KR20230026603A - Fdm 3d printing apparatus and articles manufactured thereby - Google Patents
Fdm 3d printing apparatus and articles manufactured thereby Download PDFInfo
- Publication number
- KR20230026603A KR20230026603A KR1020210108253A KR20210108253A KR20230026603A KR 20230026603 A KR20230026603 A KR 20230026603A KR 1020210108253 A KR1020210108253 A KR 1020210108253A KR 20210108253 A KR20210108253 A KR 20210108253A KR 20230026603 A KR20230026603 A KR 20230026603A
- Authority
- KR
- South Korea
- Prior art keywords
- raw material
- fdm
- printing
- fiber
- nozzle
- Prior art date
Links
- 238000007639 printing Methods 0.000 title claims abstract description 28
- 239000002994 raw material Substances 0.000 claims abstract description 227
- 238000010146 3D printing Methods 0.000 claims abstract description 40
- 239000000835 fiber Substances 0.000 claims description 36
- 238000001125 extrusion Methods 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 23
- 238000002844 melting Methods 0.000 claims description 21
- 230000008018 melting Effects 0.000 claims description 21
- -1 polyoxymethylene Polymers 0.000 claims description 9
- 229920001169 thermoplastic Polymers 0.000 claims description 8
- 239000004416 thermosoftening plastic Substances 0.000 claims description 7
- 229920001187 thermosetting polymer Polymers 0.000 claims description 6
- 125000000524 functional group Chemical group 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 4
- 230000009477 glass transition Effects 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004760 aramid Substances 0.000 claims description 3
- 229920006231 aramid fiber Polymers 0.000 claims description 3
- 229920003235 aromatic polyamide Polymers 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920006324 polyoxymethylene Polymers 0.000 claims description 3
- 235000013311 vegetables Nutrition 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000110 selective laser sintering Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/118—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/245—Platforms or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/295—Heating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/314—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
- B29C64/336—Feeding of two or more materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/10—Pre-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
Abstract
Description
본 발명은 FDM 3D 프린팅 장치 및 장치에 의해 제조된 제조물(출력물)에 관한 것으로서, 더욱 상세하게는 1T 이상의 대형 노즐에서도 원활한 압출력을 구현할 수 있어 대형의 제조물을 제조하기에 적합하며, 3D 프린팅 제조물의 물성이 향상된 제조물에 관한 것이다.The present invention relates to an FDM 3D printing device and a product (output product) manufactured by the device, and more particularly, it is suitable for manufacturing a large-sized product because it can implement a smooth extrusion force even with a large nozzle of 1T or more, 3D printing product It relates to a product with improved physical properties.
3D 프린팅은 3차원 구조 제품을 성형하는 기술로 3차원 구조물을 신속하게 성형할 수 있을 뿐만 아니라 조립/해체가 불가능한 형상도 제작할 수 있는 장점이 있다. 이러한 3D 프린팅은 본격적인 연구가 시작된 지 오래되었고, 종래에는 3D 프린팅이 가능한 소재에 한계가 있고, 장비가 고가여서 항공 우주 관련 부품제작이나 자동차 등의 시제작품 제작 등 제한적인 분야에만 활용되는 등 널리 보급되지는 않았었으나, 최근 여러 가지 분야에 널리 사용이 시도되고 되어 그 활용 영역이 넓어지고 있다.3D printing is a technology for forming 3D structural products, and has the advantage of being able to quickly mold 3D structures and also to produce shapes that cannot be assembled/disassembled. 3D printing has long since been studied in earnest, and in the past, 3D printing is limited in materials available for 3D printing, and equipment is expensive, so it is widely used in limited fields such as manufacturing aerospace-related parts or prototypes such as automobiles. Although it has not been done, it has recently been widely used in various fields, and its application area is expanding.
3D 프린팅 기술은 크게 분류하여, 고체형 재료를 사용하는 FDM(Fused Deposition Modeling) 방식, 액체형 재료를 사용하는 SLA(Setero Lithography Apparatus) 방식 및 DLP(Digital Lighting Processing) 방식, 파우더형 재료를 사용하는 SLS(Selective Laser Sintering) 방식 등 다양한 방식이 실시되고 있다.3D printing technology is largely classified into FDM (Fused Deposition Modeling) method using solid material, SLA (Setero Lithography Apparatus) method and DLP (Digital Lighting Processing) method using liquid material, and SLS method using powder type material. (Selective Laser Sintering) method, etc. are being implemented.
3D 프린팅 기술 중 FDM 방식은 고체형 재료를 녹인 다음 와이어와 같이 만들어 노즐을 통해 출력하는 방식으로서, 다른 방식들에 비하여 저렴하게 3D 프린팅을 구현할 수 있고, 다양한 색을 출력할 수 있는 장점이 있다.Among 3D printing technologies, the FDM method is a method of melting a solid material and then making it like a wire and outputting it through a nozzle.
한편, 3D 프린팅 장치로 얻어지는 출력물에도 높은 수준의 기계적 강도가 요구되고 있으며, 대형의 출력물을 빠르게 적층할 수 있는 기술이 요구되고 있는 실정이다.On the other hand, a high level of mechanical strength is required for outputs obtained by 3D printing devices, and a technology capable of rapidly stacking large-sized outputs is required.
KR 10-2018-0105650 A 에는 연속강화섬유와 연속열가소성 수지섬유를 포함하는 혼섬사로서, 혼섬사 중의 연속강화섬유의 분산도가 60 내지 100%인 혼섬사를 포함하는 필라멘트를, 3D 프린터를 이용하여 용융하고, 적층하는 제조방법이 개시되어 있다. 그러나 이 발명의 경우 올바른 분산성은 유지할 수 있지만, 섬유의 함량이 많아지거나 필라멘트의 직경이 커질 경우 온도 조건 만으로 혼섬사의 용융이 균일하게 일어나지 못하고, 섬유의 함침이 균일하게 이루어지도록 구현하기 어렵다.KR 10-2018-0105650 A is a blended yarn containing continuous reinforcing fibers and continuous thermoplastic resin fibers, wherein the dispersion of the continuous reinforcing fibers in the blended yarn is 60 to 100%. A manufacturing method of melting and laminating is disclosed. However, in the case of this invention, correct dispersibility can be maintained, but when the fiber content is increased or the diameter of the filament is increased, the melting of the mixed yarn cannot occur uniformly only under temperature conditions, and it is difficult to realize uniform impregnation of the fibers.
또한, 1T 이상의 노즐을 사용하여 대형의 출력물을 빠르게 적층할 수 있는 기술은 전무한 실정이다.In addition, there is no technology capable of rapidly stacking large-sized output objects using a nozzle of 1T or more.
상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as the background art above are only for improving understanding of the background of the present invention, and should not be taken as an admission that they correspond to prior art already known to those skilled in the art.
본 발명은 대형(1T 이상)의 노즐을 사용하면서도, 빠르게 출력물을 성형할 수 있으며, 출력물의 물성(강도)를 향상시킬 수 있는 원료에 최적화된 3D 프린팅 장치 및 이에 의해 제조된 제조물을 제공하고자 함이다.The present invention is intended to provide a 3D printing device optimized for raw materials that can quickly mold an output object while using a large (1T or more) nozzle and improve the physical properties (strength) of the output object and a product manufactured by the same am.
본 발명에 따른 FDM 3D 프린팅 제조물은 FDM(Fused Deposition Modeling) 방식의 3D 프린팅 장치에 의해 레이어가 적층되며 제조된 제조물로서, 하나의 단위 레이어는, 연속섬유 형상의 제1원료; 용융 직후에 103Paㆍs 이하의 점도를 가지며 제1원료를 둘러싸는 제2원료; Tm(Melting temperature)이 제2원료의 Tg(Glass Transition Temperature)보다 높으며, 용융 직후의 점도는 103Paㆍs 이상 105Paㆍs 이하이고, 제1원료를 둘러싼 제2원료를 둘러싸는 제3원료;를 포함한다.The FDM 3D printing product according to the present invention is a product manufactured by stacking layers by a 3D printing device of the FDM (Fused Deposition Modeling) method, and one unit layer includes a first raw material in the shape of a continuous fiber; a second raw material having a viscosity of 10 3 Pa·s or less immediately after melting and surrounding the first raw material; T m (melting temperature) is higher than T g (Glass Transition Temperature) of the second raw material, the viscosity immediately after melting is 10 3 Pa·s or more and 10 5 Pa·s or less, and the second raw material surrounding the first raw material is surrounded. includes a third raw material;
제1원료는 유리섬유, 탄소섬유, 알루미나섬유, 보론섬유, 세라믹섬유, 금속섬유, 식물섬유, 아라미드섬유, 폴리옥시메틸렌섬유, 방향족 폴리아미드 섬유, 폴리파라페닐렌벤조비스옥사졸섬유, 폴리에틸렌섬유 중 어느 하나 이상으로 이루어질 수 있다.The first raw material is glass fiber, carbon fiber, alumina fiber, boron fiber, ceramic fiber, metal fiber, vegetable fiber, aramid fiber, polyoxymethylene fiber, aromatic polyamide fiber, polyparaphenylene benzobisoxazole fiber, polyethylene fiber. It may consist of any one or more of them.
제2원료는 용융 직후의 점도가 103Paㆍs 이하인 열가소성 플라스틱 또는 열경화성 플라스틱일 수 있다.The second raw material may be a thermoplastic or thermosetting plastic having a viscosity of 10 3 Pa·s or less immediately after melting.
제3원료는 용융 직후의 점도가 103Paㆍs 이상 105Paㆍs 이하인 열가소성 플라스틱 또는 열경화성 플라스틱일 수 있다.The third raw material may be a thermoplastic or thermosetting plastic having a viscosity of 10 3 Pa·s or more and 10 5 Pa·s or less immediately after melting.
제2원료와 제3원료의 계면에는 쌍극자 결합 또는 반데르발스 결합 또는 수소 결합 또는 공유 결합 중 어느 하나의 결합이 형성될 수 있다.Any one of a dipole bond, a van der Waals bond, a hydrogen bond, or a covalent bond may be formed at the interface between the second raw material and the third raw material.
본 발명에 따른 FDM 방식의 3D 프린팅 장치는, 상면으로 출력물이 출력되는 공간을 제공하는 프린팅 베드; 프린팅 베드의 상부에 구비되어 제1원료 또는 제2원료 또는 제3원료 중 어느 하나 이상을 프린팅 베드로 출력하는 노즐; 노즐 상단에 마련되며, 일측에 제1원료가 투입되는 제1투입구가 마련되며, 일측에 제2원료 또는 제3원료가 투입되는 제2투입구가 마련되고, 제1원료 또는 제2원료 또는 제3원료 중 어느 하나 이상을 압출하는 스크류가 마련된 압출부; 압출부 내부에 마련되며, 상부에 제1원료가 투입되는 투입홀이 마련되고, 하부에는 제1원료가 압출되는 배출홀이 마련되며, 회전에 의해 제1원료 또는 제2원료 또는 제3원료를 압출하는 스크류; 및 압출부 상단에 마련되어 제1원료를 커팅하는 커터;를 포함한다.The FDM method 3D printing apparatus according to the present invention includes a printing bed providing a space in which an output product is output to an upper surface; a nozzle provided above the printing bed and outputting any one or more of the first raw material, the second raw material, or the third raw material to the printing bed; It is provided at the top of the nozzle, a first inlet into which the first raw material is input is provided on one side, and a second inlet into which the second or third raw material is input is provided on one side, and the first or second raw material or the third inlet is provided. An extrusion unit provided with a screw for extruding one or more of the raw materials; It is provided inside the extrusion unit, an input hole through which the first raw material is injected is provided at the top, and a discharge hole through which the first raw material is extruded is provided at the bottom, and the first raw material, the second raw material, or the third raw material is rotated. extruding screw; and a cutter provided at the top of the extrusion unit to cut the first raw material.
압출부의 내부에는 제2원료의 표면에 극성을 띄는 관능기(Functional Group)을 유도하기 위한 플라즈마 장치가 마련될 수 있다.A plasma device for inducing a polar functional group on the surface of the second raw material may be provided inside the extrusion unit.
프린팅 베드의 하단에는 압출되는 제1원료 또는 제2원료 또는 제3원료와 프린팅 베드와의 결합력을 증대하기 위한 히터가 마련될 수 있다.A heater may be provided at a lower end of the printing bed to increase bonding strength between the extruded first raw material, the second raw material, or the third raw material and the printing bed.
노즐의 단면은 사다리꼴의 형상이며, 밑변과 윗변의 비가 1:1.5 내지 1:5이며, 밑변과 높이의 비가 1:2 내지 1:10 일 수 있다.The cross section of the nozzle is trapezoidal, the ratio of the lower side to the upper side may be 1:1.5 to 1:5, and the ratio of the lower side to the height may be 1:2 to 1:10.
제1원료 또는 제2원료 또는 제3원료는 노즐의 출력홀을 통해 출력되며, 노즐의 출력홀의 직경은 1T 이상일 수 있다.The first raw material, the second raw material, or the third raw material is output through the output hole of the nozzle, and the diameter of the output hole of the nozzle may be 1T or more.
본 발명의 FDM 3D 프린팅 장치에 따르면, 대형(1T이상)의 노즐을 사용하면서도 빠르게 출력물을 성형할 수 있으며, 강도가 개선된 출력물을 제조할 수 있다는 장점이 있다.According to the FDM 3D printing device of the present invention, an output product can be molded quickly while using a large (1T or more) nozzle, and an output product with improved strength can be manufactured.
도 1은 본 발명의 일 실시예에 따른 3D 프린팅 장치를 보여주는 도면.
도 2는 본 발명의 일 실시예에 따른 3D 프린팅 장치의 압출부와 노즐의 확대도.
도 3은 제1원료, 제2원료, 제3원료의 위치 관계를 나타낸 것.
도 4는 노즐의 단면.
도 5는 화학적 및 기계적으로 제2원료 및 제3원료의 계면의 접합력을 향상시키는 것을 설명하기 위한 도면.1 is a view showing a 3D printing device according to an embodiment of the present invention.
Figure 2 is an enlarged view of the extruded portion and the nozzle of the 3D printing device according to an embodiment of the present invention.
Figure 3 shows the positional relationship of the first raw material, the second raw material, and the third raw material.
4 is a cross section of a nozzle.
Figure 5 is a view for explaining that the bonding strength of the interface between the second raw material and the third raw material is chemically and mechanically improved.
이하, 상술한 목적, 문제점을 해결하기 위한 구체적인 내용을 첨부된 도면을 참조해 상세하게 설명한다. 한편, 본 발명을 이해하는 데 있어 동일 분야의 공지된 기술에 대한 상세한 설명이 발명의 핵심 내용을 이해하는데 도움이 되지 않는 경우, 그 설명을 생략하기로 하며, 본 발명의 기술적 사상은 이에 한정되지 않으며 통상의 기술자에 의해 변경되어 다양하게 실시될 수 있다.Hereinafter, specific contents for solving the above-described objects and problems will be described in detail with reference to the accompanying drawings. On the other hand, in understanding the present invention, if the detailed description of the known technology in the same field is not helpful in understanding the core content of the invention, the description will be omitted, and the technical spirit of the present invention is not limited thereto. and may be modified and implemented in various ways by those skilled in the art.
도 1은 본 발명의 일 실시예에 따른 3D 프린팅 장치(1000)를 보여주는 도면이며, 도 2는 압출부와 노즐의 확대도이다. 도 1 및 2를 참조하면, 본 발명의 일 실시예에 따른 3D 프린팅 장치(1000)는 대형 노즐을 사용하는 대면적 BAAM(Big Area Additive Manufacturing)으로, 큰 범주에서 FDM(Fused Deposition Method) 방식의 3D 프린팅 장치에 적용된다.1 is a view showing a
도 1 및 2를 참조하면, 3D 프린팅 장치는 상면으로 출력물이 출력되는 공간을 제공하는 프린팅 베드(100);와 프린팅 베드(100)의 상부에 구비되어 제1원료(S1) 또는 제2원료(S2) 또는 제3원료(S3) 중 어느 하나 이상을 프린팅 베드(100)로 출력하는 노즐(400);이 도시되어 있다.1 and 2, the 3D printing device includes a
프린팅 베드(100)는 출력물(M)이 출력되는 공간을 제공하는 수단으로서, 상면이 평평한 플레이트 형태로 마련되어 개방된 공간에 설치된다.The
이때 프린팅 베드(100)에는 프린팅 베드(100)의 온도를 조절할 수 있는 히터(미도시)가 더 구비될 수 있다. 히터는 가장 처음에 적층되는 첫번째 레이어의 제1원료(S1) 또는 제2원료(S2) 또는 제3원료(S3)와 프린팅 베드(100)와의 결합력을 증대하기 위한 것으로, 이에 따라 warping과 같은 변형을 방지할 수 있다.At this time, a heater (not shown) capable of adjusting the temperature of the
노즐(400)은 용융된 제1원료(S1) 또는 제2원료(S2) 또는 제3원료(S3) 중 어느 하나 이상을 프린팅 베드(100)로 출력하는 수단으로서, 통상의 FDM 방식의 3D 프린팅 장치에 적용되는 노즐이 적용될 수 있다. 특히, 본 실시예에서는 하기 설명하듯, 제2원료(S2), 제3원료(S3)가 강하게 접합하여 출력물이 성형되는 동안 및 성형 후에 출력물의 변형을 방지할 수 있어 1T 이상의 노즐을 적용할 수 있다.The
한편, 도 1 및 2를 참조하면, 일측에 제1원료(S1)가 투입되는 제1투입구(510)가 마련되며, 일측에 제2원료(S2) 또는 제3원료(S3)가 투입되는 제2투입구(520)가 마련되고, 제1원료(S1) 또는 제2원료(S2) 또는 제3원료(S3) 중 어느 하나 이상을 압출하는 스크류(550)가 마련된 압출부(500);가 노즐의 상단에 마련된다.On the other hand, referring to FIGS. 1 and 2, a
구체적으로, 압출부(500)에는 제1공급배관(411)을 통하여 제1피더(410)가 연결된다. 이때, 제1피더(410)는 제1공급배관(411)을 통하여 제1원료(S1)를 압출부(500)로 공급한다.Specifically, the
또한, 압출부(500)의 일측에는 제2공급배관(412)을 통하여 제2피더(420)가 연결된다. 이때, 제2피더(120)는 제2공급배관(142)을 통하여 제2원료(S2)를 압출부(500)로 공급한다.In addition, a
또한, 압출부(500)의 일측에는 제3공급배관(413)을 통하여 제3피더(430)가 연결된다. 이때, 제3피더(430)는 제3공급배관(413)을 통하여 제3원료(S3)를 압출부(500)로 공급한다.In addition, a
그리고, 압출부(500)로 공급된 제1원료(S1) 또는 제2원료(S2) 또는 제3원료(S3)에 열을 제공하는 가열수단(490)이 더 구비된다. 그래서 가열수단(490)의 작동에 의해 압출부(500)로 공급된 원료를 용융시키거나 용융상태로 유지시킨다. 그리고, 압출부(500)로부터 압출되는 원료가 너무 빨리 냉각되지 않도록 온도를 유지시킨다. 예를 들어, 가열수단(490)은 압출부(500)로부터 압출되는 원료의 온도와 동일한 온도를 유지하여 원료의 상태를 유지시키거나 원료의 용융 온도 이상의 상태를 유지하여 원료가 용융상태로 유지되도록 한다.Further, a heating means 490 for providing heat to the first raw material S1, the second raw material S2, or the third raw material S3 supplied to the
압출부(500) 내부에서 원료의 압출은 압출부(500) 내부에 마련된 스크류(550)에 의하는데, 스크류(550)는 압출부(500)의 하우징과 간격을 두고 마련되며, 사이 간격을 통해 제2원료(S2) 또는 제3원료(S3)가 투입되며 투입된 제2원료(S2) 또는 제3원료(S3)는 스크류(550)의 회전력에 의해 압출되게 된다. 한편, 제1원료(S1)는 스크류(550)의 상부에 마련된 투입홀(530)을 통해 스크류로 투입되고, 스크류(550)의 회전에 의해 스크류(550)의 하단에 마련된 배출홀(540)로 압출된다.The extrusion of the raw material inside the
한편, 압출부(500)의 상단에는 제1원료(S1)를 커팅하는 커터(580);가 마련된다. 제1원료(S1)는 상기 설명하듯, 스크류(550)의 회전에 의해 압출되는데, 3D 프린팅 시 압출을 멈출 수 있는 방법은 제1원료를 커팅하는 방법이다. 따라서, 원활한 커팅을 위해 커터(580)를 압출부(500)의 상단의 제1투입구(510)에 마련할 수 있다. 다만, 커터(580)의 위치는 제1투입구(510) 뿐만 아니라, 스크류(550)의 내부에 위치할 수 있으며, 제1원료(S1)를 원활하게 커팅할 수 있는 위치라면 어느 곳이든 가능하다.On the other hand, a
한편, 본 발명에 따른 3D 프린팅 장치는 제1원료(S1), 제2원료(S2), 제3원료(S3)를 혼합하여 출력물을 성형하는 것에 최적화 된 것이다. 구체적으로, 본 발명에 따른 3D 프린팅 장치에 의해 압출되는 제1원료(S1), 제2원료(S2), 제3원료(S3)의 위치(배열) 관계는 도 3에 나타난 바와 같다. On the other hand, the 3D printing device according to the present invention is optimized for molding an output product by mixing the first raw material (S1), the second raw material (S2), and the third raw material (S3). Specifically, the position (arrangement) relationship of the first raw material (S1), the second raw material (S2), and the third raw material (S3) extruded by the 3D printing apparatus according to the present invention is as shown in FIG.
즉, 제1원료(S1)는 제2원료(S2)에 의해 둘러싸여 있으며, 제2원료(S2)는 제3원료(S3)에 의해 둘러싸인 형상이다. 이와 같은 형상을 이루도록, 먼저 제3원료(S3)를 압출부(500)에 투입한다. 이때, 제3원료(S3)는 펠렛 타입의 원료로 공급된다. 용융된 제3원료(S3)는 프린팅 베드에 적층된다. 제3원료(S3)의 적층이 완료된 이후, 압출부(500)에 제1원료(S1)와 제2원료(S2)를 동시에 투입한다. 제1원료(S1)는 가는 연속섬유 형상이며, 제2원료(S2)는 펠렛 타입 원료로 공급되기 때문에 제1원료(S1)는 제2원료(S2)에 둘러싸인 형상으로 압출된다. 노즐(400)은 적층된 제3원료(S3)의 상부에 제2원료(S2)로 둘러싸인 제1원료(S1)를 다시 적층하며, 제2원료로 둘러싸인 제1원료의 적층이 완료된 이후, 제2원료(S2)를 둘러싸기 위한 제3원료(S3)의 적층이 수행된다. 이를 통해, 제1원료(S1)는 제2원료(S2)에 둘러싸인 형상이며, 다시 제2원료(S2)는 제3원료(S3)로 둘러싸인 형상이 되는 것이다. 제1원료(S1), 제2원료(S2), 제3원료(S3)로 이루어진 층 하나가 출력물의 하나의 레이어를 이루게 되는 것이다.That is, the first raw material S1 is surrounded by the second raw material S2, and the second raw material S2 is surrounded by the third raw material S3. To achieve such a shape, first, the third raw material (S3) is introduced into the
하기 설명하듯, 제2원료(S2)의 표면을 플라즈마 처리하여 극성을 띄는 관능기(Fuctional Group)을 유도할 수 있으며, 제2원료(S2)의 표면을 플라즈마 처리하기 위한 플라즈마 장치(560)가 압출부 내부에 마련될 수 있다.As described below, a polar functional group can be induced by plasma-treating the surface of the second raw material S2, and the
한편, 도 4를 참조하면, 노즐(400)의 단면은 사다리꼴의 형상이며, 밑변(L1)과 윗변(L2)의 비가 1:1.5 내지 1:5이며, 밑변(L1)과 높이(L3)의 비가 1:2 내지 1:10 인 것이 바람직하다. 즉, 노즐(400) 내부의 제1원료(S1)와 제2원료(S2)가 만나는 부분에서 배출되는 부분까지 점점 좁아지는 형상일 수 있으며, 제1원료(S1)와 제2원료(S2)의 혼합 효율을 고려할 때 단면의 변의 길이는 위와 같이 구성하는 것이 적합하다고 할 수 있다.On the other hand, referring to FIG. 4, the cross section of the
한편, 노즐(400)은 이송프레임(200)에 의해 프린팅 베드(100)의 상부에서 X축, Y축 및 Z축으로 이송되면서, 원하는 형상 및 패턴으로 제1원료(S1) 또는 제2원료(S2) 또는 제3원료(S3)를 출력할 수 있다.On the other hand, the
이때, 이송프레임(200)은 X축, Y축 및 Z축으로 이송되는 이송체(300)가 구비되고, 이송체(300)에 순차적으로, 압출부(500)가 결합되고, 노즐(400)이 압출부에 결합되어 이송체(300)의 X축, Y축 및 Z축 방향 이송에 의해 노즐(400)도 일체로 X축, Y축 및 Z축 방향으로 이송된다.At this time, the conveying frame 200 is provided with a conveying
이송프레임(200)은 이송체(300)를 X축, Y축 및 Z축 방향으로 자유롭게 이송시킬 수 있는 다양한 방식이 적용될 수 있다. 예를 들어, 이송프레임(200)은 겐트리(Gantry) 구조로 구현될 수 있다.The transfer frame 200 may be applied in various ways capable of freely transferring the
부연하자면, 이송프레임(200)은 상기 프린팅 베드(100)의 양측 가장자리에 구비되어 X축 방향으로 배치되는 한 쌍의 X축 레일(210)과; 상기 한 쌍의 X축 레일(210)에 각각 Z축 방향으로 배치되어 상기 X축 레일(210)을 따라 X축 방향으로 이송되는 한 쌍의 Z축 레일(220)과; 양단이 상기 한 쌍의 Z축 레일(220)에 각각 연결되어 상기 Z축 레일(220)을 따라 Z축 방향으로 이송되는 Y축 레일(230)을 포함한다.In other words, the transfer frame 200 includes a pair of
그리고, Y축 레일(230)에는 이송체가 구비되어 상기 Y축 레일(230)을 따라 Y축 방향으로 이송됨에 따라 이송체(300)는 프린팅 베드(100)의 상부에서 X축, Y축 및 Z축 방향으로 자유롭게 이송될 수 있다.In addition, as the Y-
이때 이송체(300)는 Y축 레일(230)을 따라 이송되는 블록 형태로 구현될 수 있다. In this case, the
위와 같은 과정을 통하여, 강도가 향상된 3D 프린팅 제조물이 성형될 수 있는 것이다.Through the above process, a 3D printing product with improved strength can be molded.
본 발명에 따른 FDM 3D 프린팅 제조물은 FDM(Fused Deposition Modeling) 방식의 3D 프린팅 장치에 의해 레이어가 적층되며 제조된 제조물로서, 하나의 단위 레이어는, 연속섬유 형상의 제1원료(S1); 용융 직후에 103Paㆍs 이하의 점도를 가지며 제1원료(S1)를 둘러싸는 제2원료(S2); Tm(Melting temperature)이 제2원료(S2)의 Tg(Glass Transition Temperature)보다 높으며, 용융 직후의 점도는 103Paㆍs 이상 105Paㆍs 이하이고, 제1원료(S1)를 둘러싼 제2원료(S2)를 둘러싸는 제3원료(S3);를 포함한다.The FDM 3D printing product according to the present invention is a product manufactured by stacking layers by a 3D printing device of the FDM (Fused Deposition Modeling) method, and one unit layer includes a first raw material (S1) in the shape of a continuous fiber; A second raw material (S2) having a viscosity of 10 3 Pa·s or less immediately after melting and surrounding the first raw material (S1); T m (melting temperature) is higher than T g (Glass Transition Temperature) of the second raw material (S2), the viscosity immediately after melting is 10 3 Pa·s or more and 10 5 Pa·s or less, and the first raw material (S1) is A third raw material (S3) surrounding the surrounding second raw material (S2); includes.
본 발명은, 제1원료(S1), 제2원료(S2), 제3원료(S3)의 혼합을 통해 출력된 제조물의 강도를 향상시키는 것을 목적으로 한다. 이하, 제1원료(S1), 제2원료(S2), 제3원료(S3)의 혼합에 따른 제조물의 강도를 향상시키는 원리에 대해 설명한다.An object of the present invention is to improve the strength of an output product through mixing of a first raw material (S1), a second raw material (S2), and a third raw material (S3). Hereinafter, the principle of improving the strength of a product by mixing the first raw material (S1), the second raw material (S2), and the third raw material (S3) will be described.
제1원료(S1)는 유리섬유, 탄소섬유, 알루미나섬유, 보론섬유, 세라믹섬유, 금속섬유, 식물섬유, 아라미드섬유, 폴리옥시메틸렌섬유, 방향족 폴리아미드 섬유, 폴리파라페닐렌벤조비스옥사졸섬유, 폴리에틸렌섬유 중 어느 하나 이상으로 이루어질 수 있다.The first raw material (S1) is glass fiber, carbon fiber, alumina fiber, boron fiber, ceramic fiber, metal fiber, vegetable fiber, aramid fiber, polyoxymethylene fiber, aromatic polyamide fiber, polyparaphenylene benzobisoxazole fiber , It may be made of any one or more of polyethylene fibers.
제1원료(S1)로 사용되는 상기 섬유들은 경량이면서, 고강도, 고탄성률이라는 특성을 가지며, 연속섬유 형상으로 제1원료(S1)를 사용하면 제조물의 강도를 향상시킬 수 있는 것이다.The fibers used as the first raw material (S1) are lightweight, have high strength and high modulus of elasticity, and when the first raw material (S1) is used in the form of a continuous fiber, the strength of the product can be improved.
한편, 제2원료(S2)는 제1원료(S1)의 함침성을 확보할 수 있어야 하며, 함침되는 양을 최대화 하여야 한다. 따라서, 제2원료(S2)는 용융 직후의 점도가 103Paㆍs 이하인 열가소성 플라스틱 또는 열경화성 플라스틱일 수 있으며, 열가소성 플라스틱인 것이 바람직하다(여기서 용융 직후의 의미는 원료가 용융되어 노즐을 통과한 직후를 의미하는 것으로 해석될 수 있으며, 이하 동일한 의미로 해석될 수 있다).On the other hand, the second raw material (S2) should be able to secure the impregnation of the first raw material (S1), and the amount of impregnation should be maximized. Therefore, the second raw material (S2) may be a thermoplastic or thermosetting plastic having a viscosity of 10 3 Pa·s or less immediately after melting, and is preferably a thermoplastic (here, immediately after melting means that the raw material is melted and passed through a nozzle). It may be interpreted as meaning right after, and may be interpreted in the same meaning below).
제3원료(S3)는 제2원료(S2)를 둘러싸는 원료이다. 제3원료(S3)의 용융 직후 초기 점도가 너무 낮으면, 원활한 압출성 구현이 어려우며, 또한, 적층 과정 중에 자체 중량이나 외력에 의해 불량하게 성형될 수 있고, 제1원료(S1)의 편심이 발생할 수 있다. 또한, 초기 점도가 너무 높아도 원활한 압출성 구현에 문제가 따른다. 따라서, 제3원료(S3)는 용융 직후의 점도가 103Paㆍs 이상 105Paㆍs 이하인 열가소성 플라스틱 또는 열경화성 플라스틱일 수 있으며, 열가소성 플라스틱인 것이 바람직하다.The third raw material S3 is a raw material surrounding the second raw material S2. If the initial viscosity immediately after melting of the third raw material (S3) is too low, it is difficult to implement smooth extrudability, and may be poorly molded by its own weight or external force during the lamination process, and the eccentricity of the first raw material (S1) can happen In addition, even if the initial viscosity is too high, there is a problem in implementing smooth extrudability. Accordingly, the third raw material S3 may be a thermoplastic or thermosetting plastic having a viscosity of 10 3 Pa·s or more and 10 5 Pa·s or less immediately after melting, and is preferably a thermoplastic plastic.
특히, 제2원료(S2)의 Tg가 제3원료(S3)의 Tm보다 낮은 범위에 위치한 제2원료(S2) 및 제3원료(S3)를 조합함으로써, 제3원료(S3)가 제2원료(S2)를 용이하게 둘러쌀 수 있도록 하여 제2원료(S2) 및 제3원료(S3)의 계면간 접합력을 향상시킬 수 있도록 한다.In particular, by combining the second raw material (S2) and the third raw material (S3) located in a range where the T g of the second raw material (S2) is lower than the T m of the third raw material (S3), the third raw material (S3) The bonding force between the interfaces of the second raw material (S2) and the third raw material (S3) can be improved by enabling the second raw material (S2) to be easily surrounded.
예를 들어, 제2원료로서 PEEK(Polyetheretherketone)을 사용하고, 제3원료로서 PC(Polycarbonate)를 사용하는 경우, 제2원료의 Tg는 대략 144℃ 이며 Tm은 344℃이고, 제3원료의 Tm은 220 내지 280℃에서 형성되기 때문에 가열수단(490)의 온도를 300℃ 내외로 조절하면, 제2원료(S2)는 유리전이상태에 있게 되어 제1원료(S1)를 충분히 함침할 수 있으며, 제3원료(S3)는 완전하게 용융되어 제2원료(S2)를 완전하게 뒤덮어 감쌀 수 있게 되는 것이다.For example, when PEEK (Polyetheretherketone) is used as the second raw material and PC (Polycarbonate) is used as the third raw material, T g of the second raw material is approximately 144 ° C, T m is approximately 344 ° C, and the third raw material Since the T m of is formed at 220 to 280 ° C, when the temperature of the heating means 490 is adjusted to around 300 ° C, the second raw material S2 is in a glass transition state and can sufficiently impregnate the first raw material S1. In addition, the third raw material S3 is completely melted to completely cover and wrap the second raw material S2.
한편, 제조물의 강도를 향상시키기 위해서는 각 원료별 계면의 접합력을 향상시켜야 한다. 특히, 제2원료(S2)와 제3원료(S3)의 계면간 접합력 향상이 필요한데, 이를 위해 제2원료(S2)와 제3원료(S3)의 계면에는 쌍극자 결합 또는 반데르발스 결합 또는 수소 결합 또는 공유 결합 중 어느 하나의 결합을 형성할 수 있다.On the other hand, in order to improve the strength of the product, it is necessary to improve the bonding strength of the interface for each raw material. In particular, it is necessary to improve the bonding strength between the interfaces of the second raw material (S2) and the third raw material (S3). Either a bond or a covalent bond may be formed.
도 5는 화학적 및 기계적으로 제2원료 및 제3원료의 계면의 접합력을 향상시키는 것을 설명하기 위한 것이다.Figure 5 is for explaining that the bonding strength of the interface between the second raw material and the third raw material is chemically and mechanically improved.
특히, 쌍극자 결합은 제2원료(S2)의 표면에 극성을 띄는 관능기를 다수 유도시킴으로써 극성도를 향상시킬 수 있으며, 이는 상기 설명한 플라즈마 장치(560)에 의해, 제2원료(S2)의 표면을 플라즈마 처리함으로써, N-H와 C=O, COOH 등의 관능기 사이에 O-H의 수소 결합이 유도되어 제2원료(S2)와 제3원료(S3)의 계면사이 접합력을 향상시킬 수 있는 것이다. 즉, 화학적인 반응을 통해 계면의 접합력을 향상시키는 것이다.In particular, the dipole bond can improve the polarity by inducing a number of polar functional groups on the surface of the second raw material (S2), which can be improved by the above-described
다른 한편으로는, 기계적인 계면 결속에 의해 계면의 접합력을 향상시킬 수 있다. 구체적으로, 제2원료(S2)의 표면 조도를 감소시켜 표면을 거칠게 준비한 후, 제3원료(S3)를 출력하면 제2원료(S2)의 표면에 형성된 돌기 등에 의해 기계적인 결속이 이루어져 제2원료(S2)와 제3원료(S3)의 계면간 접합력을 향상시킬 수 있는 것이다.On the other hand, the bonding strength of the interface can be improved by mechanical interfacial bonding. Specifically, after preparing the surface by reducing the surface roughness of the second raw material (S2), when the third raw material (S3) is output, mechanical binding is performed by protrusions formed on the surface of the second raw material (S2), and the second raw material (S2) is produced. It is possible to improve the bonding force between the interface between the raw material (S2) and the third raw material (S3).
본 발명의 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Although shown and described in relation to specific embodiments of the present invention, it is known in the art that the present invention can be variously improved and changed without departing from the technical spirit of the present invention provided by the claims below. It will be self-evident to those skilled in the art.
100 : 프린팅 베드
200 : 이송프레임
300 : 이송체
400 : 노즐
500 : 압출부100: printing bed
200: transfer frame
300: conveying body
400: nozzle
500: extrusion part
Claims (10)
하나의 단위 레이어는,
연속섬유 형상의 제1원료;
용융 직후에 103Paㆍs 이하의 점도를 가지며 제1원료를 둘러싸는 제2원료;
Tm(Melting temperature)이 제2원료의 Tg(Glass Transition Temperature)보다 높으며, 용융 직후의 점도는 103Paㆍs 이상 105Paㆍs 이하이고, 제1원료를 둘러싼 제2원료를 둘러싸는 제3원료;를 포함하는 FDM 3D 프린팅 제조물.
As a product manufactured by stacking layers by a 3D printing device of the FDM (Fused Deposition Modeling) method,
One unit layer,
A first raw material in the form of a continuous fiber;
a second raw material having a viscosity of 10 3 Pa·s or less immediately after melting and surrounding the first raw material;
T m (melting temperature) is higher than T g (Glass Transition Temperature) of the second raw material, the viscosity immediately after melting is 10 3 Pa·s or more and 10 5 Pa·s or less, and the second raw material surrounding the first raw material is surrounded. Is a third raw material; FDM 3D printing product comprising a.
제1원료는 유리섬유, 탄소섬유, 알루미나섬유, 보론섬유, 세라믹섬유, 금속섬유, 식물섬유, 아라미드섬유, 폴리옥시메틸렌섬유, 방향족 폴리아미드 섬유, 폴리파라페닐렌벤조비스옥사졸섬유, 폴리에틸렌섬유 중 어느 하나 이상으로 이루어진 것을 특징으로 하는 FDM 3D 프린팅 제조물.
The method of claim 1,
The first raw material is glass fiber, carbon fiber, alumina fiber, boron fiber, ceramic fiber, metal fiber, vegetable fiber, aramid fiber, polyoxymethylene fiber, aromatic polyamide fiber, polyparaphenylene benzobisoxazole fiber, polyethylene fiber. FDM 3D printing product, characterized in that consisting of any one or more of.
제2원료는 용융 직후의 점도가 103Paㆍs 이하인 열가소성 플라스틱 또는 열경화성 플라스틱인 것을 특징으로 하는 FDM 3D 프린팅 제조물.
The method of claim 1,
The FDM 3D printing product, characterized in that the second raw material is a thermoplastic or thermosetting plastic having a viscosity of 10 3 Pa·s or less immediately after melting.
제3원료는 용융 직후의 점도가 103Paㆍs 이상 105Paㆍs 이하인 열가소성 플라스틱 또는 열경화성 플라스틱인 것을 특징으로 하는 FDM 3D 프린팅 제조물.
The method of claim 1,
The FDM 3D printing product, characterized in that the third raw material is a thermoplastic or thermosetting plastic having a viscosity of 10 3 Pa·s or more and 10 5 Pa·s or less immediately after melting.
제2원료와 제3원료의 계면에는 쌍극자 결합 또는 반데르발스 결합 또는 수소 결합 또는 공유 결합 중 어느 하나의 결합이 형성되는 것을 특징으로 하는 FDM 3D 프린팅 제조물.
The method of claim 1,
An FDM 3D printing product, characterized in that any one of a dipole bond, a van der Waals bond, a hydrogen bond, or a covalent bond is formed at the interface between the second raw material and the third raw material.
상면으로 출력물이 출력되는 공간을 제공하는 프린팅 베드;
프린팅 베드의 상부에 구비되어 제1원료 또는 제2원료 또는 제3원료 중 어느 하나 이상을 프린팅 베드로 출력하는 노즐;
노즐 상단에 마련되고, 일측에 제1원료가 투입되는 제1투입구가 마련되며, 일측에 제2원료 또는 제3원료가 투입되는 제2투입구가 마련되고, 제1원료 또는 제2원료 또는 제3원료 중 어느 하나 이상을 압출하는 스크류가 마련된 압출부;
압출부 내부에 마련되며, 상부에 제1원료가 투입되는 투입홀이 마련되고, 하부에는 제1원료가 압출되는 배출홀이 마련되며, 회전에 의해 제1원료 또는 제2원료 또는 제3원료를 압출하는 스크류; 및
압출부 상단에 마련되어 제1원료를 커팅하는 커터;를 포함하는 FDM 3D 프린팅 장치.
As a 3D printing device of the FDM method,
A printing bed providing a space for outputting an output to the upper surface;
a nozzle provided above the printing bed and outputting any one or more of the first raw material, the second raw material, or the third raw material to the printing bed;
It is provided at the top of the nozzle, a first inlet into which the first raw material is input is provided on one side, and a second inlet into which the second or third raw material is input is provided on one side, and the first or second raw material or the third inlet is provided. An extrusion unit provided with a screw for extruding one or more of the raw materials;
It is provided inside the extrusion unit, an input hole through which the first raw material is injected is provided at the top, and a discharge hole through which the first raw material is extruded is provided at the bottom, and the first raw material, the second raw material, or the third raw material is rotated. extruding screw; and
FDM 3D printing device comprising a; cutter provided on top of the extrusion unit to cut the first raw material.
압출부의 내부에는 제2원료의 표면에 극성을 띄는 관능기(Functional Group)을 유도하기 위한 플라즈마 장치가 마련된 것을 특징으로 하는 FDM 3D 프린팅 장치.
The method of claim 6,
The FDM 3D printing device, characterized in that a plasma device for inducing a polar functional group on the surface of the second raw material is provided inside the extrusion unit.
프린팅 베드의 하단에는 압출되는 제1원료 또는 제2원료 또는 제3원료와 프린팅 베드와의 결합력을 증대하기 위한 히터가 마련된 것을 특징으로 하는 FDM 3D 프린팅 장치.
The method of claim 6,
FDM 3D printing apparatus, characterized in that a heater is provided at the bottom of the printing bed to increase the bonding force between the first raw material, the second raw material, or the third raw material to be extruded and the printing bed.
노즐의 단면은 사다리꼴의 형상이며, 밑변과 윗변의 비가 1:1.5 내지 1:5이며, 밑변과 높이의 비가 1:2 내지 1:10인 것을 특징으로 하는 FDM 3D 프린팅 장치.
The method of claim 6,
The cross section of the nozzle has a trapezoidal shape, the ratio of the lower side and the upper side is 1: 1.5 to 1: 5, the FDM 3D printing device, characterized in that the ratio of the lower side and the height is 1: 2 to 1: 10.
제1원료 또는 제2원료 또는 제3원료는 노즐의 출력홀을 통해 출력되며, 노즐의 출력홀의 직경은 1T 이상인 것을 특징으로 하는 FDM 3D 프린팅 장치.
The method of claim 6,
The first raw material, the second raw material, or the third raw material is output through the output hole of the nozzle, the FDM 3D printing device, characterized in that the diameter of the output hole of the nozzle is 1T or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210108253A KR20230026603A (en) | 2021-08-17 | 2021-08-17 | Fdm 3d printing apparatus and articles manufactured thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210108253A KR20230026603A (en) | 2021-08-17 | 2021-08-17 | Fdm 3d printing apparatus and articles manufactured thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230026603A true KR20230026603A (en) | 2023-02-27 |
Family
ID=85329408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210108253A KR20230026603A (en) | 2021-08-17 | 2021-08-17 | Fdm 3d printing apparatus and articles manufactured thereby |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20230026603A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180105650A (en) | 2016-01-22 | 2018-09-28 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | Method for manufacturing three-dimensional structure and filament for 3D printer |
-
2021
- 2021-08-17 KR KR1020210108253A patent/KR20230026603A/en active Search and Examination
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180105650A (en) | 2016-01-22 | 2018-09-28 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | Method for manufacturing three-dimensional structure and filament for 3D printer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10875975B2 (en) | Method to manufacture polymer composite materials with nano-fillers for use in additive manufacturing to improve material properties | |
Tran et al. | Tensile strength enhancement of fused filament fabrication printed parts: a review of process improvement approaches and respective impact | |
US11673322B2 (en) | Production of articles made of composite materials by 3D-printing method | |
KR101150470B1 (en) | Forming apparatus and method of fiber reinforced thermoplastic composite material and product using the same | |
CN110072693B (en) | Composite structure and method for manufacturing same | |
US20170151728A1 (en) | Machine and a Method for Additive Manufacturing with Continuous Fiber Reinforcements | |
Palanikumar et al. | Technologies in additive manufacturing for fiber reinforced composite materials: a review | |
CN104650587A (en) | Modified polyphenylene sulfide resin suitable for 3D printing as well as preparation method and application of modified polyphenylene sulfide resin | |
KR20180002733A (en) | METHOD FOR MANUFACTURING 3-DIMENSIONAL ARRANGEMENTS AND FILAMENTS FOR PRODUCING 3D ARCHITECTURES | |
US10464257B2 (en) | Printing method and device, composite material | |
WO2018203768A1 (en) | Method for additive manufacturing of products made of composite materials reinforced with continuous fibres | |
Liu et al. | Additive manufacturing of silicone composite structures with continuous carbon fiber reinforcement | |
WO2021058677A1 (en) | Manufacturing method for structural components and structural component | |
Khan et al. | Recent developments in improving the fracture toughness of 3D-printed fiber-reinforced polymer composites | |
KR20230026603A (en) | Fdm 3d printing apparatus and articles manufactured thereby | |
US20200114544A1 (en) | Method and Apparatus for Manufacturing Fiber Composite Parts Utilizing Direct, Continuous Conversion of Raw Materials | |
KR101470803B1 (en) | Thermoplastic carbon fiber reinforced composite and manufacturing method thereof | |
CN101618595B (en) | Co-extrusion preparation method of polymer functionally gradient materials (FGM) and products | |
KR101446624B1 (en) | Manufacturing method of fiber-oriented composite material and its products manufactured thereby | |
KR101891560B1 (en) | 3D Printing filament with electromagnetic absorbing and shielding ability and high thermal conductivity and manufacturing method of the same | |
KR20120093659A (en) | Forming system and method of fiber reinforced thermoplastic composite material | |
US11401394B2 (en) | Method for altering polymer properties for molding of parts | |
CN109049672B (en) | 3D printing material and preparation method and application thereof | |
JP7198454B2 (en) | Method for producing molding of fiber-reinforced thermoplastic resin | |
KR101944748B1 (en) | Three-dimensional product using polymer composite material and manufacturing robot system thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination |