US20050149020A1 - Method and apparatus for flexible fixation of a spine - Google Patents
Method and apparatus for flexible fixation of a spine Download PDFInfo
- Publication number
- US20050149020A1 US20050149020A1 US10/997,165 US99716504A US2005149020A1 US 20050149020 A1 US20050149020 A1 US 20050149020A1 US 99716504 A US99716504 A US 99716504A US 2005149020 A1 US2005149020 A1 US 2005149020A1
- Authority
- US
- United States
- Prior art keywords
- connection unit
- rod
- flexible connection
- longitudinal member
- flexible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 C(C1)C2C*C(CCCC3)C3C1C2 Chemical compound C(C1)C2C*C(CCCC3)C3C1C2 0.000 description 2
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1757—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3468—Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7004—Longitudinal elements, e.g. rods with a cross-section which varies along its length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7004—Longitudinal elements, e.g. rods with a cross-section which varies along its length
- A61B17/7007—Parts of the longitudinal elements, e.g. their ends, being specially adapted to fit around the screw or hook heads
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7026—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7026—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form
- A61B17/7028—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form the flexible part being a coil spring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7026—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form
- A61B17/7029—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form the entire longitudinal element being flexible
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/02—Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3439—Cannulas with means for changing the inner diameter of the cannula, e.g. expandable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3472—Trocars; Puncturing needles for bones, e.g. intraosseus injections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/701—Longitudinal elements with a non-circular, e.g. rectangular, cross-section
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7032—Screws or hooks with U-shaped head or back through which longitudinal rods pass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00862—Material properties elastic or resilient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/02—Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
- A61B17/025—Joint distractors
- A61B2017/0256—Joint distractors for the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/363—Use of fiducial points
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3904—Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
- A61B2090/3916—Bone tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3987—Applicators for implanting markers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/45—Flexibly connected rigid members
Definitions
- the present invention relates to a method and system for fixing and stabilizing a spinal column and, more particularly, to a method and system of spinal fixation in which one or more screw type fixing members are implanted and fixed into a portion of a patient's spinal column and flexible, semi-rigid rods or plates are connected and fixed to the upper ends of the fixing members to provide dynamic stabilization of the spinal column.
- Degenerative spinal column diseases such as disc degenerative diseases (DDD), spinal stenosis, spondylolisthesis, and so on, need surgical operation if they do not take a turn for the better by conservative management.
- spinal decompression is the first surgical procedure that is performed.
- the primary purpose of decompression is to reduce pressure in the spinal canal and on nerve roots located therein by removing a certain tissue of the spinal column to reduce or eliminate the pressure and pain caused by the pressure. If the tissue of the spinal column is removed the pain is reduced but the spinal column is weakened. Therefore, fusion surgery (e.g., ALIF, PLIF or posterolateral fusion) is often necessary for spinal stability following the decompression procedure.
- fusion takes additional time to achieve maximum stability and a spinal fixation device is typically used to support the spinal column until a desired level of fusion is achieved.
- a spinal fixation surgery can sometimes be performed immediately following decompression, without performing the fusion procedure. The fixation surgery is performed in most cases because it provides immediate postoperative stability and, if fusion surgery has also been performed, it provides support of the spine until sufficient fusion and stability has been achieved.
- Conventional methods of spinal fixation utilize a rigid spinal fixation device to support an injured spinal part and prevent movement of the injured part.
- These conventional spinal fixation devices include: fixing screws configured to be inserted into the spinal pedicle or sacral of the backbone to a predetermined depth and angle, rods or plates configured to be positioned adjacent to the injured spinal part, and coupling elements for connecting and coupling the rods or plates to the fixing screws such that the injured spinal part is supported and held in a relatively fixed position by the rods or plates.
- U.S. Pat. No. 6,193,720 discloses a conventional spinal fixation device, in which connection members of a rod or plate type are mounted on the upper ends of at least one or more screws inserted into the spinal pedicle or sacral of the backbone.
- the connection units such as the rods and plates, are used to stabilize the injured part of the spinal column which has been weakened by decompression.
- the connection units also prevent further pain and injury to the patient by substantially restraining the movement of the spinal column.
- the spinal fixation device can cause ill effects, such as “junctional syndrome” (transitional syndrome) or “fusion disease” resulting in further complications and abnormalities associated with the spinal column.
- the Graf band is one example of a non-fusion fixation device that is applied after decompression without bone fusion.
- the Graf band is composed of a polyethylene band and pedicle screws to couple the polyethylene band to the spinal vertebrae requiring stabilization.
- the primary purpose of the Graf band is to prevent sagittal rotation (flexion instability) of the injured spinal parts.
- sagittal rotation flexion instability
- it is effective in selected cases but is not appropriate for cases that require greater stability and fixation. See, Kanayama et al, Journal of Neurosurgery 95(1 Suppl): 5-10, 2001, Markwalder & Wenger, Acta Neurochrgica 145(3): 209-14.).
- Dynesys Another non-fusion fixation device called “Dynesys” has recently been introduced. See Stoll et al, European Spine Journal 11 Suppl 2: S170-8, 2002, Schmoelz et al, J of spinal disorder & techniques 16(4): 418-23, 2003.
- the Dynesys device is similar to the Graf band except it uses a polycarburethane spacer between the screws to maintain the distance between the heads of two corresponding pedicle screws and, hence, adjacent vertebrae in which the screws are fixed.
- Early reports by the inventors of the Dynesys device indicate it has been successful in many cases. However, it has not yet been determined whether the Dynesys device can maintain long-term stability with flexibility and durability in a controlled study. Because it has polyethylene components and interfaces, there is a risk of mechanical failure. Furthermore, due to the mechanical configuration of the device, the surgical technique required to attach the device to the spinal column is complex and complicated.
- U.S. Pat. Nos. 5,282,863 and 4,748,260 disclose a flexible spinal stabilization system and method using a plastic, non-metallic rod.
- U.S. patent publication no. 2003/0083657 discloses another example of a flexible spinal stabilization device that uses a flexible elongate member. These devices are flexible but they are not well-suited for enduring long-term axial loading and stress. Additionally, the degree of desired flexibility vs. rigidity may vary from patient to patient. The design of existing flexible fixation devices are not well suited to provide varying levels of flexibility to provide optimum results for each individual candidate. For example, U.S. Pat. No.
- 5,672,175 discloses a flexible spinal fixation device which utilizes a flexible rod made of metal alloy and/or a composite material. Additionally, compression or extension springs are coiled around the rod for the purpose of providing de-rotation forces on the vertebrae in a desired direction.
- this patent is primarily concerned with providing a spinal fixation device that permits “relative longitudinal translational sliding movement along [the] vertical axis” of the spine and neither teaches nor suggests any particular designs of connection units (e.g., rods or plates) that can provide various flexibility characteristics.
- Prior flexible rods such as that mentioned in U.S. Pat. No. 5,672,175 typically have solid construction with a relatively small diameter in order to provide a desired level of flexibility. Because they are typically very thin to provide suitable flexibility, such prior art rods are prone to mechanical failure and have been known to break after implantation in patients.
- a doctor incises the midline of the back to about 10-15 centimeters, and then, dissects and retracts it to both sides. In this way, the doctor performs muscular dissection to expose the outer part of the facet joint.
- the doctor finds an entrance point to the spinal pedicle using radiographic devices (e.g., C-arm flouroscopy), and inserts securing members of the spinal fixation device (referred to as “spinal pedicle screws”) into the spinal pedicle.
- the connection units e.g., rods or plates
- the connection units are attached to the upper portions of the pedicle screws in order to provide support and stability to the injured portion of the spinal column.
- the patient's back is incised about 10 ⁇ 15 cm, and as a result, the back muscle, which is important for maintaining the spinal column, is incised or injured, resulting in significant post-operative pain to the patient and a slow recovery period.
- a minimally invasive surgical procedure which is capable of performing spinal fixation surgery through a relatively small hole or “window” that is created in the patient's back at the location of the surgical procedure.
- minimally invasive surgery allows a much smaller incision of the patient's affected area.
- two or more securing members e.g., pedicle screws
- the stabilizing members e.g., rods or plates
- the surgical procedure may include inserting a step dilator into the incision and then gradually increasing the diameter of the dilator. Thereafter, a tubular retractor is inserted into the dilated area to retract the patient's muscle and provide a visual field for surgery. After establishing this visual field, decompression and, if desired, fusion procedures may be performed, followed by a fixation procedure, which includes the steps of finding the position of the spinal pedicle, inserting pedicle screws into the spinal pedicle, using an endoscope or a microscope, and securing the stabilization members (e.g., rods or plates) to the pedicle screws in order to stabilize and support the weakened spinal column.
- a fixation procedure which includes the steps of finding the position of the spinal pedicle, inserting pedicle screws into the spinal pedicle, using an endoscope or a microscope, and securing the stabilization members (e.g., rods or plates) to the pedicle screws in order to stabilize and support the weakened spinal column.
- One of the most challenging aspects of performing the minimally invasive spinal fixation procedure is locating the entry point for the pedicle screw under endoscopic or microscopic visualization.
- anatomical landmarks and/or radiographic devices are used to find the entry point, but clear anatomical relationships are often difficult to identify due to the confined working space.
- the minimally invasive procedure requires that a significant amount of the soft tissue must be removed to reveal the anatomy of the regions for pedicle screw insertion. The removal of this soft tissue results in bleeding in the affected area, thereby adding to the difficulty of finding the correct position to insert the securing members and causing damage to the muscles and soft tissue surrounding the surgical area.
- conventional procedures are unnecessarily traumatic.
- Radiography techniques have been proposed and implemented in an attempt to more accurately and quickly find the position of the spinal pedicle in which the securing members will be inserted.
- it is often difficult to obtain clear images required for finding the corresponding position of the spinal pedicle using radiography techniques due to radiographic interference caused by metallic tools and equipment used during the surgical operation.
- reading and interpreting radiographic images is a complex task requiring significant training and expertise.
- Radiography poses a further problem in that the patient is exposed to significant amounts of radiation.
- prior guidance systems have been developed which guide the insertion of a pedicle screw to the desired entry point on the spinal pedicle, these prior systems have proven difficult to use and, furthermore, hinder the operation procedure.
- prior guidance systems for pedicle screw insertion utilize a long wire that is inserted through a guide tube that is inserted through a patient's back muscle and tissue. The location of insertion of the guide tube is determined by radiographic means (e.g., C-arm flouroscope) and driven until a first end of the guide tube reaches the desired location on the surface of the pedicle bone.
- radiographic means e.g., C-arm flouroscope
- a first end of the guide wire typically made of a biocompatible metal material, is inserted into the guide tube and pushed into the pedicle bone, while the opposite end of the wire remains protruding out of the patient's back.
- the guide tube is removed, and a hole centered around the guide wire is dilated and retracted.
- a pedicle screw having an axial hole or channel configured to receive the guide wire therethrough is guided by the guide wire to the desired location on the pedicle bone, where the pedicle screw is screw-driven into the pedicle.
- the guide wire has been very difficult to use. Because it is a relatively long and thin wire, the structural integrity of the guide wire often fails during attempts to drive one end of the wire into the pedicle bone, making the process unnecessarily time-consuming and laborious. Furthermore, because the wire bends and crimps during insertion, it does not provide a smooth and secure anchor for guiding subsequent tooling and pedicle screws to the entry point on the pedicle. Furthermore, current percutaneous wire guiding systems are used in conjunction with C-arm flouroscopy (or other radiographic device) without direct visualization with the use of an endoscope or microscope. Thus, current wire guidance systems pose a potential risk of misplacement or pedicle breakage.
- the invention addresses the above and other needs by providing an improved method and system for stabilizing an injured or weakened spinal column.
- the inventor of the present invention has invented a novel flexible spinal fixation device with an improved construction and design.
- a flexible connection unit for use in a spinal fixation device includes a rod having at least one groove formed along at least a portion of the rod so as to provide flexibility to rod.
- a flexible connection unit for use in a spinal fixation device includes a solid rod and at least one transverse tunnel formed within the solid rod so as to provide flexibility to the rod.
- the invention provides a method and device for accurately and quickly finding a position of the spinal column in which securing members of the spinal fixation device will be inserted.
- a novel guidance/marking device is used to indicate the position in the spinal column where the securing members will be inserted.
- FIG. 1 illustrates a perspective view of a spinal fixation device in accordance with one embodiment of the invention.
- FIG. 2 illustrates a perspective view of spinal fixation device in accordance with another embodiment of the invention.
- FIG. 3 illustrates an exploded view of the coupling assembly 14 of the pedicle screw 2 of FIGS. 1 and 2 , in accordance with one embodiment of the invention.
- FIG. 4 illustrates a perspective view of a flexible rod connection unit in accordance with one embodiment of the invention.
- FIG. 5 illustrates a perspective view of a flexible rod connection unit in accordance with another embodiment of the invention.
- FIG. 6 illustrates a perspective view of a flexible rod connection unit in accordance with a further embodiment of the invention.
- FIG. 7 illustrates a perspective view of a pre-bent flexible rod connection unit in accordance with one embodiment of the invention.
- FIG. 8 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with one embodiment of the invention.
- FIG. 9 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with another embodiment of the invention.
- FIG. 10 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with a further embodiment of the invention.
- FIG. 11 illustrates a perspective view of a flexible rod connection unit in accordance with one embodiment of the invention.
- FIG. 12A illustrates a perspective view of a flexible connection unit having one or more spacers in between two end portions, in accordance with one embodiment of the invention.
- FIG. 12B illustrates an exploded view of the flexible connection unit of FIG. 12A .
- FIG. 12C provides a view of the male and female interlocking elements of the flexible connection unit of FIGS. 12A and 12B , in accordance with one embodiment of the invention.
- FIG. 13 shows a perspective view of a flexible connection unit, in accordance with a further embodiment of the invention.
- FIG. 14 illustrates a perspective view of a spinal fixation device in accordance with another embodiment of the invention.
- FIG. 15 illustrates an exploded view of the spinal fixation device of FIG. 14 .
- FIG. 16A shows a perspective view of a flexible plate connection unit in accordance with one embodiment of the invention.
- FIG. 16B illustrates a perspective view of a flexible plate connection unit in accordance with a further embodiment of the invention.
- FIG. 16C shows a side view of the flexible plate connection unit of FIG. 16A .
- FIG. 16D shows a top view of the flexible plate connection unit of FIG. 16A .
- FIG. 16E illustrates a side view of the flexible plate connection unit of FIG. 16 A having a pre-bent configuration in accordance with a further embodiment of the invention.
- FIG. 17 is a perspective view of a flexible plate connection unit in accordance with another embodiment of the invention.
- FIG. 18 illustrates a perspective view of a flexible plate connection unit in accordance with another embodiment of the invention.
- FIG. 19 illustrates a perspective view of a hybrid rod-plate connection unit having a flexible middle portion according to a further embodiment of the present invention.
- FIG. 20 is a perspective view of a spinal fixation device that utilizes the hybrid rod-plate connection unit of FIG. 19 .
- FIG. 21 illustrates a perspective view of the spinal fixation device of FIG. 1 after it has been implanted into a patient's spinal column.
- FIGS. 22A and 22B provide perspective views of spinal fixation devices utilizing the plate connection units of FIGS. 16A and 16B , respectively.
- FIG. 23A illustrates a perspective view of two pedicle screws inserted into the pedicles of two adjacent vertebrae at a skewed angle, in accordance with one embodiment of the invention.
- FIG. 23B illustrates a structural view of a coupling assembly of a pedicle screw in accordance with one embodiment of the invention.
- FIG. 23C provides a perspective view of a slanted stabilizing spacer in accordance with one embodiment of the invention.
- FIG. 23D illustrates a side view of the slanted stabilizing spacer of FIG. 23C .
- FIG. 23E is a top view of the cylindrical head of the pedicle screw of FIG. 23 .
- FIG. 24 illustrates a perspective view of a marking and guiding device in accordance with one embodiment of the invention.
- FIG. 25 is an exploded view of the marking and guidance device of FIG. 24 .
- FIG. 26A provides a perspective, cross-section view of a patient's spine after the marking and guiding device of FIG. 24 has been inserted during surgery.
- FIG. 26B provides a perspective, cross-section view of a patient's spine as an inner trocar of the marking and guiding device of FIG. 24 is being removed.
- FIGS. 27A and 27B illustrate perspective views of two embodiments of a fiducial pin, respectively.
- FIG. 28 is a perspective view of a pushing trocar in accordance with a further embodiment of the invention.
- FIG. 29A illustrates a perspective, cross-sectional view of a patient's spine as the pushing trocar of FIG. 28 is used to drive a fiducial pin into a designate location of a spinal pedicle, in accordance with one embodiment of the invention.
- FIG. 29B illustrates a perspective, cross-sectional view of a patient's spine after two fiducial pins have been implanted into two adjacent spinal pedicles, in accordance with one embodiment of the invention.
- FIG. 30 is a perspective view of a cannulated awl in accordance with one embodiment of the invention.
- FIG. 31 is a perspective, cross-sectional view of a patient's spine as the cannulated awl of FIG. 30 is being used to enlarge an entry hole for a pedicle screw, in accordance with one embodiment of the invention.
- FIG. 32 provides a perspective view of fiducial pin retrieving device, in accordance with one embodiment of the invention.
- FIG. 33 is a perspective view of a pedicle screw having an axial cylindrical cavity for receiving at least a portion of a fiducial pin therein, in accordance with a further embodiment of the invention.
- FIG. 34 is a perspective, cross-sectional view of a patient's spine after one pedicle screw has been implanted into a designated location of a spinal pedicle, in accordance with one embodiment of the invention.
- FIG. 35 is a perspective, cross-sectional view of a patient's spine after two pedicle screws have been implanted into designated locations of two adjacent spinal pedicles, in accordance with one embodiment of the invention.
- FIG. 36A is perspective view of a flexible rod for spinal fixation having a spiral groove cut therein, in accordance with one embodiment of the present invention.
- FIG. 36B provides a cross-sectional view of the flexible rod of FIG. 36A , taken along lines B-B of FIG. 36A .
- FIG. 37A illustrates a perspective view of a flexible rod for spinal fixation having transverse tunnels within the body of the rod, in accordance with one embodiment of the invention.
- FIG. 37B is a cross-sectional view of the flexible rod of FIG. 37A , taken along lines B-B of FIG. 37A .
- FIG. 38A is a perspective view of a flexible rod for spinal fixation having a spiral groove cut therein and transverse tunnels in the body of the rod, in accordance with a further embodiment of the invention.
- FIG. 38B is a top view of the flexible rod of FIG. 38A , from the perspective of lines B-B of FIG. 38A .
- FIG. 39A is a perspective view of a flexible rod for spinal fixation having transverse tunnels within the body of the rod, in accordance with another embodiment of the invention.
- FIG. 39B is a cross-sectional view of the flexible rod of FIG. 39A , taken along lines B-B of that figure.
- FIG. 39C is an alternative cross-sectional view of the flexible rod of FIG. 39A , taken along lines B-B of that figure, having substantially orthogonal transverse tunnels in the body of the rod, in accordance with a further embodiment of the invention.
- FIG. 40A illustrates a perspective view of a flexible rod for spinal fixation, in accordance with a further embodiment of the invention.
- FIG. 40B illustrates a cross-sectional view of a flexible rod for spinal fixation in accordance with a further embodiment of the invention.
- FIG. 1 depicts a spinal fixation device in accordance with one embodiment of the present invention.
- the spinal fixation device includes two securing members 2 (designated as 2 ′ and 2 ′′), and a flexible fixation rod 4 configured to be received and secured within a coupling assembly 14 , as described in further detail below with respect to FIG. 3 .
- Each securing member 2 includes a threaded screw-type shaft 10 configured to be inserted and screwed into a patient's spinal pedicle.
- the screw-type shaft 10 includes an external spiral screw thread 12 formed over the length of the shaft 10 and a conical tip at the end of the shaft 10 configured to be inserted into the patient's spinal column at a designated location.
- Other known forms of the securing member 2 may be used in connection with the present invention provided the securing member 2 can be inserted and fixed into the spinal column and securely coupled to the rod 4 .
- the spinal fixation device is used for surgical treatment of spinal diseases by mounting securing members 2 at desired positions in the spinal column.
- the rod 4 extends across two or more vertebrae of the spinal column and is secured by the securing members 2 so as to stabilize movement of the two or more vertebrae.
- FIG. 2 illustrates a perspective view of a spinal fixation device in accordance with a further embodiment of the present invention.
- the spinal fixation device of FIG. 2 is similar to the spinal fixation device of FIG. 1 except that the rod 4 comprises a flexible middle portion 8 juxtaposed between two rigid end portions 9 of the rod 4 .
- FIG. 3 provides an exploded view of the securing member 2 of FIGS. 1 and 2 illustrating various components of the coupling assembly 14 , in accordance with one embodiment of the invention.
- the coupling assembly 14 includes: a cylindrical head 16 located at a top end of the screw-type shaft 10 , a spiral thread or groove 18 formed along portions of the inner wall surface of the cylindrical head 16 , and a U-shaped seating groove 20 configured to receive the rod 4 therein.
- the coupling assembly 14 further comprises an outside-threaded nut 22 having a spiral thread 24 formed on the outside lateral surface of the nut 22 , wherein the spiral thread 24 is configured to mate with the internal spiral thread 18 of the cylindrical head 16 .
- the coupling assembly 14 includes a fixing cap 26 configured to be mounted over a portion of the cylindrical head 16 to cover and protect the outside-threaded nut 22 and more securely hold rod 4 within seating groove 20 .
- an inner diameter of the fixing gap 26 is configured to securely mate with the outer diameter of the cylindrical head 16 .
- Other methods of securing the fixing cap 26 to the cylindrical head, such as correspondingly located notches and groove (not shown), would be readily apparent to those of skill in the art.
- the components and parts of the securing member 2 may be made of highly rigid and durable bio-compatible materials such as: stainless steel, iron steel, titanium or titanium alloy. Such materials are known in the art.
- bio-compatible materials refers to those materials that will not cause any adverse chemical or immunological reactions after being implanted into a patient's body.
- the rod 4 is coupled to the securing means 2 by seating the rod 4 horizontally into the seating groove 20 of the coupling means 14 perpendicularly to the direction of the length of the threaded shaft 10 of securing member 2 .
- the outside threaded nut 22 is then received and screwed into the cylindrical head 16 above the rod 4 so as to secure the rod 4 in the seating groove 20 .
- the fixing cap 26 is then placed over the cylindrical head 16 to cover, protect and more firmly secure the components in the internal cavity of the cylindrical head 16 .
- FIGS. 4-7 illustrate perspective views of various embodiments of a rod 4 that may be used in a fixation device, in accordance with the present invention.
- FIG. 4 illustrates the rod 4 of FIG.
- rod 4 comprises a metal tube or pipe having a cylindrical wall 5 of a predefined thickness.
- the cylindrical wall 5 is cut in a spiral fashion along the length of the rod 4 to form spiral cuts or grooves 6 .
- the width and density of the spiral grooves 6 may be adjusted to provide a desired level of flexibility.
- the grooves 6 are formed from very thin spiral cuts or incisions that penetrate through the entire thickness of the cylindrical wall of the rod 4 .
- the thickness and material of the tubular walls 5 also affect the level of flexibility.
- the rod 4 is designed to have a flexibility that substantially equals that of a normal back. Flexibility ranges for a normal back are known by those skilled in the art, and one of ordinary skill can easily determine a thickness and material of the tubular walls 5 and a width and density of the grooves 6 to achieve a desired flexibility or flexibility range within the range for a normal back.
- the term “density” refers to tightness of the spiral grooves 6 or, in other words, the distance between adjacent groove lines 6 as shown in FIG. 4 , for example.
- the present invention is not limited to a particular, predefined flexibility range.
- the rigidity of the rod 4 should be able to endure a vertical axial load applied to the patient's spinal column along a vertical axis of the spine in a uniform manner with respect to the rest of the patient's natural spine.
- FIG. 5 illustrates the rod 4 of FIG. 2 wherein only a middle portion 8 is made and designed to be flexible and two end portions 9 are made to be rigid.
- metal end rings or caps 9 ′ having no grooves therein, may be placed over respective ends of the rod 4 of FIG. 4 so as make the end portions 9 rigid.
- the rings or caps 9 ′ may be permanently affixed to the ends of the rod 4 using known methods such as pressing and/or welding the metals together.
- the spiral groove 6 is only cut along the length of the middle portion 8 and the end portions 9 comprise the tubular wall 5 without grooves 6 . Without the grooves 6 , the tubular wall 5 , which is made of a rigid metal or metal hybrid material, exhibits high rigidity.
- FIG. 6 illustrates a further embodiment of the rod 4 having multiple sections, two flexible sections 8 interleaved between three rigid sections 9 .
- This embodiment may be used, for example, to stabilize three adjacent vertebrae with respect to each other, wherein three pedicle screws are fixed to a respective one of the vertebrae and the three rigid sections 9 are connected to a coupling assembly 14 of a respective pedicle screw 2 , as described above with respect to FIG. 3 .
- Each of the flexible sections 8 and rigid sections 9 may be made as described above with respect to FIG. 5 .
- FIG. 7 illustrates another embodiment of the rod 4 having a pre-bent structure and configuration to conform to and maintain a patient's curvature of the spine, known as “lordosis,” while stabilizing the spinal column.
- a patient's lumbar is in the shape of a ‘C’ form, and the structure of the rod 4 is formed to coincide to the normal lumbar shape when utilized in the spinal fixation device of FIG. 2 , in accordance with one embodiment of the invention.
- the pre-bent rod 4 includes a middle portion 8 that is made and designed to be flexible interposed between two rigid end portions 9 .
- the middle portion 8 and end portions 9 may be made as described above with respect to FIG. 5 .
- the pre-bent structure and design of the rod 4 may offset a skew angle when two adjacent pedicle screws are not inserted parallel to one another, as described in further detail below with respect to FIG. 23A .
- FIG. 8 illustrates a perspective, cross-sectional view of a flexible tubular rod 4 , or rod portion 8 in accordance with one embodiment of the invention.
- the flexible rod 4 , 8 is made from a first metal tube 5 having a spiral groove 6 cut therein as described above with respect to FIGS. 4-7 .
- a second tube 30 having spiral grooves 31 cut therein and having a smaller diameter than the first tube 5 is inserted into the cylindrical cavity of the first tube 5 .
- the second tube 30 has spiral grooves 31 which are cut in an opposite spiral direction with respect to the spiral grooves 6 cut in the first tube 5 , such that the rotational torsion characteristics of the second tube 30 offset at least some of the rotational torsion characteristics of the first tube 5 .
- the second flexible tube 30 is inserted into the core of the first tube to provide further durability and strength to the flexible rod 4 , 8 .
- the second tube 30 may be made of the same or different material than the first tube 5 .
- the material used to manufacture the first and second tubes 5 and 30 may be any one or combination of the following exemplary metals: stainless steel, iron steel, titanium, and titanium alloy.
- FIG. 9 illustrates a perspective, cross-sectional view of a flexible rod 4 , 8 in accordance with a further embodiment of the invention.
- the flexible rod 4 , 8 includes an inner core made of a metallic wire 32 comprising a plurality of overlapping thin metallic yarns, such as steel yarns, titanium yarns, or titanium-alloy yarns.
- the wire 32 is encased by a metal, or metal hybrid, flexible tube 5 having spiral grooves 6 cut therein, as discussed above.
- the number and thickness of the metallic yarns in the wire 32 also affects the rigidity and flexibility of the rod 4 , 8 . By changing the number, thickness or material of the yarns flexibility can be increased or decreased.
- the number, thickness and/or material of the metallic yarns in the wire 32 can be adjusted to provide a desired rigidity and flexibility in accordance with a patient's particular needs.
- Those of ordinary skill in the art can easily determine the number, thickness and material of the yarns, in conjunction with a given flexibility of the tube 5 in order to achieve a desired rigidity v. flexibility profile for the rod 4 , 8 .
- FIG. 10 shows yet another embodiment of a flexible rod 4 wherein the flexible tube 5 encases a non-metallic, flexible core 34 .
- the core 34 may be made from known biocompatible shape memory alloys (e.g., NITINOL), or biocompatible synthetic materials such as: carbon fiber, Poly Ether Ether Ketone (PEEK), Poly Ether Ketone Ketone Ether Ketone (PEKKEK), or Ultra High Molecular Weight Poly Ethylene (UHMWPE).
- NITINOL known biocompatible shape memory alloys
- PEEK Poly Ether Ether Ketone
- PEKKEK Poly Ether Ketone Ketone Ether Ketone
- UHMWPE Ultra High Molecular Weight Poly Ethylene
- FIG. 11 illustrates a perspective view of another embodiment of the flexible rod 35 in which a plurality of metal wires 32 , as described above with respect to FIG. 9 , are interweaved or braided together to form a braided metal wire rod 35 .
- the braided metal wire rod 35 can be made from the same materials as the metal wire 32 .
- the rigidity and flexibility of the braided rod 35 can be further modified to achieve desired characteristics by varying the number and thickness of the wires 32 used in the braided structure 35 .
- each end of the braided metal wire rod 35 is encased by a rigid metal cap or ring 9 ′ as described above with respect to FIGS. 5-7 , to provide a rod 4 having a flexible middle portion 8 and rigid end portions 9 .
- the metal braided wire rod 35 may be utilized as a flexible inner core encased by a metal tube 5 having spiral grooves 6 cut therein to create a flexible metal rod 4 or rod portion 8 , in a similar fashion to the embodiments shown in FIGS. 8-10 .
- the term “braid” or “braided structure” encompasses two or more wires, strips, strands, ribbons and/or other shapes of material interwoven in an overlapping fashion. Various methods of interweaving wires, strips, strands, ribbons and/or other shapes of material are known in the art. Such interweaving techniques are encompassed by the present invention.
- the flexible metal rod 35 includes a braided metal structure having two or more metal strips, strands or ribbons interweaved in a diagonally overlapping pattern.
- FIG. 12A illustrates a further embodiment of a flexible connection unit 36 having two rigid end portions 9 ′ and an exemplary number of rigid spacers 37 .
- the rigid end portions 9 ′ and spacers can be made of bio-compatible metal or metal-hybrid materials as discussed above.
- the connection unit 36 further includes a flexible wire 32 , as discussed above with respect to FIG. 9 ′, which traverses an axial cavity or hole (not shown) in each of the rigid end portions 9 ′ and spacers 37 .
- FIG. 12B illustrates an exploded view of the connection unit 36 that further shows how the wire 32 is inserted through center axis holes of the rigid end portions 9 ′ and spacers 37 . As further shown in FIG.
- each of the end portions 9 ′ and spacers 37 include a male interlocking member 38 which is configured to mate with a female interlocking cavity (not shown) in the immediately adjacent end portion 9 ′ or spacer 37 .
- FIG. 12C illustrates an exploded side view and indicates with dashed lines the location and configuration of the female interlocking cavity 39 for receiving corresponding male interlocking members 38 .
- FIG. 13 shows a perspective view of a flexible connection unit 40 in accordance with another embodiment of the invention.
- the connection 40 is similar to the connection unit 36 described above, however, the spacers 42 are configured to have the same shape and design as the rigid end portions 9 ′. Additionally, the end portions 9 ′ have an exit hole or groove 44 located on a lateral side surface through which the wire 32 may exit, be pulled taut, and clamped or secured using a metal clip (not shown) or other known techniques. In this way, the length of the flexible connection unit 36 or 40 may be varied at the time of surgery to fit each patient's unique anatomical characteristics.
- the wire 32 may be secured using a metallic clip or stopper (not shown).
- a clip or stopper may include a small tubular cylinder having an inner diameter that is slightly larger than the diameter of the wire 32 to allow the wire 32 to pass therethrough. After the wire 32 is pulled to a desired tension through the tubular stopper, the stopper is compressed so as to pinch the wire 32 contained therein.
- the wire 32 may be pre-secured using known techniques during the manufacture of the rod-like connection units 36 , 40 having a predetermined number of spacers 37 , 42 therein.
- FIG. 14 depicts a spinal fixation device according to another embodiment of the present invention.
- the spinal fixation device includes: at least two securing members 2 containing an elongate screw type shaft 10 having an external spiral thread 12 , and a coupling assembly 14 .
- the device further includes a plate connection unit 50 , or simply “plate 50 ,” configured to be securely connected to the coupling parts 14 of the two securing members 2 .
- the plate 50 comprises two rigid connection members 51 each having a planar surface and joined to each other by a flexible middle portion 8 .
- the flexible middle portion 8 may be made in accordance with any of the embodiments described above with respect to FIGS. 4-11 .
- Each connection member 51 contains a coupling hole 52 configured to receive therethrough a second threaded shaft 54 ( FIG. 15 ) of the coupling assembly 14 .
- the coupling assembly 14 of the securing member 2 includes a bolt head 56 adjoining the top of the first threaded shaft 10 and having a circumference or diameter greater than the circumference of the first threaded shaft 10 .
- the second threaded shaft 54 extends upwardly from the bolt head 56 .
- the coupling assembly 14 further includes a nut 58 having an internal screw thread configured to mate with the second threaded shaft 54 , and one or more washers 60 , for clamping the connection member 51 against the top surface of the bolt head 56 , thereby securely attaching the plate 50 to the pedicle screw 2 .
- FIGS. 16A and 16B illustrate two embodiments of a plate connection unit 40 having at least two coupling members 51 and at least one flexible portion 8 interposed between and attached to two adjacent connection members 51 .
- the flexible middle portion 8 comprises a flexible metal braided wire structure 36 as described above with respect to FIG. 11 .
- the flexible portion 8 can be designed and manufactured in accordance with any of the embodiments described above with respect to FIGS. 4-11 , or combinations thereof.
- FIGS. 16C and 16D illustrate a side view and top view, respectively, of the plate 50 of FIG. 16A .
- the manufacture of different embodiments of the flexible connection units 50 and 58 having different types of flexible middle portions 8 is easily accomplished using known metallurgy manufacturing processes.
- FIG. 16E illustrate a side view of a pre-bent plate connection unit 50 ′, in accordance with a further embodiment of the invention.
- This plate connection unit 50 ′ is similar to the plate 50 except that connection members 51 ′ are formed or bent at an angle ⁇ from a parallel plane 53 during manufacture of the plate connection unit 50 ′.
- this pre-bent configuration is designed to emulate and support a natural curvature of the spine (e.g., lordosis). Additionally, or alternatively, this pre-bent structure may offset a skew angle when two adjacent pedicle screws are not inserted parallel to one another, as described in further detail below with respect to FIG. 23A .
- FIG. 17 illustrates a perspective view of a plate connection unit 60 having two planar connection members 62 each having a coupling hole 64 therein for receiving the second threaded shaft 44 of the pedicle screw 2 .
- a flexible middle portion 8 is interposed between the two connection members 62 and attached thereto.
- the flexible middle portion 8 is made in a similar fashion to wire 32 described above with respect to FIG. 9 , except it has a rectangular configuration instead of a cylindrical or circular configuration as shown in FIG. 9 . It is understood, however, that the flexible middle portion 8 may be made in accordance with the design and materials of any of the embodiments previously discussed.
- FIG. 18 illustrates a perspective view of a further embodiment of the plate 60 of FIG. 17 wherein the coupling hole 64 includes one or more nut guide grooves 66 cut into the top portion of the connection member 62 to seat and fix the nut 58 ( FIG. 15 ) into the coupling hole 64 .
- the nut guide groove 66 is configured to receive and hold at least a portion of the nut 58 therein and prevent lateral sliding of the nut 58 within the coupling hole 64 after the connection member 62 has been clamped to the bolt head 56 of the pedicle screw 2 .
- FIG. 19 illustrates a perspective view of a hybrid plate and rod connection unit 70 having a rigid rod-like connection member 4 , 9 or 9 ′, as described above with respect to FIGS. 4-7 , at one end of the connection unit 70 and a plate-like connection member 51 or 62 , as described above with respect to FIGS. 14-18 , at the other end of the connection unit 70 .
- a flexible member 8 interposed between rod-like connection member 9 ( 9 ′) and the plate-like connection member 52 ( 64 ) is a flexible member 8 .
- the flexible member 8 may be designed and manufactured in accordance with any of the embodiments discussed above with reference to FIGS. 8-13 .
- FIG. 20 illustrates a perspective view of a spinal fixation device that utilizes the hybrid plate and rod connection unit 70 of FIG. 19 .
- this fixation device utilizes two types of securing members 2 (e.g., pedicle screws), the first securing member 2 ′ being configured to securely hold the plate connection member 42 ( 64 ) as described above with respect to FIG. 15 , and the second securing member 2 ′′ being configured to securely hold the rod connection member 4 , 9 or 9 ′, as described above with respect to FIG. 3 .
- securing members 2 e.g., pedicle screws
- FIG. 21 illustrates a perspective top view of two spinal fixation devices, in accordance with the embodiment illustrated in FIG. 1 , after they are attached to two adjacent vertebrae 80 and 82 to flexibly stabilize the vertebrae.
- FIGS. 22A and 22B illustrate perspective top views of spinal fixation devices using the flexible stabilizing members 50 and 58 of FIGS. 16A and 16B , respectively, after they are attached to two or more adjacent vertebrae of the spine.
- FIG. 23A illustrates a side view of a spinal fixation device after it has been implanted into the pedicles of two adjacent vertebrae.
- the pedicle screws 2 are mounted into the pedicle bone such that a center axis 80 of the screws 2 are offset by an angle ⁇ from a parallel plane 82 and the center axes 80 of the two screws 2 are offset by an angle of approximately 2 ⁇ from each other.
- This type of non-parallel insertion of the pedicle screws 2 often results due to the limited amount of space that is available when performing minimally invasive surgery.
- the pedicle screws 2 may have a tendency to be skewed from parallel due to a patient's natural curvature of the spine (e.g., lordosis). Thus, due to the non-parallel nature of how the pedicle screws 2 are ultimately fixed to the spinal pedicle, it is desirable to offset this skew when attaching a rod or plate connection unit to each of the pedicle screws 2 .
- FIG. 23B illustrates a side view of the head of the pedicle screw in accordance with one embodiment of the invention.
- the screw 2 includes a cylindrical head 84 which is similar to the cylindrical head 16 described above with respect to FIG. 3 except that the cylindrical head 84 includes a slanted seat 86 configured to receive and hold a flexible rod 4 in a slanted orientation that offsets the slant or skew ⁇ of the pedicle screw 2 as described above.
- the improved pedicle screw 2 further includes a slanted stabilizing spacer 88 which is configured to securely fit inside the cavity of the cylindrical head 84 and hold down the rod 4 at the same slant as the slanted seat 86 .
- the pedicle screw 2 further includes an outside threaded nut 22 configured to mate with spiral threads along the interior surface (not shown) of the cylindrical head 84 for clamping down and securing the slanted spacer 88 and the rod 4 to the slanted seat 86 and, hence, to the cylindrical head 84 of the pedicle screw 2 .
- FIG. 23C shows a perspective view of the slanted spacer 88 , in accordance with embodiment of the invention.
- the spacer 88 includes a circular middle portion 90 and two rectangular-shaped end portions 92 extending outwardly from opposite sides of the circular middle portion 90 .
- FIG. 23D shows a side view of the spacer 88 that further illustrates the slant from one end to another to compensate or offset the skew angle ⁇ of the pedicle screw 2 .
- FIG. 23E illustrates a top view of the cylindrical head 84 configured to receive a rod 4 and slanted spacer 88 therein.
- the rod 4 is received through two openings or slots 94 in the cylindrical walls of the cylindrical head 84 , which allow the rod 4 to enter the circular or cylindrical cavity 96 of the cylindrical head 84 and rest on top of the slanted seat 86 formed within the circular or cylindrical cavity 94 .
- the slanted stabilizing spacer 88 is received in the cavity 96 such that the two rectangular-shaped end portions 92 are received within the two slots 94 , thereby preventing lateral rotation of the spacer 88 within the cylindrical cavity 96 .
- the outside threaded nut 22 and fixing cap 26 are inserted on top of the slanted spacer 88 to securely hold the spacer 88 and rod 4 within the cylindrical head 84 .
- FIG. 24 illustrates a perspective view of a marking and guidance device 100 for marking a desired location on the spinal pedicle where a pedicle screw 2 will be inserted and guiding the pedicle screw 2 to the marked location using a minimally invasive surgical technique.
- the marking device 100 includes a tubular hollow guider 52 which receives within its hollow an inner trocar 104 having a sharp tip 105 at one end that penetrates a patient's muscle and tissue to reach the spinal pedicle.
- the inner trocar 104 further includes a trocar grip 106 at the other end for easy insertion and removal of the trocar 104 .
- the marking and guidance device 100 includes a guider handle 108 to allow for easier handling of the device 100 .
- the trocar 104 is in the form of a long tube or cylinder having a diameter smaller than the inner diameter of the hollow of the guider 102 so as to be inserted into the hollow of the tubular guider 102 .
- the trocar 104 further includes a sharp or pointed tip 105 for penetrating the vertebral body through the pedicle.
- the trocar 104 further includes a trocar grip 106 having a diameter larger than the diameter of the hollow of the guider tube 102 in order to stop the trocar 104 from sliding completely through the hollow.
- the trocar grip 106 also allows for easier handling of the trocar 104 .
- FIGS. 26A and 26B provide perspective views of the marking and guidance device 100 after it has been inserted into a patient's back and pushed through the muscle and soft tissue to reach a desired location on the spinal pedicle.
- the desired location is determined using known techniques such as x-ray or radiographic imaging for a relatively short duration of time.
- prolonged exposure of the patient to x-ray radiation is unnecessary.
- the inner trocar 104 is removed to allow fiducial pins (not shown) to be inserted into the hollow of the guidance tube 102 and thereafter be fixed into the pedicle.
- FIGS. 27A and 27B illustrate perspective views of two embodiments of the fiducial pins 110 and 112 , respectively.
- the fiducial pins 110 and 112 according to the present invention are inserted and fixed into the spinal pedicle after passing through the hollow guider 102 .
- the pins 110 and 112 have a cylindrical shape with a diameter smaller than the inner diameter of the hollow of the guider tube 102 in order to pass through the hollow of the guider 102 .
- An end of each fiducial pin is a sharp point 111 configured to be easily inserted and fixed into the spinal pedicle of the spinal column. In one embodiment, as shown in FIG.
- the other end of the fiducial pin incorporates a threaded shaft 114 which is configured to mate with an internally threaded tube of a retriever (not shown) for extraction of the pin 112 .
- This retriever is described in further detail below with respect to FIG. 32 .
- the fiducial pins 110 , 112 are preferably made of a durable and rigid biocompatible metal (e.g., stainless steel, iron steel, titanium, titanium alloy) for easy insertion into the pedicle bone.
- a durable and rigid biocompatible metal e.g., stainless steel, iron steel, titanium, titanium alloy
- the fiducial pins 110 , 112 are easily driven into the spinal pedicle without risk of bending or structural failure.
- the process of driving in prior art guidance wires was often very difficult and time-consuming.
- the insertion of the fiducial pins 110 , 112 into the entry point on the spinal pedicle is much easier and convenient for the surgeon and, furthermore, does not hinder subsequent procedures due to a guide wire protruding out of the patient's back.
- FIG. 28 shows a cylindrical pushing trocar 116 having a cylindrical head 118 of larger diameter than the body of the pushing trocar 116 .
- the pushing trocar 116 is inserted into the hollow of the guider 102 after the fiducial pin 110 or 112 has been inserted into the hollow of the guider 102 to drive and fix the fiducial pin 110 or 112 into the spinal pedicle.
- a doctor strikes the trocar head 118 with a chisel or a hammer to drive the fiducial pin 110 and 112 into the spinal pedicle.
- the pushing trocar 116 is in the form of a cylindrical tube, which has a diameter smaller than the inner diameter of the hollow of the guider tube 112 .
- the pushing trocar 116 also includes a cylindrical head 118 having a diameter larger than the diameter of the pushing trocar 116 to allow the doctor to strike it with a chisel or hammer with greater ease.
- a hammer or chisel is not necessarily required.
- a surgeon may choose to push or tap the head 118 of the pushing trocar 116 with the palm of his or her hand or other object.
- FIG. 29A illustrates how a hammer or mallet 120 and the pushing trocar 116 may be used to drive the pin 110 , 112 through the hollow of the guider tube 102 and into the designated location of the spinal pedicle.
- FIG. 29B illustrates a perspective cross-sectional view of the spinal column after two fiducial pins 110 , 112 have been driven and fixed into two adjacent vertebrae.
- a larger hole or area centered around each pin 110 , 112 is created to allow easer insertion and mounting of a pedicle screw 2 into the pedicle bone.
- the larger hole is created using a cannulated awl 122 as shown in FIG. 30 .
- the cannulated awl 122 is inserted over the fiducial pin 110 , 112 fixed at the desired position of the spinal pedicle.
- the awl 122 is in the form of a cylindrical hollow tube wherein an internal diameter of the hollow is larger than the outer diameter of the fiducial pins 110 and 112 so that the pins 110 , 112 may be inserted into the hollow of the awl 122 .
- the awl 122 further includes one or more sharp teeth 124 at a first end for cutting and grinding tissue and bone so as to create the larger entry point centered around the fiducial pin 110 , 112 so that the pedicle screw 2 may be more easily implanted into the spinal pedicle.
- FIG. 31 illustrates a perspective cross-sectional view of a patient's spinal column when the cannulated awl 122 is inserted into a minimally invasive incision in the patient's back, over a fiducial pin 110 , 112 to create a larger insertion hole for a pedicle screw 2 (not shown).
- a retractor 130 has been inserted into the minimally invasive incision over the surgical area and a lower tubular body of the retractor 130 is expanded to outwardly push surrounding tissue away from the surgical area and provide more space and a visual field for the surgeon to operate.
- the minimally invasive incision is made in the patient's back between and connecting the two entry points of the guide tube 102 used to insert the two fiducial pins 110 , 112 .
- prior expansion of the minimally invasive incision is typically required using a series of step dilators (not shown), each subsequent dilator having a larger diameter than the previous dilator.
- the retractor 130 is inserted with its lower tubular body in a retracted, non-expanded state. After the retractor 130 is pushed toward the spinal pedicle to a desired depth, the lower tubular portion is then expanded as shown in FIG. 31 .
- step dilators and retractors are well known in the art.
- the fiducial pin 110 , 112 is removed.
- a retrieving device 140 may be used to remove the fiducial pin 112 before implantation of a pedicle screw 2 .
- the retriever 140 comprises a long tubular or cylindrical portion having an internally threaded end 142 configured to mate with the externally threaded top portion 114 of the fiducial pin 112 .
- a doctor my pull the fiducial pin 112 out of the spinal pedicle.
- appropriate tools e.g., specially designed needle nose pliers
- the fiducial pins 110 , 112 are not extracted from the spinal pedicle. Instead, a specially designed pedicle screw 144 may be inserted into the spinal pedicle over the pin 110 , 112 without prior removal of the pin 110 , 112 .
- the specially designed pedicle screw 144 includes an externally threaded shaft 10 and a coupling assembly 14 ( FIG. 3 ) that includes a cylindrical head 16 ( FIG. 3 ) for receiving a flexible rod-shaped connection unit 4 ( FIGS. 4-13 ).
- the coupling assembly 14 may be configured to receive a plate-like connection unit as shown in FIGS. 14-20 .
- the pedicle screw 144 further includes a longitudinal axial channel (not shown) inside the threaded shaft 10 having an opening 146 at the tip of the shaft 10 and configured to receive the fiducial pin 110 , 112 therein.
- FIG. 34 illustrates a perspective cross-sectional view of the patient's spinal column after a pedicle screw 2 has been inserted into a first pedicle of the spine using an insertion device 150 .
- Various types of insertion devices 150 known in the art may be used to insert the pedicle screw 2 .
- the retractor 130 is adjusted and moved slightly to provide space and a visual field for insertion of a second pedicle screw at the location of the second fiducial pin 110 , 112 .
- FIG. 35 provides a perspective, cross sectional view of the patient's spinal column after two pedicle screws 2 have been implanted in two respective adjacent pedicles of the spine, in accordance with the present invention.
- a flexible rod, plate or hybrid connection unit as described above with respect to FIGS. 4-20 may be connected to the pedicle screws to provide flexible stabilization of the spine.
- the retractor 130 is removed and the minimally invasive incision is closed and/or stitched.
- FIG. 36A illustrates a perspective view of a flexible rod 200 for spinal fixation, in accordance with a further embodiment of the invention.
- the rod 200 is configured to be secured by securing members 2 as described above with reference to FIGS. 1-3 .
- the rod 200 , and rods 210 , 220 , 230 and 240 described below are comprised of a solid cylindrically-shaped rod made of known bio-compatible materials such as: stainless steel, iron steel, titanium, titanium alloy, NITINOL, and other suitable materials or compositions.
- spiral grooves 202 are cut or formed along at least a portion of the length of the cylindrical body of the rod 200 .
- the length of the rod “l” may be between 4 and 8 centimeters (cm), and its cylindrical diameter “D” is between 4-8 millimeters (mm).
- the spiral grooves 202 have a width “w” between 0.1 and 0.5 mm and a spiral angle ⁇ between 50 and 85 degrees from horizontal.
- the distance between spiral grooves 202 can be between 3 and 6 mm.
- the above dimensions are exemplary only and may be varied to achieve desired flexibility, torsion and strength characteristics that are suitable for a particular patient or application.
- FIG. 36B illustrates a cross-sectional view of the flexible rod 200 , taken along lines B-B of FIG. 36A .
- spiral groove 202 is cut toward the center longitudinal axis of the cylindrical rod 200 .
- the depth of the groove 202 is approximately equal to the cylindrical radius of the rod 200 , as shown in FIG. 36B , and penetrates as deep as the center longitudinal axis of the cylindrical rod 200 .
- the depth and width of the groove 202 can be varied to adjust the mechanical and structural characteristics of the rod 200 as desired.
- FIG. 37A illustrates a flexible rod 210 for spinal fixation in accordance with another embodiment of the invention.
- the rod 210 includes a plurality of transverse holes or tunnels 212 drilled or formed within the body of the rod 210 .
- the tunnels 212 pass through a center longitudinal axis of the cylindrical rod 210 at an angle ⁇ from horizontal.
- the openings for each respective tunnel 212 are located on opposite sides of the cylindrical wall of the rod 210 and adjacent tunnels 212 share a common opening on one side of the cylindrical wall, forming a zigzag pattern of interior tunnels 212 passing transversely through the central longitudinal axis of the rod 210 , as shown in FIG. 37A .
- the diameter D of each tunnel 212 may be varied between 0.2 to 3 mm, depending the desired mechanical and structural characteristics (e.g., flexibility, torsion and strength) of the rod 210 .
- desired mechanical and structural characteristics e.g., flexibility, torsion and strength
- these dimensions are exemplary and other diameters D may be desired depending on the materials used and the desired structural and mechanical characteristics.
- the angle from horizontal ⁇ may be varied to change the number of tunnels 212 or the distance between adjacent tunnels 212 .
- FIG. 37B illustrates a cross-sectional view of the flexible rod 210 taken along lines B-B of FIG. 37A .
- the tunnel 212 cuts through the center cylindrical axis of the rod 210 such that openings of the tunnel 212 are formed at opposite sides of the cylindrical wall of the rod 210 .
- FIG. 38A illustrates a perspective view of a flexible rod 220 for spinal fixation, in accordance with a further embodiment of the invention.
- Rod 220 incorporates the spiral grooves 202 described above with reference to FIGS. 36A and 36B as well as the transverse tunnels 212 described above with respect to FIGS. 37A and 37B .
- the spiral grooves 202 are cut into the surface of the cylindrical wall of the rod 220 toward a center longitudinal axis of the rod 220 .
- the dimensions of the spiral grooves 202 and their angle from horizontal ⁇ may be varied in accordance with desired mechanical and structural characteristics.
- the dimensions of the transverse tunnels 212 and their angle from horizontal ⁇ FIG.
- angles ⁇ and ⁇ are substantially similar such that the openings of the tunnels 212 substantially coincide with the spiral grooves 202 on opposite sides of the cylindrical wall of the rod 220 .
- FIG. 38B shows a top view of the flexible rod 220 taken along the perspective indicated by lines B-B of FIG. 38A .
- the openings of the tunnels 212 coincide with the spiral grooves 202 .
- FIG. 39A illustrates a flexible rod 230 for spinal fixation, in accordance with another embodiment of the invention.
- the rod 230 includes a plurality of transverse tunnels 232 formed in the body of the rod 230 .
- the tunnels 232 are substantially similar to the tunnels 212 described above with respect to FIGS. 37A and 37B , however, the tunnels 232 are not linked together in a zigzag pattern. Rather, each tunnel 232 is substantially parallel to its immediate adjacent tunnels 232 and the openings of one tunnel 232 do not coincide with the openings of adjacent tunnels 232 .
- the angle from horizontal ⁇ in this embodiment is approximately 90 degrees. However, it is understood that other angles ⁇ may be incorporated in accordance with the present invention.
- tunnels 232 may be varied to achieve desired mechanical and structural characteristics.
- the cross-sectional shape of the tunnels 212 and 232 need not be circular. Instead, for example, they may be an oval or diamond shape, or other desired shape.
- FIG. 39B illustrates a cross-sectional view of the rod 230 taken along lines B-B of FIG. 39A .
- the transverse tunnel 232 travels vertically and transversely through the center longitudinal axis of the rod 230 .
- FIG. 39C illustrates a cross-sectional view of a further embodiment of the rod 230 , wherein an additional transverse tunnel 232 ′ is formed substantially orthogonal to the first transverse tunnel 232 and intersects the first transverse tunnel 232 at the center, cylindrical axis point. In this way, further flexibility of the rod 230 may be provided as desired.
- FIG. 40A illustrates a perspective view of a flexible rod 240 , in accordance with a further embodiment of the invention.
- the rod 240 includes a plurality of interleaved transverse tunnels 232 and 242 which are substantially orthogonal to each other and which do not intersect, as shown in FIG. 40A .
- adjacent tunnels 232 and 242 need not be orthogonal to one another.
- Each tunnel 232 , 242 can be offset at a desired angle co from its immediately preceding adjacent tunnel 232 , 242 .
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Neurology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
- The present application is a continuation of U.S. application Ser. No. 10,798,014, filed Mar. 10, 2004, which is a continuation-in-part of U.S. patent application Ser. No. 10/728,566, filed Dec. 5, 2003.
- 1. Field of the Invention
- The present invention relates to a method and system for fixing and stabilizing a spinal column and, more particularly, to a method and system of spinal fixation in which one or more screw type fixing members are implanted and fixed into a portion of a patient's spinal column and flexible, semi-rigid rods or plates are connected and fixed to the upper ends of the fixing members to provide dynamic stabilization of the spinal column.
- 2. Description of the Related Art
- Degenerative spinal column diseases, such as disc degenerative diseases (DDD), spinal stenosis, spondylolisthesis, and so on, need surgical operation if they do not take a turn for the better by conservative management. Typically, spinal decompression is the first surgical procedure that is performed. The primary purpose of decompression is to reduce pressure in the spinal canal and on nerve roots located therein by removing a certain tissue of the spinal column to reduce or eliminate the pressure and pain caused by the pressure. If the tissue of the spinal column is removed the pain is reduced but the spinal column is weakened. Therefore, fusion surgery (e.g., ALIF, PLIF or posterolateral fusion) is often necessary for spinal stability following the decompression procedure. However, following the surgical procedure, fusion takes additional time to achieve maximum stability and a spinal fixation device is typically used to support the spinal column until a desired level of fusion is achieved. Depending on a patient's particular circumstances and condition, a spinal fixation surgery can sometimes be performed immediately following decompression, without performing the fusion procedure. The fixation surgery is performed in most cases because it provides immediate postoperative stability and, if fusion surgery has also been performed, it provides support of the spine until sufficient fusion and stability has been achieved.
- Conventional methods of spinal fixation utilize a rigid spinal fixation device to support an injured spinal part and prevent movement of the injured part. These conventional spinal fixation devices include: fixing screws configured to be inserted into the spinal pedicle or sacral of the backbone to a predetermined depth and angle, rods or plates configured to be positioned adjacent to the injured spinal part, and coupling elements for connecting and coupling the rods or plates to the fixing screws such that the injured spinal part is supported and held in a relatively fixed position by the rods or plates.
- U.S. Pat. No. 6,193,720 discloses a conventional spinal fixation device, in which connection members of a rod or plate type are mounted on the upper ends of at least one or more screws inserted into the spinal pedicle or sacral of the backbone. The connection units, such as the rods and plates, are used to stabilize the injured part of the spinal column which has been weakened by decompression. The connection units also prevent further pain and injury to the patient by substantially restraining the movement of the spinal column. However, because the connection units prevent normal movement of the spinal column, after prolonged use, the spinal fixation device can cause ill effects, such as “junctional syndrome” (transitional syndrome) or “fusion disease” resulting in further complications and abnormalities associated with the spinal column. In particular, due to the high rigidity of the rods or plates used in conventional fixation devices, the patient's fixed joints are not allowed to move after the surgical operation, and the movement of the spinal joints located above or under the operated area is increased. Consequently, such spinal fixation devices cause decreased mobility of the patient and increased stress and instability to the spinal column joints adjacent to the operated area.
- It has been reported that excessive rigid spinal fixation is not helpful to the fusion process due to load shielding caused by rigid fixation. Thus, trials using load sharing semi-rigid spinal fixation devices have been performed to eliminate this problem and assist the bone fusion process. For example, U.S. Pat. No. 5,672,175, U.S. Pat. No. 5,540,688, and U.S. Pub No 2001/0037111 disclose dynamic spine stabilization devices having flexible designs that permit axial load translation (i.e., along the vertical axis of the spine) for bone fusion promotion. However, because these devices are intended for use following a bone fusion procedure, they are not well-suited for spinal fixation without fusion. Thus, in the end result, these devices do not prevent the problem of rigid fixation resulting from fusion.
- To solve the above-described problems associated with rigid fixation, non-fusion technologies have been developed. The Graf band is one example of a non-fusion fixation device that is applied after decompression without bone fusion. The Graf band is composed of a polyethylene band and pedicle screws to couple the polyethylene band to the spinal vertebrae requiring stabilization. The primary purpose of the Graf band is to prevent sagittal rotation (flexion instability) of the injured spinal parts. Thus, it is effective in selected cases but is not appropriate for cases that require greater stability and fixation. See, Kanayama et al, Journal of Neurosurgery 95(1 Suppl): 5-10, 2001, Markwalder & Wenger, Acta Neurochrgica 145(3): 209-14.). Another non-fusion fixation device called “Dynesys” has recently been introduced. See Stoll et al, European Spine Journal 11 Suppl 2: S170-8, 2002, Schmoelz et al, J of spinal disorder & techniques 16(4): 418-23, 2003. The Dynesys device is similar to the Graf band except it uses a polycarburethane spacer between the screws to maintain the distance between the heads of two corresponding pedicle screws and, hence, adjacent vertebrae in which the screws are fixed. Early reports by the inventors of the Dynesys device indicate it has been successful in many cases. However, it has not yet been determined whether the Dynesys device can maintain long-term stability with flexibility and durability in a controlled study. Because it has polyethylene components and interfaces, there is a risk of mechanical failure. Furthermore, due to the mechanical configuration of the device, the surgical technique required to attach the device to the spinal column is complex and complicated.
- U.S. Pat. Nos. 5,282,863 and 4,748,260 disclose a flexible spinal stabilization system and method using a plastic, non-metallic rod. U.S. patent publication no. 2003/0083657 discloses another example of a flexible spinal stabilization device that uses a flexible elongate member. These devices are flexible but they are not well-suited for enduring long-term axial loading and stress. Additionally, the degree of desired flexibility vs. rigidity may vary from patient to patient. The design of existing flexible fixation devices are not well suited to provide varying levels of flexibility to provide optimum results for each individual candidate. For example, U.S. Pat. No. 5,672,175 discloses a flexible spinal fixation device which utilizes a flexible rod made of metal alloy and/or a composite material. Additionally, compression or extension springs are coiled around the rod for the purpose of providing de-rotation forces on the vertebrae in a desired direction. However, this patent is primarily concerned with providing a spinal fixation device that permits “relative longitudinal translational sliding movement along [the] vertical axis” of the spine and neither teaches nor suggests any particular designs of connection units (e.g., rods or plates) that can provide various flexibility characteristics. Prior flexible rods such as that mentioned in U.S. Pat. No. 5,672,175 typically have solid construction with a relatively small diameter in order to provide a desired level of flexibility. Because they are typically very thin to provide suitable flexibility, such prior art rods are prone to mechanical failure and have been known to break after implantation in patients.
- Therefore, conventional spinal fixation devices have not provided a comprehensive and balanced solution to the problems associated with curing spinal diseases. Many of the prior devices are characterized by excessive rigidity, which leads to the problems discussed above while others, though providing some flexibility, are not well-adapted to provide varying degrees of flexibility. Additionally, existing flexible fixation devices utilize non-metallic components that are not proven to provide long-term stability and durability. Therefore, there is a need for an improved dynamic spinal fixation device that provides a desired level of flexibility to the injured parts of the spinal column, while also providing long-term durability and consistent stabilization of the spinal column.
- Additionally, in a conventional surgical method for fixing the spinal fixation device to the spinal column, a doctor incises the midline of the back to about 10-15 centimeters, and then, dissects and retracts it to both sides. In this way, the doctor performs muscular dissection to expose the outer part of the facet joint. Next, after the dissection, the doctor finds an entrance point to the spinal pedicle using radiographic devices (e.g., C-arm flouroscopy), and inserts securing members of the spinal fixation device (referred to as “spinal pedicle screws”) into the spinal pedicle. Thereafter, the connection units (e.g., rods or plates) are attached to the upper portions of the pedicle screws in order to provide support and stability to the injured portion of the spinal column. Thus, in conventional spinal fixation procedures, the patient's back is incised about 10˜15 cm, and as a result, the back muscle, which is important for maintaining the spinal column, is incised or injured, resulting in significant post-operative pain to the patient and a slow recovery period.
- Recently, to reduce patient trauma, a minimally invasive surgical procedure has been developed which is capable of performing spinal fixation surgery through a relatively small hole or “window” that is created in the patient's back at the location of the surgical procedure. Through the use of an endoscope, or microscope, minimally invasive surgery allows a much smaller incision of the patient's affected area. Through this smaller incision, two or more securing members (e.g., pedicle screws) of the spinal fixation device are screwed into respective spinal pedicle areas using a navigation system. Thereafter, special tools are used to connect the stabilizing members (e.g., rods or plates) of the fixation device to the securing members. Alternatively, or additionally, the surgical procedure may include inserting a step dilator into the incision and then gradually increasing the diameter of the dilator. Thereafter, a tubular retractor is inserted into the dilated area to retract the patient's muscle and provide a visual field for surgery. After establishing this visual field, decompression and, if desired, fusion procedures may be performed, followed by a fixation procedure, which includes the steps of finding the position of the spinal pedicle, inserting pedicle screws into the spinal pedicle, using an endoscope or a microscope, and securing the stabilization members (e.g., rods or plates) to the pedicle screws in order to stabilize and support the weakened spinal column.
- One of the most challenging aspects of performing the minimally invasive spinal fixation procedure is locating the entry point for the pedicle screw under endoscopic or microscopic visualization. Usually anatomical landmarks and/or radiographic devices are used to find the entry point, but clear anatomical relationships are often difficult to identify due to the confined working space. Additionally, the minimally invasive procedure requires that a significant amount of the soft tissue must be removed to reveal the anatomy of the regions for pedicle screw insertion. The removal of this soft tissue results in bleeding in the affected area, thereby adding to the difficulty of finding the correct position to insert the securing members and causing damage to the muscles and soft tissue surrounding the surgical area. Furthermore, because it is difficult to accurately locate the point of insertion for the securing members, conventional procedures are unnecessarily traumatic.
- Radiography techniques have been proposed and implemented in an attempt to more accurately and quickly find the position of the spinal pedicle in which the securing members will be inserted. However, it is often difficult to obtain clear images required for finding the corresponding position of the spinal pedicle using radiography techniques due to radiographic interference caused by metallic tools and equipment used during the surgical operation. Moreover, reading and interpreting radiographic images is a complex task requiring significant training and expertise. Radiography poses a further problem in that the patient is exposed to significant amounts of radiation.
- Although some guidance systems have been developed which guide the insertion of a pedicle screw to the desired entry point on the spinal pedicle, these prior systems have proven difficult to use and, furthermore, hinder the operation procedure. For example, prior guidance systems for pedicle screw insertion utilize a long wire that is inserted through a guide tube that is inserted through a patient's back muscle and tissue. The location of insertion of the guide tube is determined by radiographic means (e.g., C-arm flouroscope) and driven until a first end of the guide tube reaches the desired location on the surface of the pedicle bone. Thereafter, a first end of the guide wire, typically made of a biocompatible metal material, is inserted into the guide tube and pushed into the pedicle bone, while the opposite end of the wire remains protruding out of the patient's back. After the guide wire has been fixed into the pedicle bone, the guide tube is removed, and a hole centered around the guide wire is dilated and retracted. Finally, a pedicle screw having an axial hole or channel configured to receive the guide wire therethrough is guided by the guide wire to the desired location on the pedicle bone, where the pedicle screw is screw-driven into the pedicle.
- Although the concept of the wire guidance system is a good one, in practice, the guide wire has been very difficult to use. Because it is a relatively long and thin wire, the structural integrity of the guide wire often fails during attempts to drive one end of the wire into the pedicle bone, making the process unnecessarily time-consuming and laborious. Furthermore, because the wire bends and crimps during insertion, it does not provide a smooth and secure anchor for guiding subsequent tooling and pedicle screws to the entry point on the pedicle. Furthermore, current percutaneous wire guiding systems are used in conjunction with C-arm flouroscopy (or other radiographic device) without direct visualization with the use of an endoscope or microscope. Thus, current wire guidance systems pose a potential risk of misplacement or pedicle breakage. Finally, because one end of the wire remains protruding out of the head of the pedicle screw, and the patient's back, this wire hinders freedom of motion by the surgeon in performing the various subsequent procedures involved in spinal fixation surgery. Thus, there is a need to provide an improved guidance system, adaptable for use in minimally invasive pedicle screw fixation procedures under endoscopic or microscopic visualization, which is easier to implant into the spinal pedicle and will not hinder subsequent procedures performed by the surgeon.
- As discussed above, existing methods and devices used to cure spinal diseases are in need of much improvement. Most conventional spinal fixation devices are too rigid and inflexible. This excessive rigidity causes further abnormalities and diseases of the spine, as well as significant discomfort to the patient. Although some existing spinal fixation devices do provide some level of flexibility, these devices are not designed or manufactured so that varying levels of flexibility may be easily obtained to provide a desired level of flexibility for each particular patient. Additionally, prior art devices having flexible connection units (e.g., rods or plates) pose a greater risk of mechanical failure and do not provide long-term durability and stabilization of the spine. Furthermore, existing methods of performing the spinal fixation procedure are unnecessarily traumatic to the patient due to the difficulty in finding the precise location of the spinal pedicle or sacral of the backbone where the spinal fixation device will be secured.
- The invention addresses the above and other needs by providing an improved method and system for stabilizing an injured or weakened spinal column.
- To overcome the deficiencies of conventional spinal fixation devices, in one embodiment, the inventor of the present invention has invented a novel flexible spinal fixation device with an improved construction and design.
- In one embodiment of the present invention, a flexible connection unit for use in a spinal fixation device includes a rod having at least one groove formed along at least a portion of the rod so as to provide flexibility to rod.
- In another embodiment, a flexible connection unit for use in a spinal fixation device includes a solid rod and at least one transverse tunnel formed within the solid rod so as to provide flexibility to the rod.
- As a result of long-term studies to reduce the operation time required for minimally invasive spinal surgery, to minimize injury to tissues near the surgical area, in another embodiment, the invention provides a method and device for accurately and quickly finding a position of the spinal column in which securing members of the spinal fixation device will be inserted. A novel guidance/marking device is used to indicate the position in the spinal column where the securing members will be inserted.
-
FIG. 1 illustrates a perspective view of a spinal fixation device in accordance with one embodiment of the invention. -
FIG. 2 illustrates a perspective view of spinal fixation device in accordance with another embodiment of the invention. -
FIG. 3 illustrates an exploded view of thecoupling assembly 14 of thepedicle screw 2 ofFIGS. 1 and 2 , in accordance with one embodiment of the invention. -
FIG. 4 illustrates a perspective view of a flexible rod connection unit in accordance with one embodiment of the invention. -
FIG. 5 illustrates a perspective view of a flexible rod connection unit in accordance with another embodiment of the invention. -
FIG. 6 illustrates a perspective view of a flexible rod connection unit in accordance with a further embodiment of the invention. -
FIG. 7 illustrates a perspective view of a pre-bent flexible rod connection unit in accordance with one embodiment of the invention. -
FIG. 8 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with one embodiment of the invention. -
FIG. 9 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with another embodiment of the invention. -
FIG. 10 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with a further embodiment of the invention. -
FIG. 11 illustrates a perspective view of a flexible rod connection unit in accordance with one embodiment of the invention. -
FIG. 12A illustrates a perspective view of a flexible connection unit having one or more spacers in between two end portions, in accordance with one embodiment of the invention. -
FIG. 12B illustrates an exploded view of the flexible connection unit ofFIG. 12A . -
FIG. 12C provides a view of the male and female interlocking elements of the flexible connection unit ofFIGS. 12A and 12B , in accordance with one embodiment of the invention. -
FIG. 13 shows a perspective view of a flexible connection unit, in accordance with a further embodiment of the invention. -
FIG. 14 illustrates a perspective view of a spinal fixation device in accordance with another embodiment of the invention. -
FIG. 15 illustrates an exploded view of the spinal fixation device ofFIG. 14 . -
FIG. 16A shows a perspective view of a flexible plate connection unit in accordance with one embodiment of the invention. -
FIG. 16B illustrates a perspective view of a flexible plate connection unit in accordance with a further embodiment of the invention. -
FIG. 16C shows a side view of the flexible plate connection unit ofFIG. 16A . -
FIG. 16D shows a top view of the flexible plate connection unit ofFIG. 16A . -
FIG. 16E illustrates a side view of the flexible plate connection unit of FIG. 16A having a pre-bent configuration in accordance with a further embodiment of the invention. -
FIG. 17 is a perspective view of a flexible plate connection unit in accordance with another embodiment of the invention. -
FIG. 18 illustrates a perspective view of a flexible plate connection unit in accordance with another embodiment of the invention. -
FIG. 19 illustrates a perspective view of a hybrid rod-plate connection unit having a flexible middle portion according to a further embodiment of the present invention. -
FIG. 20 is a perspective view of a spinal fixation device that utilizes the hybrid rod-plate connection unit ofFIG. 19 . -
FIG. 21 illustrates a perspective view of the spinal fixation device ofFIG. 1 after it has been implanted into a patient's spinal column. -
FIGS. 22A and 22B provide perspective views of spinal fixation devices utilizing the plate connection units ofFIGS. 16A and 16B , respectively. -
FIG. 23A illustrates a perspective view of two pedicle screws inserted into the pedicles of two adjacent vertebrae at a skewed angle, in accordance with one embodiment of the invention. -
FIG. 23B illustrates a structural view of a coupling assembly of a pedicle screw in accordance with one embodiment of the invention. -
FIG. 23C provides a perspective view of a slanted stabilizing spacer in accordance with one embodiment of the invention. -
FIG. 23D illustrates a side view of the slanted stabilizing spacer ofFIG. 23C . -
FIG. 23E is a top view of the cylindrical head of the pedicle screw ofFIG. 23 . -
FIG. 24 illustrates a perspective view of a marking and guiding device in accordance with one embodiment of the invention. -
FIG. 25 is an exploded view of the marking and guidance device ofFIG. 24 . -
FIG. 26A provides a perspective, cross-section view of a patient's spine after the marking and guiding device ofFIG. 24 has been inserted during surgery. -
FIG. 26B provides a perspective, cross-section view of a patient's spine as an inner trocar of the marking and guiding device ofFIG. 24 is being removed. -
FIGS. 27A and 27B illustrate perspective views of two embodiments of a fiducial pin, respectively. -
FIG. 28 is a perspective view of a pushing trocar in accordance with a further embodiment of the invention. -
FIG. 29A illustrates a perspective, cross-sectional view of a patient's spine as the pushing trocar ofFIG. 28 is used to drive a fiducial pin into a designate location of a spinal pedicle, in accordance with one embodiment of the invention. -
FIG. 29B illustrates a perspective, cross-sectional view of a patient's spine after two fiducial pins have been implanted into two adjacent spinal pedicles, in accordance with one embodiment of the invention. -
FIG. 30 is a perspective view of a cannulated awl in accordance with one embodiment of the invention. -
FIG. 31 is a perspective, cross-sectional view of a patient's spine as the cannulated awl ofFIG. 30 is being used to enlarge an entry hole for a pedicle screw, in accordance with one embodiment of the invention. -
FIG. 32 provides a perspective view of fiducial pin retrieving device, in accordance with one embodiment of the invention. -
FIG. 33 is a perspective view of a pedicle screw having an axial cylindrical cavity for receiving at least a portion of a fiducial pin therein, in accordance with a further embodiment of the invention. -
FIG. 34 is a perspective, cross-sectional view of a patient's spine after one pedicle screw has been implanted into a designated location of a spinal pedicle, in accordance with one embodiment of the invention. -
FIG. 35 is a perspective, cross-sectional view of a patient's spine after two pedicle screws have been implanted into designated locations of two adjacent spinal pedicles, in accordance with one embodiment of the invention. -
FIG. 36A is perspective view of a flexible rod for spinal fixation having a spiral groove cut therein, in accordance with one embodiment of the present invention. -
FIG. 36B provides a cross-sectional view of the flexible rod ofFIG. 36A , taken along lines B-B ofFIG. 36A . -
FIG. 37A illustrates a perspective view of a flexible rod for spinal fixation having transverse tunnels within the body of the rod, in accordance with one embodiment of the invention. -
FIG. 37B is a cross-sectional view of the flexible rod ofFIG. 37A , taken along lines B-B ofFIG. 37A . -
FIG. 38A is a perspective view of a flexible rod for spinal fixation having a spiral groove cut therein and transverse tunnels in the body of the rod, in accordance with a further embodiment of the invention. -
FIG. 38B is a top view of the flexible rod ofFIG. 38A , from the perspective of lines B-B ofFIG. 38A . -
FIG. 39A is a perspective view of a flexible rod for spinal fixation having transverse tunnels within the body of the rod, in accordance with another embodiment of the invention. -
FIG. 39B is a cross-sectional view of the flexible rod ofFIG. 39A , taken along lines B-B of that figure. -
FIG. 39C is an alternative cross-sectional view of the flexible rod ofFIG. 39A , taken along lines B-B of that figure, having substantially orthogonal transverse tunnels in the body of the rod, in accordance with a further embodiment of the invention. -
FIG. 40A illustrates a perspective view of a flexible rod for spinal fixation, in accordance with a further embodiment of the invention. -
FIG. 40B illustrates a cross-sectional view of a flexible rod for spinal fixation in accordance with a further embodiment of the invention. - The invention is described in detail below with reference to the figures wherein like elements are referenced with like numerals throughout.
-
FIG. 1 depicts a spinal fixation device in accordance with one embodiment of the present invention. The spinal fixation device includes two securing members 2 (designated as 2′ and 2″), and aflexible fixation rod 4 configured to be received and secured within acoupling assembly 14, as described in further detail below with respect toFIG. 3 . Each securingmember 2 includes a threaded screw-type shaft 10 configured to be inserted and screwed into a patient's spinal pedicle. As shown inFIG. 1 , the screw-type shaft 10 includes an externalspiral screw thread 12 formed over the length of theshaft 10 and a conical tip at the end of theshaft 10 configured to be inserted into the patient's spinal column at a designated location. Other known forms of the securingmember 2 may be used in connection with the present invention provided the securingmember 2 can be inserted and fixed into the spinal column and securely coupled to therod 4. - As described above, the spinal fixation device is used for surgical treatment of spinal diseases by mounting securing
members 2 at desired positions in the spinal column. In one embodiment, therod 4 extends across two or more vertebrae of the spinal column and is secured by the securingmembers 2 so as to stabilize movement of the two or more vertebrae. -
FIG. 2 illustrates a perspective view of a spinal fixation device in accordance with a further embodiment of the present invention. The spinal fixation device ofFIG. 2 is similar to the spinal fixation device ofFIG. 1 except that therod 4 comprises a flexiblemiddle portion 8 juxtaposed between tworigid end portions 9 of therod 4. -
FIG. 3 provides an exploded view of the securingmember 2 ofFIGS. 1 and 2 illustrating various components of thecoupling assembly 14, in accordance with one embodiment of the invention. As shown inFIG. 3 , thecoupling assembly 14 includes: acylindrical head 16 located at a top end of the screw-type shaft 10, a spiral thread or groove 18 formed along portions of the inner wall surface of thecylindrical head 16, and aU-shaped seating groove 20 configured to receive therod 4 therein. Thecoupling assembly 14 further comprises an outside-threadednut 22 having aspiral thread 24 formed on the outside lateral surface of thenut 22, wherein thespiral thread 24 is configured to mate with theinternal spiral thread 18 of thecylindrical head 16. In a further embodiment, thecoupling assembly 14 includes a fixingcap 26 configured to be mounted over a portion of thecylindrical head 16 to cover and protect the outside-threadednut 22 and more securely holdrod 4 withinseating groove 20. In one embodiment an inner diameter of the fixinggap 26 is configured to securely mate with the outer diameter of thecylindrical head 16. Other methods of securing the fixingcap 26 to the cylindrical head, such as correspondingly located notches and groove (not shown), would be readily apparent to those of skill in the art. In preferred embodiments the components and parts of the securingmember 2 may be made of highly rigid and durable bio-compatible materials such as: stainless steel, iron steel, titanium or titanium alloy. Such materials are known in the art. As also known in the art, and used herein, “bio-compatible” materials refers to those materials that will not cause any adverse chemical or immunological reactions after being implanted into a patient's body. - As shown in
FIGS. 1 and 2 , in preferred embodiments, therod 4 is coupled to the securing means 2 by seating therod 4 horizontally into theseating groove 20 of the coupling means 14 perpendicularly to the direction of the length of the threadedshaft 10 of securingmember 2. The outside threadednut 22 is then received and screwed into thecylindrical head 16 above therod 4 so as to secure therod 4 in theseating groove 20. The fixingcap 26 is then placed over thecylindrical head 16 to cover, protect and more firmly secure the components in the internal cavity of thecylindrical head 16.FIGS. 4-7 illustrate perspective views of various embodiments of arod 4 that may be used in a fixation device, in accordance with the present invention.FIG. 4 illustrates therod 4 ofFIG. 1 wherein the entire rod is made and designed to be flexible. In this embodiment,rod 4 comprises a metal tube or pipe having acylindrical wall 5 of a predefined thickness. In one embodiment, in order to provide flexibility to therod 4, thecylindrical wall 5 is cut in a spiral fashion along the length of therod 4 to form spiral cuts orgrooves 6. As would be apparent to one of ordinary skill in the art, the width and density of thespiral grooves 6 may be adjusted to provide a desired level of flexibility. In one embodiment, thegrooves 6 are formed from very thin spiral cuts or incisions that penetrate through the entire thickness of the cylindrical wall of therod 4. As known to those skilled in the art, the thickness and material of thetubular walls 5 also affect the level of flexibility. - In one embodiment, the
rod 4 is designed to have a flexibility that substantially equals that of a normal back. Flexibility ranges for a normal back are known by those skilled in the art, and one of ordinary skill can easily determine a thickness and material of thetubular walls 5 and a width and density of thegrooves 6 to achieve a desired flexibility or flexibility range within the range for a normal back. When referring to thegrooves 6 herein, the term “density” refers to tightness of thespiral grooves 6 or, in other words, the distance betweenadjacent groove lines 6 as shown inFIG. 4 , for example. However, it is understood that the present invention is not limited to a particular, predefined flexibility range. In one embodiment, in addition to having desired lateral flexibility characteristics, the rigidity of therod 4 should be able to endure a vertical axial load applied to the patient's spinal column along a vertical axis of the spine in a uniform manner with respect to the rest of the patient's natural spine. -
FIG. 5 illustrates therod 4 ofFIG. 2 wherein only amiddle portion 8 is made and designed to be flexible and twoend portions 9 are made to be rigid. In one embodiment, metal end rings orcaps 9′, having no grooves therein, may be placed over respective ends of therod 4 ofFIG. 4 so as make theend portions 9 rigid. The rings orcaps 9′ may be permanently affixed to the ends of therod 4 using known methods such as pressing and/or welding the metals together. In another embodiment, thespiral groove 6 is only cut along the length of themiddle portion 8 and theend portions 9 comprise thetubular wall 5 withoutgrooves 6. Without thegrooves 6, thetubular wall 5, which is made of a rigid metal or metal hybrid material, exhibits high rigidity. -
FIG. 6 illustrates a further embodiment of therod 4 having multiple sections, twoflexible sections 8 interleaved between threerigid sections 9. This embodiment may be used, for example, to stabilize three adjacent vertebrae with respect to each other, wherein three pedicle screws are fixed to a respective one of the vertebrae and the threerigid sections 9 are connected to acoupling assembly 14 of arespective pedicle screw 2, as described above with respect toFIG. 3 . Each of theflexible sections 8 andrigid sections 9 may be made as described above with respect toFIG. 5 . -
FIG. 7 illustrates another embodiment of therod 4 having a pre-bent structure and configuration to conform to and maintain a patient's curvature of the spine, known as “lordosis,” while stabilizing the spinal column. Generally, a patient's lumbar is in the shape of a ‘C’ form, and the structure of therod 4 is formed to coincide to the normal lumbar shape when utilized in the spinal fixation device ofFIG. 2 , in accordance with one embodiment of the invention. In one embodiment, thepre-bent rod 4 includes amiddle portion 8 that is made and designed to be flexible interposed between tworigid end portions 9. Themiddle portion 8 andend portions 9 may be made as described above with respect toFIG. 5 . Methods of manufacturing metallic or metallic-hybrid tubular rods of various sizes, lengths and pre-bent configurations are well-known in the art. Additionally, or alternatively, the pre-bent structure and design of therod 4 may offset a skew angle when two adjacent pedicle screws are not inserted parallel to one another, as described in further detail below with respect toFIG. 23A . - Additional designs and materials used to create a flexible
tubular rod 4 or flexiblemiddle portion 8 are described below with respect toFIGS. 8-10 .FIG. 8 illustrates a perspective, cross-sectional view of a flexibletubular rod 4, orrod portion 8 in accordance with one embodiment of the invention. In this embodiment, theflexible rod first metal tube 5 having aspiral groove 6 cut therein as described above with respect toFIGS. 4-7 . Asecond tube 30 havingspiral grooves 31 cut therein and having a smaller diameter than thefirst tube 5 is inserted into the cylindrical cavity of thefirst tube 5. In one embodiment, thesecond tube 30 hasspiral grooves 31 which are cut in an opposite spiral direction with respect to thespiral grooves 6 cut in thefirst tube 5, such that the rotational torsion characteristics of thesecond tube 30 offset at least some of the rotational torsion characteristics of thefirst tube 5. The secondflexible tube 30 is inserted into the core of the first tube to provide further durability and strength to theflexible rod second tube 30 may be made of the same or different material than thefirst tube 5. In preferred embodiments, the material used to manufacture the first andsecond tubes -
FIG. 9 illustrates a perspective, cross-sectional view of aflexible rod flexible rod metallic wire 32 comprising a plurality of overlapping thin metallic yarns, such as steel yarns, titanium yarns, or titanium-alloy yarns. Thewire 32 is encased by a metal, or metal hybrid,flexible tube 5 havingspiral grooves 6 cut therein, as discussed above. The number and thickness of the metallic yarns in thewire 32 also affects the rigidity and flexibility of therod wire 32 can be adjusted to provide a desired rigidity and flexibility in accordance with a patient's particular needs. Those of ordinary skill in the art can easily determine the number, thickness and material of the yarns, in conjunction with a given flexibility of thetube 5 in order to achieve a desired rigidity v. flexibility profile for therod -
FIG. 10 shows yet another embodiment of aflexible rod 4 wherein theflexible tube 5 encases a non-metallic,flexible core 34. The core 34 may be made from known biocompatible shape memory alloys (e.g., NITINOL), or biocompatible synthetic materials such as: carbon fiber, Poly Ether Ether Ketone (PEEK), Poly Ether Ketone Ketone Ether Ketone (PEKKEK), or Ultra High Molecular Weight Poly Ethylene (UHMWPE). -
FIG. 11 illustrates a perspective view of another embodiment of theflexible rod 35 in which a plurality ofmetal wires 32, as described above with respect toFIG. 9 , are interweaved or braided together to form a braidedmetal wire rod 35. Thus, the braidedmetal wire rod 35 can be made from the same materials as themetal wire 32. In addition to the variability of the rigidity and flexibility of thewire 32 as explained above, the rigidity and flexibility of thebraided rod 35 can be further modified to achieve desired characteristics by varying the number and thickness of thewires 32 used in thebraided structure 35. For example, in order to achieve various flexion levels or ranges within the known flexion range of a normal healthy spine, those of ordinary skill in the art can easily manufacture various designs of thebraided wire rod 35 by varying and measuring the flexion provided by different gauges, numbers and materials of the wire used to create thebraided wire rod 35. In a further embodiment each end of the braidedmetal wire rod 35 is encased by a rigid metal cap orring 9′ as described above with respect toFIGS. 5-7 , to provide arod 4 having a flexiblemiddle portion 8 andrigid end portions 9. In a further embodiment (not shown), the metalbraided wire rod 35 may be utilized as a flexible inner core encased by ametal tube 5 havingspiral grooves 6 cut therein to create aflexible metal rod 4 orrod portion 8, in a similar fashion to the embodiments shown inFIGS. 8-10 . As used herein the term “braid” or “braided structure” encompasses two or more wires, strips, strands, ribbons and/or other shapes of material interwoven in an overlapping fashion. Various methods of interweaving wires, strips, strands, ribbons and/or other shapes of material are known in the art. Such interweaving techniques are encompassed by the present invention. In another exemplary embodiment (not shown), theflexible metal rod 35 includes a braided metal structure having two or more metal strips, strands or ribbons interweaved in a diagonally overlapping pattern. -
FIG. 12A illustrates a further embodiment of aflexible connection unit 36 having tworigid end portions 9′ and an exemplary number ofrigid spacers 37. In one embodiment, therigid end portions 9′ and spacers can be made of bio-compatible metal or metal-hybrid materials as discussed above. Theconnection unit 36 further includes aflexible wire 32, as discussed above with respect toFIG. 9 ′, which traverses an axial cavity or hole (not shown) in each of therigid end portions 9′ andspacers 37.FIG. 12B illustrates an exploded view of theconnection unit 36 that further shows how thewire 32 is inserted through center axis holes of therigid end portions 9′ andspacers 37. As further shown inFIG. 12B , each of theend portions 9′ andspacers 37 include a male interlockingmember 38 which is configured to mate with a female interlocking cavity (not shown) in the immediatelyadjacent end portion 9′ orspacer 37.FIG. 12C illustrates an exploded side view and indicates with dashed lines the location and configuration of the female interlockingcavity 39 for receiving corresponding male interlockingmembers 38. -
FIG. 13 shows a perspective view of aflexible connection unit 40 in accordance with another embodiment of the invention. Theconnection 40 is similar to theconnection unit 36 described above, however, thespacers 42 are configured to have the same shape and design as therigid end portions 9′. Additionally, theend portions 9′ have an exit hole or groove 44 located on a lateral side surface through which thewire 32 may exit, be pulled taut, and clamped or secured using a metal clip (not shown) or other known techniques. In this way, the length of theflexible connection unit wire 32 may be secured using a metallic clip or stopper (not shown). For example, a clip or stopper may include a small tubular cylinder having an inner diameter that is slightly larger than the diameter of thewire 32 to allow thewire 32 to pass therethrough. After thewire 32 is pulled to a desired tension through the tubular stopper, the stopper is compressed so as to pinch thewire 32 contained therein. Alternatively, thewire 32 may be pre-secured using known techniques during the manufacture of the rod-like connection units spacers -
FIG. 14 depicts a spinal fixation device according to another embodiment of the present invention. The spinal fixation device includes: at least two securingmembers 2 containing an elongatescrew type shaft 10 having anexternal spiral thread 12, and acoupling assembly 14. The device further includes aplate connection unit 50, or simply “plate 50,” configured to be securely connected to thecoupling parts 14 of the two securingmembers 2. Theplate 50 comprises tworigid connection members 51 each having a planar surface and joined to each other by a flexiblemiddle portion 8. The flexiblemiddle portion 8 may be made in accordance with any of the embodiments described above with respect toFIGS. 4-11 . Eachconnection member 51 contains acoupling hole 52 configured to receive therethrough a second threaded shaft 54 (FIG. 15 ) of thecoupling assembly 14. - As shown in
FIG. 15 , thecoupling assembly 14 of the securingmember 2 includes abolt head 56 adjoining the top of the first threadedshaft 10 and having a circumference or diameter greater than the circumference of the first threadedshaft 10. The second threadedshaft 54 extends upwardly from thebolt head 56. Thecoupling assembly 14 further includes anut 58 having an internal screw thread configured to mate with the second threadedshaft 54, and one ormore washers 60, for clamping theconnection member 51 against the top surface of thebolt head 56, thereby securely attaching theplate 50 to thepedicle screw 2. -
FIGS. 16A and 16B illustrate two embodiments of aplate connection unit 40 having at least twocoupling members 51 and at least oneflexible portion 8 interposed between and attached to twoadjacent connection members 51. As shown inFIGS. 16A and 16B , the flexiblemiddle portion 8 comprises a flexible metalbraided wire structure 36 as described above with respect toFIG. 11 . However, theflexible portion 8 can be designed and manufactured in accordance with any of the embodiments described above with respect toFIGS. 4-11 , or combinations thereof.FIGS. 16C and 16D illustrate a side view and top view, respectively, of theplate 50 ofFIG. 16A . The manufacture of different embodiments of theflexible connection units middle portions 8, as described above, is easily accomplished using known metallurgy manufacturing processes. -
FIG. 16E illustrate a side view of a pre-bentplate connection unit 50′, in accordance with a further embodiment of the invention. Thisplate connection unit 50′ is similar to theplate 50 except thatconnection members 51′ are formed or bent at an angle θ from aparallel plane 53 during manufacture of theplate connection unit 50′. As discussed above with respect to the pre-bent rod-like connection unit 4 ofFIG. 7 , this pre-bent configuration is designed to emulate and support a natural curvature of the spine (e.g., lordosis). Additionally, or alternatively, this pre-bent structure may offset a skew angle when two adjacent pedicle screws are not inserted parallel to one another, as described in further detail below with respect toFIG. 23A . -
FIG. 17 illustrates a perspective view of aplate connection unit 60 having twoplanar connection members 62 each having acoupling hole 64 therein for receiving the second threadedshaft 44 of thepedicle screw 2. A flexiblemiddle portion 8 is interposed between the twoconnection members 62 and attached thereto. In one embodiment, the flexiblemiddle portion 8 is made in a similar fashion to wire 32 described above with respect toFIG. 9 , except it has a rectangular configuration instead of a cylindrical or circular configuration as shown inFIG. 9 . It is understood, however, that the flexiblemiddle portion 8 may be made in accordance with the design and materials of any of the embodiments previously discussed. -
FIG. 18 illustrates a perspective view of a further embodiment of theplate 60 ofFIG. 17 wherein thecoupling hole 64 includes one or morenut guide grooves 66 cut into the top portion of theconnection member 62 to seat and fix the nut 58 (FIG. 15 ) into thecoupling hole 64. Thenut guide groove 66 is configured to receive and hold at least a portion of thenut 58 therein and prevent lateral sliding of thenut 58 within thecoupling hole 64 after theconnection member 62 has been clamped to thebolt head 56 of thepedicle screw 2. -
FIG. 19 illustrates a perspective view of a hybrid plate androd connection unit 70 having a rigid rod-like connection member FIGS. 4-7 , at one end of theconnection unit 70 and a plate-like connection member FIGS. 14-18 , at the other end of theconnection unit 70. In one embodiment, interposed between rod-like connection member 9 (9′) and the plate-like connection member 52 (64) is aflexible member 8. Theflexible member 8 may be designed and manufactured in accordance with any of the embodiments discussed above with reference toFIGS. 8-13 . -
FIG. 20 illustrates a perspective view of a spinal fixation device that utilizes the hybrid plate androd connection unit 70 ofFIG. 19 . As shown inFIG. 20 , this fixation device utilizes two types of securing members 2 (e.g., pedicle screws), the first securingmember 2′ being configured to securely hold the plate connection member 42(64) as described above with respect toFIG. 15 , and the second securingmember 2″ being configured to securely hold therod connection member FIG. 3 . -
FIG. 21 illustrates a perspective top view of two spinal fixation devices, in accordance with the embodiment illustrated inFIG. 1 , after they are attached to twoadjacent vertebrae FIGS. 22A and 22B illustrate perspective top views of spinal fixation devices using the flexible stabilizingmembers FIGS. 16A and 16B , respectively, after they are attached to two or more adjacent vertebrae of the spine. -
FIG. 23A illustrates a side view of a spinal fixation device after it has been implanted into the pedicles of two adjacent vertebrae. As shown in this figure, the pedicle screws 2 are mounted into the pedicle bone such that acenter axis 80 of thescrews 2 are offset by an angle θfrom aparallel plane 82 and the center axes 80 of the twoscrews 2 are offset by an angle of approximately 2θ from each other. This type of non-parallel insertion of the pedicle screws 2 often results due to the limited amount of space that is available when performing minimally invasive surgery. Additionally, the pedicle screws 2 may have a tendency to be skewed from parallel due to a patient's natural curvature of the spine (e.g., lordosis). Thus, due to the non-parallel nature of how the pedicle screws 2 are ultimately fixed to the spinal pedicle, it is desirable to offset this skew when attaching a rod or plate connection unit to each of the pedicle screws 2. -
FIG. 23B illustrates a side view of the head of the pedicle screw in accordance with one embodiment of the invention. Thescrew 2 includes acylindrical head 84 which is similar to thecylindrical head 16 described above with respect toFIG. 3 except that thecylindrical head 84 includes a slantedseat 86 configured to receive and hold aflexible rod 4 in a slanted orientation that offsets the slant or skew θ of thepedicle screw 2 as described above. Theimproved pedicle screw 2 further includes a slanted stabilizingspacer 88 which is configured to securely fit inside the cavity of thecylindrical head 84 and hold down therod 4 at the same slant as theslanted seat 86. Thepedicle screw 2 further includes an outside threadednut 22 configured to mate with spiral threads along the interior surface (not shown) of thecylindrical head 84 for clamping down and securing the slantedspacer 88 and therod 4 to the slantedseat 86 and, hence, to thecylindrical head 84 of thepedicle screw 2. -
FIG. 23C shows a perspective view of the slantedspacer 88, in accordance with embodiment of the invention. Thespacer 88 includes a circularmiddle portion 90 and two rectangular-shapedend portions 92 extending outwardly from opposite sides of the circularmiddle portion 90.FIG. 23D shows a side view of thespacer 88 that further illustrates the slant from one end to another to compensate or offset the skew angle θ of thepedicle screw 2.FIG. 23E illustrates a top view of thecylindrical head 84 configured to receive arod 4 and slantedspacer 88 therein. Therod 4 is received through two openings orslots 94 in the cylindrical walls of thecylindrical head 84, which allow therod 4 to enter the circular orcylindrical cavity 96 of thecylindrical head 84 and rest on top of the slantedseat 86 formed within the circular orcylindrical cavity 94. - After the
rod 4 is positioned on the slantedseat 86, the slanted stabilizingspacer 88 is received in thecavity 96 such that the two rectangular-shapedend portions 92 are received within the twoslots 94, thereby preventing lateral rotation of thespacer 88 within thecylindrical cavity 96. Finally, the outside threadednut 22 and fixingcap 26 are inserted on top of the slantedspacer 88 to securely hold thespacer 88 androd 4 within thecylindrical head 84. -
FIG. 24 illustrates a perspective view of a marking andguidance device 100 for marking a desired location on the spinal pedicle where apedicle screw 2 will be inserted and guiding thepedicle screw 2 to the marked location using a minimally invasive surgical technique. As shown inFIG. 24 , the markingdevice 100 includes a tubularhollow guider 52 which receives within its hollow aninner trocar 104 having asharp tip 105 at one end that penetrates a patient's muscle and tissue to reach the spinal pedicle. theinner trocar 104 further includes atrocar grip 106 at the other end for easy insertion and removal of thetrocar 104. In one embodiment, the marking andguidance device 100 includes aguider handle 108 to allow for easier handling of thedevice 100. - As shown in
FIG. 25 , thetrocar 104 is in the form of a long tube or cylinder having a diameter smaller than the inner diameter of the hollow of theguider 102 so as to be inserted into the hollow of thetubular guider 102. Thetrocar 104 further includes a sharp orpointed tip 105 for penetrating the vertebral body through the pedicle. Thetrocar 104 further includes atrocar grip 106 having a diameter larger than the diameter of the hollow of theguider tube 102 in order to stop thetrocar 104 from sliding completely through the hollow. Thetrocar grip 106 also allows for easier handling of thetrocar 104. -
FIGS. 26A and 26B provide perspective views of the marking andguidance device 100 after it has been inserted into a patient's back and pushed through the muscle and soft tissue to reach a desired location on the spinal pedicle. The desired location is determined using known techniques such as x-ray or radiographic imaging for a relatively short duration of time. After the marking andguidance device 100 has been inserted, prolonged exposure of the patient to x-ray radiation is unnecessary. As shown inFIG. 26B , after theguidance tube 102 is positioned over the desired location on the pedicle, theinner trocar 104 is removed to allow fiducial pins (not shown) to be inserted into the hollow of theguidance tube 102 and thereafter be fixed into the pedicle. -
FIGS. 27A and 27B illustrate perspective views of two embodiments of thefiducial pins fiducial pins hollow guider 102. Thepins guider tube 102 in order to pass through the hollow of theguider 102. An end of each fiducial pin is a sharp point 111 configured to be easily inserted and fixed into the spinal pedicle of the spinal column. In one embodiment, as shown inFIG. 27B , the other end of the fiducial pin incorporates a threaded shaft 114 which is configured to mate with an internally threaded tube of a retriever (not shown) for extraction of thepin 112. This retriever is described in further detail below with respect toFIG. 32 . - The
fiducial pins fiducial pins fiducial pins -
FIG. 28 shows a cylindrical pushingtrocar 116 having acylindrical head 118 of larger diameter than the body of the pushingtrocar 116. The pushingtrocar 116, according to the present invention, is inserted into the hollow of theguider 102 after thefiducial pin guider 102 to drive and fix thefiducial pin trocar head 118 with a chisel or a hammer to drive thefiducial pin trocar 116 is in the form of a cylindrical tube, which has a diameter smaller than the inner diameter of the hollow of theguider tube 112. The pushingtrocar 116 also includes acylindrical head 118 having a diameter larger than the diameter of the pushingtrocar 116 to allow the doctor to strike it with a chisel or hammer with greater ease. Of course, in alternative embodiments, a hammer or chisel is not necessarily required. For example, depending on the circumstances of each case, a surgeon may choose to push or tap thehead 118 of the pushingtrocar 116 with the palm of his or her hand or other object. -
FIG. 29A illustrates how a hammer ormallet 120 and the pushingtrocar 116 may be used to drive thepin guider tube 102 and into the designated location of the spinal pedicle.FIG. 29B illustrates a perspective cross-sectional view of the spinal column after twofiducial pins - After the
fiducial pins pin pedicle screw 2 into the pedicle bone. The larger hole is created using a cannulatedawl 122 as shown inFIG. 30 . The cannulatedawl 122 is inserted over thefiducial pin awl 122 is in the form of a cylindrical hollow tube wherein an internal diameter of the hollow is larger than the outer diameter of thefiducial pins pins awl 122. Theawl 122 further includes one or moresharp teeth 124 at a first end for cutting and grinding tissue and bone so as to create the larger entry point centered around thefiducial pin pedicle screw 2 may be more easily implanted into the spinal pedicle.FIG. 31 illustrates a perspective cross-sectional view of a patient's spinal column when the cannulatedawl 122 is inserted into a minimally invasive incision in the patient's back, over afiducial pin FIG. 31 , aretractor 130 has been inserted into the minimally invasive incision over the surgical area and a lower tubular body of theretractor 130 is expanded to outwardly push surrounding tissue away from the surgical area and provide more space and a visual field for the surgeon to operate. In order to insert theretractor 130, in one embodiment, the minimally invasive incision is made in the patient's back between and connecting the two entry points of theguide tube 102 used to insert the twofiducial pins retractor 130 is inserted, prior expansion of the minimally invasive incision is typically required using a series of step dilators (not shown), each subsequent dilator having a larger diameter than the previous dilator. After the last step dilator is in place, theretractor 130 is inserted with its lower tubular body in a retracted, non-expanded state. After theretractor 130 is pushed toward the spinal pedicle to a desired depth, the lower tubular portion is then expanded as shown inFIG. 31 . The use of step dilators and retractors are well known in the art. - After the cannulated
awl 122 has created a larger insertion hole for thepedicle screw 2, in one embodiment, thefiducial pin fiducial pin 112 has been used, a retrievingdevice 140 may be used to remove thefiducial pin 112 before implantation of apedicle screw 2. As shown inFIG. 32 , theretriever 140 comprises a long tubular or cylindrical portion having an internally threadedend 142 configured to mate with the externally threaded top portion 114 of thefiducial pin 112. After theretriever end 142 has been screwed onto the threaded end 114, a doctor my pull thefiducial pin 112 out of the spinal pedicle. In another embodiment, if thefiducial pin 110 without a threaded top portion has been used, appropriate tools (e.g., specially designed needle nose pliers) may be used to pull thepin 110 out. - In alternate embodiments, the
fiducial pins pedicle screw 144 may be inserted into the spinal pedicle over thepin pin FIG. 33 , the specially designedpedicle screw 144 includes an externally threadedshaft 10 and a coupling assembly 14 (FIG. 3 ) that includes a cylindrical head 16 (FIG. 3 ) for receiving a flexible rod-shaped connection unit 4 (FIGS. 4-13 ). Alternatively, thecoupling assembly 14 may be configured to receive a plate-like connection unit as shown inFIGS. 14-20 . Thepedicle screw 144 further includes a longitudinal axial channel (not shown) inside the threadedshaft 10 having anopening 146 at the tip of theshaft 10 and configured to receive thefiducial pin -
FIG. 34 illustrates a perspective cross-sectional view of the patient's spinal column after apedicle screw 2 has been inserted into a first pedicle of the spine using aninsertion device 150. Various types ofinsertion devices 150 known in the art may be used to insert thepedicle screw 2. As shown inFIG. 34 , after afirst pedicle screw 2 has been implanted, theretractor 130 is adjusted and moved slightly to provide space and a visual field for insertion of a second pedicle screw at the location of the secondfiducial pin -
FIG. 35 provides a perspective, cross sectional view of the patient's spinal column after twopedicle screws 2 have been implanted in two respective adjacent pedicles of the spine, in accordance with the present invention. After the pedicle screws 2 are in place, a flexible rod, plate or hybrid connection unit as described above with respect toFIGS. 4-20 may be connected to the pedicle screws to provide flexible stabilization of the spine. Thereafter, theretractor 130 is removed and the minimally invasive incision is closed and/or stitched. -
FIG. 36A illustrates a perspective view of aflexible rod 200 for spinal fixation, in accordance with a further embodiment of the invention. Therod 200 is configured to be secured by securingmembers 2 as described above with reference toFIGS. 1-3 . In preferred embodiments, therod 200, androds FIG. 36A ,spiral grooves 202 are cut or formed along at least a portion of the length of the cylindrical body of therod 200. In an exemplary embodiment, the length of the rod “l” may be between 4 and 8 centimeters (cm), and its cylindrical diameter “D” is between 4-8 millimeters (mm). Thespiral grooves 202 have a width “w” between 0.1 and 0.5 mm and a spiral angle θ between 50 and 85 degrees from horizontal. The distance betweenspiral grooves 202 can be between 3 and 6 mm. However, as understood by those skilled in the art, the above dimensions are exemplary only and may be varied to achieve desired flexibility, torsion and strength characteristics that are suitable for a particular patient or application. -
FIG. 36B illustrates a cross-sectional view of theflexible rod 200, taken along lines B-B ofFIG. 36A . As shown,spiral groove 202 is cut toward the center longitudinal axis of thecylindrical rod 200. In one embodiment, the depth of thegroove 202 is approximately equal to the cylindrical radius of therod 200, as shown inFIG. 36B , and penetrates as deep as the center longitudinal axis of thecylindrical rod 200. However, the depth and width of thegroove 202 can be varied to adjust the mechanical and structural characteristics of therod 200 as desired. -
FIG. 37A illustrates a flexible rod 210 for spinal fixation in accordance with another embodiment of the invention. The rod 210 includes a plurality of transverse holes ortunnels 212 drilled or formed within the body of the rod 210. In one embodiment, thetunnels 212 pass through a center longitudinal axis of the cylindrical rod 210 at an angle Φ from horizontal. The openings for eachrespective tunnel 212 are located on opposite sides of the cylindrical wall of the rod 210 andadjacent tunnels 212 share a common opening on one side of the cylindrical wall, forming a zigzag pattern ofinterior tunnels 212 passing transversely through the central longitudinal axis of the rod 210, as shown inFIG. 37A . In one embodiment, the diameter D of eachtunnel 212 may be varied between 0.2 to 3 mm, depending the desired mechanical and structural characteristics (e.g., flexibility, torsion and strength) of the rod 210. However, it is understood that these dimensions are exemplary and other diameters D may be desired depending on the materials used and the desired structural and mechanical characteristics. Similarly, the angle from horizontal Φ may be varied to change the number oftunnels 212 or the distance betweenadjacent tunnels 212. -
FIG. 37B illustrates a cross-sectional view of the flexible rod 210 taken along lines B-B ofFIG. 37A . Thetunnel 212 cuts through the center cylindrical axis of the rod 210 such that openings of thetunnel 212 are formed at opposite sides of the cylindrical wall of the rod 210. -
FIG. 38A illustrates a perspective view of aflexible rod 220 for spinal fixation, in accordance with a further embodiment of the invention.Rod 220 incorporates thespiral grooves 202 described above with reference toFIGS. 36A and 36B as well as thetransverse tunnels 212 described above with respect toFIGS. 37A and 37B . Thespiral grooves 202 are cut into the surface of the cylindrical wall of therod 220 toward a center longitudinal axis of therod 220. As discussed above, the dimensions of thespiral grooves 202 and their angle from horizontal θ (FIG. 36A ) may be varied in accordance with desired mechanical and structural characteristics. Similarly, the dimensions of thetransverse tunnels 212 and their angle from horizontal Φ (FIG. 37A ) may be varied in accordance with desired mechanical and structural characteristics. In one embodiment, the angles θ and Φ are substantially similar such that the openings of thetunnels 212 substantially coincide with thespiral grooves 202 on opposite sides of the cylindrical wall of therod 220. -
FIG. 38B shows a top view of theflexible rod 220 taken along the perspective indicated by lines B-B ofFIG. 38A . As shown inFIG. 38B , the openings of thetunnels 212 coincide with thespiral grooves 202. By providing bothspiral grooves 202 andtransverse tunnels 212 within asolid rod 220, many desired mechanical and structural characteristics that are suitable for different patients, applications and levels of spinal fixation may be achieved. -
FIG. 39A illustrates aflexible rod 230 for spinal fixation, in accordance with another embodiment of the invention. Therod 230 includes a plurality oftransverse tunnels 232 formed in the body of therod 230. Thetunnels 232 are substantially similar to thetunnels 212 described above with respect toFIGS. 37A and 37B , however, thetunnels 232 are not linked together in a zigzag pattern. Rather, eachtunnel 232 is substantially parallel to its immediateadjacent tunnels 232 and the openings of onetunnel 232 do not coincide with the openings ofadjacent tunnels 232. As shown inFIG. 39A , the angle from horizontal Φ in this embodiment is approximately 90 degrees. However, it is understood that other angles Φ may be incorporated in accordance with the present invention. It is further understood that the dimensions, size and shape of the tunnels 232 (as well as tunnels 212) may be varied to achieve desired mechanical and structural characteristics. For example, the cross-sectional shape of thetunnels -
FIG. 39B illustrates a cross-sectional view of therod 230 taken along lines B-B ofFIG. 39A . As shown inFIG. 39B , thetransverse tunnel 232 travels vertically and transversely through the center longitudinal axis of therod 230.FIG. 39C illustrates a cross-sectional view of a further embodiment of therod 230, wherein an additionaltransverse tunnel 232′ is formed substantially orthogonal to the firsttransverse tunnel 232 and intersects the firsttransverse tunnel 232 at the center, cylindrical axis point. In this way, further flexibility of therod 230 may be provided as desired. -
FIG. 40A illustrates a perspective view of aflexible rod 240, in accordance with a further embodiment of the invention. Therod 240 includes a plurality of interleavedtransverse tunnels FIG. 40A . In another embodiment, a cross-sectional view of which is shown inFIG. 40B ,adjacent tunnels tunnel adjacent tunnel - Various embodiments of the invention have been described above. However, those of ordinary skill in the art will appreciate that the above descriptions of the preferred embodiments are exemplary only and that the invention may be practiced with modifications or variations of the devices and techniques disclosed above. Those of ordinary skill in the art will know, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such modifications, variations and equivalents are contemplated to be within the spirit and scope of the present invention as set forth in the claims below.
Claims (29)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/997,165 US20050149020A1 (en) | 2003-12-05 | 2004-11-24 | Method and apparatus for flexible fixation of a spine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/728,566 US20050065516A1 (en) | 2003-09-24 | 2003-12-05 | Method and apparatus for flexible fixation of a spine |
US10/798,014 US7763052B2 (en) | 2003-12-05 | 2004-03-10 | Method and apparatus for flexible fixation of a spine |
US10/997,165 US20050149020A1 (en) | 2003-12-05 | 2004-11-24 | Method and apparatus for flexible fixation of a spine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/798,014 Continuation-In-Part US7763052B2 (en) | 2003-09-24 | 2004-03-10 | Method and apparatus for flexible fixation of a spine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050149020A1 true US20050149020A1 (en) | 2005-07-07 |
Family
ID=37178693
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/798,014 Active 2024-12-22 US7763052B2 (en) | 2003-09-24 | 2004-03-10 | Method and apparatus for flexible fixation of a spine |
US10/997,165 Abandoned US20050149020A1 (en) | 2003-12-05 | 2004-11-24 | Method and apparatus for flexible fixation of a spine |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/798,014 Active 2024-12-22 US7763052B2 (en) | 2003-09-24 | 2004-03-10 | Method and apparatus for flexible fixation of a spine |
Country Status (2)
Country | Link |
---|---|
US (2) | US7763052B2 (en) |
KR (3) | KR100550262B1 (en) |
Cited By (167)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040143264A1 (en) * | 2002-08-23 | 2004-07-22 | Mcafee Paul C. | Metal-backed UHMWPE rod sleeve system preserving spinal motion |
US20050261686A1 (en) * | 2004-05-14 | 2005-11-24 | Paul Kamaljit S | Spinal support, stabilization |
US20060111715A1 (en) * | 2004-02-27 | 2006-05-25 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
US20060212033A1 (en) * | 2005-03-03 | 2006-09-21 | Accin Corporation | Vertebral stabilization using flexible rods |
US20060229607A1 (en) * | 2005-03-16 | 2006-10-12 | Sdgi Holdings, Inc. | Systems, kits and methods for treatment of the spinal column using elongate support members |
US20060229612A1 (en) * | 2005-03-03 | 2006-10-12 | Accin Corporation | Methods and apparatus for vertebral stabilization using sleeved springs |
US20060282080A1 (en) * | 2005-06-08 | 2006-12-14 | Accin Corporation | Vertebral facet stabilizer |
US20070093814A1 (en) * | 2005-10-11 | 2007-04-26 | Callahan Ronald Ii | Dynamic spinal stabilization systems |
US20070191953A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Intervertebral implants and methods of use |
US20070233064A1 (en) * | 2006-02-17 | 2007-10-04 | Holt Development L.L.C. | Apparatus and method for flexible spinal fixation |
US20070270821A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Vertebral stabilizer |
US20070288011A1 (en) * | 2006-04-18 | 2007-12-13 | Joseph Nicholas Logan | Spinal Rod System |
US20080051787A1 (en) * | 2006-08-22 | 2008-02-28 | Neuropro Technologies, Inc. | Percutaneous system for dynamic spinal stabilization |
US20080065079A1 (en) * | 2006-09-11 | 2008-03-13 | Aurelien Bruneau | Spinal Stabilization Devices and Methods of Use |
US20080077141A1 (en) * | 2006-09-26 | 2008-03-27 | Bray Robert S | Cervical dynamic stabilization system |
US20080077143A1 (en) * | 2006-09-25 | 2008-03-27 | Zimmer Spine, Inc. | Apparatus for connecting a longitudinal member to a bone portion |
US20080086127A1 (en) * | 2006-08-31 | 2008-04-10 | Warsaw Orthopedic, Inc. | Polymer Rods For Spinal Applications |
US20080097431A1 (en) * | 2006-09-22 | 2008-04-24 | Paul Peter Vessa | Flexible spinal stabilization |
US20080177388A1 (en) * | 2007-01-18 | 2008-07-24 | Warsaw Orthopedic, Inc. | Variable Stiffness Support Members |
US20080177318A1 (en) * | 2007-01-18 | 2008-07-24 | Warsaw Orthopedic, Inc. | Vertebral Stabilizer |
EP1970018A2 (en) * | 2007-03-16 | 2008-09-17 | Zimmer Spine, Inc. | Dynamic spinal stabilization systems |
US20080234736A1 (en) * | 2007-02-28 | 2008-09-25 | Warsaw Orthopedic, Inc. | Vertebral Stabilizer |
US20080269804A1 (en) * | 2006-02-17 | 2008-10-30 | Holt Development L.L.C. | Apparatus and method for flexible spinal fixation |
WO2008134703A3 (en) * | 2007-04-30 | 2009-01-08 | Globus Medical Inc | Flexible spine stabilization system |
US20090082815A1 (en) * | 2007-09-20 | 2009-03-26 | Zimmer Gmbh | Spinal stabilization system with transition member |
US20090088782A1 (en) * | 2007-09-28 | 2009-04-02 | Missoum Moumene | Flexible Spinal Rod With Elastomeric Jacket |
US20090287251A1 (en) * | 2008-05-13 | 2009-11-19 | Stryker Spine | Composite spinal rod |
US20100063548A1 (en) * | 2008-07-07 | 2010-03-11 | Depuy International Ltd | Spinal Correction Method Using Shape Memory Spinal Rod |
US7682376B2 (en) | 2006-01-27 | 2010-03-23 | Warsaw Orthopedic, Inc. | Interspinous devices and methods of use |
US20100087863A1 (en) * | 2008-09-04 | 2010-04-08 | Lutz Biedermann | Rod-shaped implant in particular for stabilizing the spinal column and stabilization device including such a rod-shaped implant |
US7708778B2 (en) | 2003-08-05 | 2010-05-04 | Flexuspine, Inc. | Expandable articulating intervertebral implant with cam |
US7766915B2 (en) | 2004-02-27 | 2010-08-03 | Jackson Roger P | Dynamic fixation assemblies with inner core and outer coil-like member |
US7785351B2 (en) | 2003-08-05 | 2010-08-31 | Flexuspine, Inc. | Artificial functional spinal implant unit system and method for use |
US7815663B2 (en) | 2006-01-27 | 2010-10-19 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US20100318130A1 (en) * | 2007-12-15 | 2010-12-16 | Parlato Brian D | Flexible rod assembly for spinal fixation |
US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
US7909869B2 (en) | 2003-08-05 | 2011-03-22 | Flexuspine, Inc. | Artificial spinal unit assemblies |
US7935134B2 (en) | 2004-10-20 | 2011-05-03 | Exactech, Inc. | Systems and methods for stabilization of bone structures |
US7951170B2 (en) | 2007-05-31 | 2011-05-31 | Jackson Roger P | Dynamic stabilization connecting member with pre-tensioned solid core |
WO2011066231A1 (en) * | 2009-11-25 | 2011-06-03 | Seaspine, Inc. | Hybrid rod constructs for spinal applications |
US7959677B2 (en) | 2007-01-19 | 2011-06-14 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US7998175B2 (en) | 2004-10-20 | 2011-08-16 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8012177B2 (en) | 2007-02-12 | 2011-09-06 | Jackson Roger P | Dynamic stabilization assembly with frusto-conical connection |
US8012182B2 (en) | 2000-07-25 | 2011-09-06 | Zimmer Spine S.A.S. | Semi-rigid linking piece for stabilizing the spine |
US8025680B2 (en) | 2004-10-20 | 2011-09-27 | Exactech, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US20110238144A1 (en) * | 2010-03-25 | 2011-09-29 | Michael Hoey | Systems and Methods for Prostate Treatment |
US8029548B2 (en) | 2008-05-05 | 2011-10-04 | Warsaw Orthopedic, Inc. | Flexible spinal stabilization element and system |
US8066739B2 (en) | 2004-02-27 | 2011-11-29 | Jackson Roger P | Tool system for dynamic spinal implants |
US8092502B2 (en) | 2003-04-09 | 2012-01-10 | Jackson Roger P | Polyaxial bone screw with uploaded threaded shank and method of assembly and use |
US8092500B2 (en) | 2007-05-01 | 2012-01-10 | Jackson Roger P | Dynamic stabilization connecting member with floating core, compression spacer and over-mold |
US8096996B2 (en) | 2007-03-20 | 2012-01-17 | Exactech, Inc. | Rod reducer |
US8100915B2 (en) | 2004-02-27 | 2012-01-24 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US8105360B1 (en) | 2009-07-16 | 2012-01-31 | Orthonex LLC | Device for dynamic stabilization of the spine |
US8105368B2 (en) | 2005-09-30 | 2012-01-31 | Jackson Roger P | Dynamic stabilization connecting member with slitted core and outer sleeve |
US20120029564A1 (en) * | 2010-07-29 | 2012-02-02 | Warsaw Orthopedic, Inc. | Composite Rod for Spinal Implant Systems With Higher Modulus Core and Lower Modulus Polymeric Sleeve |
US8118869B2 (en) | 2006-03-08 | 2012-02-21 | Flexuspine, Inc. | Dynamic interbody device |
US8118840B2 (en) | 2009-02-27 | 2012-02-21 | Warsaw Orthopedic, Inc. | Vertebral rod and related method of manufacture |
US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
US8157844B2 (en) | 2007-10-22 | 2012-04-17 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8162994B2 (en) | 2007-10-22 | 2012-04-24 | Flexuspine, Inc. | Posterior stabilization system with isolated, dual dampener systems |
US20120109207A1 (en) * | 2010-10-29 | 2012-05-03 | Warsaw Orthopedic, Inc. | Enhanced Interfacial Conformance for a Composite Rod for Spinal Implant Systems with Higher Modulus Core and Lower Modulus Polymeric Sleeve |
US8182514B2 (en) | 2007-10-22 | 2012-05-22 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a fixed length elongated member |
US8187330B2 (en) | 2007-10-22 | 2012-05-29 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8226690B2 (en) | 2005-07-22 | 2012-07-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilization of bone structures |
US8252028B2 (en) | 2007-12-19 | 2012-08-28 | Depuy Spine, Inc. | Posterior dynamic stabilization device |
US8267969B2 (en) | 2004-10-20 | 2012-09-18 | Exactech, Inc. | Screw systems and methods for use in stabilization of bone structures |
US8267965B2 (en) | 2007-10-22 | 2012-09-18 | Flexuspine, Inc. | Spinal stabilization systems with dynamic interbody devices |
US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
US8348952B2 (en) | 2006-01-26 | 2013-01-08 | Depuy International Ltd. | System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery |
US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US8357181B2 (en) | 2005-10-27 | 2013-01-22 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of implanting same |
US8366745B2 (en) | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
US8414614B2 (en) | 2005-10-22 | 2013-04-09 | Depuy International Ltd | Implant kit for supporting a spinal column |
US8425563B2 (en) | 2006-01-13 | 2013-04-23 | Depuy International Ltd. | Spinal rod support kit |
US8430914B2 (en) | 2007-10-24 | 2013-04-30 | Depuy Spine, Inc. | Assembly for orthopaedic surgery |
US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US8475498B2 (en) * | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
US8523865B2 (en) | 2005-07-22 | 2013-09-03 | Exactech, Inc. | Tissue splitter |
US8523912B2 (en) | 2007-10-22 | 2013-09-03 | Flexuspine, Inc. | Posterior stabilization systems with shared, dual dampener systems |
US8545538B2 (en) | 2005-12-19 | 2013-10-01 | M. Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
WO2013152119A1 (en) * | 2012-04-03 | 2013-10-10 | Nxthera, Inc. | Induction coil vapor generator |
US8556938B2 (en) | 2009-06-15 | 2013-10-15 | Roger P. Jackson | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
US8585692B2 (en) | 2008-11-06 | 2013-11-19 | Nxthera, Inc. | Systems and methods for treatment of prostatic tissue |
US8591515B2 (en) | 2004-11-23 | 2013-11-26 | Roger P. Jackson | Spinal fixation tool set and method |
US8641734B2 (en) | 2009-02-13 | 2014-02-04 | DePuy Synthes Products, LLC | Dual spring posterior dynamic stabilization device with elongation limiting elastomers |
US8657856B2 (en) | 2009-08-28 | 2014-02-25 | Pioneer Surgical Technology, Inc. | Size transition spinal rod |
US8721566B2 (en) | 2010-11-12 | 2014-05-13 | Robert A. Connor | Spinal motion measurement device |
US8801702B2 (en) | 2008-11-06 | 2014-08-12 | Nxthera, Inc. | Systems and methods for treatment of BPH |
US8814913B2 (en) | 2002-09-06 | 2014-08-26 | Roger P Jackson | Helical guide and advancement flange with break-off extensions |
US8845649B2 (en) | 2004-09-24 | 2014-09-30 | Roger P. Jackson | Spinal fixation tool set and method for rod reduction and fastener insertion |
US8852239B2 (en) | 2013-02-15 | 2014-10-07 | Roger P Jackson | Sagittal angle screw with integral shank and receiver |
US8870928B2 (en) | 2002-09-06 | 2014-10-28 | Roger P. Jackson | Helical guide and advancement flange with radially loaded lip |
US8911477B2 (en) | 2007-10-23 | 2014-12-16 | Roger P. Jackson | Dynamic stabilization member with end plate support and cable core extension |
US8911478B2 (en) | 2012-11-21 | 2014-12-16 | Roger P. Jackson | Splay control closure for open bone anchor |
US8920473B2 (en) | 2006-12-10 | 2014-12-30 | Paradigm Spine, Llc | Posterior functionally dynamic stabilization system |
US8926670B2 (en) | 2003-06-18 | 2015-01-06 | Roger P. Jackson | Polyaxial bone screw assembly |
US8926672B2 (en) | 2004-11-10 | 2015-01-06 | Roger P. Jackson | Splay control closure for open bone anchor |
US8940051B2 (en) | 2011-03-25 | 2015-01-27 | Flexuspine, Inc. | Interbody device insertion systems and methods |
US8968366B2 (en) | 2003-09-24 | 2015-03-03 | DePuy Synthes Products, LLC | Method and apparatus for flexible fixation of a spine |
US8979900B2 (en) | 2003-09-24 | 2015-03-17 | DePuy Synthes Products, LLC | Spinal stabilization device |
US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
US8998960B2 (en) | 2004-11-10 | 2015-04-07 | Roger P. Jackson | Polyaxial bone screw with helically wound capture connection |
US8998959B2 (en) | 2009-06-15 | 2015-04-07 | Roger P Jackson | Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert |
US9011494B2 (en) | 2009-09-24 | 2015-04-21 | Warsaw Orthopedic, Inc. | Composite vertebral rod system and methods of use |
US9050148B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Spinal fixation tool attachment structure |
US9050139B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US9144444B2 (en) | 2003-06-18 | 2015-09-29 | Roger P Jackson | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
US9179940B2 (en) | 2005-12-06 | 2015-11-10 | Globus Medical, Inc. | System and method for replacement of spinal motion segment |
US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
US9232968B2 (en) | 2007-12-19 | 2016-01-12 | DePuy Synthes Products, Inc. | Polymeric pedicle rods and methods of manufacturing |
US9308027B2 (en) | 2005-05-27 | 2016-04-12 | Roger P Jackson | Polyaxial bone screw with shank articulation pressure insert and method |
US9320543B2 (en) | 2009-06-25 | 2016-04-26 | DePuy Synthes Products, Inc. | Posterior dynamic stabilization device having a mobile anchor |
US9414863B2 (en) | 2005-02-22 | 2016-08-16 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures |
US9445844B2 (en) | 2010-03-24 | 2016-09-20 | DePuy Synthes Products, Inc. | Composite material posterior dynamic stabilization spring rod |
US9451993B2 (en) | 2014-01-09 | 2016-09-27 | Roger P. Jackson | Bi-radial pop-on cervical bone anchor |
US9451989B2 (en) | 2007-01-18 | 2016-09-27 | Roger P Jackson | Dynamic stabilization members with elastic and inelastic sections |
US9480517B2 (en) | 2009-06-15 | 2016-11-01 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock |
US9492288B2 (en) | 2013-02-20 | 2016-11-15 | Flexuspine, Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
US9517144B2 (en) | 2014-04-24 | 2016-12-13 | Exactech, Inc. | Limited profile intervertebral implant with incorporated fastening mechanism |
US9522021B2 (en) | 2004-11-23 | 2016-12-20 | Roger P. Jackson | Polyaxial bone anchor with retainer with notch for mono-axial motion |
US9526627B2 (en) | 2011-11-17 | 2016-12-27 | Exactech, Inc. | Expandable interbody device system and method |
US9566092B2 (en) | 2013-10-29 | 2017-02-14 | Roger P. Jackson | Cervical bone anchor with collet retainer and outer locking sleeve |
US9597119B2 (en) | 2014-06-04 | 2017-03-21 | Roger P. Jackson | Polyaxial bone anchor with polymer sleeve |
US9636146B2 (en) | 2012-01-10 | 2017-05-02 | Roger P. Jackson | Multi-start closures for open implants |
US9668771B2 (en) | 2009-06-15 | 2017-06-06 | Roger P Jackson | Soft stabilization assemblies with off-set connector |
US9717533B2 (en) | 2013-12-12 | 2017-08-01 | Roger P. Jackson | Bone anchor closure pivot-splay control flange form guide and advancement structure |
US9833277B2 (en) | 2009-04-27 | 2017-12-05 | Nxthera, Inc. | Systems and methods for prostate treatment |
US9895185B2 (en) | 2011-09-13 | 2018-02-20 | Nxthera, Inc. | Systems and methods for prostate treatment |
US9907574B2 (en) | 2008-08-01 | 2018-03-06 | Roger P. Jackson | Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features |
US9968395B2 (en) | 2013-12-10 | 2018-05-15 | Nxthera, Inc. | Systems and methods for treating the prostate |
US9980753B2 (en) | 2009-06-15 | 2018-05-29 | Roger P Jackson | pivotal anchor with snap-in-place insert having rotation blocking extensions |
US10039578B2 (en) | 2003-12-16 | 2018-08-07 | DePuy Synthes Products, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US10058354B2 (en) | 2013-01-28 | 2018-08-28 | Roger P. Jackson | Pivotal bone anchor assembly with frictional shank head seating surfaces |
US10064658B2 (en) | 2014-06-04 | 2018-09-04 | Roger P. Jackson | Polyaxial bone anchor with insert guides |
US10194970B2 (en) | 2013-12-10 | 2019-02-05 | Nxthera, Inc. | Vapor ablation systems and methods |
US10194951B2 (en) | 2005-05-10 | 2019-02-05 | Roger P. Jackson | Polyaxial bone anchor with compound articulation and pop-on shank |
US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
US10299839B2 (en) | 2003-12-16 | 2019-05-28 | Medos International Sárl | Percutaneous access devices and bone anchor assemblies |
US10342593B2 (en) | 2015-01-29 | 2019-07-09 | Nxthera, Inc. | Vapor ablation systems and methods |
US10349983B2 (en) | 2003-05-22 | 2019-07-16 | Alphatec Spine, Inc. | Pivotal bone anchor assembly with biased bushing for pre-lock friction fit |
US10363070B2 (en) | 2009-06-15 | 2019-07-30 | Roger P. Jackson | Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers |
US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
US10398565B2 (en) | 2014-04-24 | 2019-09-03 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
US10543107B2 (en) | 2009-12-07 | 2020-01-28 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US10548740B1 (en) | 2016-10-25 | 2020-02-04 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10575961B1 (en) | 2011-09-23 | 2020-03-03 | Samy Abdou | Spinal fixation devices and methods of use |
US10610281B2 (en) | 2008-11-06 | 2020-04-07 | Boston Scientific Scimed, Inc. | Systems and methods for treatment of prostatic tissue |
US10695105B2 (en) | 2012-08-28 | 2020-06-30 | Samy Abdou | Spinal fixation devices and methods of use |
US10702327B2 (en) | 2015-05-13 | 2020-07-07 | Boston Scientific Scimed, Inc. | Systems and methods for treating the bladder with condensable vapor |
US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
US10751107B2 (en) | 2017-01-06 | 2020-08-25 | Boston Scientific Scimed, Inc. | Transperineal vapor ablation systems and methods |
US10758274B1 (en) | 2014-05-02 | 2020-09-01 | Nuvasive, Inc. | Spinal fixation constructs and related methods |
US10772670B2 (en) | 2013-03-14 | 2020-09-15 | Boston Scientific Scimed, Inc. | Systems and methods for treating prostate cancer |
US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
US10918498B2 (en) | 2004-11-24 | 2021-02-16 | Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US11006982B2 (en) | 2012-02-22 | 2021-05-18 | Samy Abdou | Spinous process fixation devices and methods of use |
US11173040B2 (en) | 2012-10-22 | 2021-11-16 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
US11224463B2 (en) | 2007-01-18 | 2022-01-18 | Roger P. Jackson | Dynamic stabilization connecting member with pre-tensioned flexible core member |
US11229457B2 (en) | 2009-06-15 | 2022-01-25 | Roger P. Jackson | Pivotal bone anchor assembly with insert tool deployment |
US11234745B2 (en) | 2005-07-14 | 2022-02-01 | Roger P. Jackson | Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert |
US11241261B2 (en) | 2005-09-30 | 2022-02-08 | Roger P Jackson | Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure |
US11246640B2 (en) | 2016-12-21 | 2022-02-15 | Boston Scientific Scimed, Inc. | Vapor ablation systems and methods |
US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
US11583318B2 (en) | 2018-12-21 | 2023-02-21 | Paradigm Spine, Llc | Modular spine stabilization system and associated instruments |
US11707298B2 (en) | 2005-09-30 | 2023-07-25 | Roger P. Jackson | Dynamic spinal stabilization assembly with elastic bumpers and locking limited travel closure mechanisms |
Families Citing this family (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2812186B1 (en) * | 2000-07-25 | 2003-02-28 | Spine Next Sa | FLEXIBLE CONNECTION PIECE FOR SPINAL STABILIZATION |
DE50106374D1 (en) * | 2000-09-18 | 2005-07-07 | Zimmer Gmbh Winterthur | Pedicle screw for intervertebral support elements |
US8002798B2 (en) | 2003-09-24 | 2011-08-23 | Stryker Spine | System and method for spinal implant placement |
US7955355B2 (en) | 2003-09-24 | 2011-06-07 | Stryker Spine | Methods and devices for improving percutaneous access in minimally invasive surgeries |
WO2006016371A2 (en) * | 2004-08-13 | 2006-02-16 | Mazor Surgical Technologies Ltd | Minimally invasive spinal fusion |
US20060052784A1 (en) * | 2004-08-17 | 2006-03-09 | Zimmer Spine, Inc. | Polyaxial device for spine stabilization during osteosynthesis |
US20060052786A1 (en) * | 2004-08-17 | 2006-03-09 | Zimmer Spine, Inc. | Polyaxial device for spine stabilization during osteosynthesis |
WO2006023671A1 (en) * | 2004-08-18 | 2006-03-02 | Archus Orthopedics, Inc. | Adjacent level facet arthroplasty devices, spine stabilization systems, and methods |
US20100241120A1 (en) * | 2004-10-04 | 2010-09-23 | Saint Louis University | Intramedullary nail device and method for repairing long bone |
EP1719468A1 (en) * | 2004-12-17 | 2006-11-08 | Zimmer GmbH | Intervertebral stabilization system |
US20060264935A1 (en) * | 2005-05-04 | 2006-11-23 | White Patrick M | Orthopedic stabilization device |
US20060264937A1 (en) * | 2005-05-04 | 2006-11-23 | White Patrick M | Mobile spine stabilization device |
US8177817B2 (en) * | 2005-05-18 | 2012-05-15 | Stryker Spine | System and method for orthopedic implant configuration |
US7828825B2 (en) * | 2005-06-20 | 2010-11-09 | Warsaw Orthopedic, Inc. | Multi-level multi-functional spinal stabilization systems and methods |
JP2009501571A (en) * | 2005-07-15 | 2009-01-22 | チルドレンズ ホスピタル メディカル センター | Spinal deformity correction from the dorsal side with minimal invasiveness |
KR101335475B1 (en) | 2005-08-24 | 2013-12-05 | 비이더만 테크놀로지스 게엠베하 & 코. 카게 | Rod-shaped Implant Element for the Application in Spine Surgery or Trauma Surgery and Stabilization Device with such a Rod-shaped Implant Element |
EP1757243B1 (en) | 2005-08-24 | 2008-05-28 | BIEDERMANN MOTECH GmbH | Rod-shaped implant element for the application in spine surgery or trauma surgery and stabilization device with such a rod-shaped implant element |
US7658739B2 (en) | 2005-09-27 | 2010-02-09 | Zimmer Spine, Inc. | Methods and apparatuses for stabilizing the spine through an access device |
WO2007061960A2 (en) * | 2005-11-18 | 2007-05-31 | Life Spine, Inc. | Dynamic spinal stabilization devices and systems |
US20070118119A1 (en) * | 2005-11-18 | 2007-05-24 | Zimmer Spine, Inc. | Methods and device for dynamic stabilization |
US20070173822A1 (en) * | 2006-01-13 | 2007-07-26 | Sdgi Holdings, Inc. | Use of a posterior dynamic stabilization system with an intradiscal device |
DE102006003374A1 (en) * | 2006-01-24 | 2007-07-26 | Biedermann Motech Gmbh | Connecting rod with outer flexible element |
US8894655B2 (en) | 2006-02-06 | 2014-11-25 | Stryker Spine | Rod contouring apparatus and method for percutaneous pedicle screw extension |
US20080058808A1 (en) | 2006-06-14 | 2008-03-06 | Spartek Medical, Inc. | Implant system and method to treat degenerative disorders of the spine |
US7947045B2 (en) * | 2006-10-06 | 2011-05-24 | Zimmer Spine, Inc. | Spinal stabilization system with flexible guides |
US20080177333A1 (en) * | 2006-10-24 | 2008-07-24 | Warsaw Orthopedic, Inc. | Adjustable jacking implant |
US8029544B2 (en) * | 2007-01-02 | 2011-10-04 | Zimmer Spine, Inc. | Spine stiffening device |
US8435268B2 (en) * | 2007-01-19 | 2013-05-07 | Reduction Technologies, Inc. | Systems, devices and methods for the correction of spinal deformities |
US9414861B2 (en) | 2007-02-09 | 2016-08-16 | Transcendental Spine, Llc | Dynamic stabilization device |
WO2008098201A2 (en) * | 2007-02-09 | 2008-08-14 | Altiva Corporation | Surgical connector |
US8057516B2 (en) | 2007-03-21 | 2011-11-15 | Zimmer Spine, Inc. | Spinal stabilization system with rigid and flexible elements |
US8052727B2 (en) | 2007-03-23 | 2011-11-08 | Zimmer Gmbh | System and method for insertion of flexible spinal stabilization element |
US7922725B2 (en) * | 2007-04-19 | 2011-04-12 | Zimmer Spine, Inc. | Method and associated instrumentation for installation of spinal dynamic stabilization system |
US8016832B2 (en) * | 2007-05-02 | 2011-09-13 | Zimmer Spine, Inc. | Installation systems for spinal stabilization system and related methods |
US8083772B2 (en) | 2007-06-05 | 2011-12-27 | Spartek Medical, Inc. | Dynamic spinal rod assembly and method for dynamic stabilization of the spine |
US8114134B2 (en) | 2007-06-05 | 2012-02-14 | Spartek Medical, Inc. | Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine |
US8012175B2 (en) | 2007-06-05 | 2011-09-06 | Spartek Medical, Inc. | Multi-directional deflection profile for a dynamic stabilization and motion preservation spinal implantation system and method |
US8048115B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Surgical tool and method for implantation of a dynamic bone anchor |
US8048121B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Spine implant with a defelction rod system anchored to a bone anchor and method |
WO2008151096A1 (en) | 2007-06-05 | 2008-12-11 | Spartek Medical, Inc. | A deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method |
US8092501B2 (en) | 2007-06-05 | 2012-01-10 | Spartek Medical, Inc. | Dynamic spinal rod and method for dynamic stabilization of the spine |
US8021396B2 (en) | 2007-06-05 | 2011-09-20 | Spartek Medical, Inc. | Configurable dynamic spinal rod and method for dynamic stabilization of the spine |
US8052722B2 (en) | 2007-06-05 | 2011-11-08 | Spartek Medical, Inc. | Dual deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method |
US8172879B2 (en) * | 2007-08-23 | 2012-05-08 | Life Spine, Inc. | Resilient spinal rod system with controllable angulation |
AU2008298938A1 (en) * | 2007-09-14 | 2009-03-19 | Synthes Gmbh | Interspinous spacer |
US20090099606A1 (en) * | 2007-10-16 | 2009-04-16 | Zimmer Spine Inc. | Flexible member with variable flexibility for providing dynamic stability to a spine |
US20090105755A1 (en) * | 2007-10-22 | 2009-04-23 | Warsaw Orthopedics, Inc. | Apparatus and method for connecting spinal fixation systems together |
US8043339B2 (en) * | 2007-10-24 | 2011-10-25 | Zimmer Spine, Inc. | Flexible member for use in a spinal column and method for making |
US8888850B2 (en) * | 2007-11-19 | 2014-11-18 | Linares Medical Devices, Llc | Combination spacer insert and support for providing inter-cervical vertebral support |
US20090131984A1 (en) * | 2007-11-19 | 2009-05-21 | Linares Miguel A | Spine support implant including inter vertebral insertable fluid ballastable insert and inter-vertebral web retaining harnesses |
US8758439B2 (en) | 2007-11-19 | 2014-06-24 | Linares Medical Devices, Llc | Spine support implant including inter vertebral insertable fluid ballastable insert and inter-vertebral web retaining harnesses |
US9277940B2 (en) * | 2008-02-05 | 2016-03-08 | Zimmer Spine, Inc. | System and method for insertion of flexible spinal stabilization element |
USD620109S1 (en) | 2008-02-05 | 2010-07-20 | Zimmer Spine, Inc. | Surgical installation tool |
US8057515B2 (en) | 2008-02-26 | 2011-11-15 | Spartek Medical, Inc. | Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine |
US8016861B2 (en) | 2008-02-26 | 2011-09-13 | Spartek Medical, Inc. | Versatile polyaxial connector assembly and method for dynamic stabilization of the spine |
US8097024B2 (en) | 2008-02-26 | 2012-01-17 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and method for stabilization of the spine |
US8333792B2 (en) | 2008-02-26 | 2012-12-18 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine |
US20100030224A1 (en) | 2008-02-26 | 2010-02-04 | Spartek Medical, Inc. | Surgical tool and method for connecting a dynamic bone anchor and dynamic vertical rod |
US8083775B2 (en) | 2008-02-26 | 2011-12-27 | Spartek Medical, Inc. | Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine |
US8337536B2 (en) | 2008-02-26 | 2012-12-25 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine |
US8267979B2 (en) | 2008-02-26 | 2012-09-18 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine |
US8211155B2 (en) | 2008-02-26 | 2012-07-03 | Spartek Medical, Inc. | Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine |
US20090248077A1 (en) * | 2008-03-31 | 2009-10-01 | Derrick William Johns | Hybrid dynamic stabilization |
EP2116205B1 (en) * | 2008-05-06 | 2010-12-29 | BIEDERMANN MOTECH GmbH | Rod-shaped implant, in particular for the dynamic stabilization of the spine |
US20100137908A1 (en) * | 2008-12-01 | 2010-06-03 | Zimmer Spine, Inc. | Dynamic Stabilization System Components Including Readily Visualized Polymeric Compositions |
US9055979B2 (en) * | 2008-12-03 | 2015-06-16 | Zimmer Gmbh | Cord for vertebral fixation having multiple stiffness phases |
EP2373236B1 (en) | 2008-12-17 | 2014-05-21 | Synthes GmbH | Posterior spine dynamic stabilizer |
US20100160968A1 (en) * | 2008-12-19 | 2010-06-24 | Abbott Spine Inc. | Systems and methods for pedicle screw-based spine stabilization using flexible bands |
US8137356B2 (en) * | 2008-12-29 | 2012-03-20 | Zimmer Spine, Inc. | Flexible guide for insertion of a vertebral stabilization system |
US20110009906A1 (en) * | 2009-07-13 | 2011-01-13 | Zimmer Spine, Inc. | Vertebral stabilization transition connector |
US8328849B2 (en) * | 2009-12-01 | 2012-12-11 | Zimmer Gmbh | Cord for vertebral stabilization system |
US8257397B2 (en) | 2009-12-02 | 2012-09-04 | Spartek Medical, Inc. | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
US8740945B2 (en) | 2010-04-07 | 2014-06-03 | Zimmer Spine, Inc. | Dynamic stabilization system using polyaxial screws |
US20110307015A1 (en) | 2010-06-10 | 2011-12-15 | Spartek Medical, Inc. | Adaptive spinal rod and methods for stabilization of the spine |
US8382803B2 (en) | 2010-08-30 | 2013-02-26 | Zimmer Gmbh | Vertebral stabilization transition connector |
KR101258822B1 (en) | 2011-08-25 | 2013-05-06 | 강경탁 | Dynamic Spinal Stabilization Device |
US8430916B1 (en) | 2012-02-07 | 2013-04-30 | Spartek Medical, Inc. | Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors |
US9827020B2 (en) | 2013-03-14 | 2017-11-28 | Stryker European Holdings I, Llc | Percutaneous spinal cross link system and method |
CA2846149C (en) | 2013-03-14 | 2018-03-20 | Stryker Spine | Systems and methods for percutaneous spinal fusion |
US9408716B1 (en) | 2013-12-06 | 2016-08-09 | Stryker European Holdings I, Llc | Percutaneous posterior spinal fusion implant construction and method |
US9744050B1 (en) | 2013-12-06 | 2017-08-29 | Stryker European Holdings I, Llc | Compression and distraction system for percutaneous posterior spinal fusion |
US10159579B1 (en) | 2013-12-06 | 2018-12-25 | Stryker European Holdings I, Llc | Tubular instruments for percutaneous posterior spinal fusion systems and methods |
US10588642B2 (en) * | 2014-05-15 | 2020-03-17 | Gauthier Biomedical, Inc. | Molding process and products formed thereby |
US10034690B2 (en) | 2014-12-09 | 2018-07-31 | John A. Heflin | Spine alignment system |
US10835384B2 (en) | 2016-09-13 | 2020-11-17 | Mayo Foundation For Medical Education And Research | Facet joint replacement devices |
CN106388921A (en) * | 2016-11-21 | 2017-02-15 | 上海市同仁医院 | Bolt tying rope instrument for scoliosis correction |
US11737793B2 (en) | 2017-10-20 | 2023-08-29 | Mayo Foundation For Medical Education And Research | Facet joint replacement devices |
KR102298523B1 (en) * | 2019-09-30 | 2021-09-03 | 황민석 | Rod for fixing the spine |
TWI830526B (en) * | 2022-01-03 | 2024-01-21 | 臺北醫學大學 | spine stabilization system |
Citations (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2379577A (en) * | 1943-01-25 | 1945-07-03 | Harry H Harsted | Foldable antenna |
US3635233A (en) * | 1970-03-19 | 1972-01-18 | Charles H Robertson | Collapsible cane and crutch construction |
US3669133A (en) * | 1971-06-08 | 1972-06-13 | Hycor Inc | Collapsible rod |
US4041939A (en) * | 1975-04-28 | 1977-08-16 | Downs Surgical Limited | Surgical implant spinal screw |
US4378712A (en) * | 1979-02-27 | 1983-04-05 | Nippon Cable System, Inc. | Control cable |
US4483562A (en) * | 1981-10-16 | 1984-11-20 | Arnold Schoolman | Locking flexible shaft device with live distal end attachment |
US4743260A (en) * | 1985-06-10 | 1988-05-10 | Burton Charles V | Method for a flexible stabilization system for a vertebral column |
US4932975A (en) * | 1989-10-16 | 1990-06-12 | Vanderbilt University | Vertebral prosthesis |
US4979531A (en) * | 1988-03-25 | 1990-12-25 | Toor John W | Tent pole and method of manufacture therefor |
US5029847A (en) * | 1989-08-07 | 1991-07-09 | Helen Ross | Foldable exercise stick |
US5030220A (en) * | 1990-03-29 | 1991-07-09 | Advanced Spine Fixation Systems Incorporated | Spine fixation system |
US5055104A (en) * | 1989-11-06 | 1991-10-08 | Surgical Dynamics, Inc. | Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach |
US5092867A (en) * | 1988-07-13 | 1992-03-03 | Harms Juergen | Correction and supporting apparatus, in particular for the spinal column |
US5133716A (en) * | 1990-11-07 | 1992-07-28 | Codespi Corporation | Device for correction of spinal deformities |
US5180393A (en) * | 1990-09-21 | 1993-01-19 | Polyclinique De Bourgogne & Les Hortensiad | Artificial ligament for the spine |
US5246442A (en) * | 1991-12-31 | 1993-09-21 | Danek Medical, Inc. | Spinal hook |
US5251611A (en) * | 1991-05-07 | 1993-10-12 | Zehel Wendell E | Method and apparatus for conducting exploratory procedures |
US5387213A (en) * | 1991-02-05 | 1995-02-07 | Safir S.A.R.L. | Osseous surgical implant particularly for an intervertebral stabilizer |
US5423816A (en) * | 1993-07-29 | 1995-06-13 | Lin; Chih I. | Intervertebral locking device |
US5540688A (en) * | 1991-05-30 | 1996-07-30 | Societe "Psi" | Intervertebral stabilization device incorporating dampers |
US5562660A (en) * | 1993-02-09 | 1996-10-08 | Plus Endoprothetik Ag | Apparatus for stiffening and/or correcting the vertebral column |
US5672175A (en) * | 1993-08-27 | 1997-09-30 | Martin; Jean Raymond | Dynamic implanted spinal orthosis and operative procedure for fitting |
US5688275A (en) * | 1996-02-09 | 1997-11-18 | Koros; Tibor | Spinal column rod fixation system |
USRE36221E (en) * | 1989-02-03 | 1999-06-01 | Breard; Francis Henri | Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column |
US5964767A (en) * | 1997-09-12 | 1999-10-12 | Tapia; Eduardo Armando | Hollow sealable device for temporary or permanent surgical placement through a bone to provide a passageway into a cavity or internal anatomic site in a mammal |
US6102912A (en) * | 1997-05-29 | 2000-08-15 | Sofamor S.N.C. | Vertebral rod of constant section for spinal osteosynthesis instrumentations |
US6187000B1 (en) * | 1998-08-20 | 2001-02-13 | Endius Incorporated | Cannula for receiving surgical instruments |
US6193720B1 (en) * | 1998-11-30 | 2001-02-27 | Depuy Orthopaedics, Inc. | Cervical spine stabilization method and system |
US6241730B1 (en) * | 1997-11-26 | 2001-06-05 | Scient'x (Societe A Responsabilite Limitee) | Intervertebral link device capable of axial and angular displacement |
US20010020169A1 (en) * | 1992-03-02 | 2001-09-06 | Peter Metz-Stavenhagen | Apparatus for bracing vertebrae |
US6290700B1 (en) * | 1997-07-31 | 2001-09-18 | Plus Endoprothetik Ag | Device for stiffening and/or correcting a vertebral column or such like |
US6296644B1 (en) * | 1998-08-26 | 2001-10-02 | Jean Saurat | Spinal instrumentation system with articulated modules |
US20010037111A1 (en) * | 2000-05-08 | 2001-11-01 | Dixon Robert A. | Method and apparatus for dynamized spinal stabilization |
US20010049559A1 (en) * | 2000-01-06 | 2001-12-06 | Ja Kyo Koo | Prosthetic cage for spine |
US20020010467A1 (en) * | 2000-07-22 | 2002-01-24 | Corin Spinal Systems Limited | Pedicle attachment assembly |
US20020035366A1 (en) * | 2000-09-18 | 2002-03-21 | Reto Walder | Pedicle screw for intervertebral support elements |
US20020049394A1 (en) * | 2000-08-25 | 2002-04-25 | The Cleveland Clinic Foundation | Apparatus and method for assessing loads on adjacent bones |
US20020055740A1 (en) * | 2000-11-08 | 2002-05-09 | The Cleveland Clinic Foundation | Method and apparatus for correcting spinal deformity |
US20020065557A1 (en) * | 2000-11-29 | 2002-05-30 | Goble E. Marlowe | Facet joint replacement |
US20020082600A1 (en) * | 2000-06-23 | 2002-06-27 | Shaolian Samuel M. | Formable orthopedic fixation system |
US20020087159A1 (en) * | 2000-12-29 | 2002-07-04 | James Thomas | Vertebral alignment system |
US20020095154A1 (en) * | 2000-04-04 | 2002-07-18 | Atkinson Robert E. | Devices and methods for the treatment of spinal disorders |
US20020099378A1 (en) * | 1994-03-28 | 2002-07-25 | Michelson Gary Karlin | Apparatus, instrumentation and method for spinal fixation |
US20020107570A1 (en) * | 2000-12-08 | 2002-08-08 | Sybert Daryl R. | Biocompatible osteogenic band for repair of spinal disorders |
US20020111628A1 (en) * | 2001-02-15 | 2002-08-15 | Ralph James D. | Polyaxial pedicle screw having a rotating locking element |
US20020111630A1 (en) * | 2001-02-15 | 2002-08-15 | Ralph James D. | Longitudinal plate assembly having an adjustable length |
US20020120270A1 (en) * | 2001-02-28 | 2002-08-29 | Hai Trieu | Flexible systems for spinal stabilization and fixation |
US20020123806A1 (en) * | 1999-10-22 | 2002-09-05 | Total Facet Technologies, Inc. | Facet arthroplasty devices and methods |
US20020123668A1 (en) * | 2001-01-29 | 2002-09-05 | Stephen Ritland | Retractor and method for spinal pedicle screw placement |
US20020123750A1 (en) * | 2001-02-28 | 2002-09-05 | Lukas Eisermann | Woven orthopedic implants |
US6447546B1 (en) * | 2000-08-11 | 2002-09-10 | Dale G. Bramlet | Apparatus and method for fusing opposing spinal vertebrae |
US20020138077A1 (en) * | 2001-03-26 | 2002-09-26 | Ferree Bret A. | Spinal alignment apparatus and methods |
US20020143401A1 (en) * | 2001-03-27 | 2002-10-03 | Michelson Gary K. | Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion |
US20020143329A1 (en) * | 2001-03-30 | 2002-10-03 | Serhan Hassan A. | Intervertebral connection system |
US6475220B1 (en) * | 1999-10-15 | 2002-11-05 | Whiteside Biomechanics, Inc. | Spinal cable system |
US6475242B1 (en) * | 1996-03-13 | 2002-11-05 | Dale G. Bramlet | Arthroplasty joint assembly |
US20020169450A1 (en) * | 2001-04-24 | 2002-11-14 | Co-Ligne Ag | Instrumentation for stabilizing certain vertebrae of the spine |
US20020183748A1 (en) * | 2001-01-05 | 2002-12-05 | Stryker Spine | Pedicle screw assembly and methods therefor |
US20030040746A1 (en) * | 2001-07-20 | 2003-02-27 | Mitchell Margaret E. | Spinal stabilization system and method |
US20030040797A1 (en) * | 2001-03-01 | 2003-02-27 | Fallin T. Wade | Prosthesis for the replacement of a posterior element of a vertebra |
US20030045875A1 (en) * | 2001-09-04 | 2003-03-06 | Bertranou Patrick P. | Spinal assembly plate |
US6530934B1 (en) * | 2000-06-06 | 2003-03-11 | Sarcos Lc | Embolic device composed of a linear sequence of miniature beads |
US20030055426A1 (en) * | 2001-09-14 | 2003-03-20 | John Carbone | Biased angulation bone fixation assembly |
US20030060823A1 (en) * | 2001-09-24 | 2003-03-27 | Bryan Donald W. | Pedicle screw spinal fixation device |
US20030073998A1 (en) * | 2000-08-01 | 2003-04-17 | Endius Incorporated | Method of securing vertebrae |
US20030083688A1 (en) * | 2001-10-30 | 2003-05-01 | Simonson Robert E. | Configured and sized cannula |
US20030083657A1 (en) * | 2001-10-30 | 2003-05-01 | Drewry Troy D. | Flexible spinal stabilization system and method |
US20030088251A1 (en) * | 2001-11-05 | 2003-05-08 | Braun John T | Devices and methods for the correction and treatment of spinal deformities |
US20030093078A1 (en) * | 2001-09-28 | 2003-05-15 | Stephen Ritland | Connection rod for screw or hook polyaxial system and method of use |
US6576018B1 (en) * | 2000-06-23 | 2003-06-10 | Edward S. Holt | Apparatus configuration and method for treating flatfoot |
US20030109880A1 (en) * | 2001-08-01 | 2003-06-12 | Showa Ika Kohgyo Co., Ltd. | Bone connector |
US6589246B1 (en) * | 2001-04-26 | 2003-07-08 | Poly-4 Medical, Inc. | Method of applying an active compressive force continuously across a fracture |
US20030171749A1 (en) * | 2000-07-25 | 2003-09-11 | Regis Le Couedic | Semirigid linking piece for stabilizing the spine |
US20030191470A1 (en) * | 2002-04-05 | 2003-10-09 | Stephen Ritland | Dynamic fixation device and method of use |
US20030191371A1 (en) * | 2002-04-05 | 2003-10-09 | Smith Maurice M. | Devices and methods for percutaneous tissue retraction and surgery |
US20030220643A1 (en) * | 2002-05-24 | 2003-11-27 | Ferree Bret A. | Devices to prevent spinal extension |
US20040002708A1 (en) * | 2002-05-08 | 2004-01-01 | Stephen Ritland | Dynamic fixation device and method of use |
US20040049190A1 (en) * | 2002-08-09 | 2004-03-11 | Biedermann Motech Gmbh | Dynamic stabilization device for bones, in particular for vertebrae |
US20040049819A1 (en) * | 2002-09-10 | 2004-03-11 | First Line Seeds, Ltd. | Soybean cultivar SN83544 |
US20040138661A1 (en) * | 2003-01-14 | 2004-07-15 | Bailey Kirk J. | Spinal fixation system |
US20040143264A1 (en) * | 2002-08-23 | 2004-07-22 | Mcafee Paul C. | Metal-backed UHMWPE rod sleeve system preserving spinal motion |
US20040147928A1 (en) * | 2002-10-30 | 2004-07-29 | Landry Michael E. | Spinal stabilization system using flexible members |
US20040215191A1 (en) * | 2003-04-25 | 2004-10-28 | Kitchen Michael S. | Spinal curvature correction device |
US20040236329A1 (en) * | 2003-05-02 | 2004-11-25 | Panjabi Manohar M. | Dynamic spine stabilizer |
US20040236328A1 (en) * | 2003-05-23 | 2004-11-25 | Paul David C. | Spine stabilization system |
US20050033299A1 (en) * | 2002-09-06 | 2005-02-10 | Shluzas Alan E. | Surgical instrument for moving a vertebra |
US20050033295A1 (en) * | 2003-08-08 | 2005-02-10 | Paul Wisnewski | Implants formed of shape memory polymeric material for spinal fixation |
US20050038432A1 (en) * | 2003-04-25 | 2005-02-17 | Shaolian Samuel M. | Articulating spinal fixation rod and system |
US20050085815A1 (en) * | 2003-10-17 | 2005-04-21 | Biedermann Motech Gmbh | Rod-shaped implant element for application in spine surgery or trauma surgery, stabilization apparatus comprising said rod-shaped implant element, and production method for the rod-shaped implant element |
US20050154390A1 (en) * | 2003-11-07 | 2005-07-14 | Lutz Biedermann | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
US20050171540A1 (en) * | 2004-01-30 | 2005-08-04 | Roy Lim | Instruments and methods for minimally invasive spinal stabilization |
US20050203519A1 (en) * | 2004-03-09 | 2005-09-15 | Jurgen Harms | Rod-like element for application in spinal or trauma surgery, and stabilization device with such a rod-like element |
US20060149238A1 (en) * | 2005-01-04 | 2006-07-06 | Sherman Michael C | Systems and methods for spinal stabilization with flexible elements |
Family Cites Families (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH628803A5 (en) | 1978-05-12 | 1982-03-31 | Sulzer Ag | Implant insertable between adjacent vertebrae |
US4369769A (en) * | 1980-06-13 | 1983-01-25 | Edwards Charles C | Spinal fixation device and method |
US4448191A (en) * | 1981-07-07 | 1984-05-15 | Rodnyansky Lazar I | Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature |
SE466732B (en) * | 1987-10-29 | 1992-03-30 | Atos Medical Ab | LED PROTES, INCLUDING A LED BODY BETWEEN ONE COUPLE OF TAPS FOR INSTALLATION |
DE8807485U1 (en) * | 1988-06-06 | 1989-08-10 | Mecron Medizinische Produkte Gmbh, 1000 Berlin | Intervertebral disc endoprosthesis |
US5024213A (en) * | 1989-02-08 | 1991-06-18 | Acromed Corporation | Connector for a corrective device |
US4960410A (en) * | 1989-03-31 | 1990-10-02 | Cordis Corporation | Flexible tubular member for catheter construction |
CH678803A5 (en) * | 1989-07-12 | 1991-11-15 | Sulzer Ag | |
DE4109941A1 (en) | 1991-03-26 | 1992-10-01 | Reljica Kostic Zlatko Dr | Flexible prosthesis for backbone - comprises flexible spring forming supporting element connected to two fixing elements attached to adjacent vertebrae |
CA2117088A1 (en) * | 1991-09-05 | 1993-03-18 | David R. Holmes | Flexible tubular device for use in medical applications |
FR2692952B1 (en) | 1992-06-25 | 1996-04-05 | Psi | IMPROVED SHOCK ABSORBER WITH MOVEMENT LIMIT. |
GB9217578D0 (en) * | 1992-08-19 | 1992-09-30 | Surgicarft Ltd | Surgical implants,etc |
US5814046A (en) | 1992-11-13 | 1998-09-29 | Sofamor S.N.C. | Pedicular screw and posterior spinal instrumentation |
DE4239716C1 (en) | 1992-11-26 | 1994-08-04 | Kernforschungsz Karlsruhe | Elastic implant for stabilising degenerated spinal column segments |
DE4243951C2 (en) * | 1992-12-23 | 1997-07-03 | Plus Endoprothetik Ag | Device for stiffening a spinal column section consisting of at least two vertebrae |
US5413576A (en) * | 1993-02-10 | 1995-05-09 | Rivard; Charles-Hilaire | Apparatus for treating spinal disorder |
FR2701650B1 (en) * | 1993-02-17 | 1995-05-24 | Psi | Double shock absorber for intervertebral stabilization. |
FR2702363B1 (en) | 1993-03-12 | 1995-04-21 | Biomat | Rod-shaped osteosynthesis element. |
US5415661A (en) * | 1993-03-24 | 1995-05-16 | University Of Miami | Implantable spinal assist device |
FR2709247B1 (en) * | 1993-08-27 | 1995-09-29 | Martin Jean Raymond | Device for anchoring spinal instrumentation on a vertebra. |
FR2712481B1 (en) | 1993-11-18 | 1996-01-12 | Graf Henry | Improvements to flexible inter-vertebral stabilizers. |
ATE180402T1 (en) | 1994-02-28 | 1999-06-15 | Sulzer Orthopaedie Ag | STABILIZATION OF ADJACENT BACK VERTEBRATE |
FR2717370A1 (en) | 1994-03-18 | 1995-09-22 | Moreau Patrice | Intervertebral stabilising prosthesis for spinal reinforcement inserted during spinal surgery |
EP0677277A3 (en) | 1994-03-18 | 1996-02-28 | Patrice Moreau | Spinal prosthetic assembly. |
FR2718946B1 (en) | 1994-04-25 | 1996-09-27 | Soprane Sa | Flexible rod for lumbosacral osteosynthesis fixator. |
ES2081766B1 (en) * | 1994-05-13 | 1996-10-01 | Bilbao Ortiz De Zarate Jose Ra | POSTERIOR CERVICAL VERTEBRAL FIXATION SYSTEM. |
US5488761A (en) * | 1994-07-28 | 1996-02-06 | Leone; Ronald P. | Flexible shaft and method for manufacturing same |
US5681311A (en) | 1994-09-15 | 1997-10-28 | Smith & Nephew, Inc. | Osteosynthesis apparatus |
FR2724553B1 (en) | 1994-09-15 | 1996-12-20 | Tornier Sa | EXTERNAL OR INTERNAL FIXER FOR THE REPAIR OF FRACTURES OR ARTHROPLASTIES OF THE SKELETON |
US6447518B1 (en) | 1995-07-18 | 2002-09-10 | William R. Krause | Flexible shaft components |
WO1997003611A1 (en) * | 1995-07-18 | 1997-02-06 | Edwards, Garland, U. | Flexible shaft |
US5658286A (en) * | 1996-02-05 | 1997-08-19 | Sava; Garard A. | Fabrication of implantable bone fixation elements |
US5713900A (en) * | 1996-05-31 | 1998-02-03 | Acromed Corporation | Apparatus for retaining bone portions in a desired spatial relationship |
FR2755844B1 (en) * | 1996-11-15 | 1999-01-29 | Stryker France Sa | OSTEOSYNTHESIS SYSTEM WITH ELASTIC DEFORMATION FOR SPINE |
IL128261A0 (en) * | 1999-01-27 | 1999-11-30 | Disc O Tech Medical Tech Ltd | Expandable element |
DE29711559U1 (en) * | 1997-07-02 | 1997-08-21 | Howmedica GmbH, 24232 Schönkirchen | Elongated element for the transmission of forces |
US5964769A (en) * | 1997-08-26 | 1999-10-12 | Spinal Concepts, Inc. | Surgical cable system and method |
FR2774581B1 (en) | 1998-02-10 | 2000-08-11 | Dimso Sa | INTEREPINOUS STABILIZER TO BE ATTACHED TO SPINOUS APOPHYSIS OF TWO VERTEBRES |
CA2366783C (en) * | 1999-04-05 | 2008-01-29 | Lance Middleton | Artificial spinal ligament |
FR2799949B1 (en) | 1999-10-22 | 2002-06-28 | Abder Benazza | SPINAL OSTETHOSYNTHESIS DEVICE |
US6893462B2 (en) * | 2000-01-11 | 2005-05-17 | Regeneration Technologies, Inc. | Soft and calcified tissue implants |
FR2805451B1 (en) * | 2000-02-29 | 2002-04-19 | Arnaud Andre Soubeiran | IMPROVED DEVICE FOR MOVING TWO BODIES IN RELATION TO ONE ANOTHER, PARTICULARLY FOR REALIZING IMPLANTABLE SYSTEMS IN THE HUMAN BODY |
US6293949B1 (en) | 2000-03-01 | 2001-09-25 | Sdgi Holdings, Inc. | Superelastic spinal stabilization system and method |
DE60127333T2 (en) | 2000-03-28 | 2007-07-05 | Showa IKA Kohgyo Co., Ltd., Nagoya | spinal implant |
US6964667B2 (en) | 2000-06-23 | 2005-11-15 | Sdgi Holdings, Inc. | Formed in place fixation system with thermal acceleration |
US6749614B2 (en) * | 2000-06-23 | 2004-06-15 | Vertelink Corporation | Formable orthopedic fixation system with cross linking |
FR2812186B1 (en) * | 2000-07-25 | 2003-02-28 | Spine Next Sa | FLEXIBLE CONNECTION PIECE FOR SPINAL STABILIZATION |
US6626905B1 (en) | 2000-08-02 | 2003-09-30 | Sulzer Spine-Tech Inc. | Posterior oblique lumbar arthrodesis |
US6554831B1 (en) * | 2000-09-01 | 2003-04-29 | Hopital Sainte-Justine | Mobile dynamic system for treating spinal disorder |
JP2002224131A (en) | 2001-02-05 | 2002-08-13 | Mizuho Co Ltd | Inter-vertebral fixing device |
US6652585B2 (en) | 2001-02-28 | 2003-11-25 | Sdgi Holdings, Inc. | Flexible spine stabilization system |
US6706044B2 (en) * | 2001-04-19 | 2004-03-16 | Spineology, Inc. | Stacked intermedular rods for spinal fixation |
US7862587B2 (en) * | 2004-02-27 | 2011-01-04 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
GB0114783D0 (en) | 2001-06-16 | 2001-08-08 | Sengupta Dilip K | A assembly for the stabilisation of vertebral bodies of the spine |
FR2827498B1 (en) | 2001-07-18 | 2004-05-14 | Frederic Fortin | FLEXIBLE VERTEBRAL CONNECTION DEVICE CONSISTING OF PALLIANT ELEMENTS OF THE RACHIS |
GB2382304A (en) | 2001-10-10 | 2003-05-28 | Dilip Kumar Sengupta | An assembly for soft stabilisation of vertebral bodies of the spine |
FR2831420B1 (en) | 2001-10-30 | 2004-07-16 | Vitatech | APPARATUS FOR HOLDING THE SPIN WITH JOINTING ASSEMBLY |
US6626909B2 (en) | 2002-02-27 | 2003-09-30 | Kingsley Richard Chin | Apparatus and method for spine fixation |
US20050261682A1 (en) | 2002-04-13 | 2005-11-24 | Ferree Bret A | Vertebral shock absorbers |
US7223289B2 (en) | 2002-04-16 | 2007-05-29 | Warsaw Orthopedic, Inc. | Annulus repair systems and techniques |
ATE299671T1 (en) | 2002-05-21 | 2005-08-15 | Spinelab Gmbh | ELASTIC STABILIZATION SYSTEM FOR SPINES |
FR2843538B1 (en) * | 2002-08-13 | 2005-08-12 | Frederic Fortin | DEVICE FOR DISTRACTING AND DAMPING ADJUSTABLE TO THE GROWTH OF THE RACHIS |
FR2844180B1 (en) * | 2002-09-11 | 2005-08-05 | Spinevision | CONNECTING ELEMENT FOR THE DYNAMIC STABILIZATION OF A SPINAL FIXING SYSTEM AND SPINAL FASTENING SYSTEM COMPRISING SUCH A MEMBER |
FR2845587B1 (en) * | 2002-10-14 | 2005-01-21 | Scient X | DYNAMIC DEVICE FOR INTERVERTEBRAL CONNECTION WITH MULTIDIRECTIONALLY CONTROLLED DEBATMENT |
US20050171543A1 (en) | 2003-05-02 | 2005-08-04 | Timm Jens P. | Spine stabilization systems and associated devices, assemblies and methods |
US8652175B2 (en) | 2003-05-02 | 2014-02-18 | Rachiotek, Llc | Surgical implant devices and systems including a sheath member |
US20050182401A1 (en) | 2003-05-02 | 2005-08-18 | Timm Jens P. | Systems and methods for spine stabilization including a dynamic junction |
US7713287B2 (en) | 2003-05-02 | 2010-05-11 | Applied Spine Technologies, Inc. | Dynamic spine stabilizer |
US20050182400A1 (en) | 2003-05-02 | 2005-08-18 | Jeffrey White | Spine stabilization systems, devices and methods |
DE10327358A1 (en) | 2003-06-16 | 2005-01-05 | Ulrich Gmbh & Co. Kg | Implant for correction and stabilization of the spine |
US20050203513A1 (en) | 2003-09-24 | 2005-09-15 | Tae-Ahn Jahng | Spinal stabilization device |
US20050065516A1 (en) | 2003-09-24 | 2005-03-24 | Tae-Ahn Jahng | Method and apparatus for flexible fixation of a spine |
JP2007506459A (en) | 2003-09-29 | 2007-03-22 | ジンテーズ ゲゼルシャフト ミト ベシュレンクテル ハフツング | Braking element |
WO2005030068A1 (en) | 2003-09-29 | 2005-04-07 | Synthes Gmbh | Dynamic damping element for two bones |
CA2540591C (en) | 2003-09-29 | 2011-06-28 | Synthes Gmbh | Device for the elastic stabilisation of bodies of the vertebra |
US20050090822A1 (en) * | 2003-10-24 | 2005-04-28 | Dipoto Gene | Methods and apparatus for stabilizing the spine through an access device |
WO2005037150A1 (en) * | 2003-10-16 | 2005-04-28 | Osteotech, Inc. | System and method for flexible correction of bony motion segment |
KR101180211B1 (en) | 2003-10-17 | 2012-09-05 | 비이더만 모테크 게엠베하 | Flexible implant |
US7862586B2 (en) * | 2003-11-25 | 2011-01-04 | Life Spine, Inc. | Spinal stabilization systems |
US20050131407A1 (en) * | 2003-12-16 | 2005-06-16 | Sicvol Christopher W. | Flexible spinal fixation elements |
US7297146B2 (en) | 2004-01-30 | 2007-11-20 | Warsaw Orthopedic, Inc. | Orthopedic distraction implants and techniques |
US20050203511A1 (en) | 2004-03-02 | 2005-09-15 | Wilson-Macdonald James | Orthopaedics device and system |
FR2867057B1 (en) * | 2004-03-02 | 2007-06-01 | Spinevision | DYNAMIC BONDING ELEMENT FOR A SPINAL FIXING SYSTEM AND FIXING SYSTEM COMPRISING SUCH A CONNECTING MEMBER |
US7282065B2 (en) | 2004-04-09 | 2007-10-16 | X-Spine Systems, Inc. | Disk augmentation system and method |
US7833256B2 (en) * | 2004-04-16 | 2010-11-16 | Biedermann Motech Gmbh | Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element |
DE502004009870D1 (en) * | 2004-04-28 | 2009-09-17 | Synthes Gmbh | DEVICE FOR DYNAMIC STABILIZATION OF BONES |
US7766941B2 (en) | 2004-05-14 | 2010-08-03 | Paul Kamaljit S | Spinal support, stabilization |
GB2414674B (en) | 2004-06-04 | 2009-08-12 | John Burke | Apparatus for the correction of skeletal deformities |
US8858599B2 (en) | 2004-06-09 | 2014-10-14 | Warsaw Orthopedic, Inc. | Systems and methods for flexible spinal stabilization |
WO2006002359A2 (en) * | 2004-06-23 | 2006-01-05 | Applied Spine Technologies, Inc. | Spinal stabilization devices and systems |
US7854752B2 (en) * | 2004-08-09 | 2010-12-21 | Theken Spine, Llc | System and method for dynamic skeletal stabilization |
US8162985B2 (en) * | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
KR200377032Y1 (en) * | 2004-11-26 | 2005-03-10 | 주의조 | Apparatus of fixing backbone |
KR200377260Y1 (en) * | 2004-12-01 | 2005-03-10 | 박경우 | Spinal fixation apparatus having length variable type rods and pedicle screws |
EP1858425A1 (en) * | 2004-12-15 | 2007-11-28 | Stryker Spine SA | Spinal rods having segments of different elastic properties and methods of using them |
US7604654B2 (en) | 2005-02-22 | 2009-10-20 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
US20060212033A1 (en) | 2005-03-03 | 2006-09-21 | Accin Corporation | Vertebral stabilization using flexible rods |
US7556639B2 (en) * | 2005-03-03 | 2009-07-07 | Accelerated Innovation, Llc | Methods and apparatus for vertebral stabilization using sleeved springs |
-
2004
- 2004-03-10 US US10/798,014 patent/US7763052B2/en active Active
- 2004-09-23 KR KR1020040076295A patent/KR100550262B1/en not_active IP Right Cessation
- 2004-11-24 US US10/997,165 patent/US20050149020A1/en not_active Abandoned
- 2004-12-20 KR KR1020040108788A patent/KR100554359B1/en not_active IP Right Cessation
-
2005
- 2005-03-10 KR KR1020050020084A patent/KR100550263B1/en not_active IP Right Cessation
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2379577A (en) * | 1943-01-25 | 1945-07-03 | Harry H Harsted | Foldable antenna |
US3635233A (en) * | 1970-03-19 | 1972-01-18 | Charles H Robertson | Collapsible cane and crutch construction |
US3669133A (en) * | 1971-06-08 | 1972-06-13 | Hycor Inc | Collapsible rod |
US4041939A (en) * | 1975-04-28 | 1977-08-16 | Downs Surgical Limited | Surgical implant spinal screw |
US4378712A (en) * | 1979-02-27 | 1983-04-05 | Nippon Cable System, Inc. | Control cable |
US4483562A (en) * | 1981-10-16 | 1984-11-20 | Arnold Schoolman | Locking flexible shaft device with live distal end attachment |
US4743260A (en) * | 1985-06-10 | 1988-05-10 | Burton Charles V | Method for a flexible stabilization system for a vertebral column |
US5282863A (en) * | 1985-06-10 | 1994-02-01 | Charles V. Burton | Flexible stabilization system for a vertebral column |
US4979531A (en) * | 1988-03-25 | 1990-12-25 | Toor John W | Tent pole and method of manufacture therefor |
US5092867A (en) * | 1988-07-13 | 1992-03-03 | Harms Juergen | Correction and supporting apparatus, in particular for the spinal column |
USRE36221E (en) * | 1989-02-03 | 1999-06-01 | Breard; Francis Henri | Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column |
US5029847A (en) * | 1989-08-07 | 1991-07-09 | Helen Ross | Foldable exercise stick |
US4932975A (en) * | 1989-10-16 | 1990-06-12 | Vanderbilt University | Vertebral prosthesis |
US5055104A (en) * | 1989-11-06 | 1991-10-08 | Surgical Dynamics, Inc. | Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach |
US5030220A (en) * | 1990-03-29 | 1991-07-09 | Advanced Spine Fixation Systems Incorporated | Spine fixation system |
US5180393A (en) * | 1990-09-21 | 1993-01-19 | Polyclinique De Bourgogne & Les Hortensiad | Artificial ligament for the spine |
US5133716A (en) * | 1990-11-07 | 1992-07-28 | Codespi Corporation | Device for correction of spinal deformities |
US5387213A (en) * | 1991-02-05 | 1995-02-07 | Safir S.A.R.L. | Osseous surgical implant particularly for an intervertebral stabilizer |
US5251611A (en) * | 1991-05-07 | 1993-10-12 | Zehel Wendell E | Method and apparatus for conducting exploratory procedures |
US5540688A (en) * | 1991-05-30 | 1996-07-30 | Societe "Psi" | Intervertebral stabilization device incorporating dampers |
US5246442A (en) * | 1991-12-31 | 1993-09-21 | Danek Medical, Inc. | Spinal hook |
US20010020169A1 (en) * | 1992-03-02 | 2001-09-06 | Peter Metz-Stavenhagen | Apparatus for bracing vertebrae |
US5562660A (en) * | 1993-02-09 | 1996-10-08 | Plus Endoprothetik Ag | Apparatus for stiffening and/or correcting the vertebral column |
US5423816A (en) * | 1993-07-29 | 1995-06-13 | Lin; Chih I. | Intervertebral locking device |
US5672175A (en) * | 1993-08-27 | 1997-09-30 | Martin; Jean Raymond | Dynamic implanted spinal orthosis and operative procedure for fitting |
US20020099378A1 (en) * | 1994-03-28 | 2002-07-25 | Michelson Gary Karlin | Apparatus, instrumentation and method for spinal fixation |
US5688275A (en) * | 1996-02-09 | 1997-11-18 | Koros; Tibor | Spinal column rod fixation system |
US6475242B1 (en) * | 1996-03-13 | 2002-11-05 | Dale G. Bramlet | Arthroplasty joint assembly |
US6102912A (en) * | 1997-05-29 | 2000-08-15 | Sofamor S.N.C. | Vertebral rod of constant section for spinal osteosynthesis instrumentations |
US6290700B1 (en) * | 1997-07-31 | 2001-09-18 | Plus Endoprothetik Ag | Device for stiffening and/or correcting a vertebral column or such like |
US5964767A (en) * | 1997-09-12 | 1999-10-12 | Tapia; Eduardo Armando | Hollow sealable device for temporary or permanent surgical placement through a bone to provide a passageway into a cavity or internal anatomic site in a mammal |
US6241730B1 (en) * | 1997-11-26 | 2001-06-05 | Scient'x (Societe A Responsabilite Limitee) | Intervertebral link device capable of axial and angular displacement |
US6187000B1 (en) * | 1998-08-20 | 2001-02-13 | Endius Incorporated | Cannula for receiving surgical instruments |
US20030195551A1 (en) * | 1998-08-20 | 2003-10-16 | Davison Thomas W. | Cannula for receiving surgical instruments |
US6296644B1 (en) * | 1998-08-26 | 2001-10-02 | Jean Saurat | Spinal instrumentation system with articulated modules |
US6193720B1 (en) * | 1998-11-30 | 2001-02-27 | Depuy Orthopaedics, Inc. | Cervical spine stabilization method and system |
US6475220B1 (en) * | 1999-10-15 | 2002-11-05 | Whiteside Biomechanics, Inc. | Spinal cable system |
US20020123806A1 (en) * | 1999-10-22 | 2002-09-05 | Total Facet Technologies, Inc. | Facet arthroplasty devices and methods |
US20010049559A1 (en) * | 2000-01-06 | 2001-12-06 | Ja Kyo Koo | Prosthetic cage for spine |
US20020095154A1 (en) * | 2000-04-04 | 2002-07-18 | Atkinson Robert E. | Devices and methods for the treatment of spinal disorders |
US20010037111A1 (en) * | 2000-05-08 | 2001-11-01 | Dixon Robert A. | Method and apparatus for dynamized spinal stabilization |
US6530934B1 (en) * | 2000-06-06 | 2003-03-11 | Sarcos Lc | Embolic device composed of a linear sequence of miniature beads |
US20020082600A1 (en) * | 2000-06-23 | 2002-06-27 | Shaolian Samuel M. | Formable orthopedic fixation system |
US6576018B1 (en) * | 2000-06-23 | 2003-06-10 | Edward S. Holt | Apparatus configuration and method for treating flatfoot |
US20020010467A1 (en) * | 2000-07-22 | 2002-01-24 | Corin Spinal Systems Limited | Pedicle attachment assembly |
US20030171749A1 (en) * | 2000-07-25 | 2003-09-11 | Regis Le Couedic | Semirigid linking piece for stabilizing the spine |
US20030073998A1 (en) * | 2000-08-01 | 2003-04-17 | Endius Incorporated | Method of securing vertebrae |
US6447546B1 (en) * | 2000-08-11 | 2002-09-10 | Dale G. Bramlet | Apparatus and method for fusing opposing spinal vertebrae |
US20020049394A1 (en) * | 2000-08-25 | 2002-04-25 | The Cleveland Clinic Foundation | Apparatus and method for assessing loads on adjacent bones |
US20020035366A1 (en) * | 2000-09-18 | 2002-03-21 | Reto Walder | Pedicle screw for intervertebral support elements |
US20020055740A1 (en) * | 2000-11-08 | 2002-05-09 | The Cleveland Clinic Foundation | Method and apparatus for correcting spinal deformity |
US20020065557A1 (en) * | 2000-11-29 | 2002-05-30 | Goble E. Marlowe | Facet joint replacement |
US20020107570A1 (en) * | 2000-12-08 | 2002-08-08 | Sybert Daryl R. | Biocompatible osteogenic band for repair of spinal disorders |
US20020087159A1 (en) * | 2000-12-29 | 2002-07-04 | James Thomas | Vertebral alignment system |
US20020183748A1 (en) * | 2001-01-05 | 2002-12-05 | Stryker Spine | Pedicle screw assembly and methods therefor |
US20020123668A1 (en) * | 2001-01-29 | 2002-09-05 | Stephen Ritland | Retractor and method for spinal pedicle screw placement |
US20020111630A1 (en) * | 2001-02-15 | 2002-08-15 | Ralph James D. | Longitudinal plate assembly having an adjustable length |
US20020111628A1 (en) * | 2001-02-15 | 2002-08-15 | Ralph James D. | Polyaxial pedicle screw having a rotating locking element |
US20020123750A1 (en) * | 2001-02-28 | 2002-09-05 | Lukas Eisermann | Woven orthopedic implants |
US20020120270A1 (en) * | 2001-02-28 | 2002-08-29 | Hai Trieu | Flexible systems for spinal stabilization and fixation |
US20030040797A1 (en) * | 2001-03-01 | 2003-02-27 | Fallin T. Wade | Prosthesis for the replacement of a posterior element of a vertebra |
US20020138077A1 (en) * | 2001-03-26 | 2002-09-26 | Ferree Bret A. | Spinal alignment apparatus and methods |
US20020143401A1 (en) * | 2001-03-27 | 2002-10-03 | Michelson Gary K. | Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion |
US20020143329A1 (en) * | 2001-03-30 | 2002-10-03 | Serhan Hassan A. | Intervertebral connection system |
US20020169450A1 (en) * | 2001-04-24 | 2002-11-14 | Co-Ligne Ag | Instrumentation for stabilizing certain vertebrae of the spine |
US6589246B1 (en) * | 2001-04-26 | 2003-07-08 | Poly-4 Medical, Inc. | Method of applying an active compressive force continuously across a fracture |
US20030040746A1 (en) * | 2001-07-20 | 2003-02-27 | Mitchell Margaret E. | Spinal stabilization system and method |
US20030109880A1 (en) * | 2001-08-01 | 2003-06-12 | Showa Ika Kohgyo Co., Ltd. | Bone connector |
US20030045875A1 (en) * | 2001-09-04 | 2003-03-06 | Bertranou Patrick P. | Spinal assembly plate |
US20030055426A1 (en) * | 2001-09-14 | 2003-03-20 | John Carbone | Biased angulation bone fixation assembly |
US20030060823A1 (en) * | 2001-09-24 | 2003-03-27 | Bryan Donald W. | Pedicle screw spinal fixation device |
US20030093078A1 (en) * | 2001-09-28 | 2003-05-15 | Stephen Ritland | Connection rod for screw or hook polyaxial system and method of use |
US20030083688A1 (en) * | 2001-10-30 | 2003-05-01 | Simonson Robert E. | Configured and sized cannula |
US20040172025A1 (en) * | 2001-10-30 | 2004-09-02 | Drewry Troy D. | Flexible spinal stabilization system and method |
US20030083657A1 (en) * | 2001-10-30 | 2003-05-01 | Drewry Troy D. | Flexible spinal stabilization system and method |
US20030088251A1 (en) * | 2001-11-05 | 2003-05-08 | Braun John T | Devices and methods for the correction and treatment of spinal deformities |
US20030191470A1 (en) * | 2002-04-05 | 2003-10-09 | Stephen Ritland | Dynamic fixation device and method of use |
US20030191371A1 (en) * | 2002-04-05 | 2003-10-09 | Smith Maurice M. | Devices and methods for percutaneous tissue retraction and surgery |
US20040002708A1 (en) * | 2002-05-08 | 2004-01-01 | Stephen Ritland | Dynamic fixation device and method of use |
US20030220643A1 (en) * | 2002-05-24 | 2003-11-27 | Ferree Bret A. | Devices to prevent spinal extension |
US20040049190A1 (en) * | 2002-08-09 | 2004-03-11 | Biedermann Motech Gmbh | Dynamic stabilization device for bones, in particular for vertebrae |
US20040143264A1 (en) * | 2002-08-23 | 2004-07-22 | Mcafee Paul C. | Metal-backed UHMWPE rod sleeve system preserving spinal motion |
US20050033299A1 (en) * | 2002-09-06 | 2005-02-10 | Shluzas Alan E. | Surgical instrument for moving a vertebra |
US20040049819A1 (en) * | 2002-09-10 | 2004-03-11 | First Line Seeds, Ltd. | Soybean cultivar SN83544 |
US20040147928A1 (en) * | 2002-10-30 | 2004-07-29 | Landry Michael E. | Spinal stabilization system using flexible members |
US20040138661A1 (en) * | 2003-01-14 | 2004-07-15 | Bailey Kirk J. | Spinal fixation system |
US20040215191A1 (en) * | 2003-04-25 | 2004-10-28 | Kitchen Michael S. | Spinal curvature correction device |
US20050038432A1 (en) * | 2003-04-25 | 2005-02-17 | Shaolian Samuel M. | Articulating spinal fixation rod and system |
US7083621B2 (en) * | 2003-04-25 | 2006-08-01 | Sdgi Holdings, Inc. | Articulating spinal fixation rod and system |
US20040236329A1 (en) * | 2003-05-02 | 2004-11-25 | Panjabi Manohar M. | Dynamic spine stabilizer |
US20040236328A1 (en) * | 2003-05-23 | 2004-11-25 | Paul David C. | Spine stabilization system |
US20040236327A1 (en) * | 2003-05-23 | 2004-11-25 | Paul David C. | Spine stabilization system |
US6986771B2 (en) * | 2003-05-23 | 2006-01-17 | Globus Medical, Inc. | Spine stabilization system |
US20050033295A1 (en) * | 2003-08-08 | 2005-02-10 | Paul Wisnewski | Implants formed of shape memory polymeric material for spinal fixation |
US20050085815A1 (en) * | 2003-10-17 | 2005-04-21 | Biedermann Motech Gmbh | Rod-shaped implant element for application in spine surgery or trauma surgery, stabilization apparatus comprising said rod-shaped implant element, and production method for the rod-shaped implant element |
US20050154390A1 (en) * | 2003-11-07 | 2005-07-14 | Lutz Biedermann | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
US20050171540A1 (en) * | 2004-01-30 | 2005-08-04 | Roy Lim | Instruments and methods for minimally invasive spinal stabilization |
US20050203519A1 (en) * | 2004-03-09 | 2005-09-15 | Jurgen Harms | Rod-like element for application in spinal or trauma surgery, and stabilization device with such a rod-like element |
US20060149238A1 (en) * | 2005-01-04 | 2006-07-06 | Sherman Michael C | Systems and methods for spinal stabilization with flexible elements |
Cited By (310)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8012182B2 (en) | 2000-07-25 | 2011-09-06 | Zimmer Spine S.A.S. | Semi-rigid linking piece for stabilizing the spine |
US20040143264A1 (en) * | 2002-08-23 | 2004-07-22 | Mcafee Paul C. | Metal-backed UHMWPE rod sleeve system preserving spinal motion |
US8814913B2 (en) | 2002-09-06 | 2014-08-26 | Roger P Jackson | Helical guide and advancement flange with break-off extensions |
US8870928B2 (en) | 2002-09-06 | 2014-10-28 | Roger P. Jackson | Helical guide and advancement flange with radially loaded lip |
US8092502B2 (en) | 2003-04-09 | 2012-01-10 | Jackson Roger P | Polyaxial bone screw with uploaded threaded shank and method of assembly and use |
US8540753B2 (en) | 2003-04-09 | 2013-09-24 | Roger P. Jackson | Polyaxial bone screw with uploaded threaded shank and method of assembly and use |
US10952777B2 (en) | 2003-04-09 | 2021-03-23 | Roger P. Jackson | Pivotal bone screw assembly with receiver having threaded open channel and lower opening |
US10349983B2 (en) | 2003-05-22 | 2019-07-16 | Alphatec Spine, Inc. | Pivotal bone anchor assembly with biased bushing for pre-lock friction fit |
US8936623B2 (en) | 2003-06-18 | 2015-01-20 | Roger P. Jackson | Polyaxial bone screw assembly |
US8926670B2 (en) | 2003-06-18 | 2015-01-06 | Roger P. Jackson | Polyaxial bone screw assembly |
USRE46431E1 (en) | 2003-06-18 | 2017-06-13 | Roger P Jackson | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
US9144444B2 (en) | 2003-06-18 | 2015-09-29 | Roger P Jackson | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
US8753398B2 (en) | 2003-08-05 | 2014-06-17 | Charles R. Gordon | Method of inserting an expandable intervertebral implant without overdistraction |
US7708778B2 (en) | 2003-08-05 | 2010-05-04 | Flexuspine, Inc. | Expandable articulating intervertebral implant with cam |
US8647386B2 (en) | 2003-08-05 | 2014-02-11 | Charles R. Gordon | Expandable intervertebral implant system and method |
US8257440B2 (en) | 2003-08-05 | 2012-09-04 | Gordon Charles R | Method of insertion of an expandable intervertebral implant |
US8172903B2 (en) | 2003-08-05 | 2012-05-08 | Gordon Charles R | Expandable intervertebral implant with spacer |
US8147550B2 (en) | 2003-08-05 | 2012-04-03 | Flexuspine, Inc. | Expandable articulating intervertebral implant with limited articulation |
US8123810B2 (en) | 2003-08-05 | 2012-02-28 | Gordon Charles R | Expandable intervertebral implant with wedged expansion member |
US8118870B2 (en) | 2003-08-05 | 2012-02-21 | Flexuspine, Inc. | Expandable articulating intervertebral implant with spacer |
US8118871B2 (en) | 2003-08-05 | 2012-02-21 | Flexuspine, Inc. | Expandable articulating intervertebral implant |
US8603168B2 (en) | 2003-08-05 | 2013-12-10 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US8052723B2 (en) | 2003-08-05 | 2011-11-08 | Flexuspine Inc. | Dynamic posterior stabilization systems and methods of use |
US9579124B2 (en) | 2003-08-05 | 2017-02-28 | Flexuspine, Inc. | Expandable articulating intervertebral implant with limited articulation |
US7909869B2 (en) | 2003-08-05 | 2011-03-22 | Flexuspine, Inc. | Artificial spinal unit assemblies |
US7799082B2 (en) | 2003-08-05 | 2010-09-21 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US7794480B2 (en) | 2003-08-05 | 2010-09-14 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US7785351B2 (en) | 2003-08-05 | 2010-08-31 | Flexuspine, Inc. | Artificial functional spinal implant unit system and method for use |
US7753958B2 (en) | 2003-08-05 | 2010-07-13 | Gordon Charles R | Expandable intervertebral implant |
US8979900B2 (en) | 2003-09-24 | 2015-03-17 | DePuy Synthes Products, LLC | Spinal stabilization device |
US8968366B2 (en) | 2003-09-24 | 2015-03-03 | DePuy Synthes Products, LLC | Method and apparatus for flexible fixation of a spine |
US10039578B2 (en) | 2003-12-16 | 2018-08-07 | DePuy Synthes Products, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US11426216B2 (en) | 2003-12-16 | 2022-08-30 | DePuy Synthes Products, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
US10299839B2 (en) | 2003-12-16 | 2019-05-28 | Medos International Sárl | Percutaneous access devices and bone anchor assemblies |
US9532815B2 (en) | 2004-02-27 | 2017-01-03 | Roger P. Jackson | Spinal fixation tool set and method |
US7862587B2 (en) | 2004-02-27 | 2011-01-04 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
US10485588B2 (en) | 2004-02-27 | 2019-11-26 | Nuvasive, Inc. | Spinal fixation tool attachment structure |
US8066739B2 (en) | 2004-02-27 | 2011-11-29 | Jackson Roger P | Tool system for dynamic spinal implants |
US9050139B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US7766915B2 (en) | 2004-02-27 | 2010-08-03 | Jackson Roger P | Dynamic fixation assemblies with inner core and outer coil-like member |
US11291480B2 (en) | 2004-02-27 | 2022-04-05 | Nuvasive, Inc. | Spinal fixation tool attachment structure |
US8900272B2 (en) | 2004-02-27 | 2014-12-02 | Roger P Jackson | Dynamic fixation assemblies with inner core and outer coil-like member |
US8894657B2 (en) | 2004-02-27 | 2014-11-25 | Roger P. Jackson | Tool system for dynamic spinal implants |
US20060111715A1 (en) * | 2004-02-27 | 2006-05-25 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
US8100915B2 (en) | 2004-02-27 | 2012-01-24 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US9055978B2 (en) | 2004-02-27 | 2015-06-16 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US11147597B2 (en) | 2004-02-27 | 2021-10-19 | Roger P Jackson | Dynamic spinal stabilization assemblies, tool set and method |
US9050148B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Spinal fixation tool attachment structure |
US11648039B2 (en) | 2004-02-27 | 2023-05-16 | Roger P. Jackson | Spinal fixation tool attachment structure |
US9636151B2 (en) | 2004-02-27 | 2017-05-02 | Roger P Jackson | Orthopedic implant rod reduction tool set and method |
US9662143B2 (en) | 2004-02-27 | 2017-05-30 | Roger P Jackson | Dynamic fixation assemblies with inner core and outer coil-like member |
US9662151B2 (en) | 2004-02-27 | 2017-05-30 | Roger P Jackson | Orthopedic implant rod reduction tool set and method |
US8394133B2 (en) | 2004-02-27 | 2013-03-12 | Roger P. Jackson | Dynamic fixation assemblies with inner core and outer coil-like member |
US8377067B2 (en) | 2004-02-27 | 2013-02-19 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US8292892B2 (en) | 2004-02-27 | 2012-10-23 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US9216039B2 (en) | 2004-02-27 | 2015-12-22 | Roger P. Jackson | Dynamic spinal stabilization assemblies, tool set and method |
US8162948B2 (en) | 2004-02-27 | 2012-04-24 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US9918751B2 (en) | 2004-02-27 | 2018-03-20 | Roger P. Jackson | Tool system for dynamic spinal implants |
US20050261686A1 (en) * | 2004-05-14 | 2005-11-24 | Paul Kamaljit S | Spinal support, stabilization |
US7766941B2 (en) | 2004-05-14 | 2010-08-03 | Paul Kamaljit S | Spinal support, stabilization |
US8845649B2 (en) | 2004-09-24 | 2014-09-30 | Roger P. Jackson | Spinal fixation tool set and method for rod reduction and fastener insertion |
US8075595B2 (en) | 2004-10-20 | 2011-12-13 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8551142B2 (en) | 2004-10-20 | 2013-10-08 | Exactech, Inc. | Methods for stabilization of bone structures |
US8267969B2 (en) | 2004-10-20 | 2012-09-18 | Exactech, Inc. | Screw systems and methods for use in stabilization of bone structures |
US7935134B2 (en) | 2004-10-20 | 2011-05-03 | Exactech, Inc. | Systems and methods for stabilization of bone structures |
US8025680B2 (en) | 2004-10-20 | 2011-09-27 | Exactech, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8162985B2 (en) | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US7998175B2 (en) | 2004-10-20 | 2011-08-16 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8998960B2 (en) | 2004-11-10 | 2015-04-07 | Roger P. Jackson | Polyaxial bone screw with helically wound capture connection |
US11147591B2 (en) | 2004-11-10 | 2021-10-19 | Roger P Jackson | Pivotal bone anchor receiver assembly with threaded closure |
US9743957B2 (en) | 2004-11-10 | 2017-08-29 | Roger P. Jackson | Polyaxial bone screw with shank articulation pressure insert and method |
US8926672B2 (en) | 2004-11-10 | 2015-01-06 | Roger P. Jackson | Splay control closure for open bone anchor |
US9522021B2 (en) | 2004-11-23 | 2016-12-20 | Roger P. Jackson | Polyaxial bone anchor with retainer with notch for mono-axial motion |
US8273089B2 (en) | 2004-11-23 | 2012-09-25 | Jackson Roger P | Spinal fixation tool set and method |
US9629669B2 (en) | 2004-11-23 | 2017-04-25 | Roger P. Jackson | Spinal fixation tool set and method |
US10039577B2 (en) | 2004-11-23 | 2018-08-07 | Roger P Jackson | Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces |
US9211150B2 (en) | 2004-11-23 | 2015-12-15 | Roger P. Jackson | Spinal fixation tool set and method |
US8591515B2 (en) | 2004-11-23 | 2013-11-26 | Roger P. Jackson | Spinal fixation tool set and method |
US11389214B2 (en) | 2004-11-23 | 2022-07-19 | Roger P. Jackson | Spinal fixation tool set and method |
US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
US11992423B2 (en) | 2004-11-24 | 2024-05-28 | Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
US10918498B2 (en) | 2004-11-24 | 2021-02-16 | Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
US11096799B2 (en) | 2004-11-24 | 2021-08-24 | Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
USRE47551E1 (en) | 2005-02-22 | 2019-08-06 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures |
US9414863B2 (en) | 2005-02-22 | 2016-08-16 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures |
US20060212033A1 (en) * | 2005-03-03 | 2006-09-21 | Accin Corporation | Vertebral stabilization using flexible rods |
US20060229612A1 (en) * | 2005-03-03 | 2006-10-12 | Accin Corporation | Methods and apparatus for vertebral stabilization using sleeved springs |
US7556639B2 (en) | 2005-03-03 | 2009-07-07 | Accelerated Innovation, Llc | Methods and apparatus for vertebral stabilization using sleeved springs |
US20060229607A1 (en) * | 2005-03-16 | 2006-10-12 | Sdgi Holdings, Inc. | Systems, kits and methods for treatment of the spinal column using elongate support members |
US10194951B2 (en) | 2005-05-10 | 2019-02-05 | Roger P. Jackson | Polyaxial bone anchor with compound articulation and pop-on shank |
US9308027B2 (en) | 2005-05-27 | 2016-04-12 | Roger P Jackson | Polyaxial bone screw with shank articulation pressure insert and method |
US20060282080A1 (en) * | 2005-06-08 | 2006-12-14 | Accin Corporation | Vertebral facet stabilizer |
US11234745B2 (en) | 2005-07-14 | 2022-02-01 | Roger P. Jackson | Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert |
US8226690B2 (en) | 2005-07-22 | 2012-07-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilization of bone structures |
US8523865B2 (en) | 2005-07-22 | 2013-09-03 | Exactech, Inc. | Tissue splitter |
US8591560B2 (en) | 2005-09-30 | 2013-11-26 | Roger P. Jackson | Dynamic stabilization connecting member with elastic core and outer sleeve |
US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
US8696711B2 (en) | 2005-09-30 | 2014-04-15 | Roger P. Jackson | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US8105368B2 (en) | 2005-09-30 | 2012-01-31 | Jackson Roger P | Dynamic stabilization connecting member with slitted core and outer sleeve |
US11707298B2 (en) | 2005-09-30 | 2023-07-25 | Roger P. Jackson | Dynamic spinal stabilization assembly with elastic bumpers and locking limited travel closure mechanisms |
US11241261B2 (en) | 2005-09-30 | 2022-02-08 | Roger P Jackson | Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure |
US8613760B2 (en) | 2005-09-30 | 2013-12-24 | Roger P. Jackson | Dynamic stabilization connecting member with slitted core and outer sleeve |
US20070093814A1 (en) * | 2005-10-11 | 2007-04-26 | Callahan Ronald Ii | Dynamic spinal stabilization systems |
US8414614B2 (en) | 2005-10-22 | 2013-04-09 | Depuy International Ltd | Implant kit for supporting a spinal column |
US8357181B2 (en) | 2005-10-27 | 2013-01-22 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of implanting same |
US9179940B2 (en) | 2005-12-06 | 2015-11-10 | Globus Medical, Inc. | System and method for replacement of spinal motion segment |
US8545538B2 (en) | 2005-12-19 | 2013-10-01 | M. Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
US11751913B2 (en) | 2006-01-09 | 2023-09-12 | Roger P. Jackson | Longitudinal connecting member with sleeved tensioned cords and releasable end blocker-bumper |
US8425563B2 (en) | 2006-01-13 | 2013-04-23 | Depuy International Ltd. | Spinal rod support kit |
US8348952B2 (en) | 2006-01-26 | 2013-01-08 | Depuy International Ltd. | System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery |
US20070191953A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Intervertebral implants and methods of use |
US8414619B2 (en) | 2006-01-27 | 2013-04-09 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US7815663B2 (en) | 2006-01-27 | 2010-10-19 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US7578849B2 (en) | 2006-01-27 | 2009-08-25 | Warsaw Orthopedic, Inc. | Intervertebral implants and methods of use |
US7682376B2 (en) | 2006-01-27 | 2010-03-23 | Warsaw Orthopedic, Inc. | Interspinous devices and methods of use |
US9144439B2 (en) | 2006-01-27 | 2015-09-29 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US20080021469A1 (en) * | 2006-02-17 | 2008-01-24 | Richard Holt | Apparatus and method for flexible spinal fixation |
US20080269804A1 (en) * | 2006-02-17 | 2008-10-30 | Holt Development L.L.C. | Apparatus and method for flexible spinal fixation |
US20070233064A1 (en) * | 2006-02-17 | 2007-10-04 | Holt Development L.L.C. | Apparatus and method for flexible spinal fixation |
US8118869B2 (en) | 2006-03-08 | 2012-02-21 | Flexuspine, Inc. | Dynamic interbody device |
US8114133B2 (en) * | 2006-04-18 | 2012-02-14 | Joseph Nicholas Logan | Spinal rod system |
US20070288011A1 (en) * | 2006-04-18 | 2007-12-13 | Joseph Nicholas Logan | Spinal Rod System |
US20070270821A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Vertebral stabilizer |
US9526525B2 (en) * | 2006-08-22 | 2016-12-27 | Neuropro Technologies, Inc. | Percutaneous system for dynamic spinal stabilization |
US20080051787A1 (en) * | 2006-08-22 | 2008-02-28 | Neuropro Technologies, Inc. | Percutaneous system for dynamic spinal stabilization |
US20080086127A1 (en) * | 2006-08-31 | 2008-04-10 | Warsaw Orthopedic, Inc. | Polymer Rods For Spinal Applications |
US20090261505A1 (en) * | 2006-08-31 | 2009-10-22 | Warsaw Orthopedic, Inc. | Polymer rods for spinal applications |
US7968037B2 (en) | 2006-08-31 | 2011-06-28 | Warsaw Orthopedic, Inc. | Polymer rods for spinal applications |
US7766942B2 (en) | 2006-08-31 | 2010-08-03 | Warsaw Orthopedic, Inc. | Polymer rods for spinal applications |
US8425601B2 (en) | 2006-09-11 | 2013-04-23 | Warsaw Orthopedic, Inc. | Spinal stabilization devices and methods of use |
US20080065079A1 (en) * | 2006-09-11 | 2008-03-13 | Aurelien Bruneau | Spinal Stabilization Devices and Methods of Use |
US20080097431A1 (en) * | 2006-09-22 | 2008-04-24 | Paul Peter Vessa | Flexible spinal stabilization |
US20080077143A1 (en) * | 2006-09-25 | 2008-03-27 | Zimmer Spine, Inc. | Apparatus for connecting a longitudinal member to a bone portion |
US20100016898A1 (en) * | 2006-09-25 | 2010-01-21 | Zimmer Spine, Inc. | Apparatus for connecting a longitudinal member to a bone portion |
US20080077141A1 (en) * | 2006-09-26 | 2008-03-27 | Bray Robert S | Cervical dynamic stabilization system |
AU2007219307B2 (en) * | 2006-09-26 | 2012-07-26 | Bray, Robert S | Cervical dynamic stabilization system |
US8317841B2 (en) * | 2006-09-26 | 2012-11-27 | Bray Jr Robert S | Cervical dynamic stabilization system |
US8920473B2 (en) | 2006-12-10 | 2014-12-30 | Paradigm Spine, Llc | Posterior functionally dynamic stabilization system |
US10092329B2 (en) | 2006-12-10 | 2018-10-09 | Paradigm Spine, Llc | Posterior functionally dynamic stabilization system |
US9522018B2 (en) | 2006-12-10 | 2016-12-20 | Paradigm Spine, Llc | Posterior functionally dynamic stabilization system |
US7931676B2 (en) | 2007-01-18 | 2011-04-26 | Warsaw Orthopedic, Inc. | Vertebral stabilizer |
US9931139B2 (en) | 2007-01-18 | 2018-04-03 | Roger P. Jackson | Dynamic stabilization connecting member with pre-tensioned solid core |
US11950809B2 (en) | 2007-01-18 | 2024-04-09 | Roger P. Jackson | Dynamic stabilization with releasable end blocker-bumper |
US10470801B2 (en) * | 2007-01-18 | 2019-11-12 | Roger P. Jackson | Dynamic spinal stabilization with rod-cord longitudinal connecting members |
US8475498B2 (en) * | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
US11006979B2 (en) | 2007-01-18 | 2021-05-18 | Roger P. Jackson | Dynamic stabilization with releasable end blocker-bumper |
US9451989B2 (en) | 2007-01-18 | 2016-09-27 | Roger P Jackson | Dynamic stabilization members with elastic and inelastic sections |
US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
US20220168017A1 (en) * | 2007-01-18 | 2022-06-02 | Roger P. Jackson | Dynamic spinal stabilization with rod-cord longitudinal connecting members |
US11224463B2 (en) | 2007-01-18 | 2022-01-18 | Roger P. Jackson | Dynamic stabilization connecting member with pre-tensioned flexible core member |
US7875059B2 (en) | 2007-01-18 | 2011-01-25 | Warsaw Orthopedic, Inc. | Variable stiffness support members |
US20080177388A1 (en) * | 2007-01-18 | 2008-07-24 | Warsaw Orthopedic, Inc. | Variable Stiffness Support Members |
US11213322B2 (en) * | 2007-01-18 | 2022-01-04 | Roger P. Jackson | Dynamic spinal stabilization with rod-cord longitudinal connecting members |
US20080177318A1 (en) * | 2007-01-18 | 2008-07-24 | Warsaw Orthopedic, Inc. | Vertebral Stabilizer |
US20140018857A1 (en) * | 2007-01-18 | 2014-01-16 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
US10130393B2 (en) | 2007-01-18 | 2018-11-20 | Roger P. Jackson | Dynamic stabilization members with elastic and inelastic sections |
US8940022B2 (en) | 2007-01-19 | 2015-01-27 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US7959677B2 (en) | 2007-01-19 | 2011-06-14 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US8597358B2 (en) | 2007-01-19 | 2013-12-03 | Flexuspine, Inc. | Dynamic interbody devices |
US8377098B2 (en) | 2007-01-19 | 2013-02-19 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US9066811B2 (en) | 2007-01-19 | 2015-06-30 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US9101404B2 (en) | 2007-01-26 | 2015-08-11 | Roger P. Jackson | Dynamic stabilization connecting member with molded connection |
US11272958B2 (en) | 2007-01-26 | 2022-03-15 | Roger P. Jackson | Dynamic stabilization member |
US10617447B2 (en) | 2007-01-26 | 2020-04-14 | Roger P. Jackson | Dynamic stabilization member with molded connection |
US9439683B2 (en) | 2007-01-26 | 2016-09-13 | Roger P Jackson | Dynamic stabilization member with molded connection |
US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
US9750540B2 (en) | 2007-01-26 | 2017-09-05 | Roger P. Jackson | Dynamic stabilization member with molded connection |
US9956002B2 (en) | 2007-01-26 | 2018-05-01 | Roger P. Jackson | Dynamic stabilization member with molded connection |
US8012177B2 (en) | 2007-02-12 | 2011-09-06 | Jackson Roger P | Dynamic stabilization assembly with frusto-conical connection |
US8506599B2 (en) | 2007-02-12 | 2013-08-13 | Roger P. Jackson | Dynamic stabilization assembly with frusto-conical connection |
US8740944B2 (en) | 2007-02-28 | 2014-06-03 | Warsaw Orthopedic, Inc. | Vertebral stabilizer |
US20080234736A1 (en) * | 2007-02-28 | 2008-09-25 | Warsaw Orthopedic, Inc. | Vertebral Stabilizer |
EP1970018A2 (en) * | 2007-03-16 | 2008-09-17 | Zimmer Spine, Inc. | Dynamic spinal stabilization systems |
EP1970018A3 (en) * | 2007-03-16 | 2008-11-05 | Zimmer Spine, Inc. | Dynamic spinal stabilization systems |
US8096996B2 (en) | 2007-03-20 | 2012-01-17 | Exactech, Inc. | Rod reducer |
US9211142B2 (en) | 2007-04-30 | 2015-12-15 | Globus Medical, Inc. | Flexible element for spine stabilization system |
US9339297B2 (en) | 2007-04-30 | 2016-05-17 | Globus Medical, Inc. | Flexible spine stabilization system |
EP2142121A2 (en) * | 2007-04-30 | 2010-01-13 | Globus Medical, Inc. | Flexible spine stabilization system |
US9220538B2 (en) | 2007-04-30 | 2015-12-29 | Globus Medical, Inc. | Flexible element for spine stabilization system |
EP2142121A4 (en) * | 2007-04-30 | 2012-10-24 | Globus Medical Inc | Flexible spine stabilization system |
WO2008134703A3 (en) * | 2007-04-30 | 2009-01-08 | Globus Medical Inc | Flexible spine stabilization system |
US8092500B2 (en) | 2007-05-01 | 2012-01-10 | Jackson Roger P | Dynamic stabilization connecting member with floating core, compression spacer and over-mold |
US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
US8366745B2 (en) | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
US11751914B2 (en) | 2007-05-01 | 2023-09-12 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
US7951170B2 (en) | 2007-05-31 | 2011-05-31 | Jackson Roger P | Dynamic stabilization connecting member with pre-tensioned solid core |
US20090082815A1 (en) * | 2007-09-20 | 2009-03-26 | Zimmer Gmbh | Spinal stabilization system with transition member |
WO2009039060A3 (en) * | 2007-09-20 | 2009-05-07 | Zimmer Spine Inc | Spinal stabilization system with transition member |
US20090088782A1 (en) * | 2007-09-28 | 2009-04-02 | Missoum Moumene | Flexible Spinal Rod With Elastomeric Jacket |
US8267965B2 (en) | 2007-10-22 | 2012-09-18 | Flexuspine, Inc. | Spinal stabilization systems with dynamic interbody devices |
US8523912B2 (en) | 2007-10-22 | 2013-09-03 | Flexuspine, Inc. | Posterior stabilization systems with shared, dual dampener systems |
US8187330B2 (en) | 2007-10-22 | 2012-05-29 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8182514B2 (en) | 2007-10-22 | 2012-05-22 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a fixed length elongated member |
US8157844B2 (en) | 2007-10-22 | 2012-04-17 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8162994B2 (en) | 2007-10-22 | 2012-04-24 | Flexuspine, Inc. | Posterior stabilization system with isolated, dual dampener systems |
US8911477B2 (en) | 2007-10-23 | 2014-12-16 | Roger P. Jackson | Dynamic stabilization member with end plate support and cable core extension |
US8430914B2 (en) | 2007-10-24 | 2013-04-30 | Depuy Spine, Inc. | Assembly for orthopaedic surgery |
US20100318130A1 (en) * | 2007-12-15 | 2010-12-16 | Parlato Brian D | Flexible rod assembly for spinal fixation |
US8252028B2 (en) | 2007-12-19 | 2012-08-28 | Depuy Spine, Inc. | Posterior dynamic stabilization device |
US9232968B2 (en) | 2007-12-19 | 2016-01-12 | DePuy Synthes Products, Inc. | Polymeric pedicle rods and methods of manufacturing |
US8029548B2 (en) | 2008-05-05 | 2011-10-04 | Warsaw Orthopedic, Inc. | Flexible spinal stabilization element and system |
US20090287251A1 (en) * | 2008-05-13 | 2009-11-19 | Stryker Spine | Composite spinal rod |
US9017384B2 (en) | 2008-05-13 | 2015-04-28 | Stryker Spine | Composite spinal rod |
US20100063548A1 (en) * | 2008-07-07 | 2010-03-11 | Depuy International Ltd | Spinal Correction Method Using Shape Memory Spinal Rod |
US9907574B2 (en) | 2008-08-01 | 2018-03-06 | Roger P. Jackson | Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features |
US9451988B2 (en) | 2008-09-04 | 2016-09-27 | Biedermann Technologies Gmbh & Co. Kg | Rod-shaped implant in particular for stabilizing the spinal column and stabilization device including such a rod-shaped implant |
US20100087863A1 (en) * | 2008-09-04 | 2010-04-08 | Lutz Biedermann | Rod-shaped implant in particular for stabilizing the spinal column and stabilization device including such a rod-shaped implant |
US9345507B2 (en) | 2008-11-06 | 2016-05-24 | Nxthera, Inc. | Systems and methods for treatment of BPH |
US8585692B2 (en) | 2008-11-06 | 2013-11-19 | Nxthera, Inc. | Systems and methods for treatment of prostatic tissue |
US10610281B2 (en) | 2008-11-06 | 2020-04-07 | Boston Scientific Scimed, Inc. | Systems and methods for treatment of prostatic tissue |
US11564727B2 (en) | 2008-11-06 | 2023-01-31 | Boston Scientific Scimed, Inc. | Systems and methods for treatment of prostatic tissue |
US8801702B2 (en) | 2008-11-06 | 2014-08-12 | Nxthera, Inc. | Systems and methods for treatment of BPH |
US8641734B2 (en) | 2009-02-13 | 2014-02-04 | DePuy Synthes Products, LLC | Dual spring posterior dynamic stabilization device with elongation limiting elastomers |
US8118840B2 (en) | 2009-02-27 | 2012-02-21 | Warsaw Orthopedic, Inc. | Vertebral rod and related method of manufacture |
US9833277B2 (en) | 2009-04-27 | 2017-12-05 | Nxthera, Inc. | Systems and methods for prostate treatment |
US11331135B2 (en) | 2009-04-27 | 2022-05-17 | Boston Scientific Scimed, Inc. | Systems and methods for prostate treatment |
US10390873B2 (en) | 2009-04-27 | 2019-08-27 | Boston Scientific Scimed, Inc. | Systems and methods for prostate treatment |
US9918745B2 (en) | 2009-06-15 | 2018-03-20 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet |
US9717534B2 (en) | 2009-06-15 | 2017-08-01 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock |
US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
US11229457B2 (en) | 2009-06-15 | 2022-01-25 | Roger P. Jackson | Pivotal bone anchor assembly with insert tool deployment |
US9980753B2 (en) | 2009-06-15 | 2018-05-29 | Roger P Jackson | pivotal anchor with snap-in-place insert having rotation blocking extensions |
US9480517B2 (en) | 2009-06-15 | 2016-11-01 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock |
US9393047B2 (en) | 2009-06-15 | 2016-07-19 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock |
US9504496B2 (en) | 2009-06-15 | 2016-11-29 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US8998959B2 (en) | 2009-06-15 | 2015-04-07 | Roger P Jackson | Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert |
US9668771B2 (en) | 2009-06-15 | 2017-06-06 | Roger P Jackson | Soft stabilization assemblies with off-set connector |
US8556938B2 (en) | 2009-06-15 | 2013-10-15 | Roger P. Jackson | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
US10363070B2 (en) | 2009-06-15 | 2019-07-30 | Roger P. Jackson | Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers |
US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US9320543B2 (en) | 2009-06-25 | 2016-04-26 | DePuy Synthes Products, Inc. | Posterior dynamic stabilization device having a mobile anchor |
US8105360B1 (en) | 2009-07-16 | 2012-01-31 | Orthonex LLC | Device for dynamic stabilization of the spine |
US8657856B2 (en) | 2009-08-28 | 2014-02-25 | Pioneer Surgical Technology, Inc. | Size transition spinal rod |
US9011494B2 (en) | 2009-09-24 | 2015-04-21 | Warsaw Orthopedic, Inc. | Composite vertebral rod system and methods of use |
WO2011066231A1 (en) * | 2009-11-25 | 2011-06-03 | Seaspine, Inc. | Hybrid rod constructs for spinal applications |
US10945861B2 (en) | 2009-12-07 | 2021-03-16 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US10610380B2 (en) | 2009-12-07 | 2020-04-07 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US11918486B2 (en) | 2009-12-07 | 2024-03-05 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US10543107B2 (en) | 2009-12-07 | 2020-01-28 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US10857004B2 (en) | 2009-12-07 | 2020-12-08 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US9445844B2 (en) | 2010-03-24 | 2016-09-20 | DePuy Synthes Products, Inc. | Composite material posterior dynamic stabilization spring rod |
US20110238144A1 (en) * | 2010-03-25 | 2011-09-29 | Michael Hoey | Systems and Methods for Prostate Treatment |
US8632530B2 (en) | 2010-03-25 | 2014-01-21 | Nxthera, Inc. | Systems and methods for prostate treatment |
US9198708B2 (en) | 2010-03-25 | 2015-12-01 | Nxthera, Inc. | Systems and methods for prostate treatment |
US20120029564A1 (en) * | 2010-07-29 | 2012-02-02 | Warsaw Orthopedic, Inc. | Composite Rod for Spinal Implant Systems With Higher Modulus Core and Lower Modulus Polymeric Sleeve |
US20120109207A1 (en) * | 2010-10-29 | 2012-05-03 | Warsaw Orthopedic, Inc. | Enhanced Interfacial Conformance for a Composite Rod for Spinal Implant Systems with Higher Modulus Core and Lower Modulus Polymeric Sleeve |
US8721566B2 (en) | 2010-11-12 | 2014-05-13 | Robert A. Connor | Spinal motion measurement device |
US8940051B2 (en) | 2011-03-25 | 2015-01-27 | Flexuspine, Inc. | Interbody device insertion systems and methods |
US9895185B2 (en) | 2011-09-13 | 2018-02-20 | Nxthera, Inc. | Systems and methods for prostate treatment |
US10987150B2 (en) | 2011-09-13 | 2021-04-27 | Boston Scientific Scimed, Inc. | Systems and methods for prostate treatment |
US11324608B2 (en) | 2011-09-23 | 2022-05-10 | Samy Abdou | Spinal fixation devices and methods of use |
US11517449B2 (en) | 2011-09-23 | 2022-12-06 | Samy Abdou | Spinal fixation devices and methods of use |
US10575961B1 (en) | 2011-09-23 | 2020-03-03 | Samy Abdou | Spinal fixation devices and methods of use |
US9526627B2 (en) | 2011-11-17 | 2016-12-27 | Exactech, Inc. | Expandable interbody device system and method |
US9636146B2 (en) | 2012-01-10 | 2017-05-02 | Roger P. Jackson | Multi-start closures for open implants |
US11839413B2 (en) | 2012-02-22 | 2023-12-12 | Samy Abdou | Spinous process fixation devices and methods of use |
US11006982B2 (en) | 2012-02-22 | 2021-05-18 | Samy Abdou | Spinous process fixation devices and methods of use |
WO2013152119A1 (en) * | 2012-04-03 | 2013-10-10 | Nxthera, Inc. | Induction coil vapor generator |
US10335222B2 (en) | 2012-04-03 | 2019-07-02 | Nxthera, Inc. | Induction coil vapor generator |
US11559336B2 (en) | 2012-08-28 | 2023-01-24 | Samy Abdou | Spinal fixation devices and methods of use |
US10695105B2 (en) | 2012-08-28 | 2020-06-30 | Samy Abdou | Spinal fixation devices and methods of use |
US11918483B2 (en) | 2012-10-22 | 2024-03-05 | Cogent Spine Llc | Devices and methods for spinal stabilization and instrumentation |
US11173040B2 (en) | 2012-10-22 | 2021-11-16 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
US9770265B2 (en) | 2012-11-21 | 2017-09-26 | Roger P. Jackson | Splay control closure for open bone anchor |
US8911478B2 (en) | 2012-11-21 | 2014-12-16 | Roger P. Jackson | Splay control closure for open bone anchor |
US10058354B2 (en) | 2013-01-28 | 2018-08-28 | Roger P. Jackson | Pivotal bone anchor assembly with frictional shank head seating surfaces |
US8852239B2 (en) | 2013-02-15 | 2014-10-07 | Roger P Jackson | Sagittal angle screw with integral shank and receiver |
US11766341B2 (en) | 2013-02-20 | 2023-09-26 | Tyler Fusion Technologies, Llc | Expandable fusion device for positioning between adjacent vertebral bodies |
US9492288B2 (en) | 2013-02-20 | 2016-11-15 | Flexuspine, Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
US11369484B2 (en) | 2013-02-20 | 2022-06-28 | Flexuspine Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
US11857243B2 (en) | 2013-03-14 | 2024-01-02 | Boston Scientific Scimed, Inc. | Systems and methods for treating prostate cancer |
US10772670B2 (en) | 2013-03-14 | 2020-09-15 | Boston Scientific Scimed, Inc. | Systems and methods for treating prostate cancer |
US9566092B2 (en) | 2013-10-29 | 2017-02-14 | Roger P. Jackson | Cervical bone anchor with collet retainer and outer locking sleeve |
US11786287B2 (en) | 2013-12-10 | 2023-10-17 | Boston Scientific Scimed, Inc. | Systems and methods for treating the prostate |
US10806502B2 (en) | 2013-12-10 | 2020-10-20 | Boston Scientific Scimed, Inc. | Systems and methods for treating the prostate |
US11849990B2 (en) | 2013-12-10 | 2023-12-26 | Boston Scientific Scimed, Inc. | Vapor ablation systems and methods |
US9968395B2 (en) | 2013-12-10 | 2018-05-15 | Nxthera, Inc. | Systems and methods for treating the prostate |
US10194970B2 (en) | 2013-12-10 | 2019-02-05 | Nxthera, Inc. | Vapor ablation systems and methods |
US9717533B2 (en) | 2013-12-12 | 2017-08-01 | Roger P. Jackson | Bone anchor closure pivot-splay control flange form guide and advancement structure |
US9451993B2 (en) | 2014-01-09 | 2016-09-27 | Roger P. Jackson | Bi-radial pop-on cervical bone anchor |
US10398565B2 (en) | 2014-04-24 | 2019-09-03 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
US11253373B2 (en) | 2014-04-24 | 2022-02-22 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
US9517144B2 (en) | 2014-04-24 | 2016-12-13 | Exactech, Inc. | Limited profile intervertebral implant with incorporated fastening mechanism |
US10758274B1 (en) | 2014-05-02 | 2020-09-01 | Nuvasive, Inc. | Spinal fixation constructs and related methods |
US10064658B2 (en) | 2014-06-04 | 2018-09-04 | Roger P. Jackson | Polyaxial bone anchor with insert guides |
US9597119B2 (en) | 2014-06-04 | 2017-03-21 | Roger P. Jackson | Polyaxial bone anchor with polymer sleeve |
US10342593B2 (en) | 2015-01-29 | 2019-07-09 | Nxthera, Inc. | Vapor ablation systems and methods |
US11559345B2 (en) | 2015-01-29 | 2023-01-24 | Boston Scientific Scimed, Inc. | Vapor ablation systems and methods |
US11246641B2 (en) | 2015-05-13 | 2022-02-15 | Boston Scientific Scimed, Inc. | Systems and methods for treating the bladder with condensable vapor |
US10702327B2 (en) | 2015-05-13 | 2020-07-07 | Boston Scientific Scimed, Inc. | Systems and methods for treating the bladder with condensable vapor |
US11864810B2 (en) | 2015-05-13 | 2024-01-09 | Boston Scientific Scimed, Inc. | Systems and methods for treating the bladder with condensable vapor |
US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
US11246718B2 (en) | 2015-10-14 | 2022-02-15 | Samy Abdou | Devices and methods for vertebral stabilization |
US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
US11058548B1 (en) | 2016-10-25 | 2021-07-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US11752008B1 (en) | 2016-10-25 | 2023-09-12 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10548740B1 (en) | 2016-10-25 | 2020-02-04 | Samy Abdou | Devices and methods for vertebral bone realignment |
US11259935B1 (en) | 2016-10-25 | 2022-03-01 | Samy Abdou | Devices and methods for vertebral bone realignment |
US11246640B2 (en) | 2016-12-21 | 2022-02-15 | Boston Scientific Scimed, Inc. | Vapor ablation systems and methods |
US12096967B2 (en) | 2016-12-21 | 2024-09-24 | Boston Scientific Scimed, Inc. | Vapor ablation systems and methods |
US10751107B2 (en) | 2017-01-06 | 2020-08-25 | Boston Scientific Scimed, Inc. | Transperineal vapor ablation systems and methods |
US11992254B2 (en) | 2017-01-06 | 2024-05-28 | Boston Scientific Scimed, Inc. | Medical devices and methods |
US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
US11583318B2 (en) | 2018-12-21 | 2023-02-21 | Paradigm Spine, Llc | Modular spine stabilization system and associated instruments |
US12114895B2 (en) | 2018-12-21 | 2024-10-15 | Xtant Medical Holdings, Inc. | Modular spine stabilization system and associated instruments |
Also Published As
Publication number | Publication date |
---|---|
KR100550262B1 (en) | 2006-02-08 |
US7763052B2 (en) | 2010-07-27 |
KR20050090949A (en) | 2005-09-14 |
US20050124991A1 (en) | 2005-06-09 |
KR100554359B1 (en) | 2006-02-24 |
KR100550263B1 (en) | 2006-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7763052B2 (en) | Method and apparatus for flexible fixation of a spine | |
US8968366B2 (en) | Method and apparatus for flexible fixation of a spine | |
US7815665B2 (en) | Adjustable spinal stabilization system | |
CA2591848C (en) | Adjustable spinal stabilization system | |
US20050203513A1 (en) | Spinal stabilization device | |
US8623057B2 (en) | Spinal stabilization device | |
JP2007506514A5 (en) | ||
JP2007516733A (en) | Method and apparatus for flexible fixation of the spine | |
JP2007516733A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: N-SPINE, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAHNG, TAE-AHN, MR;REEL/FRAME:019909/0754 Effective date: 20040416 |
|
AS | Assignment |
Owner name: N SPINE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAHNG, TAE-AHN, DR.;REEL/FRAME:020113/0961 Effective date: 20071108 Owner name: N SPINE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAHNG, TAE-AHN, DR.;REEL/FRAME:020113/0987 Effective date: 20071108 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: N SPINE, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT INCORRECTLY RECORDED AND TO REMOVE THE ASSIGNMENT PREVIOUSLY RECORDED ON REEL 020113 FRAME 0961. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:JAHNG, TAE-AHN, DR.;REEL/FRAME:029621/0740 Effective date: 20071108 |
|
AS | Assignment |
Owner name: DEPUY SPINE, LLC, MASSACHUSETTS Free format text: MERGER;ASSIGNOR:DEPUY ACQUISITION LLC;REEL/FRAME:030354/0351 Effective date: 20121230 Owner name: DEPUY SYNTHES PRODUCTS, LLC, MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:HAND INNOVATIONS LLC;REEL/FRAME:030354/0601 Effective date: 20121231 Owner name: DEPUY ACQUISITION LLC, INDIANA Free format text: MERGER;ASSIGNOR:N SPINE, INC.;REEL/FRAME:030354/0247 Effective date: 20121230 Owner name: HAND INNOVATIONS LLC, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEPUY SPINE, LLC;REEL/FRAME:030354/0460 Effective date: 20121230 |