[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI657080B - A bipolar host material containing 1,2,4 - triazine group and its application - Google Patents

A bipolar host material containing 1,2,4 - triazine group and its application Download PDF

Info

Publication number
TWI657080B
TWI657080B TW106138217A TW106138217A TWI657080B TW I657080 B TWI657080 B TW I657080B TW 106138217 A TW106138217 A TW 106138217A TW 106138217 A TW106138217 A TW 106138217A TW I657080 B TWI657080 B TW I657080B
Authority
TW
Taiwan
Prior art keywords
host material
substituted
bipolar host
patent application
scope
Prior art date
Application number
TW106138217A
Other languages
Chinese (zh)
Other versions
TW201825468A (en
Inventor
彭嘉歡
戴雷
蔡麗菲
Original Assignee
大陸商廣東阿格蕾雅光電材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商廣東阿格蕾雅光電材料有限公司 filed Critical 大陸商廣東阿格蕾雅光電材料有限公司
Publication of TW201825468A publication Critical patent/TW201825468A/en
Application granted granted Critical
Publication of TWI657080B publication Critical patent/TWI657080B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/02Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 not condensed with other rings
    • C07D253/061,2,4-Triazines
    • C07D253/0651,2,4-Triazines having three double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本發明涉及一種含有1,2,4-三嗪基團的雙極性主體材料及應用,基於 1,2,4-三嗪基的雙極性主體材料,具有式(I)所述結構的化合物,其中,R1-R4為示為取代或未取代的吖啶基、吩噻嗪基、咔唑基、二苯胺基、氫、鹵素、取代或未取代的烷基。R1-R4至少一個為取代或未取代的吖啶基、吩噻嗪基、咔唑基、二苯胺基。實驗表明,本發明的化合物比常用主體材料CBP具有更高的玻璃化轉變溫度,熱穩定性好;使用本發明化合物的電致發光器件啟亮電壓更低,在相同電流密度下,電流效率更高,更利於載流子注入和傳輸平衡,使用本發明的有機材料製備的器件具有更好的電致發光性能,更符合高性能有機半導體器件對主體材料的要求。 The invention relates to a bipolar host material containing a 1,2,4-triazine group and its application. The bipolar host material based on a 1,2,4-triazine group has a compound having the structure described by formula (I) Among them, R 1 to R 4 are shown as substituted or unsubstituted acridinyl, phenothiazinyl, carbazolyl, diphenylamino, hydrogen, halogen, substituted or unsubstituted alkyl. At least one of R 1 to R 4 is a substituted or unsubstituted acridinyl group, a phenothiazinyl group, a carbazolyl group, or a diphenylamino group. Experiments show that the compound of the present invention has a higher glass transition temperature and better thermal stability than the commonly used host material CBP; the electroluminescent device using the compound of the present invention has a lower start-up voltage and more efficient current at the same current density. High, more conducive to carrier injection and transmission balance, the device prepared using the organic material of the invention has better electroluminescence performance, more in line with the requirements of host materials for high-performance organic semiconductor devices.

Description

一種含有1,2,4-三嗪基團的雙極性主體材料及應用 Bipolar host material containing 1,2,4-triazine group and application

本發明涉及新型的雙極性主體材料,屬於有機發光材料技術領域,具體涉及一種以1,2,4-三嗪為中心核的新型的雙極性主體材料及其應用。 The invention relates to a novel bipolar host material, and belongs to the technical field of organic light-emitting materials, and in particular relates to a novel bipolar host material with a 1,2,4-triazine as a core and a use thereof.

有機發光二極體(OLED)具有相應速度快、耗能低、亮度高、視角廣、可彎曲、主動發光等特性,受到了科學界和產業界的高度重視。其在顯示、照明等方面的應用具有較大的潛力。電致螢光和電致磷光分別被稱為第一代和第二代OLED。基於螢光材料的OLED具有穩定性高的特點,但受限於量子統計學定律,在電啟動作用下,產生的單線態激子和三線態激子的比例為1:3,所以螢光材料電致發光內量子效率最大僅有25%。而磷光材料具有重原子的自旋軌道耦合作用,可以綜合利用單線態激子和三線態激子,理論的內量子效率可達100%,但是基於磷光的OLED具有明顯的效率滾降效應,在高亮度應用中有一定的阻礙。另外,磷光材料需用使用Pt,Ir等貴價金屬,因此磷光材料價格較高。而目前,OLED器件中客體材料主要應用磷光材料。 Organic light emitting diodes (OLEDs) have the characteristics of high speed, low energy consumption, high brightness, wide viewing angle, flexible, and active light emission, and have been highly valued by the scientific and industrial circles. Its application in display and lighting has great potential. Electrofluorescence and electrophosphorescence are referred to as first and second generation OLEDs, respectively. OLEDs based on fluorescent materials have the characteristics of high stability, but are limited by the laws of quantum statistics. The ratio of singlet excitons and triplet excitons generated by electrical activation is 1: 3, so fluorescent materials The maximum quantum efficiency in electroluminescence is only 25%. Phosphorescent materials have the spin-orbit coupling effect of heavy atoms, and can use singlet excitons and triplet excitons in combination. The theoretical internal quantum efficiency can reach 100%, but phosphorescent-based OLEDs have significant efficiency roll-off effects. There are certain obstacles in high brightness applications. In addition, phosphorescent materials need to use noble metals such as Pt, Ir, so the phosphorescent materials are expensive. At present, phosphorescent materials are mainly used as guest materials in OLED devices.

磷光材料可以綜合利用單線態激子和三線態激子,實現100%的內量子效率。然而,由於過渡金屬配合物的激發態激子壽命相對過長,導致三線態-三線態(T1-T1)在器件實際工作中淬滅。為了克服這個問題,研究者們常將 磷光材料摻雜於有機主體材料中。因此,對於高效有機發光二極體,開發高性能的主體材料以及客體材料十分重要。 Phosphorescent materials can use singlet excitons and triplet excitons in combination to achieve 100% internal quantum efficiency. However, the excited state exciton lifetime of the transition metal complex is relatively long, which causes the triplet state to triplet state (T 1 -T 1 ) to be quenched in the actual operation of the device. To overcome this problem, researchers often dope phosphorescent materials into organic host materials. Therefore, for efficient organic light-emitting diodes, it is important to develop high-performance host materials and guest materials.

目前,廣泛應用於磷光器件的主體材料為CBP(4,4’-二(9-咔唑基)聯苯),但是它要求的驅動電壓較高、玻璃化轉變溫度(Tg)低(Tg=62℃),易於結晶。另外,CBP是一種P型材料,空穴遷移率遠高於電子遷移率,不利於載流子注入和傳輸平衡,且發光效率低。 At present, the host material widely used in phosphorescent devices is CBP (4,4'-bis (9-carbazolyl) biphenyl), but it requires a higher driving voltage and a lower glass transition temperature (T g ) (T g = 62 ° C), easy to crystallize. In addition, CBP is a P-type material. The hole mobility is much higher than the electron mobility, which is not conducive to carrier injection and transport balance, and has low luminous efficiency.

針對現有主體(CBP)材料要求的驅動電壓較高、玻璃化轉變溫度易於結晶、載流子注入和傳輸不平衡等問題,本發明提供一種雙極性主體材料,該材料以1,2,4-三嗪基作為強拉電子中心核,具有強給電子能力的二苯胺類、咔唑、吖啶等衍生物作為連接基團,形成D-A型、D-A-D型雙極性材料。 Aiming at the problems that the existing host (CBP) materials require high driving voltage, glass transition temperature is easy to crystallize, carrier injection and transport imbalance, etc., the present invention provides a bipolar host material. The material is 1,2,4- The triazine group is used as the core of the strong-pull electron, and derivatives such as diphenylamines, carbazoles, and acridines with strong electron-donating ability are used as connecting groups to form DA-type and DAD-type bipolar materials.

基於1,2,4-三嗪基的雙極性主體材料,具有式(I)所述結構的化合物, A bipolar host material based on a 1,2,4-triazine group, a compound having a structure described by formula (I),

其中,R1-R4表示為取代或未取代的吖啶基、吩噻嗪基、咔唑基、二苯胺基,氫,鹵素,C1-C4烷基,R1-R4至少一個為取代或未取代的吖啶基、 吩噻嗪基、咔唑基、二苯胺基,R5、R6為氫、鹵素、C1-C4烷基,所述取代為C1-C4的烷基取代、苯基取代、或烷苯基取代。 Among them, R 1 -R 4 represent substituted or unsubstituted acridinyl, phenothiazinyl, carbazolyl, diphenylamino, hydrogen, halogen, C1-C4 alkyl, and at least one of R 1 -R 4 is substituted Or unsubstituted acridinyl, phenothiazinyl, carbazolyl, diphenylamino, R 5 and R 6 are hydrogen, halogen, C1-C4 alkyl, and the substitution is C1-C4 alkyl substituted, benzene Group substitution, or alkylphenyl substitution.

優選:其中,R5、R6獨立地表示為氫;R1與R2中的一個為氫,另一個為取代或者未取代的吖啶基、吩噻嗪基、咔唑基、二苯胺基;R3與R4中的一個為氫,另一個為烷基取代或者未取代的吖啶基、吩噻嗪基、咔唑基、二苯胺基。 Preferably: wherein R 5 and R 6 are independently represented as hydrogen; one of R 1 and R 2 is hydrogen, and the other is substituted or unsubstituted acridinyl, phenothiazinyl, carbazolyl, diphenylamino ; One of R 3 and R 4 is hydrogen, and the other is alkyl-substituted or unsubstituted acridinyl, phenothiazinyl, carbazolyl, diphenylamino.

更優選:其中R1與R3相同,R2與R4相同。 More preferably: wherein R 1 is the same as R 3 and R 2 is the same as R 4 .

進一步優選:R1與R3為氫,R2、R4為C1-C4烷基或苯基取代或者未取代的吖啶基、咔唑基。 More preferably, R 1 and R 3 are hydrogen, and R 2 and R 4 are C1-C4 alkyl or phenyl substituted or unsubstituted acridinyl or carbazolyl.

式(I)所述的化合物為下列結構化合物 The compound of formula (I) is a compound of the following structure

有機電致發光器件,包括陰極、陽極和有機層,所述有機層為空穴傳輸層、空穴阻擋層、電子傳輸層、發光層中的一層或多層。需要特別指出,上述有機層可以根據需要,這些有機層不必每層都存在。 An organic electroluminescent device includes a cathode, an anode, and an organic layer. The organic layer is one or more of a hole transporting layer, a hole blocking layer, an electron transporting layer, and a light emitting layer. It should be particularly pointed out that the above-mentioned organic layers can be according to requirements, and these organic layers do not need to exist in each layer.

所述式(I)所述的化合物為空穴傳輸層的材料。 The compound represented by the formula (I) is a material of a hole transport layer.

本發明的電子器件有機層的總厚度為1-1000nm,優選1-500nm,更優選5-300nm。 The total thickness of the organic layer of the electronic device of the present invention is 1-1000 nm, preferably 1-500 nm, and more preferably 5-300 nm.

所述有機層可以通過蒸渡或旋塗形成薄膜。 The organic layer may be formed into a thin film by evaporation or spin coating.

如上面提到,本發明的式(I)所述的化合物如下,但不限於所列舉的結構: As mentioned above, the compounds of formula (I) of the present invention are as follows, but are not limited to the enumerated structures:

上述雙極材料的製備方法,包括以下製備步驟:首先將二鹵素取代芳基乙二酮(a)與取代或未取代的芳醯肼(b)在叔丁醇鈉條件下反應,得到亞胺中間體溶液,抽濾的溶液,減壓除去溶劑後加入醋酸,並加入醋酸銨加熱回流。得到3,5,6-(取代或未取代的苯基)-1,2,4-三嗪(c)。最後3,5,6-三(鹵素取代苯)-1,2,4-三嗪(c)與取代或未取代的吖啶基、吩噻嗪基、咔唑基、二苯胺基(d)通過鈀催化的Buchwald反應,得到所述的雙極主體材料。 The method for preparing the above bipolar material includes the following preparation steps: firstly reacting a dihalogen-substituted arylethylenedione (a) with a substituted or unsubstituted arylenehydrazine (b) under the condition of sodium tert-butoxide to obtain an imine Intermediate solution, filtered solution with suction, the solvent was removed under reduced pressure, acetic acid was added, and ammonium acetate was added and heated under reflux. This gave 3,5,6- (substituted or unsubstituted phenyl) -1,2,4-triazine (c). Finally 3,5,6-tri (halogen-substituted benzene) -1,2,4-triazine (c) and substituted or unsubstituted acridinyl, phenothiazinyl, carbazolyl, diphenylamino (d) The palladium-catalyzed Buchwald reaction is used to obtain the bipolar host material.

化合物a是由鹵代苯甲醛通過安息香縮合反應,再氧化所得;化合物b是通過取代的苯甲酸甲酯的醯肼化製得;化合物d為市售所得。 Compound a is obtained by halogenated benzaldehyde through a benzoin condensation reaction and then oxidized; compound b is prepared by hydrazation of a substituted methyl benzoate; compound d is obtained on the market.

實驗表明,本發明的化合物比常用主體材料CBP具有更高的玻璃化轉變溫度,本發明顯著提高了主體材料的熱穩定性。使用本發明的雙極性主體材料製備的有機電致發光器件,穩定性高,具有更好的應用前景,更符合有機發光二極體對主體材料的要求。 Experiments show that the compound of the present invention has a higher glass transition temperature than the commonly used host material CBP, and the present invention significantly improves the thermal stability of the host material. The organic electroluminescent device prepared by using the bipolar host material of the invention has high stability, has better application prospects, and meets the requirements of the organic light emitting diode for the host material.

10‧‧‧玻璃基板 10‧‧‧ glass substrate

20‧‧‧陽極 20‧‧‧Anode

30‧‧‧空穴注入層 30‧‧‧ hole injection layer

40‧‧‧空穴傳輸層 40‧‧‧ hole transport layer

50‧‧‧發光層 50‧‧‧Light emitting layer

60‧‧‧空穴阻擋層 60‧‧‧ hole blocking layer

70‧‧‧電子傳輸層 70‧‧‧ electron transmission layer

80‧‧‧電子注入層 80‧‧‧ electron injection layer

90‧‧‧陰極 90‧‧‧ cathode

圖1為化合物4的DSC曲線;圖2為本發明的器件結構圖,其中10代表為玻璃基板,20代表為陽極,30代表為空穴注入層,40代表為空穴傳輸層,50代表發光層,60代表為空穴阻擋層,70代表為電子傳輸層,80代表為電子注入層,90代表為陰極;以及圖3為實施例器件與比較例器件電流密度-電流效率圖。(其中4為實施例,5為比較例) Fig. 1 is a DSC curve of compound 4; Fig. 2 is a device structure diagram of the present invention, where 10 represents a glass substrate, 20 represents an anode, 30 represents a hole injection layer, 40 represents a hole transport layer, and 50 represents light emission 60 represents a hole blocking layer, 70 represents an electron transport layer, 80 represents an electron injection layer, and 90 represents a cathode; and FIG. 3 is a graph of current density-current efficiency of an example device and a comparative example device. (Where 4 is an example and 5 is a comparative example)

下面結合實施例對本發明作進一步詳細的描述,但本發明的實施方式不限於此。 The present invention is described in further detail below with reference to the examples, but the embodiments of the present invention are not limited thereto.

實施例1 Example 1

(1)5,6-二(4-溴苯基)-3-苯基-1,2,4-三嗪(c1)的合成 (1) Synthesis of 5,6-bis (4-bromophenyl) -3-phenyl-1,2,4-triazine (c1)

合成路線如下所示: The synthetic route is as follows:

具體合成步驟為:秤取叔丁醇鈉(1.44g,15mmol)加至乾燥四氫呋喃(50mL)中,加入苯醯肼(1.36g,10mmol)(b1),隨後加入1,2-二(4-溴苯基)乙基-1,2-二酮(3.68g,10mmol)(a1)(通過4-溴苯甲醛的安息香縮合再氧化製備),攪拌1小時,抽濾並用二氯甲烷洗滌,得濾液。旋轉蒸發儀除去溶劑後,加入20mL冰醋酸和醋酸銨(7.7g,100mmol),升溫至回流反應攪拌4小時。反應結束後,自然冷卻至室溫,析出黃色固體,砂芯漏斗抽濾,水洗。矽膠柱層析分離得到3g黃色固體。產率:64%。 The specific synthetic steps are: weigh out sodium tert-butoxide (1.44g, 15mmol) and add it to dry tetrahydrofuran (50mL), add phenylhydrazine (1.36g, 10mmol) (b1), and then add 1,2-bis (4- Bromophenyl) ethyl-1,2-dione (3.68 g, 10 mmol) (a1) (prepared by benzoin condensation and reoxidation of 4-bromobenzaldehyde), stirred for 1 hour, suction filtered and washed with dichloromethane to obtain filtrate. After removing the solvent on a rotary evaporator, 20 mL of glacial acetic acid and ammonium acetate (7.7 g, 100 mmol) were added, and the mixture was heated to reflux and stirred for 4 hours. After the reaction was completed, the mixture was naturally cooled to room temperature, and a yellow solid precipitated. The sand core funnel was filtered with suction and washed with water. Silica gel column chromatography gave 3 g of a yellow solid. Yield: 64%.

(2)9,9’-((3-苯基-1,2,4-三嗪-5,6-二基)二(4,1-亞苯基))二(9H-咔唑)(1)的合成 (2) 9,9 '-((3-phenyl-1,2,4-triazine-5,6-diyl) bis (4,1-phenylene)) bis (9H-carbazole) ( 1) Synthesis

合成路線如下所示: The synthetic route is as follows:

具體合成步驟為:秤取5,6-二(4-溴苯基)-3-苯基-1,2,4-三嗪(0.93g,2mmol)(c1),咔唑(0.67g,4mmol),Pd2(dba)3(0.19g,0.2mmol),NaOtBu(0.77g,8mmol)於25mL三口燒瓶中,換氮氣三次。三叔丁基膦甲苯溶液(0.16g,0.4mmol)溶於10mL乾燥的甲苯中,注入到反應瓶中。升溫回流16小時。反應結束後,加入5%的亞硫酸氫鈉溶液,二氯甲烷萃取,合併有機層,無水硫酸鎂乾燥。砂芯漏斗過濾,旋乾溶劑,以正己烷:二氯甲烷=2:1為洗脫劑,矽膠層析柱提純,分離得到1.27g黃色粉末固體。產率:93.5%。產物鑒定資料如下:1H NMR(400MHz,CDCl3)δ=8.80-8.69(m,2 H),8.16(d,J=7.7Hz,4 H),8.06(d,J=8.4Hz,2 H),7.99(d,J=8.4Hz,2 H),7.73(d,J=8.4Hz,4 H),7.67-7.57(m,3 H),7.56-7.48(m,4 H),7.44(t,J=7.6Hz,4 H),7.32(dt,J=3.2,7.2Hz,4 H)ppm.13C NMR(100MHz,CDCl3)=161.6,154.8,154.6,140.4,140.2,139.3,134.6,134.2,134.2,131.9,131.6,131.1,129.0,128.5,127.0,126.7,126.3,126.2,123.9,123.7,120.6,120.5,120.5,120.5,109.7ppm.Ms(ESI:Mz 640)(M+1) The specific synthetic steps are as follows: 5,6-bis (4-bromophenyl) -3-phenyl-1,2,4-triazine (0.93g, 2mmol) ( c1 ), carbazole (0.67g, 4mmol) ), Pd 2 (dba) 3 (0.19 g, 0.2 mmol), NaOtBu (0.77 g, 8 mmol) in a 25 mL three-necked flask, and nitrogen was changed three times. Tri-tert-butylphosphine toluene solution (0.16 g, 0.4 mmol) was dissolved in 10 mL of dry toluene and poured into a reaction flask. The temperature was increased to reflux for 16 hours. After the reaction was completed, a 5% sodium bisulfite solution was added and the mixture was extracted with dichloromethane. The organic layers were combined and dried over anhydrous magnesium sulfate. Sand core funnel was filtered, the solvent was spin-dried, n-hexane: dichloromethane = 2: 1 was used as eluent, and the silica gel column was purified to obtain 1.27 g of a yellow powder solid. Yield: 93.5%. Product identification information is as follows: 1 H NMR (400MHz, CDCl 3 ) δ = 8.80-8.69 (m, 2 H), 8.16 (d, J = 7.7Hz, 4 H), 8.06 (d, J = 8.4Hz, 2 H ), 7.99 (d, J = 8.4Hz, 2 H), 7.73 (d, J = 8.4Hz, 4 H), 7.67-7.57 (m, 3 H), 7.56-7.48 (m, 4 H), 7.44 ( t, J = 7.6 Hz, 4 H), 7.32 (dt, J = 3.2, 7.2 Hz, 4 H) ppm. 13 C NMR (100 MHz, CDCl 3 ) = 161.6, 154.8, 154.6, 140.4, 140.2, 139.3, 134.6 , 134.2,134.2,131.9,131.6,131.1,129.0,128.5,127.0,126.7,126.3,126.2,123.9,123.7,120.6,120.5,120.5,120.5,109.7ppm.Ms (ESI: Mz 640) (M + 1)

實施例2 Example 2

(1)5,6-二(3-溴苯基)-3-苯基-1,2,4-三嗪(c2)的合成 (1) Synthesis of 5,6-bis (3-bromophenyl) -3-phenyl-1,2,4-triazine (c2)

合成路線如下所示: The synthetic route is as follows:

具體合成步驟為: 秤取叔丁醇鈉(1.44g,15mmol)加至乾燥四氫呋喃(50mL)中,加入苯醯肼(1.36g,10mmol)(b1),隨後加入1,2-二(3-溴苯基)乙基-1,2-二酮(3.68g,10mmol)(a2)(通過3-溴苯甲醛的安息香縮合再氧化製備),攪拌1小時,抽濾並用二氯甲烷洗滌,得濾液。旋轉蒸發儀除去溶劑後,加入20mL冰醋酸和醋酸銨(7.7g,100mmol),升溫至回流反應攪拌4小時。反應結束後,減壓旋乾過量的醋酸。矽膠柱層析分離得到3.2g淺黃色油狀物。產率:69%。 The specific synthesis steps are: Weigh out sodium tert-butoxide (1.44g, 15mmol) and add to dry tetrahydrofuran (50mL), add phenylhydrazine (1.36g, 10mmol) (b1), and then add 1,2-bis (3-bromophenyl) ethyl -1,2-diketone (3.68 g, 10 mmol) (a2) (prepared by benzoin condensation and reoxidation of 3-bromobenzaldehyde), stirred for 1 hour, suction filtered and washed with dichloromethane to obtain a filtrate. After removing the solvent on a rotary evaporator, 20 mL of glacial acetic acid and ammonium acetate (7.7 g, 100 mmol) were added, and the mixture was heated to reflux and stirred for 4 hours. After the reaction was completed, excess acetic acid was spin-dried under reduced pressure. Silica gel column chromatography gave 3.2 g of a pale yellow oil. Yield: 69%.

(2)10,10’-((3-苯基-1,2,4-三嗪-5,6-二基)二(3,1-亞苯基))二(9,9-二甲基吖啶)(4)的合成 (2) 10,10 '-((3-phenyl-1,2,4-triazine-5,6-diyl) bis (3,1-phenylene)) bis (9,9-dimethyl Of acryl) (4)

合成路線如下所示: The synthetic route is as follows:

秤取5,6-二(3-溴苯基)-3-苯基-1,2,4-三嗪(0.93g,2mmol)(c2),9,9-二甲基吖啶(0.84g,4mmol)(d2),Pd2(dba)3(0.19g,0.2mmol),NaOtBu(0.77g,8mmol)於25mL三口燒瓶中,換氮氣三次。三叔丁基膦甲苯溶液(0.16g,0.4mmol)溶於10mL乾燥的甲苯中,注入到反應瓶中。升溫回流16小時。反應結束後,加入5%的亞硫酸氫鈉溶液,二氯甲烷萃取,合併有機層,無水硫酸鎂乾燥。砂芯漏斗過濾,旋乾溶劑,以正己烷:二氯甲烷=2:1為洗脫劑,矽膠層析柱提純,分離得到1.3g黃色粉末固體。再用10mL二氯甲烷溶解,加入20mL乙酸乙酯,放置於5℃冰箱析晶,得到1.1g淺黃色晶體。產率:74%。產物鑒定資料如下: 1H NMR(400MHz,CDCl3)δ=8.81-8.67(m,2 H),8.03(d,J=8.4Hz,2 H),7.97(d,J=8.3Hz,2 H),7.67-7.56(m,3 H),7.52-7.38(m,8 H),6.92(dt,J=3.4,6.4Hz,8 H),6.34(dd,J=3.5,5.9Hz,4 H),1.68(s,12 H)ppm.13C NMR(100MHz,CDCl3)δ=161.8,155.1,155.0,144.0,142.8,140.6,140.5,135.3,135.3,134.6,132.5,132.1,132.0,131.8,131.2,130.7,130.4,129.0,128.6,126.5,125.3,125.2,121.2,121.0,114.3,114.0,36.1,36.1,31.6,31.0,30.9,22.7,14.2 Weigh 5,6-bis (3-bromophenyl) -3-phenyl-1,2,4-triazine (0.93g, 2mmol) ( c2 ), 9,9-dimethylacridine (0.84g , 4 mmol) ( d2 ), Pd 2 (dba) 3 (0.19 g, 0.2 mmol), NaOtBu (0.77 g, 8 mmol) in a 25 mL three-necked flask, and nitrogen was changed three times. Tri-tert-butylphosphine toluene solution (0.16 g, 0.4 mmol) was dissolved in 10 mL of dry toluene and poured into a reaction flask. The temperature was increased to reflux for 16 hours. After the reaction was completed, a 5% sodium bisulfite solution was added and the mixture was extracted with dichloromethane. The organic layers were combined and dried over anhydrous magnesium sulfate. Sand core funnel was filtered, the solvent was spin-dried, n-hexane: dichloromethane = 2: 1 was used as eluent, and the silica gel column was purified to obtain 1.3 g of a yellow powder solid. It was dissolved in 10 mL of dichloromethane, 20 mL of ethyl acetate was added, and the crystal was placed in a refrigerator at 5 ° C. to obtain 1.1 g of pale yellow crystals. Yield: 74%. Product identification information is as follows: 1 H NMR (400 MHz, CDCl 3 ) δ = 8.81-8.67 (m, 2 H), 8.03 (d, J = 8.4 Hz, 2 H), 7.97 (d, J = 8.3 Hz, 2 H ), 7.67-7.56 (m, 3 H), 7.52-7.38 (m, 8 H), 6.92 (dt, J = 3.4, 6.4Hz, 8 H), 6.34 (dd, J = 3.5, 5.9Hz, 4 H ), 1.68 (s, 12 H) ppm. 13 C NMR (100 MHz, CDCl 3 ) δ = 161.8, 155.1, 155.0, 144.0, 142.8, 140.6, 140.5, 135.3, 135.3, 134.6, 132.5, 132.1, 132.0, 131.8, 131.2, 130.7, 130.4, 129.0, 128.6, 126.5, 125.3, 125.2, 121.2, 121.0, 114.3, 114.0, 36.1, 36.1, 31.6, 31.0, 30.9, 22.7, 14.2

實施例3 Example 3

玻璃化轉變溫度測試: 氮氣保護下,以20℃/min的加熱和冷卻速率用示差掃描量熱法(DSC)測試化合物4的玻璃化轉變溫度。測得化合物4的玻璃化轉變溫度Tg為129℃(圖1)。而文獻所報導的CBP的玻璃化轉變溫度僅為62℃。 Glass transition temperature test: Under the protection of nitrogen, the glass transition temperature of compound 4 was measured by differential scanning calorimetry (DSC) at a heating and cooling rate of 20 ° C / min. The glass transition temperature T g of Compound 4 was measured to be 129 ° C. (FIG. 1). The glass transition temperature of CBP reported in the literature is only 62 ° C.

可見,本發明中的化合物比常用主體材料CBP具有更高的玻璃化轉變溫度,本發明顯著提高了主體材料的熱穩定性。 It can be seen that the compound in the present invention has a higher glass transition temperature than the commonly used host material CBP, and the present invention significantly improves the thermal stability of the host material.

實施例4 Example 4

有機電致發光器件的製備 Preparation of organic electroluminescent device

器件結構為ITO/MoO3(10nm)/NPB(40nm)/化合物4:Ir(ppy):(7wt%,30nm)/BCP(10nm)/Alq3(30nm)/LiF(1nm)/AL(100nm) Device structure is ITO / MoO 3 (10nm) / NPB (40nm) / Compound 4 : Ir (ppy): (7wt%, 30nm) / BCP (10nm) / Alq 3 (30nm) / LiF (1nm) / AL (100nm )

器件製備方式描述如下:見圖2 The device preparation method is described as follows: See Figure 2

首先,將透明導電ITO玻璃基板(包含10和20)按照以下步驟處理:預先用洗滌劑溶液、去離子水,乙醇,丙酮,去離子水洗淨,再經氧等離子處理30秒。 First, the transparent conductive ITO glass substrate (including 10 and 20) was processed according to the following steps: washed with detergent solution, deionized water, ethanol, acetone, deionized water in advance, and then treated with oxygen plasma for 30 seconds.

然後,在ITO上蒸渡10nm厚的MoO3作為空穴注入層30。 Then, MoO 3 having a thickness of 10 nm was evaporated on ITO as the hole injection layer 30.

然後,在空穴注入層上蒸渡40nm厚的NPB作為空穴傳輸層40。 Then, a 40 nm-thick NPB was evaporated on the hole injection layer as the hole transport layer 40.

然後,在空穴傳輸層上蒸渡30nm厚的化合物4:Ir(ppy):(7wt%)作為發光層50。 Then, 30 nm thick compound 4 : Ir (ppy): (7 wt%) was evaporated on the hole transport layer as the light emitting layer 50.

然後,在發光層上蒸渡10nm厚的BCP作為空穴阻擋層60。 Then, a 10-nm-thick BCP was evaporated on the light-emitting layer as the hole blocking layer 60.

然後,在空穴阻擋層上蒸渡30nm厚的Alq3作為電子傳輸層70。 Then, Alq 3 having a thickness of 30 nm was evaporated on the hole blocking layer as the electron transporting layer 70.

然後,在電子傳輸層上蒸渡1nm厚的Alq3作為電子注入層80。 Then, Alq 3 having a thickness of 1 nm was evaporated as an electron injection layer 80 on the electron transport layer.

最後,在電子注入層上蒸渡100nm厚的鋁作為器件陰極90。 Finally, 100 nm thick aluminum was evaporated on the electron injection layer as the device cathode 90.

所製備的器件器件啟亮電壓為4.1V,在1000nit亮度下,電流密度為3.33mA/cm2,電流效率為30.33cd/A,發光效率為14.16lm/W,發射綠光CIEx為0.303,CIEy為0.626;電流在20mA/cm2的工作電流密度下,亮度4836cd/m2,電流效率為24.18cd/A,發射綠光CIEx為0.299,CIEy為0.626。 The prepared device has a start-up voltage of 4.1V, a current density of 3.33mA / cm 2 at a current of 1000nit, a current efficiency of 30.33cd / A, a luminous efficiency of 14.16lm / W, a green emission CIEx of 0.303, and a CIEy The current is 0.626; at a working current density of 20 mA / cm 2 , the brightness is 4836 cd / m 2 , the current efficiency is 24.18 cd / A, the green emission CIEx is 0.299, and the CIEy is 0.626.

比較例 Comparative example

有機電致發光器件的製備 Preparation of organic electroluminescent device

器件結構為ITO/MoO3(10nm)/NPB(40nm)/CBP:Ir(ppy):(7wt%,30nm)/BCP(10nm)/Alq3(30nm)/LiF(1nm)/AL(100nm) Device structure is ITO / MoO 3 (10nm) / NPB (40nm) / CBP: Ir (ppy): (7wt%, 30nm) / BCP (10nm) / Alq 3 (30nm) / LiF (1nm) / AL (100nm)

方法同實施例4,但使用常用市售化合物CBP作為主體材料,製作對比用電致發光有機半導體二極體器件。 The method is the same as that in Example 4, except that a commercially available compound CBP is used as a host material to produce an electroluminescent organic semiconductor diode device for comparison.

所製備的器件啟亮電壓為6.2V,在1000nit亮度下,電流密度為3.89mA/cm2,電流效率為25.52cd/A,發光效率為6.85lm/W,發射綠光CIEx為0.312,CIEy為0.612;在20mA/cm2的工作電流密度下,亮度4579cd/m2,電流效率為22.9cd/A,發射綠光CIEx為0.311,CIEy為0.612。 The prepared device has a starting voltage of 6.2V, a current density of 3.89mA / cm 2 at a current of 1000nit, a current efficiency of 25.52cd / A, a luminous efficiency of 6.85lm / W, a green emission CIEx of 0.312, and a CIEy of 0.612; Under the working current density of 20mA / cm 2 , the brightness is 4579cd / m 2 , the current efficiency is 22.9cd / A, the green emission CIEx is 0.311, and the CIEy is 0.612.

實驗表明,使用本發明的雙極性主體材料製備的電致發光器件,比於廣泛使用的主體材料CBP製備的器件,啟亮電壓更低,在相同電流密度下,電流效率更高,更利於載流子注入和傳輸平衡,使用本發明的有機材料製備的器件具有更好的電致發光性能,更符合高性能有機半導體器件對主體材料的要求。 Experiments show that the electroluminescent device prepared by using the bipolar host material of the present invention has a lower lighting voltage than a device prepared by the widely used host material CBP, and at the same current density, the current efficiency is higher, which is more conducive to loading. The balance of the injection and transmission of the electrons, the device prepared by using the organic material of the invention has better electroluminescence performance, and is more in line with the requirements of the host material of the high-performance organic semiconductor device.

Claims (10)

一種基於1,2,4-三嗪基的雙極性主體材料,具有式(I)所述結構的化合物,其中,R1-R4表示為取代或未取代的吖啶基、吩噻嗪基、咔唑基、二苯胺基,氫,鹵素,C1-C4烷基,且R1-R4至少一個為取代或未取代的吖啶基、吩噻嗪基、咔唑基、二苯胺基,R5、R6為氫,所述取代為C1-C4的烷基取代、苯基取代、或烷苯基取代。A 1,2,4-triazinyl-based bipolar host material, a compound having the structure described in Formula (I), Wherein, R 1 -R 4 represent substituted or unsubstituted acridinyl, phenothiazinyl, carbazolyl, diphenylamino, hydrogen, halogen, C1-C4 alkyl, and at least one of R 1 -R 4 is Substituted or unsubstituted acridinyl, phenothiazinyl, carbazolyl, diphenylamino, R 5 and R 6 are hydrogen, and the substitution is C1-C4 alkyl substitution, phenyl substitution, or alkylphenyl To replace. 如申請專利範圍第1項所述的雙極主體材料,其中,R1與R2中的一個為氫,另一個為取代或者未取代的吖啶基、吩噻嗪基、咔唑基、二苯胺基;R3與R4中的一個為氫,另一個為烷基取代或者未取代的吖啶基、吩噻嗪基、咔唑基、二苯胺基。The bipolar host material according to item 1 of the scope of the patent application, wherein one of R 1 and R 2 is hydrogen, and the other is a substituted or unsubstituted acridinyl, phenothiazinyl, carbazolyl, di Aniline; one of R 3 and R 4 is hydrogen, and the other is alkyl substituted or unsubstituted acridinyl, phenothiazinyl, carbazolyl, diphenylamino. 如申請專利範圍第2項所述的雙極主體材料,其中,R1與R3相同,R2與R4相同。The bipolar host material according to item 2 of the scope of patent application, wherein R 1 is the same as R 3 and R 2 is the same as R 4 . 如申請專利範圍第3項所述的雙極主體材料,其中,R1、R3為氫,R2、R4為C1-C4烷基或苯基取代或者未取代的吖啶基、咔唑基。The bipolar host material according to item 3 of the scope of the patent application, wherein R 1 and R 3 are hydrogen, R 2 and R 4 are C1-C4 alkyl or phenyl substituted or unsubstituted acridinyl, carbazole base. 如申請專利範圍第2項所述的雙極主體材料,為下列結構的化合物: The bipolar host material described in item 2 of the scope of patent application is a compound of the following structure: 如申請專利範圍第5項所述的雙極主體材料,為下列結構的化合物: The bipolar host material described in item 5 of the scope of patent application is a compound of the following structure: 一種如申請專利範圍第2至6項中之任一項所述的雙極主體材料的製備方法,包括以下製備步驟:(1)將二鹵素取代芳基乙二酮與未取代的芳醯肼在叔丁醇鈉條件下於溶劑中反應,得到亞胺中間體溶液,過濾,溶液減壓除去溶劑後加入醋酸,並加入醋酸銨加熱回流,得到5,6-二(鹵素取代苯)-3-苯基-1,2,4-三嗪;(2)5,6-二(鹵素取代苯)-3-苯基-1,2,4-三嗪與烷基或苯基取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺通過鈀催化的Buchwald反應,得到所述的雙極主體材料。A method for preparing a bipolar host material according to any one of items 2 to 6 of the scope of patent application, comprising the following preparation steps: (1) Dihalo-substituted arylethylenedione and unsubstituted arylenehydrazine The reaction was carried out in a solvent under the condition of sodium tert-butoxide to obtain an imine intermediate solution. The solution was filtered, the solvent was removed under reduced pressure, acetic acid was added, and ammonium acetate was added and heated to reflux to obtain 5,6-bis (halogen-substituted benzene) -3. -Phenyl-1,2,4-triazine; (2) 5,6-bis (halogen-substituted benzene) -3-phenyl-1,2,4-triazine substituted or unsubstituted with alkyl or phenyl The acridinyl, phenothiazinyl, phenoxazinyl, carbazole and diphenylamine are catalyzed by Buchwald to obtain the bipolar host material. 如申請專利範圍第7項所述的方法,其中,所述二鹵素取代芳基乙二酮為二溴芳基乙二酮,通過3-溴苯甲醛的安息香縮合再氧化而製得。The method according to item 7 of the scope of the patent application, wherein the dihalogen-substituted arylethylenedione is dibromoarylethylenedione, and is prepared by condensing and reoxidizing 3-bromobenzaldehyde. 如申請專利範圍第7項所述的方法,其中,所述步驟(1)中的溶劑為乾燥的四氫呋喃。The method according to item 7 of the scope of patent application, wherein the solvent in step (1) is dry tetrahydrofuran. 如申請專利範圍第1至6項中之任一項所述的雙極性主體材料,其中,係被使用在有機電致發光器件中的應用。The bipolar host material according to any one of claims 1 to 6, wherein the bipolar host material is used in an organic electroluminescence device.
TW106138217A 2016-12-30 2017-11-04 A bipolar host material containing 1,2,4 - triazine group and its application TWI657080B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
??201611253636.2 2016-12-30
CN201611253636 2016-12-30
??201710680565.2 2017-08-10
CN201710680565.2A CN108264505B (en) 2016-12-30 2017-08-10 A kind of bipolar host material containing 1,2,4- triazine group and application

Publications (2)

Publication Number Publication Date
TW201825468A TW201825468A (en) 2018-07-16
TWI657080B true TWI657080B (en) 2019-04-21

Family

ID=62771733

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106138217A TWI657080B (en) 2016-12-30 2017-11-04 A bipolar host material containing 1,2,4 - triazine group and its application

Country Status (3)

Country Link
CN (1) CN108264505B (en)
HK (1) HK1255560B (en)
TW (1) TWI657080B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105968062A (en) * 2016-07-25 2016-09-28 上海道亦化工科技有限公司 Compound containing 1,2,4-triazine group and organic electroluminescence device of compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539751A (en) * 2013-10-17 2014-01-29 南京大学 S-triazine derivatives and application thereof to organic electroluminescence devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105968062A (en) * 2016-07-25 2016-09-28 上海道亦化工科技有限公司 Compound containing 1,2,4-triazine group and organic electroluminescence device of compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Yepeng X. et al.," Asymmetric-triazine-cored triads as thermally activated delayed fluorescence emitters for high-efficiency yellow OLEDs with slow efficiency roll-off", J. Mater. Chem. C, 2016, 4, 9998—10004.
YEPENG X. ET AL: "Asymmetric-triazine-cored triads as thermally activated delayed fluorescence emitters for high-efficiency yellow OLEDs with slow efficiency roll-off", J. MATER. CHEM. C, vol. 4, 2016, pages 9998 - 10004, XP055511282, doi:10.1039/C6TC02702D *

Also Published As

Publication number Publication date
HK1255560B (en) 2020-05-08
TW201825468A (en) 2018-07-16
CN108264505B (en) 2019-09-10
CN108264505A (en) 2018-07-10

Similar Documents

Publication Publication Date Title
KR101231931B1 (en) New fused cyclic compound and organic electronic device
TWI635069B (en) Material for organic electroluminescent device
TWI475022B (en) Organic electroluminescent elements
CN110662744B (en) Organic compound and organic electroluminescent element containing the same
US8173273B2 (en) Anthracene derivatives, method for preparation thereof, and organic electronic device using the same
KR20110041726A (en) Aromatic Compounds and Organic Electroluminescent Devices Using the Same
KR20100119077A (en) New compounds and organic electronic device using the same
KR102665302B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
CN111479799B (en) Organic compound and organic electroluminescent element comprising same
CN113166120A (en) Compound and organic light-emitting device comprising the same
KR20180066855A (en) Novel amine-based compound and organic light emitting device comprising the same
US20090169921A1 (en) Synthesis of triphenylene and pyrene based aromatics and their application in oleds
KR20200080188A (en) Compound and organic light emitting device comprising the same
TWI651318B (en) Organic electroluminescent device containing a bipolar host material of a spiro[芴-9,2'-imidazole] group
TWI651309B (en) A bipolar host material based on spiro [fluorene-9,2'-imidazole], synthesis method and application thereof
CN111116561B (en) Compound containing condensed ring structure, application thereof and organic electroluminescent device
WO2019054233A1 (en) Organic electroluminescent element
TWI657081B (en) An organic electroluminescent device containing a bipolar host material of a 1,2,4-triazine group
KR20140012920A (en) New anthracene derivatives and organic electronic device using the same
TWI657080B (en) A bipolar host material containing 1,2,4 - triazine group and its application
KR102665301B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
WO2018120979A1 (en) 1,2,4-triazine based bipolar main material and application thereof
WO2018120978A1 (en) Organic electroluminescence device containing 1,2,4-triazine based bipolar main material
CN114057757B (en) Organic compound containing heterocyclic structure, application thereof and organic electroluminescent device
KR20190021128A (en) An electroluminescent compound and an electroluminescent device comprising the same