US20130274873A1 - Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage - Google Patents
Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage Download PDFInfo
- Publication number
- US20130274873A1 US20130274873A1 US13/839,357 US201313839357A US2013274873A1 US 20130274873 A1 US20130274873 A1 US 20130274873A1 US 201313839357 A US201313839357 A US 201313839357A US 2013274873 A1 US2013274873 A1 US 2013274873A1
- Authority
- US
- United States
- Prior art keywords
- stent
- valve
- seal
- skirt
- upper crown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
- A61F2/2418—Scaffolds therefor, e.g. support stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2409—Support rings therefor, e.g. for connecting valves to tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2469—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with resilient valve members, e.g. conical spiral
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0061—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof swellable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0075—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0003—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having an inflatable pocket filled with fluid, e.g. liquid or gas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0069—Sealing means
Definitions
- the present disclosure relates to the field of transcatheter stent-valves.
- the stent-valve may be a cardiac valve, for example, an aortic valve.
- Transcatheter valve implantation (for example, transcatheter aortic valve implantation (TAVI)) is an evolving technology for replacement valve therapy that (i) avoids the trauma of conventional open-chest surgery, and (ii) avoids the need for heart and lung bypass.
- TAVI transcatheter aortic valve implantation
- a stent-valve is compressed and loaded into a delivery catheter.
- the delivery catheter is introduced to the desired site of implantation (for example at the heart) via a percutaneous route or via minimally invasive surgery.
- the stent-valve is deployed into the implantation position from or by the delivery catheter, and the delivery catheter is then withdrawn.
- the skirt is made of compressible biocompatible material, such as pericardial tissue or PET.
- a disadvantage is that such skirts add to the bulk of the stent-valve.
- a thick skirt makes the stent-valve problematic to compress to a desirably small size for implantation.
- a stent-valve for transcatheter delivery comprising a stent supporting a plurality of valve leaflets.
- a seal for mitigating para-valve leakage (which may be referred herein throughout either as “seal” or “para-valve leakage seal”) is provided.
- the seal may be of flexible and/or compliant material.
- the seal is carried by at least one seal support.
- the seal support may be collapsible to a stowed condition in which the seal is relatively streamlined or compressed with respect to the stent when the stent is compressed.
- the seal support in the stowed condition, may be generally coplanar with the body of the stent, or may be arranged compressed against the stent.
- the seal support may be deployable to a deployed condition in which the support holds or biases the seal to a deployed state with respect to the stent.
- the seal support may be self-deploying from the stowed condition to the deployed condition.
- the seal support may be constrainable in the stowed condition by sheathing of the stent in a compressed state for delivery.
- the seal support may be self-deploying from the stored state when the effect of the constraining sheath is removed.
- the seal support may be of shape memory material, for example, nitinol.
- seal support may be integral with the stent (e.g. integrally formed as part of the stent). In other forms, the seal support may be distinct from the stent. Such a seal support may optionally be coupled to or captive on the stent.
- the seal support may be configured to bear against the material of the seal without penetrating through the seal material.
- the seal support may have a shape that distributes contact force.
- a function of the seal support may be to urge the seal outwardly without the seal support penetrating through the seal material or into a tissue surface against which the seal is desired.
- the seal support may comprise a biasing element that biases the seal to a deployed condition (for example).
- the seal support e.g. biasing element
- the seal support may comprise, for example, a cantilever element (or a plurality of cantilever elements).
- the cantilever elements may be capable of flexing independently of one another, in order to provide a high degree of local seal conformity against an irregular lumen or tissue surface.
- each cantilever element is associated with a respective aperture of a lattice structure of the stent.
- the cantilever elements may, for example, have one end coupled (or integral) with the stent body, and an opposite or remote end that is free to deploy outwardly.
- the remote end may have a rounded or enlarged or pad tip to avoid having a sharp end that might otherwise risk penetrating through the seal material.
- the cantilever elements may extend generally in the same direction as each other (e.g. having the remote end directed to one end (such as the outflow end) of the stent-valve), or the cantilever elements may be arranged in two opposite directions (e.g. at least one pointing towards the outflow end, and at least another pointing towards the inflow end), or the cantilever elements may be arranged in a variety of different directions.
- the seal support comprises a ring shape, or tubular shape, or annular member.
- the member may have an annular coil shape.
- the seal support comprises a member that can be stowed in a generally elongate or helical form, and which deploys to a radially expanded loop form.
- the seal support comprises a portion of the stent that everts from a stowed condition to a deployed condition. Eversion of the stent can provide radial expansion upon deployment without increasing significantly the diameter of the stent when compressed (de-everted). For example, an inflow end or portion of the stent may evert towards the outflow end.
- the stent carries a sealing skirt (or web).
- the seal support may bias the skirt (or portions thereof) radially outwardly to distend away from the body of the stent.
- a seal of the stent-valve may be configured to be responsive to direction of blood flow past the seal, relative to inflow and outflow ends of the stent-valve.
- the seal may be configured such that blood flow in a reverse direction (for outflow to inflow) biases the seal to a deployed state to obstruct such flow.
- the seal may comprise at least one web defining one or more pockets.
- the one or more pockets may be configured to fill with blood (or blood components) in response to blood flow in the reverse direction, such that the pocket distends outwardly. Distention of the pocket can fill a gap between the stent-valve and the surrounding anatomy, to obstruct the reverse flow of blood past the pocket.
- the pocket may be defined or carried at a respective aperture of a lattice structure of the stent.
- the pocket may be defined at least partly by an outer skirt carried on an exterior of the stent. Additionally or alternatively, the pocket may be defined at least partly by an inner skirt carried on an interior of the stent.
- a seal may comprise a skirt at least a portion of which is captive with respect to the stent, and at least a further portion of which is free to deploy or float relative to the stent.
- the further portion may contact a surrounding tissue or lumen wall before the body of the stent is fully deployed.
- the stent may be displaced or biased in a first axial direction to seat against native leaflets.
- the frictional contact of the skirt against the tissue may cause the further portion of the skirt to bunch or wrinkle in the axial direction during the displacement action.
- bunching or wrinkling may provide additional material to fill voids or gaps between the stent and the surrounding tissue.
- the further portion of the skirt may seal may be responsive to direction or paravalve blood flow or to pressure blood.
- the further portion may, for example, deploy outwardly to contact a surrounding tissue lumen wall.
- the further portion may form a generally channel shape in response to pressure of blood or flow of blood in the reverse direction.
- the channel shape may bias an outer portion of the skirt to seat against the surrounding tissue or lumen surface.
- a seal of the stent-valve may be embossed to present a non-smooth surface.
- the embossing may be defined by one or more sutures.
- the one or more sutures may define a zig-zag pattern.
- the suture may define a generally continuous embossment to obstruct blood flow past the stent.
- a seal of the stent-valve may be generally oversized compared to the diameter of the stent.
- the seal may be bunched or pleated by connections (e.g. suturing) to the stent that causes bunching or pleating between the connections.
- the bunching/pleating may create additional compliant bulk of seal material able to fill voids or gaps between the stent-valve and the surrounding tissue or lumen surface.
- the positions of the connections may define bunching or pleating in directions in a pattern that obstructs leakage of blood.
- a seal of the stent-valve may be configured to be self-expanding or self-filling due to a physical property of the seal.
- the seal may be of or comprise a foam, sponge or fibrous material.
- a foam, sponge or fibrous material may self-expand resiliently when the stent deploys. Additionally or alternatively, such a material may absorb blood (and/or components thereof) within its pores or interstices in order to expand the material physically or add bulk.
- the seal may be generally flat and/or tubular in a stowed state, and may roll or curl into an annular bead or doughnut when in a deployed state.
- the seal may be self-biased to the deployed state, but be resiliently deformable to the stowed state during compression of the stent for loading into a delivery apparatus.
- the seal Upon removal of a constraining effect of a sheath of the delivery apparatus, the seal may be configured to readopt the deployed state, in order to provide a radially enlarged seal around the stent.
- the stent comprises a lattice structure
- the stent-valve further comprises one or more seals deployable from or through apertures of the lattice.
- the seals comprise web portions of material that define pockets associated with respective apertures of the lattice.
- the web portions may be configured to distend outwardly from the respective apertures.
- the web portions define pockets open on or to one side such that a respective pocket fills with blood to distend outwardly from the aperture of the lattice.
- the lattice structure of the stent may comprise biasing elements for biasing the web portions (e.g. pockets) of material radially outwardly from the lattice structure.
- the stent carries a sealing skirt (or web).
- the stent may comprise biasing elements for biasing the skirt (or portions thereof) radially outwardly to distend away from the body of the stent.
- the sealing skirt may optionally be carried on the exterior of the stent.
- An inner skirt (or web) may optionally be carried on the interior of the stent (and optionally coupled directly to the leaflets).
- At least one of the skirts may be of fabric (e.g. PET). Additionally or alternatively, at least one of the skirts may be of biological tissue, for example, pericardium.
- a biasing element distinct from the stent may bias a seal outwardly.
- the biasing element may be a ring element (e.g. closed ring or split ring), within an annular seal.
- the biasing element may be compressible with the stent to a radially compressed condition.
- the biasing element may expand (e.g. self-expand) towards a radially expanded state when the stent is deployed.
- the biasing element may be of shape memory material, e.g. nitinol.
- FIG. 1 is a schematic drawing illustrating a stent-valve 10 , according to some embodiments of the disclosure.
- FIG. 2 a is a front view of a seal arrangement with cantilevered seal supports
- FIG. 2 b is a side view of FIG. 2 a in a deployed configuration, each according to some embodiments of the disclosure.
- FIG. 3 is a schematic view of a seal arrangement with an annular wire seal support according to some embodiments of the disclosure.
- FIG. 4 a is a schematic perspective view of an elongate seal support around the stent in a compressed state
- FIG. 4 b is a schematic top view of the seal when in a deployed state, each according to some embodiments of the disclosure.
- FIG. 5 a is a schematic view of a seal arrangement in a sheathed non-everted state
- FIG. 5 b shows initial unsheathing of the seal arrangement of FIG. 5 a to permit everting
- FIG. 5 c shows the seal arrangement of FIG. 5 a when unsheathed, each according to some embodiments of the disclosure.
- FIG. 6 is a schematic side view of a further example of seal arrangement with flexible cantilever arms, according to some embodiments of the disclosure.
- FIG. 7 a is a schematic side view of a seal arrangement comprising a rollable cuff when in a deployed state
- FIG. 7 b is a schematic view of the seal arrangement when in a stowed, sheathed state, each according to some embodiments of the disclosure.
- FIG. 8 is a schematic side view of a seal arrangement comprising a porous material, according to some embodiments of the disclosure.
- FIG. 9 a is a schematic side view of a seal arrangement comprising a floating skirt
- FIG. 9 b is a schematic side view of the effect of the seal arrangement of FIG. 9 a when implanted, according to some embodiments of the disclosure.
- FIG. 10 is a schematic illustration of an alternative arrangement of a floating skirt seal, according to some embodiments of the disclosure.
- FIG. 11 is a schematic illustration of an alternative seal arrangement using a plated skirt, according to some embodiments of the disclosure.
- FIG. 12 is a schematic illustration of an alternative seal arrangement using a folded skirt, according to some embodiments of the disclosure.
- FIG. 13 is a schematic illustration of an alternative seal arrangement using distensible pockets, according to some embodiments of the disclosure.
- FIG. 14 is a schematic drawing of an alternative sealing arrangement using swellable material, according to some embodiments of the disclosure.
- FIG. 15 is a schematic drawing illustrating administration of a sealant around the stent-valve, according to some embodiments of the disclosure.
- FIG. 16 is a schematic view of an alternative sealing arrangement using coagulation material, according to some embodiments of the disclosure.
- FIG. 17 is a schematic view of an alternative sealing arrangement using material that elutes calcium locally, according to some embodiments of the disclosure.
- FIG. 18 is a partial schematic view of optional details of a stent-valve of FIG. 1 , according to some embodiments of the disclosure.
- FIG. 19 is a schematic section of the paravalve seal of FIG. 18 , according to some embodiments of the disclosure.
- a cardiac stent-valve 10 is illustrated for transcatheter implantation.
- the stent-valve 10 may be cardiac stent-valve, for example, an aortic stent-valve, a mitral stent-valve, a pulmonary stent-valve or a tricuspid stent-valve, for implantation at the respective valve position in a human heart.
- the stent-valve 10 may optionally comprise biological tissue (for example, pericardium (such as porcine pericardium and/or bovine pericardium) and/or natural cardiac valve leaflets (for example, natural porcine cardiac valve leaflets, optionally attached to a portion of natural cardiac wall tissue).
- biological tissue for example, pericardium (such as porcine pericardium and/or bovine pericardium) and/or natural cardiac valve leaflets (for example, natural porcine cardiac valve leaflets, optionally attached to a portion of natural cardiac wall tissue).
- the biological tissue may be fixed, for example, using glutaraldehyde.
- the stent-valve 10 may be compressible to a radially compressed condition (not shown) for delivery using a delivery catheter, and be expandable to an expanded condition (as shown) at implantation.
- the stent-valve 10 may comprise a stent 12 carrying a plurality of leaflets defining a valve 14 .
- Various geometries of stent 12 may be used.
- the stent 12 may include one of more of: a lower tubular or crown portion 16 ; an upper crown portion 18 ; a plurality of upstanding commissural supports 20 ; and a plurality of stabilization arches 22 .
- the lower portion 16 of the stent 12 may be configured to be deployed after the other regions of the stent 12 have first been at least partly deployed.
- the arches 22 , the supports 20 and the upper crown 18 may be deployed at least partly before the lower portion 16 (in that order, or in reverse order, or in a different order).
- the stent 12 may be urged and/or displaced in the direction of arrow 24 to seat the upper crown 18 against native leaflets at the implantation site. Deploying the lower portion 16 last fixes the stent 12 in its final position.
- At least the lower portion 16 , and optionally a portion of the upper crown 18 , may be formed by a lattice structure of the stent.
- the lattice structure may define apertures, for example, generally diamond-shaped apertures.
- the native leaflets may generally overlap a portion 26 of the stent.
- the native valve annulus may overlap a portion 28 of the stent.
- the stent-valve 10 may further comprise an inner skirt 30 communicating with the leaflets 14 and carried on an interior of the stent 12 .
- the stent-valve 10 may further comprise an outer skirt 32 carried on an exterior of the stent 12 .
- the skirts may partially overlap.
- the skirts may be offset such that one skirt (e.g. the outer skirt 32 ) extends further towards a lower extremity of the stent 12 than the other (e.g. inner skirt 30 ).
- one skirt e.g. the inner skirt 30
- the skirts may be of any suitable flexible and/or compliant material, for example, fabric (e.g. of PET), or of plastics film (e.g. of PET), or of biological tissue (e.g. of pericardium).
- At least the outer skirt 32 is positioned to leave the upper crown 18 substantially un-obscured by the outer skirt 32 .
- Such an arrangement may assist good blood flow to the coronary arteries (for example, in the case of a stent-valve for the aortic valve).
- the lower portion 16 has an extremity formed with a substantially zig-zag shape.
- the zig-zag shape may comprise lower apexes 16 a and upper apexes 16 b.
- the upper apexes 16 b may be masked in FIG. 1 by the superimposed presentation of both the front most and rearmost cells of the lattice structure.
- the zig-zag shape may be substantially continuous around the circumference of the stent 12 .
- the outer skirt 32 may have a peripheral edge having a zig-zag shape that matches substantially the zig-zag shape of the extremity of the lower portion 16 . Such an arrangement can avoid excessive material at the extremity, and thereby facilitate crimping of the stent-valve 10 .
- the outer skirt 32 covers (for example, complete) open cells of the lattice structure down to the stent extremity to reduce risk of blood leakage through the apertures of the cells.
- the outer skirt 32 can also provide a layer of material over the struts of the stent, thereby to cushion the engagement between the stent and the sensitive native heart tissue.
- the valve 14 may comprise biological tissue, for example, pericardium (such as porcine pericardium or bovine pericardium) or natural cardiac valve leaflets (for example, natural porcine cardiac valve leaflets, optionally attached to a portion of natural cardiac wall tissue).
- pericardium such as porcine pericardium or bovine pericardium
- natural cardiac valve leaflets for example, natural porcine cardiac valve leaflets, optionally attached to a portion of natural cardiac wall tissue.
- Other biological or non-biological material could also be used for the valve 14 , as desired.
- the stent 12 may optionally be of a self-expanding type that is compressible to the compressed state for loading into a delivery catheter having a sheath for constraining the stent 12 in the compressed state for delivery to the site of implantation. In use, by removal of the constraining effect of the sheath, the stent 12 self-expands to or towards the expanded state.
- a self-expanding stent may, for example, me of shape-memory material, for example, shape-memory metal alloy, for example, nitinol.
- the stent 12 may be configured to be expanded by application of an expanding force from the delivery catheter, such as by using an expansion balloon.
- seal configurations that may be used with the above-described stent-valve 10 .
- the seal configurations may also be used with different stent shapes and configurations.
- FIG. 2 illustrates a first example of seal support in the form of a plurality cantilever elements 40 mounted on or integral with the stent 12 .
- Each cantilever element 40 may be associated with a respective aperture 42 of the lattice structure.
- Each cantilever element 40 may be bendable generally independently of the others.
- Each cantilever element 40 may be movable between a stowed condition, in which the cantilever element is generally co-planar with the portion of the stent 12 around the aperture 42 (or at least is compressed to lie directly or indirectly there against), and a deployed condition in which the cantilever element 40 is biased radially outwardly from the body (e.g. lower portion 16 ) of the stent 12 ( FIG. 2 b ).
- the seal support urges a seal (e.g. the outer skirt 32 ) outwardly so as to fill gaps or voids between the stent-valve 10 and the surrounding lumen/tissue.
- a seal e.g. the outer skirt 32
- the ability of the cantilever elements 40 to flex independently can provide a high degree of local conformity.
- Each cantilever element 40 may have a remote end 40 a in the form of a rounded, or pad-like, or other non-damaging shape that can bear against the seal material to bias the seal radially outwardly, without penetrating through, or puncturing, the seal material.
- the cantilever elements 40 may be arranged generally in the same orientation (e.g. with the remote ends 40 a directed towards one end, e.g. the outlet end, of the stent 12 ), or distributed to be orientated in two opposite directions, or be distributed to be orientated in a variety of different directions.
- the seal urged by the cantilever elements 40 may be generally continuous, or it may be discontinuous in the form of webs or pockets.
- the pockets may be arranged such that back-pressure of blood, or para-valvular blood flow in the reverse direction from outlet to inlet end of the stent 12 , fills the pockets to cause the pockets further to distend, thereby enhancing the seal effect to obstruct such para-valvular flow. Further detail of such pockets is also described with reference to FIG. 13 , and any of such features may also be used with the present example.
- a seal support 46 is illustrated in the form of an annular wire or ring that is oversize compared to the stent 10 .
- the annular wire is compressible to a stowed state when the stent is compressed, and expands to a deployed state when unconstrained, to urge the seal 48 to a radially expanded state to form a seal against the surrounding tissue/lumen.
- a seal support 50 is illustrated in the form of an elongate member carrying a seal 52 .
- the seal support is compressible to a stowed form ( FIG. 4 a ) for example a helical shape around the stent 12 when in its compressed state.
- the seal support is expandable to a deployed state ( FIG. 4 b ), for example, a radially expanded closed or semi-closed loop form in which the seal support presents the seal 52 in expanded form around the stent 12 .
- a seal support 54 is illustrated in the form of an everting portion of the lower region 16 of the stent 12 .
- the seal support 54 is movable between a stowed, non-everted configuration and a deployed, everted configuration.
- a sheath 56 FIG. 5 a
- the lower portion of the stent including the seal support 54 is generally tubular (non-everted).
- the seal support 56 is unsheathed. Unconstrained, the seal support 56 everts to its deployed state in which the seal is presented and/or biased radially outwardly from the stent body.
- the everted seal support 54 urges the seal into tight sealing contact with the surrounding tissue/lumen.
- the seal may be carried on the inners surface of the stent when compressed, and presented in an outward direction when everted.
- FIG. 6 illustrates a seal support that is similar to both FIGS. 2 and 5 .
- the seal support 58 comprises flexible cantilever elements at the lower portion 16 of the stent 12 , similar to those of FIG. 2
- the seal support 58 also resembles the everted state of the seal support 56 of FIG. 5 .
- the cantilever elements do not move between an everted and non-everted state. In the stowed state, the cantilever elements are generally flat against or within the structure of the stent 12 (similar to FIG. 2 ).
- FIG. 7 illustrates a seal in the form of a rollable bead or cuff 60 .
- the rollable cuff 60 may be self-biased or it may be supported by a seal support frame that tends to roll the cuff 60 .
- a stowed state FIG. 7 b
- the cuff In a stowed state ( FIG. 7 b ), the cuff is unrolled to define a generally flat tubular form.
- the cuff may be constrained in the stowed state by a constraining sheath 62 of a delivery device.
- the cuff 60 When unsheathed, the cuff 60 is free to move to its deployed state ( FIG. 7 a ) in which the cuff 60 rolls up to define a cuff or bead shape.
- Such a seal provides a compliant bead of material to fill any gap between the stent 12 and the surrounding tissue/lumen.
- FIG. 8 illustrates a seal 74 in the form of foam, or sponge or fibrous porous material.
- foam or sponge or fibrous porous material.
- Such material is compressible when dry, because air is easily expelled from the pores and/or interstices of material when compressed.
- the seal 74 may therefore adopt a compressed state without increasing the bulk of the stent-valve 10 significantly.
- blood Once implanted, blood may penetrate and fill the pores and/or interstices of the seal material. The blood may become trapped in the pores and/or interstices, thereby creating a barrier to blood flow through the material. The blood may also cause distension of the seal material to further expand the seal outwardly and fill any gaps of voids around the stent-valve 10 .
- FIG. 9 illustrates a seal in the form of a flexible skirt 80 .
- the skirt 80 depends, for example, from the junction between the upper crown 18 and the lower portion 16 of the stent 16 , to at least partly overlap the lower portion 16 .
- a first (e.g. upper) portion 82 of the skirt 80 is coupled to the stent 12 , to hold the skirt 80 captive.
- the first portion 82 may be sutured to the stent 12 .
- a second (e.g. depending) portion 84 of the skirt 80 is generally unconstrained, and is free to float relative to the stent 12 .
- the implantation procedure for the stent-valve 10 may involve displacing the stent-valve in the direction of arrow 24 to seat the upper crown 18 against native valve leaflets.
- the friction between the floating second portion 84 of the skirt 80 , and the surrounding tissue/lumen may cause the second portion 84 to bunch or wrinkle axially, thus creating an excess of material that is able to seal any gap between the stent-valve 10 and the surrounding tissue/lumen.
- FIG. 10 illustrates an alternative seal in the form of a flexible skirt 90 .
- the skirt 90 projects from the upper crown 18 towards the upper end of the stent 12 .
- the flexible skirt bears outwardly to seal against the surrounding tissue/lumen.
- the flexible skirt may form a channel shape section such that the back pressure of blood increases the sealing pressure against the surrounding tissue/lumen.
- FIG. 11 illustrates an alternative seal in the form of an oversized flexible skirt 100 that is connected to the stent 12 at one or more positions to define pleating or bunching.
- the connections may be by suturing.
- the pleating or bunching creates additional compliant material able to fill vids of gaps between the stent 12 and the surrounding tissue/lumen.
- FIG. 12 illustrates an alternative seal in the form of a skirt that is folded to define a cuff 102 .
- the skirt material is flexible, but the fold creates a radiused bend providing a natural bulge. The bulge biases the seal material outwardly in order to fill voids or gaps between the stent 12 and the surrounding tissue/lumen.
- FIG. 13 illustrates an alternative seal comprising a plurality of flexible pockets 110 .
- Each pocket may be associated with a respective aperture 112 of a lattice structure of the stent, for example, the lower portion 16 and/or the upper crown 18 .
- the pocket 110 may be defined by a flexible web of material.
- One wall of the pocket may be define by a portion of the outer skirt.
- Another wall of the pocket may be defined by a portion of the inner skirt.
- the pocket may be open on one side facing towards the outlet end of the stent, and closed in the opposite direction. In a stowed state, the pocket may collapse or fold substantially flat so as not to increase the bulk of the stent-valve.
- the pocket may open either under the influence of natural resilience, or under the influence of blood back pressure entering the mouth of the pocket.
- the back pressure causes the pocket to distend outwardly against surrounding tissue/lumen, and thereby further obstructing leakage of blood around the outside of the stent-valve 10 .
- FIG. 14 illustrates an alternative seal arrangement comprising material 120 that swells in response to contact with blood.
- the swelling characteristics increase the bulk of the seal, enabling the seal to distend to fill any gaps between the stent-valve 10 and the surrounding tissue/lumen.
- Example swellable materials include a hydrogel and/or a liquid swellable polymer, and/or a so called superabsorbent material.
- the material may, for example, be carried by, or impregnated or otherwise embodied within the outer skirt.
- the skirt may be of fabric comprising fibers of the swellable material.
- the material may be captive within a containing chamber, for example a flexible and/or distensible pouch or cuff.
- the combination of inner and outer skirts, with one comprising swellable material can provide an especially effective seal arrangement. Further background information of use of, for example, a hydrogel for stent-valves may be found in US 2005/137688.
- FIG. 14 The seal of FIG. 14 is also illustrated in other embodiments of FIGS. 18 and 19 .
- the swellable material is denoted by numeral 44 , the containing chamber 42 , together defining the paravalve seal 40 carried by, or comprised within, the outer skirt 32 .
- FIG. 15 illustrates an alternative seal arrangement in which a sealant 122 is dispensed from the delivery catheter 124 (or from a further delivery catheter inserted after implantation), in order to seal around the periphery of the stent valve 10 .
- the sealant is dispensed on the outflow side of the stent-valve to seal any gaps between the upper crown and the native leaflets.
- FIG. 16 illustrates an alternative seal arrangement comprising material 124 that provides hemostatic and/or coagulant effects in response to contact with blood.
- the material 124 may, for example, be carried by, or impregnated or otherwise embodied within the outer skirt.
- the material may be captive within a containing chamber, for example a flexible and/or distensible pouch or cuff.
- the combination of inner and outer skirts, with one comprising such material, can provide an especially effective seal arrangement.
- FIG. 17 illustrates an alternative seal arrangement comprising material 126 that elutes calcium locally.
- the calcium may deposit directly or indirectly against the surrounding tissue/lumen such that any gaps can be occluded.
- the material 126 may, for example, be carried by, or impregnated or otherwise embodied within the outer skirt.
- the material may be captive within a containing chamber, for example a flexible and/or distensible pouch or cuff.
- the combination of inner and outer skirts, with one comprising such material, can provide an especially effective seal arrangement.
- seal arrangements have been described as alternatives, it is envisaged that any two or more of the seal arrangements may be combined for synergistic effect.
- embodiments of the devices, systems and methods have been described herein. As noted elsewhere, these embodiments have been described for illustrative purposes only and are not limiting. Other embodiments are possible and are covered by the disclosure, which will be apparent from the teachings contained herein. Thus, the breadth and scope of the disclosure should not be limited by any of the above-described embodiments but should be defined only in accordance with claims supported by the present disclosure and their equivalents. Moreover, embodiments of the subject disclosure may include methods, systems and devices which may further include any and all elements from any other disclosed methods, systems, and devices, including any and all elements corresponding to stent-valves, and/or seals for stent-valves.
- elements from one or another disclosed embodiments may be interchangeable with elements from other disclosed embodiments.
- one or more features/elements of disclosed embodiments may be removed and still result in patentable subject matter (and thus, resulting in yet more embodiments of the subject disclosure).
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Some embodiments of the present disclosure provide a stent-valve for transcatheter implantation to replace a cardiac valve. In some embodiments, the stent valve being compressible to a compressed state for delivery, and expandable to an operative state for implantation. In some embodiments, the stent-valve comprises a stent, a plurality of leaflets for defining a prosthetic valve, an inner skirt, an outer skirt, and a paravalve seal for sealing against surrounding tissue. In some embodiments, the paravalve seal comprising material that swells in response to contact with blood or components thereof.
Description
- The present disclosure claims priority to European patent application no.
EP 12 002 015.1 filed, Mar. 22, 2012, the entire disclosure of which is herein incorporated by reference. - The present disclosure relates to the field of transcatheter stent-valves. In some embodiments, the stent-valve may be a cardiac valve, for example, an aortic valve.
- Transcatheter valve implantation (for example, transcatheter aortic valve implantation (TAVI)) is an evolving technology for replacement valve therapy that (i) avoids the trauma of conventional open-chest surgery, and (ii) avoids the need for heart and lung bypass. In such a technique, a stent-valve is compressed and loaded into a delivery catheter. The delivery catheter is introduced to the desired site of implantation (for example at the heart) via a percutaneous route or via minimally invasive surgery. The stent-valve is deployed into the implantation position from or by the delivery catheter, and the delivery catheter is then withdrawn.
- Despite the successes of transcatheter stent-valves, technological challenges remain. One such challenge is preventing leakage of blood around the stent-valve (so called para-valve leakage). The above stents form a friction fit with the native anatomy to anchor the stent-valve in position, and are round in cross-section. However, the native anatomy in which the stent is implanted is often off-round and is different for each person. Moreover, heavy calcification of the native anatomy may obstruct full depolyment of any stent, and make the native anatomy even more irregular. It can sometimes be difficult to provide a perfectly sealing fit between the stent-valve and the surrounding anatomy.
- In order to address para-valve leakage, it is known to incorporate an external skirt or cover as part of the stent-valve. For example, the skirt is made of compressible biocompatible material, such as pericardial tissue or PET. The thicker the material of the skirt, the more able the skirt is to occlude gaps and effect a seal. However, a disadvantage is that such skirts add to the bulk of the stent-valve. A thick skirt makes the stent-valve problematic to compress to a desirably small size for implantation.
- It would be desirable to provide a technique for mitigating para-valve leakage without substantially hindering the compressibility of a stent-valve.
- In some embodiments of the present disclosure, a stent-valve for transcatheter delivery is provided, with the stent-valve comprising a stent supporting a plurality of valve leaflets.
- In some embodiments, a seal for mitigating para-valve leakage (which may be referred herein throughout either as “seal” or “para-valve leakage seal”) is provided. The seal may be of flexible and/or compliant material.
- In some embodiments, the seal is carried by at least one seal support. The seal support may be collapsible to a stowed condition in which the seal is relatively streamlined or compressed with respect to the stent when the stent is compressed. For example, in the stowed condition, the seal support may be generally coplanar with the body of the stent, or may be arranged compressed against the stent. The seal support may be deployable to a deployed condition in which the support holds or biases the seal to a deployed state with respect to the stent. The seal support may be self-deploying from the stowed condition to the deployed condition. For example, the seal support may be constrainable in the stowed condition by sheathing of the stent in a compressed state for delivery. The seal support may be self-deploying from the stored state when the effect of the constraining sheath is removed. The seal support may be of shape memory material, for example, nitinol.
- Various forms and structure of seal support are envisaged. In some embodiments, the seal support may be integral with the stent (e.g. integrally formed as part of the stent). In other forms, the seal support may be distinct from the stent. Such a seal support may optionally be coupled to or captive on the stent.
- The seal support may be configured to bear against the material of the seal without penetrating through the seal material. For example, the seal support may have a shape that distributes contact force. A function of the seal support may be to urge the seal outwardly without the seal support penetrating through the seal material or into a tissue surface against which the seal is desired.
- In some embodiments, the seal support may comprise a biasing element that biases the seal to a deployed condition (for example). The seal support (e.g. biasing element) may comprise, for example, a cantilever element (or a plurality of cantilever elements). The cantilever elements may be capable of flexing independently of one another, in order to provide a high degree of local seal conformity against an irregular lumen or tissue surface. In some embodiments, each cantilever element is associated with a respective aperture of a lattice structure of the stent. The cantilever elements may, for example, have one end coupled (or integral) with the stent body, and an opposite or remote end that is free to deploy outwardly. The remote end may have a rounded or enlarged or pad tip to avoid having a sharp end that might otherwise risk penetrating through the seal material. The cantilever elements may extend generally in the same direction as each other (e.g. having the remote end directed to one end (such as the outflow end) of the stent-valve), or the cantilever elements may be arranged in two opposite directions (e.g. at least one pointing towards the outflow end, and at least another pointing towards the inflow end), or the cantilever elements may be arranged in a variety of different directions.
- In some embodiments, the seal support comprises a ring shape, or tubular shape, or annular member. The member may have an annular coil shape.
- In some embodiments, the seal support comprises a member that can be stowed in a generally elongate or helical form, and which deploys to a radially expanded loop form.
- In some embodiments, the seal support comprises a portion of the stent that everts from a stowed condition to a deployed condition. Eversion of the stent can provide radial expansion upon deployment without increasing significantly the diameter of the stent when compressed (de-everted). For example, an inflow end or portion of the stent may evert towards the outflow end.
- In some embodiments, the stent carries a sealing skirt (or web). The seal support may bias the skirt (or portions thereof) radially outwardly to distend away from the body of the stent.
- Additionally or alternatively to embodiments noted above for a seal support, a seal of the stent-valve may be configured to be responsive to direction of blood flow past the seal, relative to inflow and outflow ends of the stent-valve. The seal may be configured such that blood flow in a reverse direction (for outflow to inflow) biases the seal to a deployed state to obstruct such flow.
- For example, in some embodiments, the seal may comprise at least one web defining one or more pockets. The one or more pockets may be configured to fill with blood (or blood components) in response to blood flow in the reverse direction, such that the pocket distends outwardly. Distention of the pocket can fill a gap between the stent-valve and the surrounding anatomy, to obstruct the reverse flow of blood past the pocket.
- In some embodiments, the pocket may be defined or carried at a respective aperture of a lattice structure of the stent. The pocket may be defined at least partly by an outer skirt carried on an exterior of the stent. Additionally or alternatively, the pocket may be defined at least partly by an inner skirt carried on an interior of the stent.
- Additionally or alternatively to the above embodiments, a seal may comprise a skirt at least a portion of which is captive with respect to the stent, and at least a further portion of which is free to deploy or float relative to the stent.
- In some embodiments, the further portion may contact a surrounding tissue or lumen wall before the body of the stent is fully deployed. As part of the deployment procedure, the stent may be displaced or biased in a first axial direction to seat against native leaflets. The frictional contact of the skirt against the tissue may cause the further portion of the skirt to bunch or wrinkle in the axial direction during the displacement action. Such bunching or wrinkling may provide additional material to fill voids or gaps between the stent and the surrounding tissue.
- Additionally or alternatively, in some embodiments, the further portion of the skirt may seal may be responsive to direction or paravalve blood flow or to pressure blood. The further portion may, for example, deploy outwardly to contact a surrounding tissue lumen wall. The further portion may form a generally channel shape in response to pressure of blood or flow of blood in the reverse direction. The channel shape may bias an outer portion of the skirt to seat against the surrounding tissue or lumen surface.
- Additionally or alternatively to the above embodiments, a seal of the stent-valve may be embossed to present a non-smooth surface. For example, the embossing may be defined by one or more sutures. The one or more sutures may define a zig-zag pattern. The suture may define a generally continuous embossment to obstruct blood flow past the stent.
- Additionally or alternatively to the above embodiments, a seal of the stent-valve may be generally oversized compared to the diameter of the stent. The seal may be bunched or pleated by connections (e.g. suturing) to the stent that causes bunching or pleating between the connections. The bunching/pleating may create additional compliant bulk of seal material able to fill voids or gaps between the stent-valve and the surrounding tissue or lumen surface. The positions of the connections may define bunching or pleating in directions in a pattern that obstructs leakage of blood.
- Additionally or alternatively to the above embodiments, a seal of the stent-valve may be configured to be self-expanding or self-filling due to a physical property of the seal.
- For example, in some embodiments, the seal may be of or comprise a foam, sponge or fibrous material. Such a material may self-expand resiliently when the stent deploys. Additionally or alternatively, such a material may absorb blood (and/or components thereof) within its pores or interstices in order to expand the material physically or add bulk.
- In some embodiments, the seal may be generally flat and/or tubular in a stowed state, and may roll or curl into an annular bead or doughnut when in a deployed state. The seal may be self-biased to the deployed state, but be resiliently deformable to the stowed state during compression of the stent for loading into a delivery apparatus. Upon removal of a constraining effect of a sheath of the delivery apparatus, the seal may be configured to readopt the deployed state, in order to provide a radially enlarged seal around the stent.
- In some embodiments, at least a portion of the stent comprises a lattice structure, and the stent-valve further comprises one or more seals deployable from or through apertures of the lattice. In one form, the seals comprise web portions of material that define pockets associated with respective apertures of the lattice. The web portions may be configured to distend outwardly from the respective apertures. For example, in some embodiments, the web portions define pockets open on or to one side such that a respective pocket fills with blood to distend outwardly from the aperture of the lattice. Additionally or alternatively, the lattice structure of the stent may comprise biasing elements for biasing the web portions (e.g. pockets) of material radially outwardly from the lattice structure.
- In some embodiments, the stent carries a sealing skirt (or web). The stent may comprise biasing elements for biasing the skirt (or portions thereof) radially outwardly to distend away from the body of the stent. The sealing skirt may optionally be carried on the exterior of the stent. An inner skirt (or web) may optionally be carried on the interior of the stent (and optionally coupled directly to the leaflets). At least one of the skirts may be of fabric (e.g. PET). Additionally or alternatively, at least one of the skirts may be of biological tissue, for example, pericardium.
- In some embodiments, a biasing element distinct from the stent may bias a seal outwardly. For example, the biasing element may be a ring element (e.g. closed ring or split ring), within an annular seal. The biasing element may be compressible with the stent to a radially compressed condition. The biasing element may expand (e.g. self-expand) towards a radially expanded state when the stent is deployed. The biasing element may be of shape memory material, e.g. nitinol.
- Certain features, ideas and advantages of the embodiments taught by the present disclosure are identified above and/or in the appended claims, but these do not limit any embodiment or invention disclosed herein. Protection is claimed for any novel idea or feature described herein and/or illustrated in the drawings whether to not emphasis has been placed thereon.
- Non-limiting embodiments of the disclosure are illustrated in the accompanying drawings, in which:
-
FIG. 1 is a schematic drawing illustrating a stent-valve 10, according to some embodiments of the disclosure. -
FIG. 2 a is a front view of a seal arrangement with cantilevered seal supports, andFIG. 2 b is a side view ofFIG. 2 a in a deployed configuration, each according to some embodiments of the disclosure. -
FIG. 3 is a schematic view of a seal arrangement with an annular wire seal support according to some embodiments of the disclosure. -
FIG. 4 a is a schematic perspective view of an elongate seal support around the stent in a compressed state, andFIG. 4 b is a schematic top view of the seal when in a deployed state, each according to some embodiments of the disclosure. -
FIG. 5 a is a schematic view of a seal arrangement in a sheathed non-everted state,FIG. 5 b shows initial unsheathing of the seal arrangement ofFIG. 5 a to permit everting, andFIG. 5 c shows the seal arrangement ofFIG. 5 a when unsheathed, each according to some embodiments of the disclosure. -
FIG. 6 is a schematic side view of a further example of seal arrangement with flexible cantilever arms, according to some embodiments of the disclosure. -
FIG. 7 a is a schematic side view of a seal arrangement comprising a rollable cuff when in a deployed state, andFIG. 7 b is a schematic view of the seal arrangement when in a stowed, sheathed state, each according to some embodiments of the disclosure. -
FIG. 8 is a schematic side view of a seal arrangement comprising a porous material, according to some embodiments of the disclosure. -
FIG. 9 a is a schematic side view of a seal arrangement comprising a floating skirt, and -
FIG. 9 b is a schematic side view of the effect of the seal arrangement ofFIG. 9 a when implanted, according to some embodiments of the disclosure. -
FIG. 10 is a schematic illustration of an alternative arrangement of a floating skirt seal, according to some embodiments of the disclosure. -
FIG. 11 is a schematic illustration of an alternative seal arrangement using a plated skirt, according to some embodiments of the disclosure. -
FIG. 12 is a schematic illustration of an alternative seal arrangement using a folded skirt, according to some embodiments of the disclosure. -
FIG. 13 is a schematic illustration of an alternative seal arrangement using distensible pockets, according to some embodiments of the disclosure. -
FIG. 14 is a schematic drawing of an alternative sealing arrangement using swellable material, according to some embodiments of the disclosure. -
FIG. 15 is a schematic drawing illustrating administration of a sealant around the stent-valve, according to some embodiments of the disclosure. -
FIG. 16 is a schematic view of an alternative sealing arrangement using coagulation material, according to some embodiments of the disclosure. -
FIG. 17 is a schematic view of an alternative sealing arrangement using material that elutes calcium locally, according to some embodiments of the disclosure. -
FIG. 18 is a partial schematic view of optional details of a stent-valve ofFIG. 1 , according to some embodiments of the disclosure. -
FIG. 19 is a schematic section of the paravalve seal ofFIG. 18 , according to some embodiments of the disclosure. - Referring to
FIG. 1 (andFIG. 18 ), a cardiac stent-valve 10 is illustrated for transcatheter implantation. The stent-valve 10 may be cardiac stent-valve, for example, an aortic stent-valve, a mitral stent-valve, a pulmonary stent-valve or a tricuspid stent-valve, for implantation at the respective valve position in a human heart. - The stent-
valve 10 may optionally comprise biological tissue (for example, pericardium (such as porcine pericardium and/or bovine pericardium) and/or natural cardiac valve leaflets (for example, natural porcine cardiac valve leaflets, optionally attached to a portion of natural cardiac wall tissue). The biological tissue may be fixed, for example, using glutaraldehyde. - The stent-
valve 10 may be compressible to a radially compressed condition (not shown) for delivery using a delivery catheter, and be expandable to an expanded condition (as shown) at implantation. The stent-valve 10 may comprise astent 12 carrying a plurality of leaflets defining avalve 14. Various geometries ofstent 12 may be used. In some embodiments, thestent 12 may include one of more of: a lower tubular orcrown portion 16; anupper crown portion 18; a plurality of upstanding commissural supports 20; and a plurality ofstabilization arches 22. In use, thelower portion 16 of thestent 12 may be configured to be deployed after the other regions of thestent 12 have first been at least partly deployed. For example, thearches 22, thesupports 20 and theupper crown 18 may be deployed at least partly before the lower portion 16 (in that order, or in reverse order, or in a different order). At least once theupper crown 18 has been at least partly deployed, thestent 12 may be urged and/or displaced in the direction ofarrow 24 to seat theupper crown 18 against native leaflets at the implantation site. Deploying thelower portion 16 last fixes thestent 12 in its final position. - At least the
lower portion 16, and optionally a portion of theupper crown 18, may be formed by a lattice structure of the stent. The lattice structure may define apertures, for example, generally diamond-shaped apertures. - The native leaflets may generally overlap a
portion 26 of the stent. The native valve annulus may overlap aportion 28 of the stent. - Optionally, the stent-
valve 10 may further comprise aninner skirt 30 communicating with theleaflets 14 and carried on an interior of thestent 12. Additionally or alternatively, the stent-valve 10 may further comprise anouter skirt 32 carried on an exterior of thestent 12. When both skirts are provided, the skirts may partially overlap. The skirts may be offset such that one skirt (e.g. the outer skirt 32) extends further towards a lower extremity of thestent 12 than the other (e.g. inner skirt 30). Additionally or alternatively, one skirt (e.g. the inner skirt 30) extends further towards an upper extremity of thestent 12 than the other (e.g. outer skirt 32). The skirts may be of any suitable flexible and/or compliant material, for example, fabric (e.g. of PET), or of plastics film (e.g. of PET), or of biological tissue (e.g. of pericardium). - Optionally, at least the
outer skirt 32 is positioned to leave theupper crown 18 substantially un-obscured by theouter skirt 32. Such an arrangement may assist good blood flow to the coronary arteries (for example, in the case of a stent-valve for the aortic valve). - In some embodiments, the
lower portion 16 has an extremity formed with a substantially zig-zag shape. The zig-zag shape may compriselower apexes 16 a and upper apexes 16 b. The upper apexes 16 b may be masked inFIG. 1 by the superimposed presentation of both the front most and rearmost cells of the lattice structure. The zig-zag shape may be substantially continuous around the circumference of thestent 12. Theouter skirt 32 may have a peripheral edge having a zig-zag shape that matches substantially the zig-zag shape of the extremity of thelower portion 16. Such an arrangement can avoid excessive material at the extremity, and thereby facilitate crimping of the stent-valve 10. At the same time, theouter skirt 32 covers (for example, complete) open cells of the lattice structure down to the stent extremity to reduce risk of blood leakage through the apertures of the cells. Theouter skirt 32 can also provide a layer of material over the struts of the stent, thereby to cushion the engagement between the stent and the sensitive native heart tissue. - The
valve 14 may comprise biological tissue, for example, pericardium (such as porcine pericardium or bovine pericardium) or natural cardiac valve leaflets (for example, natural porcine cardiac valve leaflets, optionally attached to a portion of natural cardiac wall tissue). Other biological or non-biological material could also be used for thevalve 14, as desired. - The
stent 12 may optionally be of a self-expanding type that is compressible to the compressed state for loading into a delivery catheter having a sheath for constraining thestent 12 in the compressed state for delivery to the site of implantation. In use, by removal of the constraining effect of the sheath, thestent 12 self-expands to or towards the expanded state. A self-expanding stent may, for example, me of shape-memory material, for example, shape-memory metal alloy, for example, nitinol. Alternatively, thestent 12 may be configured to be expanded by application of an expanding force from the delivery catheter, such as by using an expansion balloon. - There now follows a description of various seal configurations that may be used with the above-described stent-
valve 10. The seal configurations may also be used with different stent shapes and configurations. -
FIG. 2 illustrates a first example of seal support in the form of aplurality cantilever elements 40 mounted on or integral with thestent 12. Eachcantilever element 40 may be associated with arespective aperture 42 of the lattice structure. Eachcantilever element 40 may be bendable generally independently of the others. Eachcantilever element 40 may be movable between a stowed condition, in which the cantilever element is generally co-planar with the portion of thestent 12 around the aperture 42 (or at least is compressed to lie directly or indirectly there against), and a deployed condition in which thecantilever element 40 is biased radially outwardly from the body (e.g. lower portion 16) of the stent 12 (FIG. 2 b). The seal support urges a seal (e.g. the outer skirt 32) outwardly so as to fill gaps or voids between the stent-valve 10 and the surrounding lumen/tissue. The ability of thecantilever elements 40 to flex independently can provide a high degree of local conformity. Eachcantilever element 40 may have a remote end 40 a in the form of a rounded, or pad-like, or other non-damaging shape that can bear against the seal material to bias the seal radially outwardly, without penetrating through, or puncturing, the seal material. - The
cantilever elements 40 may be arranged generally in the same orientation (e.g. with the remote ends 40 a directed towards one end, e.g. the outlet end, of the stent 12), or distributed to be orientated in two opposite directions, or be distributed to be orientated in a variety of different directions. - The seal urged by the
cantilever elements 40 may be generally continuous, or it may be discontinuous in the form of webs or pockets. The pockets may be arranged such that back-pressure of blood, or para-valvular blood flow in the reverse direction from outlet to inlet end of thestent 12, fills the pockets to cause the pockets further to distend, thereby enhancing the seal effect to obstruct such para-valvular flow. Further detail of such pockets is also described with reference toFIG. 13 , and any of such features may also be used with the present example. - Referring to
FIG. 3 , a seal support 46 is illustrated in the form of an annular wire or ring that is oversize compared to thestent 10. The annular wire is compressible to a stowed state when the stent is compressed, and expands to a deployed state when unconstrained, to urge theseal 48 to a radially expanded state to form a seal against the surrounding tissue/lumen. - Referring to
FIG. 4 , a seal support 50 is illustrated in the form of an elongate member carrying aseal 52. The seal support is compressible to a stowed form (FIG. 4 a) for example a helical shape around thestent 12 when in its compressed state. The seal support is expandable to a deployed state (FIG. 4 b), for example, a radially expanded closed or semi-closed loop form in which the seal support presents theseal 52 in expanded form around thestent 12. - Referring to
FIG. 5 , aseal support 54 is illustrated in the form of an everting portion of thelower region 16 of thestent 12. Theseal support 54 is movable between a stowed, non-everted configuration and a deployed, everted configuration. In a compressed form constrained by a sheath 56 (FIG. 5 a), the lower portion of the stent including theseal support 54 is generally tubular (non-everted). As the sheath 56 is progressively removed axially (FIG. 5 b), the seal support 56 is unsheathed. Unconstrained, the seal support 56 everts to its deployed state in which the seal is presented and/or biased radially outwardly from the stent body. Further unsheathing of thestent 12 or the lower portion 16 (FIG. 5 c) permits thestent 12 to expand to its expanded state. The evertedseal support 54 urges the seal into tight sealing contact with the surrounding tissue/lumen. The seal may be carried on the inners surface of the stent when compressed, and presented in an outward direction when everted. -
FIG. 6 illustrates a seal support that is similar to bothFIGS. 2 and 5 . The seal support 58 comprises flexible cantilever elements at thelower portion 16 of thestent 12, similar to those ofFIG. 2 The seal support 58 also resembles the everted state of the seal support 56 ofFIG. 5 . In the example ofFIG. 6 , the cantilever elements do not move between an everted and non-everted state. In the stowed state, the cantilever elements are generally flat against or within the structure of the stent 12 (similar toFIG. 2 ). -
FIG. 7 illustrates a seal in the form of a rollable bead orcuff 60. Therollable cuff 60 may be self-biased or it may be supported by a seal support frame that tends to roll thecuff 60. In a stowed state (FIG. 7 b), the cuff is unrolled to define a generally flat tubular form. The cuff may be constrained in the stowed state by a constraining sheath 62 of a delivery device. When unsheathed, thecuff 60 is free to move to its deployed state (FIG. 7 a) in which thecuff 60 rolls up to define a cuff or bead shape. Such a seal provides a compliant bead of material to fill any gap between thestent 12 and the surrounding tissue/lumen. -
FIG. 8 illustrates a seal 74 in the form of foam, or sponge or fibrous porous material. Such material is compressible when dry, because air is easily expelled from the pores and/or interstices of material when compressed. The seal 74 may therefore adopt a compressed state without increasing the bulk of the stent-valve 10 significantly. Once implanted, blood may penetrate and fill the pores and/or interstices of the seal material. The blood may become trapped in the pores and/or interstices, thereby creating a barrier to blood flow through the material. The blood may also cause distension of the seal material to further expand the seal outwardly and fill any gaps of voids around the stent-valve 10. -
FIG. 9 illustrates a seal in the form of aflexible skirt 80. Theskirt 80 depends, for example, from the junction between theupper crown 18 and thelower portion 16 of thestent 16, to at least partly overlap thelower portion 16. A first (e.g. upper)portion 82 of theskirt 80 is coupled to thestent 12, to hold theskirt 80 captive. For example, thefirst portion 82 may be sutured to thestent 12. A second (e.g. depending)portion 84 of theskirt 80 is generally unconstrained, and is free to float relative to thestent 12. - As illustrated in
FIG. 9 b (and explained above in relation toFIG. 1 ), the implantation procedure for the stent-valve 10 may involve displacing the stent-valve in the direction ofarrow 24 to seat theupper crown 18 against native valve leaflets. The friction between the floatingsecond portion 84 of theskirt 80, and the surrounding tissue/lumen may cause thesecond portion 84 to bunch or wrinkle axially, thus creating an excess of material that is able to seal any gap between the stent-valve 10 and the surrounding tissue/lumen. -
FIG. 10 illustrates an alternative seal in the form of aflexible skirt 90. In contrast to the skirt ofFIG. 9 , theskirt 90 projects from theupper crown 18 towards the upper end of thestent 12. As indicated in phantom, under back pressure of blood, or reverse flow of blow around the stent-valve 10, the flexible skirt bears outwardly to seal against the surrounding tissue/lumen. The flexible skirt may form a channel shape section such that the back pressure of blood increases the sealing pressure against the surrounding tissue/lumen. -
FIG. 11 illustrates an alternative seal in the form of an oversizedflexible skirt 100 that is connected to thestent 12 at one or more positions to define pleating or bunching. The connections may be by suturing. The pleating or bunching creates additional compliant material able to fill vids of gaps between thestent 12 and the surrounding tissue/lumen. -
FIG. 12 illustrates an alternative seal in the form of a skirt that is folded to define acuff 102. The skirt material is flexible, but the fold creates a radiused bend providing a natural bulge. The bulge biases the seal material outwardly in order to fill voids or gaps between thestent 12 and the surrounding tissue/lumen. -
FIG. 13 illustrates an alternative seal comprising a plurality offlexible pockets 110. Each pocket may be associated with arespective aperture 112 of a lattice structure of the stent, for example, thelower portion 16 and/or theupper crown 18. Thepocket 110 may be defined by a flexible web of material. One wall of the pocket may be define by a portion of the outer skirt. Another wall of the pocket may be defined by a portion of the inner skirt. The pocket may be open on one side facing towards the outlet end of the stent, and closed in the opposite direction. In a stowed state, the pocket may collapse or fold substantially flat so as not to increase the bulk of the stent-valve. Once deployed, the pocket may open either under the influence of natural resilience, or under the influence of blood back pressure entering the mouth of the pocket. The back pressure causes the pocket to distend outwardly against surrounding tissue/lumen, and thereby further obstructing leakage of blood around the outside of the stent-valve 10. -
FIG. 14 illustrates an alternative sealarrangement comprising material 120 that swells in response to contact with blood. The swelling characteristics increase the bulk of the seal, enabling the seal to distend to fill any gaps between the stent-valve 10 and the surrounding tissue/lumen. Example swellable materials include a hydrogel and/or a liquid swellable polymer, and/or a so called superabsorbent material. The material may, for example, be carried by, or impregnated or otherwise embodied within the outer skirt. For example, the skirt may be of fabric comprising fibers of the swellable material. The material may be captive within a containing chamber, for example a flexible and/or distensible pouch or cuff. The combination of inner and outer skirts, with one comprising swellable material, can provide an especially effective seal arrangement. Further background information of use of, for example, a hydrogel for stent-valves may be found in US 2005/137688. - The seal of
FIG. 14 is also illustrated in other embodiments ofFIGS. 18 and 19 . The swellable material is denoted bynumeral 44, the containingchamber 42, together defining theparavalve seal 40 carried by, or comprised within, theouter skirt 32. -
FIG. 15 illustrates an alternative seal arrangement in which asealant 122 is dispensed from the delivery catheter 124 (or from a further delivery catheter inserted after implantation), in order to seal around the periphery of thestent valve 10. For example, the sealant is dispensed on the outflow side of the stent-valve to seal any gaps between the upper crown and the native leaflets. -
FIG. 16 illustrates an alternative sealarrangement comprising material 124 that provides hemostatic and/or coagulant effects in response to contact with blood. Thematerial 124 may, for example, be carried by, or impregnated or otherwise embodied within the outer skirt. The material may be captive within a containing chamber, for example a flexible and/or distensible pouch or cuff. The combination of inner and outer skirts, with one comprising such material, can provide an especially effective seal arrangement. -
FIG. 17 illustrates an alternative sealarrangement comprising material 126 that elutes calcium locally. The calcium may deposit directly or indirectly against the surrounding tissue/lumen such that any gaps can be occluded. Thematerial 126 may, for example, be carried by, or impregnated or otherwise embodied within the outer skirt. The material may be captive within a containing chamber, for example a flexible and/or distensible pouch or cuff. The combination of inner and outer skirts, with one comprising such material, can provide an especially effective seal arrangement. - Although the seal arrangements have been described as alternatives, it is envisaged that any two or more of the seal arrangements may be combined for synergistic effect.
- Any and all references to publications or other documents, including but not limited to, patents, patent applications, articles, webpages, books, etc., presented in the present application, are herein incorporated by reference in their entirety.
- Although a few variations of the disclosed subject matter have been described in detail above, other modifications are possible. For example, any logic flow depicted in the accompanying figures and/or described herein does not require the particular order shown, or sequential order, to achieve desirable results. Other implementations may be within the scope of at least some of the following exemplary claims.
- Example embodiments of the devices, systems and methods have been described herein. As noted elsewhere, these embodiments have been described for illustrative purposes only and are not limiting. Other embodiments are possible and are covered by the disclosure, which will be apparent from the teachings contained herein. Thus, the breadth and scope of the disclosure should not be limited by any of the above-described embodiments but should be defined only in accordance with claims supported by the present disclosure and their equivalents. Moreover, embodiments of the subject disclosure may include methods, systems and devices which may further include any and all elements from any other disclosed methods, systems, and devices, including any and all elements corresponding to stent-valves, and/or seals for stent-valves. In other words, elements from one or another disclosed embodiments may be interchangeable with elements from other disclosed embodiments. In addition, one or more features/elements of disclosed embodiments may be removed and still result in patentable subject matter (and thus, resulting in yet more embodiments of the subject disclosure).
Claims (11)
1. A stent-valve for transcatheter implantation to replace a cardiac valve, the stent valve being compressible to a compressed state for delivery, and expandable to an operative state for implantation, the stent-valve comprising a stent, a plurality of leaflets for defining a prosthetic valve, an inner skirt, an outer skirt, and a paravalve seal for sealing against surrounding tissue, the paravalve seal comprising material that swells in response to contact with blood.
2. The stent-valve of claim 1 , wherein at least one of the skirts comprises the swellable material.
3. The stent-valve of claim 1 , wherein the stent comprises at least one of: a lower tubular portion; an upper crown portion; a plurality of upstanding commissural supports; a plurality of stabilization arches.
4. The stent-valve of claim 3 , wherein the stent comprises the lower tubular portion, the upper crown portion, the plurality of upstanding commissural supports, and the plurality of stabilization arches.
5. The stent-valve of claim 4 , wherein the lower tubular portion communicates with the upper crown and the commissural supports, wherein the commissural supports upstand relative to the upper crown portion, and wherein the stabilization arches communicate with the commissural supports.
6. The stent-valve of claim 4 , wherein the swellable material is positioned between and spaced from respective extremities of both a free edge of the upper crown, and a free edge of the lower tubular portion.
7. The stent-valve of claim 4 , wherein the lower tubular portion is configured for deployment after at least partial deployment of the upper crown portion, the commissural supports and the stabilization arches.
8. The stent-valve of claim 1 , wherein the outer skirt comprises fabric comprising fibers of the swellable material.
9. The stent-valve of claim 1 , wherein the swellable material is captive within a containing chamber, the containing chamber carried by the outer skirt.
10. A stent-valve for transcatheter implantation to replace a cardiac valve, the stent valve being compressible to a compressed state for delivery, and expandable to an operative state for implantation, the stent-valve comprising a stent, a plurality of leaflets for defining a prosthetic valve, and a paravalve seal for sealing against surrounding tissue, the paravalve seal comprising material that swells in response to contact with blood, the paravalve seal being positioned towards one extremity of the stent, and spaced from said one extremity.
11. The stent-valve of claim 10 , wherein said one extremity of the stent comprises a zig-zag edge, the zig-zag edge including first apexes alternating with second apexes, wherein the paravalve seal is positioned such that it does not extend in the region between the apexes.
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2905544A CA2905544C (en) | 2013-03-15 | 2013-03-25 | Improvements relating to transcatheter stent-valves |
AU2013382378A AU2013382378B2 (en) | 2013-03-15 | 2013-03-25 | Improvements relating to transcatheter stent-valves |
EP20187676.0A EP3777770A1 (en) | 2013-03-15 | 2013-03-25 | Transcatheter valve prosthesis having an external skirt for sealing and preventing paravalvular leakage |
JP2015561945A JP6272915B2 (en) | 2013-03-15 | 2013-03-25 | Improvement of transcatheter stent valve |
EP13735192.0A EP2967845B1 (en) | 2013-03-15 | 2013-03-25 | Improvements relating to transcatheter stent-valves |
CN201710957914.0A CN107714240B (en) | 2013-03-15 | 2013-03-25 | Improvements relating to transcatheter stent-valves |
EP19203816.4A EP3616652B1 (en) | 2013-03-15 | 2013-03-25 | Improvements relating to transcatheter stent-valves |
BR112015022526-8A BR112015022526B1 (en) | 2013-03-15 | 2013-03-25 | STENT VALVE FOR TRANSCATETER IMPLANT FOR REPLACEMENT OF A HEART VALVE |
CN201380074734.8A CN105188609B (en) | 2013-03-15 | 2013-03-25 | It is related to the improvement through catheter holder valve |
EP17206171.5A EP3357456A1 (en) | 2013-03-15 | 2013-03-25 | Improvements relating to transcatheter stent-valves |
PCT/EP2013/000893 WO2014139545A1 (en) | 2012-03-22 | 2013-03-25 | Improvements relating to transcatheter stent-valves |
US14/777,503 US10258464B2 (en) | 2012-03-22 | 2013-03-25 | Transcatheter stent-valves |
US14/879,482 US20160030167A1 (en) | 2012-03-22 | 2015-10-09 | Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage |
US15/344,135 US11207176B2 (en) | 2012-03-22 | 2016-11-04 | Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage |
JP2018000203A JP2018094430A (en) | 2013-03-15 | 2018-01-04 | Improvements relating to transcatheter stent valves |
AU2018203018A AU2018203018B2 (en) | 2013-03-15 | 2018-05-01 | Improvements relating to transcatheter stent-valves |
US16/295,394 US10898321B2 (en) | 2012-03-22 | 2019-03-07 | Transcatheter stent-valves |
JP2019236037A JP2020065939A (en) | 2012-03-22 | 2019-12-26 | Improvement of transcatheter stent valves |
US17/323,452 US11957573B2 (en) | 2012-03-22 | 2021-05-18 | Relating to transcatheter stent-valves |
US18/635,581 US20240252315A1 (en) | 2012-03-22 | 2024-04-15 | Improvements relating to transcatheter stent-valves |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12002015 | 2012-03-22 | ||
EP12002015.1 | 2012-03-22 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/000893 Continuation WO2014139545A1 (en) | 2012-03-22 | 2013-03-25 | Improvements relating to transcatheter stent-valves |
US14/777,503 Continuation US10258464B2 (en) | 2012-03-22 | 2013-03-25 | Transcatheter stent-valves |
US14/879,482 Continuation US20160030167A1 (en) | 2012-03-22 | 2015-10-09 | Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130274873A1 true US20130274873A1 (en) | 2013-10-17 |
Family
ID=49325779
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/839,357 Abandoned US20130274873A1 (en) | 2012-03-22 | 2013-03-15 | Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage |
US14/777,503 Active US10258464B2 (en) | 2012-03-22 | 2013-03-25 | Transcatheter stent-valves |
US14/879,482 Abandoned US20160030167A1 (en) | 2012-03-22 | 2015-10-09 | Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage |
US16/295,394 Active US10898321B2 (en) | 2012-03-22 | 2019-03-07 | Transcatheter stent-valves |
US17/323,452 Active 2033-10-21 US11957573B2 (en) | 2012-03-22 | 2021-05-18 | Relating to transcatheter stent-valves |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/777,503 Active US10258464B2 (en) | 2012-03-22 | 2013-03-25 | Transcatheter stent-valves |
US14/879,482 Abandoned US20160030167A1 (en) | 2012-03-22 | 2015-10-09 | Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage |
US16/295,394 Active US10898321B2 (en) | 2012-03-22 | 2019-03-07 | Transcatheter stent-valves |
US17/323,452 Active 2033-10-21 US11957573B2 (en) | 2012-03-22 | 2021-05-18 | Relating to transcatheter stent-valves |
Country Status (3)
Country | Link |
---|---|
US (5) | US20130274873A1 (en) |
JP (1) | JP2020065939A (en) |
WO (1) | WO2014139545A1 (en) |
Cited By (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140155997A1 (en) * | 2007-09-28 | 2014-06-05 | Peter Nicholas Braido | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
EP2870946A1 (en) * | 2013-11-06 | 2015-05-13 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US20150142104A1 (en) * | 2013-11-19 | 2015-05-21 | St. Jude Medical, Cardiology Division, Inc. | Sealing structures for paravalvular leak protection |
EP2898859A1 (en) * | 2014-01-24 | 2015-07-29 | St. Jude Medical, Cardiology Division, Inc. | Stationary intra-annular halo designs for paravalvular leak (PVL) reduction - active channel filling cuff designs |
WO2015126711A1 (en) * | 2014-02-18 | 2015-08-27 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners and corresponding valve assemblies for paravalvular leak protection |
WO2015126712A1 (en) * | 2014-02-18 | 2015-08-27 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners for paravalvular leak protection |
WO2015164061A1 (en) * | 2014-04-23 | 2015-10-29 | Medtronic Inc. | Paravalvular leak resistant prosthetic heart valve system |
WO2015128747A3 (en) * | 2014-02-28 | 2015-11-26 | Highlife Sas | Transcatheter valve prosthesis |
WO2015179423A1 (en) * | 2014-05-19 | 2015-11-26 | Cardiaq Valve Technologies, Inc. | Replacement mitral valve with annular flap |
US9241794B2 (en) | 2007-09-26 | 2016-01-26 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US20160022444A1 (en) * | 2013-03-13 | 2016-01-28 | Symetis Sa | Prosthesis seals and methods for sealing an expandable prosthesis |
US9289296B2 (en) | 2008-07-15 | 2016-03-22 | St. Jude Medical, Inc. | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US9326856B2 (en) | 2013-03-14 | 2016-05-03 | St. Jude Medical, Cardiology Division, Inc. | Cuff configurations for prosthetic heart valve |
US9339274B2 (en) | 2013-03-12 | 2016-05-17 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak occlusion device for self-expanding heart valves |
US9358108B2 (en) | 2011-09-12 | 2016-06-07 | Highlife Sas | Transcatheter valve prosthesis |
US9387075B2 (en) | 2011-09-12 | 2016-07-12 | Highlife Sas | Transcatheter valve prosthesis |
US9398951B2 (en) | 2013-03-12 | 2016-07-26 | St. Jude Medical, Cardiology Division, Inc. | Self-actuating sealing portions for paravalvular leak protection |
US20160220366A1 (en) * | 2013-09-13 | 2016-08-04 | Ucl Business Plc | Vascular implant |
WO2016124615A3 (en) * | 2015-02-02 | 2016-09-29 | Symetis Sa | Stent seals and method of production |
US20160361161A1 (en) * | 2015-06-12 | 2016-12-15 | St. Jude Medical, Cardiology Division, Inc. | Heart valve repair and replacement |
US9662206B2 (en) | 2011-09-12 | 2017-05-30 | Highlife Sas | Transcatheter valve prosthesis |
US9668858B2 (en) | 2014-05-16 | 2017-06-06 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter valve with paravalvular leak sealing ring |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US9687343B2 (en) | 2014-03-11 | 2017-06-27 | Highlife Sas | Transcatheter valve prosthesis |
US9700409B2 (en) | 2013-11-06 | 2017-07-11 | St. Jude Medical, Cardiology Division, Inc. | Reduced profile prosthetic heart valve |
US9757230B2 (en) | 2014-05-16 | 2017-09-12 | St. Jude Medical, Cardiology Division, Inc. | Stent assembly for use in prosthetic heart valves |
US9763779B2 (en) | 2014-03-11 | 2017-09-19 | Highlife Sas | Transcatheter valve prosthesis |
EP3257472A1 (en) * | 2016-06-17 | 2017-12-20 | Biotronik AG | Heart valve prosthesis with outer skirt |
WO2018005969A1 (en) * | 2016-06-30 | 2018-01-04 | Washington University | Device and method of inhibiting endoleaks |
US9867697B2 (en) | 2013-03-12 | 2018-01-16 | St. Jude Medical, Cardiology Division, Inc. | Self-actuating sealing portions for a paravalvular leak protection |
US9889003B2 (en) | 2014-03-11 | 2018-02-13 | Highlife Sas | Transcatheter valve prosthesis |
US9913715B2 (en) | 2013-11-06 | 2018-03-13 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US20180071090A1 (en) * | 2014-06-10 | 2018-03-15 | St. Jude Medical, Cardiology Division, Inc. | Stent cell bridge for cuff attachment |
WO2018052927A1 (en) * | 2016-09-15 | 2018-03-22 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic heart valve with paravalvular leak mitigation features |
US9962260B2 (en) | 2015-03-24 | 2018-05-08 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic mitral valve |
US9974650B2 (en) | 2015-07-14 | 2018-05-22 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US9974649B2 (en) | 2016-03-24 | 2018-05-22 | Medtronic Vascular, Inc. | Stented prosthetic heart valve having wrap and methods of delivery and deployment |
US10016273B2 (en) | 2015-06-05 | 2018-07-10 | Medtronic, Inc. | Filtered sealing components for a transcatheter valve prosthesis |
US10016276B2 (en) | 2012-11-21 | 2018-07-10 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic heart valves |
US10039637B2 (en) | 2015-02-11 | 2018-08-07 | Edwards Lifesciences Corporation | Heart valve docking devices and implanting methods |
US10052199B2 (en) | 2014-02-21 | 2018-08-21 | Mitral Valve Technologies Sarl | Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device |
US10064719B2 (en) | 2014-03-11 | 2018-09-04 | Highlife Sas | Transcatheter valve prosthesis |
US10117742B2 (en) | 2013-09-12 | 2018-11-06 | St. Jude Medical, Cardiology Division, Inc. | Stent designs for prosthetic heart valves |
US10130467B2 (en) | 2014-05-16 | 2018-11-20 | St. Jude Medical, Cardiology Division, Inc. | Subannular sealing for paravalvular leak protection |
US10143551B2 (en) | 2014-03-31 | 2018-12-04 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular sealing via extended cuff mechanisms |
US10166097B2 (en) | 2009-09-29 | 2019-01-01 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve and method |
US10179043B2 (en) | 2016-02-12 | 2019-01-15 | Edwards Lifesciences Corporation | Prosthetic heart valve having multi-level sealing member |
US10179047B2 (en) | 2011-07-27 | 2019-01-15 | Edwards Lifesciences Corporation | Delivery systems for prosthetic heart valve |
US20190053898A1 (en) * | 2017-08-18 | 2019-02-21 | Edwards Lifesciences Corporation | Sealing members for prosthetic heart valve |
CN109419572A (en) * | 2017-09-04 | 2019-03-05 | 杭州启明医疗器械股份有限公司 | A kind of anti-week leakage holder device and processing method, skirt corrugation method, heart valve with overlay film |
US10226330B2 (en) | 2013-08-14 | 2019-03-12 | Mitral Valve Technologies Sarl | Replacement heart valve apparatus and methods |
US20190083249A1 (en) * | 2017-09-19 | 2019-03-21 | Cardiovalve Ltd. | Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors |
US10238514B2 (en) | 2011-10-21 | 2019-03-26 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US10238487B2 (en) | 2008-08-22 | 2019-03-26 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US10271949B2 (en) | 2013-03-12 | 2019-04-30 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak occlusion device for self-expanding heart valves |
WO2019086958A1 (en) * | 2017-10-30 | 2019-05-09 | Endoluminal Sciences Pty Ltd | Expandable sealing skirt technology for leak-proof endovascular prostheses |
WO2019094181A1 (en) * | 2017-11-12 | 2019-05-16 | William Joseph Drasler | Straddle annular mitral valve |
US10292817B2 (en) | 2008-06-06 | 2019-05-21 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US10314703B2 (en) | 2015-09-21 | 2019-06-11 | Edwards Lifesciences Corporation | Cylindrical implant and balloon |
US10321991B2 (en) | 2013-06-19 | 2019-06-18 | St. Jude Medical, Cardiology Division, Inc. | Collapsible valve having paravalvular leak protection |
US10327896B2 (en) | 2015-04-10 | 2019-06-25 | Edwards Lifesciences Corporation | Expandable sheath with elastomeric cross sectional portions |
US10413404B2 (en) | 2007-12-14 | 2019-09-17 | Edwards Lifesciences Corporation | Leaflet attachment frame for a prosthetic valve |
US10433959B2 (en) | 2010-10-05 | 2019-10-08 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10433993B2 (en) | 2017-01-20 | 2019-10-08 | Medtronic Vascular, Inc. | Valve prosthesis having a radially-expandable sleeve integrated thereon for delivery and prevention of paravalvular leakage |
US10441417B2 (en) | 2009-02-27 | 2019-10-15 | St. Jude Medical, Llc | Stent features for collapsible prosthetic heart valves |
US10441421B2 (en) | 2016-10-28 | 2019-10-15 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic mitral valve |
US10463484B2 (en) | 2016-11-17 | 2019-11-05 | Edwards Lifesciences Corporation | Prosthetic heart valve having leaflet inflow below frame |
EP3142607B1 (en) | 2014-05-12 | 2019-11-13 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10478295B2 (en) | 2011-10-21 | 2019-11-19 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US10478290B2 (en) * | 2013-11-26 | 2019-11-19 | Children's Medical Center Corporation | Expandable stent valve |
US10507097B2 (en) | 2006-07-31 | 2019-12-17 | Edwards Lifesciences Cardiaq Llc | Surgical implant devices and methods for their manufacture and use |
US10517722B2 (en) | 2016-03-24 | 2019-12-31 | Edwards Lifesciences Corporation | Delivery system for prosthetic heart valve |
US10548722B2 (en) | 2016-08-26 | 2020-02-04 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic heart valve with paravalvular leak mitigation features |
USD875250S1 (en) | 2017-05-15 | 2020-02-11 | St. Jude Medical, Cardiology Division, Inc. | Stent having tapered aortic struts |
US10561494B2 (en) | 2011-02-25 | 2020-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
USD875935S1 (en) | 2017-05-15 | 2020-02-18 | St. Jude Medical, Cardiology Division, Inc. | Stent having tapered struts |
US10568732B2 (en) | 2009-07-02 | 2020-02-25 | Edwards Lifesciences Cardiaq Llc | Surgical implant devices and methods for their manufacture and use |
US10575944B2 (en) | 2016-09-22 | 2020-03-03 | Edwards Lifesciences Corporation | Prosthetic heart valve with reduced stitching |
US10588742B2 (en) | 2013-08-14 | 2020-03-17 | Mitral Valve Technologies Sarl | Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device |
US10595993B2 (en) | 2013-12-05 | 2020-03-24 | Edwards Lifesciences Corporation | Method of making an introducer sheath with an inner liner |
US10603165B2 (en) | 2016-12-06 | 2020-03-31 | Edwards Lifesciences Corporation | Mechanically expanding heart valve and delivery apparatus therefor |
US10687968B2 (en) | 2006-07-31 | 2020-06-23 | Edwards Lifesciences Cardiaq Llc | Sealable endovascular implants and methods for their use |
USD889653S1 (en) | 2017-05-15 | 2020-07-07 | St. Jude Medical, Cardiology Division, Inc. | Stent having tapered struts |
US10722353B2 (en) | 2017-08-21 | 2020-07-28 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10792471B2 (en) | 2015-04-10 | 2020-10-06 | Edwards Lifesciences Corporation | Expandable sheath |
US20200375731A1 (en) * | 2015-08-26 | 2020-12-03 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US10869759B2 (en) | 2017-06-05 | 2020-12-22 | Edwards Lifesciences Corporation | Mechanically expandable heart valve |
US10874508B2 (en) | 2011-10-21 | 2020-12-29 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US10888420B2 (en) | 2016-03-14 | 2021-01-12 | Medtronic Vascular, Inc. | Stented prosthetic heart valve having a wrap and delivery devices |
US10898319B2 (en) | 2017-08-17 | 2021-01-26 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10912644B2 (en) | 2018-10-05 | 2021-02-09 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US10918473B2 (en) | 2017-07-18 | 2021-02-16 | Edwards Lifesciences Corporation | Transcatheter heart valve storage container and crimping mechanism |
US10932903B2 (en) | 2017-08-15 | 2021-03-02 | Edwards Lifesciences Corporation | Skirt assembly for implantable prosthetic valve |
US10945837B2 (en) | 2013-08-12 | 2021-03-16 | Mitral Valve Technologies Sarl | Apparatus and methods for implanting a replacement heart valve |
US10973629B2 (en) | 2017-09-06 | 2021-04-13 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10973631B2 (en) | 2016-11-17 | 2021-04-13 | Edwards Lifesciences Corporation | Crimping accessory device for a prosthetic valve |
US11013595B2 (en) | 2017-08-11 | 2021-05-25 | Edwards Lifesciences Corporation | Sealing element for prosthetic heart valve |
US11013600B2 (en) | 2017-01-23 | 2021-05-25 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11026785B2 (en) | 2017-06-05 | 2021-06-08 | Edwards Lifesciences Corporation | Mechanically expandable heart valve |
US11026781B2 (en) | 2017-05-22 | 2021-06-08 | Edwards Lifesciences Corporation | Valve anchor and installation method |
US11033385B2 (en) | 2014-01-24 | 2021-06-15 | St. Jude Medical, Cardiology Division, Inc. | Stationary intra-annular halo designs for paravalvular leak (PVL) reduction-passive channel filling cuff designs |
US11058536B2 (en) | 2004-10-02 | 2021-07-13 | Edwards Lifesciences Cardiaq Llc | Method for replacement of heart valve |
US20210212820A1 (en) * | 2018-09-11 | 2021-07-15 | Strait Access Technologies Holdings (Pty) Ltd | Expandable Sleeved Stent and Method of Making Such Stent |
US11083575B2 (en) | 2017-08-14 | 2021-08-10 | Edwards Lifesciences Corporation | Heart valve frame design with non-uniform struts |
US11096781B2 (en) | 2016-08-01 | 2021-08-24 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11135056B2 (en) | 2017-05-15 | 2021-10-05 | Edwards Lifesciences Corporation | Devices and methods of commissure formation for prosthetic heart valve |
US11147667B2 (en) | 2017-09-08 | 2021-10-19 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11185406B2 (en) | 2017-01-23 | 2021-11-30 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11246706B2 (en) | 2014-03-26 | 2022-02-15 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter mitral valve stent frames |
US11273030B2 (en) | 2018-12-26 | 2022-03-15 | St. Jude Medical, Cardiology Division, Inc. | Elevated outer cuff for reducing paravalvular leakage and increasing stent fatigue life |
US11284996B2 (en) | 2018-09-20 | 2022-03-29 | St. Jude Medical, Cardiology Division, Inc. | Attachment of leaflets to prosthetic heart valve |
US11298889B2 (en) * | 2015-04-29 | 2022-04-12 | Edwards Lifesciences Corporation | Laminated sealing member for prosthetic heart valve |
US11318011B2 (en) | 2018-04-27 | 2022-05-03 | Edwards Lifesciences Corporation | Mechanically expandable heart valve with leaflet clamps |
US11364117B2 (en) | 2018-10-15 | 2022-06-21 | St. Jude Medical, Cardiology Division, Inc. | Braid connections for prosthetic heart valves |
US11382751B2 (en) | 2017-10-24 | 2022-07-12 | St. Jude Medical, Cardiology Division, Inc. | Self-expandable filler for mitigating paravalvular leak |
US11395751B2 (en) | 2013-11-11 | 2022-07-26 | Edwards Lifesciences Cardiaq Llc | Systems and methods for manufacturing a stent frame |
US11399932B2 (en) | 2019-03-26 | 2022-08-02 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11406493B2 (en) | 2014-09-12 | 2022-08-09 | Mitral Valve Technologies Sarl | Mitral repair and replacement devices and methods |
US11446141B2 (en) | 2018-10-19 | 2022-09-20 | Edwards Lifesciences Corporation | Prosthetic heart valve having non-cylindrical frame |
US11471277B2 (en) | 2018-12-10 | 2022-10-18 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic tricuspid valve replacement design |
US11471282B2 (en) | 2019-03-19 | 2022-10-18 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US11654023B2 (en) | 2017-01-23 | 2023-05-23 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US11730589B2 (en) | 2010-03-05 | 2023-08-22 | Edwards Lifesciences Corporation | Prosthetic heart valve having an inner frame and an outer frame |
US20230301781A1 (en) * | 2013-02-01 | 2023-09-28 | Medtronic CV Luxembourg S.a.r.l. | Anti-paravalvular leakage component for a transcatheter valve prosthesis |
US11813413B2 (en) | 2018-03-27 | 2023-11-14 | St. Jude Medical, Cardiology Division, Inc. | Radiopaque outer cuff for transcatheter valve |
US11833034B2 (en) | 2016-01-13 | 2023-12-05 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US11839541B2 (en) | 2009-12-08 | 2023-12-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US11857411B2 (en) | 2017-08-18 | 2024-01-02 | Edwards Lifesciences Corporation | Pericardial sealing member for prosthetic heart valve |
US11883281B2 (en) | 2017-05-31 | 2024-01-30 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11937795B2 (en) | 2016-02-16 | 2024-03-26 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US11938022B2 (en) | 2020-06-26 | 2024-03-26 | Highlife Sas | Transcatheter valve prosthesis and method for implanting the same |
US11957576B2 (en) | 2008-10-10 | 2024-04-16 | Edwards Lifesciences Corporation | Expandable sheath for introducing an endovascular delivery device into a body |
US11963871B2 (en) | 2020-06-18 | 2024-04-23 | Edwards Lifesciences Corporation | Crimping devices and methods |
US12004947B1 (en) | 2021-01-20 | 2024-06-11 | Edwards Lifesciences Corporation | Connecting skirt for attaching a leaflet to a frame of a prosthetic heart valve |
US12029644B2 (en) | 2019-01-17 | 2024-07-09 | Edwards Lifesciences Corporation | Frame for prosthetic heart valve |
US12053371B2 (en) | 2020-08-31 | 2024-08-06 | Shifamed Holdings, Llc | Prosthetic valve delivery system |
US12053380B2 (en) | 2014-07-30 | 2024-08-06 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US12090048B2 (en) | 2017-08-03 | 2024-09-17 | Cardiovalve Ltd. | Prosthetic heart valve |
US12115066B2 (en) | 2021-03-23 | 2024-10-15 | Edwards Lifesciences Corporation | Prosthetic heart valve having elongated sealing member |
US12121435B2 (en) | 2020-01-10 | 2024-10-22 | Edwards Lifesciences Corporation | Prosthetic heart valve leaflet assemblies and methods |
US12144751B2 (en) | 2019-07-19 | 2024-11-19 | Edwards Lifesciences Corporation | Crimping devices for prosthetic heart valves |
US12161551B2 (en) | 2018-08-30 | 2024-12-10 | Edwards Lifesciences Corporation | Systems and methods for sizing and implanting prosthetic heart valves |
USD1054562S1 (en) | 2022-08-31 | 2024-12-17 | Edwards Lifesciences Corporation | Leaflet for a prosthetic heart valve |
US12194256B2 (en) | 2015-04-10 | 2025-01-14 | Edwards Lifesciences Corporation | Expandable sheath |
US12201521B2 (en) | 2021-03-22 | 2025-01-21 | Shifamed Holdings, Llc | Anchor position verification for prosthetic cardiac valve devices |
US12201519B2 (en) | 2019-01-28 | 2025-01-21 | Edwards Lifesciences Corporation | Prosthetic valve |
US12226312B2 (en) | 2023-05-12 | 2025-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve |
Families Citing this family (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2881760C (en) | 2005-11-10 | 2017-06-13 | Arshad Quadri | Balloon-expandable, self-expanding, vascular prosthesis connecting stent |
BRPI0812372A2 (en) * | 2007-06-04 | 2015-02-03 | St Jude Medical | PROSTHETIC HEART VALVE. |
CA2703665C (en) * | 2007-10-25 | 2016-05-10 | Symetis Sa | Stents, valved-stents and methods and systems for delivery thereof |
AU2009295960A1 (en) | 2008-09-29 | 2010-04-01 | Cardiaq Valve Technologies, Inc. | Heart valve |
AU2010236288A1 (en) | 2009-04-15 | 2011-10-20 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
EP2582326B2 (en) | 2010-06-21 | 2024-07-03 | Edwards Lifesciences CardiAQ LLC | Replacement heart valve |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
CA3051684C (en) | 2011-12-06 | 2020-06-16 | Aortic Innovations Llc | Device for endovascular aortic repair and method of using the same |
US11207176B2 (en) | 2012-03-22 | 2021-12-28 | Boston Scientific Scimed, Inc. | Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage |
US20130274873A1 (en) | 2012-03-22 | 2013-10-17 | Symetis Sa | Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage |
US9345573B2 (en) * | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US10583002B2 (en) | 2013-03-11 | 2020-03-10 | Neovasc Tiara Inc. | Prosthetic valve with anti-pivoting mechanism |
US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US20140277427A1 (en) | 2013-03-14 | 2014-09-18 | Cardiaq Valve Technologies, Inc. | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
EP2967945B1 (en) | 2013-03-15 | 2020-10-28 | California Institute of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
CA2905544C (en) | 2013-03-15 | 2020-08-18 | Symetis Sa | Improvements relating to transcatheter stent-valves |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US10004599B2 (en) | 2014-02-21 | 2018-06-26 | Edwards Lifesciences Cardiaq Llc | Prosthesis, delivery device and methods of use |
US9532870B2 (en) | 2014-06-06 | 2017-01-03 | Edwards Lifesciences Corporation | Prosthetic valve for replacing a mitral valve |
CN106999281B (en) | 2014-11-26 | 2020-05-05 | 爱德华兹生命科学公司 | Transcatheter prosthetic heart valve and delivery system |
US10441416B2 (en) | 2015-04-21 | 2019-10-15 | Edwards Lifesciences Corporation | Percutaneous mitral valve replacement device |
US10376363B2 (en) | 2015-04-30 | 2019-08-13 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve, delivery system for replacement mitral valve and methods of use |
US10226335B2 (en) | 2015-06-22 | 2019-03-12 | Edwards Lifesciences Cardiaq Llc | Actively controllable heart valve implant and method of controlling same |
US10092400B2 (en) | 2015-06-23 | 2018-10-09 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
US9895222B2 (en) * | 2015-08-17 | 2018-02-20 | Venus Medtech (Hangzhou) Inc. | Aortic replacement valve |
US10575951B2 (en) | 2015-08-26 | 2020-03-03 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement mitral valve |
US10350066B2 (en) | 2015-08-28 | 2019-07-16 | Edwards Lifesciences Cardiaq Llc | Steerable delivery system for replacement mitral valve and methods of use |
USD815744S1 (en) | 2016-04-28 | 2018-04-17 | Edwards Lifesciences Cardiaq Llc | Valve frame for a delivery system |
US10299921B2 (en) * | 2016-05-12 | 2019-05-28 | St. Jude Medical, Cardiology Division, Inc. | Mitral heart valve replacement |
US10350062B2 (en) | 2016-07-21 | 2019-07-16 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
EP3500214A4 (en) | 2016-08-19 | 2019-07-24 | Edwards Lifesciences Corporation | Steerable delivery system for replacement mitral valve and methods of use |
EP4454613A3 (en) | 2016-08-26 | 2025-01-29 | Edwards Lifesciences Corporation | Multi-portion replacement heart valve prosthesis |
US10758348B2 (en) | 2016-11-02 | 2020-09-01 | Edwards Lifesciences Corporation | Supra and sub-annular mitral valve delivery system |
US10653523B2 (en) | 2017-01-19 | 2020-05-19 | 4C Medical Technologies, Inc. | Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves |
US10561495B2 (en) | 2017-01-24 | 2020-02-18 | 4C Medical Technologies, Inc. | Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve |
US12029647B2 (en) | 2017-03-07 | 2024-07-09 | 4C Medical Technologies, Inc. | Systems, methods and devices for prosthetic heart valve with single valve leaflet |
US12036113B2 (en) | 2017-06-14 | 2024-07-16 | 4C Medical Technologies, Inc. | Delivery of heart chamber prosthetic valve implant |
EP4112009A1 (en) | 2017-07-06 | 2023-01-04 | Edwards Lifesciences Corporation | Steerable rail delivery system |
US11666444B2 (en) | 2017-08-03 | 2023-06-06 | The Regents Of The University Of California | Atrial cage for placement, securing and anchoring of atrioventricular valves |
US11051940B2 (en) * | 2017-09-07 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic spacer device for heart valve |
EP3720390B1 (en) | 2018-01-25 | 2024-05-01 | Edwards Lifesciences Corporation | Delivery system for aided replacement valve recapture and repositioning post- deployment |
US11051934B2 (en) | 2018-02-28 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic mitral valve with improved anchors and seal |
JP7125993B2 (en) * | 2018-03-08 | 2022-08-25 | シメティス・ソシエテ・アノニム | Implantable valve with attached polymer component |
JP7110375B2 (en) * | 2018-03-08 | 2022-08-01 | シメティス・ソシエテ・アノニム | Variable diameter heart valve sealing skirt |
WO2019195860A2 (en) | 2018-04-04 | 2019-10-10 | Vdyne, Llc | Devices and methods for anchoring transcatheter heart valve |
US11857441B2 (en) | 2018-09-04 | 2024-01-02 | 4C Medical Technologies, Inc. | Stent loading device |
US10595994B1 (en) | 2018-09-20 | 2020-03-24 | Vdyne, Llc | Side-delivered transcatheter heart valve replacement |
US11344413B2 (en) | 2018-09-20 | 2022-05-31 | Vdyne, Inc. | Transcatheter deliverable prosthetic heart valves and methods of delivery |
US12186187B2 (en) | 2018-09-20 | 2025-01-07 | Vdyne, Inc. | Transcatheter deliverable prosthetic heart valves and methods of delivery |
US11071627B2 (en) | 2018-10-18 | 2021-07-27 | Vdyne, Inc. | Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis |
US10321995B1 (en) | 2018-09-20 | 2019-06-18 | Vdyne, Llc | Orthogonally delivered transcatheter heart valve replacement |
US11278437B2 (en) | 2018-12-08 | 2022-03-22 | Vdyne, Inc. | Compression capable annular frames for side delivery of transcatheter heart valve replacement |
US11109969B2 (en) | 2018-10-22 | 2021-09-07 | Vdyne, Inc. | Guidewire delivery of transcatheter heart valve |
DE102018126828A1 (en) | 2018-10-26 | 2020-04-30 | Nvt Ag | Heart valve prosthesis |
US11241312B2 (en) | 2018-12-10 | 2022-02-08 | Boston Scientific Scimed, Inc. | Medical device delivery system including a resistance member |
US11253359B2 (en) | 2018-12-20 | 2022-02-22 | Vdyne, Inc. | Proximal tab for side-delivered transcatheter heart valves and methods of delivery |
US10653522B1 (en) | 2018-12-20 | 2020-05-19 | Vdyne, Inc. | Proximal tab for side-delivered transcatheter heart valve prosthesis |
US11185409B2 (en) | 2019-01-26 | 2021-11-30 | Vdyne, Inc. | Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis |
US11273032B2 (en) | 2019-01-26 | 2022-03-15 | Vdyne, Inc. | Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis |
JP7530375B2 (en) | 2019-03-05 | 2024-08-07 | ブイダイン,インコーポレイテッド | Tricuspid regurgitation control device for an orthogonal transcatheter heart valve prosthesis |
US11173027B2 (en) | 2019-03-14 | 2021-11-16 | Vdyne, Inc. | Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same |
US10758346B1 (en) | 2019-03-14 | 2020-09-01 | Vdyne, Inc. | A2 clip for side-delivered transcatheter mitral valve prosthesis |
US10631983B1 (en) | 2019-03-14 | 2020-04-28 | Vdyne, Inc. | Distal subannular anchoring tab for side-delivered transcatheter valve prosthesis |
US11076956B2 (en) | 2019-03-14 | 2021-08-03 | Vdyne, Inc. | Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis |
CA3138875A1 (en) | 2019-05-04 | 2020-11-12 | Vdyne, Inc. | Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus |
EP4017442B1 (en) | 2019-08-20 | 2024-10-09 | Vdyne, Inc. | Delivery devices for side-deliverable transcatheter prosthetic valves |
CN114630665A (en) | 2019-08-26 | 2022-06-14 | 维迪内股份有限公司 | Laterally deliverable transcatheter prosthetic valve and methods of delivery and anchoring thereof |
US11583397B2 (en) * | 2019-09-24 | 2023-02-21 | Medtronic, Inc. | Prosthesis with anti-paravalvular leakage component including a one-way valve |
US11234813B2 (en) | 2020-01-17 | 2022-02-01 | Vdyne, Inc. | Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery |
US11931253B2 (en) | 2020-01-31 | 2024-03-19 | 4C Medical Technologies, Inc. | Prosthetic heart valve delivery system: ball-slide attachment |
US12133797B2 (en) | 2020-01-31 | 2024-11-05 | 4C Medical Technologies, Inc. | Prosthetic heart valve delivery system: paddle attachment feature |
US12053375B2 (en) | 2020-03-05 | 2024-08-06 | 4C Medical Technologies, Inc. | Prosthetic mitral valve with improved atrial and/or annular apposition and paravalvular leakage mitigation |
US11992403B2 (en) | 2020-03-06 | 2024-05-28 | 4C Medical Technologies, Inc. | Devices, systems and methods for improving recapture of prosthetic heart valve device with stent frame having valve support with inwardly stent cells |
EP3964169A1 (en) * | 2020-09-03 | 2022-03-09 | Symetis SA | Replacement heart valve having improved preformed seal |
US11197755B1 (en) * | 2020-10-28 | 2021-12-14 | Occam Labs LLC | Systems, devices and methods for folded unibody heart valve stents |
US11246726B1 (en) | 2021-02-10 | 2022-02-15 | Occam Labs LLC | Systems, devices and methods for delivery systems |
US20240180694A1 (en) * | 2022-12-05 | 2024-06-06 | Boston Scientific Scimed, Inc. | Cardiac valve with floating outer skirt for improved sealing |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050283231A1 (en) * | 2004-06-16 | 2005-12-22 | Haug Ulrich R | Everting heart valve |
US20060265056A1 (en) * | 2005-05-13 | 2006-11-23 | Corevalve, Inc. | Heart valve prosthesis and methods of manufacture and use |
US20060287717A1 (en) * | 2005-05-24 | 2006-12-21 | Rowe Stanton J | Methods for rapid deployment of prosthetic heart valves |
US20070179600A1 (en) * | 2004-10-04 | 2007-08-02 | Gil Vardi | Stent graft including expandable cuff |
US20070198097A1 (en) * | 2003-12-23 | 2007-08-23 | Laboratoires Perouse | Kit For Implanting In A Duct |
US20110264196A1 (en) * | 2010-04-23 | 2011-10-27 | Medtronic, Inc. | Stents for Prosthetic Heart Valves |
US8052749B2 (en) * | 2003-12-23 | 2011-11-08 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US20120101571A1 (en) * | 2008-11-21 | 2012-04-26 | Percutaneous Cardiovascular Solutions Pty Limited | Heart valve prosthesis and method |
US20120123529A1 (en) * | 2010-10-05 | 2012-05-17 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US20120303116A1 (en) * | 2009-11-05 | 2012-11-29 | The Trustees Of The University Of Pennsylvania | Valve prosthesis |
Family Cites Families (248)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3755823A (en) | 1971-04-23 | 1973-09-04 | Hancock Laboratories Inc | Flexible stent for heart valve |
CA1069652A (en) | 1976-01-09 | 1980-01-15 | Alain F. Carpentier | Supported bioprosthetic heart valve with compliant orifice ring |
US4470157A (en) | 1981-04-27 | 1984-09-11 | Love Jack W | Tricuspid prosthetic tissue heart valve |
FR2641692A1 (en) | 1989-01-17 | 1990-07-20 | Nippon Zeon Co | Plug for closing an opening for a medical application, and device for the closure plug making use thereof |
US5609626A (en) | 1989-05-31 | 1997-03-11 | Baxter International Inc. | Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts |
US5078720A (en) | 1990-05-02 | 1992-01-07 | American Medical Systems, Inc. | Stent placement instrument and method |
US5411552A (en) | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
DK124690D0 (en) | 1990-05-18 | 1990-05-18 | Henning Rud Andersen | FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION |
US5163955A (en) | 1991-01-24 | 1992-11-17 | Autogenics | Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment |
WO1992020303A1 (en) | 1991-05-16 | 1992-11-26 | Mures Cardiovascular Research, Inc. | Cardiac valve |
US6029671A (en) | 1991-07-16 | 2000-02-29 | Heartport, Inc. | System and methods for performing endovascular procedures |
US5354330A (en) | 1991-10-31 | 1994-10-11 | Ats Medical Inc. | Heart valve prosthesis |
US5540712A (en) | 1992-05-01 | 1996-07-30 | Nitinol Medical Technologies, Inc. | Stent and method and apparatus for forming and delivering the same |
US5718725A (en) | 1992-12-03 | 1998-02-17 | Heartport, Inc. | Devices and methods for intracardiac procedures |
JPH08500757A (en) | 1992-12-30 | 1996-01-30 | シュナイダー・(ユーエスエイ)・インコーポレーテッド | Device for deploying a stent implantable in the body |
US5728151A (en) | 1993-02-22 | 1998-03-17 | Heartport, Inc. | Intercostal access devices for less-invasive cardiovascular surgery |
US5797960A (en) | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5713950A (en) | 1993-11-01 | 1998-02-03 | Cox; James L. | Method of replacing heart valves using flexible tubes |
US5480424A (en) | 1993-11-01 | 1996-01-02 | Cox; James L. | Heart valve replacement using flexible tubes |
DE69419877T2 (en) | 1993-11-04 | 1999-12-16 | C.R. Bard, Inc. | Fixed vascular prosthesis |
US5499995C1 (en) | 1994-05-25 | 2002-03-12 | Paul S Teirstein | Body passageway closure apparatus and method of use |
US5824041A (en) | 1994-06-08 | 1998-10-20 | Medtronic, Inc. | Apparatus and methods for placement and repositioning of intraluminal prostheses |
US5683451A (en) | 1994-06-08 | 1997-11-04 | Cardiovascular Concepts, Inc. | Apparatus and methods for deployment release of intraluminal prostheses |
DE69626108T2 (en) | 1995-04-14 | 2003-11-20 | Boston Scientific Ltd., St. Michael | STENTING DEVICE WITH ROLLING MEMBRANE |
US5769882A (en) | 1995-09-08 | 1998-06-23 | Medtronic, Inc. | Methods and apparatus for conformably sealing prostheses within body lumens |
GB9522332D0 (en) | 1995-11-01 | 1996-01-03 | Biocompatibles Ltd | Braided stent |
US5807327A (en) | 1995-12-08 | 1998-09-15 | Ethicon, Inc. | Catheter assembly |
US5861028A (en) | 1996-09-09 | 1999-01-19 | Shelhigh Inc | Natural tissue heart valve and stent prosthesis and method for making the same |
US5855601A (en) | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
WO1998002907A1 (en) | 1996-07-15 | 1998-01-22 | Semitool, Inc. | Control system for a semiconductor workpiece processing tool |
NL1004827C2 (en) | 1996-12-18 | 1998-06-19 | Surgical Innovations Vof | Device for regulating blood circulation. |
EP0850607A1 (en) | 1996-12-31 | 1998-07-01 | Cordis Corporation | Valve prosthesis for implantation in body channels |
GB9701479D0 (en) | 1997-01-24 | 1997-03-12 | Aortech Europ Ltd | Heart valve |
US5817126A (en) | 1997-03-17 | 1998-10-06 | Surface Genesis, Inc. | Compound stent |
US5928281A (en) | 1997-03-27 | 1999-07-27 | Baxter International Inc. | Tissue heart valves |
US5957949A (en) | 1997-05-01 | 1999-09-28 | World Medical Manufacturing Corp. | Percutaneous placement valve stent |
US5855600A (en) | 1997-08-01 | 1999-01-05 | Inflow Dynamics Inc. | Flexible implantable stent with composite design |
US5976174A (en) | 1997-12-15 | 1999-11-02 | Ruiz; Carlos E. | Medical hole closure device and methods of use |
ATE449581T1 (en) | 1997-12-29 | 2009-12-15 | The Cleveland Clinic Foundation | SYSTEM FOR THE MINIMALLY INVASIVE INTRODUCTION OF A HEART VALVE BIOPROSTHESIS |
US6530952B2 (en) | 1997-12-29 | 2003-03-11 | The Cleveland Clinic Foundation | Bioprosthetic cardiovascular valve system |
US6533807B2 (en) | 1998-02-05 | 2003-03-18 | Medtronic, Inc. | Radially-expandable stent and delivery system |
US5938697A (en) | 1998-03-04 | 1999-08-17 | Scimed Life Systems, Inc. | Stent having variable properties |
US7452371B2 (en) | 1999-06-02 | 2008-11-18 | Cook Incorporated | Implantable vascular device |
US5980533A (en) | 1998-06-09 | 1999-11-09 | Scimed Life Systems, Inc. | Stent delivery system |
US6254564B1 (en) | 1998-09-10 | 2001-07-03 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
US6196230B1 (en) | 1998-09-10 | 2001-03-06 | Percardia, Inc. | Stent delivery system and method of use |
US7713282B2 (en) | 1998-11-06 | 2010-05-11 | Atritech, Inc. | Detachable atrial appendage occlusion balloon |
US6544278B1 (en) | 1998-11-06 | 2003-04-08 | Scimed Life Systems, Inc. | Rolling membrane stent delivery system |
US6214036B1 (en) | 1998-11-09 | 2001-04-10 | Cordis Corporation | Stent which is easily recaptured and repositioned within the body |
EP1047357A1 (en) | 1998-11-12 | 2000-11-02 | Advanced Cardiovascular Systems, Inc. | Stent having non-uniform structure |
DE19857887B4 (en) | 1998-12-15 | 2005-05-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Anchoring support for a heart valve prosthesis |
US7025773B2 (en) | 1999-01-15 | 2006-04-11 | Medtronic, Inc. | Methods and devices for placing a conduit in fluid communication with a target vessel |
US7578828B2 (en) | 1999-01-15 | 2009-08-25 | Medtronic, Inc. | Methods and devices for placing a conduit in fluid communication with a target vessel |
US6736845B2 (en) | 1999-01-26 | 2004-05-18 | Edwards Lifesciences Corporation | Holder for flexible heart valve |
US6896690B1 (en) | 2000-01-27 | 2005-05-24 | Viacor, Inc. | Cardiac valve procedure methods and devices |
US6425916B1 (en) | 1999-02-10 | 2002-07-30 | Michi E. Garrison | Methods and devices for implanting cardiac valves |
US6643361B2 (en) | 2000-09-05 | 2003-11-04 | Sbc Properties, L.P. | System and method for storing and transferring information tokens in a communication network |
US6110201A (en) | 1999-02-18 | 2000-08-29 | Venpro | Bifurcated biological pulmonary valved conduit |
US6273910B1 (en) | 1999-03-11 | 2001-08-14 | Advanced Cardiovascular Systems, Inc. | Stent with varying strut geometry |
WO2000064381A2 (en) | 1999-04-28 | 2000-11-02 | St. Jude Medical, Inc. | Heart valve prostheses |
ES2290030T3 (en) | 1999-04-28 | 2008-02-16 | St. Jude Medical, Inc. | CALIBRATOR AND MARKER OF A CARDIAC VALVULAR PROTESIS. |
US6790229B1 (en) | 1999-05-25 | 2004-09-14 | Eric Berreklouw | Fixing device, in particular for fixing to vascular wall tissue |
US6287339B1 (en) | 1999-05-27 | 2001-09-11 | Sulzer Carbomedics Inc. | Sutureless heart valve prosthesis |
US6183481B1 (en) | 1999-09-22 | 2001-02-06 | Endomed Inc. | Delivery system for self-expanding stents and grafts |
US6331189B1 (en) | 1999-10-18 | 2001-12-18 | Medtronic, Inc. | Flexible medical stent |
US6652555B1 (en) | 1999-10-27 | 2003-11-25 | Atritech, Inc. | Barrier device for covering the ostium of left atrial appendage |
US7018406B2 (en) | 1999-11-17 | 2006-03-28 | Corevalve Sa | Prosthetic valve for transluminal delivery |
FR2815844B1 (en) * | 2000-10-31 | 2003-01-17 | Jacques Seguin | TUBULAR SUPPORT FOR THE PERCUTANEOUS POSITIONING OF A REPLACEMENT HEART VALVE |
US20070043435A1 (en) | 1999-11-17 | 2007-02-22 | Jacques Seguin | Non-cylindrical prosthetic valve system for transluminal delivery |
US8579966B2 (en) | 1999-11-17 | 2013-11-12 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
FR2800984B1 (en) | 1999-11-17 | 2001-12-14 | Jacques Seguin | DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY |
US6537310B1 (en) | 1999-11-19 | 2003-03-25 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal implantable devices and method of making same |
US7195641B2 (en) | 1999-11-19 | 2007-03-27 | Advanced Bio Prosthetic Surfaces, Ltd. | Valvular prostheses having metal or pseudometallic construction and methods of manufacture |
US6936066B2 (en) | 1999-11-19 | 2005-08-30 | Advanced Bio Prosthetic Surfaces, Ltd. | Complaint implantable medical devices and methods of making same |
US6849085B2 (en) | 1999-11-19 | 2005-02-01 | Advanced Bio Prosthetic Surfaces, Ltd. | Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same |
US6379383B1 (en) | 1999-11-19 | 2002-04-30 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal device exhibiting improved endothelialization and method of manufacture thereof |
US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US6409759B1 (en) | 1999-12-30 | 2002-06-25 | St. Jude Medical, Inc. | Harvested tissue heart valve with sewing rim |
EP1251804B1 (en) | 2000-01-27 | 2008-07-02 | 3F Therapeutics, Inc | Prosthetic heart valve |
AU3803801A (en) | 2000-02-03 | 2001-08-14 | Cook Inc | Implantable vascular device |
CA2398912A1 (en) | 2000-02-04 | 2001-08-09 | Wilson-Cook Medical Inc. | Stent introducer apparatus |
DE10010074B4 (en) | 2000-02-28 | 2005-04-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for fastening and anchoring heart valve prostheses |
DE20003874U1 (en) | 2000-02-28 | 2000-05-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80636 München | Device for fastening and anchoring heart valve prostheses |
US6695865B2 (en) | 2000-03-20 | 2004-02-24 | Advanced Bio Prosthetic Surfaces, Ltd. | Embolic protection device |
US6454799B1 (en) | 2000-04-06 | 2002-09-24 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
US6729356B1 (en) | 2000-04-27 | 2004-05-04 | Endovascular Technologies, Inc. | Endovascular graft for providing a seal with vasculature |
US6406493B1 (en) | 2000-06-02 | 2002-06-18 | Hosheng Tu | Expandable annuloplasty ring and methods of use |
US6805711B2 (en) | 2000-06-02 | 2004-10-19 | 3F Therapeutics, Inc. | Expandable medical implant and percutaneous delivery |
US6635085B1 (en) | 2000-08-17 | 2003-10-21 | Carbomedics Inc. | Heart valve stent with alignment posts |
US6572652B2 (en) | 2000-08-29 | 2003-06-03 | Venpro Corporation | Method and devices for decreasing elevated pulmonary venous pressure |
US7510572B2 (en) | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
WO2002022054A1 (en) | 2000-09-12 | 2002-03-21 | Gabbay S | Valvular prosthesis and method of using same |
US6461382B1 (en) | 2000-09-22 | 2002-10-08 | Edwards Lifesciences Corporation | Flexible heart valve having moveable commissures |
US6736827B1 (en) | 2000-10-13 | 2004-05-18 | Medtronic Ave, Inc. | Low profile catheter |
US6974476B2 (en) | 2003-05-05 | 2005-12-13 | Rex Medical, L.P. | Percutaneous aortic valve |
US20050182483A1 (en) | 2004-02-11 | 2005-08-18 | Cook Incorporated | Percutaneously placed prosthesis with thromboresistant valve portion |
WO2002067782A2 (en) | 2001-02-26 | 2002-09-06 | Ev3 Peripheral, Inc. | Implant delivery system with interlock |
US6503272B2 (en) | 2001-03-21 | 2003-01-07 | Cordis Corporation | Stent-based venous valves |
US7374571B2 (en) | 2001-03-23 | 2008-05-20 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of manufacture |
US7556646B2 (en) | 2001-09-13 | 2009-07-07 | Edwards Lifesciences Corporation | Methods and apparatuses for deploying minimally-invasive heart valves |
US6733525B2 (en) | 2001-03-23 | 2004-05-11 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of use |
US6958076B2 (en) | 2001-04-16 | 2005-10-25 | Biomedical Research Associates Inc. | Implantable venous valve |
US6682558B2 (en) | 2001-05-10 | 2004-01-27 | 3F Therapeutics, Inc. | Delivery system for a stentless valve bioprosthesis |
ITTO20010465A1 (en) | 2001-05-18 | 2002-11-18 | Sorin Biomedica Cardio Spa | MODIFYING STRUCTURE ELEMENT FOR INSTALLATION DEVICES, RELATED INSTALLATION DEVICE AND CONSTRUCTION PROCEDURE. |
KR100393548B1 (en) | 2001-06-05 | 2003-08-02 | 주식회사 엠아이텍 | Stent |
FR2826863B1 (en) | 2001-07-04 | 2003-09-26 | Jacques Seguin | ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT |
US7547322B2 (en) | 2001-07-19 | 2009-06-16 | The Cleveland Clinic Foundation | Prosthetic valve and method for making same |
FR2828091B1 (en) | 2001-07-31 | 2003-11-21 | Seguin Jacques | ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT |
US7288105B2 (en) | 2001-08-01 | 2007-10-30 | Ev3 Endovascular, Inc. | Tissue opening occluder |
US6656351B2 (en) | 2001-08-31 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Embolic protection devices one way porous membrane |
US6562069B2 (en) | 2001-09-19 | 2003-05-13 | St. Jude Medical, Inc. | Polymer leaflet designs for medical devices |
US6893460B2 (en) | 2001-10-11 | 2005-05-17 | Percutaneous Valve Technologies Inc. | Implantable prosthetic valve |
US7371258B2 (en) | 2001-10-26 | 2008-05-13 | St. Jude Medical, Inc. | Valved prosthesis with porous substrate |
US7201771B2 (en) | 2001-12-27 | 2007-04-10 | Arbor Surgical Technologies, Inc. | Bioprosthetic heart valve |
US7033390B2 (en) | 2002-01-02 | 2006-04-25 | Medtronic, Inc. | Prosthetic heart valve system |
US8308797B2 (en) | 2002-01-04 | 2012-11-13 | Colibri Heart Valve, LLC | Percutaneously implantable replacement heart valve device and method of making same |
JP2005515829A (en) | 2002-01-28 | 2005-06-02 | オーバス メディカル テクノロジーズ インク. | Flared aperture insertion prosthesis and delivery system |
US6830586B2 (en) | 2002-02-28 | 2004-12-14 | 3F Therapeutics, Inc. | Stentless atrioventricular heart valve fabricated from a singular flat membrane |
US8430934B2 (en) | 2002-03-01 | 2013-04-30 | Regents Of The University Of Minnesota | Vascular occlusion device |
AU2003234505A1 (en) | 2002-05-03 | 2003-11-17 | The General Hospital Corporation | Involuted endovascular valve and method of construction |
US7141064B2 (en) | 2002-05-08 | 2006-11-28 | Edwards Lifesciences Corporation | Compressed tissue for heart valve leaflets |
MXPA04011144A (en) | 2002-05-10 | 2005-08-16 | Johnson & Johnson | Method of making a medical device having a thin wall tubular membrane over a structural frame. |
US7264632B2 (en) | 2002-06-07 | 2007-09-04 | Medtronic Vascular, Inc. | Controlled deployment delivery system |
US7041132B2 (en) | 2002-08-16 | 2006-05-09 | 3F Therapeutics, Inc, | Percutaneously delivered heart valve and delivery means thereof |
US7273492B2 (en) | 2002-08-27 | 2007-09-25 | Advanced Cardiovascular Systems Inc. | Stent for treating vulnerable plaque |
CA2827984A1 (en) | 2002-08-28 | 2004-03-11 | Heart Leaflet Technologies, Inc. | Method and device for treating diseased valve |
US6875231B2 (en) | 2002-09-11 | 2005-04-05 | 3F Therapeutics, Inc. | Percutaneously deliverable heart valve |
US7137184B2 (en) | 2002-09-20 | 2006-11-21 | Edwards Lifesciences Corporation | Continuous heart valve support frame and method of manufacture |
US6830585B1 (en) | 2003-01-14 | 2004-12-14 | 3F Therapeutics, Inc. | Percutaneously deliverable heart valve and methods of implantation |
US20040254594A1 (en) | 2003-01-24 | 2004-12-16 | Arthur Alfaro | Cardiac defect occlusion device |
US7402171B2 (en) | 2003-03-12 | 2008-07-22 | Cook Incorporated | Prosthetic valve that permits retrograde flow |
US7399315B2 (en) | 2003-03-18 | 2008-07-15 | Edwards Lifescience Corporation | Minimally-invasive heart valve with cusp positioners |
US8221492B2 (en) | 2003-04-24 | 2012-07-17 | Cook Medical Technologies | Artificial valve prosthesis with improved flow dynamics |
USRE44050E1 (en) | 2003-06-27 | 2013-03-05 | University Of South Florida | Vascular prosthesis |
US7201772B2 (en) | 2003-07-08 | 2007-04-10 | Ventor Technologies, Ltd. | Fluid flow prosthetic device |
JP4917887B2 (en) | 2003-07-14 | 2012-04-18 | ダブリュー.エル.ゴア アンド アソシエイツ,インコーポレイテッド | Tubular patent foramen ovale (PFO) closure device with capture system |
US20050070821A1 (en) | 2003-07-31 | 2005-03-31 | Deal Stephen E. | System and method for introducing a prosthesis |
US20050075720A1 (en) | 2003-10-06 | 2005-04-07 | Nguyen Tuoc Tan | Minimally invasive valve replacement system |
US20060259137A1 (en) | 2003-10-06 | 2006-11-16 | Jason Artof | Minimally invasive valve replacement system |
US7416530B2 (en) | 2003-11-04 | 2008-08-26 | L & P 100 Limited | Medical devices |
US7186265B2 (en) | 2003-12-10 | 2007-03-06 | Medtronic, Inc. | Prosthetic cardiac valves and systems and methods for implanting thereof |
US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7329279B2 (en) | 2003-12-23 | 2008-02-12 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US20050137696A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Apparatus and methods for protecting against embolization during endovascular heart valve replacement |
US7381219B2 (en) | 2003-12-23 | 2008-06-03 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
US7445631B2 (en) | 2003-12-23 | 2008-11-04 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8182528B2 (en) * | 2003-12-23 | 2012-05-22 | Sadra Medical, Inc. | Locking heart valve anchor |
US20120041550A1 (en) * | 2003-12-23 | 2012-02-16 | Sadra Medical, Inc. | Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements |
US8840663B2 (en) | 2003-12-23 | 2014-09-23 | Sadra Medical, Inc. | Repositionable heart valve method |
US7320705B2 (en) | 2004-01-23 | 2008-01-22 | James Quintessenza | Bicuspid pulmonary heart valve and method for making same |
WO2005076973A2 (en) | 2004-02-05 | 2005-08-25 | Children's Medical Center Corporation | Transcatheter delivery of a replacement heart valve |
US20070073387A1 (en) | 2004-02-27 | 2007-03-29 | Forster David C | Prosthetic Heart Valves, Support Structures And Systems And Methods For Implanting The Same |
JP2007526087A (en) | 2004-03-03 | 2007-09-13 | エヌエムティー メディカル, インコーポレイティッド | Delivery / recovery system for septal occluder |
US7410499B2 (en) | 2004-04-13 | 2008-08-12 | 3F Therapeutics, Inc. | Valve holder |
WO2005102015A2 (en) | 2004-04-23 | 2005-11-03 | 3F Therapeutics, Inc. | Implantable prosthetic valve |
US7285130B2 (en) | 2004-04-27 | 2007-10-23 | Boston Scientific Scimed, Inc. | Stent delivery system |
ES2407684T3 (en) | 2004-05-05 | 2013-06-13 | Direct Flow Medical, Inc. | Heart valve without stent with support structure formed on site |
US7842069B2 (en) | 2004-05-07 | 2010-11-30 | Nmt Medical, Inc. | Inflatable occluder |
US20060122692A1 (en) | 2004-05-10 | 2006-06-08 | Ran Gilad | Stent valve and method of using same |
US7276078B2 (en) * | 2004-06-30 | 2007-10-02 | Edwards Lifesciences Pvt | Paravalvular leak detection, sealing, and prevention |
US7393358B2 (en) | 2004-08-17 | 2008-07-01 | Boston Scientific Scimed, Inc. | Stent delivery system |
FR2874812B1 (en) | 2004-09-07 | 2007-06-15 | Perouse Soc Par Actions Simpli | INTERCHANGEABLE PROTHETIC VALVE |
FR2874813B1 (en) | 2004-09-07 | 2007-06-22 | Perouse Soc Par Actions Simpli | VALVULAR PROSTHESIS |
CA2579434A1 (en) | 2004-09-10 | 2006-03-23 | Cook Incorporated | Prosthetic valve with pores |
CN101443073B (en) | 2004-11-24 | 2011-08-03 | 维亚科公司 | Method and apparatus for improving mitral valve function |
WO2006060546A2 (en) | 2004-12-01 | 2006-06-08 | Cook Incorporated | Valve with leak path |
US20060135985A1 (en) | 2004-12-21 | 2006-06-22 | Cox Daniel L | Vulnerable plaque modification methods and apparatuses |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
JP2008528117A (en) | 2005-01-21 | 2008-07-31 | イノビア,リミティド ライアビリティー カンパニー | Stent valve and placement catheter for use therewith |
WO2006083763A1 (en) | 2005-01-31 | 2006-08-10 | Wilson-Cook Medical Inc. | Prosthesis having a sleeve valve |
ITTO20050074A1 (en) | 2005-02-10 | 2006-08-11 | Sorin Biomedica Cardio Srl | CARDIAC VALVE PROSTHESIS |
AU2006213665B2 (en) | 2005-02-11 | 2011-03-10 | International Paper Company | Paper substrates useful in wallboard tape applications |
US7331991B2 (en) | 2005-02-25 | 2008-02-19 | California Institute Of Technology | Implantable small percutaneous valve and methods of delivery |
US7632296B2 (en) | 2005-03-03 | 2009-12-15 | Boston Scientific Scimed, Inc. | Rolling membrane with hydraulic recapture means for self expanding stent |
US8062359B2 (en) | 2005-04-06 | 2011-11-22 | Edwards Lifesciences Corporation | Highly flexible heart valve connecting band |
US7513909B2 (en) | 2005-04-08 | 2009-04-07 | Arbor Surgical Technologies, Inc. | Two-piece prosthetic valves with snap-in connection and methods for use |
US7955372B2 (en) | 2005-06-01 | 2011-06-07 | Board Of Trustees Of The Leland Stanford Junior University | Endoluminal delivery system |
US7500989B2 (en) | 2005-06-03 | 2009-03-10 | Edwards Lifesciences Corp. | Devices and methods for percutaneous repair of the mitral valve via the coronary sinus |
US20070016288A1 (en) | 2005-07-13 | 2007-01-18 | Gurskis Donnell W | Two-piece percutaneous prosthetic heart valves and methods for making and using them |
US7455689B2 (en) | 2005-08-25 | 2008-11-25 | Edwards Lifesciences Corporation | Four-leaflet stented mitral heart valve |
WO2007028052A2 (en) | 2005-09-01 | 2007-03-08 | Cook Incorporated | Attachment of material to an implantable frame by cross-linking |
CA2881760C (en) | 2005-11-10 | 2017-06-13 | Arshad Quadri | Balloon-expandable, self-expanding, vascular prosthesis connecting stent |
US20070118210A1 (en) | 2005-11-18 | 2007-05-24 | Leonard Pinchuk | Trileaflet Heart Valve |
US20070213813A1 (en) | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
KR20080103510A (en) | 2005-12-22 | 2008-11-27 | 시메티스 에스에이 | Stent-valve for valve replacement and associated methods and systems for surgery |
ES2494618T3 (en) | 2005-12-22 | 2014-09-15 | Symetis Sa | Heart valve prosthesis |
EP1991168B1 (en) | 2006-02-16 | 2016-01-27 | Transcatheter Technologies GmbH | Minimally invasive heart valve replacement |
US20080275550A1 (en) | 2006-02-24 | 2008-11-06 | Arash Kheradvar | Implantable small percutaneous valve and methods of delivery |
US7780724B2 (en) | 2006-02-24 | 2010-08-24 | California Institute Of Technology | Monolithic in situ forming valve system |
US7625403B2 (en) | 2006-04-04 | 2009-12-01 | Medtronic Vascular, Inc. | Valved conduit designed for subsequent catheter delivered valve therapy |
US7524331B2 (en) | 2006-04-06 | 2009-04-28 | Medtronic Vascular, Inc. | Catheter delivered valve having a barrier to provide an enhanced seal |
US7591848B2 (en) | 2006-04-06 | 2009-09-22 | Medtronic Vascular, Inc. | Riveted stent valve for percutaneous use |
US20070239269A1 (en) | 2006-04-07 | 2007-10-11 | Medtronic Vascular, Inc. | Stented Valve Having Dull Struts |
US20070244546A1 (en) | 2006-04-18 | 2007-10-18 | Medtronic Vascular, Inc. | Stent Foundation for Placement of a Stented Valve |
US8348996B2 (en) | 2006-09-19 | 2013-01-08 | Medtronic Ventor Technologies Ltd. | Valve prosthesis implantation techniques |
US7534261B2 (en) * | 2006-10-02 | 2009-05-19 | Edwards Lifesciences Corporation | Sutureless heart valve attachment |
DE102006050385A1 (en) | 2006-10-05 | 2008-04-10 | pfm Produkte für die Medizin AG | Implantable mechanism for use in human and/or animal body for e.g. closing atrium septum defect, has partial piece that is folded back on another partial piece from primary form into secondary form of carrying structure |
AU2007329243B2 (en) | 2006-12-06 | 2014-04-03 | Medtronic CV Luxembourg S.a.r.l | System and method for transapical delivery of an annulus anchored self-expanding valve |
US8679128B2 (en) | 2006-12-07 | 2014-03-25 | Zimmer Spine, Inc. | Apparatus and methods for reduction of vertebral bodies in a spine |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
US8105375B2 (en) | 2007-01-19 | 2012-01-31 | The Cleveland Clinic Foundation | Method for implanting a cardiovascular valve |
WO2008100600A1 (en) | 2007-02-16 | 2008-08-21 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
US20080208327A1 (en) | 2007-02-27 | 2008-08-28 | Rowe Stanton J | Method and apparatus for replacing a prosthetic valve |
DE202007005491U1 (en) | 2007-04-13 | 2007-06-14 | Jenavalve Technology Gmbh | Medical device for treating aortic valve insufficiency of patient, has self-expandable endoprosthesis for positioning and fixing heart valve implant in arota of patient, and retaining segment with brackets for receiving implant |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
BRPI0812372A2 (en) | 2007-06-04 | 2015-02-03 | St Jude Medical | PROSTHETIC HEART VALVE. |
DE202008018556U1 (en) | 2007-08-21 | 2015-10-26 | Symetis Sa | A replacement flap |
US20090105794A1 (en) | 2007-09-07 | 2009-04-23 | Ziarno W Andrew | Microprocessor controlled delivery system for cardiac valve prosthesis |
FR2932376B1 (en) * | 2008-06-11 | 2011-04-01 | Perouse Lab | DEVICE FOR TREATING A BLOOD CIRCULATION CONDUIT |
US9848981B2 (en) | 2007-10-12 | 2017-12-26 | Mayo Foundation For Medical Education And Research | Expandable valve prosthesis with sealing mechanism |
CA2703665C (en) | 2007-10-25 | 2016-05-10 | Symetis Sa | Stents, valved-stents and methods and systems for delivery thereof |
WO2009091509A1 (en) | 2008-01-16 | 2009-07-23 | St. Jude Medical, Inc. | Delivery and retrieval systems for collapsible/expandable prosthetic heart valves |
EP3744291B1 (en) | 2008-01-24 | 2022-11-23 | Medtronic, Inc. | Stents for prosthetic heart valves |
US20090276040A1 (en) | 2008-05-01 | 2009-11-05 | Edwards Lifesciences Corporation | Device and method for replacing mitral valve |
DE202009018984U1 (en) * | 2008-07-15 | 2015-01-29 | St. Jude Medical, Inc. | Bag for use in a heart valve prosthesis |
AU2009295960A1 (en) * | 2008-09-29 | 2010-04-01 | Cardiaq Valve Technologies, Inc. | Heart valve |
US8137398B2 (en) | 2008-10-13 | 2012-03-20 | Medtronic Ventor Technologies Ltd | Prosthetic valve having tapered tip when compressed for delivery |
US8986361B2 (en) | 2008-10-17 | 2015-03-24 | Medtronic Corevalve, Inc. | Delivery system for deployment of medical devices |
BRPI0919911A2 (en) | 2008-10-29 | 2016-02-16 | Symetis Sa | Methods and Systems for Stent Valve Manufacturing and Assembly |
CN102341062B (en) | 2009-01-23 | 2016-05-04 | 安多拉米诺科学公司 | Endovascular device and related system and method |
AU2010311811B2 (en) | 2009-11-02 | 2015-09-17 | Symetis Sa | Aortic bioprosthesis and systems for delivery thereof |
US20130190861A1 (en) * | 2012-01-23 | 2013-07-25 | Tendyne Holdings, Inc. | Prosthetic Valve for Replacing Mitral Valve |
US8449599B2 (en) | 2009-12-04 | 2013-05-28 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
EP3838223A1 (en) * | 2009-12-08 | 2021-06-23 | Avalon Medical Ltd. | Device and system for transcatheter mitral valve replacement |
US9545306B2 (en) | 2010-04-21 | 2017-01-17 | Medtronic, Inc. | Prosthetic valve with sealing members and methods of use thereof |
US8992604B2 (en) * | 2010-07-21 | 2015-03-31 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
WO2012054776A1 (en) | 2010-10-21 | 2012-04-26 | Medtronic Inc | Mitral bioprosthesis with low ventricular profile |
US20120116496A1 (en) | 2010-11-05 | 2012-05-10 | Chuter Timothy A | Stent structures for use with valve replacements |
CA2840084C (en) * | 2011-06-21 | 2019-11-05 | Foundry Newco Xii, Inc. | Prosthetic heart valve devices and associated systems and methods |
US20140324164A1 (en) * | 2011-08-05 | 2014-10-30 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US20130190857A1 (en) * | 2011-09-09 | 2013-07-25 | Endoluminal Sciences Pty Ltd. | Means for controlled sealing of endovascular devices |
WO2013033791A1 (en) | 2011-09-09 | 2013-03-14 | Endoluminal Sciences Pty Ltd | Means for controlled sealing of endovascular devices |
CA3051684C (en) | 2011-12-06 | 2020-06-16 | Aortic Innovations Llc | Device for endovascular aortic repair and method of using the same |
WO2013134214A1 (en) | 2012-03-05 | 2013-09-12 | The Trustees Of The University Of Pennsylvania | Superabsorbent coated stents for vascular reduction and for anchoring valve replacements |
US20130274873A1 (en) | 2012-03-22 | 2013-10-17 | Symetis Sa | Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage |
US8926690B2 (en) * | 2012-08-13 | 2015-01-06 | Medtronic, Inc. | Heart valve prosthesis |
US20140128964A1 (en) | 2012-11-08 | 2014-05-08 | Symetis Sa | Stent Seals and Methods for Sealing an Expandable Stent |
US8628571B1 (en) | 2012-11-13 | 2014-01-14 | Mitraltech Ltd. | Percutaneously-deliverable mechanical valve |
US9132007B2 (en) * | 2013-01-10 | 2015-09-15 | Medtronic CV Luxembourg S.a.r.l. | Anti-paravalvular leakage components for a transcatheter valve prosthesis |
US10413401B2 (en) | 2013-02-01 | 2019-09-17 | Medtronic CV Luxembourg S.a.r.l. | Anti-paravalvular leakage component for a transcatheter valve prosthesis |
US9675451B2 (en) * | 2013-02-01 | 2017-06-13 | Medtronic CV Luxembourg S.a.r.l. | Anti-paravalvular leakage component for a transcatheter valve prosthesis |
US8986375B2 (en) * | 2013-03-12 | 2015-03-24 | Medtronic, Inc. | Anti-paravalvular leakage component for a transcatheter valve prosthesis |
US9398951B2 (en) * | 2013-03-12 | 2016-07-26 | St. Jude Medical, Cardiology Division, Inc. | Self-actuating sealing portions for paravalvular leak protection |
US9636222B2 (en) | 2013-03-12 | 2017-05-02 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak protection |
US20140350668A1 (en) * | 2013-03-13 | 2014-11-27 | Symetis Sa | Prosthesis Seals and Methods for Sealing an Expandable Prosthesis |
US9326856B2 (en) | 2013-03-14 | 2016-05-03 | St. Jude Medical, Cardiology Division, Inc. | Cuff configurations for prosthetic heart valve |
CA2905544C (en) | 2013-03-15 | 2020-08-18 | Symetis Sa | Improvements relating to transcatheter stent-valves |
CA2975361A1 (en) * | 2015-02-02 | 2016-08-11 | Symetis Sa | Stent seals and method of production |
-
2013
- 2013-03-15 US US13/839,357 patent/US20130274873A1/en not_active Abandoned
- 2013-03-25 WO PCT/EP2013/000893 patent/WO2014139545A1/en active Application Filing
- 2013-03-25 US US14/777,503 patent/US10258464B2/en active Active
-
2015
- 2015-10-09 US US14/879,482 patent/US20160030167A1/en not_active Abandoned
-
2019
- 2019-03-07 US US16/295,394 patent/US10898321B2/en active Active
- 2019-12-26 JP JP2019236037A patent/JP2020065939A/en active Pending
-
2021
- 2021-05-18 US US17/323,452 patent/US11957573B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070198097A1 (en) * | 2003-12-23 | 2007-08-23 | Laboratoires Perouse | Kit For Implanting In A Duct |
US8052749B2 (en) * | 2003-12-23 | 2011-11-08 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US20050283231A1 (en) * | 2004-06-16 | 2005-12-22 | Haug Ulrich R | Everting heart valve |
US20070179600A1 (en) * | 2004-10-04 | 2007-08-02 | Gil Vardi | Stent graft including expandable cuff |
US20060265056A1 (en) * | 2005-05-13 | 2006-11-23 | Corevalve, Inc. | Heart valve prosthesis and methods of manufacture and use |
US20060287717A1 (en) * | 2005-05-24 | 2006-12-21 | Rowe Stanton J | Methods for rapid deployment of prosthetic heart valves |
US20120101571A1 (en) * | 2008-11-21 | 2012-04-26 | Percutaneous Cardiovascular Solutions Pty Limited | Heart valve prosthesis and method |
US20120303116A1 (en) * | 2009-11-05 | 2012-11-29 | The Trustees Of The University Of Pennsylvania | Valve prosthesis |
US20110264196A1 (en) * | 2010-04-23 | 2011-10-27 | Medtronic, Inc. | Stents for Prosthetic Heart Valves |
US20120123529A1 (en) * | 2010-10-05 | 2012-05-17 | Edwards Lifesciences Corporation | Prosthetic heart valve |
Cited By (344)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11304803B2 (en) | 2004-10-02 | 2022-04-19 | Edwards Lifesciences Cardiaq Llc | Method for replacement of heart valve |
US11058536B2 (en) | 2004-10-02 | 2021-07-13 | Edwards Lifesciences Cardiaq Llc | Method for replacement of heart valve |
US11877941B2 (en) | 2006-07-31 | 2024-01-23 | Edwards Lifesciences Cardiaq Llc | Sealable endovascular implants and methods for their use |
US10925760B2 (en) | 2006-07-31 | 2021-02-23 | Edwards Lifesciences Cardiaq Llc | Sealable endovascular implants and methods for their use |
US10507097B2 (en) | 2006-07-31 | 2019-12-17 | Edwards Lifesciences Cardiaq Llc | Surgical implant devices and methods for their manufacture and use |
US10687968B2 (en) | 2006-07-31 | 2020-06-23 | Edwards Lifesciences Cardiaq Llc | Sealable endovascular implants and methods for their use |
US11007053B2 (en) | 2007-09-26 | 2021-05-18 | St. Jude Medical, Llc | Collapsible prosthetic heart valves |
US11903823B2 (en) | 2007-09-26 | 2024-02-20 | St. Jude Medical, Llc | Collapsible prosthetic heart valves |
US9414911B2 (en) | 2007-09-26 | 2016-08-16 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US10292813B2 (en) | 2007-09-26 | 2019-05-21 | St. Jude Medical, Llc | Collapsible prosthetic heart valves |
US9636221B2 (en) | 2007-09-26 | 2017-05-02 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US9241794B2 (en) | 2007-09-26 | 2016-01-26 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US9693859B2 (en) | 2007-09-26 | 2017-07-04 | St. Jude Medical, Llc | Collapsible prosthetic heart valves |
US9351828B2 (en) | 2007-09-26 | 2016-05-31 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US9545307B2 (en) | 2007-09-26 | 2017-01-17 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US9549815B2 (en) | 2007-09-26 | 2017-01-24 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US9345571B1 (en) | 2007-09-26 | 2016-05-24 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US11660187B2 (en) | 2007-09-28 | 2023-05-30 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US9820851B2 (en) * | 2007-09-28 | 2017-11-21 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US10426604B2 (en) | 2007-09-28 | 2019-10-01 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US11382740B2 (en) * | 2007-09-28 | 2022-07-12 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US11534294B2 (en) | 2007-09-28 | 2022-12-27 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US12138161B2 (en) | 2007-09-28 | 2024-11-12 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US20150216658A1 (en) * | 2007-09-28 | 2015-08-06 | St. Jude Medical, Inc. | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US20140155997A1 (en) * | 2007-09-28 | 2014-06-05 | Peter Nicholas Braido | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US9532868B2 (en) * | 2007-09-28 | 2017-01-03 | St. Jude Medical, Inc. | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US10413405B2 (en) | 2007-12-14 | 2019-09-17 | Edwards Lifesciences Corporation | Leaflet attachment frame for a prosthetic valve |
US10413406B2 (en) | 2007-12-14 | 2019-09-17 | Edwards Lifesciences Corporation | Leaflet attachment frame for a prosthetic valve |
US10413404B2 (en) | 2007-12-14 | 2019-09-17 | Edwards Lifesciences Corporation | Leaflet attachment frame for a prosthetic valve |
US10426611B2 (en) | 2008-06-06 | 2019-10-01 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US10292817B2 (en) | 2008-06-06 | 2019-05-21 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US10413407B2 (en) | 2008-06-06 | 2019-09-17 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US9289296B2 (en) | 2008-07-15 | 2016-03-22 | St. Jude Medical, Inc. | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US10314694B2 (en) | 2008-07-15 | 2019-06-11 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US10010410B2 (en) | 2008-07-15 | 2018-07-03 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US12090047B2 (en) | 2008-07-15 | 2024-09-17 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US9675449B2 (en) | 2008-07-15 | 2017-06-13 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US12036112B2 (en) | 2008-07-15 | 2024-07-16 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US9681949B2 (en) | 2008-07-15 | 2017-06-20 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US11504228B2 (en) | 2008-07-15 | 2022-11-22 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US9351832B2 (en) | 2008-07-15 | 2016-05-31 | St. Jude Medical, Inc. | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US9351831B2 (en) | 2008-07-15 | 2016-05-31 | St. Jude Medical, Inc. | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US11116631B2 (en) | 2008-08-22 | 2021-09-14 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery methods |
US11690718B2 (en) | 2008-08-22 | 2023-07-04 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US10945839B2 (en) | 2008-08-22 | 2021-03-16 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US11116632B2 (en) | 2008-08-22 | 2021-09-14 | Edwards Lifesciences Corporation | Transvascular delivery systems |
US10238487B2 (en) | 2008-08-22 | 2019-03-26 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US10952848B2 (en) | 2008-08-22 | 2021-03-23 | Edwards Lifesciences Corporation | Methods of loading a prosthetic valve in a delivery apparatus |
US11109970B2 (en) | 2008-08-22 | 2021-09-07 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US11730597B2 (en) | 2008-08-22 | 2023-08-22 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US11957582B2 (en) | 2008-08-22 | 2024-04-16 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US11141270B2 (en) | 2008-08-22 | 2021-10-12 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US10932906B2 (en) | 2008-08-22 | 2021-03-02 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US10820994B2 (en) | 2008-08-22 | 2020-11-03 | Edwards Lifesciences Corporation | Methods for delivering a prosthetic valve |
US11540918B2 (en) | 2008-08-22 | 2023-01-03 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US11957576B2 (en) | 2008-10-10 | 2024-04-16 | Edwards Lifesciences Corporation | Expandable sheath for introducing an endovascular delivery device into a body |
US10441417B2 (en) | 2009-02-27 | 2019-10-15 | St. Jude Medical, Llc | Stent features for collapsible prosthetic heart valves |
US11045314B2 (en) | 2009-02-27 | 2021-06-29 | St. Jude Medical, Llc | Stent features for collapsible prosthetic heart valves |
US10568732B2 (en) | 2009-07-02 | 2020-02-25 | Edwards Lifesciences Cardiaq Llc | Surgical implant devices and methods for their manufacture and use |
US11766323B2 (en) | 2009-07-02 | 2023-09-26 | Edwards Lifesciences Cardiaq Llc | Surgical implant devices and methods for their manufacture and use |
US10166097B2 (en) | 2009-09-29 | 2019-01-01 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve and method |
US11839541B2 (en) | 2009-12-08 | 2023-12-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US11730589B2 (en) | 2010-03-05 | 2023-08-22 | Edwards Lifesciences Corporation | Prosthetic heart valve having an inner frame and an outer frame |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US10537423B2 (en) | 2010-10-05 | 2020-01-21 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10478292B2 (en) | 2010-10-05 | 2019-11-19 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10433958B2 (en) | 2010-10-05 | 2019-10-08 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10433959B2 (en) | 2010-10-05 | 2019-10-08 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11540911B2 (en) | 2010-12-29 | 2023-01-03 | Edwards Lifesciences Cardiaq Llc | Surgical implant devices and methods for their manufacture and use |
US11801132B2 (en) | 2011-02-25 | 2023-10-31 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11129713B2 (en) | 2011-02-25 | 2021-09-28 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US11399934B2 (en) | 2011-02-25 | 2022-08-02 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11737868B2 (en) | 2011-02-25 | 2023-08-29 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US11737871B2 (en) | 2011-02-25 | 2023-08-29 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10561494B2 (en) | 2011-02-25 | 2020-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US12186183B2 (en) | 2011-02-25 | 2025-01-07 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US10179047B2 (en) | 2011-07-27 | 2019-01-15 | Edwards Lifesciences Corporation | Delivery systems for prosthetic heart valve |
US11877929B2 (en) | 2011-07-27 | 2024-01-23 | Edwards Lifesciences Corporation | Delivery systems for prosthetic heart valve |
US11291542B2 (en) | 2011-07-27 | 2022-04-05 | Edwards Lifesciences Corporation | Delivery systems for prosthetic heart valve |
US10856977B2 (en) | 2011-07-27 | 2020-12-08 | Edwards Lifesciences Corporation | Delivery systems for prosthetic heart valve |
US11864997B2 (en) | 2011-07-27 | 2024-01-09 | Edwards Lifesciences Corporation | Delivery systems for prosthetic heart valve |
US11554013B2 (en) | 2011-07-27 | 2023-01-17 | Edwards Lifesciences Corporation | Delivery systems for prosthetic heart valve |
US9358108B2 (en) | 2011-09-12 | 2016-06-07 | Highlife Sas | Transcatheter valve prosthesis |
US10828157B2 (en) | 2011-09-12 | 2020-11-10 | Highlife Sas | Transcatheter valve prosthesis |
US9662206B2 (en) | 2011-09-12 | 2017-05-30 | Highlife Sas | Transcatheter valve prosthesis |
US10080651B2 (en) | 2011-09-12 | 2018-09-25 | Highlife Sas | Transcatheter valve prosthesis |
US11642220B2 (en) | 2011-09-12 | 2023-05-09 | Highlife Sas | Transcatheter valve prosthesis |
US9387075B2 (en) | 2011-09-12 | 2016-07-12 | Highlife Sas | Transcatheter valve prosthesis |
US10980650B2 (en) | 2011-10-21 | 2021-04-20 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US10238514B2 (en) | 2011-10-21 | 2019-03-26 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US10478295B2 (en) | 2011-10-21 | 2019-11-19 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US10874508B2 (en) | 2011-10-21 | 2020-12-29 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US11707356B2 (en) | 2011-10-21 | 2023-07-25 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US11234819B2 (en) | 2012-11-21 | 2022-02-01 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic heart valves |
US10016276B2 (en) | 2012-11-21 | 2018-07-10 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic heart valves |
US20230301781A1 (en) * | 2013-02-01 | 2023-09-28 | Medtronic CV Luxembourg S.a.r.l. | Anti-paravalvular leakage component for a transcatheter valve prosthesis |
US12213879B2 (en) * | 2013-02-01 | 2025-02-04 | Medtronic CV Luxembourg S.a.r.l. | Anti-paravalvular leakage component for a transcatheter valve prosthesis |
US10548725B2 (en) | 2013-03-12 | 2020-02-04 | St. Jude Medical, Cardiology Division, Inc. | Self-actuating sealing portions for paravalvular leak protection |
US11141273B2 (en) | 2013-03-12 | 2021-10-12 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak occlusion device for self-expanding heart valves |
US10271949B2 (en) | 2013-03-12 | 2019-04-30 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak occlusion device for self-expanding heart valves |
US9867697B2 (en) | 2013-03-12 | 2018-01-16 | St. Jude Medical, Cardiology Division, Inc. | Self-actuating sealing portions for a paravalvular leak protection |
US9339274B2 (en) | 2013-03-12 | 2016-05-17 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak occlusion device for self-expanding heart valves |
US11219521B2 (en) | 2013-03-12 | 2022-01-11 | St. Jude Medical, Cardiology Division, Inc. | Self-actuating sealing portions for paravalvular leak protection |
US9687341B2 (en) | 2013-03-12 | 2017-06-27 | St. Jude Medical, Cardiology Division, Inc. | Self-actuating sealing portions for paravalvular leak protection |
US9398951B2 (en) | 2013-03-12 | 2016-07-26 | St. Jude Medical, Cardiology Division, Inc. | Self-actuating sealing portions for paravalvular leak protection |
US20160022444A1 (en) * | 2013-03-13 | 2016-01-28 | Symetis Sa | Prosthesis seals and methods for sealing an expandable prosthesis |
US10420658B2 (en) * | 2013-03-13 | 2019-09-24 | Symetis Sa | Prosthesis seals and methods for sealing an expandable prosthesis |
US9326856B2 (en) | 2013-03-14 | 2016-05-03 | St. Jude Medical, Cardiology Division, Inc. | Cuff configurations for prosthetic heart valve |
US10136992B2 (en) | 2013-03-14 | 2018-11-27 | St. Jude Medical, Cardiology Division, Inc. | Cuff configurations for prosthetic heart valve |
US11166816B2 (en) | 2013-03-14 | 2021-11-09 | St. Jude Medical, Cardiology Division, Inc. | Cuff configurations for prosthetic heart valve |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US10321991B2 (en) | 2013-06-19 | 2019-06-18 | St. Jude Medical, Cardiology Division, Inc. | Collapsible valve having paravalvular leak protection |
US11793630B2 (en) | 2013-08-12 | 2023-10-24 | Mitral Valve Technologies Sarl | Apparatus and methods for implanting a replacement heart valve |
US10945837B2 (en) | 2013-08-12 | 2021-03-16 | Mitral Valve Technologies Sarl | Apparatus and methods for implanting a replacement heart valve |
US12011348B2 (en) | 2013-08-14 | 2024-06-18 | Mitral Valve Technologies Sarl | Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device |
US10588742B2 (en) | 2013-08-14 | 2020-03-17 | Mitral Valve Technologies Sarl | Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device |
US11304797B2 (en) | 2013-08-14 | 2022-04-19 | Mitral Valve Technologies Sarl | Replacement heart valve methods |
US11234811B2 (en) * | 2013-08-14 | 2022-02-01 | Mitral Valve Technologies Sarl | Replacement heart valve systems and methods |
US11523899B2 (en) | 2013-08-14 | 2022-12-13 | Mitral Valve Technologies Sarl | Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device |
US10226330B2 (en) | 2013-08-14 | 2019-03-12 | Mitral Valve Technologies Sarl | Replacement heart valve apparatus and methods |
US11229515B2 (en) | 2013-08-14 | 2022-01-25 | Mitral Valve Technologies Sarl | Replacement heart valve systems and methods |
US10117742B2 (en) | 2013-09-12 | 2018-11-06 | St. Jude Medical, Cardiology Division, Inc. | Stent designs for prosthetic heart valves |
US10993804B2 (en) | 2013-09-12 | 2021-05-04 | St. Jude Medical, Cardiology Division, Inc. | Stent designs for prosthetic heart valves |
US12156809B2 (en) | 2013-09-12 | 2024-12-03 | St. Jude Medical, Cardiology Division, Inc. | Stent designs for prosthetic heart valves |
US20160220366A1 (en) * | 2013-09-13 | 2016-08-04 | Ucl Business Plc | Vascular implant |
US10231828B2 (en) | 2013-11-06 | 2019-03-19 | St. Jude Medical, Cardiology Division, Inc. | Reduced profile prosthetic heart valve |
US20180147057A1 (en) * | 2013-11-06 | 2018-05-31 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US9668857B2 (en) | 2013-11-06 | 2017-06-06 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
EP2870946A1 (en) * | 2013-11-06 | 2015-05-13 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US9700409B2 (en) | 2013-11-06 | 2017-07-11 | St. Jude Medical, Cardiology Division, Inc. | Reduced profile prosthetic heart valve |
EP2870946B1 (en) | 2013-11-06 | 2018-10-31 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US10849740B2 (en) * | 2013-11-06 | 2020-12-01 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US9913715B2 (en) | 2013-11-06 | 2018-03-13 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US11446143B2 (en) * | 2013-11-06 | 2022-09-20 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US11395751B2 (en) | 2013-11-11 | 2022-07-26 | Edwards Lifesciences Cardiaq Llc | Systems and methods for manufacturing a stent frame |
US20150142104A1 (en) * | 2013-11-19 | 2015-05-21 | St. Jude Medical, Cardiology Division, Inc. | Sealing structures for paravalvular leak protection |
US11813162B2 (en) | 2013-11-19 | 2023-11-14 | St. Jude Medical, Cardiology Division, Inc. | Sealing structures for paravalvular leak protection |
WO2015077274A1 (en) * | 2013-11-19 | 2015-05-28 | St. Jude Medical, Cardiology Division, Inc. | Sealing structures for paravalvular leak protection |
US20180168805A1 (en) * | 2013-11-19 | 2018-06-21 | St. Jude Medical, Cardiology Division, Inc. | Sealing structures for paravalvular leak protection |
US9889004B2 (en) * | 2013-11-19 | 2018-02-13 | St. Jude Medical, Cardiology Division, Inc. | Sealing structures for paravalvular leak protection |
EP3071149B1 (en) | 2013-11-19 | 2022-06-01 | St. Jude Medical, Cardiology Division, Inc. | Sealing structures for paravalvular leak protection |
US10945836B2 (en) * | 2013-11-19 | 2021-03-16 | St. Jude Medical, Cardiology Division, Inc. | Sealing structures for paravalvular leak protection |
US10478290B2 (en) * | 2013-11-26 | 2019-11-19 | Children's Medical Center Corporation | Expandable stent valve |
US10595993B2 (en) | 2013-12-05 | 2020-03-24 | Edwards Lifesciences Corporation | Method of making an introducer sheath with an inner liner |
US11419716B2 (en) * | 2014-01-24 | 2022-08-23 | St. Jude Medical, Cardiology Division, Inc. | Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs |
EP2898859B1 (en) | 2014-01-24 | 2018-11-21 | St. Jude Medical, Cardiology Division, Inc. | Stationary intra-annular halo designs for paravalvular leak (PVL) reduction - active channel filling cuff designs |
EP2898859A1 (en) * | 2014-01-24 | 2015-07-29 | St. Jude Medical, Cardiology Division, Inc. | Stationary intra-annular halo designs for paravalvular leak (PVL) reduction - active channel filling cuff designs |
US9820852B2 (en) | 2014-01-24 | 2017-11-21 | St. Jude Medical, Cardiology Division, Inc. | Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs |
US20180008402A1 (en) * | 2014-01-24 | 2018-01-11 | St. Jude Medical, Cardiology Division, Inc. | Stationary intra-annular halo designs for paravalvular leak (pvl) reduction - active channel filling cuff designs |
US20220395368A1 (en) * | 2014-01-24 | 2022-12-15 | St. Jude Medical, Cardiology Division, Inc. | Stationary Intra-Annular Halo Designs For Paravalvular Leak (PVL) Reduction - Active Channel Filling Cuff Designs |
US10500039B2 (en) * | 2014-01-24 | 2019-12-10 | St. Jude Medical, Cardiology Division, Inc. | Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs |
US12121437B2 (en) | 2014-01-24 | 2024-10-22 | St. Jude Medical, Cardiology Division, Inc. | Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs |
US11033385B2 (en) | 2014-01-24 | 2021-06-15 | St. Jude Medical, Cardiology Division, Inc. | Stationary intra-annular halo designs for paravalvular leak (PVL) reduction-passive channel filling cuff designs |
EP3107495B1 (en) | 2014-02-18 | 2022-03-30 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners and corresponding valve assemblies for paravalvular leak protection |
US10952847B2 (en) | 2014-02-18 | 2021-03-23 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners and corresponding valve assemblies for paravalvular leak protection |
US9949825B2 (en) | 2014-02-18 | 2018-04-24 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners and corresponding valve assemblies for paravalvular leak protection |
WO2015126711A1 (en) * | 2014-02-18 | 2015-08-27 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners and corresponding valve assemblies for paravalvular leak protection |
EP3107496B1 (en) | 2014-02-18 | 2018-07-04 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners for paravalvular leak protection |
US11672652B2 (en) * | 2014-02-18 | 2023-06-13 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners for paravalvular leak protection |
WO2015126712A1 (en) * | 2014-02-18 | 2015-08-27 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners for paravalvular leak protection |
US12023240B2 (en) | 2014-02-18 | 2024-07-02 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners and corresponding valve assemblies for paravalvular leak protection |
US10271946B2 (en) | 2014-02-18 | 2019-04-30 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners and corresponding valve assemblies for paravalvular leak protection |
US20170165053A1 (en) * | 2014-02-18 | 2017-06-15 | St. Jude Medical, Cardiology Division, Inc. | Bowed Runners for Paravalvular Leak Protection |
US11974914B2 (en) | 2014-02-21 | 2024-05-07 | Mitral Valve Technologies Sarl | Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device |
US10052199B2 (en) | 2014-02-21 | 2018-08-21 | Mitral Valve Technologies Sarl | Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device |
US10898320B2 (en) | 2014-02-21 | 2021-01-26 | Mitral Valve Technologies Sarl | Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device |
CN106255476A (en) * | 2014-02-28 | 2016-12-21 | 高品质生活简化股份公司 | Through conduit valve prosthesis |
WO2015128747A3 (en) * | 2014-02-28 | 2015-11-26 | Highlife Sas | Transcatheter valve prosthesis |
US9687343B2 (en) | 2014-03-11 | 2017-06-27 | Highlife Sas | Transcatheter valve prosthesis |
US10064719B2 (en) | 2014-03-11 | 2018-09-04 | Highlife Sas | Transcatheter valve prosthesis |
US9889003B2 (en) | 2014-03-11 | 2018-02-13 | Highlife Sas | Transcatheter valve prosthesis |
US9763779B2 (en) | 2014-03-11 | 2017-09-19 | Highlife Sas | Transcatheter valve prosthesis |
US11246706B2 (en) | 2014-03-26 | 2022-02-15 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter mitral valve stent frames |
US10143551B2 (en) | 2014-03-31 | 2018-12-04 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular sealing via extended cuff mechanisms |
US10874510B2 (en) | 2014-03-31 | 2020-12-29 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular sealing via extended cuff mechanisms |
US11737866B2 (en) | 2014-04-23 | 2023-08-29 | Medtronic, Inc. | Paravalvular leak resistant prosthetic heart valve system |
US11096780B2 (en) | 2014-04-23 | 2021-08-24 | Medtronic, Inc. | Paravalvular leak resistant prosthetic heart valve system |
US12201515B2 (en) | 2014-04-23 | 2025-01-21 | Medtronic, Inc. | Paravalvular leak resistant prosthetic heart valve system |
WO2015164061A1 (en) * | 2014-04-23 | 2015-10-29 | Medtronic Inc. | Paravalvular leak resistant prosthetic heart valve system |
US10321987B2 (en) | 2014-04-23 | 2019-06-18 | Medtronic, Inc. | Paravalvular leak resistant prosthetic heart valve system |
US11103345B2 (en) | 2014-05-12 | 2021-08-31 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US12102528B2 (en) | 2014-05-12 | 2024-10-01 | Edwards Lifesciences Corporation | Prosthetic heart valve |
EP3142607B1 (en) | 2014-05-12 | 2019-11-13 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10028831B2 (en) | 2014-05-16 | 2018-07-24 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter valve with paravalvular leak sealing ring |
US9668858B2 (en) | 2014-05-16 | 2017-06-06 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter valve with paravalvular leak sealing ring |
US10299926B2 (en) | 2014-05-16 | 2019-05-28 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter valve with paravalvular leak sealing ring |
US11413142B2 (en) | 2014-05-16 | 2022-08-16 | St. Jude Medical, Cardiology Division, Inc. | Stent assembly for use in prosthetic heart valves |
US10420641B2 (en) | 2014-05-16 | 2019-09-24 | St. Jude Medical, Cardiology Division, Inc. | Stent assembly for use in prosthetic heart valves |
US9757230B2 (en) | 2014-05-16 | 2017-09-12 | St. Jude Medical, Cardiology Division, Inc. | Stent assembly for use in prosthetic heart valves |
US11007054B2 (en) | 2014-05-16 | 2021-05-18 | St. Jude Medical, Cardiology Division, Inc. | Subannular sealing for paravalvular leak protection |
US10130467B2 (en) | 2014-05-16 | 2018-11-20 | St. Jude Medical, Cardiology Division, Inc. | Subannular sealing for paravalvular leak protection |
WO2015179423A1 (en) * | 2014-05-19 | 2015-11-26 | Cardiaq Valve Technologies, Inc. | Replacement mitral valve with annular flap |
US10179044B2 (en) | 2014-05-19 | 2019-01-15 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve |
US11045313B2 (en) | 2014-05-19 | 2021-06-29 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve |
US12083011B2 (en) | 2014-05-19 | 2024-09-10 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
EP4470506A3 (en) * | 2014-05-19 | 2025-01-08 | Edwards Lifesciences CardiAQ LLC | Replacement mitral valve with annular flap |
US10433957B2 (en) * | 2014-06-10 | 2019-10-08 | St. Jude Medical, Cardiology Division, Inc. | Stent cell bridge for cuff attachment |
US20180071090A1 (en) * | 2014-06-10 | 2018-03-15 | St. Jude Medical, Cardiology Division, Inc. | Stent cell bridge for cuff attachment |
US12053380B2 (en) | 2014-07-30 | 2024-08-06 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US11951000B2 (en) | 2014-09-12 | 2024-04-09 | Mitral Valve Technologies Sarl | Mitral repair and replacement devices and methods |
US11406493B2 (en) | 2014-09-12 | 2022-08-09 | Mitral Valve Technologies Sarl | Mitral repair and replacement devices and methods |
US20210290379A1 (en) * | 2015-02-02 | 2021-09-23 | Boston Scientific Limited | Stent seals and method of production |
CN113576714A (en) * | 2015-02-02 | 2021-11-02 | 赛姆斯股份公司 | Stent seal and method of making the same |
US12156807B2 (en) * | 2015-02-02 | 2024-12-03 | Boston Scientific Limited | Stent seals and method of production |
CN107427355A (en) * | 2015-02-02 | 2017-12-01 | 赛姆斯股份公司 | Shelf seal and preparation method thereof |
WO2016124615A3 (en) * | 2015-02-02 | 2016-09-29 | Symetis Sa | Stent seals and method of production |
US11045312B2 (en) | 2015-02-02 | 2021-06-29 | Boston Scientific Limited | Stent seals and method of production |
US11786364B2 (en) | 2015-02-11 | 2023-10-17 | Edwards Lifesciences Corporation | Delivery apparatuses for medical device implants |
US10039637B2 (en) | 2015-02-11 | 2018-08-07 | Edwards Lifesciences Corporation | Heart valve docking devices and implanting methods |
US10758341B2 (en) | 2015-02-11 | 2020-09-01 | Edwards Lifesciences Corporation | Heart valve docking devices and implanting methods |
US10743992B2 (en) | 2015-03-24 | 2020-08-18 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic mitral valve |
US9962260B2 (en) | 2015-03-24 | 2018-05-08 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic mitral valve |
US12194256B2 (en) | 2015-04-10 | 2025-01-14 | Edwards Lifesciences Corporation | Expandable sheath |
US11420026B2 (en) | 2015-04-10 | 2022-08-23 | Edwards Lifesciences Corporation | Expandable sheath |
US11406796B2 (en) | 2015-04-10 | 2022-08-09 | Edwards Lifesciences Corporation | Expandable sheath |
US10327896B2 (en) | 2015-04-10 | 2019-06-25 | Edwards Lifesciences Corporation | Expandable sheath with elastomeric cross sectional portions |
US10792471B2 (en) | 2015-04-10 | 2020-10-06 | Edwards Lifesciences Corporation | Expandable sheath |
US20220234306A1 (en) * | 2015-04-29 | 2022-07-28 | Edwards Lifesciences Corporation | Laminated sealing member for prosthetic heart valve |
US11298889B2 (en) * | 2015-04-29 | 2022-04-12 | Edwards Lifesciences Corporation | Laminated sealing member for prosthetic heart valve |
US10016273B2 (en) | 2015-06-05 | 2018-07-10 | Medtronic, Inc. | Filtered sealing components for a transcatheter valve prosthesis |
US10856974B2 (en) | 2015-06-12 | 2020-12-08 | St. Jude Medical, Cardiology Division, Inc. | Heart valve repair and replacement |
US10179042B2 (en) * | 2015-06-12 | 2019-01-15 | St. Jude Medical, Cardiology Division, Inc. | Heart valve repair and replacement |
US20160361161A1 (en) * | 2015-06-12 | 2016-12-15 | St. Jude Medical, Cardiology Division, Inc. | Heart valve repair and replacement |
US12076235B2 (en) | 2015-07-14 | 2024-09-03 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US9974650B2 (en) | 2015-07-14 | 2018-05-22 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11051937B2 (en) * | 2015-07-14 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US20200375731A1 (en) * | 2015-08-26 | 2020-12-03 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US12004949B2 (en) * | 2015-08-26 | 2024-06-11 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US12115067B2 (en) | 2015-09-21 | 2024-10-15 | Edwards Lifesciences Corporation | Cylindrical implant and balloon |
US10314703B2 (en) | 2015-09-21 | 2019-06-11 | Edwards Lifesciences Corporation | Cylindrical implant and balloon |
US11273036B2 (en) | 2015-09-21 | 2022-03-15 | Edwards Lifesciences Corporation | Cylindrical implant and balloon |
US11833034B2 (en) | 2016-01-13 | 2023-12-05 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US11744700B2 (en) | 2016-02-12 | 2023-09-05 | Edwards Lifesciences Corporation | Prosthetic heart valve having multi-level sealing member |
US10722354B2 (en) | 2016-02-12 | 2020-07-28 | Edwards Lifesciences Corporation | Prosthetic heart valve having multi-level sealing member |
US10179043B2 (en) | 2016-02-12 | 2019-01-15 | Edwards Lifesciences Corporation | Prosthetic heart valve having multi-level sealing member |
US11937795B2 (en) | 2016-02-16 | 2024-03-26 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US12036114B2 (en) | 2016-03-14 | 2024-07-16 | Medtronic Vascular, Inc. | Stented prosthetic heart valve having a wrap and delivery devices |
US10888420B2 (en) | 2016-03-14 | 2021-01-12 | Medtronic Vascular, Inc. | Stented prosthetic heart valve having a wrap and delivery devices |
US10179045B2 (en) | 2016-03-24 | 2019-01-15 | Medtronic Vascular, Inc. | Stented prosthetic heart valve having wrap and methods of delivery and deployment |
US11116629B2 (en) | 2016-03-24 | 2021-09-14 | Edwards Lifesciences Corporation | Delivery system for prosthetic heart valve |
US12053376B2 (en) | 2016-03-24 | 2024-08-06 | Edwards Lifesciences Corporation | Delivery system for prosthetic heart valve |
US9974649B2 (en) | 2016-03-24 | 2018-05-22 | Medtronic Vascular, Inc. | Stented prosthetic heart valve having wrap and methods of delivery and deployment |
US10517722B2 (en) | 2016-03-24 | 2019-12-31 | Edwards Lifesciences Corporation | Delivery system for prosthetic heart valve |
US20170360559A1 (en) * | 2016-06-17 | 2017-12-21 | Biotronik Ag | Heart valve prosthesis with outer skirt |
EP3257472A1 (en) * | 2016-06-17 | 2017-12-20 | Biotronik AG | Heart valve prosthesis with outer skirt |
US11202701B2 (en) | 2016-06-30 | 2021-12-21 | Washington University | Device and method of inhibiting endoleaks |
WO2018005969A1 (en) * | 2016-06-30 | 2018-01-04 | Washington University | Device and method of inhibiting endoleaks |
US11872125B2 (en) | 2016-08-01 | 2024-01-16 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11806234B2 (en) | 2016-08-01 | 2023-11-07 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11096781B2 (en) | 2016-08-01 | 2021-08-24 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10548722B2 (en) | 2016-08-26 | 2020-02-04 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic heart valve with paravalvular leak mitigation features |
US11413141B2 (en) | 2016-08-26 | 2022-08-16 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic heart valve with paravalvular leak mitigation features |
US10456249B2 (en) | 2016-09-15 | 2019-10-29 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic heart valve with paravalvular leak mitigation features |
WO2018052927A1 (en) * | 2016-09-15 | 2018-03-22 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic heart valve with paravalvular leak mitigation features |
US11571296B2 (en) | 2016-09-15 | 2023-02-07 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic heart valve with paravalvular leak mitigation features |
US10575944B2 (en) | 2016-09-22 | 2020-03-03 | Edwards Lifesciences Corporation | Prosthetic heart valve with reduced stitching |
US11273031B2 (en) | 2016-09-22 | 2022-03-15 | Edwards Lifesciences Corporation | Prosthetic heart valve with reduced stitching |
US11925550B2 (en) | 2016-09-22 | 2024-03-12 | Edwards Lifesciences Corporation | Prosthetic heart valve with reduced stitching |
US10441421B2 (en) | 2016-10-28 | 2019-10-15 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic mitral valve |
US11382750B2 (en) | 2016-10-28 | 2022-07-12 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic mitral valve |
US11484406B2 (en) | 2016-11-17 | 2022-11-01 | Edwards Lifesciences Corporation | Prosthetic heart valve having leaflet inflow below frame |
US10973631B2 (en) | 2016-11-17 | 2021-04-13 | Edwards Lifesciences Corporation | Crimping accessory device for a prosthetic valve |
US12023242B2 (en) | 2016-11-17 | 2024-07-02 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10463484B2 (en) | 2016-11-17 | 2019-11-05 | Edwards Lifesciences Corporation | Prosthetic heart valve having leaflet inflow below frame |
US12138155B2 (en) | 2016-11-17 | 2024-11-12 | Edwards Lifesciences Corporation | Crimping accessory device for a prosthetic valve |
US10603165B2 (en) | 2016-12-06 | 2020-03-31 | Edwards Lifesciences Corporation | Mechanically expanding heart valve and delivery apparatus therefor |
US12083012B2 (en) | 2016-12-06 | 2024-09-10 | Edwards Lifesciences Corporation | Mechanically expanding heart valve and delivery apparatus therefor |
US11344408B2 (en) | 2016-12-06 | 2022-05-31 | Edwards Lifesciences Corporation | Mechanically expanding heart valve and delivery apparatus therefor |
US11666443B2 (en) | 2017-01-20 | 2023-06-06 | Medtronic Vascular, Inc. | Valve prosthesis having a radially expandable sleeve integrated thereon for delivery and prevention of paravalvular leakage |
US10433993B2 (en) | 2017-01-20 | 2019-10-08 | Medtronic Vascular, Inc. | Valve prosthesis having a radially-expandable sleeve integrated thereon for delivery and prevention of paravalvular leakage |
US11185406B2 (en) | 2017-01-23 | 2021-11-30 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11938021B2 (en) | 2017-01-23 | 2024-03-26 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11654023B2 (en) | 2017-01-23 | 2023-05-23 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11013600B2 (en) | 2017-01-23 | 2021-05-25 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US12193933B2 (en) | 2017-01-23 | 2025-01-14 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11135056B2 (en) | 2017-05-15 | 2021-10-05 | Edwards Lifesciences Corporation | Devices and methods of commissure formation for prosthetic heart valve |
USD875935S1 (en) | 2017-05-15 | 2020-02-18 | St. Jude Medical, Cardiology Division, Inc. | Stent having tapered struts |
USD889653S1 (en) | 2017-05-15 | 2020-07-07 | St. Jude Medical, Cardiology Division, Inc. | Stent having tapered struts |
USD875250S1 (en) | 2017-05-15 | 2020-02-11 | St. Jude Medical, Cardiology Division, Inc. | Stent having tapered aortic struts |
US12048623B2 (en) | 2017-05-15 | 2024-07-30 | Edwards Lifesciences Corporation | Devices and methods of commissure formation for prosthetic heart valve |
US11026781B2 (en) | 2017-05-22 | 2021-06-08 | Edwards Lifesciences Corporation | Valve anchor and installation method |
US12064341B2 (en) | 2017-05-31 | 2024-08-20 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11883281B2 (en) | 2017-05-31 | 2024-01-30 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10869759B2 (en) | 2017-06-05 | 2020-12-22 | Edwards Lifesciences Corporation | Mechanically expandable heart valve |
US11717400B2 (en) | 2017-06-05 | 2023-08-08 | Edwards Lifesciences Corporation | Mechanically expandable heart valve |
US11026785B2 (en) | 2017-06-05 | 2021-06-08 | Edwards Lifesciences Corporation | Mechanically expandable heart valve |
US11951003B2 (en) | 2017-06-05 | 2024-04-09 | Edwards Lifesciences Corporation | Mechanically expandable heart valve |
US12201522B2 (en) | 2017-06-05 | 2025-01-21 | Edwards Lifesciences Corporation | Mechanically expandable heart valve |
US10918473B2 (en) | 2017-07-18 | 2021-02-16 | Edwards Lifesciences Corporation | Transcatheter heart valve storage container and crimping mechanism |
US11547544B2 (en) | 2017-07-18 | 2023-01-10 | Edwards Lifesciences Corporation | Transcatheter heart valve storage container and crimping mechanism |
US12090048B2 (en) | 2017-08-03 | 2024-09-17 | Cardiovalve Ltd. | Prosthetic heart valve |
US11013595B2 (en) | 2017-08-11 | 2021-05-25 | Edwards Lifesciences Corporation | Sealing element for prosthetic heart valve |
US12023241B2 (en) | 2017-08-14 | 2024-07-02 | Edwards Lifesciences Corporation | Heart valve frame design with non-uniform struts |
US11083575B2 (en) | 2017-08-14 | 2021-08-10 | Edwards Lifesciences Corporation | Heart valve frame design with non-uniform struts |
US10932903B2 (en) | 2017-08-15 | 2021-03-02 | Edwards Lifesciences Corporation | Skirt assembly for implantable prosthetic valve |
US10898319B2 (en) | 2017-08-17 | 2021-01-26 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US12053370B2 (en) | 2017-08-17 | 2024-08-06 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US20190053898A1 (en) * | 2017-08-18 | 2019-02-21 | Edwards Lifesciences Corporation | Sealing members for prosthetic heart valve |
US10856971B2 (en) * | 2017-08-18 | 2020-12-08 | Edwards Lifesciences Corporation | Sealing members for prosthetic heart valve |
US11969338B2 (en) | 2017-08-18 | 2024-04-30 | Edwards Lifesciences Corporation | Pericardial sealing member for prosthetic heart valve |
US11857411B2 (en) | 2017-08-18 | 2024-01-02 | Edwards Lifesciences Corporation | Pericardial sealing member for prosthetic heart valve |
WO2019036597A1 (en) * | 2017-08-18 | 2019-02-21 | Edwards Lifesciences Corporation | Sealing members for prosthetic heart valve |
US11850148B2 (en) | 2017-08-21 | 2023-12-26 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10722353B2 (en) | 2017-08-21 | 2020-07-28 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
CN109419572A (en) * | 2017-09-04 | 2019-03-05 | 杭州启明医疗器械股份有限公司 | A kind of anti-week leakage holder device and processing method, skirt corrugation method, heart valve with overlay film |
US11464630B2 (en) * | 2017-09-04 | 2022-10-11 | Venus Medtech (Hangzhou) Inc | Stent device with skirt folds and processing method thereof, skirt folding method, and heart valve |
US10973629B2 (en) | 2017-09-06 | 2021-04-13 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11147667B2 (en) | 2017-09-08 | 2021-10-19 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US20190083248A1 (en) * | 2017-09-19 | 2019-03-21 | Cardiovalve Ltd. | Prosthetic valve with inflatable cuff configured for radial extension |
US11304805B2 (en) * | 2017-09-19 | 2022-04-19 | Cardiovalve Ltd. | Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors |
US20190083249A1 (en) * | 2017-09-19 | 2019-03-21 | Cardiovalve Ltd. | Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors |
US11819405B2 (en) * | 2017-09-19 | 2023-11-21 | Cardiovalve Ltd. | Prosthetic valve with inflatable cuff configured for radial extension |
US11382751B2 (en) | 2017-10-24 | 2022-07-12 | St. Jude Medical, Cardiology Division, Inc. | Self-expandable filler for mitigating paravalvular leak |
CN112203616A (en) * | 2017-10-30 | 2021-01-08 | 安多拉米诺科学公司 | Expandable sealing skirt technique for leak-proof endovascular prosthesis |
WO2019086958A1 (en) * | 2017-10-30 | 2019-05-09 | Endoluminal Sciences Pty Ltd | Expandable sealing skirt technology for leak-proof endovascular prostheses |
WO2019094181A1 (en) * | 2017-11-12 | 2019-05-16 | William Joseph Drasler | Straddle annular mitral valve |
US11813413B2 (en) | 2018-03-27 | 2023-11-14 | St. Jude Medical, Cardiology Division, Inc. | Radiopaque outer cuff for transcatheter valve |
US11318011B2 (en) | 2018-04-27 | 2022-05-03 | Edwards Lifesciences Corporation | Mechanically expandable heart valve with leaflet clamps |
US12161551B2 (en) | 2018-08-30 | 2024-12-10 | Edwards Lifesciences Corporation | Systems and methods for sizing and implanting prosthetic heart valves |
US20210212820A1 (en) * | 2018-09-11 | 2021-07-15 | Strait Access Technologies Holdings (Pty) Ltd | Expandable Sleeved Stent and Method of Making Such Stent |
US11284996B2 (en) | 2018-09-20 | 2022-03-29 | St. Jude Medical, Cardiology Division, Inc. | Attachment of leaflets to prosthetic heart valve |
US11672657B2 (en) | 2018-10-05 | 2023-06-13 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US10912644B2 (en) | 2018-10-05 | 2021-02-09 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US11986389B2 (en) | 2018-10-05 | 2024-05-21 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US11364117B2 (en) | 2018-10-15 | 2022-06-21 | St. Jude Medical, Cardiology Division, Inc. | Braid connections for prosthetic heart valves |
US11446141B2 (en) | 2018-10-19 | 2022-09-20 | Edwards Lifesciences Corporation | Prosthetic heart valve having non-cylindrical frame |
US11471277B2 (en) | 2018-12-10 | 2022-10-18 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic tricuspid valve replacement design |
US11273030B2 (en) | 2018-12-26 | 2022-03-15 | St. Jude Medical, Cardiology Division, Inc. | Elevated outer cuff for reducing paravalvular leakage and increasing stent fatigue life |
US12029644B2 (en) | 2019-01-17 | 2024-07-09 | Edwards Lifesciences Corporation | Frame for prosthetic heart valve |
US12201519B2 (en) | 2019-01-28 | 2025-01-21 | Edwards Lifesciences Corporation | Prosthetic valve |
US11471282B2 (en) | 2019-03-19 | 2022-10-18 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US11399932B2 (en) | 2019-03-26 | 2022-08-02 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US12186185B2 (en) | 2019-03-26 | 2025-01-07 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US12144751B2 (en) | 2019-07-19 | 2024-11-19 | Edwards Lifesciences Corporation | Crimping devices for prosthetic heart valves |
US12121435B2 (en) | 2020-01-10 | 2024-10-22 | Edwards Lifesciences Corporation | Prosthetic heart valve leaflet assemblies and methods |
US11963871B2 (en) | 2020-06-18 | 2024-04-23 | Edwards Lifesciences Corporation | Crimping devices and methods |
US11938022B2 (en) | 2020-06-26 | 2024-03-26 | Highlife Sas | Transcatheter valve prosthesis and method for implanting the same |
US12053371B2 (en) | 2020-08-31 | 2024-08-06 | Shifamed Holdings, Llc | Prosthetic valve delivery system |
US12004947B1 (en) | 2021-01-20 | 2024-06-11 | Edwards Lifesciences Corporation | Connecting skirt for attaching a leaflet to a frame of a prosthetic heart valve |
US12201521B2 (en) | 2021-03-22 | 2025-01-21 | Shifamed Holdings, Llc | Anchor position verification for prosthetic cardiac valve devices |
US12115066B2 (en) | 2021-03-23 | 2024-10-15 | Edwards Lifesciences Corporation | Prosthetic heart valve having elongated sealing member |
USD1054562S1 (en) | 2022-08-31 | 2024-12-17 | Edwards Lifesciences Corporation | Leaflet for a prosthetic heart valve |
US12232956B2 (en) | 2023-05-09 | 2025-02-25 | Edwards Lifesciences Corporation | Prosthetic heart valve leaflet assemblies and methods |
US12226312B2 (en) | 2023-05-12 | 2025-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve |
Also Published As
Publication number | Publication date |
---|---|
WO2014139545A1 (en) | 2014-09-18 |
US20160030167A1 (en) | 2016-02-04 |
US11957573B2 (en) | 2024-04-16 |
WO2014139545A8 (en) | 2015-10-08 |
US20210322159A1 (en) | 2021-10-21 |
US10258464B2 (en) | 2019-04-16 |
US20190201193A1 (en) | 2019-07-04 |
US10898321B2 (en) | 2021-01-26 |
US20160038281A1 (en) | 2016-02-11 |
JP2020065939A (en) | 2020-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11957573B2 (en) | Relating to transcatheter stent-valves | |
US20240252315A1 (en) | Improvements relating to transcatheter stent-valves | |
AU2018203018B2 (en) | Improvements relating to transcatheter stent-valves | |
US20220354640A1 (en) | Stent Assembly For Use in Prosthetic Heart Valves | |
US20210322163A1 (en) | Prosthetic heart valve | |
US11147667B2 (en) | Sealing member for prosthetic heart valve | |
JP7381601B2 (en) | Valves with multi-part frames and associated resilient bridge features | |
CN113365577B (en) | One-way valve implant | |
CN114144145A (en) | Transcatheter heart valve delivery system and method | |
US20250000646A1 (en) | Prosthetic heart valve having elongated sealing member | |
JP2018094430A (en) | Improvements relating to transcatheter stent valves |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SYMETIS SA, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DELALOYE, STEPHANE;ESSINGER, JACQUES;HEFTI, JEAN-LUC;AND OTHERS;SIGNING DATES FROM 20130514 TO 20130521;REEL/FRAME:030725/0664 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |