[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW202420418A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TW202420418A
TW202420418A TW113102946A TW113102946A TW202420418A TW 202420418 A TW202420418 A TW 202420418A TW 113102946 A TW113102946 A TW 113102946A TW 113102946 A TW113102946 A TW 113102946A TW 202420418 A TW202420418 A TW 202420418A
Authority
TW
Taiwan
Prior art keywords
side wall
sidewall
layer
item
patent application
Prior art date
Application number
TW113102946A
Other languages
Chinese (zh)
Other versions
TWI885717B (en
Inventor
莊惟智
劉家榮
陳廣修
黃仲廷
唐啓軒
王楷翔
江秉样
鄭鈺霖
陳俊仁
林鈺書
黃仲逸
陳朝楠
吳冠穎
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW113102946A priority Critical patent/TWI885717B/en
Priority claimed from TW113102946A external-priority patent/TWI885717B/en
Publication of TW202420418A publication Critical patent/TW202420418A/en
Application granted granted Critical
Publication of TWI885717B publication Critical patent/TWI885717B/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor device includes a gate structure, a first spacer, a second spacer, an epitaxial layer and a capping layer. The gate structure is disposed on a substrate. The first spacer and the second spacer are around the gate structure, wherein the substrate includes an inclined surface directly connected with the second spacer. The epitaxial layer is disposed at two sides of the gate structure and covers the inclined surface. The capping layer is disposed on the epitaxial layer, wherein the capping layer includes a flat upper surface and an inclined sidewall connected with the flat upper surface.

Description

半導體元件Semiconductor components

本發明是關於一種製作半導體元件的方法,尤指一種利用清洗製程於側壁子及基底間形成孔洞的方法。The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a hole between a sidewall and a substrate by using a cleaning process.

為了能增加半導體結構的載子遷移率,可以選擇對於閘極通道施加壓縮應力或是伸張應力。舉例來說,若需要施加的是壓縮應力,習知技術常利用選擇性磊晶成長(selective epitaxial growth, SEG)技術於一矽基底內形成晶格排列與該矽基底相同之磊晶結構,例如矽鍺(silicon germanium, SiGe)磊晶結構。利用矽鍺磊晶結構之晶格常數(lattice constant)大於該矽基底晶格之特點,對P型金氧半導體電晶體的通道區產生應力,增加通道區的載子遷移率(carrier mobility),並藉以增加金氧半導體電晶體的速度。反之,若是N型半導體電晶體則可選擇於矽基底內形成矽碳(silicon carbide, SiC)磊晶結構,對閘極通道區產生伸張應力。In order to increase the carrier mobility of a semiconductor structure, one can choose to apply compressive stress or tensile stress to the gate channel. For example, if compressive stress needs to be applied, conventional technology often uses selective epitaxial growth (SEG) technology to form an epitaxial structure with the same lattice arrangement as the silicon substrate in a silicon substrate, such as a silicon germanium (SiGe) epitaxial structure. By using the characteristic that the lattice constant of the silicon germanium epitaxial structure is greater than the lattice of the silicon substrate, stress is generated in the channel region of the P-type metal oxide semiconductor transistor, increasing the carrier mobility in the channel region, and thereby increasing the speed of the metal oxide semiconductor transistor. On the other hand, if it is an N-type semiconductor transistor, a silicon carbide (SiC) epitaxial structure can be formed in the silicon substrate to generate tensile stress on the gate channel region.

現今以磊晶成長方式形成具有磊晶層的MOS電晶體過程中通常會先於成長完磊晶層之後再去除部分層間介電層形成接觸洞,然後填入金屬材料形成接觸插塞。然而,此製程順序容易損害已成長的磊晶層表面並影響元件運作。因此,如何改良現有製程技術以解決現有瓶頸即為現今一重要課題。In the current epitaxial growth process of forming MOS transistors with epitaxial layers, the epitaxial layers are usually grown first, then part of the interlayer dielectric layer is removed to form contact holes, and then metal materials are filled to form contact plugs. However, this process sequence is easy to damage the surface of the grown epitaxial layer and affect the operation of the device. Therefore, how to improve the existing process technology to solve the existing bottleneck is an important issue today.

本發明一實施例揭露一種半導體元件,包含一閘極結構、一第一側壁子、一第二側壁子、一磊晶層以及一遮蓋層。閘極結構設於一基底上。第一側壁子以及第二側壁子環繞閘極結構,其中基底包含一傾斜面與第二側壁子直接相連。磊晶層設於閘極結構兩側且覆蓋傾斜面。遮蓋層設於磊晶層上,其中遮蓋層包含一平坦上表面以及一傾斜側壁連接平坦上表面。An embodiment of the present invention discloses a semiconductor element, comprising a gate structure, a first sidewall, a second sidewall, an epitaxial layer and a cover layer. The gate structure is disposed on a substrate. The first sidewall and the second sidewall surround the gate structure, wherein the substrate comprises an inclined surface directly connected to the second sidewall. The epitaxial layer is disposed on both sides of the gate structure and covers the inclined surface. The cover layer is disposed on the epitaxial layer, wherein the cover layer comprises a flat upper surface and an inclined sidewall connected to the flat upper surface.

請參照第1圖至第6圖,第1圖至第6圖為本發明較佳實施例製作一半導體元件之方法示意圖。如第1圖所示,首先提供一基底12,然後於基底12上形成閘極結構14、16。在本實施例中,形成閘極結構14、16的方式較佳依序形成一閘極介電層、一閘極材料層以及一硬遮罩於基底12上,並利用一圖案化光阻(圖未示)當作遮罩進行一圖案轉移製程,以單次蝕刻或逐次蝕刻步驟,去除部分硬遮罩、部分閘極材料層以及部分閘極介電層,然後剝除圖案化光阻,以於基底12上形成至少由圖案化之閘極介電層18、圖案化之閘極材料層20以及圖案化之硬遮罩22所構成的閘極結構14、16,其中閘極介電層18與閘極材料層20較佳構成閘極電極。需注意的是,為了凸顯後續於閘極結構14、16之間形成磊晶層的相關步驟,本實施例主要以基底12上形成兩個閘極結構14、16為例,並僅繪示兩個閘極結構14、16的部分結構與兩個閘極結構14、16之間的區域。Please refer to Figures 1 to 6, which are schematic diagrams of a method for manufacturing a semiconductor device according to a preferred embodiment of the present invention. As shown in Figure 1, a substrate 12 is first provided, and then gate structures 14 and 16 are formed on the substrate 12. In this embodiment, the gate structures 14 and 16 are preferably formed by sequentially forming a gate dielectric layer, a gate material layer, and a hard mask on the substrate 12, and using a patterned photoresist (not shown) as a mask to perform a pattern transfer process, removing part of the hard mask, part of the gate material layer, and the like by a single etching or successive etching steps. The material layer and a portion of the gate dielectric layer are formed, and then the patterned photoresist is stripped to form gate structures 14 and 16 consisting of at least a patterned gate dielectric layer 18, a patterned gate material layer 20 and a patterned hard mask 22 on the substrate 12, wherein the gate dielectric layer 18 and the gate material layer 20 preferably constitute a gate electrode. It should be noted that, in order to highlight the subsequent steps of forming an epitaxial layer between the gate structures 14 and 16, this embodiment mainly takes the formation of two gate structures 14 and 16 on the substrate 12 as an example, and only partial structures of the two gate structures 14 and 16 and the area between the two gate structures 14 and 16 are shown.

在本實施例中,基底12例如是矽基底、磊晶矽基底、碳化矽基底或矽覆絕緣(silicon-on-insulator, SOI)基底等之半導體基底,但不以此為限。閘極介電層18可包含二氧化矽(SiO 2)、氮化矽(SiN)或高介電常數(high dielectric constant, high-k)材料;閘極材料層20可包含金屬材料、多晶矽或金屬矽化物(silicide)等導電材料;硬遮罩22可選自由氧化矽、氮化矽、碳化矽(SiC)以及氮氧化矽(SiON)所構成的群組,但不侷限於此。 In the present embodiment, the substrate 12 is a semiconductor substrate such as a silicon substrate, an epitaxial silicon substrate, a silicon carbide substrate or a silicon-on-insulator (SOI) substrate, but is not limited thereto. The gate dielectric layer 18 may include silicon dioxide (SiO 2 ), silicon nitride (SiN) or a high dielectric constant (high-k) material; the gate material layer 20 may include a conductive material such as a metal material, polysilicon or metal silicide; the hard mask 22 may be selected from the group consisting of silicon oxide, silicon nitride, silicon carbide (SiC) and silicon oxynitride (SiON), but is not limited thereto.

此外,在一實施例中,還可選擇預先在基底12中形成複數個摻雜井(未繪示)或複數個作為電性隔離之用的淺溝渠隔離(shallow trench isolation, STI)。並且,本實施例雖以平面型電晶體為例,但在其他變化實施例中,本發明之半導體製程亦可應用於非平面電晶體,例如是鰭狀結構場效電晶體(Fin-FET),此時,第1圖所標示之基底12即相對應代表為形成於一基底12上的鰭狀結構。In addition, in one embodiment, a plurality of doped wells (not shown) or a plurality of shallow trench isolations (STI) for electrical isolation may be formed in advance in the substrate 12. Furthermore, although the present embodiment takes a planar transistor as an example, in other variant embodiments, the semiconductor process of the present invention may also be applied to non-planar transistors, such as a fin field effect transistor (Fin-FET). In this case, the substrate 12 indicated in FIG. 1 corresponds to a fin structure formed on the substrate 12.

然後在閘極結構14、16側壁形成至少一側壁子,並選擇性進行一輕摻雜離子佈植,利用約930℃溫度進行一快速升溫退火製程活化植入基底12的摻質,以於側壁子兩側的基底12中形成一輕摻雜汲極24。在本實施例中,側壁子較佳為一複合式側壁子,其可細部包含一側壁子26設於閘極結構14、16或閘極電極側壁、側壁子28設於側壁子26側壁以及側壁子30設於側壁子28側壁,其中最內側的側壁子26較佳包含I形剖面,設於中間的側壁子28較佳包含L形剖面而最外側的側壁子30較佳包含I形剖面。在本實施例中,最內側的側壁子26可分別與中間的側壁子28及最外側的側壁子30包含相同或不同材料且側壁子26可包含氧化矽、氮化矽、氮氧化矽或氮碳化矽,而設於中間的側壁子28與最外側的側壁子30則較佳包含不同材料,例如設於中間的側壁子28較佳包含氧化矽而最外側的側壁子30則較佳由氮化矽所構成。Then, at least one sidewall is formed on the sidewalls of the gate structures 14 and 16, and a lightly doped ion implantation is selectively performed. A rapid temperature annealing process is performed at a temperature of about 930° C. to activate the implanted dopants in the substrate 12, so as to form a lightly doped drain 24 in the substrate 12 on both sides of the sidewall. In this embodiment, the sidewall is preferably a composite sidewall, which may include a sidewall 26 disposed on the gate structure 14, 16 or the gate electrode sidewall, a sidewall 28 disposed on the sidewall of the sidewall 26, and a sidewall 30 disposed on the sidewall of the sidewall 28, wherein the innermost sidewall 26 preferably includes an I-shaped cross-section, the middle sidewall 28 preferably includes an L-shaped cross-section, and the outermost sidewall 30 preferably includes an I-shaped cross-section. In the present embodiment, the innermost sidewall 26 may include the same or different materials as the middle sidewall 28 and the outermost sidewall 30, respectively, and the sidewall 26 may include silicon oxide, silicon nitride, silicon oxynitride or silicon nitride carbide, while the middle sidewall 28 and the outermost sidewall 30 preferably include different materials, for example, the middle sidewall 28 preferably includes silicon oxide and the outermost sidewall 30 is preferably composed of silicon nitride.

接著如第2圖所示,進行一蝕刻製程以於側壁子30兩側的基底12中形成凹槽32。舉例來說,該蝕刻製程可包含先進行一乾蝕刻步驟以在閘極結構16兩側的基底12中預先形成一初始溝槽(未繪示),再接著進行一濕蝕刻製程,等向性地加大初始溝槽以形成凹槽32。在本發明一實施例中,濕蝕刻製程可選擇使用例如氫氧化銨(ammonium hydroxide, NH 4OH)或氫氧化四甲基銨(tetramethylammonium hydroxide, TMAH)等蝕刻液體。值得注意的是,形成凹槽32的方式不限於前述乾蝕刻搭配濕蝕刻的方式,亦可以透過單次或多次的乾蝕刻及/或濕蝕刻的方式來形成。例如於一實施例中,凹槽32可具有不同的截面形狀,例如是圓弧、六邊形(hexagon;又稱sigma Σ)或八邊形(octagon)等截面形狀,本實施例是以六邊形的截面形狀為實施樣態說明,但並不以此為限。值得注意的是,本階段所進行的蝕刻製程較佳不去除任何側壁子,因此迨蝕刻製程結束後側壁子30的外側側壁仍較佳切齊中間L形側壁子28的最外側側壁。 Next, as shown in FIG. 2 , an etching process is performed to form a recess 32 in the substrate 12 on both sides of the sidewall 30. For example, the etching process may include first performing a dry etching step to pre-form an initial trench (not shown) in the substrate 12 on both sides of the gate structure 16, and then performing a wet etching process to isotropically enlarge the initial trench to form the recess 32. In an embodiment of the present invention, the wet etching process may selectively use an etching liquid such as ammonium hydroxide (NH 4 OH) or tetramethylammonium hydroxide (TMAH). It is worth noting that the method of forming the groove 32 is not limited to the aforementioned dry etching combined with wet etching method, and can also be formed by single or multiple dry etching and/or wet etching methods. For example, in one embodiment, the groove 32 can have different cross-sectional shapes, such as arc, hexagon (hexagon; also known as sigma Σ) or octagon (octagon) cross-sectional shapes. This embodiment is illustrated with the hexagonal cross-sectional shape as the implementation mode, but is not limited to this. It is worth noting that the etching process performed in this stage preferably does not remove any sidewalls, so after the etching process is completed, the outer sidewalls of the sidewall 30 are still preferably aligned with the outermost sidewalls of the middle L-shaped sidewall 28.

如第3圖所示,接著進行一清洗製程34略為修整側壁子30並於側壁子30及基底12間形成一孔洞36。從細部來看,清洗製程34較佳同時去除最外側的部分側壁子30及設於中間的部分側壁子28,使側壁子30的厚度略微變薄而原本呈現L形的側壁子28水平部則略微內縮甚至由L形剖面轉變為I形剖面,如此即於側壁子30及基底12之間形成上述之孔洞36。換句話說,清洗製程34後外側側壁子30的外側側壁較佳不切齊設於中間側壁子28的外側側壁,同時側壁子30可依據中間側壁子28的形狀選擇跨在側壁子28上或不跨在側壁子28上。例如第3圖中所示,若中間的L形側壁子28水平部僅略微內縮但仍呈現L形則外側的側壁子30較佳跨在L形側壁子28的水平部上,但若中間的L形側壁子28水平部在清洗製程中被去除而轉換為I形,則外側側壁子30的內側側壁將較佳切齊轉換為I形的側壁子28外側側壁。As shown in FIG. 3 , a cleaning process 34 is then performed to slightly trim the side wall 30 and form a hole 36 between the side wall 30 and the substrate 12. In detail, the cleaning process 34 preferably removes the outermost part of the side wall 30 and the middle part of the side wall 28 at the same time, so that the thickness of the side wall 30 is slightly thinner and the horizontal part of the side wall 28 that originally presents an L-shape is slightly shrunk or even changed from an L-shaped cross section to an I-shaped cross section, so that the above-mentioned hole 36 is formed between the side wall 30 and the substrate 12. In other words, after the cleaning process 34, the outer side wall of the outer side wall 30 is preferably not aligned with the outer side wall of the middle side wall 28, and the side wall 30 can be selected to straddle the side wall 28 or not according to the shape of the middle side wall 28. For example, as shown in FIG. 3 , if the horizontal portion of the middle L-shaped side wall 28 is only slightly retracted but still presents an L-shape, the outer side wall 30 is preferably straddled on the horizontal portion of the L-shaped side wall 28. However, if the horizontal portion of the middle L-shaped side wall 28 is removed during the cleaning process and converted into an I-shape, the inner side wall of the outer side wall 30 will be preferably cut and converted into the outer side wall of the I-shaped side wall 28.

另外需注意的是,本階段所進行的清洗製程34除了削薄最外側的側壁子30厚度外又較佳去除部分與L形側壁子28所接觸的基底12表面,使原本呈現平坦表面的基底12表面形成一傾斜面38,其中傾斜面38與基底12上表面(或側壁子28底部與基底12接觸的表面)之間的夾角較佳大於90度但小於180度。在本實施例中,清洗製程34所使用的清洗溶液可包含但不侷限於稀釋氫氟酸(diluted hydrofluoric acid, dHF)以及/或TMAH。It should also be noted that the cleaning process 34 performed at this stage not only thins the thickness of the outermost sidewall 30, but also preferably removes a portion of the surface of the substrate 12 in contact with the L-shaped sidewall 28, so that the surface of the substrate 12 that originally presents a flat surface forms an inclined surface 38, wherein the angle between the inclined surface 38 and the upper surface of the substrate 12 (or the surface where the bottom of the sidewall 28 contacts the substrate 12) is preferably greater than 90 degrees but less than 180 degrees. In this embodiment, the cleaning solution used in the cleaning process 34 may include but is not limited to diluted hydrofluoric acid (dHF) and/or TMAH.

隨後如第4圖所示,進行一選擇性磊晶成長(selective epitaxial growth, SEG)製程,以於凹槽32中形成選擇性緩衝層(圖未示)以及一磊晶層40。在本實施例中,磊晶層40的整體形狀較佳呈現約略六角形(hexagon;又稱sigma Σ),磊晶層40的頂表面較佳略高於基底12表面,且磊晶層40的側壁較佳於前述所形成的傾斜面38處形成突起部42,其中突起部42較佳呈現約略鋸齒狀並朝磊晶層40的兩側延伸。Then, as shown in FIG. 4 , a selective epitaxial growth (SEG) process is performed to form a selective buffer layer (not shown) and an epitaxial layer 40 in the groove 32. In the present embodiment, the overall shape of the epitaxial layer 40 is preferably approximately hexagonal (also known as sigma Σ), the top surface of the epitaxial layer 40 is preferably slightly higher than the surface of the substrate 12, and the sidewall of the epitaxial layer 40 preferably forms a protrusion 42 at the inclined surface 38 formed above, wherein the protrusion 42 is preferably approximately sawtooth-shaped and extends toward both sides of the epitaxial layer 40.

在本發明較佳實施例中,磊晶層40根據不同之金氧半導體(MOS)電晶體類型而可以具有不同的材質,舉例來說,若該金氧半導體電晶體為一P型電晶體(PMOS)時,磊晶層40可選擇包含矽化鍺(SiGe)、矽化鍺硼(SiGeB)或矽化鍺錫(SiGeSn)。而於本發明另一實施例中,若該金氧半導體電晶體為一N型電晶體(NMOS)時,磊晶層40可選擇包含碳化矽(SiC)、碳磷化矽(SiCP)或磷化矽(SiP)。此外,選擇性磊晶製程可以用單層或多層的方式來形成,且其異質原子(例如鍺原子或碳原子)亦可以漸層的方式改變,但較佳是使磊晶層40的表面較淡或者無鍺原子,以利後續金屬矽化物層的形成。In a preferred embodiment of the present invention, the epitaxial layer 40 may have different materials according to different types of MOS transistors. For example, if the MOS transistor is a P-type transistor (PMOS), the epitaxial layer 40 may include germanium silicide (SiGe), germanium boron silicide (SiGeB) or germanium tin silicide (SiGeSn). In another embodiment of the present invention, if the MOS transistor is an N-type transistor (NMOS), the epitaxial layer 40 may include silicon carbide (SiC), silicon carbon phosphide (SiCP) or silicon phosphide (SiP). In addition, the selective epitaxial process can be formed in a single layer or multiple layers, and its foreign atoms (such as germanium atoms or carbon atoms) can also be changed in a gradual manner, but it is better to make the surface of the epitaxial layer 40 lighter or without germanium atoms to facilitate the subsequent formation of the metal silicide layer.

後續進行一離子佈植製程,以於磊晶層40的一部分或全部形成一源極/汲極區域44。在另一實施例中,源極/汲極區域44的形成亦可同步(in-situ)於選擇性磊晶成長製程進行,例如金氧半導體是PMOS時,形成鍺化矽磊晶層40並伴隨著注入P型摻質;或是當金氧半導體是NMOS時,形成碳化矽磊晶層40並伴隨著注入N型摻質。藉此可省略後續利用額外離子佈植步驟形成P型/N型電晶體之源極/汲極區域44。此外在另一實施例中,源極/汲極區域44的摻質亦可以漸層的方式形成。An ion implantation process is then performed to form a source/drain region 44 on a portion or all of the epitaxial layer 40. In another embodiment, the formation of the source/drain region 44 can also be performed in-situ in a selective epitaxial growth process, such as when the metal oxide semiconductor is a PMOS, forming a germanium silicon epitaxial layer 40 accompanied by implanting a P-type dopant; or when the metal oxide semiconductor is an NMOS, forming a silicon carbide epitaxial layer 40 accompanied by implanting an N-type dopant. This can omit the subsequent use of an additional ion implantation step to form the source/drain region 44 of the P-type/N-type transistor. In another embodiment, the doping of the source/drain region 44 may also be formed in a gradient manner.

如第5圖所示,接著形成一遮蓋層46於該磊晶層40上並填滿孔洞36。值得注意的是,由於本階段由矽所構成的遮蓋層46較佳沿著由氧化矽所構成的側壁子28側壁向上成長延伸,迨接觸到異質介面例如由氮化矽所構成的側壁子30即轉向成長,因此最終所形成的遮蓋層46較佳包含一平坦上表面48、二傾斜側壁50連接平坦上表面48以及二垂直側壁52接觸側壁子側壁同時又分別連接二傾斜側壁。依據本發明之較佳實施例,利用此方式所成長出的遮蓋層46可使遮蓋層46得到更多的保護,而此設計又可藉此降低元件的重疊電容值(capacitance overlap, C ov)。 As shown in FIG. 5 , a capping layer 46 is then formed on the epitaxial layer 40 and fills the hole 36. It is worth noting that, since the capping layer 46 made of silicon in this stage preferably grows and extends upward along the sidewall of the sidewall sub-layer 28 made of silicon oxide, and turns to grow when it contacts the heterogeneous interface such as the sidewall sub-layer 30 made of silicon nitride, the capping layer 46 finally formed preferably includes a flat upper surface 48, two inclined sidewalls 50 connected to the flat upper surface 48, and two vertical sidewalls 52 contacting the sidewall sub-layer and respectively connected to the two inclined sidewalls. According to the preferred embodiment of the present invention, the cover layer 46 grown in this way can provide more protection for the cover layer 46, and this design can also reduce the overlap capacitance (capacitance overlap, C ov ) of the device.

接著如第6圖所示,先依序形成一接觸洞蝕刻停止層(圖未示)以及一層間介電層54於各閘極結構14、16上,然後進行一平坦化製程,例如利用化學機械研磨(chemical mechanical polishing, CMP)去除部分層間介電層54與部分接觸洞蝕刻停止層並暴露出由多晶矽材料所構成的閘極材料層20,使各硬遮罩22上表面與層間介電層54上表面齊平。Next, as shown in FIG. 6 , a contact hole etch stop layer (not shown) and an interlayer dielectric layer 54 are sequentially formed on each gate structure 14, 16, and then a planarization process is performed, such as using chemical mechanical polishing (CMP) to remove part of the interlayer dielectric layer 54 and part of the contact hole etch stop layer and expose the gate material layer 20 made of polysilicon material, so that the upper surface of each hard mask 22 is flush with the upper surface of the interlayer dielectric layer 54.

隨後進行一金屬閘極置換製程將閘極結構14、16轉換為金屬閘極。舉例來說,可先進行一選擇性之乾蝕刻或濕蝕刻製程,例如利用氨水(ammonium hydroxide, NH 4OH)或氫氧化四甲銨(Tetramethylammonium Hydroxide, TMAH)等蝕刻溶液依序去除閘極結構14、16中的硬遮罩22、閘極材料層20甚至閘極介電層18,以於層間介電層54中形成凹槽(圖未示)。之後依序形成一選擇性介質層56或閘極介電層(圖未示)、一高介電常數介電層58、一功函數金屬層60以及一低阻抗金屬層62於各凹槽內,然後進行一平坦化製程,例如利用CMP去除部分低阻抗金屬層62、部分功函數金屬層60與部分高介電常數介電層58以形成金屬閘極64、66所構成的閘極結構14、16。以本實施例利用後高介電常數介電層製程所製作的閘極結構為例,各閘極結構14、16較佳包含一介質層56或閘極介電層(圖未示)、一U型高介電常數介電層58、一U型功函數金屬層60以及一低阻抗金屬層62。 A metal gate replacement process is then performed to convert the gate structures 14 and 16 into metal gates. For example, a selective dry etching or wet etching process may be performed first, such as using an etching solution such as ammonium hydroxide (NH 4 OH) or tetramethylammonium hydroxide (TMAH) to sequentially remove the hard mask 22, the gate material layer 20, and even the gate dielectric layer 18 in the gate structures 14 and 16 to form a groove in the interlayer dielectric layer 54 (not shown). Thereafter, a selective dielectric layer 56 or a gate dielectric layer (not shown), a high dielectric constant dielectric layer 58, a work function metal layer 60 and a low resistance metal layer 62 are sequentially formed in each groove, and then a planarization process is performed, such as using CMP to remove part of the low resistance metal layer 62, part of the work function metal layer 60 and part of the high dielectric constant dielectric layer 58 to form gate structures 14, 16 formed by metal gates 64, 66. Taking the gate structure fabricated by the post high-k dielectric layer process in the present embodiment as an example, each gate structure 14 , 16 preferably includes a dielectric layer 56 or a gate dielectric layer (not shown), a U-shaped high-k dielectric layer 58 , a U-shaped work function metal layer 60 and a low-resistance metal layer 62 .

在本實施例中,高介電常數介電層58包含介電常數大於4的介電材料,例如選自氧化鉿(hafnium oxide,HfO 2)、矽酸鉿氧化合物(hafnium silicon oxide, HfSiO 4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride, HfSiON)、氧化鋁(aluminum oxide, Al 2O 3)、氧化鑭(lanthanum oxide, La 2O 3)、氧化鉭(tantalum oxide, Ta 2O 5)、氧化釔(yttrium oxide, Y 2O 3)、氧化鋯(zirconium oxide, ZrO 2)、鈦酸鍶(strontium titanate oxide, SrTiO 3)、矽酸鋯氧化合物(zirconium silicon oxide, ZrSiO 4)、鋯酸鉿(hafnium zirconium oxide, HfZrO 4)、鍶鉍鉭氧化物(strontium bismuth tantalate, SrBi 2Ta 2O 9, SBT)、鋯鈦酸鉛(lead zirconate titanate, PbZr xTi 1-xO 3, PZT)、鈦酸鋇鍶(barium strontium titanate, BaxSr 1-xTiO 3, BST)、或其組合所組成之群組。 In the present embodiment, the high-k dielectric layer 58 includes a dielectric material with a dielectric constant greater than 4, such as hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT), barium strontium titanate (BaxSr 1-x TiO 3 , BST), or a combination thereof.

功函數金屬層60較佳用以調整形成金屬閘極之功函數,使其適用於N型電晶體(NMOS)或P型電晶體(PMOS)。若電晶體為N型電晶體,功函數金屬層60可選用功函數為3.9電子伏特(eV)~4.3 eV的金屬材料,如鋁化鈦(TiAl)、鋁化鋯(ZrAl)、鋁化鎢(WAl)、鋁化鉭(TaAl)、鋁化鉿(HfAl)或TiAlC (碳化鈦鋁)等,但不以此為限;若電晶體為P型電晶體,功函數金屬層60可選用功函數為4.8 eV~5.2 eV的金屬材料,如氮化鈦(TiN)、氮化鉭(TaN)或碳化鉭(TaC)等,但不以此為限。功函數金屬層60與低阻抗金屬層58之間可包含另一阻障層(圖未示),其中阻障層的材料可包含鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)等材料。低阻抗金屬層62則可選自銅(Cu)、鋁(Al)、鎢(W)、鈦鋁合金(TiAl)、鈷鎢磷化物(cobalt tungsten phosphide,CoWP)等低電阻材料或其組合。The work function metal layer 60 is preferably used to adjust the work function of the metal gate so that it is suitable for an N-type transistor (NMOS) or a P-type transistor (PMOS). If the transistor is an N-type transistor, the work function metal layer 60 may be made of a metal material with a work function of 3.9 electron volts (eV) to 4.3 eV, such as titanium aluminide (TiAl), zirconium aluminide (ZrAl), tungsten aluminum (WAl), tantalum aluminum (TaAl), tantalum aluminum (HfAl) or TiAlC (titanium aluminum carbide), etc., but not limited thereto; if the transistor is a P-type transistor, the work function metal layer 60 may be made of a metal material with a work function of 4.8 eV to 5.2 eV, such as titanium nitride (TiN), tantalum nitride (TaN) or tantalum carbide (TaC), etc., but not limited thereto. Another barrier layer (not shown) may be included between the work function metal layer 60 and the low resistance metal layer 58, wherein the material of the barrier layer may include titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), etc. The low resistance metal layer 62 may be selected from low resistance materials such as copper (Cu), aluminum (Al), tungsten (W), titanium aluminum alloy (TiAl), cobalt tungsten phosphide (CoWP), etc., or a combination thereof.

之後可選擇性去除部分高介電常數介電層58、部分功函數金屬層60與部分低阻抗金屬層62形成凹槽(圖未示),然後再填入一硬遮罩68於凹槽內並使硬遮罩68與層間介電層54表面齊平,其中硬遮罩68可選自由氧化矽、氮化矽、氮氧化矽以及氮碳化矽所構成的群組。Thereafter, part of the high dielectric constant dielectric layer 58, part of the work function metal layer 60 and part of the low resistance metal layer 62 may be selectively removed to form a groove (not shown), and then a hard mask 68 is filled into the groove and made flush with the surface of the interlayer dielectric layer 54, wherein the hard mask 68 may be selected from the group consisting of silicon oxide, silicon nitride, silicon oxynitride and silicon nitride carbide.

隨後可進行一接觸插塞製程形成接觸插塞70分別電連接源極/汲極區域44。在本實施例中,形成接觸插塞70的方式可先去除部分層間介電層54與部分接觸洞蝕刻停止層形成接觸洞(圖未示),然後依序沉積一阻隔層(圖未示)與一金屬層(圖未示)於基底12上並填滿接觸洞。接著利用一平坦化製程,例如CMP去除部分金屬層、部分阻隔層甚至部分層間介電層54,以於接觸洞中形成接觸插塞70,其中接觸插塞70上表面較佳與層間介電層54上表面切齊。在本實施例中,阻隔層較佳選自由鈦、鉭、氮化鈦、氮化鉭以及氮化鎢所構成的群組,金屬層較佳選自由鋁、鈦、鉭、鎢、鈮、鉬以及銅所構成的群組,但不侷限於此。A contact plug process may then be performed to form contact plugs 70 that are electrically connected to the source/drain regions 44. In the present embodiment, the contact plugs 70 may be formed by first removing a portion of the interlayer dielectric layer 54 and a portion of the contact hole etch stop layer to form a contact hole (not shown), and then sequentially depositing a barrier layer (not shown) and a metal layer (not shown) on the substrate 12 to fill the contact hole. A planarization process, such as CMP, is then used to remove a portion of the metal layer, a portion of the barrier layer, and even a portion of the interlayer dielectric layer 54 to form a contact plug 70 in the contact hole, wherein the upper surface of the contact plug 70 is preferably aligned with the upper surface of the interlayer dielectric layer 54. In this embodiment, the barrier layer is preferably selected from the group consisting of titanium, tantalum, titanium nitride, tantalum nitride and tungsten nitride, and the metal layer is preferably selected from the group consisting of aluminum, titanium, tantalum, tungsten, niobium, molybdenum and copper, but is not limited thereto.

請再參照第6圖及第7圖,第6圖及第7圖另揭露本發明不同實施例之一半導體元件之結構示意圖。如第6圖及第7圖所示,半導體元件主要包含閘極結構14、16設於基底12上、側壁子26設於閘極結構14、16旁、側壁子28設於側壁子26側壁、側壁子30設於側壁子28側壁、磊晶層40設於閘極結構14、16兩側以及遮蓋層46設於磊晶層40上。Please refer to FIG. 6 and FIG. 7 again, which are schematic diagrams of the structure of a semiconductor device according to different embodiments of the present invention. As shown in FIG. 6 and FIG. 7, the semiconductor device mainly includes gate structures 14 and 16 disposed on the substrate 12, sidewalls 26 disposed beside the gate structures 14 and 16, sidewalls 28 disposed on the sidewalls of the sidewalls 26, sidewalls 30 disposed on the sidewalls of the sidewalls 28, epitaxial layers 40 disposed on both sides of the gate structures 14 and 16, and a capping layer 46 disposed on the epitaxial layer 40.

從細部來看,第6圖的側壁子26包含I形剖面,側壁子28包含L形剖面,側壁子30包含I形剖面,其中側壁子30下表面較佳高於側壁子26、28下表面,且側壁子26、28下表面分別切齊閘極結構14、16下表面。需注意的是,本實施例中設於中間的側壁子28雖較呈現L形剖面,但依據本發明一實施例如第7圖所示,設於中間的側壁子28又可如左右的側壁子26、30般呈現I形剖面,而在此情況下設於外側的側壁子30內側側壁即切齊中間側壁子28的外側側壁,側壁子30較佳不跨在側壁子28上,且側壁子30的下表面仍高於側壁子28的下表面。From a detailed perspective, the side wall 26 of FIG. 6 includes an I-shaped cross-section, the side wall 28 includes an L-shaped cross-section, and the side wall 30 includes an I-shaped cross-section, wherein the lower surface of the side wall 30 is preferably higher than the lower surfaces of the side walls 26 and 28, and the lower surfaces of the side walls 26 and 28 are aligned with the lower surfaces of the gate structures 14 and 16, respectively. It should be noted that, although the side wall 28 disposed in the middle in this embodiment presents an L-shaped cross-section, according to an embodiment of the present invention, as shown in FIG. 7 , the side wall 28 disposed in the middle can also present an I-shaped cross-section like the left and right side walls 26 and 30, and in this case, the inner side wall of the side wall 30 disposed on the outer side is aligned with the outer side wall of the middle side wall 28, and the side wall 30 preferably does not straddle the side wall 28, and the lower surface of the side wall 30 is still higher than the lower surface of the side wall 28.

從材料面來看三個側壁子26、28、30均較佳包含不同材料,其中設於中間的側壁子28較佳包含氧化矽,外側的側壁子30較佳包含氮化矽,而內側的側壁子26則可依據製程需求包含氧化矽、氮化矽、氮氧化矽或氮碳化矽。From the material perspective, the three sidewalls 26, 28, and 30 preferably include different materials, wherein the middle sidewall 28 preferably includes silicon oxide, the outer sidewall 30 preferably includes silicon nitride, and the inner sidewall 26 may include silicon oxide, silicon nitride, silicon oxynitride, or silicon nitride carbide according to process requirements.

另外磊晶層40的頂表面較佳略高於基底12表面,且磊晶層40的側壁較佳於前述所形成的傾斜面38處形成突起部42,其中突起部42與磊晶層40的側壁較佳一同呈現約略鋸齒狀並朝磊晶層40的兩側延伸。此外設於磊晶層40上方的遮蓋層46較佳包含一平坦上表面48、二傾斜側壁50連接平坦上表面48以及二垂直側壁52接觸側壁子28側壁同時又分別連接二傾斜側壁50。由於遮蓋層46較佳深入側壁子30正下方,因此部分遮蓋層46較佳同時接觸側壁子28與側壁子30。此外相較於第6圖中遮蓋層46的二垂直側壁52不切齊側壁子28、30的側壁,第7圖的實施例中遮蓋層46的二垂直側壁52較佳切齊側壁子28的外側側壁。In addition, the top surface of the epitaxial layer 40 is preferably slightly higher than the surface of the substrate 12, and the side wall of the epitaxial layer 40 preferably forms a protrusion 42 at the inclined surface 38 formed above, wherein the protrusion 42 and the side wall of the epitaxial layer 40 are preferably roughly saw-toothed and extend toward both sides of the epitaxial layer 40. In addition, the cover layer 46 disposed above the epitaxial layer 40 preferably includes a flat upper surface 48, two inclined side walls 50 connected to the flat upper surface 48, and two vertical side walls 52 contacting the side wall of the side wall sub-28 and respectively connected to the two inclined side walls 50. Since the covering layer 46 preferably penetrates directly below the side wall 30, a portion of the covering layer 46 preferably contacts the side wall 28 and the side wall 30 at the same time. In addition, compared with the two vertical side walls 52 of the covering layer 46 in FIG. 6 that do not align with the side walls of the side walls 28 and 30, the two vertical side walls 52 of the covering layer 46 in the embodiment of FIG. 7 preferably align with the outer side wall of the side wall 28.

請接著參照第8圖,第8圖另揭露本發明一實施例之一半導體元件之結構示意圖。如第8圖所示,相較於前述實施例的遮蓋層46包含一平坦上表面48、二傾斜側壁50連接平坦上表面以及二垂直側壁52接觸側壁子28側壁,本實施例可於形成遮蓋層46時略為調整通入的氣體流量或配方使遮蓋層46僅包含一平坦上表面48以及二傾斜側壁50連接平坦上表面48且二傾斜側壁50較佳直接接觸側壁子28。如此本實施例遮蓋層46的整體體積即可顯著小於前述實施例的遮蓋層46,代表遮蓋層46中如硼等摻質濃度可隨之降低,藉此改善元件的重疊電容值(capacitance overlap, C ov)。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 Please refer to FIG. 8, which further discloses a schematic diagram of the structure of a semiconductor element of an embodiment of the present invention. As shown in FIG. 8, compared with the aforementioned embodiment in which the cover layer 46 includes a flat upper surface 48, two inclined side walls 50 connected to the flat upper surface, and two vertical side walls 52 contacting the side walls of the side wall sub-28, the present embodiment can slightly adjust the gas flow rate or formula when forming the cover layer 46 so that the cover layer 46 only includes a flat upper surface 48 and two inclined side walls 50 connected to the flat upper surface 48, and the two inclined side walls 50 preferably directly contact the side wall sub-28. Thus, the overall volume of the cover layer 46 of the present embodiment can be significantly smaller than that of the cover layer 46 of the previous embodiment, which means that the concentration of dopants such as boron in the cover layer 46 can be reduced accordingly, thereby improving the overlap capacitance (capacitance overlap, Cov ) of the device. The above is only a preferred embodiment of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention should fall within the scope of the present invention.

12:基底                                   14:閘極結構 16:閘極結構                            18:閘極介電層 20:閘極材料層                        22:硬遮罩 24:輕摻雜汲極                        26:側壁子 28:側壁子                               30:側壁子 32:凹槽                                   34:清洗製程 36:孔洞                                   38:傾斜面 40:磊晶層                               42:突起部 44:源極/汲極區域                    46:遮蓋層 48:平坦上表面                        50:傾斜側壁 52:垂直側壁                            54:層間介電層 56:介質層                               58:高介電常數介電層 60:功函數金屬層                     62:低阻抗金屬層 64:金屬閘極                            66:金屬閘極 68:硬遮罩                               70:接觸插塞 12: substrate                                       14: gate structure 16: gate structure                                18: gate dielectric layer 20: gate material layer                            22: hard mask 24: lightly doped drain                            26: sidewall 28: sidewall                                   30: sidewall 32: groove                                       34: cleaning process 36: hole                                     38: inclined surface 40: epitaxial layer                               42: protrusion 44: Source/Drain Region                         46: Capping Layer 48: Flat Top Surface                            50: Inclined Sidewalls 52: Vertical Sidewalls                           54: Interlayer Dielectric Layer 56: Dielectric Layer                                   58: High K Dielectric Layer 60: Work Function Metal Layer                         62: Low Impedance Metal Layer 64: Metal Gate                                66: Metal Gate 68: Hard Mask                               70: Contact Plug

第1圖至第6圖為本發明較佳實施例製作一半導體元件之方法示意圖。 第7圖為本發明一實施例之一半導體元件之結構示意圖。 第8圖為本發明一實施例之一半導體元件之結構示意圖。 Figures 1 to 6 are schematic diagrams of a method for manufacturing a semiconductor element according to a preferred embodiment of the present invention. Figure 7 is a schematic diagram of the structure of a semiconductor element according to an embodiment of the present invention. Figure 8 is a schematic diagram of the structure of a semiconductor element according to an embodiment of the present invention.

12:基底 12: Base

14:閘極結構 14: Gate structure

16:閘極結構 16: Gate structure

24:輕摻雜汲極 24: Lightly doped drain

26:側壁子 26: Sidewall

28:側壁子 28: Sidewall

30:側壁子 30: Sidewall

38:傾斜面 38: Inclined surface

40:磊晶層 40: Epitaxial layer

42:突起部 42: protrusion

44:源極/汲極區域 44: Source/drain region

46:遮蓋層 46: Covering layer

48:平坦上表面 48: Flat upper surface

50:傾斜側壁 50: Leaning sidewall

52:垂直側壁 52: Vertical side wall

54:層間介電層 54: Interlayer dielectric layer

56:介質層 56: Dielectric layer

58:高介電常數介電層 58: High dielectric constant dielectric layer

60:功函數金屬層 60: Work function metal layer

62:低阻抗金屬層 62: Low impedance metal layer

64:金屬閘極 64:Metal gate

66:金屬閘極 66:Metal gate

68:硬遮罩 68: Hard mask

70:接觸插塞 70: Contact plug

Claims (13)

一種半導體元件,包含: 一閘極結構設於一基底上; 一第一側壁子以及一第二側壁子環繞該閘極結構,其中該基底包含一傾斜面與該第二側壁子直接相連; 一磊晶層設於該閘極結構兩側且覆蓋該傾斜面;以及 一遮蓋層設於該磊晶層上,其中該遮蓋層包含一平坦上表面以及一傾斜側壁連接該平坦上表面。 A semiconductor element comprises: A gate structure is disposed on a substrate; A first sidewall and a second sidewall surround the gate structure, wherein the substrate comprises an inclined surface directly connected to the second sidewall; An epitaxial layer is disposed on both sides of the gate structure and covers the inclined surface; and A cover layer is disposed on the epitaxial layer, wherein the cover layer comprises a flat upper surface and an inclined sidewall connected to the flat upper surface. 如申請專利範圍第1項所述之半導體元件,另包含: 該第一側壁子設於該閘極結構旁; 該第二側壁子設於該第一側壁子外側側壁;以及 一第三側壁子設於該第二側壁子外側側壁。 The semiconductor element as described in item 1 of the patent application scope further comprises: The first sidewall is arranged beside the gate structure; The second sidewall is arranged on the outer sidewall of the first sidewall; and A third sidewall is arranged on the outer sidewall of the second sidewall. 如申請專利範圍第2項所述之半導體元件,其中該第一側壁子包含I形,該第二側壁子包含L形,且該第三側壁子包含I形。A semiconductor device as described in item 2 of the patent application, wherein the first side wall comprises an I shape, the second side wall comprises an L shape, and the third side wall comprises an I shape. 如申請專利範圍第3項所述之半導體元件,其中該第三側壁子下表面高於該第二側壁子下表面。A semiconductor device as described in item 3 of the patent application, wherein the lower surface of the third side wall is higher than the lower surface of the second side wall. 如申請專利範圍第3項所述之半導體元件,其中該第一側壁子下表面切齊該閘極結構下表面。A semiconductor device as described in item 3 of the patent application, wherein the lower surface of the first side wall is aligned with the lower surface of the gate structure. 如申請專利範圍第3項所述之半導體元件,其中該第二側壁子下表面切齊該閘極結構下表面。A semiconductor device as described in item 3 of the patent application, wherein the lower surface of the second side wall is aligned with the lower surface of the gate structure. 如申請專利範圍第2項所述之半導體元件,其中該第二側壁子包含氧化矽且該第三側壁子包含氮化矽。A semiconductor device as described in claim 2, wherein the second sidewall comprises silicon oxide and the third sidewall comprises silicon nitride. 如申請專利範圍第2項所述之半導體元件,其中該遮蓋層直接接觸該第二側壁子及該第三側壁子。As described in item 2 of the patent application scope, the cover layer directly contacts the second side wall and the third side wall. 如申請專利範圍第1項所述之半導體元件,其中該遮蓋層包含矽。A semiconductor device as described in claim 1, wherein the capping layer comprises silicon. 如申請專利範圍第1項所述之半導體元件,其中該遮蓋層另包含一垂直側壁連接該傾斜側壁。As described in item 1 of the patent application scope, the cover layer further includes a vertical side wall connected to the inclined side wall. 如申請專利範圍第2項所述之半導體元件,其中該第三側壁子外側側壁不切齊該第二側壁子外側側壁。A semiconductor device as described in item 2 of the patent application, wherein the third side wall sub-outer side wall is not aligned with the second side wall sub-outer side wall. 如申請專利範圍第2項所述之半導體元件,其中該磊晶層的側壁於該傾斜面處形成一突起部,該突起部的一部分覆蓋該傾斜面,且該突起部呈現鋸齒狀並朝外延伸。As described in item 2 of the patent application scope, the side wall of the epitaxial layer forms a protrusion at the inclined surface, a part of the protrusion covers the inclined surface, and the protrusion is saw-toothed and extends outward. 如申請專利範圍第2項所述之半導體元件,其中該遮蓋層直接接觸該第二側壁子及該第三側壁子,且該遮蓋層另包含一垂直側壁連接該傾斜側壁。As described in item 2 of the patent application scope, the cover layer directly contacts the second side wall and the third side wall, and the cover layer further includes a vertical side wall connected to the inclined side wall.
TW113102946A 2019-01-30 Semiconductor device TWI885717B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113102946A TWI885717B (en) 2019-01-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113102946A TWI885717B (en) 2019-01-30 Semiconductor device

Publications (2)

Publication Number Publication Date
TW202420418A true TW202420418A (en) 2024-05-16
TWI885717B TWI885717B (en) 2025-06-01

Family

ID=

Similar Documents

Publication Publication Date Title
CN106803484B (en) Semiconductor element and manufacturing method thereof
TWI722073B (en) Semiconductor device and method for fabricating the same
US8765546B1 (en) Method for fabricating fin-shaped field-effect transistor
CN107275210B (en) Semiconductor element and manufacturing method thereof
CN116705613A (en) Semiconductor element and manufacturing method thereof
TWI825065B (en) Method for fabricating semiconductor device
TWI728174B (en) Semiconductor device and method for fabricating the same
CN106920839B (en) Semiconductor element and manufacturing method thereof
US20240194738A1 (en) Semiconductor device and method for fabricating the same
CN110473784B (en) Semiconductor element and manufacturing method thereof
CN114639732A (en) Semiconductor device and method of making the same
US9685541B2 (en) Method for forming semiconductor structure
TWI686879B (en) Semiconductor device and method for fabricating the same
CN110246803A (en) Semiconductor element and preparation method thereof
TW202029300A (en) Semiconductor device and method for fabricating the same
CN113611736B (en) Semiconductor element and manufacturing method thereof
CN116504828A (en) semiconductor element
TWI885717B (en) Semiconductor device
CN114121660B (en) Semiconductor element and manufacturing method thereof
TW202420418A (en) Semiconductor device
TWI515830B (en) Method for fabricating semiconductor device
TWI569333B (en) Method for fabricating semiconductor device
TWI536567B (en) Metal oxide semiconductor transistor and manufacturing method thereof
CN118486590A (en) Semiconductor device with a semiconductor element having a plurality of electrodes