TWI406172B - A multi-bits parallel prefix adder and the domino logics for implementing the adder - Google Patents
A multi-bits parallel prefix adder and the domino logics for implementing the adder Download PDFInfo
- Publication number
- TWI406172B TWI406172B TW97151509A TW97151509A TWI406172B TW I406172 B TWI406172 B TW I406172B TW 97151509 A TW97151509 A TW 97151509A TW 97151509 A TW97151509 A TW 97151509A TW I406172 B TWI406172 B TW I406172B
- Authority
- TW
- Taiwan
- Prior art keywords
- transistor
- output
- logic circuit
- logic
- circuit
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 10
- 230000007717 exclusion Effects 0.000 claims 2
- 239000004575 stone Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Logic Circuits (AREA)
Abstract
Description
本發明為一種運算加法系統,可應用於VLSI、PCB板或實際連線的電路中,將所需的結果相加完成。 The present invention is an arithmetic addition system that can be applied to VLSI, PCB boards, or actually wired circuits to add the desired results.
已知技術之加法器,為傳統的漣波進位加法器(Carry Ripple Adder如圖式一)。其邏輯如下所示:S i =A i ⊕ B i ⊕ C i-1 The adder of the known technique is a conventional chopping carry adder (Carry Ripple Adder as shown in Figure 1). The logic is as follows: S i = A i ⊕ B i ⊕ C i -1
C i =A i .B i +C i-1.(A i +B i ) C i = A i . B i + C i -1 . ( A i + B i )
其中Ci為下一位元之進位,由此才可得知下一位元知結果Si+1,如其名,其運算是由最小位元進位結果傳遞至最大位元。所花時間為O(n),其中n為所運算之位元數。 Where C i is the carry of the next bit, so that the next meta-recognition result S i+1 can be known, and its operation is transmitted from the minimum bit carry result to the largest bit. The time spent is O(n), where n is the number of bits computed.
已知一改進技術為進位前綴式加法器(Carry Look-ahead Adder如圖式一)。使用了以下的傳輸位元(P i )與產生位元(G i )來處理進位值:P i =A i +B i An improved technique is known as a carry-prefix adder (Carry Look-ahead Adder is shown in Figure 1). The following transfer bit ( P i ) and generated bit ( G i ) are used to process the carry value: P i = A i + B i
G i =A i .B i G i = A i . B i
C 1=A 1.B 1+C 0.(A 1+B 1)=G 1+C 0.P 1 C 1 = A 1 . B 1 + C 0 . ( A 1 + B 1 )= G 1 + C 0 . P 1
C 2=A 2.B 2+C 1.(A 2+B 2)=G 2+G 1.P 2+C 0.P 1.P 2 C 2 = A 2 . B 2 + C 1 . ( A 2 + B 2 ) = G 2 + G 1 . P 2 + C 0 . P 1 . P 2
C 3=A 3.B 3+C 2.(A 3+B 3)=G 3+G 2.P 3+G 1.P 2.P 3+C 0.P 1.P 2.P 3 C 3 = A 3 . B 3 + C 2 . ( A 3 + B 3 ) = G 3 + G 2 . P 3 + G 1 . P 2 . P 3 + C 0 . P 1 . P 2 . P 3
以此類推,若不考慮邏輯閘複雜度,由最小位元之進位即可得知最大位元之進位,如此便可使改善運算速度。一技術可降低邏輯閘複雜度,即區分位元,各區塊各別做進位處理,如此, 變衍生出許多進位前綴式加法器,其中並行進位前綴式加法器(Parallel-Prefix Adder)效能更優於其他架構。代表性架構分別有Kogge-Stone加法器,Ling加法器,INTEL稀疏進位前綴式加法器。 By analogy, if the logic gate complexity is not considered, the carry of the largest bit can be known from the carry of the least bit, so that the operation speed can be improved. A technique can reduce the complexity of the logic gate, that is, distinguish the bit elements, and each block performs the carry processing separately. A number of carry-prefix adders have been derived, and the Parallel-Prefix Adder is more efficient than other architectures. Representative architectures include Kogge-Stone adder, Ling adder, and INTEL sparse carry prefix adder.
圖式二及圖式三分別為2基數及4基數Kogge-Stone加法器架構,分別將各位元以2個及4個為單位分區塊,其所需級數為,其中R為基數,T為位元數,概念為分區做進位處理,但由於每個位元的近位須由最小位元進位運算得知,所以在分區進位處理時,在越後級演算中,訊號傳遞導線路徑的長度會逐級增加,運算時間也隨之增加,其進位邏輯可由以下表示:2基數:Gi,i-m=Gi+Gi-m.Pi Figure 2 and Figure 3 are the 2 base and 4 base Kogge-Stone adder architectures, respectively, and the partitions are divided into 2 and 4 units, and the required number of stages is Where R is the base and T is the number of bits. The concept is that the partition is processed by the carry, but since the near position of each bit must be learned by the least bit carry operation, in the case of the partition carry processing, in the later stage calculation The length of the signal transmission wire path will increase step by step, and the operation time will also increase. The carry logic can be expressed as follows: 2 base: G i,im =G i +G im . P i
Pi,i-m=Pi~(i-m) P i,im =P i~(im)
4基數:Gi,i-3m=Gi+Gi-m.Pi+Gi-2m.Pi~(i-m)+Gi-3m.Pi~(i-2m) Pi,i-3m=Pi~(i-3m) 4 base: G i, i-3m = G i + G im . P i +G i-2m . P i~(im) +G i-3m . P i~(i-2m) P i,i-3m =P i~(i-3m)
由公式及圖可知,使用較大的基數將可減少所需運算的級數,亦即可減少運算時間。 It can be seen from the formula and the figure that using a larger cardinality can reduce the number of stages of the required operation, and can also reduce the calculation time.
另一種改良後的加法器架構名為Ling加法器,在美國專利第5,719,803號「High Speed Addition Using Ling’s Equation and Dynamic CMOS Logic」(1998年2月17日公告),其揭示了Ling加法器利用增加非關鍵路徑的運算時間來減少關鍵路徑上的運算時間,藉此達到減少整體的運算時間。由於經過公式推導,得知G i =G i .P i ,於是可將Kogge-Stone加法器的邏輯改寫成:Gi,i-m=Gi+Gi-m.Pi=Gi.Pi+Gi-m.Pi=Pi.(Gi+Gi-m)=Pi.Hi Another improved adder architecture is called the Ling adder, and is disclosed in U.S. Patent No. 5,719,803, "High Speed Addition Using Ling's Equation and Dynamic CMOS Logic" (February 17, 1998), which discloses an increase in the use of Ling adders. The computation time of the non-critical path reduces the computation time on the critical path, thereby reducing the overall computation time. Since the formula is derived, we know that G i = G i . P i , then the logic of the Kogge-Stone adder can be rewritten as: G i,im =G i +G im . P i =G i . P i +G im . P i =P i . (G i +G im )=P i . H i
Hi=Gi+Gi-m H i =G i +G im
將H經由進位前綴樹的邏輯處理,即可得到如Kogge-Stone一 樣的結果,Hi是由布林函數的邏輯”或”運算而得,由電子學的概念得知”或”閘的速度優於”且”閘,所以此處將可更快得知在關鍵路徑上H的值進而完成整個加法器的運算,但卻會使非關鍵路徑上的P運算速度變慢,但並不影響整個加法器的速度。 H is processed by the logic of the carry prefix tree to obtain the same result as Kogge-Stone. H i is obtained by the logical OR operation of the Boolean function. It is known from the concept of electronics that the speed of the gate is excellent. In the "and" gate, so here will be faster to know the value of H on the critical path to complete the operation of the entire adder, but it will make the P operation speed on the non-critical path slower, but does not affect the whole The speed of the adder.
近年來,在美國專利第0,253,523號由英特爾公司提出之「Sparse Tree Adder Circuit」(2006年11月9號公告),英特爾公司提出了利用稀疏進位前綴樹的架構來減少加法器實現上繞線的複雜度,如圖式四,藉由減少繞線上的藕荷電容來降低走線上的延遲,藉此達到減少加法器的運算時間,此架構已由英特爾公司申請專利。 In recent years, in the "Sparse Tree Adder Circuit" (November 9, 2006 announcement) proposed by Intel Corporation in US Patent No. 0,253,523, Intel Corporation proposed to use a sparse carry prefix tree architecture to reduce the winding of the adder implementation. The complexity, as shown in Figure 4, reduces the delay of the adder by reducing the charge on the winding to reduce the delay of the adder. This architecture has been patented by Intel Corporation.
本發明使用特殊的連線方法,將P i 與G i 互相連結,使其可以快速的傳遞到輸出。 The present invention uses a special wiring method to interconnect P i and G i so that it can be quickly delivered to the output.
以下說明中,A與B代表二個欲計算之輸入值;S代表計算完畢之結果輸出值;i代表位元數;R代表基數(radix)數;T代表加法器總位元數;下標P i~(i-2)代表P i .P i-1.P i-2;下標G n,i代表第n級的第i位元運算元;上底線代表G i 的反相值。 In the following description, A and B represent two input values to be calculated; S represents the calculated output value; i represents the number of bits; R represents the number of radix; T represents the total number of bits of the adder; P i ~( i -2) represents P i . P i -1 . P i -2 ; subscript G n , i represents the i-th bit operation element of the nth stage; upper and lower lines Represents the inverse of G i .
本加法器的級數,隨著總位元數T與所選取的R值而改變。共需要級,其中為數學中的上高斯符號,以下列出各級的連線方法:第1級:P i =A i +B i The number of stages of the adder varies with the total number of bits T and the selected value of R. Total need Level, where For the upper Gaussian symbols in mathematics, the connection methods for each level are listed below: Level 1: P i = A i + B i
G i =A i .B i G i = A i . B i
令n為任意正整數。 Let n be any positive integer.
對於符合i=R×n的第i位元:G 1,i =G i +G i-1.P i +G i-2.P i~(i-1)+G i-3.P i~(i-2)) For the i-th bit that satisfies i=R×n: G 1, i = G i + G i -1 . P i + G i -2 . P i ~( i -1) + G i -3 . P i ~( i -2) )
第2級:令n為任意正整數。 Level 2: Let n be any positive integer.
對於符合i=R×n的第i位元:
第3級:令n為任意正整數。 Level 3: Let n be any positive integer.
對於符合i=R×n的第i位元:
中間之級數省略,可依序照公式推導。 The number of stages in the middle is omitted and can be derived according to the formula.
第級:令n為任意正整數。 First Level: Let n be any positive integer.
對於符合i=R×n的第i位元:
第+1級:令n為任意正整數。 First Level +1: Let n be any positive integer.
對於符合i=R×n的第i位元:Si=Psum i 對於符合i=R×n+1的第i位元:
對於符合i=R×n+2的第i位元:
對於符合i=R×n+3的第i位元:
將以上公式中,第2級~第級整理成一個表格,如Table.1,如果其中下標為負數,該運算邏輯值為0。 In the above formula, level 2 ~ The levels are organized into a table, such as Table.1, and if the subscript is negative, the logical value of the operation is 0.
在實施進位合成邏輯時:Gi+…+Gi-(R-2)m.Pi~i-(R-3)m+Gi-(R-1)m.Pi~i-(R-2)m R代表進位合成的基數,若為傳統邏輯下拉電路,將各自需要R條下拉路徑,總共需要R(R+1)/2個電晶體,但若經過因式分解簡化處理,觀察其邏輯公式,發現可逐一提出訊號Pi~i-(R-n)m,n為步驟數,去除Gi-(R-n+1)m,可再重複執行下個步驟,於是觀察電路,電流在經過由訊號Pi~i-(R-n)m控制的電晶體後,往外形成一由訊號Gi-(R-n+1)m控制之電晶體的獨立路徑,以此類推,將形成圖式九與圖式十之邏輯下拉電路,其內容包括各種基數之進位合併。 When carrying the carry synthesis logic: G i +...+G i-(R-2)m . P i~i-(R-3)m +G i-(R-1)m . P i~i-(R-2)m R represents the cardinality of the carry synthesis. If it is a traditional logic pull-down circuit, each will need R pull-down paths, and a total of R(R+1)/2 transistors are needed, but if The factorization is simplified and the logic formula is observed. It is found that the signal P i~i-(Rn)m can be proposed one by one, n is the number of steps, and G i-(R-n+1)m is removed, and the next step can be repeated. Step, then observing the circuit, after passing through the transistor controlled by the signal P i~i-(Rn)m , an independent path of the transistor controlled by the signal G i-(R-n+1)m is formed outside, By analogy, a logic pull-down circuit of Figure 9 and Schema 10 will be formed, the content of which includes carry-in combination of various cardinalities.
依上述之公式連接,並配合所需之組合電路(如AND gate logic circuit或OR gate logic circuit)即可完成本加法器電路。 The adder circuit can be completed by connecting according to the above formula and matching the required combination circuit (such as an AND gate logic circuit or an OR gate logic circuit).
以圖式五為例,基數R值為4,運算邏輯方式如Table.2所示:
以圖式六為例,其基數R值為8,運算邏輯方式如Table.3所示:
為達成更快的操作速度,我們使用骨牌式邏輯電路,動態邏輯電路有輸入扇(fan-in)少,輸出能力卻不比靜態邏輯差,若在一個管線處理的系統中,使用動態邏輯電路將提升操作速度,而動態骨牌邏輯電路更確保了在連續運算處理中邏輯的正確性。其理由為下,動態邏輯分兩階段操作,第一階段為預先充電,此時輸出為邏輯”1”,第二階段為邏輯運算,下拉邏輯電路開始工作,會根據輸入邏輯來決定輸出保持為邏輯”1”或放電至邏輯”0”。若為多級動態邏輯電路,控制充電或邏輯運算的clock訊號較先到達後級,會使後級較先做邏輯運算,此時前級預先充電的輸出,邏輯”1”,將驅動後級的邏輯下拉電路,造成邏輯錯誤。於是改用動態骨牌邏輯電路,在動態邏輯後加入一個反相器,如此,在預先充電階段,輸出將為邏輯”0”,如此將不如動態邏輯的輸出邏輯”1”,會驅動下一級的運算下拉邏輯,當得知前級的運算結果後,若邏輯下拉電路作用,將使動態骨牌邏輯的輸出由邏輯”0”變成邏輯”1”,進而驅動下一級的邏輯下拉電路,如此,在一多級的動態骨牌邏輯電路系統中,可看成骨牌一樣,由前級推動後級,確保運算的順序以及邏輯的正確性。在特定製程中,若動態邏輯電路需長時間保持在邏輯”1”時,可能因為製程的關係電荷會經由邏輯下拉電路流失,通常會在輸出加上一補償電荷裝置(Keeper),輸出先經由一反向器,再接至一P型電晶體,其汲極接回動態邏輯之輸出。若反向器前要維持為邏輯”1,經由反向器後的邏輯”0”將驅動P型電晶體,由最高電位補充反向器前由邏輯下拉電路以及腳部電晶體所流失的電荷,即可修正因漏電造成的邏輯錯誤。 In order to achieve faster operation speed, we use domino logic circuit, the dynamic logic circuit has less fan-in, and the output capability is not worse than static logic. If in a pipeline processing system, dynamic logic circuit will be used. Improve the operation speed, and the dynamic domino logic circuit ensures the logic correctness in the continuous operation processing. The reason is that the dynamic logic is divided into two phases. The first phase is pre-charging. At this time, the output is logic "1". The second phase is logic operation. The pull-down logic circuit starts to work, and the output is determined according to the input logic. Logic "1" or discharge to logic "0". If it is a multi-level dynamic logic circuit, the clock signal that controls the charging or logic operation reaches the latter stage earlier, so that the latter stage performs the logic operation earlier. At this time, the pre-charged output of the previous stage, the logic "1", will drive the latter stage. The logic pulls down the circuit, causing a logic error. Then use the dynamic domino logic circuit, add an inverter after the dynamic logic, so, in the pre-charging phase, the output will be logic "0", so it will be less than the dynamic logic output logic "1", will drive the next level The operation pull-down logic, when the operation result of the previous stage is known, if the logic pull-down circuit acts, the output of the dynamic domino logic will be changed from logic "0" to logic "1", thereby driving the logic pull-down circuit of the next stage, so In a multi-level dynamic domino logic circuit system, it can be seen as a domino, and the latter stage pushes the latter stage to ensure the order of operations and the correctness of logic. In a specific process, if the dynamic logic circuit needs to remain at logic "1" for a long time, the charge may be lost through the logic pull-down circuit because of the process relationship. Usually, a compensation charge device (Keeper) is added to the output, and the output is first passed. An inverter is connected to a P-type transistor, and its drain is connected back to the output of the dynamic logic. If the inverter is to maintain a logic "1", the logic "0" via the inverter will drive the P-type transistor, and the charge that is lost by the logic pull-down circuit and the foot transistor before the inverter is supplemented by the highest potential. , you can correct the logic error caused by leakage.
在此,視加法器為一管線系統,每一級都代表管線中每一個節點,於是使用動態骨牌邏輯電路提升操作速度,第一級為傳輸位元(P i )和產生位元(G i )的邏輯運算,如圖式七與圖式八,由於是第一級,所以使用傳統有腳之動態骨牌邏輯電路,邏輯下拉電路最終被底層的電晶體所控制,其輸入是clock訊號。 第二級後,為進位合成電路,使用進位合成動態骨牌邏輯電路,如圖式九,為有腳部電晶體之動態骨牌邏輯電路。也可根據動態骨牌邏輯電路的特性,使用無腳之動態骨牌邏輯(footless domino logic),如圖式十之電路,其操作原理為:由於動態骨牌邏輯電路是由前級運算結果推動後級邏輯下拉電路,就算後級的clock訊號使的電路狀態在邏輯運算狀態,仍然要等前級的運算結果,得知無論如何,控制後即進入邏輯運算狀態的關鍵,是前一級的運算的結果,於是可刪除電路腳部由clock訊號控制的電晶體,如此在邏輯下拉過程中,少了一級電晶體,將可提升邏輯下拉的速度,進而提升整體系統的操作速度。於是在此系統中,第二級後的進位處理邏輯,全都使用無腳部電晶體之動態骨牌邏輯電路。 Here, the adder is a pipeline system, each stage represents each node in the pipeline, and then the dynamic domino logic circuit is used to increase the operation speed. The first stage is the transmission bit ( P i ) and the generation bit ( G i ). The logic operation, as shown in Figure 7 and Figure 8, is the first stage, so the traditional footed dynamic domino logic circuit is used. The logic pull-down circuit is finally controlled by the underlying transistor, and its input is the clock signal. After the second stage, for the carry synthesis circuit, the carry-in synthetic dynamic domino logic circuit is used, as shown in Figure 9, which is a dynamic domino logic circuit with a foot transistor. According to the characteristics of the dynamic domino logic circuit, the footless domino logic is used. The circuit of the tenth circuit is as follows: the dynamic domino logic circuit is driven by the pre-level operation result. The pull-down circuit, even if the clock signal of the latter stage is in the logic operation state, still has to wait for the operation result of the previous stage, and knows that the key to enter the logic operation state after the control is the result of the operation of the previous stage. Therefore, the transistor whose circuit is controlled by the clock signal can be deleted, so that in the logic pull-down process, the first transistor is reduced, which can increase the speed of the logic pull-down, thereby improving the operating speed of the overall system. Therefore, in this system, the carry processing logic after the second stage all uses the dynamic domino logic circuit without the foot transistor.
整個系統的最後級,為進位選擇運算結果,利用進位的邏輯,選擇最終的結果為邏輯”0”或邏輯”1”,在此使用一傳輸閘組成的XOR,部分加法(Psum)結果與進位作邏輯XOR運算將得到加法結果。如圖式十一與圖式十二。 At the final stage of the whole system, the result of the operation is selected for the carry. The logic of the carry is used to select the final result as logic "0" or logic "1". Here, a XOR, a partial addition ( Psum ) result and a carry are used. A logical XOR operation will result in an addition. Figure 11 and Figure 12.
100‧‧‧進位前瞻式加法器 100‧‧‧ Carry Forward Adder
200‧‧‧2基數Kogge-Stone加法器 200‧‧‧2 base Kagge-Stone adder
300‧‧‧4基數Kogge-Stone加法器 300‧‧‧4 base Kogge-Stone adder
400‧‧‧英特爾32位元加法器 400‧‧‧Intel 32-bit adder
500‧‧‧64位元4基數並行前綴式進位加法器 500‧‧‧64 bit 4 base parallel prefix carry adder
600‧‧‧256位元8基數並行前綴式進位加法器 600‧‧‧256 bit 8 base parallel prefix carry adder
700‧‧‧傳輸位元動態骨牌邏輯電路 700‧‧‧Transmission Bit Dynamic Domino Logic Circuit
800‧‧‧產生位元動態骨牌邏輯電路 800‧‧‧ Generate bit dynamic domino logic circuit
900‧‧‧有腳部電晶體進位合成動態骨牌邏輯電路 900‧‧‧With foot transistor carry-in synthetic dynamic domino logic
1000‧‧‧無腳部電晶體進位合成動態骨牌邏輯電路 1000‧‧‧No foot transistor carry-in synthesis dynamic domino logic circuit
1100‧‧‧有腳部電晶體進位和成部分加法結果選擇邏輯電路 1100‧‧‧With foot transistor carry and partial addition result selection logic
1200‧‧‧無腳部電晶體進位和成部分加法結果選擇邏輯電路 1200‧‧‧No foot transistor carry and partial addition result selection logic
701、801、901、1001、1101、1201‧‧‧反向器 701, 801, 901, 1001, 1101, 1201‧‧‧ reverser
702~705、802~806、902~913‧‧‧電晶體 702~705, 802~806, 902~913‧‧‧Optoelectronics
1002~1012、1103~1114、1203~1313‧‧‧電晶體 1002~1012, 1103~1114, 1203~1313‧‧‧Optoelectronics
1102、1202‧‧‧邏輯閘 1102, 1202‧‧‧ logic gate
圖式一 32位元前瞻進位加法器。 Figure 1 A 32-bit forward-looking carry adder.
圖式二 2基數Kogge-Stone加法器。 Figure 2 2 base Kogge-Stone adder.
圖式三 4基數Kogge-Stone加法器。 Figure 3 4 base Kogge-Stone adder.
圖式四 英特爾32位元稀疏樹加法器。 Figure 4 Intel 32-bit sparse tree adder.
圖式五 64位元4基數並行前綴式進位加法器 Figure 5 64-bit 4 base parallel prefix carry adder
圖式六 256位元8基數並行前綴式進位加法器 Figure 6 256-bit 8 base parallel prefix carry adder
圖式七 傳輸位元產生邏輯 Figure 7: Transmission bit generation logic
圖式八 產生位元產生邏輯 Figure 8 Generates bit generation logic
圖式九 有腳部電晶體進位合成動態骨牌邏輯 Figure 9: Foot-shaped transistor carry synthesis dynamic domino logic
圖式十 無腳部電晶體進位合成動態骨牌邏輯 Figure 10 No-foot transistor carry synthesis dynamic domino logic
圖式十一 有腳部電晶體進位和成部分加法結果選擇邏輯電路 Figure 11 has a foot transistor carry and a partial addition result selection logic circuit
圖式十二 無腳部電晶體進位和成部分加法結果選擇邏輯電路 Figure 12: No-foot transistor carry and partial addition result selection logic
500‧‧‧加法器 500‧‧‧Adder
1000‧‧‧無腳部電晶體進位合成動態邏輯骨牌電路 1000‧‧‧No foot transistor carry-in synthetic dynamic logic domino circuit
1200‧‧‧無腳部電晶體進位和成部分加法結果選擇邏輯電路 1200‧‧‧No foot transistor carry and partial addition result selection logic
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97151509A TWI406172B (en) | 2008-12-31 | 2008-12-31 | A multi-bits parallel prefix adder and the domino logics for implementing the adder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97151509A TWI406172B (en) | 2008-12-31 | 2008-12-31 | A multi-bits parallel prefix adder and the domino logics for implementing the adder |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201025125A TW201025125A (en) | 2010-07-01 |
TWI406172B true TWI406172B (en) | 2013-08-21 |
Family
ID=44852460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97151509A TWI406172B (en) | 2008-12-31 | 2008-12-31 | A multi-bits parallel prefix adder and the domino logics for implementing the adder |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI406172B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10705797B2 (en) * | 2018-11-27 | 2020-07-07 | Marvell International Ltd. | Parallel-prefix adder and method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5719803A (en) * | 1996-05-31 | 1998-02-17 | Hewlett-Packard Company | High speed addition using Ling's equations and dynamic CMOS logic |
US5951631A (en) * | 1996-12-30 | 1999-09-14 | Hyundai Electronics Industries Co., Ltd. | Carry lookahead adder |
TW479192B (en) * | 2000-02-21 | 2002-03-11 | Hewlett Packard Co | Carry look-ahead for bi-endian adder |
US20030126401A1 (en) * | 2002-01-02 | 2003-07-03 | International Business Machines Corporation | Carry generation in address calculation |
US20040128339A1 (en) * | 2000-07-21 | 2004-07-01 | Lampros Kalampoukas | High-speed parallel-prefix modulo 2n-1 adders |
US20040220994A1 (en) * | 2003-04-30 | 2004-11-04 | Intel Corporation | Low power adder circuit utilizing both static and dynamic logic |
US20060253523A1 (en) * | 2005-05-09 | 2006-11-09 | Intel Corporation | Sparse tree adder circuit |
TW200826495A (en) * | 2006-12-05 | 2008-06-16 | Univ Nat Sun Yat Sen | Dual threshold voltage domino logic circuit and carry look-ahead adder using the same |
US7406495B2 (en) * | 2003-12-17 | 2008-07-29 | International Business Machines Corporation | Adder structure with midcycle latch for power reduction |
US20080183784A1 (en) * | 2007-01-31 | 2008-07-31 | National Yunlin University Of Science And Technology | Full-adder of complementary carry logic voltage compensation |
-
2008
- 2008-12-31 TW TW97151509A patent/TWI406172B/en not_active IP Right Cessation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5719803A (en) * | 1996-05-31 | 1998-02-17 | Hewlett-Packard Company | High speed addition using Ling's equations and dynamic CMOS logic |
US5951631A (en) * | 1996-12-30 | 1999-09-14 | Hyundai Electronics Industries Co., Ltd. | Carry lookahead adder |
TW479192B (en) * | 2000-02-21 | 2002-03-11 | Hewlett Packard Co | Carry look-ahead for bi-endian adder |
US20040128339A1 (en) * | 2000-07-21 | 2004-07-01 | Lampros Kalampoukas | High-speed parallel-prefix modulo 2n-1 adders |
US20030126401A1 (en) * | 2002-01-02 | 2003-07-03 | International Business Machines Corporation | Carry generation in address calculation |
US20040220994A1 (en) * | 2003-04-30 | 2004-11-04 | Intel Corporation | Low power adder circuit utilizing both static and dynamic logic |
US7406495B2 (en) * | 2003-12-17 | 2008-07-29 | International Business Machines Corporation | Adder structure with midcycle latch for power reduction |
US20060253523A1 (en) * | 2005-05-09 | 2006-11-09 | Intel Corporation | Sparse tree adder circuit |
TW200826495A (en) * | 2006-12-05 | 2008-06-16 | Univ Nat Sun Yat Sen | Dual threshold voltage domino logic circuit and carry look-ahead adder using the same |
US20080183784A1 (en) * | 2007-01-31 | 2008-07-31 | National Yunlin University Of Science And Technology | Full-adder of complementary carry logic voltage compensation |
Non-Patent Citations (4)
Title |
---|
A 240ps 64b carry-lookahead adder in 90nm CMOS , IEEE International Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. 2006/2/6-9A 240ps 64b carry-lookahead adder in 90nm CMOS , IEEE International Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. 2006/2/6-9 * |
A Novel High-Speed and Energy Efficient 10-Transistor Full Adder Design, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007 * |
Fast adders using enhanced multiple-output domino logic, IEEE Journal of Solid-State Circuits, 1997/2 * |
Power-performance optimal 64-bit carry-lookahead adders, Proceedings of the 29th European Solid-State Circuits Conference, 2003. ESSCIRC '03. 2003/9/16-18 * |
Also Published As
Publication number | Publication date |
---|---|
TW201025125A (en) | 2010-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sutherland et al. | Logical effort: Designing for speed on the back of an envelope | |
US20010016865A1 (en) | Multiplier circuit for reducing the number of necessary elements without sacrificing high speed capability | |
Kulkarni | Comparison among different adders | |
US7260595B2 (en) | Logic circuit and method for carry and sum generation and method of designing such a logic circuit | |
Talsania et al. | A comparative analysis of parallel prefix adders | |
JP2000235479A (en) | Method and device for executing sum and comparison arithmetic operation | |
Sam et al. | Design of low power pass transistor logic based adders for multiplier in 90nm cmos process | |
TWI406172B (en) | A multi-bits parallel prefix adder and the domino logics for implementing the adder | |
US5027311A (en) | Carry select multiplexer | |
KR102761408B1 (en) | Signed extension carry-look-ahead for accumulator with bit width difference | |
JPH0651953A (en) | Adder | |
US4890127A (en) | Signed digit adder circuit | |
US7693925B2 (en) | Multiplicand shifting in a linear systolic array modular multiplier | |
Gavrilov et al. | Models and methods of inter-gate resynthesis at the transistor level for nanoelectronic circuits based on FinFETs | |
Renjith et al. | Design and performance analysis of various 32-bit hybrid adders using Verilog | |
US5812521A (en) | Static adder using BICMOS emitter dot circuits | |
Saji et al. | A low power variable sized CSLA implementation using GDI logic in 45nm SOI technology | |
Etiemble | Comparing ternary and binary adders and multipliers | |
JP3741280B2 (en) | Carry look-ahead circuit and addition circuit using the same | |
US6269387B1 (en) | Method and apparatus for 3-stage 32-bit adder/subtractor | |
Yadav et al. | A study and comparative analysis of low power hybrid-CMOS 1-bit full adders in deep-submicron technology | |
Samundiswary et al. | Design and Analysis of CMOS Based DADDA Multiplier | |
McAuley et al. | Implementation of a 64-bit Jackson adder | |
Verma et al. | Design Of Radix-4 Booth Multiplier Using Mgdi And Ptl Techniques | |
Jain et al. | A high speed low power adder in multi output domino logic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |