[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2764165C1 - Устройство для получения плазменной струи - Google Patents

Устройство для получения плазменной струи Download PDF

Info

Publication number
RU2764165C1
RU2764165C1 RU2021115632A RU2021115632A RU2764165C1 RU 2764165 C1 RU2764165 C1 RU 2764165C1 RU 2021115632 A RU2021115632 A RU 2021115632A RU 2021115632 A RU2021115632 A RU 2021115632A RU 2764165 C1 RU2764165 C1 RU 2764165C1
Authority
RU
Russia
Prior art keywords
plasma
voltage
electrode
air
discharge gap
Prior art date
Application number
RU2021115632A
Other languages
English (en)
Inventor
Виктор Семенович Скакун
Виктор Александрович Панарин
Дмитрий Алексеевич Сорокин
Эдуард Анатольевич Соснин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН)
Priority to RU2021115632A priority Critical patent/RU2764165C1/ru
Application granted granted Critical
Publication of RU2764165C1 publication Critical patent/RU2764165C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

Изобретение относится к газоразрядной плазменной технике и технологии, в частности к источникам плазменных струй атмосферного давления, где исходным газом воздух или его смеси с другими газами. Технический результат - увеличение зоны плазменной обработки, повышение устойчивости плазменной струи к резким колебаниям воздуха в окружающей среде и обеспечение произвольной ориентации плазменных струй. Устройство включает высоковольтный источник питания, разрядный промежуток образован соосно расположенными внутренним высоковольтным полым цилиндрическим электродом 1 с заостренной внешней кромкой 3, обращенной к разрядному промежутку d, и свободными электродами в количестве не менее двух, размещенными на внешней поверхности диэлектрического вкладыша 6 в форме пластин 2 с остриями 5, обращенными к разрядному промежутку d, и распределенными на равных расстояниях друг от друга, не превышающих межэлектродное расстояние. Полый высоковольтный электрод 1 является соплом для подачи воздуха с расходом до 1,5 л/мин. 2 з.п. ф-лы, 4 ил.

Description

Предлагаемое устройство относится к плазменной технике, в частности к источникам получения и управления потоком плазмы атмосферного давления, исходным газом для которой служит воздух или его смеси с другими газами. Устройство может быть использовано для получения зон плазменной обработки в процессах очистки и модификации поверхностей, свертывания крови, биологического обеззараживания материалов, плазмохимического синтеза веществ.
Известные способы и устройства для получения плазменных струй атмосферного давления (ПСАД) основаны на использовании тлеющего, дугового, радиочастотного, барьерного разрядов [1] и т.д. За счет создания в зоне разряда избыточного давления, превышающего атмосферное, образуемая в разряде плазма поступает через сопло (круглое или щелевое по сечению), или несколько отверстий, или межэлектродный промежуток, формируя т.н. плазменную струю. В частности, в устройствах, основанных на радиочастотном возбуждении, в цилиндрической полости из диэлектрика соосно располагают игольчатый электрод, на который подается напряжение [2]. Здесь плазма формируется на конце электрода и называется плазменной иголкой («plasma needle»). В ряде устройств радиочастотное поле прикладывается к диэлектрическому капилляру, через который поступает возбуждаемый газ, посредством двух или нескольких внешних электродов, расположенных на поверхности капилляра [3]. Недостатком указанных устройств является большой расход рабочих газов, необходимый для устойчивости плазменной струи атмосферного давления. Кроме того, радиочастотные источники питания отличаются сложностью, требуют дополнительных мер защиты при эксплуатации.
Известно устройство, в котором формирование плазменной струи происходит путем пропускания воздуха со скоростью 30-70 м/с через зону стационарного тлеющего разряда, образованную пластинчатыми анодами и штыревыми катодами [4]. Техническое решение позволяет использовать для формирования ПСАД дешевый и доступный воздух, но требует большого расхода газа.
Известны устройства, включающие цилиндрическую, трубку из диэлектрического материала, через которую пропускается возбуждаемый газ. На внешней поверхности трубки на расстоянии друг от друга расположена пара электродов. Заземленный электрод располагается на выходе трубки, т.е. у сопла. Электроды подключены к импульсному высокочастотному источнику питания [5]. Часто высоковольтный электрод выполнен в форме стержня с заостренным концом и расположен внутри цилиндрической трубки, соосно ей [6]. Достоинством таких устройств является их конструктивная простота. Для получения плазменных струй длиной от долей до нескольких сантиметров здесь применяют импульсы напряжения положительной и отрицательной полярности, длительностью порядка 0.1-1 мкс, амплитудой до 30 кВ, частотой следования - десятки кГц и скоростями прокачки газов от единиц до десятков л/мин. Недостатком данных устройств является сложность или невозможность формирования протяженных плазменных струй атмосферного давления в смесях инертных газов Не, Ar с электроотрицательным молекулярным газом, а также в воздухе или азоте. В этих газовых средах формируется наибольшее количество химически активных частиц, но при наличии воздуха, азота или электроотрицательного газа качество разряда падает, и для его сохранения требуется увеличивать расход газа (>10 л/мин) и напряжение (>20 кВ). Это удорожает эксплуатацию и повышает требования к электробезопасности установки. А в ряде случаев даже это не позволяет сформировать плазменную струю.
Из известных устройств для получения плазменной струи атмосферного давления наиболее близким по технической сущности к заявляемому изобретению является способ и устройство для получения плазменной струи, которое содержит два острийных электрода, образующих разрядный промежуток величиной от 5 до 20 мм, один электрод является свободным, высоковольтный источник питания, характеризующееся тем, что э лектроды расположены под углом 0<а<160°, второй электрод является высоковольтным и имеет положительную полярность напряжения с указанным фронтом нарастания 0.1<τ<10 мкс [7].
Достоинством способа является простота конструкции и возможность получения плазменной струи атмосферного давления, исходным газом для которой служит воздух или его смеси с другими газами. Устройство имеет несколько недостатков. Высокая температура конца плазменной струи (около 100°С) не позволяет подвергать плазменной обработке биологические и синтетические материалы, чувствительные к перегреву. Одиночная плазменная струя имеет ограниченную зону плазменной обработки, что неудобно при обработке протяженных объектов. Чувствительность разряда к резким колебаниям воздуха в окружающей среде может вызвать неустойчивость горения разряда вплоть до его потухания. Кроме того, ориентация плазменной струи должна быть близка к вертикальной, с распространением снизу-вверх, что также ограничивает область применения устройства.
Таким образом, среди существующих устройств для получения плазменных струй атмосферного давления трудно одновременно обеспечивать формирование протяженной плазменной струи в средах, содержащих воздух, азот или электроотрицательный газ, и одновременно сохранять простоту конструкции и применяемого источника питания, либо умеренную температуру плазменной струи и устойчивость разряда.
Техническим результатом изобретения является снижение температуры протяженной плазменной струи в воздухе или в средах, содержащих смеси легкоионизуемых газов с электроотрицательными газами, увеличение зоны плазменной обработки, обеспечение устойчивости плазменной струи к резким колебаниям воздуха в окружающей среде, обеспечение произвольной ориентации плазменных струй.
Указанный технический результат достигается тем, что в известном устройстве, содержащем высоковольтный источник питания, острийные электроды, образующие разрядный промежуток от 5 до 20 мм, один электрод является высоковольтным и имеет положительную полярность напряжения с фронтом нарастания от 0.1 до 10 мкс, другой электрод является свободным, согласно изобретению, разрядный промежуток образован соосно-расположенными внутренним высоковольтным полым цилиндрическим электродом с заостренной внешней кромкой, обращенной к разрядному промежутку, и свободными электродами в количестве не менее двух, размещенными на внешней поверхности диэлектрического вкладыша в форме пластин с остриями, обращенными к разрядному промежутку, и распределенными на равных расстояниях друг от друга, не превышающих межэлектродное расстояние, при этом полый высоковольтный электрод является соплом для подачи воздуха с расходом до 1.5 л/мин.
Кроме того, особенность устройства заключается в том, что проток воздуха в межэлектродном промежутке осуществляется через промежуток между диэлектрическим вкладышем и высоковольным электродом с расходом до 1.5 л/мин.
Кроме того, особенность устройства заключается в том, что в промежуток между диэлектрическим цилиндром и высоковольтным электродом подается азот, гелий, аргон или их смеси между собой, включая добавки кислорода, углеводородов, легкоионизуемых молекулярных газов.
На фиг. 1 и 2 приведена схема предлагаемого устройства - продольное и поперечное сечение, соответственно. Оно содержит острийные электроды 1 и 2, образующие разрядный промежуток величиной d. Высоковольтный полый цилиндрический электрод 1 с заостренной внешней кромкой 3 подключен к высоковольтному источнику питания 4. Свободные электроды 2 в количестве не менее двух имеют форму пластин с остриями 5, обращенными к разрядному промежутку. Они размещены на поверхности диэлектрического вкладыша 6 на одинаковых расстояниях друг от друга х, причем х≥d. Внутренний высоковольтный полый цилиндрический электрод 1 размещен соосно свободным электродам 2.
Устройство работает следующим образом. Полый высоковольтный электрод 1 одновременно является соплом для подачи воздуха с расходом до 1.5 л/мин. На электрод 1 от высоковольтного источника питания 4 подают импульсы напряжения положительной полярности с фронтом от 0.1 до 10 мкс, электрод 2 оставляют под плавающим потенциалом, либо через емкость соединяют с землей (этот вариант на фиг. 1 не показан). В результате в разрядном промежутке между заостренной кромкой 3 электрода 1 и остриями 5 электродов 2 зажигаются искровые разряды. За 1-3 секунды каналы разряда разогреваются, изгибаются и в месте изгибов формируются светящиеся плазменные струи, форма которых может быть игловидной, а может быть конической. Количество струй зависит от числа свободных электродов 5.
На фиг. 3 изображен результат формирования плазменных струй атмосферного давления на воздухе в устройстве, имеющем три свободных электрода, что отвечает поперечному сечению устройства, показанному на Фиг. 2.
Количество плазменных струй определяется числом свободных электродов. На фиг. 4 показан вариант исполнения с четырьмя свободными электродами.
По сравнению с прототипом устройство с описанным конструктивным исполнением обеспечивает формирование нескольких плазменных струй одновременно, что увеличивает зону плазменной обработки. Количество плазменных струй ограничивается условием х>d при котором реализуется электрический пробой межэлектродного промежутка d.
Непосредственное введение в область формирования плазменных струй холодного воздуха (стрелка I на фиг. 1) через полый электрод 1, обеспечивает сразу несколько технических результатов.
Во-первых, происходит снижение температуры на концах плазменных струй в воздухе или в средах, содержащих смеси легкоионизуемых газов с электроотрицательными газами. Снижение температуры усиливается за счет холодного воздуха, вовлекаемого в зону формирования плазмы окружающего воздуха (стрелки II на фиг. 1). Это обеспечивает суммарное снижение температуры воздуха на концах плазменных струй на 25-40%.
Во-вторых, продувка воздуха через электрод 1 увеличивает устойчивость плазменных струй к резким колебаниям воздуха в окружающей среде: они не гаснут даже при форсированном внешнем обдуве устройства.
В-третьих, ориентация плазменных струй может быть любой (вертикальной и горизонтальной, включая переворот на 180 градусов) (см., например, фиг. 3).
Увеличение скорости продувки воздуха через полый электрод 1 приводит к снижению температуры концов плазменных струй лишь до определенного предела. Экспериментально доказано, что при потребляемой мощности высоковольтного источника питания 30 Вт, разрядном промежутке 6 мм, в конфигурации электродов, показанной на фиг. 2, включение продувки и последующее увеличение ее скорости до 1.5 л/мин снижает температуру на 25%, что делает устройство применимым для плазменной обработки легкоплавких веществ. Последующее увеличение скорости продувки не дает снижения температуры концов плазменных струй, поэтому дальнейшее увеличение расхода нецелесообразно, оно ведет к необоснованному расходу газа. Дополнительную стабилизацию также обеспечивает проток воздуха с расходом до 1.5 л/мин в промежуток между диэлектрическим вкладышем 3 и высоковольтным электродом 1 (стрелки III на фиг. 1). Подача в указанный промежуток азота, гелия, аргона или их смесей, включая добавки кислорода, углеводородов, легкоионизуемых молекулярных газов также позволяет расширить область применения устройства за счет расширения состава формируемой плазмы атмосферного давления.
Таким образом, предлагаемое устройство расширяет условия применения устройства для плазменной обработки, обеспечивая увеличение зоны плазменной обработки, устойчивость плазменной струи к резким колебаниям воздуха в окружающей среде, произвольную ориентацию плазменных струй в пространстве, а также снижение температуры плазменных струй расширяет ассортимент легкоплавких веществ, подвергаемых обработке.
Источники информации
1. Schutze A., Jeong J.Y., Babayan S.E., Park J., Selwyn G.S., Hicks R.F. The atmospheric-pressure plasma jet: a review and comparison to other plasma sources // IEEE Trans. Plasma Sci. 1998. Vol. 26, No. 6. P. 1685-1694.
2. Kieft I.E., v d Laan E.P., Stoffels E. Electrical and optical characterization of the plasma needle // New J Phys. 2004. Vol.6. 149. 14 p.
3. Patelli A., Verga F.E., Scopece P., Pierobon R., Vezzu S. Patent WO 2015071746. Priority data: 14.11.2014. Published: 21.05.2015.
4. Акишев Ю.С., Грушин M.E., Трушкин Н.И. Патент RU 2370924. Приоритетная дата: 26.10.2007. Опубл. 20.10.2009. Бюл. №25.
5. Uchida G., Takenaka K., Setsuhara Y. Effects of discharge voltage waveform on the discharge characteristics in a helium atmospheric plasma jet // J. Appl. Phys. 2015. Vol. 117. 153301. 6 p.
6. Ayan H., Yildirim E.D., Pappas D.D., Sun W. Development of a cold atmospheric pressure microplasma jet for freeform cell printing // Appl. Phys. Lett. 2011. Vol. 99. 111502. 3 p.
7. Соснин Э.А., Панарин В.А., Скакун B.C., Тарасенко В.Ф., Печеницин Д.С. Патент RU №2633705. Приоритетная дата 20.06.2016. Опубл. 17.10.2017. Бюл. №29.

Claims (3)

1. Устройство для получения плазменной струи воздуха атмосферного давления, содержащее высоковольтный источник питания, острийные электроды, образующие разрядный промежуток от 5 до 20 мм, один электрод является высоковольтным и имеет положительную полярность напряжения с фронтом нарастания от 0,1 до 10 мкс, другой электрод является свободным, отличающееся тем, что разрядный промежуток образован соосно расположенными внутренним высоковольтным полым цилиндрическим электродом с заостренной внешней кромкой, обращенной к разрядному промежутку, и свободными электродами в количестве не менее двух, размещенными на внешней поверхности диэлектрического вкладыша в форме пластин с остриями, обращенными к разрядному промежутку, и распределенными на равных расстояниях друг от друга, не превышающих межэлектродное расстояние, при этом полый высоковольтный электрод является соплом для подачи воздуха с расходом до 1,5 л/мин.
2. Устройство по п. 1, отличающееся тем, что проток воздуха в межэлектродном промежутке осуществляется через промежуток между диэлектрическим вкладышем и высоковольным электродом с расходом до 1,5 л/мин.
3. Устройство по п. 1, отличающееся тем, что в промежуток между диэлектрическим цилиндром и высоковольтным электродом подается азот, гелий, аргон или их смеси между собой, включая добавки кислорода, углеводородов, легкоионизуемых молекулярных газов.
RU2021115632A 2021-05-31 2021-05-31 Устройство для получения плазменной струи RU2764165C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021115632A RU2764165C1 (ru) 2021-05-31 2021-05-31 Устройство для получения плазменной струи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021115632A RU2764165C1 (ru) 2021-05-31 2021-05-31 Устройство для получения плазменной струи

Publications (1)

Publication Number Publication Date
RU2764165C1 true RU2764165C1 (ru) 2022-01-13

Family

ID=80040388

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021115632A RU2764165C1 (ru) 2021-05-31 2021-05-31 Устройство для получения плазменной струи

Country Status (1)

Country Link
RU (1) RU2764165C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007031250A1 (en) * 2005-09-16 2007-03-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Plasma source
RU2370924C2 (ru) * 2007-10-26 2009-10-20 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований" (ФГУП "ГНЦ РФ ТРИНИТИ") Газоразрядная камера для создания низкотемпературной неравновесной плазмы
WO2015071746A1 (en) * 2013-11-14 2015-05-21 Nadir S.R.L. Method for generating an atmospheric plasma jet and atmospheric plasma minitorch device
RU2633705C1 (ru) * 2016-06-20 2017-10-17 Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН) Способ получения плазменной струи и устройство для его осуществления
RU2638569C1 (ru) * 2016-08-02 2017-12-14 Федеральное государственное бюджетное учреждение науки Институт физического материаловедения Сибирского отделения Российской академии наук Способ стерилизации газоразрядной плазмой атмосферного давления и устройство для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007031250A1 (en) * 2005-09-16 2007-03-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Plasma source
RU2370924C2 (ru) * 2007-10-26 2009-10-20 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований" (ФГУП "ГНЦ РФ ТРИНИТИ") Газоразрядная камера для создания низкотемпературной неравновесной плазмы
WO2015071746A1 (en) * 2013-11-14 2015-05-21 Nadir S.R.L. Method for generating an atmospheric plasma jet and atmospheric plasma minitorch device
RU2633705C1 (ru) * 2016-06-20 2017-10-17 Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН) Способ получения плазменной струи и устройство для его осуществления
RU2638569C1 (ru) * 2016-08-02 2017-12-14 Федеральное государственное бюджетное учреждение науки Институт физического материаловедения Сибирского отделения Российской академии наук Способ стерилизации газоразрядной плазмой атмосферного давления и устройство для его осуществления

Similar Documents

Publication Publication Date Title
Lu et al. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets
Gherardi et al. Transition from glow silent discharge to micro-discharges in nitrogen gas
US9693441B2 (en) Method for generating an atmospheric plasma jet and atmospheric plasma minitorch device
CN101227790A (zh) 等离子体喷流装置
Sosnin et al. Dynamics of apokamp-type atmospheric pressure plasma jets
WO2008072390A1 (ja) プラズマ生成装置およびプラズマ生成方法
Lu et al. An atmospheric-pressure plasma brush driven by sub-microsecond voltage pulses
JP7144780B2 (ja) 大気圧プラズマ生成装置
CN101232770A (zh) 介质阻挡放电等离子体喷流装置
RU2764165C1 (ru) Устройство для получения плазменной струи
Rahman et al. Initial investigation of the streamer to spark transition in a hollow-needle-to-plate configuration
RU2633705C1 (ru) Способ получения плазменной струи и устройство для его осуществления
RU2616445C1 (ru) Источник плазменной струи
Dinescu et al. Radio frequency expanding plasmas at low, intermediate, and atmospheric pressure and their applications
Xiong et al. On the Electrical Characteristic of Atmospheric Pressure Air/He/${\rm O} _ {2}/{\rm N} _ {2} $/Ar Plasma Needle
KR100771509B1 (ko) 복합전원을 이용한 대기압 플라즈마 발생장치 및 방법
KR100672230B1 (ko) 동공 음극 플라즈마 장치
Ercilbengoa et al. Anodic glow and current oscillations in medium-and low-pressure dark discharges
Choi et al. Characteristics of a DC-driven atmospheric pressure air microplasma jet
SHAO et al. Comparison of formation mechanism between helium and argon atmospheric pressure plasma jets
Naudé et al. Memory effects in Atmospheric Pressure Townsend Discharges in N2 and air
Bowen et al. High-voltage, high rep-rate, low jitter, UWB source with ferroelectric trigger
Hoder et al. Observation of striated structures in argon barrier discharges at atmospheric pressure
Darny et al. 2D time-resolved measurement and modeling of electric fields associated with atmospheric pressure plasma streams propagation in dielectric capillaries
RU2751547C1 (ru) Газоразрядное устройство для обработки плазмой при атмосферном давлении поверхности биосовместимых полимеров