs.lTs.lA-3′ SEQ ID NO: 54 5′-lAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 55 5′-lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 56 5′-lGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 57 5′-dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 58 5′-lAs.dCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 59 5′-lAs.lCs.lGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 60 5′-lAs.lCs.dGs.lAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 61 5′-lAs.lCs.dGs.dAs.dTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 62 5′-lAs.lCs.dGs.dAs.lTs.dTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 63 5′-lAs.lCs.dGs.dAs.lTs.lTs.lAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 64 5′-lAs.lCs.dGs.dAs.lTs.lTs.dAs.dGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 65 5′-lAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 66 5′-lAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.dAs.lTs.lTs.lA-3′ SEQ ID NO: 67 5′-lAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 68 5′-lAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.dTs.lA-3′ SEQ ID NO: 69 5′-lAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.dA-3′ SEQ ID NO: 70 5′-lAs.dCs.lGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 71 5′-lAs.lCs.dGs.lAs.dTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 72 5′-lAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 73 5′-lAs.lCs.dGs.dAs.lTs.dTs.lAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 74 5′-lAs.lCs.dGs.dAs.lTs.lTs.lAs.dGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 75 5′-lAs.lCs.dGs.dAs.lTs.lTs.dAs.dGs.lCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 76 5′-lAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.dAs.lTs.lTs.lA-3′ SEQ ID NO: 77 5′-dCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 78 5′-lCs.lGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 79 5′-lCs.dGs.lAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 80 5′-lCs.dGs.dAs.dTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 81 5′-lCs.dGs.dAs.lTs.dTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 82 5′-lCs.dGs.dAs.lTs.lTs.lAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 83 5′-lCs.dGs.dAs.lTs.lTs.dAs.dGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 84 5′-lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 85 5′-lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.dAs.lTs.lTs.lA-3′ SEQ ID NO: 86 5′-lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 87 5′-lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.dTs.lA-3′ SEQ ID NO: 88 5′-lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.dA-3′ SEQ ID NO: 89 5′-dCs.lGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 90 5′-lCs.dGs.lAs.dTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 91 5′-lCs.dGs.dAs.lTs.dTs.lAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 92 5′-lCs.dGs.dAs.lTs.lTs.lAs.dGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 93 5′-lCs.dGs.dAs.lTs.lTs.dAs.dGs.lCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 94 5′-lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.dAs.lTs.lTs.lA-3′ SEQ ID NO: 95 5′-dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 96 5′-lGs.lAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 97 5′-lGs.dAs.dTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 98 5′-lGs.dAs.lTs.dTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 99 5′-lGs.dAs.lTs.lTs.lAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 100 5′-lGs.dAs.lTs.lTs.dAs.dGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 101 5′-lGs.dAs.lTs.lTs.dAs.lGs.lCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 102 5′-lGs.dAs.lTs.lTs.dAs.lGs.dCs.dAs.lTs.lTs.lA-3′ SEQ ID NO: 103 5′-lGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.dTs.lTs.lA-3′ SEQ ID NO: 104 5′-lGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.dTs.lA-3′ SEQ ID NO: 105 5′-lGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.dA-3′ SEQ ID NO: 106 5′-dGs.lAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 107 5′-lGs.lAs.dTs.lTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 108 5′-lGs.dAs.lTs.dTs.lAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 109 5′-lGs.dAs.lTs.lTs.lAs.dGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 110 5′-lGs.dAs.lTs.lTs.dAs.dGs.lCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 111 5′-lGs.dAs.lTs.lTs.dAs.lGs.lCs.dAs.lTs.lTs.lA-3′ SEQ ID NO: 112 5′-eCs.dAs.eCs.dGs.dAs.eTs.eTs.dAs.eGs.dCs.eAs.eTs.eTs.eA-3′ SEQ ID NO: 113 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.eAs.lTs.lTs.eA-3′ SEQ ID NO: 114 5′-eCs.dAs.eCs.dGs.dAs.lTs.lTs.dAslGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 115 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.eGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 116 5′-lCs.dAs.lCs.dGs.dAs.eTs.eTs.dAs.lGs.dCs.lAs.eTs.eTs.lA-3′ SEQ ID NO: 117 5′-lCs.dAs.lCs.dGs.dAs.lTs.eTs.dAs.lGs.dCs.lAs.lTs.lTs.lA-3′ SEQ ID NO: 118 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.lAs.lTs.eTs.lA-3′ SEQ ID NO: 119 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.dCs.abAs.lTs.lTs.abA-3′ SEQ ID NO: 120 5′-abCs.dAs.abCs.dGs.dAs.abTs.abTs.dAs.abGs.dCs.abAs.abTs.abTs. abA-3′ 1l = locked nucleic acid modification; d = deoxyribonucleotide; s = phosphorothioate linkage; md = 5′-Methylcytosine; e = ethylene-bridged nucleotide (ENA); ab = amino-2′-C-Bridged Bicyclic Nucleotide (CBBN). - Administration of an oligonucleotide inhibitor of the present invention to a subject reduces or inhibits the activity or function of miR-155 in cells of the subject. In one embodiment, the oligonucleotide inhibitor inhibits the activity or function of miR-155 in cancer cells, cells of the immune system including B and T lymphocytes, monocytes, macrophages, microglia, NK cells, and inflammatory cells. In one embodiment, the cancer cells are malignant T cells. Malignant T cells that can be treated with oligonucleotide inhibitors of the invention include cutaneous T cell lymphoma (CTCL) cells, CD4+ T cells, CD8+ T cells, αβ T cells, γδ T cells and memory T cells. In one embodiment, the malignant T cells are cutaneous T cell lymphoma (CTCL) cells.
- In some embodiments, certain oligonucleotide inhibitors of the present invention may show a greater inhibition of the activity or function of miR-155 in cancer cells, such as malignant T cells, compared to other miR-155 inhibitors. The term “other miR-155 inhibitors” includes nucleic acid inhibitors such as antisense oligonucleotides, antimiRs, antagomiRs, mixmers, gapmers, aptamers, ribozymes, small interfering RNAs, or small hairpin RNAs; antibodies or antigen binding fragments thereof; and/or drugs, which inhibit the activity or function of miR-155. It is possible that a particular oligonucleotide inhibitor of the present invention may show a greater inhibition of miR-155 in cancer cells, such as malignant T cells, compared to other oligonucleotide inhibitors of the present invention. The term “greater” as used herein refers to quantitatively more or statistically significantly more.
- Administration of an oligonucleotide inhibitor of the present invention up-regulates the expression or activity of miR-155 target genes in cells of the subject. Target genes for miR-155 include, but are not limited to, INPP50/SHIP1, Jarid2, Picalm, Bach1, Wee1, CUX1, Cebpb, SPIB/PU. 1, and IL7R. In one embodiment, oligonucleotide inhibitors of the present invention up-regulate the expression or activity of at least four target genes of miR-155 in cancer cells, cells of the immune system including B and T lymphocytes, monocytes, macrophages, microglia, NK cells, and inflammatory cells. In some embodiments, four target genes up-regulated by oligonucleotide inhibitors of the present invention include Bach1, Jarid2, Picalm, and SHIP1. The invention encompasses using the changes in the expression of these four genes (gene expression signature) as means to determine the activity of miR-155 inhibitors. In some embodiments, there is about 1.25-fold, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, or 8-fold, including values therebetween, change in the expression or activity of miR-155 target genes upon administration of oligonucleotide inhibitors of the present invention. In one embodiment, there is at least about 2-fold, 3-fold, 4-fold, or 5-fold, including values therebetween, change in the expression or activity of miR-155 target genes upon administration of oligonucleotide inhibitors of the present invention.
- In one embodiment, the oligonucleotide inhibitor of the present invention shows a greater up-regulation of miR-155 target genes in cancer cells, such as malignant T cells, compared to other miR-155 inhibitors. In certain embodiments, the oligonucleotide inhibitors of the present invention show a greater up-regulation of at least four target genes of miR-155 in cancer cells compared to other miR-155 inhibitors. In one embodiment, the oligonucleotide inhibitors of the present invention show a greater up-regulation of the expression or activity of four genes, namely, Bach1, Jarid2, Picalm, and SHIP1, in cancer cells compared to other miR-155 inhibitors. In various embodiments, “greater up-regulation” includes about 2-fold, 3-fold, 4-fold, or 5-fold, including values therebetween, increase in the expression or activity of miR-155 target genes compared to other miR-155 inhibitors.
- In some embodiments, oligonucleotide inhibitors of the present invention reduce or inhibit proliferation of cancer cells and/or induce apoptosis of cancer cells, such as malignant T cells including cutaneous T cell lymphoma (CTCL) cells. Administration of oligonucleotide inhibitors of the present invention may provide up to about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 90% or 100%, including values therebetween, reduction in the number of cancer cells. In some embodiments, oligonucleotide inhibitors of the present invention may provide at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50%, including values therebetween, reduction in the number of cancer cells.
- In some embodiments, oligonucleotide inhibitors of the present invention may show a greater inhibition of proliferation of cancer cells and/or a greater induction in apoptosis of cancer cells compared to other miR-155 inhibitors. For example, an oligonucleotide inhibitor of the present invention may show up to about 10%, 15%, 20%, 25%, 30%, 35%, or 40%, including values therebetween, more reduction in the number of cancer cells compared to other miR-155 inhibitors.
- The present invention provides methods for treating cancer in a subject in need thereof, comprising administering to the subject an oligonucleotide inhibitor of miR-155 according to the invention. The activity or function of miR-155 is reduced in cancer cells of the subject following administration of the oligonucleotide inhibitor.
- In one embodiment, the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In another embodiment, the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In another embodiment, the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In yet another embodiment, the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are deoxyribonucleic acid (DNA) nucleotides.
- Cancers that can be treated according to the invention include lymphomas including a T cell lymphoma, such as cutaneous T cell lymphoma (CTCL), and a B cell lymphoma and a skin cancer. In certain embodiments, the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NO: 22, SEQ ID NO: 23, and SEQ ID NO: 25. In some other embodiments, the method for treating cancer comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NOs: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120.
- In one embodiment, the invention provides methods for treating the mycosis fungoides (MF) form of CTCL by administering to the subject an oligonucleotide inhibitor of miR-155 according to the invention. In one embodiment, the method for treating the MF form of CTCL comprises administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In another embodiment, the invention provides methods for treating the mycosis fungoides (MF) form of CTCL comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In another embodiment, the invention provides methods for treating the mycosis fungoides (MF) form of CTCL comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In yet another embodiment, the invention provides methods for treating the mycosis fungoides (MF) form of CTCL comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are deoxyribonucleic acid (DNA) nucleotides.
- In certain embodiments, the method for treating the MF form of CTCL comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NO: 22, SEQ ID NO: 23, and SEQ ID NO: 25. In some other embodiments, the method for treating the MF form of CTCL comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NOs: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120.
- The invention also encompasses methods for treating CTCL comprising administering an oligonucleotide inhibitor of miR-155 according to the invention in combination with a second therapeutic agent. Current treatments for CTCL include skin-directed therapies such as topical steroids, topical nitrogen mustard (mechlorethamine HCL), topical retinoids, phototherapy, ultraviolet light treatment, psoralen ultraviolet light treatment, radiotherapy, electron beam therapy, etc. and systemic therapies such as administration of histone deacetylase (HDAC) inhibitors, retinoids (bexarotene), interferon, and low dose antifolates (e.g. methotrexate and pralatrexate). Additional treatment options such as anti-CD30 antibody (e.g. Brentuximab), anti-CCR4 antibody (e.g. mogamulizumab), and anti-PD-1 or anti-PD-L1 antibody are currently being tested. The second therapeutic agent generally comprises an agent or a therapy selected from one of these treatments. For example, the invention encompasses methods for treating CTCL by administering the oligonucleotide inhibitor of miR-155 in combination with a second therapy such as treatment with HDAC inhibitors, retinoids, interferon, antifolates, topical steroids, topical retinoids, topical nitrogen mustard, phototherapy, ultraviolet light, psoralen and ultraviolet light, radiotherapy, electron beam therapy, anti-CD30 antibody (e.g. Brentuximab), anti-CCR4 antibody (e.g. mogamulizumab), and anti-PD-1 or anti-PD-L1 antibody.
- A variety of HDAC inhibitors are known, some of which are approved by FDA for clinical use and some are being tested in clinical trials. The methods for treating cancer according to the invention encompass the use of HDAC inhibitors including, but not limited to, vorinostat, romidepsin, panobinostat (LBH589), mocetinostat, belinostat (PXD101), abexinostat, CI-994 (tacedinaline), and MS-275 (entinostat). In embodiments where a second therapy/agent is included, the second therapy/agent may be administered at different times prior to or after administration of the oligonucleotide inhibitor of miR-155. Prior administration includes, for instance, administration of the first agent within the range of about one week to up to 30 minutes prior to administration of the second agent. Prior administration may also include, for instance, administration of the first agent within the range of about 2 weeks to up to 30 minutes prior to administration of the second agent. After or later administration includes, for instance, administration of the second agent within the range of about one week to up to 30 minutes after administration of the first agent. After or later administration may also include, for instance, administration of the second agent within the range of about 2 weeks to up to 30 minutes after administration of the first agent.
- The invention also provides methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells, by administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In another embodiment, the invention provides methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells, comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In another embodiment, the invention provides methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells, comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In yet another embodiment, the invention provides methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells, comprising administering an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are deoxyribonucleic acid (DNA) nucleotides.
- In certain embodiments, methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells, comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NO: 22, SEQ ID NO: 23, and SEQ ID NO: 25. In some other embodiments, methods for reducing or inhibiting proliferation of cancer cells, particularly malignant T cells, comprises administering an oligonucleotide inhibitor of miR-155 selected from the group consisting of SEQ ID NOs: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120.
- Malignant T cells include cutaneous T cell lymphoma (CTCL) cells, CD4+ T cells and memory T cells. Administration of an oligonucleotide inhibitor of the present invention reduces the activity or function of miR-155 and/or up-regulates one or more target genes of miR-155 in malignant T cells following administration. Methods for reducing or inhibiting proliferation of cancer cells also include the use of second therapy/agents described above along with administration of the present oligonucleotide inhibitors.
- In certain embodiments, the methods encompassed by the invention comprise administering 18.75, 37.5, or 75 mg of the oligonucleotide inhibitor of the invention per skin lesion of the patient. In other embodiments, the methods of the invention comprise systemically administering a total of about 37.5, 75, 150, 300, 600, 900, or 1200 mg, including values therebetween, of the oligonucleotide inhibitor of the invention to the patient.
- In yet some other embodiments, the methods of the invention comprise systemically administering a total of about 350, 700, 1050, 1400, 1750, 2100, 2450, 2800, 3150, or 3500 mg, including values therebetween, of the oligonucleotide inhibitor of the invention to the patient.
- Preferably, administration of an oligonucleotide inhibitor of the present invention to the subject results in the improvement of one or more symptoms or pathologies associated with cancer. For instance, in one embodiment, administration of an oligonucleotide inhibitor of the present invention alone or in combination with a second therapeutic agent such as a HDAC inhibitor reduces the number of skin lesions; number of red, itchy patches or plaques on skin; and/or formation of new skin lesions/patches/plaques associated with CTCL. In one embodiment, administration of an oligonucleotide inhibitor of the present invention alone or in combination with a second therapeutic agent such as a HDAC inhibitor reduces or inhibits migration of malignant T lymphocytes to the skin. In another embodiment, administration of an oligonucleotide inhibitor of the present invention alone or in combination with a second therapeutic agent reduces total malignant T lymphocytes in the skin. In yet another embodiment, administration of an oligonucleotide inhibitor of the present invention alone or in combination with a second therapeutic agent reduces the number of malignant T cells that may escape or migrate from the skin into the periphery.
- As used herein, the term “subject” or “patient” refers to any vertebrate including, without limitation, humans and other primates (e.g., chimpanzees and other apes and monkey species), farm animals (e.g., cattle, sheep, pigs, goats and horses), domestic mammals (e.g., dogs and cats), laboratory animals (e.g., rodents such as mice, rats, and guinea pigs), and birds (e.g., domestic, wild and game birds such as chickens, turkeys and other gallinaceous birds, ducks, geese, and the like). In some embodiments, the subject is a mammal. In other embodiments, the subject is a human.
- Any of the oligonucleotide inhibitors of miR-155 described herein can be delivered to the target cell (e.g. malignant T cells) by delivering to the cell an expression vector encoding the miR-155 oligonucleotide inhibitor. A “vector” is a composition of matter which can be used to deliver a nucleic acid of interest to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear polynucleotides, polynucleotides associated with ionic or amphiphilic compounds, plasmids, and viruses. Thus, the term “vector” includes an autonomously replicating plasmid or a virus. Examples of viral vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, and the like. In one particular embodiment, the viral vector is a lentiviral vector or an adenoviral vector. An expression construct can be replicated in a living cell, or it can be made synthetically. For purposes of this application, the terms “expression construct,” “expression vector,” and “vector,” are used interchangeably to demonstrate the application of the invention in a general, illustrative sense, and are not intended to limit the invention.
- In one embodiment, an expression vector for expressing an oligonucleotide inhibitor of miR-155 comprises a promoter operably linked to a polynucleotide sequence encoding the oligonucleotide inhibitor. The phrase “operably linked” or “under transcriptional control” as used herein means that the promoter is in the correct location and orientation in relation to a polynucleotide to control the initiation of transcription by RNA polymerase and expression of the polynucleotide.
- As used herein, a “promoter” refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene. Suitable promoters include, but are not limited to RNA pol I, pol II, pol III, and viral promoters (e.g. human cytomegalovirus (CMV) immediate early gene promoter, the SV40 early promoter, and the Rous sarcoma virus long terminal repeat). In one embodiment, the promoter is a T-cell specific promoter such as the proximal and distal promoters of the Ick gene or promoter and enhancer sequences of the CD4 gene, etc.
- In certain embodiments, the promoter operably linked to a polynucleotide encoding a miR-155 oligonucleotide inhibitor can be an inducible promoter. Inducible promoters are known in the art and include, but are not limited to, tetracycline promoter, metallothionein IIA promoter, heat shock promoter, steroid/thyroid hormone/retinoic acid response elements, the adenovirus late promoter, and the inducible mouse mammary tumor virus LTR.
- Methods of delivering expression constructs and nucleic acids to cells are known in the art and can include, for example, calcium phosphate co-precipitation, electroporation, microinjection, DEAE-dextran, lipofection, transfection employing polyamine transfection reagents, cell sonication, gene bombardment using high velocity microprojectiles, and receptor-mediated transfection.
- The present invention also provides methods for diagnosing CTCL and methods for monitoring clinical status of a patient undergoing the treatment for CTCL. The invention shows that administration of antimiR-155 compounds of the invention up-regulates and/or down-regulates a unique set of genes in all three MF cell lines (HuT102, MJ, and MyLa) compared to control-treated cells or Sezary syndrome cells. The invention contemplates using a gene expression signature based on this unique set of genes to diagnose MF subtype of CTCL as well to monitor progress of the CTCL treatment with miR-155 inhibitors. For instance, the invention shows that a set of genes listed in Table 2 are up-regulated or down-regulated in all three MF cell lines in response to antimiR-155 compounds of the invention. In one embodiment, the invention provides methods for diagnosing CTCL by measuring the expression levels of one or more genes listed in Table 2 in a subject suspected of suffering from CTCL, comparing the expression levels to reference levels (e.g. expression levels in a healthy subject or expression levels in non-cancer cells of the CTCL subject), and diagnosing the subject as having CTCL if the expression levels in the subject are down-regulated or up-regulated compared to reference levels.
-
TABLE 2 List of genes significantly up-regulated or down-regulated in all three MF cell lines in response to present antimiR-155 compounds CFLAR GALC SMARCA2 HIF1A FSD1L CLINT1 CIAPIN1 TAB2 OSTM1 CCNB1IP1 TLE4 SUB1 GCFC2 TRAF1 UBA5 BRMS1L GATA3 ST8SIA4 LAMP2 RC3H2 APLP2 TM9SF1 OBFC1 GNPDA1 KDM7A PITHD1 SCAMP1 NELFCD DNAJC12 H2AFY GGCT SLC2A3 WDFY1 PRPF6 TSPAN14 SMAD5 JARID2 ASUN DIMT1 TCFL5 RAD51C CSNK1A1 MBTD1 IPO5 SEPHS1 AHCY DHX40 NIT2 COX15 DGKA ZFAND6 DNTTIP1 RPS6KB1 KPNA1 ZMYND11 FAM107B UIMC1 TIMP1 PIGL TUSC2 ZDHHC6 TRMT11 GMCL1 NDFIP2 CPD NCBP2 BIRC3 SP100 KLHL42 SLC25A15 PEX12 HEMK1 DEPDC1 TRAM1 DNM1L ARL2BP RAB5C MAPKAPK3 NR1H3 CBFB TGDS HSDL1 MLX COMMD2 TBPL1 TGFBR3 FKBP1A USP10 UNC119 ACTR1B PIAS1 GBA2 TRMT6 TSC2 TMEM33 GTF3C2 TBC1D23 HLTF PEBP1 EIF3J CLCN3 GCA GOPC MPP5 GANAB OIP5 GALNT7 STAT1 VAMP3 PDE8A MAEA BLOC1S6 KLHL5 MOB4 HOMER3 PTGS2 GLG1 NCALD ZPR1 GORASP2 AKR7A2 PICALM pk TSTA3 HIPK3 SLC1A4 AP5M1 NUAK1 GEMIN2 ASAH1 SLC35F2 NFE2L2 KIF1B DPP8 RFFL RELB ELK3 PLEKHA3 FAM168A SRI CDC7 FAM32A VPS29 EDEM3 FOXO3 TUBA3D ERMP1 TBCB COPS7A CD58 UCHL3 EXOSC7 HSD17B7P2 PRKD2 BTN3A3 WARS2 ITGB1BP1 TPD52 CIRBP CDC37 ASF1A SLAMF1 CPSF3 TOP2B MAPK1 ARRDC2 STK38 SSX2IP TRIM32 TM9SF3 MFNG NAMPT MRPL18 NENF PPP6C UBE2T KIAA0930 WDR91 ALDH5A1 RCN2 HSDL2 DYNC1I2 CSF2RB GARS ACOT13 CTSD VPS4B UBE2K SDR39U1 RPA3 GMNN KMT2A RBM25 C12orf5 CNIH1 GLCCI1 TRIM38 PLAGL1 SLC17A5 KEAP1 TIMM9 PSMA2 PHACTR2 MYB TAF12 RAB21 CEP128 RHEB KIF20A TMEM5 HSPH1 RBCK1 IMPA1 FAM8A1 ATG12 MSI2 DUSP4 RRBP1 RRAS2 SDCBP DDX46 ZUFSP NAA50 PDCD2L SARAF FXYD2 G3BP1 PITPNC1 CD80 RAP1B ARL8B TUBGCP4 FARS2 FAM69A LRIF1 SMARCA4 NAPG ADAM10 MUT BTG3 FYTTD1 TST NARS HADHB DYNLT1 XPC ACOT9 CALU CCNH ATAD1 WTAP ATP6V1C1 CDK2 MTX2 DDB2 ABI2 C7orf55- SAMSN1 LUC7L2 FAM199X GAD1 ETS1 BMP2K SH3KBP1 SLC26A2 LPGAT1 SNRPN RFK FAM60A TERF1 DCK FAM210B PSMG2 UBQLN1 ZCRB1 AUH BACH1 SDC4 EIF2AK4 ANXA1 COMMD4 STOM SFXN2 CSE1L CALML4 HILPDA SCAPER POLE3 EEF1A1 TMEM189- PSMA1 TES FANCI GLUD1 WDYHV1 UBE2V1 STAU1 DCTD MAP3K7 TXNL4B ADD3 BUB1B XPO5 CDKN2D PRADC1 RANBP10 BTBD10 GATAD1 OARD1 PARP2 NTPCR RPRD1A SSRP1 PINK1 GLO1 ARHGEF6 TAF5L ITGB3BP CELF1 RAPGEF6 RIOK1 ZSWIM6 SP110 CTTNBP2NL TMEM138 MRPL10 SLC35B3 ATXN10 MRPS9 PSMA5 EI24 CCDC117 ATXN1 UBE2M VPS36 ALDH9A1 PDCD4 GNE RAP2A LRRC47 BORA CREG1 ITPR1 CALM3 CLPP COX7B PHF11 RGL1 TMEM263 TMPRSS3 ATP1A1 SH3BP5 NUDT15 PYCR2 TWF1 SQSTM1 PRKCI NDFIP1 IL6 CHAC2 SRFBP1 CYB561A3 AIM2 VIMP TTC5 CIAO1 GUF1 EXTL2 EIF5A2 CHSY1 VEZF1 TPRKB TMEM123 DENND2D SNHG16 ACTR10 RPS6KC1 RALB GPD1L IER5 COX18 DNAJB1 C9orf78 ZC3H8 PELO BPNT1 GYG1 TBC1D14 STX17 KIAA1715 CENPH TYW5 ZMYM6 HRSP12 ATP6V1G1 SUMF1 ANAPC1 H3F3A TKT SYT11 ENPP2 FAM134A CETN3 RNF149 ZNF691 SERINC3 APTX ARL6IP5 RASSF3 CDC42EP3 METAP1 RFXAP TCF19 KLHL8 RPIA S100A11 RNF123 CSNK1G2 FLOT1 TBCK ARFIP1 CCNYL1 ABCE1 BAG5 TBCA PRKRA YRDC CCPG1 MOCS2 WBP1L RNASEH1 SLC26A11 C6orf106 NUDCD2 WDR41 AKIP1 PRNP FRAT2 SLC39A10 CHCHD7 GRPEL2 ATMIN ZNF217 YIPF6 WDR45 AC093323.3 SLC35A1 TMEM41B KRCC1 C5orf24 GMFB FEZ2 CAMLG WEE1 MRPL13 DEXI IGF2R PPID HEY1 AP1G1 ISG20 P2RY8 PSMD12 SEPW1 CTSB FAM96A RASGRP1 C8orf33 FAR1 TMTC2 RAD21 TMEM194A MIR4435-1HG ADI1 MRPL42 TCAIM C7orf55 HDHD2 TADA2B ANXA2 TUBA3C PACS2 YWHAZ GPX4 NOC3L SRPR MAK16 SEPHS2 KIAA0196 TSR1 SSSCA1 DAZAP2 TCAF1 FAM72B NFIL3 FTH1 CXorf23 BCOR TXNRD1 ARID2 GKAP1 RAB4A RBM4B TMEM186 STK39 BLOC1S2 MID1IP1 DDIT4 FBXO45 RAD51D GRK5 ACADSB PMPCA IRF2BP2 DENND4A SDHAP1 PRC1 SUPT3H HPRT1 BMI1 AKIRIN1 BRWD1 C1orf174 ATXN1L TRUB1 ARF4 KIAA1551 MORF4L1 COX20 RP11- 175O19.4 FRAT1 CMAHP SRP72 LAMP1 MICB MCTS1 PTPLA POLR3D DENND6A BICD2 TRIM27 AC093673.5 ARL5B STAT3 PDE12 POLR1D ZBTB10 LINC00657 IKBIP LDLRAD4 YIF1A MKL2 LIN52 HNRNPA3 ASH1L-AS1 SNTB2 CCNE2 TAF9B DNAJC19 NT5DC1 PLGLA MAP2K1 RAB6A SECISBP2 ANKRD28 DCUN1D3 AP001258.4 CSNK1G1 CDC26 SEMA4D SACM1L KANSL1-AS1 CCDC71L NMD3 EID2 ZFP69B TSN PTGER4 OTUD6B- CRADD DNAJC30 EIF4EBP1 ARHGAP19 IARS AS1 CUX1 ARL13B RPS6KA3 TPRG1 IRF9 - In additional embodiments, the invention provides a method for selecting a subject for treatment of CTCL comprising determining a level of expression of one or more genes in CTCL cells of the subject, wherein the one or more genes are selected from a set of genes modulated in all MF cells, e.g. Table 2; comparing the level of the one or more genes in the CTCL cells of the subject to a reference level of the one or more genes; and selecting a subject having an increase or a decrease in the level of the one or more genes in the CTCL cells compared to the reference level for treatment of CTCL. In another embodiment, a method for selecting a subject for treatment of CTCL comprises determining a level of expression of 4 or more genes selected from the group consisting of INPP50/SHIP1, Jarid2, Picalm, Bach1, Wee1, CUX1, Cebpb, SPIB/PU.1, and IL7R, in CTCL cells of the subject; comparing the level of the 4 or more genes in the CTCL cells of the subject to a reference level of the 4 or more genes; and selecting a subject having a decrease in the level of the 4 or more genes in the CTCL cells compared to the reference level for treatment of CTCL. In one embodiment, the method for selecting a subject for treatment of CTCL comprises determining the level of 4 genes, Bach1, Jarid2, Picalm, and SHIP1, in CTCL cells of the subject in comparison to a reference level of the 4 genes. In certain embodiments, the method for selecting a subject for treatment of CTCL comprises determining the level of 4 genes, Bach1, Jarid2, Picalm, and SHIP1, in CTCL cells of the subject in comparison to a reference level of the 4 genes; and selecting a subject having at least 2-fold decrease in the level of the 4 genes in the CTCL cells compared to the reference level for treatment of CTCL.
- In one embodiment, the reference level is the level of expression of the same genes in control oligonucleotide-treated cells. In another embodiment, the reference level is the level of expression of the same genes in Sezary syndrome cells. In yet another embodiment, the reference level is the level of expression of the same genes in a healthy subject (e.g., a subject that does not present with two or more symptoms of a skin cancer, a subject that has not been diagnosed with a skin cancer, and/or a subject that has no family history of skin cancer).
- The invention also provides methods for assessing the efficacy of a treatment with antimiR-155 compounds comprising determining a level of expression of one or more genes in cells of a subject prior to the treatment with antimiR-155 compounds, wherein the one or more genes are selected from a set of genes modulated in all MF cells, e.g. Table 2; determining the level of expression of the same one or more genes in cells of the subject after treatment with antimiR-155 compounds; and determining the treatment to be effective, less effective, or not effective based on the expression levels prior to and after the treatment. That is, in one embodiment, the genes listed in Table 2 serve as a biomarker for clinical efficacy of the antimiR-155 treatment.
- In some embodiments, the invention provides methods of diagnosing CTCL by measuring the level of miR-155 in a subject suspected of suffering from CTCL in comparison to a reference level, wherein the higher expression of miR-155 in the subject indicates the subject is suffering from CTCL. The level of expression of miR-155 in the subject suspected of suffering from CTCL may be determined using cells isolated from skin lesions of the subject, plasma, serum, white blood cells, or PBMCs. In certain embodiments, the invention provides methods of diagnosing mycosis fungoides form of CTCL by measuring the level of miR-155 in a subject in comparison to a reference level, wherein the higher expression of miR-155 in the subject indicates the subject is suffering from the MF form of CTCL. In some other embodiments, the invention provides methods for assessing the response to an antimiR-155 treatment by determining a level of expression of miR-155 in the subject undergoing the treatment in comparison to a reference level of miR-155. The reference level can be the level of miR-155 in a healthy subject or the mean or median level of miR-155 from a group of healthy subjects or the level of miR-155 in a subject having Sezary syndrome.
- The present invention also provides pharmaceutical compositions comprising an oligonucleotide inhibitor of miR-155 as disclosed herein and a pharmaceutically acceptable carrier or excipient. In one embodiment, the pharmaceutical composition comprises an effective dose of an oligonucleotide inhibitor of miR-155 having a sequence of 11 to 16 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of the oligonucleotide inhibitor are locked nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In another embodiment, the pharmaceutical composition comprises an effective dose of an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from the 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In another embodiment, the pharmaceutical composition comprises an effective dose of an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least 7 nucleotides of said oligonucleotide inhibitor are modified nucleotides and at least the second nucleotide from the 5′ end of the oligonucleotide inhibitor is a deoxyribonucleic acid (DNA) nucleotide.
- In yet another embodiment, the pharmaceutical composition comprises an effective dose of an oligonucleotide inhibitor of miR-155 that has a sequence of 11 to 14 nucleotides, wherein the oligonucleotide inhibitor is fully complementary to a mature sequence of miR-155 and has a full phosphorothioate backbone; and wherein at least the first three nucleotides from 3′ end of said oligonucleotide inhibitor are modified nucleotides and at least the fourth and fifth nucleotides from the 5′ end of the oligonucleotide inhibitor are deoxyribonucleic acid (DNA) nucleotides.
- In certain embodiments, pharmaceutical compositions comprise an effective dose of an oligonucleotide inhibitor having a sequence selected from the group consisting of SEQ ID NO: 22, SEQ ID NO: 23, and SEQ ID NO: 25. In some other embodiments, pharmaceutical compositions comprise an effective dose of an oligonucleotide inhibitor having a sequence selected from the group consisting of SEQ ID NOs: 33, 39, 43, 44, 47, 58, 84, 99, 111, 115, and 120. In yet other embodiments, the pharmaceutical composition comprises an oligonucleotide inhibitor having a sequence selected from the sequences listed in Table 1.
- An “effective dose” is an amount sufficient to effect a beneficial or desired clinical result. An effective dose of an oligonucleotide inhibitor of miR-155 of the invention may be from about 1 mg/kg to about 100 mg/kg, about 2.5 mg/kg to about 50 mg/kg, or about 5 mg/kg to about 25 mg/kg. In some embodiments, an effective dose may be about 18.75, 37.5, or 75 mg of the oligonucleotide inhibitor per skin lesion of the patient. The precise determination of what would be considered an effective dose may be based on factors individual to each patient, including their size, age, type of disorder, and form of inhibitor (e.g. naked oligonucleotide or an expression construct etc.). Therefore, dosages can be readily ascertained by those of ordinary skill in the art from this disclosure and the knowledge in the art.
- In certain embodiments, the invention contemplates the use of a HDAC inhibitor in combination with the oligonucleotide inhibitors of the invention. In embodiments where a HDAC inhibitor is included, the HDAC inhibitor may be administered concurrently but in separate formulations or sequentially. In other embodiments, the HDAC inhibitor may be administered at different times prior to or after administration of a miR-155 inhibitor. Where clinical applications are contemplated, pharmaceutical compositions will be prepared in a form appropriate for the intended application. Generally, this will entail preparing compositions that are essentially free of pyrogens, as well as other impurities that could be harmful to humans or animals.
- In one embodiment, the invention provides topical compositions comprising the oligonucleotide inhibitors of miR-155 and one or more cosmetically or pharmaceutically acceptable carriers or excipients. The term “cosmetically acceptable” as used herein means that the carriers or excipients are suitable for use in contact with tissues (e.g., the skin) without undue toxicity, incompatibility, instability, irritation, allergic response, and the like.
- Cosmetic or pharmaceutical carriers or excipients can be liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Topical compositions often comprise an oil-in-water or a water-in-oil emulsion. The invention encompasses using such emulsions for preparing topical composition of antimiR-155 compounds. Suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin. Suitable cosmetic carriers are described below.
- In one embodiment, the cosmetically acceptable topical carrier is from about 50% to about 99.99%, by weight, of the composition (e.g., from about 80% to about 99%, by weight, of the composition). The topical compositions include, but are not limited to, solutions, lotions, creams, gels, sticks, sprays, ointments, cleansing liquid washes, solid bars, shampoos, pastes, foams, powders, mousses, shaving creams, wipes, patches, nail lacquers, wound dressing, adhesive bandages, hydrogels, and films. These product types may comprise several types of cosmetically acceptable topical carriers including, but not limited to solutions, emulsions (e.g., microemulsions and nanoemulsions), gels, solids and liposomes. Certain non-limitative examples of such carriers are set forth hereinbelow. Other suitable carriers may be formulated by those of ordinary skill in the art.
- Topical compositions useful in the present invention may be formulated as a solution comprising an emollient. Such compositions preferably contain from about 1% to about 50% of an emollient(s). As used herein, the term “emollient” refers to materials used for the prevention or relief of dryness, as well as for the protection of the skin. A number of suitable emollients are known and may be used in the present invention. For example, Sagarin, Cosmetics, Science and Technology, 2nd Edition, Vol. 1, pp. 32-43 (1972) and the International Cosmetic Ingredient Dictionary and Handbook, eds. Wenninger and McEwen, pp. 1656-61, 1626, and 1654-55 (The Cosmetic, Toiletry, and Fragrance Assoc., Washington, D.C., 7th Edition, 1997) (hereinafter “ICI Handbook”) contains numerous examples of suitable materials.
- A lotion can be made from such a solution. Lotions typically comprise from about 1% to about 20% (e.g., from about 5% to about 10%) of an emollient(s) and from about 50% to about 90% (e.g., from about 60% to about 80%) of water.
- Another type of product that may be formulated from a solution is a cream. A cream typically comprises from about 5% to about 50% (e.g., from about 10% to about 20%) of an emollient(s) and from about 45% to about 85% (e.g., from about 50% to about 75%) of water.
- Yet another type of product that may be formulated from a solution is an ointment. An ointment may comprise a simple base of animal or vegetable oils or semi-solid hydrocarbons. An ointment may comprise from about 2% to about 10% of an emollient(s) plus from about 0.1% to about 2% of a thickening agent(s). A more complete disclosure of thickening agents or viscosity increasing agents useful herein can be found in Sagarin, Cosmetics, Science and Technology, 2nd Edition, Vol. 1, pp. 72-73 (1972) and the ICI Handbook pp. 1693-1697.
- The topical compositions useful in the present invention may be formulated as emulsions. If the carrier is an emulsion, from about 1% to about 10% (e.g., from about 2% to about 5%) of the carrier comprises an emulsifier(s). Emulsifiers may be nonionic, anionic or cationic. Suitable emulsifiers are disclosed in, for example, in McCutcheon's Detergents and Emulsifiers, North American Edition, pp. 317-324 (1986), and the ICI Handbook, pp. 1673-1686.
- Lotions and creams can be formulated as emulsions. Typically such lotions comprise from 0.5% to about 5% of an emulsifier(s). Such creams would typically comprise from about 1% to about 20% (e.g., from about 5% to about 10%) of an emollient(s); from about 20% to about 80% (e.g., from 30% to about 70%) of water; and from about 1% to about 10% (e.g., from about 2% to about 5%) of an emulsifier(s).
- Single emulsion skin care preparations, such as lotions and creams, of the oil-in-water type and water-in-oil type are well known in the cosmetic art and are useful in the present invention. Multiphase emulsion compositions, for example the water-in-oil-in-water type, as disclosed in U.S. Pat. Nos. 4,254,105 and 4,960,764, may also be useful in the present invention. In general, such single or multiphase emulsions contain water, emollients, and emulsifiers as essential ingredients.
- The topical compositions of this invention can also be formulated as a gel (e.g., an aqueous, alcohol, alcohol/water, or oil gel using a suitable gelling agent(s)). Suitable gelling agents for aqueous gels include, but are not limited to, natural gums, acrylic acid and acrylate polymers and copolymers, and cellulose derivatives (e.g., hydroxymethyl cellulose and hydroxypropyl cellulose). Suitable gelling agents for oils (such as mineral oil) include, but are not limited to, hydrogenated butylene/ethylene/styrene copolymer and hydrogenated ethylene/propylene/styrene copolymer. Such gels typically comprise between about 0.1% and 5%, by weight, of such gelling agents.
- Liposomal formulations are also useful compositions of the subject invention. In one embodiment, the oligonucleotides are contained within the liposome. Examples of liposomes are unilamellar, multilamellar, and paucilamellar liposomes, which may or may not contain phospholipids. Such compositions can be prepared by combining the oligonucleotide inhibitor with a phospholipid, such as dipalmitoylphosphatidyl choline, cholesterol and water. Commercially available fat emulsions that may be suitable for delivering the nucleic acids of the invention to cancer cells or the skin tissue include Intralipid®, Liposyn®, Liposyn® II, Liposyn® III, Nutrilipid, and other similar lipid emulsions. A preferred colloidal system for use as a delivery vehicle in vivo is a liposome (i.e., an artificial membrane vesicle). The preparation and use of such systems is well known in the art. Exemplary formulations are also disclosed in U.S. Pat. Nos. 5,981,505; 6,217,900; 6,383,512; 5,783,565; 7,202,227; 6,379,965; 6,127,170; 5,837,533; 6,747,014; and WO03/093449, which are herein incorporated by reference in their entireties.
- The liposome preparation may then be incorporated into one of the above carriers (e.g., a gel or an oil-in-water emulsion) in order to produce the liposomal formulation. Other compositions and uses of topically applied liposomes are described in Mezei, M., “Liposomes as a Skin Drug Delivery System”, Topics in Pharmaceutical Sciences (D. Breimer and P. Speiser, eds.), Elsevier Science Publishers B. V., New York, N.Y., 1985, pp. 345-358, PCT Patent Application No. WO96/31194, Niemiec, et al., 12 Pharm. Res. 1184-88 (1995), and U.S. Pat. No. 5,260,065.
- In one embodiment, the liposomes are present in the topical composition in an amount, based upon the total volume of the composition, of from about 5 mg/ml to about 100 mg/ml such as from about 10 mg/ml to about 50 mg/ml.
- In addition to the above carriers and excipients, other emollients and surface active agents can be incorporated in the emulsions, including glycerol trioleate, acetylated sucrose distearate, sorbitan trioleate, polyoxyethylene (1) monostearate, glycerol monooleate, sucrose distearate, polyethylene glycol (50) monostearate, octylphenoxypoly (ethyleneoxy) ethanol, decaglycerin penta-isostearate, sorbitan sesquioleate, hydroxylated lanolin, lanolin, triglyceryl diisostearate, polyoxyethylene (2) oleyl ether, calcium stearoyl-2-lactylate, methyl glucoside sesquistearate, sorbitan monopalmitate, methoxy polyethylene glycol-22/dodecyl glycol copolymer (Elfacos E200), polyethylene glycol-45/dodecyl glycol copolymer (Elfacos ST9),
polyethylene glycol 400 distearate, and lanolin derived sterol extracts, glycol stearate and glycerol stearate; alcohols, such as cetyl alcohol and lanolin alcohol; myristates, such as isopropyl myristate; cetyl palmitate; cholesterol; stearic acid; propylene glycol; glycerine, sorbitol and the like. - In certain embodiments, liposomes used for delivery are amphoteric liposomes such SMARTICLES® (Marina Biotech, Inc.) which are described in detail in U.S. Pre-grant Publication No. 20110076322. The surface charge on the SMARTICLES® is fully reversible which make them particularly suitable for the delivery of nucleic acids. SMARTICLES® can be delivered via injection, remain stable, and aggregate free and cross cell membranes to deliver the nucleic acids.
- One will generally desire to employ appropriate salts and buffers to render delivery vehicles stable and allow for uptake by target cells. Pharmaceutical compositions of the present invention comprise an effective amount of the delivery vehicle comprising the inhibitor polynucleotides (e.g. liposomes or other complexes or expression vectors) dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium. The phrases “pharmaceutically acceptable” or “pharmacologically acceptable” refers to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or a human. As used herein, “pharmaceutically acceptable carrier” includes solvents, buffers, solutions, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like acceptable for use in formulating pharmaceuticals, such as pharmaceuticals suitable for administration to humans. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredients of the present invention, its use in therapeutic compositions is contemplated. Supplementary active ingredients also can be incorporated into the compositions, provided they do not inactivate the vectors or polynucleotides of the compositions.
- The active compositions of the present invention may include classic pharmaceutical preparations. Administration of these compositions according to the present invention may be via any common route so long as the target tissue is available via that route. This includes oral, topical, parenteral, intradermal, subcutaneous, or intravenous injection. In another embodiment, compositions comprising oligonucleotide inhibitors of miR-155 as described herein may be formulated in the form suitable for a topical application such as a cream, ointment, paste, lotion, or gel.
- The active compounds may also be administered parenterally. By way of illustration, solutions of the active compounds as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations generally contain a preservative to prevent the growth of microorganisms.
- The pharmaceutical forms suitable for injectable use include, for example, sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. Generally, these preparations are sterile and fluid to the extent that easy injectability exists. Preparations should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms, such as bacteria and fungi. Appropriate solvents or dispersion media may contain, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions may be prepared by incorporating the active compounds in an appropriate amount into a solvent along with any other ingredients (for example as enumerated above) as desired, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the desired other ingredients, e.g., as enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation include vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient(s) plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- The compositions of the present invention generally may be formulated in a neutral or salt form. Pharmaceutically-acceptable salts include, for example, acid addition salts (formed with the free amino groups of the protein) derived from inorganic acids (e.g., hydrochloric or phosphoric acids), or from organic acids (e.g., acetic, oxalic, tartaric, mandelic, and the like). Salts formed with the free carboxyl groups of the protein can also be derived from inorganic bases (e.g., sodium, potassium, ammonium, calcium, or ferric hydroxides) or from organic bases (e.g., isopropylamine, trimethylamine, histidine, procaine and the like).
- Upon formulation, compositions are preferably administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations may easily be administered in a variety of dosage forms such as injectable solutions, cream, ointment, paste, lotion, or gel and the like. For parenteral administration in an aqueous solution, for example, the solution generally is suitably buffered and the liquid diluent first rendered isotonic for example with sufficient saline or glucose. Such aqueous solutions may be used, for example, for intravenous, subcutaneous, and intradermal administration. Preferably, sterile aqueous media are employed as is known to those of skill in the art, particularly in light of the present disclosure. Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by regulatory agencies.
- In certain embodiments of the invention, the pharmaceutical compositions of the invention are packaged with or stored within a device for administration. Devices for injectable formulations include, but are not limited to, pre-filled syringes, injection ports, autoinjectors, injection pumps, and injection pens. Devices for aerosolized or powder formulations include, but are not limited to, inhalers, insufflators, aspirators, and the like.
- Devices for dermal delivery of compositions of the present invention also include dermal microneedle injection or patches. Thus, the present invention includes administration devices comprising a pharmaceutical composition of the invention for treating or preventing one or more of the disorders described herein.
- This invention is further illustrated by the following additional examples that should not be construed as limiting. Those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made to the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
- To characterize miR-155-5p expression in cell lines derived from CTCL patients, the absolute levels of miR-155-5p in mycosis fungoides (MF), Sézary syndrome (SS), and a CTCL cell line classified as neither MF nor SS were measured. The cellular, pathological, and molecular characteristics of the cell lines examined are shown in Table 3.
-
TABLE 3 Characteristics of CTCL Cell Lines Tissue Expressed Molecular Name Disease Age source Antigens Characteristics HuT78 Sézary 53 Peripheral CD4+ HTLV− syndrome blood MJ Mycosis 50 Peripheral CD4+, CD3+, HTLV+ fungoides blood CD2+ My- La Mycosis 82 Skin CD4+, CD3+, HTLV− fungoides plaque CD2+ HuT102 Mycosis 26 Lymph CD4+ HTLV+ fungoides node HH Neither 61 Peripheral CD4+, CD3+, HTLV− mycosis blood CD2+, CD30+ fungoides nor Sézary syndrome - The absolute expression of miR-155-5p in the CTCL cell lines compared to normal peripheral CD4+ helper T-cells was measured by real time PCR, using total RNA isolated from each cell type as a template. Standard curves correlating Ct value to miR-155-5p copy number were generated using a synthetic miR-155-5p RNA template. The copy number per cell of miR-155-5p was extrapolated from the Ct values determined for CTCL RNA samples or normal CD4+ T-cell RNA sample using the standard curve generated with the synthetic template, assuming 10 pg of total RNA per cell (
FIG. 1 ). The mycosis fungoides cell lines (HuT102, MJ, and My-La), as well as the idiopathic cell line (HH), showed high expression of miR-155-5p compared to normal CD4+ T-cells, while the cell line derived from a Sezary syndrome patient (HuT78) did not overexpress miR-155-5p. - CTCL cell lines were cultured in complete growth medium with the addition of antimiR-155 compound 1 (SEQ ID NO: 27), compound 2 (SEQ ID NO: 22), compound 3 (SEQ ID NO: 23), and compound 4 (SEQ ID NO: 25) at concentrations ranging from 2 μM to 50 μM. The antimiRs were added to the medium without any additional components to enhance cellular uptake. Cells were harvested after 72 hours of treatment and total RNA was purified. Real time PCR was performed for 13 direct gene targets of miR-155 (Worm et al. 2009; O'Connell et al. 2010; Zhang et al. 2012; and miRagen unpublished data). The relative fold-change in the expression of the 13 genes in the antimiR-treated cells compared to the untreated cells was calculated.
FIG. 2 shows a “heat map” representation of gene expression changes in response to 72 hours of treatment with 10 μM of the indicated antimiR. Four predicted direct targets that lacked expression in at least one cell line were omitted. The gene expression fold-changes were log 10-transformed, plotted on a grayscale, representing the highest relative increase in gene expression, and conversely, the greatest reduction in gene expression. The heat map showed that the expression of several of the miR-155-5p target genes was modulated upon exposure to the miR-155-5p antagonists in three mycosis fungoides cell lines (MJ, HuT102, and My-La). Similar, but more modest gene expression changes were observed in the idiopathic cell line (HH) that expresses high levels of miR-155-5p. In contrast, expression of these genes was not significantly altered in the Sezary syndrome cell line (HuT78) that expresses low levels of miR-155-5p, indicating that the changes in the gene expression levels in mycosis fungoides cell lines and HH cell line are mediated by antagonism of miR-155-5p. - Four direct gene targets of miR-155-5p (Bach1, Jarid2, Picalm, and Ship1) were chosen for additional analysis, as these four genes were modulated by antimiR-155 in all three mycosis fungoides cell lines (MJ, HuT102, and My-La). These genes were chosen to represent the gene expression signature for antimiR activity in vitro. Additionally, the four-gene signature was used to compare the activity of the antimiR compounds. These gene changes were reproducible over three independent experiments with cells of varying passage numbers.
FIGS. 3, 4, 5, 6, and 7 show the fold-change results of this four-gene signature in the HuT102, MJ, HH, My-La, and Hut78 cell lines, respectively. * p-value <0.0001 vs untreated by nonparametric Mann-Whitney test. The Mann-Whitney test was chosen because the variances are unequal between the treatments compared to untreated cells. - The cumulative data across three doses (2 μM, 10 μM, and 50 μM) and three mycosis fungoides cell lines showed that compounds 2 (SEQ ID NO: 22) and 4 (SEQ ID NO: 25) were more active than compounds 1 (SEQ ID NO: 27) and 3 (SEQ ID NO: 23). As shown in
FIG. 7 , all four antimiR-155-5p compounds showed no statistically significant activity in the Sezary syndrome line (HuT78), which is consistent with the lower expression levels of miR-155 in this cell line as shown inFIG. 1 . - To test the specificity of the gene expression changes induced by antimiR-155 compounds of the invention, mycosis fungoides cell lines were treated with oligos that do not target miR-155 (control oligos). The control oligonucleotide was a 14-nucleotide antimiR targeting a C. elegans miRNA not expressed in mammals (control 1). The second oligo is a scramble of the 14-nucleotide sequence of antimiR-155 compound 4 (control 2). The MJ and HuT102 cell lines were incubated with 10 μM antimiR-155 compounds 3 (SEQ ID NO: 23) or 4 (SEQ ID NO: 25) or the two control oligos for 72 hours.
FIG. 8 shows the fold-change in gene expression for the four direct targets of miR-155-5p as measured by PCR. The gene expression signature in cells treated with antimiR-155 compounds 3 (SEQ ID NO: 23) or 4 (SEQ ID NO: 25) was statistically significantly different from that of untreated cells. In contrast, gene expression in cells treated with control compounds was not different from that of untreated cells. These results show that the miR-155 direct targets were de-repressed in response to the miR-155 inhibition, and not due to non-specific effects of oligo treatment. * p-value <0.0001 vs untreated by nonparametric Mann-Whitney test. - To gain a more complete understanding of the molecular consequences of miR-155 inhibition in mycosis fungoides cell lines, whole genome transcriptome profiling was performed on MJ and HuT102 cell lines treated with antimiR-155 compounds 3 (SEQ ID NO: 23) or 4 (SEQ ID NO: 25) for 4 days (96 hours) or 8 days. The statistically-significant gene expression signature was defined by one-way ANOVA for antimiR-treated cells compared to untreated cells at the same time point. Data were filtered for genes that were significantly changed with a false discovery rate corrected p-value of ≤0.05. The fold-change results are shown in
FIGS. 9 and 10 as heat maps, as described forFIG. 2 . - Examination of the global gene expression signatures at
Day 4 andDay 8 suggested a time course for the gene expression changes in response to the antimiR-155 treatment: unique gene sets were identified that were regulated at the early time point (4 days), or at the late time point (8 days), as well as some genes that were changed at both time points (FIG. 9 for the MJ profile,FIG. 10 for the HuT102 profile). Furthermore, the expression profiling identified unique gene sets regulated in each cell line, as well as some genes regulated in both cell lines. Compound 4 (SEQ ID NO: 25) demonstrated a greater magnitude of gene regulation in both cell lines and at both time points, as demonstrated by the greater intensity across the Compound 4 (SEQ ID NO: 25) heat map. - The gene expression profile common to both cell lines and both compounds at
Day 4 was analyzed for the enrichment of miR-155-5p seed-matched gene targets (8-, 7-, and 6-nucleotide binding sites). The fold-change of these genes is represented in a heat map inFIG. 11 . This signature of 150 up-regulated genes was significantly enriched for miR-155-5p seed-matched targets (8-, 7-, and 6-nucleotide binding sites), with a hypergeometric p-value of 1.6×10−25 (FIG. 11A ). Analysis by cumulative distribution function confirmed enrichment for seed-matched targets, and demonstrated enrichment for 8mer>7mer>6mer binding sites (FIG. 11B ). The gene signature was also analyzed using the DAVID bioinformatic resource for functional gene annotation enrichment (Huang da et al., 2009). There was no significant enrichment of Gene Ontology database terms as defined by a Benjamini-corrected p-value of ≤0.01. - The gene expression signature common to both cell lines and both compounds at Day 8 (677 genes in total) was subjected to analysis for enrichment of seed-matched gene targets and for functional gene annotation. The up-regulated gene signature was significantly enriched for seed-matched targets with a hypergeometric p-value of ≤10−27. Unlike the
Day 4 signature, theDay 8 signature also showed strong enrichment of two functional annotation terms: antigen presentation in the up-regulated signature, and mitotic cell cycle in the down-regulated signature (FIG. 12 ). Together, these results confirm that the effect of the antimiR compounds is mediated by the inhibition of miR-155-5p and its direct gene targets, and that phenotypes elicited by the inhibition of miR-155-5p function may include enhanced antigen presentation and reduction in proliferation. - The activity of antimiR-155 compound 4 (SEQ ID NO: 25) was further investigated by treating the third mycosis fungoides cell line, MyLa, with compound 4 (SEQ ID NO: 25) for 4 days and 8 days and profiling the changes in gene expression. To test the specificity of compound 4 (SEQ ID NO: 25), cells of the Sezary syndrome cell line (HuT78) were treated with compound 4 (SEQ ID NO: 25) for 8 days and the changes in gene expression were profiled. These results are shown in
FIG. 13 . Genes that are statistically changed with a false discovery rate (FDR) corrected p-value of ≤0.05 in response to compound 4 (SEQ ID NO: 25) in three mycosis fungoides cell lines, HuT102, MJ, and My-La, are depicted in the heat map as described above. The total number of genes in the heat map is 324.FIG. 13 shows that the treatment of Sezary syndrome cell line HuT78 with compound 4 (SEQ ID NO: 25) did not show much change in the gene expression indicating that the gene expression changes in mycosis fungoides cell lines are indeed due to the inhibition of miR-155-5p by compound 4 (SEQ ID NO: 25). - Additionally, genes regulated by compound 4 (SEQ ID NO: 25) in all three mycosis fungoides cell lines were identified as a biomarker signature that could be used for clinical assessment of treatment with antimiR-155 compounds, such as compound 4 (SEQ ID NO: 25), of the invention. The identified set of genes was up-regulated in all three cell lines or down-regulated in all three cell lines. Common signatures for each time point (
Day 4 and Day 8) were identified and then combined into a single gene list (Table 2). No filter was placed on the magnitude of gene expression. Therefore, Table 2 contains genes that are regulated only atDay 4, or only atDay 8, or regulated at both time points. Table 2 contains 587 genes comprising early (direct) targets and downstream (indirect) targets regulated by compound 4 (SEQ ID NO: 25) (FIG. 21 ). The gene list in Table 2 includes the direct targets Bach1, Picalm, and Jarid2, demonstrating that these genes are robust markers of the compound 4 (SEQ ID NO: 25) activity across multiple cell lines and time points. - Passive uptake of antimiR-155 compounds by CTCL cells produced a significant reduction in cellular proliferation and induced programmed cell death. These effects were observed in two CTCL cell lines, HuT102 and MyLa. AntimiR-155 compounds 2 (SEQ ID NO: 22) and 4 (SEQ ID NO: 25) that demonstrated a greater target de-repression than antimiR-155 compound 3 (SEQ ID NO: 23) in both HuT102 and MyLa cell lines, showed a greater inhibition of proliferation and greater apoptotic activity.
-
FIG. 14A shows the effect of antimiR-155 compound 4 (SEQ ID NO: 25) on proliferation of HuT-102 cells over time. Since the level of ATP correlates directly with cell number, ATP was measured to determine the cell number. The effect of compound 4 (SEQ ID NO: 25) on cell number was comparable to that seen with bexarotene, a standard-of-care therapy for CTCL (FIG. 14A ). The reduction in cell number was accompanied by an increase in apoptosis as measured bycaspase 3/7 activity (FIG. 14B ). Thecaspase 3 and 7 proteins are members of the cysteine aspartic acid-specific protease (caspase) family. The caspase family plays key effector roles in apoptosis in mammalian cells. Caspase activity was normalized to ATP levels, as all cells have a low level of basal caspase activity that can confound the results if not normalized appropriately. Compound 4 (SEQ ID NO: 25) showed greater induction of apoptosis than bexarotene (FIG. 14B ). - In addition to a time course, a dose titration of antimiR-155 compounds in HuT102 cells was performed with ATP and
caspase 3/7 measurements performed after eight days of treatment (FIGS. 15A and 15B , respectively). These results confirm the inhibitory potential of compound 4 (SEQ ID NO: 25). - Similar effects on proliferation and
caspase 3/7 activation were observed with antimiR-155 compound 2 (SEQ ID NO: 22) atday 8 in HuT-102 cells (FIGS. 16A and 16B , respectively). - Compound 4 (SEQ ID NO: 25) showed similar activity in a second mycosis fungoides cell line, My-La cells.
FIGS. 17A and 17B show proliferation and activation ofcaspase 3/7 over time with compounds 3 (SEQ ID NO: 23) and 4 (SEQ ID NO: 25). Similar to HuT102 cells, compound 4 (SEQ ID NO: 25) showed greater activity compared to compound 3 (SEQ ID NO: 23). - In addition to a time course, a dose titration of antimiR-155 compounds in My-La cells was performed with ATP and
caspase 3/7 measurements after eight days of treatment (FIGS. 18A and 18B , respectively). These results further confirm the inhibitory potential of compound 4 (SEQ ID NO: 25). - Vorinostat (chemical name: SAHA) is a standard-of-care epigenetic therapy for patients with advanced mycosis fungoides. However, the side-effects of pan-HDAC inhibitors are well-described. To determine whether a combination therapy might show enhanced activity compared to treatment with individual compounds, HuT102 cells were treated with a sub-efficacious dose of SAHA combined with antimiR-155.
- HuT102 cells were treated with 0.25 μM SAHA and 10 μM compound 3 (SEQ ID NO: 23) or 4 (SEQ ID NO: 25), individually or in combination. Cells were harvested daily to measure ATP levels and
caspase 3/7 activity. ATP levels are shown inFIG. 19A . A similar experiment was performed with 0.50 μM SAHA.FIG. 19B shows ATP levels obtained when HuT102 cells were treated with 0.50 μM SAHA and 10 μM compound 3 (SEQ ID NO: 23) or 4 (SEQ ID NO: 25), individually or in combination. -
FIGS. 20A and 20B show the effect oncaspase 3/7 activity. Compound 4 (SEQ ID NO: 25) when combined with 0.25 or 0.5 μM of SAHA resulted in increased apoptosis compared to each treatment alone. This data suggests that antimiR-155 oligos can be used in combination with low doses pan-HDAC inhibitor. - To assess the activity of a miR-155 inhibitor, a dual luciferase reporter assay system was used. In brief, the binding site for miR-155 was cloned into the 3′ UTR of the Renilla luciferase gene located within the commercially-available psiCHECK-2 vector system (Promega). In the absence of a miR-155 inhibitor, the expression of Renilla luciferase protein is repressed by a miR-155 mimic. In the presence of a miR-155 inhibitor, the expression of Renilla luciferase protein is de-repressed. To control for transfection of the plasmid, the vector contains a firefly luciferase gene that does not contain the miR-155 binding site. Expression of either Renilla or firefly luciferase is measured through detection of light emitted by the luciferase protein.
- 50 ng of the dual luciferase reporter plasmid containing the miR-155 binding site was transfected into HeLa cells without a miR-155 mimic (“Reporter” only), with 10 nM miR-155 mimic (“Reporter+mimic”), with 10 nM miR-155 mimic and 2 nM of the control oligonucleotide, or with 10 nM miR-155 mimic and 2 nM of a test miR-155 oligonucleotide inhibitor of 11-14 nucleotide lengths (Table 4). The miR-155 mimic was purchased from Dharmacon (miRIDIAN microRNA Human hsa-miR-155-5p mimic; Accession number MIMAT0000646; catalog # C-300647-05-0005) and contains the mature miRNA sequence: -UUAAUGCUAAUCGUGAUAGGGGU-(SEQ ID NO: 121). The control oligonucleotide used in the experiment had the following sequence: 5′-lCs.dTs.dAs.lGs.dAs.lAs.dAs.lGs.lAs.dGs.lTs.dAs.lGs.lA-3′ (SEQ ID NO: 122).
-
TABLE 4 SEQ ID LNA NO. Modified Sequence # Length 25 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs;dAs; 9 14 lGs;dCs;lAs;lTs;lTs;lA-3′ 54 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs;lGs; 9 13 dCs;lAs;lTs;lTs;lA-3′ 55 5′-lCs;dGs;dAs;lTs;lTs;dAs;lGs;dCs; 8 12 lAs;lTs;lTs;lA-3′ 56 5′-lGs;dAs;lTs;lTs;dAs;lGs;dCs;lAs; 8 11 lTs;lTs;lA-3′ -
FIG. 22 shows that transfection of the reporter plasmid and the mimic resulted in the maximal repression of luciferase; transfection of the reporter plasmid alone resulted in the maximum expression of luciferase; transfection of the control oligonucleotide with the reporter and the mimic did not de-repress the expression of luciferase; and transfection of the test miR-155 oligonucleotide inhibitors with the reporter and the mimic de-repressed the expression of luciferase to differing extents. - The experiment was performed as described in Example 7. Test miR-155 oligonucleotide inhibitors used in this experiment differed in the number of LNAs contained (Tables 5-8). The results are shown in
FIGS. 23A (Table 5), 23B (Table 6), 23C (Table 7), and 23D (Table 8). -
TABLE 5 SEQ LNA ID NO. Modified Sequence # Length 25 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 32 5′-dCs;dAs;lCs;dGs;dAs;lTs;lTs; 8 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 33 5′-lCs;lAs;lCs;dGs;dAs;lTs;lTs; 10 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 34 5′-lCs;dAs;dCs;dGs;dAs;lTs;lTs; 8 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 35 5′-lCs;dAs;lCs;lGs;dAs;lTs;lTs; 10 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 36 5′-lCs;dAs;lCs;dGs;lAs;lTs;lTs; 10 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 37 5′-lCs;dAs;lCs;dGs;dAs;dTs;lTs; 8 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 38 5′-lCs;dAs;lCs;dGs;dAs;lTs;dTs; 8 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 39 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 10 14 lAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 40 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 8 14 dAs;dGs;dCs;lAs;lTs;lTs;lA-3′ 41 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 10 14 dAs;lGs;lCs;lAs;lTs;lTs;lA-3′ 42 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 8 14 dAs;lGs;dCs;dAs;lTs;lTs;lA-3′ 43 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 8 14 dAs;lGs;dCs;lAs;dTs;lTs;lA-3′ 44 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 8 14 dAs;lGs;dCs;lAs;lTs;dTs;lA-3′ 45 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 8 14 dAs;lGs;dCs;lAs;lTs;lTs;dA-3′ -
TABLE 6 SEQ ID LNA NO. Modified Sequence # Length 25 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 54 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs; 9 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 57 5′-dAs;lCs;dGs;dAs;lTs;lTs;dAs; 8 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 58 5′-lAs;dCs;dGs;dAs;lTs;lTs;dAs; 8 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 59 5′-lAs;lCs;lGs;dAs;lTs;lTs;dAs; 10 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 60 5′-lAs;lCs;dGs;lAs;lTs;lTs;dAs; 10 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 61 5′-lAs;lCs;dGs;dAs;dTs;lTs;dAs; 8 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 62 5′-lAs;lCs;dGs;dAs;lTs;dTs;dAs; 8 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 63 5′-lAs;lCs;dGs;dAs;lTs;lTs;lAs; 10 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 64 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs; 8 13 dGs;dCs;lAs;lTs;lTs;lA-3′ 65 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs; 10 13 lGs;lCs;lAs;lTs;lTs;lA-3′ 66 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs; 8 13 lGs;dCs;dAs;lTs;lTs;lA-3′ 67 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs; 8 13 lGs;dCs;lAs;dTs;lTs;lA-3′ 68 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs; 8 13 lGs;dCs;lAs;lTs;dTs;lA-3′ 69 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs; 8 13 lGs;dCs;lAs;lTs;lTs;dA-3′ -
TABLE 7 SEQ ID LNA NO. Modified Sequence # Length 25 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 55 5′-lCs;dGs;dAs;lTs;lTs;dAs;lGs; 8 12 dCs;lAs;lTs;lTs;lA-3′ 77 5′-dCs;dGs;dAs;lTs;lTs;dAs;lGs; 7 12 dCs;lAs;lTs;lTs;lA-3′ 78 5′-lCs;lGs;dAs;lTs;lTs;dAs;lGs; 9 12 dCs;lAs;lTs;lTs;lA-3′ 79 5′-lCs;dGs;lAs;lTs;lTs;dAs;lGs; 9 12 dCs;lAs;lTs;lTs;lA-3′ 80 5′-lCs;dGs;dAs;dTs;lTs;dAs;lGs; 7 12 dCs;lAs;lTs;lTs;lA-3′ 81 5′-lCs;dGs;dAs;lTs;dTs;dAs;lGs; 7 12 dCs;lAs;lTs;lTs;lA-3′ 82 5′-lCs;dGs;dAs;lTs;lTs;lAs;lGs; 9 12 dCs;lAs;lTs;lTs;lA-3′ 83 5′-lCs;dGs;dAs;lTs;lTs;dAs;dGs; 7 12 dCs;lAs;lTs;lTs;lA-3′ 84 5′-lCs;dGs;dAs;lTs;lTs;dAs;lGs; 9 12 lCs;lAs;lTs;lTs;lA-3′ 85 5′-lCs;dGs;dAs;lTs;lTs;dAs;lGs; 7 12 dCs;dAs;lTs;lTs;lA-3′ 86 5′-lCs;dGs;dAs;lTs;lTs;dAs;lGs; 7 12 dCs;lAs;dTs;lTs;lA-3′ 87 5′-lCs;dGs;dAs;lTs;lTs;dAs;lGs; 7 12 dCs;lAs;lTs;dTs;lA-3′ 88 5′-lCs;dGs;dAs;lTs;lTs;dAs;lGs; 7 12 dCs;lAs;lTs;lTs;dA-3′ -
TABLE 8 SEQ ID LNA NO. Modified Sequence # Length 25 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs;dAs; 9 14 lGs;dCs;lAs;lTs;lTs;lA-3′ 56 5′-lGs;dAs;lTs;lTs;dAs;lGs;dCs;lAs; 8 11 lTs;lTs;lA-3′ 95 5′-dGs;dAs;lTs;lTs;dAs;lGs;dCs;lAs; 7 11 lTs;lTs;lA-3′ 96 5′-lGs;lAs;lTs;lTs;dAs;lGs;dCs;lAs; 9 11 lTs;lTs;lA-3′ 97 5′-lGs;dAs;dTs;lTs;dAs;lGs;dCs;lAs; 7 11 lTs;lTs;lA-3′ 98 5′-lGs;dAs;lTs;dTs;dAs;lGs;dCs;lAs; 7 11 lTs;lTs;lA-3′ 99 5′-lGs;dAs;lTs;lTs;lAs;lGs;dCs;lAs; 9 11 lTs;lTs;lA-3′ 100 5′-lGs;dAs;lTs;lTs;dAs;dGs;dCs;lAs; 7 11 lTs;lTs;lA-3′ 101 5′-lGs;dAs;lTs;lTs;dAs;lGs;lCs;lAs; 9 11 lTs;lTs;lA-3′ 102 5′-lGs;dAs;lTs;lTs;dAs;lGs;dCs;dAs; 7 11 lTs;lTs;lA-3′ 103 5′-lGs;dAs;lTs;lTs;dAs;lGs;dCs;lAs; 7 11 dTs;lTs;lA-3′ 104 5′-lGs;dAs;lTs;lTs;dAs;lGs;dCs;lAs; 7 11 lTs;dTs;lA-3′ 105 5′-lGs;dAs;lTs;lTs;dAs;lGs;dCs;lAs; 7 11 lTs;lTs;dA-3′ - The experiment was performed as described in Example 7. Test miR-155 oligonucleotide inhibitors used in this experiment differed in the position of LNA modifications (Tables 9-12). The results are shown in
FIGS. 24A (Table 9), 24B (Table 10), 24C (Table 11), and 24D (Table 12). -
TABLE 9 SEQ LNA ID NO. Modified Sequence # Length 25 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 46 5′-dCs;lAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 47 5′-lCs;lAs;dCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 48 5′-lCs;dAs;dCs;lGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 49 5′-lCs;dAs;lCs;dGs;lAs;dTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 50 5′-lCs;dAs;lCs;dGs;dAs;lTs;dTs; 9 14 lAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 51 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 lAs;dGs;dCs;lAs;lTs;lTs;lA-3′ 52 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;dGs;lCs;lAs;lTs;lTs;lA-3′ 53 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;lCs;dAs;lTs;lTs;lA-3′ -
TABLE 10 SEQ LNA ID NO. Modified Sequence # Length 25 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 54 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs; 9 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 70 5′-lAs;dCs;lGs;dAs;lTs;lTs;dAs; 9 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 71 5′-lAs;lCs;dGs;lAs;dTs;lTs;dAs; 9 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 72 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs; 9 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 73 5′-lAs;lCs;dGs;dAs;lTs;dTs;lAs; 9 13 lGs;dCs;lAs;lTs;lTs;lA-3′ 74 5′-lAs;lCs;dGs;dAs;lTs;lTs;lAs; 9 13 dGs;dCs;lAs;lTs;lTs;lA-3′ 75 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs; 9 13 dGs;lCs;lAs;lTs;lTs;lA-3′ 76 5′-lAs;lCs;dGs;dAs;lTs;lTs;dAs; 9 13 lGs;lCs;dAs;lTs;lTs;lA-3′ -
TABLE 11 SEQ LNA ID NO. Modified Sequence # Length 25 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 55 5′-lCs;dGs;dAs;lTs;lTs;dAs;lGs; 8 12 dCs;lAs;lTs;lTs;lA-3′ 89 5′-dCs;lGs;dAs;lTs;lTs;dAs;lGs; 8 12 dCs;lAs;lTs;lTs;lA-3′ 90 5′-lCs;dGs;lAs;dTs;lTs;dAs;lGs; 8 12 dCs;lAs;lTs;lTs;lA-3′ 91 5′-lCs;dGs;dAs;lTs;dTs;lAs;lGs; 8 12 dCs;lAs;lTs;lTs;lA-3′ 92 5′-lCs;dGs;dAs;lTs;lTs;lAs;dGs; 8 12 dCs;lAs;lTs;lTs;lA-3′ 93 5′-lCs;dGs;dAs;lTs;lTs;dAs;dGs; 8 12 lCs;lAs;lTs;lTs;lA-3′ 94 5′-lCs;dGs;dAs;lTs;lTs;dAs;lGs; 8 12 lCs;dAs;lTs;lTs;lA-3′ -
TABLE 12 SEQ LNA ID NO. Modified Sequence # Length 25 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 56 5′-lGs;dAs;lTs;lTs;dAs;lGs;dCs; 8 11 lAs;lTs;lTs;lA-3′ 106 5′-dGs;lAs;lTs;lTs;dAs;lGs;dCs; 8 11 lAs;lTs;lTs;lA-3′ 107 5′-lGs;lAs;dTs;lTs;dAs;lGs;dCs; 8 11 lAs;lTs;lTs;lA-3′ 108 5′-lGs;dAs;lTs;dTs;lAs;lGs;dCs; 8 11 lAs;lTs;lTs;lA-3′ 109 5′-lGs;dAs;lTs;lTs;lAs;dGs;dCs; 8 11 lAs;lTs;lTs;lA-3′ 110 5′-lGs;dAs;lTs;lTs;dAs;dGs;lCs; 8 11 lAs;lTs;lTs;lA-3′ 111 5′-lGs;dAs;lTs;lTs;dAs;lGs;lCs; 8 11 dAs;lTs;lTs;lA-3′ - The experiment was performed as described in Example 7. Test miR-155 oligonucleotide inhibitors used in this experiment were 14 nucleotides in length and each contained 9 nucleotide modifications (Table 13). The nucleotide modifications included locked nucleotides (LNAs), ethylene-bridged nucleic acids/ethylene-bridged nucleotides (ENAs), and 2′-C-Bridged Bicyclic Nucleotide (CBBN). The results are shown in
FIG. 25 . -
TABLE 13 SEQ ID Mod NO. Modified Sequence # Length 25 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 112 5′-eCs;dAs;eCs;dGs;dAs;eTs;eTs; 9 14 dAs;eGs;dCs;eAs;eTs;eTs;eA-3′ 113 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;eAs;lTs;lTs;eA-3′ 114 5′-eCs;dAs;eCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 115 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;eGs;dCs;lAs;lTs;lTs;lA-3′ 116 5′-lCs;dAs;lCs;dGs;dAs;eTs;eTs; 9 14 dAs;lGs;dCs;lAs;eTs;eTs;lA-3′ 117 5′-lCs;dAs;lCs;dGs;dAs;lTs;eTs; 9 14 dAs;lGs;dCs;lAs;lTs;lTs;lA-3′ 118 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;lAs;lTs;eTs;lA-3′ 119 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs; 9 14 dAs;lGs;dCs;abAs;lTs;lTs;abA-3′ l = locked nucleotide; d = deoxyribonucleotide; s = phosphorothioate linkage; e = ethylene-bridged nucleotide; ab = amino-2′-C-Bridged Bicyclic Nucleotide (CBBN). - The experiment was performed as described in Example 7. Test miR-155 oligonucleotide inhibitors used in this experiment were 14 nucleotides in length and contained 9 or 10 LNA modifications (Table 14). The results are shown in
FIG. 26 . -
TABLE 14 SEQ ID LNA NO. Modified Sequence # Length 25 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs;dAs; 9 14 lGs;dCs;lAs;lTs;lTs;lA-3′ 29 5′-lCs;dAs;lCs;dGs;lAs;lTs;lTs;dAs; 10 14 lGs;dCs;lAs;lTs;lTs;lA-3′ 30 5′-lCs;dAs;lCs;dGs;lAs;dTs;lTs;dAs; 9 14 lGs;dCs;lAs;lTs;lTs;lA-3′ 31 5′-lCs;dAs;lCs;dGs;dAs;lTs;lTs;lAs; 9 14 lGs;dCs;lAs;dTs;lTs;lA-3′ - The experiment was performed as described in Example 7. Test miR-155 oligonucleotide inhibitors used in this experiment were oligonucleotide inhibitors of SEQ ID NOs: 25 and 23. The results are shown in
FIG. 27 . - miR-155 oligonucleotide inhibitors of SEQ ID NOs: 25 and 120 were passively transfected in the Oci-Ly3 cell line. mRNA was isolated on
Day 4 and was analyzed by qPCR for the expression of miR-155 target genes (Bach1, CEBPB, CUX1, INPP5D/SHIP1, Jarid2, Picalm, and Wee1).FIG. 28 shows the fold-change in the expression of these genes upon transfection of the oligonucleotide inhibitors of SEQ ID NOs: 25 and 120. The order of genes from left to right in each data point inFIG. 28 is Bach1, CEBPB, CUX1, INPP5D/SHIP1, Jarid2, Picalm, and Wee1. SEQ ID NO: 120 contains CBBN nucleotides in the same positions as the LNA in SEQ ID NO: 25.
Claims (23)
1-71. (canceled)
72. An oligonucleotide inhibitor of miR-155, comprising the sequence of 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.dAs.lTs.lTs.lA-3′ (SEQ ID NO: 53), wherein l stands for a locked nucleotide; d stands for a deoxyribonucleotide; and s stands for a phosphorothioate linkage.
73. The oligonucleotide inhibitor of claim 72 , wherein said oligonucleotide inhibitor consists of the sequence of 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.dAs.lTs.lTs.lA-3′ (SEQ ID NO: 53).
74. The oligonucleotide inhibitor of claim 72 , wherein said oligonucleotide inhibitor reduces proliferation of cancer cells.
75. The oligonucleotide inhibitor of claim 74 , wherein said cancer cells are T cell lymphoma cells.
76. The oligonucleotide inhibitor of claim 74 , wherein the proliferation of cancer cells is reduced by about 30-90% compared to untreated cells.
77. The oligonucleotide inhibitor of claim 75 , wherein the proliferation of T cell lymphoma cells is reduced by about 30-90% compared to untreated cells.
78. The oligonucleotide inhibitor of claim 72 , wherein said oligonucleotide inhibitor induces apoptosis of cancer cells.
79. The oligonucleotide inhibitor of claim 78 , wherein said cancer cells are T cell lymphoma cells.
80. The oligonucleotide inhibitor of claim 78 , wherein the oligonucleotide inhibitor increases caspase activity in cancer cells by at least about 2-fold compared to untreated cells.
81. The oligonucleotide inhibitor of claim 72 , wherein said oligonucleotide inhibitor reduces proliferation of T cells.
82. The oligonucleotide inhibitor of claim 81 , wherein the reduction in T cell proliferation is dose-dependent.
83. A composition comprising an oligonucleotide inhibitor of miR-155, comprising the sequence of 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.dAs.lTs.lTs.lA-3′ (SEQ ID NO: 53), wherein l stands for a locked nucleotide; d stands for a deoxyribonucleotide; and s stands for a phosphorothioate linkage.
84. The composition of claim 83 , wherein said oligonucleotide inhibitor consists of the sequence of 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.dAs.lTs.lTs.lA-3′ (SEQ ID NO: 53).
85. The composition of claim 83 , wherein the composition is a pharmaceutical composition and comprises a pharmaceutically acceptable carrier or excipient.
86. A method for treating a T cell lymphoma in a subject in need thereof, comprising administering to the subject an oligonucleotide inhibitor of miR-155 comprising the sequence of 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.dAs.lTs.lTs.lA-3′ (SEQ ID NO: 53), wherein l stands for a locked nucleotide; d stands for a deoxyribonucleotide; and s stands for a phosphorothioate linkage.
87. The method of claim 86 , wherein said oligonucleotide inhibitor consists of the sequence of 5′-lCs.dAs.lCs.dGs.dAs.lTs.lTs.dAs.lGs.lCs.dAs.lTs.lTs.lA-3′ (SEQ ID NO: 53).
88. The method of claim 86 , wherein the administration of said oligonucleotide inhibitor reduces proliferation of T cell lymphoma cells.
89. The method of claim 88 , wherein the proliferation of T cell lymphoma cells is reduced by about 30-90% compared to untreated cells.
90. The method of claim 86 , wherein the administration of said oligonucleotide inhibitor shows a dose-dependent inhibition of miR-155.
91. The method of claim 86 , wherein the administration of said oligonucleotide inhibitor induces apoptosis of T cell lymphoma cells.
92. The method of claim 91 , wherein the administration of said oligonucleotide inhibitor increases caspase activity in T cell lymphoma cells by at least about 2-fold compared to untreated cells.
93. The method of claim 86 , wherein said oligonucleotide inhibitor is administered to the subject via injection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/382,883 US20190359980A1 (en) | 2015-06-05 | 2019-04-12 | Oligonucleotide compositions and uses thereof |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562171758P | 2015-06-05 | 2015-06-05 | |
PCT/US2016/035865 WO2016197024A2 (en) | 2015-06-05 | 2016-06-03 | Mir-155 inhibitors for treating cutaneous t cell lymphoma (ctcl) |
US15/714,671 US9994852B2 (en) | 2015-06-05 | 2017-09-25 | Oligonucleotide compositions and uses thereof |
US15/976,333 US10316318B2 (en) | 2015-06-05 | 2018-05-10 | Oligonucleotide compositions and uses thereof |
US16/382,883 US20190359980A1 (en) | 2015-06-05 | 2019-04-12 | Oligonucleotide compositions and uses thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/976,333 Continuation US10316318B2 (en) | 2015-06-05 | 2018-05-10 | Oligonucleotide compositions and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190359980A1 true US20190359980A1 (en) | 2019-11-28 |
Family
ID=57441983
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/173,368 Expired - Fee Related US9771585B2 (en) | 2015-06-05 | 2016-06-03 | miR-155 inhibitors for treating cutaneous T cell lymphoma (CTCL) |
US15/677,818 Abandoned US20180127750A1 (en) | 2015-06-05 | 2017-08-15 | Mir-155 inhibitors for treating cutaneous t cell lymphoma (ctcl) |
US15/714,671 Expired - Fee Related US9994852B2 (en) | 2015-06-05 | 2017-09-25 | Oligonucleotide compositions and uses thereof |
US15/976,333 Expired - Fee Related US10316318B2 (en) | 2015-06-05 | 2018-05-10 | Oligonucleotide compositions and uses thereof |
US16/382,883 Abandoned US20190359980A1 (en) | 2015-06-05 | 2019-04-12 | Oligonucleotide compositions and uses thereof |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/173,368 Expired - Fee Related US9771585B2 (en) | 2015-06-05 | 2016-06-03 | miR-155 inhibitors for treating cutaneous T cell lymphoma (CTCL) |
US15/677,818 Abandoned US20180127750A1 (en) | 2015-06-05 | 2017-08-15 | Mir-155 inhibitors for treating cutaneous t cell lymphoma (ctcl) |
US15/714,671 Expired - Fee Related US9994852B2 (en) | 2015-06-05 | 2017-09-25 | Oligonucleotide compositions and uses thereof |
US15/976,333 Expired - Fee Related US10316318B2 (en) | 2015-06-05 | 2018-05-10 | Oligonucleotide compositions and uses thereof |
Country Status (14)
Country | Link |
---|---|
US (5) | US9771585B2 (en) |
EP (1) | EP3303590A4 (en) |
JP (2) | JP6721252B2 (en) |
KR (2) | KR20190118688A (en) |
CN (1) | CN108138180A (en) |
AU (2) | AU2016270434B2 (en) |
BR (1) | BR112017026201A2 (en) |
CA (1) | CA2986949C (en) |
HK (1) | HK1253405A1 (en) |
IL (1) | IL255896A (en) |
MX (2) | MX368314B (en) |
NZ (1) | NZ737542A (en) |
RU (1) | RU2718534C2 (en) |
WO (1) | WO2016197024A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11478500B2 (en) * | 2018-08-16 | 2022-10-25 | The Regents Of The University Of California | Anticancer compositions and methods for making and using them |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2016270434B2 (en) | 2015-06-05 | 2019-07-11 | MiRagen Therapeutics, Inc. | miR-155 inhibitors for treating cutaneous T cell lymphoma (CTCL) |
TWI808055B (en) | 2016-05-11 | 2023-07-11 | 美商滬亞生物國際有限公司 | Combination therapies of hdac inhibitors and pd-1 inhibitors |
TWI794171B (en) | 2016-05-11 | 2023-03-01 | 美商滬亞生物國際有限公司 | Combination therapies of hdac inhibitors and pd-l1 inhibitors |
EP3481404A4 (en) * | 2016-07-07 | 2020-03-25 | Miragen Therapeutics, Inc. | Methods for treating cutaneous t-cell lymphoma (ctcl) with mir-155 inhibitors |
EP3494228B1 (en) * | 2016-08-03 | 2021-07-07 | CBmed GmbH Center for Biomarker Research in Medicine | Method for prognosing and diagnosing tumors |
WO2020117312A1 (en) * | 2018-12-03 | 2020-06-11 | MiRagen Therapeutics, Inc. | Treatment of adult t cell leukemia/lymphoma (atll) using mir-155 inhibitors |
CN112661826B (en) * | 2020-12-25 | 2022-03-29 | 中山大学 | Small peptide ERpeptide and application thereof in acute myelogenous leukemia |
WO2024206152A2 (en) * | 2023-03-24 | 2024-10-03 | Board Of Regents, The University Of Texas System | Engineered natural killer cells with enhanced antitumor memory responses |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090143326A1 (en) * | 2007-10-04 | 2009-06-04 | Santaris Pharma A/S | MICROMIRs |
US20090298916A1 (en) * | 2008-03-07 | 2009-12-03 | Santaris Pharma A/S | Pharmaceutical compositions for treatment of microRNA related diseases |
US20100004320A1 (en) * | 2006-04-03 | 2010-01-07 | Santaris Pharma A/S | Pharmaceutical Composition |
Family Cites Families (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1541463A (en) | 1975-10-11 | 1979-02-28 | Lion Dentifrice Co Ltd | Process for prparing a multiple emulsion having a dispersing form of water-phase/oil-phase/water-phase |
US4960764A (en) | 1987-03-06 | 1990-10-02 | Richardson-Vicks Inc. | Oil-in-water-in-silicone emulsion compositions |
US5260065A (en) | 1991-09-17 | 1993-11-09 | Micro Vesicular Systems, Inc. | Blended lipid vesicles |
US5981505A (en) | 1993-01-26 | 1999-11-09 | The Trustees Of The University Of Pennsylvania | Compositions and methods for delivery of genetic material |
US5837533A (en) | 1994-09-28 | 1998-11-17 | American Home Products Corporation | Complexes comprising a nucleic acid bound to a cationic polyamine having an endosome disruption agent |
US5840710A (en) | 1994-12-09 | 1998-11-24 | Genzyme Corporation | Cationic amphiphiles containing ester or ether-linked lipophilic groups for intracellular delivery of therapeutic molecules |
CZ311997A3 (en) | 1995-04-03 | 1998-01-14 | Johnson & Johnson Consumer Products, Inc. | Composition intended for skin care and containing retinoids and liposomes |
US5783656A (en) | 1996-02-06 | 1998-07-21 | Japan Synthetic Rubber Co., Ltd. | Polyamic acid, polyimide and liquid crystal aligning agent |
US6217900B1 (en) | 1997-04-30 | 2001-04-17 | American Home Products Corporation | Vesicular complexes and methods of making and using the same |
DE69834038D1 (en) | 1997-07-01 | 2006-05-18 | Isis Pharmaceutical Inc | COMPOSITIONS AND METHOD FOR THE ADMINISTRATION OF OLIGONUCLEOTIDES OVER THE DISHES |
CN1311630A (en) | 1998-05-26 | 2001-09-05 | Icn药品公司 | Novel nucleosides having bicycle surgar moiety |
US6838283B2 (en) | 1998-09-29 | 2005-01-04 | Isis Pharmaceuticals Inc. | Antisense modulation of survivin expression |
US6693187B1 (en) | 2000-10-17 | 2004-02-17 | Lievre Cornu Llc | Phosphinoamidite carboxlates and analogs thereof in the synthesis of oligonucleotides having reduced internucleotide charge |
EP2428568B1 (en) | 2001-09-28 | 2018-04-25 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Microrna molecules |
CA2487274A1 (en) | 2002-05-06 | 2003-11-13 | Nucleonics Inc. | Spermine chemically linked to lipids and cell-specific targeting molecules as a transfection agent |
CA2533701A1 (en) | 2003-07-31 | 2005-02-17 | Isis Pharmaceuticals, Inc. | Oligomeric compounds and compositions for use in modulation of small non-coding rnas |
JP5654722B2 (en) | 2003-11-26 | 2015-01-14 | ユニバーシティ オブ マサチューセッツ | Sequence-specific inhibition of short RNA function |
CA2554818A1 (en) | 2004-02-09 | 2005-08-25 | Thomas Jefferson University | Diagnosis and treatment of cancers with microrna located in or near cancer-associated chromosomal features |
WO2005079397A2 (en) | 2004-02-13 | 2005-09-01 | Rockefeller University | Anti-microrna oligonucleotide molecules |
EP2471923B1 (en) | 2004-05-28 | 2014-08-20 | Asuragen, Inc. | Methods and compositions involving microRNA |
JP5192234B2 (en) | 2004-08-10 | 2013-05-08 | アルナイラム ファーマシューティカルズ, インコーポレイテッド | Chemically modified oligonucleotide |
US8071306B2 (en) | 2005-01-25 | 2011-12-06 | Merck Sharp & Dohme Corp. | Methods for quantitating small RNA molecules |
US7700288B2 (en) | 2005-02-11 | 2010-04-20 | Wisconsin Alumni Research Foundation | miR-155 assay |
CN101341259B (en) | 2005-08-01 | 2011-12-21 | 俄亥俄州立大学研究基金会 | Micro-rna-based methods and compositions for the diagnosis, prognosis and treatment of breast cancer |
US20070104775A1 (en) | 2005-09-15 | 2007-05-10 | Steffen Panzner | Amphoteric liposomes |
EP2487252B1 (en) | 2006-01-05 | 2014-10-15 | The Ohio State University Research Foundation | MicroRNA-based methods for the diagnosis of colon cancer |
ES2554531T3 (en) | 2006-01-05 | 2015-12-21 | The Ohio State University Research Foundation | Procedures based on microRNAs for the diagnosis, prognosis and treatment of lung cancer |
EP2591794A1 (en) | 2006-01-05 | 2013-05-15 | The Ohio State University Research Foundation | MicroRNA expressions abnormalities in pancreatic endocrine and acinar tumors |
EP1986697B1 (en) * | 2006-02-17 | 2016-06-29 | GE Healthcare Dharmacon, Inc. | Compositions and methods for inhibiting gene silencing by rna interference |
CN101448958A (en) | 2006-03-20 | 2009-06-03 | 俄亥俄州立大学研究基金会 | MicroRNA fingerprints during human megakaryocytopoiesis |
EP3431602A1 (en) | 2006-04-03 | 2019-01-23 | Roche Innovation Center Copenhagen A/S | Pharmaceutical composition comprising anti-mirna antisense oligonucleotides |
NZ594605A (en) * | 2006-04-03 | 2013-03-28 | Santaris Pharma As | Pharmaceutical compositions comprising anti miRNA antisense oligonucleotides |
US8697672B2 (en) | 2007-05-16 | 2014-04-15 | California Institute Of Technology | Microrna inhibition for the treatment of inflammation and myeloproliferative disorders |
US8465918B2 (en) | 2007-08-03 | 2013-06-18 | The Ohio State University Research Foundation | Ultraconserved regions encoding ncRNAs |
US20100286378A1 (en) | 2007-08-27 | 2010-11-11 | Boston Biomedical, Inc. | Composition of Asymmetric RNA Duplex As MicroRNA Mimetic or Inhibitor |
US7993831B2 (en) | 2007-09-14 | 2011-08-09 | Asuragen, Inc. | Methods of normalization in microRNA detection assays |
CN101424640B (en) | 2007-11-02 | 2012-07-25 | 江苏命码生物科技有限公司 | Method for detecting miRNA in blood serum, detection kit, biochip, making method thereof and application method |
US20100240058A1 (en) * | 2007-11-23 | 2010-09-23 | Panagene Inc. | MicroRNA Antisense PNAs, Compositions Comprising the Same, and Methods for Using and Evaluating the Same |
CN102007408A (en) | 2008-02-28 | 2011-04-06 | 俄亥俄州立大学研究基金会 | Microrna signatures associated with cytogenetics and prognosis in acute myeloid leukemia (aml) and uses thereof |
WO2010000665A1 (en) * | 2008-06-30 | 2010-01-07 | Santaris Pharma A/S | Antidote oligomers |
US8492357B2 (en) | 2008-08-01 | 2013-07-23 | Santaris Pharma A/S | Micro-RNA mediated modulation of colony stimulating factors |
BRPI1008517A2 (en) * | 2009-02-04 | 2016-03-08 | Univ Texas | mir-208 and mir-499 dual targeting in the treatment of heart disease. |
CA2761106C (en) | 2009-05-05 | 2019-01-15 | Miragen Therapeutics | Lipophilic polynucleotide conjugates |
WO2011012672A1 (en) | 2009-07-29 | 2011-02-03 | Pharnext | New diagnostic tools for alzheimer disease |
EP2510122B1 (en) | 2009-12-08 | 2017-04-12 | Université Joseph Fourier | Use of mi-rnas as biomarkers for diagnosing gliomas |
WO2011094683A2 (en) | 2010-01-29 | 2011-08-04 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Method of identifying myelodysplastic syndromes |
WO2011119553A1 (en) | 2010-03-26 | 2011-09-29 | The Ohio State University | Materials and methods related to modulation of mismatch repair and genomic stability by mir-155 |
EP2553121A1 (en) | 2010-04-01 | 2013-02-06 | Department of Biotechnology | MICRORNAS (miRNA) AS BIOMARKERS FOR DETECTING DIFFERENT GRADES OF GLIOMAS AND PATHWAYS OF GLIOMA PROGRESSION |
WO2012037043A2 (en) | 2010-09-13 | 2012-03-22 | California Institute Of Technolgoy | Treatment of autoimmune inflammation using mir-155 |
BR112013012265A2 (en) | 2010-11-17 | 2016-08-02 | Asuragen Inc | mirnas as biomarkers to distinguish benign from malignant thyroid neoplasms |
JP2014509852A (en) | 2011-03-07 | 2014-04-24 | ジ・オハイオ・ステート・ユニバーシティ | Mutagenic activity induced by microRNA-155 (miR-155) links inflammation and cancer |
ES2630602T3 (en) | 2011-04-18 | 2017-08-22 | Diamir, Llc | MiRNA based universal detection test (PDU) |
US9315810B2 (en) | 2011-06-03 | 2016-04-19 | National University Corporation Hokkaido University | Oligonucleotide derivative, oligonucleotide derivative-containing pharmaceutical composition for treatment and pharmaceutical composition for diagnosis, and oligonucleotide derivative for regulation of miRNA function |
ES2610245T3 (en) | 2011-07-15 | 2017-04-26 | Leo Pharma A/S | MicroRNA profiling for diagnosis in cutaneous T-cell lymphoma (CTCL) |
JP6234370B2 (en) | 2011-10-11 | 2017-11-22 | ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッドThe Brigham and Women’s Hospital, Inc. | MicroRNAs in neurodegenerative disorders |
US9447471B2 (en) | 2011-12-29 | 2016-09-20 | Quest Diagnostics Investments Incorporated | Microrna profiling for diagnosis of dysplastic nevi and melanoma |
WO2013134403A1 (en) | 2012-03-06 | 2013-09-12 | The Washington University | Method of treating neurodegenerative diseases with microrna regulators |
US20130236453A1 (en) * | 2012-03-12 | 2013-09-12 | The Ohio State University | Methods and Compositions for Modulating Acute Graft-versus-Host Disease using miR-155 Specific Inhibitors |
US20160002624A1 (en) | 2012-05-17 | 2016-01-07 | Isis Pharmaceuticals, Inc. | Antisense oligonucleotide compositions |
US10307490B2 (en) * | 2012-05-23 | 2019-06-04 | The Ohio State University | Lipid nanoparticle compositions for antisense oligonucleotides delivery |
WO2014089029A1 (en) | 2012-12-03 | 2014-06-12 | Ohio State Innovation Foundation | Activation of innate immunity by mirna for cancer and infection treatment |
CN105189751B (en) | 2013-03-15 | 2019-04-23 | 米拉根医疗股份有限公司 | Bridged bicyclic nucleosides |
US20180161357A1 (en) | 2015-06-05 | 2018-06-14 | MiRagen Therapeutics, Inc. | Mir-155 inhibitors for treating amyotrophic lateral sclerosis (als) |
AU2016270434B2 (en) | 2015-06-05 | 2019-07-11 | MiRagen Therapeutics, Inc. | miR-155 inhibitors for treating cutaneous T cell lymphoma (CTCL) |
EP3481404A4 (en) | 2016-07-07 | 2020-03-25 | Miragen Therapeutics, Inc. | Methods for treating cutaneous t-cell lymphoma (ctcl) with mir-155 inhibitors |
-
2016
- 2016-06-03 AU AU2016270434A patent/AU2016270434B2/en not_active Ceased
- 2016-06-03 NZ NZ73754216A patent/NZ737542A/en not_active IP Right Cessation
- 2016-06-03 US US15/173,368 patent/US9771585B2/en not_active Expired - Fee Related
- 2016-06-03 CA CA2986949A patent/CA2986949C/en not_active Expired - Fee Related
- 2016-06-03 KR KR1020197029891A patent/KR20190118688A/en not_active Withdrawn
- 2016-06-03 RU RU2017146374A patent/RU2718534C2/en active
- 2016-06-03 EP EP16804580.5A patent/EP3303590A4/en not_active Withdrawn
- 2016-06-03 WO PCT/US2016/035865 patent/WO2016197024A2/en active Application Filing
- 2016-06-03 CN CN201680042052.2A patent/CN108138180A/en active Pending
- 2016-06-03 BR BR112017026201-0A patent/BR112017026201A2/en not_active Application Discontinuation
- 2016-06-03 JP JP2017562663A patent/JP6721252B2/en not_active Expired - Fee Related
- 2016-06-03 MX MX2017015400A patent/MX368314B/en active IP Right Grant
- 2016-06-03 HK HK18112703.3A patent/HK1253405A1/en unknown
- 2016-06-03 KR KR1020187000338A patent/KR102034619B1/en not_active Expired - Fee Related
-
2017
- 2017-08-15 US US15/677,818 patent/US20180127750A1/en not_active Abandoned
- 2017-09-25 US US15/714,671 patent/US9994852B2/en not_active Expired - Fee Related
- 2017-11-26 IL IL255896A patent/IL255896A/en unknown
- 2017-11-29 MX MX2019011469A patent/MX2019011469A/en unknown
-
2018
- 2018-05-10 US US15/976,333 patent/US10316318B2/en not_active Expired - Fee Related
-
2019
- 2019-04-12 US US16/382,883 patent/US20190359980A1/en not_active Abandoned
- 2019-09-20 AU AU2019232918A patent/AU2019232918A1/en not_active Abandoned
-
2020
- 2020-03-25 JP JP2020054154A patent/JP2020094073A/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100004320A1 (en) * | 2006-04-03 | 2010-01-07 | Santaris Pharma A/S | Pharmaceutical Composition |
US20090143326A1 (en) * | 2007-10-04 | 2009-06-04 | Santaris Pharma A/S | MICROMIRs |
US20090298916A1 (en) * | 2008-03-07 | 2009-12-03 | Santaris Pharma A/S | Pharmaceutical compositions for treatment of microRNA related diseases |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11478500B2 (en) * | 2018-08-16 | 2022-10-25 | The Regents Of The University Of California | Anticancer compositions and methods for making and using them |
US12016877B2 (en) | 2018-08-16 | 2024-06-25 | The Regents Of The University Of California | Anticancer compositions and methods for making and using them |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10316318B2 (en) | Oligonucleotide compositions and uses thereof | |
US9994847B2 (en) | miR-29 mimics and uses thereof | |
CA2754749C (en) | Treatment of sirtuin 1 (sirt1) related diseases by inhibition of natural antisense transcript to sirt1 | |
US10280422B2 (en) | MiR-92 inhibitors and uses thereof | |
US20200276220A1 (en) | Methods for treating cutaneous t-cell lymphoma (ctcl) with mir-155 inhibitors | |
EP3052639A1 (en) | Methods for increasing neuronal survival | |
WO2019161294A1 (en) | Targeting lipid metabolism and free fatty acid (ffa) oxidation to treat diseases mediated by resident memory t cells (trm) | |
Kohnken | MicroRNAs in Cutaneous T-cell Lymphoma Pathogenesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MIRAGEN THERAPEUTICS, INC., COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RODMAN, DAVID;SETO, ANITA;DALBY, CHRISTINA;AND OTHERS;SIGNING DATES FROM 20180508 TO 20180531;REEL/FRAME:050279/0818 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |