[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20170032427A - Sputtering target structure and sputtering target structure manufacturing method - Google Patents

Sputtering target structure and sputtering target structure manufacturing method Download PDF

Info

Publication number
KR20170032427A
KR20170032427A KR1020177004466A KR20177004466A KR20170032427A KR 20170032427 A KR20170032427 A KR 20170032427A KR 1020177004466 A KR1020177004466 A KR 1020177004466A KR 20177004466 A KR20177004466 A KR 20177004466A KR 20170032427 A KR20170032427 A KR 20170032427A
Authority
KR
South Korea
Prior art keywords
sputtering target
target structure
less
thermal sprayed
backing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020177004466A
Other languages
Korean (ko)
Inventor
도오루 고마츠
노부아키 나카시마
Original Assignee
가부시끼가이샤 도시바
도시바 마테리알 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시끼가이샤 도시바, 도시바 마테리알 가부시키가이샤 filed Critical 가부시끼가이샤 도시바
Publication of KR20170032427A publication Critical patent/KR20170032427A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • B24C7/0015Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0046Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier
    • B24C7/0053Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

파티클을 저감한다. 스퍼터링 타깃 구조체는, 스퍼터링 타깃과, 스퍼터링 타깃을 유지하는 백킹 플레이트를 구비한다. 스퍼터링 타깃의 표면 및 백킹 플레이트의 표면 중 적어도 하나의 표면은, 50㎛ 이상 300㎛ 이하의 평균 직경과 5㎛ 이상 30㎛ 이하의 평균 깊이를 갖는 복수의 오목부를 포함하는 영역을 구비한다. 복수의 오목부를 포함하는 영역의 표면의 산술 평균 조도 Ra는 10㎛ 이상 20㎛ 이하이다.Reduce particles. The sputtering target structure includes a sputtering target and a backing plate for holding the sputtering target. At least one of the surface of the sputtering target and the surface of the backing plate has a region including a plurality of recesses having an average diameter of 50 mu m or more and 300 mu m or less and an average depth of 5 mu m or more and 30 mu m or less. The arithmetic average roughness Ra of the surface of the region including the plurality of recesses is 10 占 퐉 or more and 20 占 퐉 or less.

Description

스퍼터링 타깃 구조체 및 스퍼터링 타깃 구조체의 제조 방법 {SPUTTERING TARGET STRUCTURE AND SPUTTERING TARGET STRUCTURE MANUFACTURING METHOD}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering target structure and a sputtering target structure,

본 발명의 일 형태는, 스퍼터링 타깃 구조체 및 스퍼터링 타깃 구조체의 제조 방법에 관한 것이다.One aspect of the invention relates to a sputtering target structure and a method of manufacturing the sputtering target structure.

미세 구조를 갖는 반도체 장치 또는 액정 표시 장치 등을 포함하는 전자 부품에서는, 수율의 향상을 위해, 종래부터 제조 공정에 의해 발생하는 파티클 등의 더스트의 저감이 진행되고 있다. 파티클은, 수율 악화 요인의 하나이다.In an electronic device including a semiconductor device or a liquid crystal display device having a fine structure, reduction of dust such as particles generated by a manufacturing process has been progressing in order to improve the yield. Particles are one of the factors that deteriorate the yield.

고집적화에 수반하여, 내부 구조의 미세화가 진행됨에 따라, 예를 들어 Al, Cu 등의 금속 배선 폭이 좁아진다. 예를 들어, 메모리 배선 폭은 19nm 내지 15nm, 나아가 10nm로 협소화되고 있다. 배선 폭이 좁은 경우, 종래에는 주목받지 않았던 직경이 0.2㎛ 이하인 미세한 파티클이 배선 불량이나 소자 불량 등을 일으키는 경우가 있다. 이에 수반하여, 종래보다 더 미세한 파티클(크기 0.2㎛ 이하)의 발생을 저감해야 한다.Along with high integration, as the internal structure becomes finer, the width of metal wiring such as Al, Cu, etc. becomes narrow. For example, the memory wiring width is narrowed to 19 nm to 15 nm, further to 10 nm. When the wiring width is narrow, fine particles having a diameter of 0.2 占 퐉 or less, which have not been noticed in the past, may cause wiring defects or device defects. Along with this, the generation of finer particles (size of 0.2 탆 or less) than conventional ones must be reduced.

스퍼터링 장치에 사용되는 스퍼터링 타깃 구조체에서는, 스퍼터링된 스퍼터링 타깃의 구성 성분이 스퍼터링 타깃 자체에 재부착하여 피막이 형성된다. 상기 피막이 박리되어, 파티클로서 반도체 기판 등에 탈락한다. 이와 같이, 상기 파티클은, 전자 부품의 불량 요인의 하나이다.In a sputtering target structure used in a sputtering apparatus, constituent components of a sputtered target are reattached to a sputtering target itself to form a coating. The film peels off and falls off as a particle on a semiconductor substrate or the like. As described above, the particles are one of the causes of failure of electronic parts.

재부착막의 탈락 방지 대책으로서는, 예를 들어 스퍼터링 타깃 및 백킹 플레이트에 있어서, 구성 성분이 재부착되는 영역의 표면을 블라스트 처리에 의해 거칠게 하여 재부착막의 부착 밀착성을 높이는 방법, 또는 용사나 PVD(Physical Vapor Deposition: PVD), CVD(Chemical Vapor Deposition: CVD)에 의해 타깃 성분이 재부착되는 영역에 피막을 형성하여 재부착막의 부착 밀착성을 높이는 방법 등을 들 수 있다.As a countermeasure for preventing the reattachment of the reattachment film, for example, a method of roughening the surface of the sputtering target and the backing plate in a region where the constituent components are reattached by blasting to improve adhesion adhesion of the reattachment film, Vapor deposition (PVD), or chemical vapor deposition (CVD) to increase the adhesion of the reattached film by forming a coating on a region where the target component is reattached.

종래의 블라스트 처리에서는, 예각부를 갖는 첨예한 지립을 피처리재의 표면에 충돌시키거나, 또는 구형의 미디어를 표면에서 파쇄시킨다. 이 때문에, 지립이 피처리재에 침식하기 쉽고, 피처리재의 표면에 파쇄층 등의 흠집이 발생하기 쉽다. 따라서, 표면이 거칠지만 복수의 흠집이 잔존한다. 이 때문에, 미세한 파티클의 발생을 없애는 것은 곤란하다.In the conventional blasting process, a sharp grain having a sharp angle portion collides with the surface of the material to be treated, or the spherical medium is crushed at the surface. Therefore, the abrasive grains are likely to be eroded into the material to be treated, and scratches such as a fractured layer are likely to be generated on the surface of the material to be treated. Therefore, although the surface is rough, a plurality of scratches remain. Therefore, it is difficult to eliminate generation of fine particles.

일본 특허 공개 평9-287072호 공보Japanese Patent Laid-Open No. 9-287072 일본 특허 제3895277호 공보Japanese Patent No. 3895277 일본 특허 제3791829호 공보Japanese Patent No. 3791829 일본 특허 제4820508호 공보Japanese Patent No. 4820508

본 발명의 일 형태에 의해 해결하는 과제 중 하나는, 파티클을 저감하는 것이다.One of the problems to be solved by one embodiment of the present invention is to reduce particles.

본 실시 형태의 스퍼터링 타깃 구조체는, 스퍼터링 타깃과, 스퍼터링 타깃을 유지하는 백킹 플레이트를 구비한다. 스퍼터링 타깃의 표면 및 백킹 플레이트의 표면 중 적어도 하나의 표면은, 50㎛ 이상 300㎛ 이하의 평균 직경과 5㎛ 이상 30㎛ 이하의 평균 깊이를 갖는 복수의 오목부를 포함하는 영역을 구비한다. 복수의 오목부를 포함하는 영역의 표면의 산술 평균 조도 Ra는 10㎛ 이상 20㎛ 이하이다.The sputtering target structure of the present embodiment includes a sputtering target and a backing plate for holding the sputtering target. At least one of the surface of the sputtering target and the surface of the backing plate has a region including a plurality of recesses having an average diameter of 50 mu m or more and 300 mu m or less and an average depth of 5 mu m or more and 30 mu m or less. The arithmetic average roughness Ra of the surface of the region including the plurality of recesses is 10 占 퐉 or more and 20 占 퐉 or less.

도 1은, 스퍼터링 타깃 구조체의 일부의 구성예를 도시하는 단면 모식도이다.
도 2는, 스퍼터링 타깃 구조체의 다른 일부의 구성예를 도시하는 단면 모식도이다.
도 3은, 볼 샷 처리의 예를 설명하기 위한 단면 모식도이다.
도 4는, 볼 샷 처리의 다른 예를 설명하기 위한 단면 모식도이다.
Fig. 1 is a schematic cross-sectional view showing a structural example of a part of a sputtering target structure. Fig.
2 is a schematic cross-sectional view showing a structural example of another part of the sputtering target structure.
3 is a schematic cross-sectional view for explaining an example of a ball shot process.
4 is a schematic cross-sectional view for explaining another example of the ball shot process.

도 1은, 스퍼터링 타깃 구조체의 일부의 구조예를 도시하는 단면 모식도이다. 도 1에 도시하는 스퍼터링 타깃 구조체는, 스퍼터링 타깃(1)과, 스퍼터링 타깃(1)을 유지하는 백킹 플레이트(2)를 구비한다.1 is a schematic cross-sectional view showing an example of the structure of a part of a sputtering target structure. The sputtering target structure shown in Fig. 1 has a sputtering target 1 and a backing plate 2 for holding the sputtering target 1. As shown in Fig.

스퍼터링 타깃(1)의 표면 및 백킹 플레이트(2)의 표면 중 적어도 하나의 표면은 복수의 오목부를 포함하는 영역(3)을 갖는다. 영역(3)은, 스퍼터링 시에 있어서 스퍼터링 타깃(1)의 구성 성분이 재부착되는 영역이다. 도 1에 도시하는 스퍼터링 타깃 구조체에서는, 스퍼터링 타깃(1)이 측면에 영역(3a)을 갖고, 백킹 플레이트(2)가 상면에 영역(3b)을 갖는다. 영역(3a) 및 영역(3b)은, 연속되도록 형성되어 있어도 된다.At least one surface of the surface of the sputtering target (1) and the surface of the backing plate (2) has a region (3) comprising a plurality of recesses. The region 3 is a region where the constituent components of the sputtering target 1 are reattached at the time of sputtering. In the sputtering target structure shown in Fig. 1, the sputtering target 1 has the area 3a on the side surface, and the backing plate 2 has the area 3b on the upper surface. The region 3a and the region 3b may be formed to be continuous.

복수의 오목부 중 적어도 하나의 평면 형상은, 예를 들어 원형을 가져도 된다. 복수의 오목부 중 적어도 하나는, 예를 들어 부분 구 형상 또는 컵 형상을 가져도 된다. 이때, 오목부의 저면이 아래로 볼록한 곡면이다. 복수의 오목부는, 영역(3a) 및 영역(3b) 중 적어도 하나의 영역에 설치되어 있으면 된다.At least one planar shape of the plurality of recesses may have, for example, a circular shape. At least one of the plurality of recesses may have, for example, a partially spherical shape or a cup shape. At this time, the bottom surface of the concave portion is a curved surface convex downward. The plurality of concave portions may be provided in at least one of the region 3a and the region 3b.

영역(3)의 산술 평균 조도 Ra는, 20㎛ 이하이다. 산술 평균 조도 Ra가 20㎛ 이하인 경우, 영역(3)에 부착되는 부착물의 밀착성을 높일 수 있다. 따라서, 재부착막의 박리가 효과적으로 억제되어, 파티클을 감소시킬 수 있다. 산술 평균 조도 Ra가 20㎛를 초과하는 경우, 표면의 샤프한 볼록부에 기인하는 재부착막의 막 돌기가 형성되기 쉬워진다. 막 돌기 주변에는, 불안정하게 퇴적된 미립자가 노출된다. 상기 미립자가 스퍼터링 시의 플라즈마에 의한 열 변화에 의해 탈락함으로써, 파티클이 발생하기 쉬워진다. 영역(3a) 및 영역(3b)의 산술 평균 조도 Ra는, 10㎛ 이상 20㎛ 이하인 것이 보다 바람직하다.The arithmetic average roughness Ra of the region 3 is 20 占 퐉 or less. When the arithmetic average roughness Ra is 20 탆 or less, adhesion of the deposit adhering to the region 3 can be enhanced. Therefore, the peeling of the reattached film can be effectively suppressed, and the particles can be reduced. When the arithmetic average roughness Ra exceeds 20 占 퐉, the film projection of the reattachment film due to the sharp convexity of the surface tends to be formed. In the vicinity of the membrane protrusion, unstably deposited fine particles are exposed. The fine particles are removed due to the thermal change caused by the plasma during the sputtering, and particles are liable to be generated. It is more preferable that the arithmetic average roughness Ra of the area 3a and the area 3b is 10 占 퐉 or more and 20 占 퐉 or less.

복수의 오목부의 평균 직경은, 50㎛ 이상 300㎛ 이하인 것이 바람직하다. 복수의 오목부의 평균 깊이는, 5㎛ 이상 30㎛ 이하인 것이 바람직하다. 오목부의 형상 및 개수를 제어함으로써, 스퍼터링 타깃(1)의 표면 및 백킹 플레이트(2)의 표면에 산술 평균 조도 Ra가 20㎛ 이하인 영역(3a) 및 영역(3b)을 형성할 수 있다.The average diameter of the plurality of concave portions is preferably 50 탆 or more and 300 탆 or less. The average depth of the plurality of concave portions is preferably not less than 5 탆 and not more than 30 탆. The area 3a and the area 3b having the arithmetic mean roughness Ra of 20 m or less can be formed on the surface of the sputtering target 1 and the surface of the backing plate 2 by controlling the shape and the number of the recesses.

도 2는, 스퍼터링 타깃 구조체의 다른 일부의 구조예를 도시하는 단면 모식도이다. 도 2에 도시하는 스퍼터링 타깃 구조체는, 도 1에 도시하는 스퍼터링 타깃 구조체와 비교하여 백킹 플레이트(2)가 용사막(4)을 갖는다는 구성이 상이하다. 도 2에 도시하는 스퍼터링 타깃 구조체에서는, 용사막(4)이 표면에 영역(3b)을 갖는다. 용사막(4)은, 스퍼터링 타깃(1)의 본체부 및 백킹 플레이트(2)의 본체부 중 적어도 하나의 표면에 설치되어 있으면 된다.2 is a cross-sectional schematic diagram showing an example of the structure of another portion of the sputtering target structure. The sputtering target structure shown in Fig. 2 differs from the sputtering target structure shown in Fig. 1 in that the backing plate 2 has the thermal sprayed film 4. In the sputtering target structure shown in Fig. 2, the thermal sprayed film 4 has a region 3b on its surface. The thermal sprayed coating 4 may be provided on at least one surface of the main body of the sputtering target 1 and the main body of the backing plate 2.

용사막(4)의 막 두께는 50㎛ 이상인 것이 바람직하다. 용사막(4)의 막 두께가 50㎛ 미만인 경우, 영역(3b)과 부착물의 사이의 열팽창 차를 완화하는 기능이 저하된다. 이 때문에, 부착물이 백킹 플레이트(2)로부터 박리되어, 탈락하기 쉬워져, 파티클양이 증가하는 경우가 있다. 용사막(4)의 막 두께는, 100㎛ 이상 500㎛ 이하, 나아가 150㎛ 이상 250㎛ 이하인 것이 보다 바람직하다.The thickness of the thermal sprayed coating 4 is preferably 50 탆 or more. When the thickness of the thermal sprayed coating 4 is less than 50 탆, the function of relaxing the difference in thermal expansion between the region 3b and the adherend is degraded. As a result, the adherend is peeled off from the backing plate 2 and is likely to fall off, resulting in an increase in the amount of particles. More preferably, the thickness of the thermal sprayed coating 4 is not less than 100 탆 and not more than 500 탆, and more preferably not less than 150 탆 and not more than 250 탆.

용사막(4)은, 예를 들어 복수의 입자를 포함하는 조직을 갖는다. 복수의 입자의 평균 입자 직경은, 5㎛ 이상 150㎛ 이하인 것이 바람직하다. 용사막(4)의 상대 밀도는 75% 이상 99% 이하인 것이 바람직하다.The thermal sprayed coating 4 has, for example, a structure containing a plurality of particles. The average particle diameter of the plurality of particles is preferably 5 占 퐉 or more and 150 占 퐉 or less. The relative density of the thermal sprayed coating 4 is preferably 75% or more and 99% or less.

상대 밀도가 99%를 초과하는 경우 또는 평균 입자 직경이 5㎛ 미만인 경우, 용사막(4)에 걸리는 응력에 의해 입자 간에 크랙이 발생하기 쉽다. 따라서 응력 완화 능력이 저하되어 피막이 박리되는 경우가 있다. 상대 밀도가 75% 미만인 경우 또는 평균 입자 직경이 150㎛를 초과하는 경우, 용사막(4)의 표면의 요철이 현저하게 된다. 따라서, 용사막(4)의 표면의 상태에 따라 퇴적된 부착물 표면으로부터 돌기에 기인한 더스트(파티클)가 발생하기 쉽다. 용사막(4)의 상대 밀도는, 97% 이상 99% 이하인 것이 보다 바람직하다.When the relative density exceeds 99% or the average particle diameter is less than 5 占 퐉, cracks are likely to occur between the particles due to the stress applied to the thermal sprayed coating 4. Therefore, the stress relaxation ability is lowered and the coating film may peel off. When the relative density is less than 75% or when the average particle diameter exceeds 150 탆, the surface of the thermal sprayed film 4 becomes uneven. Therefore, depending on the state of the surface of the thermal sprayed film 4, dust (particles) attributed to the projections are liable to be generated from the deposited deposit surface. It is more preferable that the relative density of the thermal sprayed coating 4 is 97% or more and 99% or less.

용사막(4)의 상대 밀도는, 다음의 방법에 의해 구해진다. 용사막(4)의 막 두께 방향으로 절단한 단면 조직을 광학 현미경에 의해 배율 500배로 관찰한다. 세로 210㎛, 가로 270㎛의 시야에서 공공의 면적을 측정한다. 하기 (1)식으로부터 상대 밀도(%)로서 환산한다. 10군데의 시야의 상대 밀도의 평균값이 용사막(4)의 상대 밀도이다.The relative density of the thermal sprayed coating 4 is obtained by the following method. The cross-sectional structure cut in the film thickness direction of the thermal sprayed coating 4 is observed with an optical microscope at a magnification of 500 times. The area of the pores is measured in a field of 210 mu m in length and 270 mu m in width. (%) From the following expression (1). The average value of the relative density of the 10 fields is the relative density of the thermal sprayed film 4.

상대 밀도(%)={(S1-S2)/S1}×100 (1)Relative density (%) = {(S1-S2) / S1} x 100 (One)

(식 중, S1은 세로 210㎛×가로 270㎛의 시야의 면적(㎛2)이고, S2는 세로 210㎛×가로 270㎛의 시야 내에 있어서의 공공의 합계 면적(㎛2)임)(Where S1 is an area (mu m 2 ) of a field of view of 210 mu m in length x 270 mu m in width and S2 is a total area (mu m 2 ) of vacancy in a field of view of 210 mu m in width x 270 mu m in width)

용사막(4)은, 플라즈마 용사나 아크 용사를 적절히 선택함으로써 형성된다. 용사 재료로서는 분말이나 와이어를 들 수 있다. 이때, Ra를 20㎛ 이하로 제어하기 위해 조정된 분말 입경 또는 와이어 직경을 갖는 재료를 사용한다.The thermal sprayed coating 4 is formed by appropriately selecting plasma spraying or arc spraying. The spraying material may be powder or wire. At this time, a material having a powder particle size or wire diameter adjusted to control Ra to 20 탆 or less is used.

용사법에서는, 플라즈마 방전이나 아크 방전에 의한 열원으로 공급 분말이나 와이어를 용융시켜 편평 입자가 퇴적되는 막 구조를 갖는 용사막(4)을 얻을 수 있다. 공급 분말의 플라즈마 용사 조건을 제어함으로써, 공급 분말이 입자형 혹은 타원형의 입자로서 존재하는 다공질의 용사막(4)을 얻을 수 있다. 이것에 한정되지 않고, 연소용 가스를 열원으로 하여 공급 분말이나 와이어를 용융 상태로 분사하는 플레임 용사를 사용하여 용사막이 형성되어도 된다.In the spraying method, the thermal spraying film 4 having a film structure in which flat particles are deposited by melting a powder or a wire by a heat source by a plasma discharge or an arc discharge can be obtained. By controlling the plasma spraying conditions of the feed powder, a porous thermal sprayed film 4 in which the feed powder is present as particles or elliptical particles can be obtained. The present invention is not limited to this, and a thermal sprayed film may be formed by using a flame sprayed with a combustion gas as a heat source and spraying a powder or a wire in a molten state.

이상과 같이, 스퍼터링 타깃 구조체는, 스퍼터링 타깃(1)의 표면 및 백킹 플레이트(2)의 표면 중 적어도 하나의 표면에 복수의 오목부를 갖는 영역을 구비한다. 상기 영역의 산술 평균 조도 Ra는 20㎛ 이하이다.As described above, the sputtering target structure has a region having a plurality of concave portions on at least one surface of the surface of the sputtering target 1 and the surface of the backing plate 2. The arithmetic average roughness Ra of the area is 20 mu m or less.

본원 발명자는, 미세 파티클의 성분을 분석하고, 스퍼터링 타깃에 있어서의 미세 파티클의 발생 위치의 조사, 검증을 거듭하여, 예의 시작(試作)ㆍ검토를 행하였다. 그 결과, 미세 파티클의 발생의 요인으로서, 타깃면의 상태(면 조도, 면 형상), 블라스트 처리에 사용되는 미디어의 종류, 용사막에 있어서의 재부착막의 불안정 지점이 관련되어 있다는 것을 알아냈다.The inventors of the present invention analyzed the components of fine particles, investigated and verified the generation position of fine particles in the sputtering target, repeatedly started trial work and reviewed them. As a result, it was found that factors of generation of fine particles are related to the state of the target surface (surface roughness, surface shape), the type of the medium used for the blast treatment, and the unstable point of the reattached film in the solvent film.

상기 스퍼터링 타깃 구조체에서는, 미소 파티클의 발생이 줄어들고, 배선 불량이나 소자 불량 등의 발생이 억제된다. 따라서, 전자 부품의 제조 수율을 대폭 개선할 수 있다. 또한, 성막 재료의 막의 박리가 장기간에 걸쳐 효과적으로 억제되기 때문에, 성막 장치의 클리닝이나 구성 부품의 교환 빈도가 감소하고 성막 장치의 운전 관리가 극히 용이하게 된다. 또한, 막 제품의 생산성을 높일 수 있고, 성막 비용을 저감할 수 있다.In the sputtering target structure, generation of fine particles is reduced, and occurrence of wiring defects and element defects is suppressed. Therefore, the production yield of the electronic component can be remarkably improved. Further, since the peeling of the film of the film forming material is effectively suppressed over a long period of time, the frequency of cleaning the film forming apparatus and replacing the constituent parts is reduced, and operation control of the film forming apparatus becomes extremely easy. Further, the productivity of the film product can be increased, and the film forming cost can be reduced.

이어서, 상기 스퍼터링 타깃 구조체를 제조하는 공정을 구비하는 스퍼터링 타깃 구조체의 제조 방법예에 대하여 설명한다. 상기 제조하는 공정은, 스퍼터링 타깃(1)의 표면 및 백킹 플레이트의 표면 중 적어도 하나의 표면에 대하여 소성 가공을 행하여 복수의 오목부를 형성하는 공정을 구비한다.Next, an example of a manufacturing method of the sputtering target structure including the step of manufacturing the sputtering target structure will be described. The manufacturing process includes a step of forming a plurality of recesses by performing a sintering process on at least one surface of the surface of the sputtering target 1 and the surface of the backing plate.

용사막(4)의 표면 조도는, 용사 처리에 의해서만 소정의 범위로 조정할 수 있다. 그러나, 용사막(4)의 표면에 미세한 요철이나 공동부가 형성되기 쉽고, 이 요철이나 공동부를 기점으로 하여 재부착막의 이상 성장부가 형성되기 쉽다. 이 이상 성장부는 불안정하기 때문에, 용사막(4)의 표면부로부터 탈락하기 쉬워, 파티클이 발생하기 쉽다. 따라서, 용사막(4)의 표면을 소성 가공함으로써, 요철이나 공동부 등의 결함부를 해소하는 것이 바람직하다.The surface roughness of the thermal sprayed coating 4 can be adjusted to a predetermined range only by thermal spraying. However, fine irregularities and cavities are likely to be formed on the surface of the thermal sprayed film 4, and abnormal growth portions of the reattached film are likely to be formed starting from these irregularities and cavities. Since the abnormal growth portion is unstable, it is easily removed from the surface portion of the thermal sprayed film 4, and particles are liable to be generated. Therefore, it is preferable that the surface of the thermal sprayed coating 4 is subjected to plastic working to remove defects such as irregularities and cavities.

소성 가공으로서는, 예를 들어 볼 샷 처리를 들 수 있다. 볼 샷 처리는, 둥근 볼형의 금속제 미세 지립을 고압 유체와 함께 피처리재(스퍼터링 타깃, 백킹 플레이트 또는 용사막 등)의 표면에 충돌시키는 처리이다. 볼 샷 처리에서는, 피처리재의 표면에 지립을 잔존시키지 않고, 또한 피처리재의 표면에 손상(파쇄층 형성)을 주지 않고 오목부를 형성할 수 있다. 복수의 오목부의 형상(직경, 깊이 등)은, 예를 들어 볼형 지립의 볼 직경, 볼형 지립의 분사 거리, 분사 압력, 분사 시간 등의 처리 조건을 제어함으로써 조정된다.As the plastic working, for example, a ball shot treatment can be mentioned. The ball shot treatment is a treatment of colliding a spherical ball-shaped metallic fine grain with a high-pressure fluid against the surface of a material to be treated (a sputtering target, a backing plate, a thermal spray coating, etc.). In the ball shot treatment, the recess can be formed without leaving abrasive grains on the surface of the material to be treated and without damaging the surface of the material to be treated (formation of a crushed layer). The shape (diameter, depth, etc.) of the plurality of recesses is adjusted by controlling processing conditions such as, for example, the ball diameter of the ball type abrasive grain, the jetting distance of the ball type abrasive grain,

도 3은, 볼 샷 처리의 예를 설명하기 위한 단면 모식도이다. 도 3에 도시하는 바와 같이, 예를 들어 스퍼터링 타깃(1)의 표면 및 백킹 플레이트(2)의 표면 중 적어도 하나의 표면에 경질 볼(5)을 분사 노즐(6)로부터 사출한다. 도 4는, 볼 샷 처리의 다른 예를 설명하기 위한 단면 모식도이다. 용사막(4)을 갖는 경우, 용사막(4)의 표면에, 경질 볼(5)을 분사 노즐(6)로부터 사출한다.3 is a schematic cross-sectional view for explaining an example of a ball shot process. The hard ball 5 is ejected from the injection nozzle 6 on at least one surface of the surface of the sputtering target 1 and the surface of the backing plate 2 as shown in Fig. 4 is a schematic cross-sectional view for explaining another example of the ball shot process. The hard ball 5 is injected from the injection nozzle 6 onto the surface of the thermal sprayed film 4. In this case,

경질 볼(5)로서는, 예를 들어 보통강, 스테인리스강이나 세라믹스 재료제의 구형 볼을 들 수 있다. 상기 구형 볼은, 분사에 의한 강한 충격력을 받은 경우에 있어서도 파손되기 어렵다. 따라서, 반복 사용할 수 있다.As the hard ball 5, for example, a spherical ball made of ordinary steel, stainless steel or ceramics material can be mentioned. The spherical balls are less prone to breakage even when they are subjected to a strong impact force by injection. Therefore, it can be used repeatedly.

경질 볼(5)의 직경은 예를 들어 2mm 이하, 나아가 0.4mm 이상 0.8mm 이하인 것이 바람직하다. 경질 볼(5)의 직경이 2mm를 초과하는 경우, 예를 들어 용사막(4)의 표면의 오목부까지 볼을 충돌시키는 것이 곤란하고, 용사 형태가 그대로 잔존하는 부분이 발생하여, 면 전체가 균일하게 되지 않는다.The diameter of the hard ball 5 is preferably, for example, 2 mm or less, more preferably 0.4 mm or more and 0.8 mm or less. When the diameter of the hard ball 5 exceeds 2 mm, for example, it is difficult to impinge the ball to the concave portion of the surface of the thermal sprayed film 4, and a portion in which the thermal spray form remains remains, It does not become uniform.

상기 볼 샷 처리에 있어서의 분사 압력은, 경질 볼(5)이 균일한 운동량을 가지면서 분사되는 압력이면 된다. 분사 압력은 5kg/㎠ 이하인 것이 바람직하다. 분사 압력이 5kg/㎠를 초과하는 경우, 예를 들어 용사막(4)의 표면이 극단적으로 소성 변형되어, 원하는 표면 조도를 얻는 것이 곤란하게 된다. 또한, 상기 분사 압력이 과도하게 낮아지면 경질 볼(5)이 안정적으로 분출되지 않기 때문에, 용사막(4)의 표면이 완전한 평활 상태로 되지 않고, 용사막(4)의 표면에 용사 형태가 잔존한 불균일한 형태로 되어 막의 생산성이 저하되어버린다.The injection pressure in the ball shot process may be a pressure that allows the hard ball 5 to be sprayed while having a uniform momentum. The injection pressure is preferably 5 kg / cm 2 or less. When the injection pressure exceeds 5 kg / cm 2, for example, the surface of the thermal sprayed coating 4 is extremely plastic-deformed, making it difficult to obtain a desired surface roughness. If the injection pressure is excessively lowered, the hard ball 5 is not stably ejected, so that the surface of the thermal sprayed coating 4 is not completely smoothed and the thermal sprayed coating remains on the surface of the thermal sprayed coating 4 Resulting in a nonuniform shape, and the productivity of the film is deteriorated.

볼 샷 처리에 의해 용사막(4)을 소성 가공함으로써, 응력이 완화된다. 따라서, 부품의 수명을 길게 할 수 있음과 함께 파티클을 저감할 수 있다.The thermal sprayed film 4 is subjected to plastic working by the ball shot treatment, whereby the stress is relaxed. Therefore, it is possible to lengthen the service life of the parts and reduce the particles.

볼 샷 처리를 실시함으로써, 용사막(4)의 표면부가 변형되어, 도 4에 도시하는 바와 같이 볼의 외표면 형상에 대응한 곡면을 갖는 오목부(7)가 다수 형성된다. 이 오목부(7)의 직경(D) 및 깊이(d)는, 상기 볼 직경, 분출 압력 등의 샷 조건을 조정함으로써 제어할 수 있다. 이것은, 도 3에서 도시하는, 용사막이 없는 경우에도 마찬가지이다.By performing ball shot processing, the surface portion of the thermal sprayed film 4 is deformed to form a large number of recesses 7 having curved surfaces corresponding to the outer surface shape of the balls as shown in Fig. The diameter D and depth d of the concave portion 7 can be controlled by adjusting shot conditions such as the ball diameter and the ejection pressure. This is also true in the case where there is no thermal spray film shown in Fig.

복수의 오목부의 평균 직경 및 평균 깊이는, 이하와 같이 정의된다. 전자 현미경 등에 의한 영역(3)의 단면 조직의 관찰에 의해 얻어진 단면 조직 사진에 있어서, 단위 영역 내에 인접하여 존재하는 5개의 오목부(7)를 임의로 선택하고, 각각의 오목부(7)의 직경(D) 및 깊이(d)를 측정한다. 측정한 직경(D)의 평균값이 평균 직경이고, 측정한 깊이(d)의 평균값이 평균 깊이이다.The average diameter and the average depth of the plurality of concave portions are defined as follows. In the photograph of the cross-sectional structure obtained by observing the cross-sectional structure of the region 3 by an electron microscope or the like, five concave portions 7 adjacent to each other in the unit region were arbitrarily selected and the diameter of each concave portion 7 (D) and depth (d) are measured. The average value of the measured diameter D is the average diameter, and the average value of the measured depth d is the average depth.

볼 샷 처리와 드라이아이스 샷 처리를 병용해도 된다. 드라이아이스 샷 처리는, 드라이아이스 펠릿을 분사하여 표면을 클리닝하는 처리이다. 드라이아이스 샷 처리에서는, 볼 샷 피처리재(타깃ㆍ백킹 플레이트, 용사막)의 표면에 볼 샷 처리하였을 때 잔존하는 이물을 드라이아이스의 승화 에너지로 단시간에 제거하는 것이 가능하여, 청정한 볼 샷 처리에 의한 오목부를 유지할 수 있다.The ball shot processing and the dry ice shot processing may be used in combination. The dry ice shot treatment is a treatment of spraying dry ice pellets to clean the surface. In dry ice shot processing, it is possible to remove foreign matter remaining when the ball shot processing is performed on the surface of the ball shot target material (target, backing plate, thermal sprayed film) with the sublimation energy of dry ice in a short time, It is possible to maintain the concave portion by the convex portion.

볼 샷 처리와 드라이아이스 샷 처리를 병용함으로써, 예를 들어 볼 샷 처리 전에 용사막(4)의 표면에 잔존하고 있던 부착물 및 돌기부(요철부) 등을 용이하게 제거할 수 있다. 따라서, 미소한 파티클의 발생 원인으로 되는 결함부를 해소하여 거의 완전한 클리닝을 행할 수 있다. 따라서, 직경이 0.1㎛ 정도인 미세한 파티클도 저감할 수 있고, 타깃의 장수명(라이프)화와 파티클 저감 효과의 양쪽을 실현할 수 있다.By using the ball shot processing and the dry ice shot processing together, it is possible to easily remove, for example, adherents remaining on the surface of the thermal sprayed film 4 before the ball shot processing, protrusions (irregular portions), and the like. Therefore, it is possible to eliminate defects which are the cause of minute particles and to perform almost complete cleaning. Therefore, fine particles having a diameter of about 0.1 占 퐉 can be reduced, and both the life of the target and the particle reduction effect can be realized.

드라이아이스 샷 처리는, 용사 후에 행해져도 된다. 용사막(4)의 표면에는 비산 입자 등의 박리되기 쉬운 입자가 존재하는 경우가 있다. 이 때문에, 그대로의 상태로 볼 샷 처리를 행한 경우, 볼 샷 처리면에는 비산 입자가 찌부러진 매우 박리되기 쉬운 피막이 존재할 가능성이 있다. 그 때문에, 용사막(4)에 대하여 최초로 드라이아이스 샷 처리를 행함으로써, 탈락하기 쉬운 비산 입자가 제거되어, 볼 샷 처리 후라도 박리되기 쉬운 이상부의 형성을 삭감할 수 있다.The dry ice shot processing may be performed after spraying. On the surface of the thermal sprayed coating 4, particles that are likely to be peeled off, such as scattered particles, may be present. Therefore, in the case where the ball shot processing is performed in the state as it is, there is a possibility that the ball shot processing surface has a highly peelable coating on which scattered particles are crushed. Therefore, by performing dry ice shot processing for the first time on the thermal sprayed film 4, it is possible to eliminate the scattered particles which are likely to fall off, and to reduce the formation of the abnormal part which is likely to be peeled off even after the ball shot processing.

<실시예><Examples>

(실시예 1 내지 6)(Examples 1 to 6)

실시예 1 내지 6의 스퍼터링 타깃 구조체를 제작하였다. 스퍼터링 타깃의 재료 및 용사막의 두께는, 표 1에 나타내는 바와 같다. 또한, 실시예 1 내지 6에서 사용하는 백킹 플레이트의 재료는 알루미늄 합금이다.The sputtering target structures of Examples 1 to 6 were fabricated. The material of the sputtering target and the thickness of the thermal sprayed coating are as shown in Table 1. The materials of the backing plate used in Examples 1 to 6 are aluminum alloys.

실시예 1, 2의 스퍼터링 타깃 구조체의 제작에서는, 용사막을 형성하지 않고 볼 샷 처리에 의해 스퍼터링 타깃의 표면 및 백킹 플레이트의 표면에 복수의 오목부를 포함하는 영역을 형성하였다.In the fabrication of the sputtering target structures of Examples 1 and 2, a region including a plurality of recesses was formed on the surface of the sputtering target and the surface of the backing plate by ball shot processing without forming a sprayed film.

실시예 3, 4의 스퍼터링 타깃 구조체의 제작에서는, 백킹 플레이트의 본체부의 표면에 아크 Al 용사막을 형성하고, 볼 샷 처리에 의해 스퍼터링 타깃의 표면 및 백킹 플레이트의 표면(용사막의 표면)에 복수의 오목부를 포함하는 영역을 형성하였다.In the fabrication of the sputtering target structures of Examples 3 and 4, an arc Al sprayed film was formed on the surface of the main body portion of the backing plate, and a plurality of Thereby forming a region including the concave portion.

실시예 5, 6의 스퍼터링 타깃 구조체의 제작에서는, 백킹 플레이트의 본체부의 표면에 아크 Al 용사막을 형성하고, 볼 샷 처리 및 드라이아이스 샷 처리에 의해 스퍼터링 타깃의 표면 및 백킹 플레이트의 표면(용사막의 표면)에 복수의 오목부를 포함하는 영역을 형성하였다.In the fabrication of the sputtering target structures of Examples 5 and 6, an arc Al sprayed film was formed on the surface of the body portion of the backing plate, and the surface of the sputtering target and the surface of the backing plate A surface including a plurality of concave portions was formed on the surface of the substrate.

볼 샷 처리에서는, 직경이 0.8mm인 스테인리스제 볼을, 분출 압력 5kg/㎠로 분사 노즐로부터 사출하여 스퍼터링 타깃의 표면 및 백킹 플레이트의 표면에 충돌시켰다.In the ball shot processing, a ball made of stainless steel having a diameter of 0.8 mm was ejected from an injection nozzle at a jetting pressure of 5 kg / cm 2 to collide with the surface of the sputtering target and the surface of the backing plate.

(비교예 1 내지 6)(Comparative Examples 1 to 6)

실시예 1 내지 6과 동일한 재료의 스퍼터링 타깃 및 백킹 플레이트를 사용하여 비교예 1 내지 6의 스퍼터링 타깃 구조체를 제작하였다. 비교예 1, 2의 스퍼터링 타깃 구조체의 제작에서는, 용사막을 형성하지 않고, 비교예 3 내지 6의 스퍼터링 타깃 구조체의 제작에서는, 백킹 플레이트의 본체부의 표면에 아크 Al 용사막을 형성하였다. 스퍼터링 타깃의 재료 및 용사막의 두께는, 표 1에 나타내는 바와 같다. 또한, 비교예 1 내지 6의 스퍼터링 타깃 구조체의 제작에서는, 상기 볼 샷 처리 및 드라이아이스 샷 처리를 실시하지 않았다. 비교예 2, 5의 스퍼터링 타깃 구조체의 제작에서는, SiC 지립에 의한 블라스트 처리를 행하였다. 비교예 3, 6의 스퍼터링 타깃 구조체의 제작에서는, 커트 와이어에 의한 블라스트 처리인 와이어 샷 처리를 행하였다. 블라스트 처리 및 와이어 샷 처리는, 종래부터 행해지고 있는 표면을 거칠게 하는 처리이다.The sputtering target structures of Comparative Examples 1 to 6 were fabricated using sputtering targets and backing plates of the same materials as in Examples 1 to 6. In the fabrication of the sputtering target structures of Comparative Examples 1 and 2, no sprayed film was formed, and in the fabrication of the sputtering target structures of Comparative Examples 3 to 6, an arc Al sprayed film was formed on the surface of the main body portion of the backing plate. The material of the sputtering target and the thickness of the thermal sprayed coating are as shown in Table 1. In the production of the sputtering target structures of Comparative Examples 1 to 6, the ball shot treatment and the dry ice shot treatment were not performed. In the production of the sputtering target structures of Comparative Examples 2 and 5, blast treatment was performed with SiC abrasive grains. In the fabrication of the sputtering target structures of Comparative Examples 3 and 6, a wire shot process, which is a blast process using a cut wire, was performed. The blast processing and the wire shot processing are processing for roughening the surface which has conventionally been done.

Figure pct00001
Figure pct00001

얻어진 각 스퍼터링 타깃의 오목부의 산술 평균 조도 Ra(오목부 Ra), 오목부 평균 직경, 오목부 평균 깊이를 표 2에 나타낸다. 또한, 실시예 1 내지 6, 비교예 1 내지 6의 스퍼터링 타깃 구조체에 있어서, 12인치 웨이퍼 표면 상에 혼입된 직경 0.2㎛ 이상의 더스트 수를 파티클 카운터(WM-3)로 측정하였다. 측정 결과를 표 2에 나타낸다.Table 2 shows the arithmetic mean roughness Ra (concave portion Ra), concave portion average diameter, and concave portion average depth of concave portions of each sputtering target obtained. In the sputtering target structures of Examples 1 to 6 and Comparative Examples 1 to 6, the number of dusts having a diameter of 0.2 mu m or more and mixed on the surface of a 12-inch wafer was measured with a particle counter (WM-3). The measurement results are shown in Table 2.

Figure pct00002
Figure pct00002

표 2로부터 명백한 바와 같이, 복수의 오목부를 포함하고, 산술 평균 조도 Ra가 20㎛ 이하인 영역을 갖는 실시예의 스퍼터링 타깃 구조체에서는, 비교예의 스퍼터링 타깃 구조체와 비교하여 파티클 발생량을 대폭 저감할 수 있다. 또한, 각 실시예에서 형성한 용사막에 의해 파티클 발생을 효과적이면서도 안정적으로 방지할 수 있다. 실시예 1 내지 6, 비교예 1 내지 6에서 사용한 백킹 플레이트의 재질은 알루미늄 합금이지만, 구리 합금을 백킹 플레이트로서 사용해도 마찬가지의 효과가 얻어졌다.As is apparent from Table 2, in the sputtering target structure of the embodiment having a region including a plurality of recesses and having an arithmetic average roughness Ra of 20 m or less, the amount of generated particles can be significantly reduced as compared with the sputtering target structure of the comparative example. In addition, the generation of particles can be effectively and stably prevented by the thermal sprayed film formed in each of the embodiments. The materials of the backing plates used in Examples 1 to 6 and Comparative Examples 1 to 6 were aluminum alloys, but similar effects were obtained when copper alloys were used as backing plates.

볼 샷 처리 및 드라이아이스 샷 처리의 2종의 후처리를 병용함으로써 용사막 형성 직후 또는 볼 샷 시공 직후에 용사막 표면에 잔존하고 있던 부착물을 효과적으로 제거할 수 있다. 따라서, 이상 성장한 부착물의 탈락이 효과적으로 방지된다. 따라서, 웨이퍼 상에 혼입되는 파티클 등의 더스트 수를 더 저감할 수 있다는 것이 실증되었다. 또한, 실시예 3 내지 6에 관한 스퍼터링 타깃 구조체의 용사막의 상대 밀도를 측정한바, 모두 91% 내지 99%의 범위 내였다.It is possible to effectively remove the adhering matter remaining on the surface of the thermal sprayed film immediately after the formation of the thermal sprayed coating or immediately after the construction of the thermal sprayed shot by using the two post treatments of the ball shot treatment and the dry ice shot treatment together. Therefore, the dropout of the abnormally grown deposit can be effectively prevented. Therefore, it has been demonstrated that the number of dust particles or the like incorporated on the wafer can be further reduced. The relative density of the thermal sprayed films of the sputtering target structures according to Examples 3 to 6 was measured and found to be within the range of 91% to 99%.

Claims (14)

스퍼터링 타깃과,
상기 스퍼터링 타깃을 유지하는 백킹 플레이트를 구비하고,
상기 스퍼터링 타깃의 표면 및 상기 백킹 플레이트의 표면 중 적어도 하나의 표면은, 50㎛ 이상 300㎛ 이하의 평균 직경과 5㎛ 이상 30㎛ 이하의 평균 깊이를 갖는 복수의 오목부를 포함하는 영역을 구비하고,
상기 복수의 오목부를 포함하는 영역의 표면의 산술 평균 조도 Ra가 10㎛ 이상 20㎛ 이하인, 스퍼터링 타깃 구조체.
A sputtering target,
And a backing plate for holding the sputtering target,
Wherein at least one of a surface of the sputtering target and a surface of the backing plate has a region including a plurality of recesses having an average diameter of 50 mu m or more and 300 mu m or less and an average depth of 5 mu m or more and 30 mu m or less,
Wherein the arithmetic mean roughness Ra of the surface of the region including the plurality of recesses is 10 占 퐉 or more and 20 占 퐉 or less.
제1항에 있어서, 상기 스퍼터링 타깃 및 상기 백킹 플레이트 중 적어도 하나는,
본체부와,
상기 본체부의 표면에 설치되고, 상기 복수의 오목부를 포함하는 영역을 구비하는 용사막을 갖는, 스퍼터링 타깃 구조체.
The method of claim 1, wherein at least one of the sputtering target and the backing plate comprises:
A body portion,
And a sprayed film provided on a surface of the main body portion and having a region including the plurality of recessed portions.
제2항에 있어서, 상기 용사막은, 복수의 입자를 포함하고,
상기 복수의 입자의 평균 입자 직경이 5㎛ 이상 150㎛ 이하인, 스퍼터링 타깃 구조체.
The method according to claim 2, wherein the thermal sprayed coating comprises a plurality of particles,
Wherein the plurality of particles have an average particle diameter of 5 占 퐉 or more and 150 占 퐉 or less.
제2항에 있어서, 상기 용사막의 상대 밀도가 75% 이상 99% 이하인, 스퍼터링 타깃 구조체.The sputtering target structure according to claim 2, wherein the relative density of the thermal sprayed coating is 75% or more and 99% or less. 제2항에 있어서, 상기 용사막의 두께가 50㎛ 이상 500㎛ 이하인, 스퍼터링 타깃 구조체.The sputtering target structure according to claim 2, wherein the thickness of the thermal sprayed coating is 50 μm or more and 500 μm or less. 제2항에 있어서, 상기 용사막은 알루미늄을 포함하는, 스퍼터링 타깃 구조체.3. The sputtering target structure of claim 2, wherein the thermal spray coating comprises aluminum. 제2항에 있어서, 상기 스퍼터링 타깃은 티타늄을 포함하는, 스퍼터링 타깃 구조체.3. The sputtering target structure of claim 2, wherein the sputtering target comprises titanium. 제2항에 있어서, 상기 백킹 플레이트는, 알루미늄 합금 및 구리 합금 중 적어도 하나의 재료를 포함하는, 스퍼터링 타깃 구조체.3. The sputtering target structure of claim 2, wherein the backing plate comprises at least one of an aluminum alloy and a copper alloy. 제1항에 기재된 스퍼터링 타깃 구조체를 제조하는 공정을 구비하는 스퍼터링 타깃 구조체의 제조 방법이며,
상기 제조하는 공정은, 상기 스퍼터링 타깃의 표면 및 상기 백킹 플레이트의 표면 중 적어도 하나의 표면에 대하여 볼 샷 처리 및 드라이아이스 샷 처리 중 적어도 하나의 처리를 행하여 상기 복수의 오목부를 형성하는 공정을 포함하는, 스퍼터링 타깃 구조체의 제조 방법.
A manufacturing method of a sputtering target structure comprising the step of manufacturing the sputtering target structure according to claim 1,
Wherein the manufacturing process includes a step of performing at least one of a ball shot process and a dry ice shot process on at least one surface of the surface of the sputtering target and the surface of the backing plate to form the plurality of recesses , And a method for manufacturing a sputtering target structure.
제2항에 기재된 스퍼터링 타깃 구조체를 제조하는 공정을 구비하는 스퍼터링 타깃 구조체의 제조 방법이며,
상기 제조하는 공정은,
아크 용사, 플라즈마 용사 또는 플레임 용사에 의해 용사 재료를 용융시켜 상기 스퍼터링 타깃 및 상기 백킹 플레이트 중 적어도 하나의 상기 본체부의 표면에 상기 용사막을 형성하는 공정과,
상기 용사막에 대하여 볼 샷 처리 및 드라이아이스 샷 처리 중 적어도 하나의 처리를 행하여 상기 복수의 오목부를 형성하는 공정을 포함하는, 스퍼터링 타깃 구조체의 제조 방법.
A manufacturing method of a sputtering target structure comprising the step of manufacturing the sputtering target structure according to claim 2,
Wherein the step of manufacturing comprises:
Melting the sprayed material by arc spraying, plasma spraying or flame spraying to form the sprayed film on the surface of at least one of the sputtering target and the backing plate;
And performing at least one of a ball shot process and a dry ice shot process on the thermal sprayed film to form the plurality of recesses.
제10항에 있어서, 상기 복수의 오목부를 형성하는 공정은,
상기 볼 샷 처리에 의해 상기 용사막의 표면에 상기 복수의 오목부를 형성하는 공정과,
상기 볼 샷 처리 후에 상기 드라이아이스 샷 처리에 의해 상기 복수의 오목부를 포함하는 영역에 잔류하는 이물을 제거하는 공정을 갖는, 스퍼터링 타깃 구조체의 제조 방법.
The method according to claim 10, wherein the step of forming the plurality of recesses comprises:
Forming the plurality of concave portions on the surface of the thermal sprayed film by the ball shot processing;
And removing the foreign matter remaining in the region including the plurality of concave portions by the dry ice shot processing after the ball shot processing.
제10항에 있어서, 상기 복수의 오목부를 형성하는 공정은,
상기 드라이아이스 샷 처리에 의해 상기 용사막의 표면에 잔존하는 입자의 적어도 일부를 제거하는 공정과,
상기 드라이아이스 샷 처리 후에 상기 볼 샷 처리에 의해 상기 용사막의 표면에 상기 복수의 오목부를 형성하는 공정을 구비하는, 스퍼터링 타깃 구조체의 제조 방법.
The method according to claim 10, wherein the step of forming the plurality of recesses comprises:
Removing at least a part of the particles remaining on the surface of the thermal sprayed coating by the dry ice shot treatment;
And forming the plurality of recesses on the surface of the thermal sprayed coating by the ball shot processing after the dry ice shot processing.
제10항에 있어서, 상기 용사 재료는 분말형 또는 와이어형인, 스퍼터링 타깃 구조체의 제조 방법.11. The method of claim 10, wherein the spraying material is powder or wire. 제10항에 있어서, 상기 볼 샷 처리에 있어서, 충돌시키는 볼의 직경이 2mm 이하이고, 또한 분사 압력이 5kg/㎠ 이하인, 스퍼터링 타깃 구조체의 제조 방법.The method of manufacturing a sputtering target structure according to claim 10, wherein in the ball shot processing, the diameter of the ball to be collided is 2 mm or less and the injection pressure is 5 kg / cm 2 or less.
KR1020177004466A 2014-09-30 2015-09-29 Sputtering target structure and sputtering target structure manufacturing method Ceased KR20170032427A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2014-202643 2014-09-30
JP2014202643 2014-09-30
PCT/JP2015/004941 WO2016051771A1 (en) 2014-09-30 2015-09-29 Sputtering target structure and sputtering target structure manufacturing method

Related Child Applications (3)

Application Number Title Priority Date Filing Date
KR1020197010203A Division KR20190040104A (en) 2014-09-30 2015-09-29 Electronic components manufacturing method
KR1020197010202A Division KR20190040103A (en) 2014-09-30 2015-09-29 Sputtering target structure
KR1020197010201A Division KR20190040377A (en) 2014-09-30 2015-09-29 Sputtering target structure manufacturing method

Publications (1)

Publication Number Publication Date
KR20170032427A true KR20170032427A (en) 2017-03-22

Family

ID=55629839

Family Applications (5)

Application Number Title Priority Date Filing Date
KR1020197010203A Ceased KR20190040104A (en) 2014-09-30 2015-09-29 Electronic components manufacturing method
KR1020207031638A Ceased KR20200128593A (en) 2014-09-30 2015-09-29 Sputtering target structure manufacturing method
KR1020177004466A Ceased KR20170032427A (en) 2014-09-30 2015-09-29 Sputtering target structure and sputtering target structure manufacturing method
KR1020197010202A Ceased KR20190040103A (en) 2014-09-30 2015-09-29 Sputtering target structure
KR1020197010201A Ceased KR20190040377A (en) 2014-09-30 2015-09-29 Sputtering target structure manufacturing method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020197010203A Ceased KR20190040104A (en) 2014-09-30 2015-09-29 Electronic components manufacturing method
KR1020207031638A Ceased KR20200128593A (en) 2014-09-30 2015-09-29 Sputtering target structure manufacturing method

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020197010202A Ceased KR20190040103A (en) 2014-09-30 2015-09-29 Sputtering target structure
KR1020197010201A Ceased KR20190040377A (en) 2014-09-30 2015-09-29 Sputtering target structure manufacturing method

Country Status (3)

Country Link
JP (2) JP6755802B2 (en)
KR (5) KR20190040104A (en)
WO (1) WO2016051771A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210011532A (en) * 2019-07-22 2021-02-02 주식회사 싸이노스 Method for decreasing particle in arc coating process and sputtering apparatus having coating by this method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10655212B2 (en) * 2016-12-15 2020-05-19 Honeywell Internatonal Inc Sputter trap having multimodal particle size distribution
CN113684441B (en) * 2021-08-27 2023-04-07 江阴恩特莱特镀膜科技有限公司 Electric arc spray gun

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820508B1 (en) 1968-07-19 1973-06-21
JPH09287072A (en) 1996-04-19 1997-11-04 Japan Energy Corp Sputtering target assembly and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791829B2 (en) 2000-08-25 2006-06-28 株式会社日鉱マテリアルズ Sputtering target with less generation of particles
KR100631275B1 (en) * 2000-11-17 2006-10-02 닛코킨조쿠 가부시키가이샤 Low particle generation sputtering target or backing plate and low particle generation sputtering method
US20100107982A1 (en) * 2007-03-22 2010-05-06 Kabushiki Kaisha Toshiba Vacuum deposition apparatus part and vacuum deposition apparatus using the part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820508B1 (en) 1968-07-19 1973-06-21
JPH09287072A (en) 1996-04-19 1997-11-04 Japan Energy Corp Sputtering target assembly and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210011532A (en) * 2019-07-22 2021-02-02 주식회사 싸이노스 Method for decreasing particle in arc coating process and sputtering apparatus having coating by this method

Also Published As

Publication number Publication date
KR20190040377A (en) 2019-04-17
JP6755802B2 (en) 2020-09-16
JP2020204095A (en) 2020-12-24
KR20190040104A (en) 2019-04-16
KR20200128593A (en) 2020-11-13
JP6946529B2 (en) 2021-10-06
JPWO2016051771A1 (en) 2017-07-13
WO2016051771A1 (en) 2016-04-07
KR20190040103A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
JP5558807B2 (en) Components for vacuum film forming apparatus and vacuum film forming apparatus
KR101497985B1 (en) Method and apparatus for application of twin wire arc spray coating
JP5571152B2 (en) Manufacturing method of sputtering target
JP6946529B2 (en) Film forming method and electronic component manufacturing method
TWI762537B (en) Sputter trap having multimodal particle size distribution
JP2008285754A (en) Sputtering target, backing plate or instrument in sputtering device with less particle generation, and roughening method
KR101385344B1 (en) Tantalum coil for sputtering and method for processing the coil
JP5283880B2 (en) Vacuum deposition system
JP5566891B2 (en) Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JP3996039B2 (en) Method for manufacturing ceramic base material with metal spray coating
JP6549430B2 (en) Sputtering target and method of manufacturing sputtering target
JP4894158B2 (en) Vacuum equipment parts
JP2006057172A (en) Thin film manufacturing apparatus and manufacturing method thereof
US10792788B2 (en) Optimized textured surfaces and methods of optimizing
JP2001295024A (en) Member for thin film deposition system, and its manufacturing method
KR102445264B1 (en) How to remove attachments
JP4647249B2 (en) Thin film forming apparatus component and method of manufacturing the same
JP7310395B2 (en) Sputtering target and manufacturing method thereof
CN113878308B (en) Target assembly and manufacturing method thereof
JP4910465B2 (en) Vacuum device member, manufacturing method thereof, and vacuum device
JP2001192818A (en) Member for thin film deposition system and producing method therefor
JP6526569B2 (en) Parts for plasma apparatus and method for manufacturing the same
JP2007077421A (en) Member for plasma treatment apparatus, and its manufacturing method
JP2012136757A (en) Component for vacuum device, and film forming device provided therewith

Legal Events

Date Code Title Description
A201 Request for examination
PA0105 International application

Patent event date: 20170217

Patent event code: PA01051R01D

Comment text: International Patent Application

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20180702

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20181112

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20180702

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

X091 Application refused [patent]
AMND Amendment
PX0901 Re-examination

Patent event code: PX09011S01I

Patent event date: 20181112

Comment text: Decision to Refuse Application

Patent event code: PX09012R01I

Patent event date: 20180903

Comment text: Amendment to Specification, etc.

PX0601 Decision of rejection after re-examination

Comment text: Decision to Refuse Application

Patent event code: PX06014S01D

Patent event date: 20190109

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20181211

Comment text: Decision to Refuse Application

Patent event code: PX06011S01I

Patent event date: 20181112

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20180903

Comment text: Notification of reason for refusal

Patent event code: PX06013S01I

Patent event date: 20180702

A107 Divisional application of patent
J201 Request for trial against refusal decision
PA0104 Divisional application for international application

Comment text: Divisional Application for International Patent

Patent event code: PA01041R01D

Patent event date: 20190409

PJ0201 Trial against decision of rejection

Patent event date: 20190409

Comment text: Request for Trial against Decision on Refusal

Patent event code: PJ02012R01D

Patent event date: 20190109

Comment text: Decision to Refuse Application

Patent event code: PJ02011S01I

Patent event date: 20181112

Comment text: Decision to Refuse Application

Patent event code: PJ02011S01I

Appeal kind category: Appeal against decision to decline refusal

Appeal identifier: 2019101001196

Request date: 20190409

J301 Trial decision

Free format text: TRIAL NUMBER: 2019101001196; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20190409

Effective date: 20200122

PJ1301 Trial decision

Patent event code: PJ13011S01D

Patent event date: 20200122

Comment text: Trial Decision on Objection to Decision on Refusal

Appeal kind category: Appeal against decision to decline refusal

Request date: 20190409

Decision date: 20200122

Appeal identifier: 2019101001196

J121 Written withdrawal of request for trial
PC1202 Submission of document of withdrawal before decision of registration

Comment text: [Withdrawal of Procedure relating to Patent, etc.] Withdrawal (Abandonment)

Patent event code: PC12021R01D

Patent event date: 20200218

PJ1201 Withdrawal of trial

Patent event code: PJ12011R01D

Patent event date: 20200218

Comment text: Written Withdrawal of Request for Trial

Appeal identifier: 2019101001196

Request date: 20190409

Appeal kind category: Appeal against decision to decline refusal

Decision date: 20200122

WITB Written withdrawal of application