[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2095464C1 - Биокарбон, способ его получения и устройство для его осуществления - Google Patents

Биокарбон, способ его получения и устройство для его осуществления Download PDF

Info

Publication number
RU2095464C1
RU2095464C1 RU96100628A RU96100628A RU2095464C1 RU 2095464 C1 RU2095464 C1 RU 2095464C1 RU 96100628 A RU96100628 A RU 96100628A RU 96100628 A RU96100628 A RU 96100628A RU 2095464 C1 RU2095464 C1 RU 2095464C1
Authority
RU
Russia
Prior art keywords
cathode
discharge
carbon
anode
main discharge
Prior art date
Application number
RU96100628A
Other languages
English (en)
Other versions
RU96100628A (ru
Inventor
А.А. Адамян
В.Г. Бабаев
М.Б. Гусева
И.А. Лавыгин
Н.Д. Новиков
Original Assignee
Акционерное общество закрытого типа "Тетра"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество закрытого типа "Тетра" filed Critical Акционерное общество закрытого типа "Тетра"
Priority to RU96100628A priority Critical patent/RU2095464C1/ru
Priority to US09/101,614 priority patent/US6355350B1/en
Priority to JP52503697A priority patent/JP2000502929A/ja
Priority to AU13593/97A priority patent/AU718176B2/en
Priority to PCT/IB1996/001487 priority patent/WO1997025078A2/en
Priority to EP19960943270 priority patent/EP0881918B1/en
Priority to DK96943270T priority patent/DK0881918T3/da
Priority to PT96943270T priority patent/PT881918E/pt
Priority to DE69620800T priority patent/DE69620800T2/de
Priority to CA 2248284 priority patent/CA2248284C/en
Priority to AT96943270T priority patent/ATE216270T1/de
Priority to EA199800617A priority patent/EA001402B1/ru
Priority to ES96943270T priority patent/ES2177821T3/es
Publication of RU96100628A publication Critical patent/RU96100628A/ru
Application granted granted Critical
Publication of RU2095464C1 publication Critical patent/RU2095464C1/ru
Priority to US09/929,968 priority patent/US6454797B2/en
Priority to US09/929,998 priority patent/US6555224B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32614Consumable cathodes for arc discharge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/303Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00574Coating or prosthesis-covering structure made of carbon, e.g. of pyrocarbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Materials For Medical Uses (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к области получения пленок и может быть использовано в медицине, оптике, микроэлектронике. Биокарбон основан из образующих слои линейных цепочках углерода, ориентированных нормально к поверхности слоя и организованных в гексагональные плотноупакованные структуры с расстоянием между цепочками углерода 4,8 - 5,03
Figure 00000001
. При этом слои идентичны и статически смещены друг относительно друга. Способ получения биокарбона заключается в том, что осуществляют испарение графита в вакууме, создают компенсированные бестоковые форсгустки углеродной плазмы, формируют поток ионов инертного газа и направляют его перпендикулярно потоку компенсированных бестоковых форсгустков углеродной плазмы с последующей конденсацией углерода в виде образующих слои линейных цепочек углерода, ориентированных нормально к поверхности слоя. Устройство для получения биокарбона содержит вакуумную камеру, внутри которой установлены выполненный из графита катод основного разряда, анод основного разряда, поджигающий электрод, катод вспомогательного разряда, диэлектрическая вставка, источник ионного облучения, подложкодержатель, а также источник электропитания, конденсатор, индуктивность. 3 с. и 4 з.п.ф-лы, 2 ил.

Description

Изобретение относится к области получения пленок и может быть использовано в медицине, оптике, микроэлектронике.
Элементарный углерод распространен в природе в виде двух широко известных аллотропных форм алмаза и графита, существующих в виде нескольких полиморфных модификаций. Алмаз трехмерный (пространственный) полимер углерода, тетраэдрический углерод, в котором каждый атом углерода соединен с четырьмя другими равномерно распределенными в пространстве, четырьмя одинаковыми связями длиной 1,54
Figure 00000004
. Алмаз диэлектрик. Минимальный структурный фрагмент алмазный тетраэдр.
Графит двумерный (плоскостной) полимер углерода, слоистый тригональный углерод, каждый атом углерода соединен с тремя другими равномерно распределенными в плоскости тремя одинаковыми связями длиной 1,42
Figure 00000005
. Слои взаимоориентированы и располагаются на расстоянии 3,35
Figure 00000006
. Графит - проводник. Основной элемент структуры бензольное кольцо.
Известна третья аллотропная форма углерода карбин, который является по своей структуре наиболее близким к заявляемому биокарбону.
Карбин линейно-цепочечный полупроводниковый углерод. Основной структурный элемент углеродная цепочка, в которой каждый атом углерода соединен с двумя ближайшими соседними, расположенными вдоль одной прямой одинаковыми связями длиной 1,37
Figure 00000007
. Минимальный структурный фрагмент, из совокупности которых может быть построен весь кристалл, гексагональная призма. По углам располагаются изогнутые цепочки. Изгибы разделяют призму на две половины. В центре нижней половины располагается прямая цепочка. В верхней половине таковая отсутствует. В этой вакансии могут расположиться атомы примеси. Пока неизвестны кристаллы размером больше 1 мк (Известия Академии наук. Серия химическая, 1993, 3, с.450). Карбин был впервые получен в 1969 г. методом окислительной полигидроконденсации ацетилена (В.В.Коршак, В.И.Касаточкин и др. ДАН СССР 136, 1342, 1960).
Карбин может быть представлен состоящим из чередующихся регулярно смещенных химически связанных слоев, каждый слой карбина состоит из плотноупакованных цепочек углерода и окружен двумя слоями, регулярно смещенных друг относительно друга и химически соединенных. В каждом слое имеется упорядоченная решетка цепочечных вакансий (Carbon V.30, 2, pp. 213-221, 1992 Yy. P. Kudryavtsev, S.E.Evsyukov).
Предлагаемый биокарбон основан на образующих слой линейных цепочках углерода, ориентированных нормально к поверхности слоя, при этом линейные цепочки углерода, образующие слой, организованы в гексагональные плотно упакованные структуры с расстоянием между цепочками 4,8-5,03
Figure 00000008
, при этом при наличии числа слоев больше одного слои идентичны и статистически смещены друг относительно друга. Карбин является ближайшим аналогом биокарбона, так как в его структуре можно усмотреть слои линейных цепочек углерода, отвечающие верхней и нижней половинам гексагональной призмы минимального структурного фрагмента карбина. При этом линейные цепочки также ориентированы нормально к поверхности слоя. Слои линейных цепочек углерода различны. В "верхнем" слое цепочки образуют гексагональную плотноупакованную призму, а "нижний" слой отличается от "верхнего" наличием упорядоченной решетки цепочечных вакансий. В структуре карбина слои чередуются и регулярно смещены друг относительно друга. Слои химически связаны. В карбине линейные цепочки разделены изгибами, в области изгибов, несущих нескомпенсированный заряд, имеет место электростатическое воздействие, в зависимости от линейной плотности изгибов изменяется общая сила взаимодействия и соответственно расстояние между цепочками и постоянная решетки карбина (d 4,5-5,3
Figure 00000009
). Карбин - трехмерноупорядоченная структура.
Биокарбин является двумерноупорядоченной структурой. В биокарбоне линейные цепочки углерода, образующие слои, прямые и короткие и организованы в гексагональные плотноупакованные структуры с расстоянием между цепочками 4,8
5,03
Figure 00000010
. Слой может быть один, но при наличии числа слоев больше одного слои идентичны и статистически смещены друг относительно друга. В биокарбоне взаимодействие обусловлено ван-дер-ваальсовскими силами. Это определяет расстояние между ними 4,8 5,03
Figure 00000011
.
Основным структурным элементом биокарбона, так же как и у карбина, является углеродная цепочка, состоящая из углеродных атомов, каждый из которых соединен двумя валентными связями длиной 1,32
Figure 00000012
, угол между которыми составляет 180o.
Под воздействием ионного облучения и легирования примесями структура биокарбона может изменяться. Это происходит путем:
регулярного сшивания цепочек соседних слоев,
разбиения цепочки на линейные фрагменты,
образования изгибов между ними (длина линейных фрагментов и соответственно число изгибов определяются параметрами ионного облучения, количеством введенной примеси и температурой).
Это в свою очередь приводит к трехмерному упорядочению кристаллизации биокарбона и перехода его в карбин. Процессы перестройки обратимы и при повышении температуры до 800oC система может быть возвращена в исходное состояние. В условиях системы живого организма биокарбоновая система может стать самоорганизующейся, подстраивающейся под структуру нарастающего на нее белка за счет внедрения ионов из организма, в целях наиболее полной ассимиляции ее живым организмом. Это делает биокарбон перспективным биосовместимым материалом.
Известен способ изготовления протезов из полимерных материалов с биосовместимым углеродным покрытием (патент США 5133845 НКИ 204-192), в котором биосовместимое углеродное покрытие получают с помощью триодного катодного распыления. Углерод напыляют при низких температурах и давлении в пределах 6•10-4 6•10-9 мбар (6•10-2 - 6•10-1 МПа). Напряжение распыления 2000 3200 В. Ток распыления 0,1 0,3 А. На подложке образуется сплошное турбостратное биосовместимое покрытие с плотностью по меньшей мере 2,1 г/см3. Однако турбостратная структура не является оптимальной для достижения максимальных биологических свойств покрытия.
Известен способ и устройство для изготовления протезов с покрытием биологически совместимой пленкой (патент США 5084151 НКИ 203-192). Способ заключается в том, что покрытие наносят в вакуумной камере при давлении 10-4 10-2 мбар (0,01-1 Па), формируют плазменный пучок и направляют его на углеродный катод. На катод подают высокое напряжение при малом токе. Распыленный углерод направляют на подложку при t 250oC. Покрытие, полученное этим способом, также имеет турбостратную структуру и, следовательно, также не является оптимальным для достижения максимальных биологических свойств покрытия.
Устройство для изготовления протезов с покрытием биологически совместимой пленкой содержит: источник электропитания, вакуумную камеру, состоящую из двух камер: в первой камере установлены источник, формирующий ионный пучок, во второй камере, сообщаемой с первой, размещены углеродный катод, располагаемый в другом конце второй камеры, а также кольцеобразный анод, окружающий углеродный катод, а также средства для охлаждения углеродного катода и анода. Углеродный катод распыляют ионным пучком, подложки располагаются во второй камере.
Недостаток этого способа и устройства, его реализующего, заключается в том, что они также не дают возможности получить углеродную пленку, наносимую в качестве покрытия с требуемыми биосовместимыми свойствами.
Известен способ ионно-стимулированного осаждения карбина (бюллетень секции физики РАЕН, N 1, 1993, стр. 12), который по технической сущности является наиболее близким к предлагаемому способу получения биокарбона. Известный способ ионно-стимулированного осаждения карбина был разработан на основе теоретических и экспериментальных исследований в области ионной стимуляции процессов на поверхности твердого тела.
Способ ионно-стимулированного осаждения карбина заключается в ионно-стимулированной конденсации углерода в высоком вакууме (10 торр): на подложку одновременно или попеременно поступают поток углерода и поток ионов инертного газа (например, аргона). Поток углерода получается термическим испарением или ионным распылением графита. Энергия ионов аргона (Ar), поступающих на подложку, может изменяться в интервале 90-200 эВ, плотность тока ионов на подложке 10-1000 мкА/см2, скорость роста пленки 10-1000
Figure 00000013
, толщина получаемой пленки 200 1000
Figure 00000014
. Пленки карбина получают попеременным с конденсацией углерода облучением тонами. Пленки, получаемые этим способом, квазиморфны, состоят из аморфной матрицы и микрокристаллических включений. Способ нетехнологичен и не позволяет сформировать пленки на поверхностях относительно большой площади и сложной формы и может быть использован только для нанесения пленок на проводящие и полупроводящие поверхности, тем самым исключается нанесение их на поверхности, выполненные из керамики, полимеров, резины, то есть выполненных из материалов, обычно используемых для изготовления имплантантов.
Общими признаками известного способа получения карбина и способа получения биокарбина являются: испарение графитового катода в вакууме, конденсация углерода на подложку с попеременным облучением подложки ионами инертного газа.
Отличительными существенными признаками заявляемого способа являются следующие: испарение графита осуществляют импульсным дуговым разрядом, создают вне области разрядного промежутка дугового разряда компенсированные бестоковые плазменные форсгустки углеродной плазмы плотностью 5•1012 - 1•1014 см-1, длительностью 200 600 мкс, частотой следования 1 5 Гц, направляют перпендикулярно потоку компенсированных бестоковых форсгустков углеродной плазмы поток ионов инертного газа с энергией 150 2000 эВ, на подложке, находящейся при температуре 20o 50oC, формируют биокарбон в виде образующих слой линейных цепочек углерода, ориентированных нормально к поверхности слоя, а при числе слоев больше одного слои идентичны и статистически смещены друг относительно друга. При этом способ осуществляют при давлении внутри вакуумной камеры 1•-10-1 - 1•10-2 ПА. В качестве инертного газа используют аргон. Биокарбон получают испаряя графит чистотой 99,9% 99,9%
Известно устройство импульсный генератор углеродной плазмы (а.с. 1062308 C 23 C 14/36), которое является наиболее близким к заявляемому устройству по технической сущности. Импульсный генератор углеродной плазмы состоит из: источника электропитания, вакуумной камеры, внутри которой размещены расходуемые катод и анод, выполненные из графита, систему поджига, размещенную перед расходуемым катодом, отделенную вакуумным промежутком от остальных электродов генератора и снабженную кольцевым анодом поджига, охватывающим с зазором расходуемый катод, а также дополнительный кольцевой графитовый электрод, отделенный от поджигаемого электрода диэлектрической вставкой с нанесенной на ее внутреннюю поверхность проводящей пленкой, соединенной с источником электропитания. Известное устройство также не обеспечивает возможности получения углеродной пленки, обладающей свойствами биокарбона. Общими существенными признаками с заявляемым устройством являются: вакуумная камера, внутри которой установлен катод основного разряда, выполненный из графита, анод основного разряда, поджигающий электрод, подложкодержатель, катод вспомогательного разряда, отделенный от поджигающего электрода диэлектрической вставкой, анод вспомогательного разряда, выполненный кольцевым и охватывающим с зазором катод основного разряда, а также источник электропитания. Отличительными существенными признаками являются: выполнение в корпусе вакуумной камеры двух боковых фланцев, оси которых взаимно перпендикулярны, внутри одного из них размещены выполненный в виде цилиндра катод основного разряда, причем внутренняя поверхность анода вспомогательного разряда выполнена с коническим срезом, обращенным вместе с одним из торцев катода основного разряда в сторону анода основного разряда, выполненного в виде двух колец, жестко соединенных металлическими стержнями, установленными с равным шагом по окружности, при этом поджигающий электрод, диэлектрическая вставка, катод вспомогательного разряда выполнены в виде диска, жестко соединены и установлены между анодами основного и вспомогательного разрядов, причем анод вспомогательного разряда, катод основного разряда, поджигающий электрод, катод вспомогательного разряда, диэлектрическая вставка, анод основного разряда установлены соосно с подложкодержателем, установленным внутри вакуумной камеры в заанодном пространстве с возможностью планетарного вращения вокруг вертикальной оси и электрически соединенным с корпусом вакуумной камеры, причем внутри другого бокового фланца вакуумной камеры установлен ионный источник облучения подложки, сообщаемый с вакуумной камерой кольцевым отверстием, а также устройство содержит конденсатор и индуктивность, один вывод которой подключен к катоду основного разряда, а другой вывод соединен с отрицательно заряженной подкладкой конденсатора, положительно заряженная обкладка которого соединена с анодом основного разряда, при этом выводы источника электропитания подключены к соответствующим обкладкам конденсатора. Отличительным признаком также является то, что катод основного разряда выполнен из графита чистотой не менее 99,8%
На фиг. 1 схематически изображены пространственные модели молекулярных структур модификаций углерода: A графита, B алмаза, C карбина, D - биокарбона; на фиг. 2 структурная схема устройства для получения биокарбона, где: 1 вакуумная камера, 2 подложкодержатель, 3 анод основного разряда, 4 анод вспомогательного разряда, 5 катод основного разряда, 6 - поджигающий электрод, 7 катод вспомогательного разряда, 8 диэлектрическая вставка, 9 источник ионного облучения, 10 источник электропитания, 11 - конденсатор, 12 индуктивность.
Сущность изобретения заключается в том, что впервые получена структура пленки биокарбон, обладающая высокой биосовместимостью.
Сущность способа получения биокарбона и устройства его реализующего заключается в следующем.
Способ получения биокарбона осуществляется в вакуумной камере 1, в корпусе которой выполнены два боковых фланца, оси которых взаимно перпендикулярны, внутри одного из них размещены выполненные в виде цилиндра катод основного разряда 5 и анод вспомогательного разряда 4, охватывающий с зазором катод основного разряда 5, причем внутренняя поверхность анода вспомогательного разряда 4 выполнена с коническим срезом, обращенным с одним из торцев катода основного разряда 5 в сторону анода основного разряда 3, выполненного в виде двух колец, жестко соединенных металлическими стержнями, с равным шагом по окружности, при этом поджигающий электрод 6, диэлектрическая вставка 8, катод вспомогательного разряда 7 выполнены в виде диска, жестко соединены и установлены между анодами основного 3 и вспомогательного 4 разрядов, внутри вакуумной камеры 1 установлен с возможностью планетарного вращения вокруг вертикальной оси и электрически соединенный с корпусом вакуумной камеры 1 подложкодержатель 2. Подложка изолируется от подложкодержателя, то есть находится под "плавающим" потенциалом и при температуре 20 50o C. Конденсация углерода производится из бестоковой углеродной плазмы, поступающей на подложку в вакууме при давлении 1•10-1 1•10-2 ПА. Между катодом основного разряда 5 и анодом основного разряда 3, находящимся под потенциалом 200 В, посредством вспомогательного разряда между катодом вспомогательного разряда 7, который располагается на расстоянии L от катода основного разряда 5 и анодом вспомогательного разряда 4, охватывающим катод основного разряда 5, зажигается дуговой разряд. Вспомогательный разряд поджигается с помощью поджигающего электрода 6, выполненного в виде кольца, расположенного между анодом 4 и катодом 5 вспомогательного разряда. Формирование пленки биокарбона достигается тем, что в момент формирования плазменного форсгустка происходит испарение графитового катода основного разряда 5 в результате импульсного нагрева поверхности графита до температуры 3000oC. Испарение углерода происходит в виде цепочек Cn (где n 1, 2, 3, 5, 7). Образующиеся цепочки поступают на поверхность подложки, где происходит их поликонденсация, то есть образование более длинных за счет их объединения цепочек. Электронная температура плазмы не должна превышать энергии разрыва связей в углеродных цепочках, так как это приводит к "сшивке" этих цепочек и образованию аморфного углерода с ближним порядком алмазного или графитного типа.
В электрической цепи основного разряда включены последовательно соединенные конденсатор C 11 и индуктивность 12, ограничивающие скорость нарастания импульса разрядного тока. Конденсатор 11 заряжается от источника электропитания 10, подключенного параллельно к соответствующим обкладкам конденсатора 11, до напряжения 200 В. Анод основного разряда 3 имеет очень развитую внутреннюю поверхность, он выполнен в виде "беличьего" колеса, то есть в виде двух колец, жестко соединенных металлическими стержнями, установленными с равным шагом по окружности. Анод основного разряда 3, анод вспомогательного разряда 4, катод основного разряда 5, поджигающий электрод 6, катод вспомогательного разряда 7, диэлектрическая вставка 8 установлены соосно.
Подложка, на которой происходит формирование конденсата, находится в заанодном пространстве (на расстоянии 20 30 см от основного разряда) и может быть выполнена из любого материала, в частности керамики, металла, полимера, силиконовой резины, сплава и т.д. может иметь любую форму и геометрию. Покрытие наносится с высокой адгезией, равномерно на любую форму поверхности: впадины, выступы с размером, меньшим радиуса Дебая, равным 10 мкм. Подложка установлена на подложкодержателе, который в процессе нанесения совершает планетарное движение, то есть вращается одновременно вокруг своей оси и вертикальной оси вакуумной камеры. В процессе всего цикла формирования пленки биокарбона подложка с растущей на ней пленкой облучается ионами инертного газа, например аргона. Ионы инертного газа формируются в источнике ионного облучения 9, расположенном в другом боковом фланце вакуумной камеры 1, сообщаемой с вакуумной камерой кольцевым отверстием для прохождения ионного пучка. Источник ионного облучения представляет собой двухэлектродную систему, состоящую из цилиндрического катода с кольцевой щелью для прохождения ионного пучка и кольцевого анода. Энергия ионного пучка инертного газа, облучающего пленку перпендикулярно потоку компенсированных бестоковых плазменных форсгустков, изменяется в интервале 150 2000 эВ. Формируемые в области разрядного промежутка дугового разряда компенсированные бестоковые плазменные форсгустки имеют плотность 5•1012 1•1013 см-3, длительность 200 600 мкс, частоту следования 1 5 Гц.
Эти параметры обеспечиваются за счет специально подобранной геометрии электродов поджига, электрической схемы плазменного генератора, включающего накопительный конденсатор, ограничивающую индуктивность, трехступенчатую схему поджига.
Заявляемый способ получения биокарбона и устройство, его реализующее, позволяют формировать биокарбоновые пленки на любых материалах (резина, полимеры, керамика, металлы, сплавы, в частности, титановые сплавы), на поверхностях любой сложной геометрии с широким набором неоднородностей (выступов, впадин) начиная с микронных размеров и выше, с отличной адгезией, сплошностью и однородностью.
Углерод является биосовместимым материалом. Однако особенности его структуры в биокарбоне повышают это свойство. При этом сформированная слоистая линейно-цепочечная структура биокарбона может вступать во взаимодействие с веществами, находящимися в атмосфере, такими, например, как вода, азот, кислород. Причем атомы кислорода, азота, ионы H+, OH- присоединяются к свободным валентностям атомов углерода, находящимся на концах цепочек.
Линейно-цепочечная структура является простейшей. Чем проще система, тем она легче ассимилируется организмом. Упорядоченность системы, которая легко реализуется на больших площадях поверхности, способствует ориентированному росту на ней живой ткани, эксперименты с осаждением на биокарбоне простейших белков обнаружили ориентированный их рост биоэпитаксию. Лабильность (перестраиваемость под действием примеси) биокарбоновой системы несомненно способствует биоэпитаксии. В условиях живого организма биоупорядоченная система может стать самоорганизующейся, подстраивающейся под структуру нарастающего на ней белка, в целях наиболее полной ассимиляции ее живым организмом. Это делает его перспективным биосовместимым материалом.
Линейно-цепочечный углерод назван биокарбоном не только в связи с его повышенной биосовместимостью. Он биоподобен по своей структуре и свойствам. Это открывает перспективы его использования в микроэлектронике в связи с разработкой новых принципов ее построения (функциональная электроника), основанных на моделировании свойств и процессов в живом организме.

Claims (7)

1. Биокарбон, состоящий из образующих по крайней мере один слой линейных цепочек углерода, отличающийся тем, что линейные цепочки углерода ориентированы нормально к поверхности и организованы в гексагональные плотноупакованные структуры с расстоянием между цепочками 4,8 5,03 А.
2. Биокарбон по п. 1, отличающийся тем, что при наличии слоев больше одного слои идентичны и статически смещены относительно друг друга.
3. Способ получения биокарбона, включающий испарение графита в вакууме и конденсацию углерода на подложку с попеременным облучением ее ионами инертного газа, отличающийся тем, что испарение графита осуществляют импульсным дуговым разрядом, а конденсацию углерода проводят на подложку, нагретую до 20 50oC, путем создания вне области разрядного промежутка дугового разряда компенсированных бестоковых форсгустков углеродной плазмы плотностью 5 • 1012 1 • 1013 см-3, длительностью 200 600 мкс, частотой следования 1 5 Гц и направления перпендикулярно потоку углеродной плазмы потока ионов инертного газа с энергией 150 2000 эВ.
4. Способ по п.3, отличающийся тем, что его осуществляют при давлении вакуума 1•10-1 1•10-2 Па.
5. Способ по п.3, отличающийся тем, что в качестве инертного газа используют аргон.
6. Устройство для получения биокарбона, содержащее источник электропитания и вакуумную камеру с установленными в ней катодом основного разряда, выполненного из графита, анодом основного разряда, поджигающим электродом, подложкодержателем, катодом вспомогательного разряда, отделенным от поджигающего электрода диэлектрической вставкой, и анодом вспомогательного разряда, выполненным кольцевым и охватывающим с зазором катод основного разряда, отличающийся тем, что оно дополнительно снабжено конденсатором, источником ионного облучения и индуктивностью, один выход которой соединен с катодом основного разряда, а другой с отрицательно заряженной обкладкой конденсатора, положительно заряженная обкладка конденсатора соединена с анодом основного разряда, соответствующие обкладки конденсатора соединены также с выводами источника электропитания, корпус вакуумной камеры выполнен с двумя боковыми фланцами со взаимно перпендикулярными осями, катод основного разряда выполнен в виде цилиндра и размещен с охватывающим его вспомогательным анодом в одном из фланцев, источник ионного облучения установлен в другом фланце и сообщен с вакуумной камерой отверстием, анод основного разряда выполнен в виде двух колец, жестко соединенных с металлическими стержнями, установленными с равным шагом по окружности, внутренняя поверхность анода вспомогательного разряда выполнена с коническим срезом, обращенным с одним из торцов катода основного разряда в сторону анода основного разряда, подложкодержатель установлен в заанодном пространстве с возможностью планетарного вращения вокруг вертикальной оси и соединен электрически с корпусом камеры, поджигающий электрод, диэлектрическая вставка, катод вспомогательного разряда выполнены в виде диска, жестко соединены и установлены между анодами основного и вспомогательного разрядов, аноды основного и вспомогательного разрядов, катоды основного и вспомогательного разрядов, поджигающий электрод и диэлектрическая вставка установлены соосно с подложкодержателем.
7. Устройство по п.6, отличающееся тем, что катод основного разряда выполнен из графита чистотой не менее 99,8%
RU96100628A 1996-01-12 1996-01-12 Биокарбон, способ его получения и устройство для его осуществления RU2095464C1 (ru)

Priority Applications (15)

Application Number Priority Date Filing Date Title
RU96100628A RU2095464C1 (ru) 1996-01-12 1996-01-12 Биокарбон, способ его получения и устройство для его осуществления
US09/101,614 US6355350B1 (en) 1996-01-12 1996-01-18 Tetracarbon
CA 2248284 CA2248284C (en) 1996-01-12 1996-12-18 Tetracarbon coated medical implant
PCT/IB1996/001487 WO1997025078A2 (en) 1996-01-12 1996-12-18 Tetracarbon
EP19960943270 EP0881918B1 (en) 1996-01-12 1996-12-18 Medical implant based on tetracarbon
DK96943270T DK0881918T3 (da) 1996-01-12 1996-12-18 Medicinsk implantat baseret på tetracarbon
JP52503697A JP2000502929A (ja) 1996-01-12 1996-12-18 テトラカーボン
DE69620800T DE69620800T2 (de) 1996-01-12 1996-12-18 Medizinische implante basierend auf tetracarbon
AU13593/97A AU718176B2 (en) 1996-01-12 1996-12-18 Tetracarbon
AT96943270T ATE216270T1 (de) 1996-01-12 1996-12-18 Medizinische implante basierend auf tetracarbon
EA199800617A EA001402B1 (ru) 1996-01-12 1996-12-18 Тетракарбон
ES96943270T ES2177821T3 (es) 1996-01-12 1996-12-18 Implante medico de tetracarbon.
PT96943270T PT881918E (pt) 1996-01-12 1996-12-18 Implante medicinal a base de tetracarbono
US09/929,968 US6454797B2 (en) 1996-01-12 2001-08-14 Tetracarbon
US09/929,998 US6555224B2 (en) 1996-01-12 2001-08-14 Tetracarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96100628A RU2095464C1 (ru) 1996-01-12 1996-01-12 Биокарбон, способ его получения и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU96100628A RU96100628A (ru) 1997-10-27
RU2095464C1 true RU2095464C1 (ru) 1997-11-10

Family

ID=20175707

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96100628A RU2095464C1 (ru) 1996-01-12 1996-01-12 Биокарбон, способ его получения и устройство для его осуществления

Country Status (13)

Country Link
US (3) US6355350B1 (ru)
EP (1) EP0881918B1 (ru)
JP (1) JP2000502929A (ru)
AT (1) ATE216270T1 (ru)
AU (1) AU718176B2 (ru)
CA (1) CA2248284C (ru)
DE (1) DE69620800T2 (ru)
DK (1) DK0881918T3 (ru)
EA (1) EA001402B1 (ru)
ES (1) ES2177821T3 (ru)
PT (1) PT881918E (ru)
RU (1) RU2095464C1 (ru)
WO (1) WO1997025078A2 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081298A1 (fr) * 2006-01-13 2007-07-19 State Enterprise 'international Center For Electron Beam Technologies Of E.O. Paton Electric Welding Institute Of National Academy Of Sciences Of Ukraine' Procédé de production de matériau contenant du carbone par évaporation sous vide par bombardement électronique de carbone puis par condensation sur un substrat et dispositif de mise en oeuvre de ce procédé
RU2542207C2 (ru) * 2013-07-15 2015-02-20 Федеральное государственное бюджетное учреждение науки Институт физического материаловедения Сибирского отделения Российской академии наук Способ получения покрытий карбина
RU2564288C2 (ru) * 2013-11-05 2015-09-27 Андрей Федорович Александров Плёнка двумерно упорядоченного линейно-цепочечного углерода и способ её получения
RU2651837C1 (ru) * 2017-03-21 2018-04-24 Олег Андреевич Стрелецкий Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения
RU2651836C1 (ru) * 2017-04-13 2018-04-24 Олег Андреевич Стрелецкий Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на изделия медицинского назначения из материала с термомеханической памятью формы
RU2694216C1 (ru) * 2018-07-16 2019-07-09 федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ лапароскопической пластики больших и гигантских грыж пищеводного отверстия диафрагмы с использованием биокарбонового имплантата
RU2712953C1 (ru) * 2019-03-27 2020-02-03 федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ лапароскопической двухслойной пластики больших и гигантских грыж пищеводного отверстия диафрагмы

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259448B2 (en) * 2001-05-07 2007-08-21 Broadcom Corporation Die-up ball grid array package with a heat spreader and method for making the same
JP2003266011A (ja) * 2001-09-17 2003-09-24 Cark Zeiss Smt Ag 光学部材用の基板の塗布方法および塗布装置
EP1626752A2 (de) 2003-05-16 2006-02-22 Blue Membranes GmbH Biokompatibel beschichtete medizinische implantate
JP2007502708A (ja) * 2003-05-16 2007-02-15 ブルー メンブレーンス ゲーエムベーハー カーボンベース物質による基材の被覆方法
RU2240376C1 (ru) * 2003-05-22 2004-11-20 Ооо "Альбатэк" Способ формирования сверхтвердого аморфного углеродного покрытия в вакууме
EP1626749B1 (de) 2003-05-28 2008-10-08 Cinvention Ag Implantate mit funktionalisierten kohlenstoffoberflächen
US20050177155A1 (en) * 2003-10-28 2005-08-11 Neville Alleyne Anterior adhesion resistant barrier for spine
US7452333B2 (en) * 2003-12-05 2008-11-18 Edwards Lifesciences Corporation Arterial pressure-based, automatic determination of a cardiovascular parameter
US7220230B2 (en) 2003-12-05 2007-05-22 Edwards Lifesciences Corporation Pressure-based system and method for determining cardiac stroke volume
RU2282583C2 (ru) * 2003-12-11 2006-08-27 Владимир Анатольевич Левченко Углеродный полимер
DE102004029525B4 (de) * 2004-06-18 2006-12-07 Robert Bosch Gmbh Befestigungseinheit für Zündeinheiten und Vorrichtung zur Kohlenstoffabscheidung
DE102004029526A1 (de) * 2004-06-18 2006-01-12 Robert Bosch Gmbh Vorrichtung zur Kohlenstoffabschiebung
DE102005054703A1 (de) * 2005-11-17 2007-05-24 Forschungszentrum Karlsruhe Gmbh Thrombozytenanreichernde Schicht, Verfahren zu ihrer Herstellung, Trennmedium für Thrombozyten und Test-Kit
DE102005054704A1 (de) * 2005-11-17 2007-05-24 Forschungszentrum Karlsruhe Gmbh Thrombozytenabweisende Schicht, Verfahren zu ihrer Herstellung und medizinisches Instrument oder Implantat
US7709045B2 (en) * 2006-04-28 2010-05-04 Boston Scientific Scimed, Inc. Medical devices coated with porous carbon and methods of manufacturing the same
TW201109713A (en) * 2009-09-09 2011-03-16 Asia Optical Co Inc Micro miniature fixed-focus lens
US8269931B2 (en) 2009-09-14 2012-09-18 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
US8946864B2 (en) 2011-03-16 2015-02-03 The Aerospace Corporation Systems and methods for preparing films comprising metal using sequential ion implantation, and films formed using same
US9324579B2 (en) 2013-03-14 2016-04-26 The Aerospace Corporation Metal structures and methods of using same for transporting or gettering materials disposed within semiconductor substrates
BR112016010479B1 (pt) 2013-11-11 2021-10-26 Hll Lifecare Limited Compósitos poliméricos à base de grafeno para produção de preservativos com alta transferência térmica, sensibilidade aperfeiçoada e capacidade de administração de fármacos
DE102013225608A1 (de) * 2013-12-11 2015-06-11 Apo Gmbh Massenkleinteilbeschichtung Vorrichtung und Verfahren zur Oberflächenbehandlung von Kleinteilen mittels Plasma
MA40896A (fr) * 2014-11-05 2017-09-12 Antonio Sambusseti Procédé d'obtention d'une pièce de silicone ayant au moins une surface revêtue avec du carbone appliqué par dépôt à l'arc pour le remplacement d'une partie de paroi de la vessie
RU2661876C2 (ru) * 2016-09-16 2018-07-20 Общество с ограниченной ответственностью "НаноТехЦентр" Кумуленовое вещество, способ его получения и применение
US10278507B1 (en) * 2018-07-05 2019-05-07 Paul F. NOWACK Bench seat with bolster configuration
EP4367282A1 (en) * 2021-07-07 2024-05-15 Lion Alternative Energy PLC Method and device for producing layered nanocarbon structures
CN114990498B (zh) * 2022-05-30 2024-02-02 安徽工业大学 一种多级触发脉冲电弧源装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248909A (en) * 1979-11-19 1981-02-03 The Aerospace Corporation Chaoite coating process
IT1156484B (it) 1982-08-03 1987-02-04 Sorin Biomedica Spa Procedimento per la fabbricazione di un dispositivo protetico provvisto di un rivestimento di materiale carbonioso biocompatibile e dispositivo protetico provvisto di un tale rivestimento
US5073241A (en) * 1986-01-31 1991-12-17 Kabushiki Kaisha Meidenshae Method for carbon film production
US5133845A (en) 1986-12-12 1992-07-28 Sorin Biomedica, S.P.A. Method for making prosthesis of polymeric material coated with biocompatible carbon
DE3821614A1 (de) * 1988-06-27 1989-12-28 Licentia Gmbh Deckschicht aus amorphem kohlenstoff auf einem substrat, verfahren zur herstellung der deckschicht und verwendung der deckschicht
US5455081A (en) * 1990-09-25 1995-10-03 Nippon Steel Corporation Process for coating diamond-like carbon film and coated thin strip
US5427827A (en) * 1991-03-29 1995-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Deposition of diamond-like films by ECR microwave plasma
JP2830544B2 (ja) * 1991-10-25 1998-12-02 松下電器産業株式会社 磁気記録媒体
GB2286347B (en) 1994-02-10 1998-04-29 Atomic Energy Authority Uk Improved load-bearing polymeric materials
US5516884A (en) * 1994-03-09 1996-05-14 The Penn State Research Foundation Preparation of polycarbynes and diamond-like carbon materials made therefrom
US5593719A (en) * 1994-03-29 1997-01-14 Southwest Research Institute Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys
US5725573A (en) * 1994-03-29 1998-03-10 Southwest Research Institute Medical implants made of metal alloys bearing cohesive diamond like carbon coatings
US5984905A (en) * 1994-07-11 1999-11-16 Southwest Research Institute Non-irritating antimicrobial coating for medical implants and a process for preparing same
JPH08124149A (ja) * 1994-10-25 1996-05-17 Matsushita Electric Ind Co Ltd 磁気記録媒体
US5716708A (en) * 1995-01-17 1998-02-10 Lagow; Richard J. Acetylenic carbon allotrope
GB9709072D0 (en) * 1997-05-02 1997-06-25 Howmedica A process for improving start up and steady rate friction of soft/compliant polyurethanes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Carbon 1992, V. 30,2, pp.213 - 221. 2. Бюллетень секции физики Академии Естественных наук России& - 1993, N 1, с.12. 3. SU, авторское свидетельство, 1062308, кл.C 23C 14/36, 1992. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081298A1 (fr) * 2006-01-13 2007-07-19 State Enterprise 'international Center For Electron Beam Technologies Of E.O. Paton Electric Welding Institute Of National Academy Of Sciences Of Ukraine' Procédé de production de matériau contenant du carbone par évaporation sous vide par bombardement électronique de carbone puis par condensation sur un substrat et dispositif de mise en oeuvre de ce procédé
RU2542207C2 (ru) * 2013-07-15 2015-02-20 Федеральное государственное бюджетное учреждение науки Институт физического материаловедения Сибирского отделения Российской академии наук Способ получения покрытий карбина
RU2564288C2 (ru) * 2013-11-05 2015-09-27 Андрей Федорович Александров Плёнка двумерно упорядоченного линейно-цепочечного углерода и способ её получения
RU2651837C1 (ru) * 2017-03-21 2018-04-24 Олег Андреевич Стрелецкий Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения
RU2651836C1 (ru) * 2017-04-13 2018-04-24 Олег Андреевич Стрелецкий Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на изделия медицинского назначения из материала с термомеханической памятью формы
RU2694216C1 (ru) * 2018-07-16 2019-07-09 федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ лапароскопической пластики больших и гигантских грыж пищеводного отверстия диафрагмы с использованием биокарбонового имплантата
RU2712953C1 (ru) * 2019-03-27 2020-02-03 федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ лапароскопической двухслойной пластики больших и гигантских грыж пищеводного отверстия диафрагмы

Also Published As

Publication number Publication date
DK0881918T3 (da) 2002-08-12
EP0881918A2 (en) 1998-12-09
AU1359397A (en) 1997-08-01
US20020015849A1 (en) 2002-02-07
US20020015787A1 (en) 2002-02-07
ES2177821T3 (es) 2002-12-16
DE69620800D1 (de) 2002-05-23
US6555224B2 (en) 2003-04-29
ATE216270T1 (de) 2002-05-15
CA2248284C (en) 2007-10-30
WO1997025078A2 (en) 1997-07-17
EA199800617A1 (ru) 1999-04-29
AU718176B2 (en) 2000-04-06
DE69620800T2 (de) 2002-12-05
PT881918E (pt) 2002-09-30
EP0881918B1 (en) 2002-04-17
JP2000502929A (ja) 2000-03-14
US6454797B2 (en) 2002-09-24
CA2248284A1 (en) 1997-07-17
WO1997025078A3 (en) 1997-09-12
EA001402B1 (ru) 2001-02-26
US6355350B1 (en) 2002-03-12

Similar Documents

Publication Publication Date Title
RU2095464C1 (ru) Биокарбон, способ его получения и устройство для его осуществления
RU2114210C1 (ru) Способ формирования углеродного алмазоподобного покрытия в вакууме
EP2148939B1 (de) Vakuumbehandlungsanlage und vakuumbehandlungsverfahren
KR100353464B1 (ko) 정밀표면처리용연마재및그제조방법
US5246787A (en) Tool or instrument with a wear-resistant hard coating for working or processing organic materials
NL8200838A (nl) Werkwijze voor het opbrengen van een laag door kathodeverstuiving en inrichting voor het uitvoeren van deze werkwijze.
WO1989008605A1 (en) Process for producing thin-film oxide superconductor
RU96100628A (ru) Биокарбон, способ его получения и устройство, реализующее этот способ
JPS5941510B2 (ja) 酸化ベリリウム膜とその形成方法
US5192578A (en) Method of producing coating using negative dc pulses with specified duty factor
JPH01156474A (ja) 気相からの金属のグロー放電活性化反応性堆積方法
JP3092714B2 (ja) 有機材料を加工する工具及びその工具形成方法
RU2564288C2 (ru) Плёнка двумерно упорядоченного линейно-цепочечного углерода и способ её получения
ES2321444T3 (es) Intensificador de plasma para una instalacion de tratamiento por plasma.
RU2360036C1 (ru) Способ получения углеродного наноматериала, содержащего металл
WO2005089272A2 (en) Pulsed cathodic arc plasma source
RU2238999C1 (ru) Способ импульсно-периодической имплантации ионов и плазменного осаждения покрытий
US5496594A (en) Chemical vapor deposition apparatus and method wherein a corona discharge is generated inside a perforated cage which surrounds the substrate
Babaev et al. Ion-assisted condensation of carbon
CN110904389B (zh) 一种多功能一体Fe-Al-Ta共晶复合材料及其制备方法
JPH04141909A (ja) 透明導電膜の製造方法
RU2065890C1 (ru) Устройство для получения защитно-декоративных покрытий в вакууме ионно-плазменным напылением
JPS6053113B2 (ja) 被膜の形成方法
Rasleanu et al. Nanostructured PZT type thin films prepared by thermionic vacuum arc method
JP2003507863A (ja) 冷陰極およびその製造方法