200807481 (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於螢光燈及以其作爲光源的照明裝置。 【先前技術】 作爲液晶用顯示器、液晶電視、計量儀器用顯示面板 等的背光光源而使用的螢光燈,一般而言,於玻璃管的內 φ 壁面形成3波長螢光體的螢光體層,於玻璃管的內部將稀 有氣體與水銀的混合氣體作爲放電媒體而封入,於玻璃管 的兩端部的內部或外部配置電極之構成。 然後,先前有提案:在如此的螢光燈,係將以一般式 (Sr?5Ba?Mg) 5(P04) 3C1: Eu表示的第1藍色螢光體、 和以一般式(Ba,Sr,Eu) ( Mg,Mn) A11()017表示的第2藍 色螢光體的雙方作爲藍色成分螢光體而使用,使第2藍色 藍光體以對於第1藍色螢光體以重量在10%以上、50%以 φ 下的比例包含而不使亮度下降、使演色性提高(日本特開 2000-3401 80號公報-專利文獻1)。 在此螢光燈的情況,顯示作爲綠色螢光體使用LaP04 :Ce,Tb系、MgAln〇19: Ce,Tb系,這些綠色螢光體都爲 高亮度、長壽命。然而,這些作爲變得重視高演色性之近 年的LCD背光光源就不是最適合之物。 所以,於先前重視高演色性的LCD背光光源用的螢 光燈,以作爲綠色螢光體使用 Zn2Si04 : Μη系、 BaMgAli〇〇i7 : Eu,Mn 系、MgGa〇4 : Μη 系的螢光體而作 -4- 200807481 (2) 到顯示高演色性。在使用此後者的綠色螢光體之螢光燈的 情況,有不能期待高亮度特性,另外,維持率亦明顯下降 的問題點。 〔專利文獻1〕日本特開2000-34〇18〇號公報 【發明內容】 〔發明所欲解決的課題〕 _ 本發明係以如此的先前技術上的課題爲鑑,目的爲提 供:以作爲綠色螢光體使用最合適之物而顯示高演色性、 高亮度而且長壽命的螢光燈及以其作爲光源的照明裝置。 〔用以解決課題的手段〕 申請專利範圍第1項的發明係於玻璃管的內壁面形成 3波長螢光體的螢光體層,於前述玻璃管的內部封入放電 媒體,於前述玻璃管的兩端部的內部或外部配置電極之螢 φ 光燈,以:作爲前述3波長螢光體的綠色螢光體,爲使用 波長的峰値在470nm〜500nm與530nm〜560nm之LaP〇4: Ce,Tb系、MgAlnOw : Ce,Tb系的任1個或複數的第1綠 色螢光體、和波長的峰値在 50〇nm〜53 0nm的 Zn2Si04 : Μη 系、BaMgAli〇〇i7: Eu,Mn 系、MgGa〇4: Μη 系的任 1 個或複數的第2綠色螢光體之混合體作爲其特徵。 申請專利範圍第6項的照明裝置,以:將記載於申請 專利範圍第1項的螢光燈作爲光源而安裝作爲其特徵。 5- 200807481 (3) 〔發明的效果〕 藉由本發明,作爲螢光體層的3波長螢光體之綠色螢 光體,藉由使用顯示高亮度、長壽命特性的LaP04 : Ce,Tb系、MgAlnOw : Ce,Tb系的第1綠色螢光體、與顯 示高演色性的 Zn2Si04: Μη 系、BaMgAl1()017: Eu,Mn 系 — 、MgGa04 : Μη系的第2綠色螢光體之混合體,可提高顯 示出高演色性之500nm附近的波長光的發光強度,而且, φ 亦可維持高亮度、長壽命特性,可提供:兼具高演色性和 高亮度、長壽命特性之螢光燈和使用其之照明裝置。 【實施方式】 以下,將本發明的實施形態根據圖面而詳細說明。 (第1實施形態) 於第1圖、第2圖係作爲本發明的第1實施形態之螢 • 光燈,顯示介電質放電(Dielectric Barrier Discharge)螢 光燈。此螢光燈1係於玻璃管2的內壁形成螢光體層3, 於玻璃管2的內部放電空間係將混合水銀和、氖、氬、氙 等的稀有氣體之混合氣體作爲放電媒體4而封入,密封玻 璃管2的兩端。於玻璃管2的兩端之外表面係形成以金屬 導體層構成的外部電極5。在使如此構成的螢光燈1點燈 的情況,於玻璃管2的兩端的電極5、5之間若從高頻點 燈裝置(換流器(inverter )) 6施加高頻電壓,則經由外 部電極5、5的玻璃部分的C成分,於玻璃管2內的放電 -6 - 200807481 (4) 空間注入高頻電力,在玻璃管2內產生持續放電,由水銀 而產生紫外線。此紫外線入射至玻璃管2的內壁之螢光體 層3 ’使螢光發光,將此螢光作爲可見光而從玻璃管2放 射至外部。 於形成在上述螢光燈1的玻璃管2的內壁面之3波長 ' 螢光體的螢光體層3,作爲其綠色螢光體,使用波長的峰 値在 470nm 〜500nm 與 53 0nm 〜560nm 之 LaP04: Ce,Tb 系 φ 、MgAl^OH : Ce,Tb系的任1個或複數的第1綠色螢光體 、和波長的峰値在 500nm〜53 0nm的 Zn2Si04: Μη系、 BaMgAl1()017·· Eu,Mn 系、MgGa〇4: Μη 系的任 1 個或複 數的第2綠色螢光體之混合體。第1綠色螢光體與第2綠 色螢光體的混合比,係對於第1綠色螢光體將第2綠色螢 光體以重量5%以上、95%以下的比例包含爲理想,更理想 爲50〜95%。於3波長螢光體之中的紅色螢光體,例如使 用 Y203 : Eu的螢光體、於藍色螢光體例如使用 BaMgAli〇〇i7: Eu 的營光體。 由本實施形態的螢光燈,藉由將螢光體層的3波長螢 光體之中,作爲綠色螢光體之波長峰値在470nm〜500nm 與 53 0nm〜560nm的第 1綠色螢光體、與波長峰値在 500nm〜530nm的第2綠色螢光體之混合體合適地調整其組 成比而使用,顯示高演色性之500nm附近的波長光的發光 強度高,而且,亦可維持高亮度、長壽命特性。/ (作爲第2實施形態。) 200807481 (5) 本發明不限於如此的介電質放電型的螢光燈,對於如 第3圖所示的於玻璃管2A的內壁面形成螢光體層3 A,另 外於玻璃管2A的內部封入放電氣體4A,玻璃管2A的兩 端各別於內部設置電極5 A的冷陰極螢光燈1 A亦可適用 * ,爲可廣泛地適用在藉由廣泛的放電氣體之放電而使紫外 ' 線產生,藉由使此紫外線照射而發出螢光,作爲可見光而 放射至外部的螢光燈之物。 〔實施例〕 (實施例) 作爲紅色螢光體選擇Y2〇3 : Eu、作爲藍色螢光體選 擇BaMg2Al16027: Eu、然後,作爲綠色螢光體,作爲波長 的峰値在470nm〜500nm、與5 3 0 nm〜5 6 0 nm之第 1綠色螢 光體選擇 LaP04 : Ce,Tb 、作爲波長的峰値在 500nm〜530nm的第 2綠色螢光體選擇 B aM g A1 i 〇0 ! 7 : φ En,Mn而使用這些之混合體,將這些綠色螢光體的配合組 成比,在重量%對於第1綠色螢光體,第2綠色螢光體以 成爲 0% ( 1 ) 、25% ( 2 ) 、5 0% ( 3 ) 、75% ( 4 ) 、100% (5 )的方式混合,而且混合了光源色落於如規定在 JISZ91 12之白晝光色色度範圍般的紅、綠、藍成分之螢光 體,調合混合螢光體。 使此混合螢光體充分地分散於包含結著劑的結合劑, 調製螢光體漿狀物。將此螢光體漿狀物以一般周知的方法 均勻地塗布於玻璃管內,以一般周知的方法製作螢光燈。 -8 - 200807481 (6) 在此,(2 )〜(4 )爲本發明的實施例,(1) ( 5 )爲比 較例。 作爲藉由如此作用而得到的實施例(2)〜(4)及比 較例(1 )( 5 )之螢光燈的特性,測定亮度特性、壽命特 性、N T S C比。結果是按照於第4圖〜第6圖所示的樣子。 * 第4圖係表示使先前的高亮度、長壽命但低演色性之第1 綠色螢光體、與先前的有高演色性但低亮度、短壽命特性 0 的第2綠色螢光體,兩者的混合比變化而測定其相對亮度 之結果的線圖。也就是,同圖的橫軸,係表示對於第1綠 色螢光體之第2綠色螢光體的組成比〔%〕,縱軸係表示 相對亮度〔%〕。在同圖,比較例(1 )係僅爲第1綠色螢 光體、不包含第2綠色螢光體的情況,比較例(5 )係僅 爲第2綠色螢光體、不包含第1綠色螢光體的情況,(2 )、(3) 、(4)爲本發明的實施例、對於第1綠色螢光 體之第2綠色螢光體的組成比顯示各別在25%、50%、 φ 75%的情況的相對亮度。從同圖,了解藉由僅以第1綠色 螢光體混合第2綠色螢光體,相對亮度係顯示出比只有第 1綠色螢光體的情況低,但比只有第2綠色螢光體的情況 高的値。另外,了解:關於第2綠色螢光體的組成比增加 ,相對亮度係徐徐地下降。 第5圖爲將有關本發明的實施例之螢光體的壽命特性 與比較例一起顯示的線圖。也就是,在同圖,橫軸係表示 使用了這些螢光體的螢光燈的點燈時間,縱軸係表示亮度 維持率〔%〕。如從同圖所了解地,明暸本發明的實施例 -9 - 200807481 (7) (2 ) 、(3) 、(4)的亮度維持率,比起比較例(1)的 売度維持率小而比比較例(5 )的売度維持率大。另外, 明暸:隨著第2綠色螢光體的組成比增加,亮度維持率亦 徐徐地下降。 第6圖爲將有關本發明的實施例之螢光體的色度圖與 由比較例、CIE1931規格及NTSC規格之色度圖一起顯示 的色度圖。由同圖,明暸表示本發明的實施例(2) 、 (3 )、(4 )的演色性之三角形面積,係比比較例(1 )的面 積大、比比較例(5 )的面積小。另外了解隨著第2綠色 螢光體的組成比增加,面積徐徐地擴大。 從這些的測定結果,關於本發明的實施例之綠色螢光 體,係可以得到:比起僅將先前之高亮度、長壽命但低演 色性的第1綠色螢光體作爲綠色螢光體而使用的螢光燈而 言顯示出高演色性,另外,比起只將先前之高演色性但低 亮度、短壽命特性的第2綠色螢光體作爲綠色螢光體而使 用之螢光燈而言顯示出高亮度、長壽命的特性之螢光燈。 (第3實施形態) 作爲本發明的第3實施形態之照明裝置,有關液晶顯 示器(LCD )用的背光單元,使用第7圖而說明。本實施 形態的背光單元爲邊緣發光方式,將沿著丙烯酸酯製導光 板21的邊緣具有门字溝或U字溝的反射器22’以其溝相 對於導光板2 1的邊緣而開口的方式配置’而且作爲光源 將第1實施形態的介電質放電型的螢光燈1兩支並列地內 -10- 200807481 (8) 插於反射器2 2。而且,於導光板2 1的裏面側係貼上反射 薄片24,於其表面側配置光擴散薄片25,然後配置聚光 薄片2 6。 在如此的構成之第3實施形態的背光單元,作爲背光 " 光源藉由使用第1實施形態的螢光燈1,可提供:作爲高 亮度而長壽命而且顯示高演色性的背光單元。而且,作爲 本實施形態的背光單元的光源,亦可採用第2實施形態的 0 冷陰極螢光燈1 A,藉由此亦顯現相同的效果。 (第4實施形態) 作爲本發明的第4實施形態之照明裝置,有關LCD 用的其他的背光單元,使用第8圖而說明。本實施形態的 背光爲正下型背光方式,於反射殼201作爲光源以並列複 數支介電質放電型的螢光燈1的方式收容,以背框202和 前框203爲補強的構造。於反射殻201內,於螢光燈1的 φ 背面以接近或接觸的方式收容有光反射作用的反射器薄片 或板材、樹脂成型品。 在如此的構成之第4實施形態的背光單元,作爲背光 光源亦藉由使用第1實施形態的介電質放電螢光燈1,可 提供:作爲高亮度而長壽命而且顯示高演色性的背光單元 。而且,作爲本實施形態的背光單元的光源,亦可採用第 2實施形態的冷陰極螢光燈1 A,藉由此亦顯現相同的效果 -11 - 200807481 Ο) 【圖式簡單說明】 〔第1圖〕本發明的第1實施形態的介電質放電型螢 光燈的正面圖。 〔第2圖〕本發明的第1實施形態的介電質放電型螢 | 光燈的剖面圖。 〔第3圖〕本發明的第2實施形態的冷陰極螢光燈的 剖面圖。 φ 〔第4圖〕本發明的實施例1〜5的亮度特性的線圖。 〔第5圖〕本發明的實施例1〜5的壽命特性的線圖。 〔第6圖〕本發明的實施例1〜5的高演色螢光體比其 他的NTSC比的線圖。 〔第7圖〕本發明的第3實施形態的背光單元的分解 立體圖。 〔第8圖〕本發明的第4實施形態的背光單元的分解 立體圖。 【主要元件符號說明】 1 :螢光燈 1 A :冷陰極螢光燈 2、 2A :玻璃管 3、 3A :螢光體層 4、 4A :放電媒體 5、 5A :電極 6 :高頻點燈裝置 -12- 200807481 (10)200807481 (1) Description of the Invention [Technical Field] The present invention relates to a fluorescent lamp and an illumination device using the same as a light source. [Prior Art] A fluorescent lamp used as a backlight source such as a liquid crystal display, a liquid crystal television, or a display panel for a measuring instrument, generally, a phosphor layer of a three-wavelength phosphor is formed on the inner φ wall surface of the glass tube. A mixed gas of a rare gas and mercury is sealed as a discharge medium in the inside of the glass tube, and electrodes are disposed inside or outside the both ends of the glass tube. Then, there has been a proposal: in such a fluorescent lamp, the first blue phosphor represented by the general formula (Sr? 5Ba?Mg) 5 (P04) 3C1: Eu, and the general formula (Ba, Sr) (Eu) (Mg, Mn) Both of the second blue phosphors indicated by A11 () 017 are used as blue component phosphors, and the second blue blue body is used for the first blue phosphors. The weight is 10% or more and 50% is contained in a ratio of φ without lowering the brightness and improving the color rendering property (JP-A-2000-3401 80-Patent Document 1). In the case of this fluorescent lamp, it is shown that LaP04:Ce, Tb system, MgAln〇19: Ce, Tb system are used as the green phosphor, and these green phosphors have high brightness and long life. However, these LCD backlight sources, which have become the focus of high color rendering in recent years, are not the most suitable ones. Therefore, in the fluorescent lamp for LCD backlight sources that have previously considered high color rendering, Zn2Si04: Μη, BaMgAli〇〇i7: Eu, Mn, MgGa〇4: Μ 的 phosphors are used as green phosphors. For -4-200807481 (2) to show high color rendering. In the case of using the latter green fluorescent lamp, there is a problem that high brightness characteristics cannot be expected, and the maintenance rate is also remarkably lowered. [Patent Document 1] JP-A-2000-34〇18〇 [Summary of the Invention] [Problems to be Solved by the Invention] The present invention is based on such prior art problems, and aims to provide: as green The phosphor uses a most suitable object to display a fluorescent lamp having high color rendering, high brightness, and long life, and an illumination device using the same as a light source. [Means for Solving the Problem] In the invention of claim 1, the phosphor layer of the three-wavelength phosphor is formed on the inner wall surface of the glass tube, and the discharge medium is sealed in the inside of the glass tube, and the two are in the glass tube. a fluorescent φ light having an electrode disposed inside or outside the end portion, wherein the green phosphor as the three-wavelength phosphor is LaP〇4: Ce having a peak wavelength of 470 nm to 500 nm and 530 nm to 560 nm. Any one or a plurality of first green phosphors of Tb-based, MgAlnOw: Ce, Tb-based, and Zn2Si04: Μη system, BaMgAli〇〇i7: Eu, Mn system having a peak wavelength of 50 〇 nm to 53 0 nm MgGa〇4: A mixture of any one of the Μη system or a plurality of second green phosphors is characterized. The illuminating device of claim 6 is characterized in that the fluorescent lamp described in the first item of the patent application is incorporated as a light source. 5-200807481 (3) Effects of the Invention According to the present invention, a green phosphor of a three-wavelength phosphor which is a phosphor layer is used by using LaP04: Ce, Tb, MgAlnOw which exhibits high luminance and long life characteristics. : a first green phosphor of Ce, Tb, and a mixture of Zn2Si04: Μη, BaMgAl1() 017: Eu, Mn-based, and MgGa04: Μn-based second green phosphor exhibiting high color rendering properties, It can improve the luminous intensity of wavelength light near 500nm which exhibits high color rendering, and φ can maintain high brightness and long life characteristics, and can provide fluorescent lamps with high color rendering, high brightness and long life characteristics. Use its lighting device. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. (First Embodiment) A flashlight of a first embodiment of the present invention is shown in Fig. 1 and Fig. 2 as a Dielectric Barrier Discharge fluorescent lamp. The fluorescent lamp 1 is formed on the inner wall of the glass tube 2 to form a phosphor layer 3, and a mixed gas of a rare gas such as mercury, helium, argon or neon is mixed as a discharge medium 4 in the internal discharge space of the glass tube 2. Sealed and sealed both ends of the glass tube 2. On the outer surface of both ends of the glass tube 2, an external electrode 5 composed of a metal conductor layer is formed. When the fluorescent lamp 1 configured as above is turned on, when a high-frequency voltage is applied from the high-frequency lighting device (inverter) 6 between the electrodes 5 and 5 at both ends of the glass tube 2, The C component of the glass portion of the external electrodes 5 and 5 injects high-frequency electric power into the discharge -6 - 200807481 (4) in the glass tube 2, and causes continuous discharge in the glass tube 2 to generate ultraviolet rays from mercury. This ultraviolet light is incident on the phosphor layer 3' on the inner wall of the glass tube 2, and the fluorescent light is emitted, and this fluorescent light is emitted as visible light from the glass tube 2 to the outside. The phosphor layer 3 of the three-wavelength 'fluorescent body formed on the inner wall surface of the glass tube 2 of the fluorescent lamp 1 is used as the green phosphor, and the peak of the wavelength used is 470 nm to 500 nm and 53 0 nm to 560 nm. LaP04: Ce, Tb is φ, MgAl^OH: Ce, any one or a plurality of first green phosphors of the Tb system, and Zn2Si04 having a peak wavelength of 500 nm to 53 nm: Μη system, BaMgAl1() 017 · Eu, Mn system, MgGa〇4: a mixture of any one of the Μ 系 system or a plurality of second green phosphors. The mixing ratio of the first green phosphor to the second green phosphor is preferably a ratio of 5% or more and 95% or less by weight of the second green phosphor to the first green phosphor, and more preferably 50 to 95%. For the red phosphor in the three-wavelength phosphor, for example, a phosphor of Y203:E or a camper of BaMgAli〇〇i7: Eu is used for the blue phosphor. In the fluorescent lamp of the present embodiment, among the three-wavelength phosphors of the phosphor layer, the first green phosphor having a wavelength peak of 470 nm to 500 nm and 530 nm to 560 nm is used as a green phosphor. The mixture of the second green phosphor having a wavelength peak of 500 nm to 530 nm is appropriately adjusted to have a composition ratio, and the light having a high color rendering property at a wavelength of around 500 nm has high luminous intensity, and can also maintain high brightness and length. Life characteristics. (2) In the second embodiment, the present invention is not limited to such a dielectric discharge type fluorescent lamp, and a phosphor layer 3A is formed on the inner wall surface of the glass tube 2A as shown in Fig. 3 Further, the discharge gas 4A is sealed inside the glass tube 2A, and the cold cathode fluorescent lamp 1A having the electrode 5A at both ends of the glass tube 2A is also applicable to *, and is widely applicable to a wide range of applications. The discharge of the discharge gas causes the ultraviolet ray to be generated, and the ultraviolet ray is irradiated to emit fluorescence, and is emitted as visible light to the outside of the fluorescent lamp. [Examples] (Example) Y2〇3: Eu was selected as a red phosphor, BaMg2Al16027: Eu was selected as a blue phosphor, and then, as a green phosphor, a peak of a wavelength was 470 nm to 500 nm, and The first green phosphor of 5 3 0 nm to 5 60 nm is selected for LaP04: Ce, Tb, and the peak of the wavelength is selected from the second green phosphor of 500 nm to 530 nm. B aM g A1 i 〇0 ! 7 : Using φ En, Mn and using a mixture of these, the composition ratio of these green phosphors is 0% (1), 25% (%) for the first green phosphor in the weight %. 2), 50% (3), 75% (4), and 100% (5) are mixed, and the mixed light source color falls in red, green, and blue as specified in the white light color range of JISZ91 12. The phosphor of the component blends the phosphor. The mixed phosphor is sufficiently dispersed in a binder containing a binder to prepare a phosphor slurry. This phosphor paste is uniformly applied to a glass tube in a generally known manner, and a fluorescent lamp is produced by a generally known method. -8 - 200807481 (6) Here, (2) to (4) are examples of the present invention, and (1) (5) are comparative examples. As characteristics of the fluorescent lamps of Examples (2) to (4) and Comparative Examples (1) and (5) obtained by such action, luminance characteristics, life characteristics, and N T S C ratio were measured. The result is as shown in Fig. 4 to Fig. 6. * Figure 4 shows the first green phosphor with high brightness, long life and low color rendering, and the second green phosphor with high color rendering but low brightness and short life characteristic 0. A line graph of the results of the relative brightness of a person's mixing ratio change. That is, the horizontal axis of the same figure indicates the composition ratio [%] of the second green phosphor of the first green phosphor, and the vertical axis indicates the relative luminance [%]. In the same figure, the comparative example (1) is only the first green phosphor and the second green phosphor, and the comparative example (5) is only the second green phosphor and does not include the first green. In the case of the phosphor, (2), (3), and (4) are examples of the present invention, and the composition ratio of the second green phosphor of the first green phosphor is displayed at 25% and 50%, respectively. Relative brightness of φ 75%. From the same figure, it is understood that the second green phosphor is mixed with only the first green phosphor, and the relative luminance system is lower than that of the first green phosphor, but only the second green phosphor. The situation is high. Further, it is understood that the composition ratio of the second green phosphor increases, and the relative luminance gradually decreases. Fig. 5 is a line diagram showing the life characteristics of the phosphor according to the embodiment of the present invention together with a comparative example. That is, in the same figure, the horizontal axis indicates the lighting time of the fluorescent lamp using these phosphors, and the vertical axis indicates the brightness maintenance ratio [%]. As is understood from the same figure, the brightness maintenance ratio of the embodiment -9 - 200807481 (7) (2), (3), and (4) of the present invention is smaller than that of the comparative example (1). The degree of maintenance of the degree of twist is larger than that of the comparative example (5). Further, it is clear that as the composition ratio of the second green phosphor increases, the luminance maintenance ratio also drops drastically. Fig. 6 is a chromaticity diagram showing the chromaticity diagram of the phosphor according to the embodiment of the present invention together with the chromaticity diagram of the comparative example, the CIE1931 specification, and the NTSC specification. From the same figure, the triangular area of the color rendering property of the examples (2), (3), and (4) of the present invention is shown to be larger than the area of the comparative example (1) and smaller than the area of the comparative example (5). Further, it is understood that as the composition ratio of the second green phosphor increases, the area gradually expands. From the measurement results of these, it is possible to obtain, as a green phosphor of the embodiment of the present invention, a green phosphor which is only a high luminance, a long life, and a low color rendering property as a green phosphor. The fluorescent lamp used has high color rendering properties, and the fluorescent lamp used as the green phosphor is used as the green phosphor instead of the high-color, low-brightness, and short-life characteristic. It is a fluorescent lamp that exhibits high brightness and long life. (Third Embodiment) As a lighting device according to a third embodiment of the present invention, a backlight unit for a liquid crystal display (LCD) will be described with reference to Fig. 7. The backlight unit of the present embodiment is an edge light-emitting method, and the reflector 22' having a gate groove or a U-shaped groove along the edge of the acrylate light guide plate 21 is opened with respect to the edge of the light guide plate 21 with the groove 22' In the arrangement, "the dielectric discharge type fluorescent lamp 1 of the first embodiment is inserted into the reflector 2 2 in parallel with each other" - 200807481 (8). Further, a reflective sheet 24 is attached to the back side of the light guide plate 21, a light diffusion sheet 25 is disposed on the surface side thereof, and then the condensing sheet 26 is disposed. In the backlight unit of the third embodiment of the above-described configuration, the backlight unit 1 of the first embodiment can provide a backlight unit which exhibits high color rendering properties and has a long life as a high luminance. Further, as the light source of the backlight unit of the present embodiment, the 0 cold cathode fluorescent lamp 1 A of the second embodiment can be used, whereby the same effect can be exhibited. (Fourth Embodiment) As an illumination device according to a fourth embodiment of the present invention, another backlight unit for LCD will be described with reference to Fig. 8. The backlight of the present embodiment is a direct-type backlight system, and the reflector shell 201 is used as a light source to accommodate a plurality of dielectric discharge-type fluorescent lamps 1 in parallel, and the back frame 202 and the front frame 203 are reinforced. In the reflection case 201, a reflector sheet, a plate material, or a resin molded article which is light-reflecting is accommodated in the vicinity of the φ back surface of the fluorescent lamp 1 so as to be close to or in contact with each other. In the backlight unit of the fourth embodiment having such a configuration, by using the dielectric discharge fluorescent lamp 1 of the first embodiment as the backlight source, it is possible to provide a backlight which exhibits high color rendering with high brightness and long life. unit. Further, as the light source of the backlight unit of the present embodiment, the cold cathode fluorescent lamp 1 A of the second embodiment can be used, whereby the same effect is also exhibited -11 - 200807481 Ο) [Simple description of the drawing] 1 is a front view of a dielectric discharge fluorescent lamp according to a first embodiment of the present invention. [Fig. 2] A cross-sectional view of a dielectric discharge type fluorescent lamp of the first embodiment of the present invention. [Fig. 3] A cross-sectional view of a cold cathode fluorescent lamp according to a second embodiment of the present invention. φ [Fig. 4] A line graph of the luminance characteristics of Examples 1 to 5 of the present invention. [Fig. 5] A line graph of life characteristics of Examples 1 to 5 of the present invention. [Fig. 6] A line graph of the higher color rendering phosphors of Examples 1 to 5 of the present invention than the other NTSC ratios. [Fig. 7] An exploded perspective view of a backlight unit according to a third embodiment of the present invention. [Fig. 8] An exploded perspective view of a backlight unit according to a fourth embodiment of the present invention. [Main component symbol description] 1 : Fluorescent lamp 1 A : Cold cathode fluorescent lamp 2, 2A: Glass tube 3, 3A: Phosphor layer 4, 4A: Discharge medium 5, 5A: Electrode 6: High-frequency lighting device -12- 200807481 (10)
10 : 21: 2 2 : 2 4 : 25 : 26 : 201 : 202 : 螢光燈 導光板 反射器 反射薄片 光擴散薄片 聚光薄片 反射殼 背框 前框 203 :10 : 21: 2 2 : 2 4 : 25 : 26 : 201 : 202 : Fluorescent light Guide Reflector Reflective sheet Light diffusing sheet Concentrating sheet Reflecting shell Back frame Front frame 203 :