[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20100057013A - 채널 변경 지연이 없는 스태거캐스팅 - Google Patents

채널 변경 지연이 없는 스태거캐스팅 Download PDF

Info

Publication number
KR20100057013A
KR20100057013A KR1020107003981A KR20107003981A KR20100057013A KR 20100057013 A KR20100057013 A KR 20100057013A KR 1020107003981 A KR1020107003981 A KR 1020107003981A KR 20107003981 A KR20107003981 A KR 20107003981A KR 20100057013 A KR20100057013 A KR 20100057013A
Authority
KR
South Korea
Prior art keywords
stream
error correction
encoded
base layer
signal
Prior art date
Application number
KR1020107003981A
Other languages
English (en)
Inventor
데이비드 안쏘니 캄파나
알란 재이 스테인
쿠마르 라마스와미
Original Assignee
톰슨 라이센싱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 톰슨 라이센싱 filed Critical 톰슨 라이센싱
Publication of KR20100057013A publication Critical patent/KR20100057013A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/631Multimode Transmission, e.g. transmitting basic layers and enhancement layers of the content over different transmission paths or transmitting with different error corrections, different keys or with different transmission protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • H04L1/008Formats for control data where the control data relates to payload of a different packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
    • H04N21/4383Accessing a communication channel
    • H04N21/4384Accessing a communication channel involving operations to reduce the access time, e.g. fast-tuning for reducing channel switching latency

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Radio Transmission System (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

ATSC DTV(Advanced Television Systems Committee Digital Television) 이동 또는 핸드-헬드 디바이스는, 프로그램 콘텐츠를 운반하기 위해 FEC 스트림으로부터 시간상 지연된 인코딩된 스트림과 FEC(Forward Error Correcting) 스트림을 포함하는 스태거캐스트 형태로 송신되는 모바일 DTV 채널을 포함하는 신호를 수신하기 위한 수신기를 포함한다. 이 수신기는 프로그램 콘텐츠를 제공하기 위해 수신된 인코딩된 스트림을 디코딩하고, 수신된 인코딩된 스트림에서 에러들이 검출되면 에러들을 정정하려고 시도하기 위해 수신된 FEC 스트림을 사용한다. 하지만, 사용자가 프로그램 또는 채널을 상이한 스태거캐스트 스트림으로 변경할 때, 비록 시간의 초기 기간 동안 수신기에 의한 에러 정정이 매우 제한되더라도, 수신기는 새로운 프로그램 콘텐츠를 제공하기 위해 상이한 스태거캐스트 스트림의 수신된 인코딩된 스트림을 디코딩한다.

Description

채널 변경 지연이 없는 스태거캐스팅{STAGGERCASTING WITH NO CHANNEL CHANGE DELAY}
관련 출원에 대한 상호 참조
본 출원은 2007년 8월 28일 출원된 미국 가출원 일련 번호 60/966,431호의 이익을 주장한다.
본 발명은 일반적으로 통신 시스템에 관한 것으로, 더 구체적으로는 지상파 방송, 셀룰러, Wi-Fi(Wireless-Fidelity), 위성 등과 같은 무선 시스템에 관한 것이다.
ATSC DTV(Advanced Television Systems Committee Digital Television) 시스템(예컨대, 1995년 9월 16일의 미국 ATSC의 제목이 "ATSC Digital Television Standard"인 문서 A/53과, 1995년 10월 4일의 제목이 "Guide to the Use of the ATSC Digital Television Standard"인 문서 A/54를 참조하라)은 MPEG-압축된 HDTV(high definition TV) 신호{MPEG2는 MPEG(Moving Picture Expert Group)-2 시스템들 표준(ISO/IEC 13818-1)을 가리킨다}의 송신을 위해 약 19Mbit/sec(초당 백만 비트)를 제공한다. 이와 같이, 약 4개 내지 6개의 TV 채널이, 혼잡 없이 단일 PTC(physical transmission channel)에서 지원될 수 있다. 또한, 여분의 대역폭이 이러한 수송 스트림 내에 남아 있어, 추가 서비스를 제공한다. 실제로는, MPEG2 인코딩과 개선된 코덱(코더/디코더) 기술(H.264 또는 VC1과 같은)의 도입 모두에서의 향상으로 인해, 좀더 많은 추가 공간 용량이 PTC에서 이용 가능하게 된다.
하지만, ATSC DTV 시스템은 고정된 수신용으로 설계되었고, 수신기에서 1초 이상의 기간 동안 쉽게 신호 손실을 야기할 수 있는 도플러 효과와 페이딩(fading)으로 인해, 모바일 환경에서는 그 성능이 떨어진다. 이러한 점에서, 기존의 ATSC DTV 시스템과의 역 호환성(backward compatibility)을 유지하면서, 모바일 및 핸드헬드(M/H) 디바이스를 위한 ATSC DTV 시스템을 개발하고자 하는 강한 관심이 존재해왔다.
모바일 환경에서 성능을 향상시키는 한 가지 방법은, FEC(forward error correction)와 결합된 시간 다이버시티(diversity) 기술을 사용하는 것이다. FEC의 일부 예들에는, 블록 코드들{예컨대, 리드-솔로몬(Reed-Solomon), BCH}, 콘볼루션(convolution) 코드들, LDPC(low-parity check code)들, 및 터보(turbo) 코드들이 있다. 블록 또는 콘볼루션 인터리빙 기술을 사용하여 타임 인터리빙(time interleaving)이 이루어질 수 있다. FEC는, 인터리버들과 결합되어 사용될 때, 페이딩 채널에 대한 통신 성능을 크게 향상시킨다.
불행하게도, 이들 시스템은 일반적으로 시간 다이버시티에 비례하는 시간지연을 겪게 된다. 이와 같이, 모바일 TV 시스템의 환경에서의 그러한 시간 다이버시티 기술들의 바람직하지 않은 부작용은, 채널을 스위칭할 때 긴 채널 변경 시간의 형태로 된 이러한 지연을 사용자가 보게 되는 것으로, 이는 사용자에게 매우 불쾌할 수 있는 일이다. 이와 같이, 모바일 TV 시스템의 설계자는 시간 다이버시티에 대한 빠른 채널 변경과 페이드(fade) 보호 사이에서 균형을 맞출 것을 요구받는다. 일반적으로 한 영역에서 성능을 증가시키는 것은, 또 다른 영역에서의 성능 감소를 의미한다.
하지만, 요구 조건의 집합이 방송과 단말기 디바이스 모두에 적용되면, 페이드 보호를 위한 시간 다이버시티와 빠른 채널 변경 모두가 달성될 수 있음을 알게 되었다. 특히, 스태거캐스팅(StaggerCasting)(시간 다이버시티 보호의 한 형태)이 본 발명의 원리들에 따라 사용되어, 임의의 채널 변경 지연을 겪지 않고 무선 송신 시스템을 페이드로부터 보호한다.
본 발명의 원리들에 따르면, 수신기는 적어도 하나의 인코딩된 스트림과 에러 정정 스트림을 포함하는 채널을 수신하는데, 이 경우 인코딩된 스트림은 에러 정정 스트림에 관해 스태거링되고, 상기 수신기는 콘텐츠를 제공하기 위해 수신된 인코딩된 스트림을 디코딩하며, 수신된 인코딩된 스트림에서 에러들을 검출할 때 수신된 에러 정정 스트림을 사용하여 수신된 인코딩된 스트림을 정정하고, 상이한 채널이 선택될 때, 상기 수신기는 상이한 채널의 수신된 인코딩된 스트림에서의 시간 지연 에러들과 같은 초기 시간 기간 동안, 상이한 채널의 수신된 에러 정정 스트림에 의해 정정 가능하지 않더라도, 콘텐츠를 제공하기 위해 상이한 채널의 수신된 인코딩된 스트림을 디코딩하며, 상이한 채널의 인코딩된 스트림은 상이한 채널의 에러 정정 스트림에 관해 시간 지연만큼 지연된다.
본 발명의 예시적인 실시예에서, ATSC DTV 모바일, 또는 핸드헬드 디바이스는 모바일 DTV 채널을 포함하는 디지털 멀티플렉스(multiplex)를 수신하기 위한 수신기를 포함하는데, 이러한 디지털 멀티플렉스는 스태거캐스트 형태로 송신된다. 특히, 수신기는 비디오와 오디오와 같은 선택된 프로그램을 위한 콘텐츠를 운반하기 위한 인코딩된 스트림과, FEC 블록들과 같은 에러 정정 스트림을 포함하는 스태거캐스트 신호를 수신한다. 스태거캐스팅에 관해, 인코딩된 스트림은 에러 정정 스트림에 관해 시간 지연만큼 지연된다. 예시적으로, 모든 스태거캐스트 신호는 동일한 시간 지연을 가진다. 수신기는 선택된 프로그램에 관한 콘텐츠를 제공하기 위해 수신된 인코딩된 스트림을 디코딩하고, 수신된 인코딩된 스트림에서 에러들이 검출되면, 그 에러들의 정정을 시도하기 위해 수신된 에러 정정 스트림을 사용한다. 하지만, 그러한 사용이 프로그램, 또는 채널들을 상이한 스태거캐스트 스트림으로 변경하면, 수신기는 상이한 스태거캐스트 스트림의 수신된 인코딩된 스트림에서의 시간 지연 에러들과 같은 초기 시간 기간 동안, 상이한 스태거캐스트 스트림의 수신된 에러 정정 스트림에 의해 정정 가능하지 않더라도, 콘텐츠를 제공하기 위해 상이한 스태거캐스트 스트림의 수신된 인코딩된 스트림을 디코딩한다.
위의 내용에 비추어, 그리고 상세한 설명을 읽음으로써 명백해지듯이, 다른 실시예와 특징들이 또한 가능하고 본 발명의 원리들 내에 있다.
본 발명의 원리들에 적용된 스태거캐스팅을 통해, 임의의 채널 변경 지연을 겪지 않고 통신 시스템, 더 구체적으로는 지상파 방송, 셀룰러, Wi-Fi(Wireless-Fidelity), 위성 등과 같은 무선 시스템을 페이드로부터 보호할 수 있다.
도 1은 본 발명의 원리들에 따른 스태거캐스트 스트림을 예시하는 도면.
도 2는 본 발명의 원리들에 따른 송신기의 예시적인 실시예를 도시하는 도면.
도 3은 도 2의 송신기에서 형성된 예시적인 다중화된 스트림을 도시하는 도면.
도 4는 본 발명의 원리들에 따라 송신기에서 사용하기 위한 예시적인 흐름도를 도시하는 도면.
도 5는 본 발명의 원리들에 따른 디바이스의 예시적인 실시예를 도시하는 도면.
도 6은 본 발명의 원리들에 따른 수신기의 예시적인 실시예를 도시하는 도면.
도 7은 본 발명의 원리들에 따른 수신기에서 사용하기 위한 예시적인 흐름도를 도시하는 도면.
도 8은 본 발명의 원리들에 따른 또 다른 예시적인 스태거캐스트를 도시하는 도면.
본 발명의 개념 외에, 도면에 도시된 요소들은 공지된 것이고 상세히 설명되지 않는다. 예컨대, 본 발명의 개념 외에, 이산 다중톤(DMT: Discrete Multitone) 송신{OFDM(Orthogonal Frequency Division Multiplexing) 또는 COFDM(Coded Orthogonal Frequency Division Multiplexing)이라고도 함}에 대한 친숙함이 가정되고 본 명세서에서는 설명되지 않는다. 또한 텔레비전 방송, 수신기, 및 비디오 인코딩에 대한 친숙함이 가정되고, 본 명세서에서는 설명되지 않는다. 예컨대, 본 발명의 개념 외에, NTSC(National Television Systems Committee), PAL(Phase Alternation Lines), SECAM(SEquential Couleur Avec Memoire), ATSC(Advanced Television Systems Committee), DVB(Digital Video Broadcasting), DVB-T(Digital Video Broadcasting-Terrestrial)(예컨대, ETSI EN 300 744 V1.4.1, 2001-01), Digital Video Broadcasting ( DVB ); Framing structure , channel coding and modulation for digital terrestrial television, DVB-H 및 중국 디지털 텔레비전 시스템(GB) 20600-2006{Digital Multimedia Broadcasting - Terrestrial/Handheld(DMB-T/H)}과 같은 텔레비전(TV) 표준들에 관한 현재의 그리고 제안된 권고안에 대한 친숙함이 가정된다. ATSC 방송 신호들에 대한 정보는 후속하는 ATSC 표준들, 즉 Amendment No. 1과 Corrigendum No. 1, Doc. A/53C을 포함하는 Digital Television Standard(A/53), Revision C와, Recommended Practice : Guide to the Use of the ATSC Digital Television Standard(A/54)에서 찾을 수 있다. 마찬가지로, 본 발명의 개념 외에, 8-VSB(eight-level vestigial sideband), QAM(Quadrature Amplitude Modulation)과 같은 다른 송신 개념들과, 무선 주파수(RF: radio-frequency) 프론트-엔드(front-end)(저잡음 블록, 동조기, 다운 컨버터 등과 같은) 복조기, 상관기, 누설 적분기, 및 제곱기(squarer)와 같은 수신기 성분들이 가정된다. 또한, 본 발명의 개념 외에, FLUTE(File Delivery over Unidirectional Transport) 프로토콜, ALC(Asynchronous Layered Coding) 프로토콜, IP(Internet protocol), 및 IPE(Internet protocol Encapsulator)과 같은 프로토콜들에 대한 친숙함이 가정되고 본 명세서에서는 설명되지 않는다. 유사하게, 본 발명의 개념 외에, 수송 비트 스트림들을 생성하기 위한 포맷팅 및 인코딩 방법들{MPEG(Moving Picture Expert Group)-2 시스템 표준(ISO/IEC 13818-1)과 같은}은 공지되어 있고, 본 명세서에서는 설명되지 않는다. 또한 본 발명의 개념은 종래의 프로그래밍 기술을 사용하여 구현될 수 있다는 점이 주목되어야 하고, 이러한 종래의 프로그래밍 기술은 본 명세서에서는 설명되지 않는다. 마지막으로, 도면에서의 유사한 번호들은 유사한 요소들을 나타낸다.
도 1은 모바일 DTV 시스템의 환경에서 본 발명의 원리들에 따른 스태거캐스트 방송 스트림(1)을 예시한다. 스태거캐스트 방송 스트림(1)은 완전한, 즉 풀(full) 매체 스트림(11)과 분리된 FEC 스트림(12)을 포함한다. 풀 매체 스트림은 또한 본 명세서에서 베이스(base) 스트림 또는 인코딩된 스트림이라고 부르고, 이는 TV 프로그램들을 위한 매체, 즉 콘텐츠(예컨대, 비디오 및/또는 오디오)를 운반한다. 풀 스트림(11)은 그 풀 스트림 내에 FDC 데이터를 운반하지 않음을 주목해야 한다. 이와 같이, 이러한 풀 스트림(11)만을 디코딩하는 수신기는 사용자에게 디스플레이하기 위해, 매체, 즉 콘텐츠(예컨대, 비디오 및/또는 오디오)를 렌더링할 수 있게 되지만 채널 에러에 대한 낮은 내성을 가질 것이다. 이와 같이, 풀 스트림(11)은 FEC 보호 없이 보내진 A에서 H(대문자)까지 라벨이 붙여진 블록들의 스트림을 포함한다. 하지만, 대응하는 FEC 데이터는 c에서 j(소문자)까지 라벨이 붙여진 FEC 블록들(즉, FEC 데이터)의 시퀀스를 포함하는 FEC 스트림(12)에 의해 제공된다. 도 1에 예시된 바와 같이, "c"로 라벨이 붙여진 FEC 블록은 블록 "C"{점선(14)으로 나타낸}의 수신시 에러들을 정정하기 위해 사용될 수 있는 FEC 데이터이다. 도 1로부터 관찰될 수 있는 것처럼, 풀 스트림(11)은 시간 지연(
Figure pct00001
)만큼 FEC 스트림(12)에 관해 지연되는데, 여기서
Figure pct00002
이며, 즉 풀 스트림(11)과 FEC 스트림(12)이 시간상 서로 스태거링된다.
본 발명의 원리에 따라 채널들을 변경하는데 있어서 추가 지연을 일으키지 않고 리던던시의 혜택을 수신기가 어떻게 즐기는지를 보기 위해 다시 도 1을 참조한다. 시각 t=t0에서, 수신기는 스태거캐스트 방송 스트림(1)을 수신하기 시작한다. 하지만, 스태거캐스팅 시간 지연(
Figure pct00003
) 때문에, 이러한 시간(
Figure pct00004
) 동안 처음으로 수신된 FEC 블록들("c"와 "d")은 풀 스트림(11)에서 운반된 데이터("A"와 "B")에 대응하지 않는다. 수신기가 "A" 또는 "B"에 관한 FEC 데이터를 가지지 않으므로, 수신기는 시간 지연(
Figure pct00005
)이 블록 "C"으로 시작할 때까지 에러들을 정정할 수 없다. 시간 기간(
Figure pct00006
) 동안 보호가 없는 데이터가 도 1에서 라벨(15)로 나타나 있다. 그러므로, 수신기가 사용자에게 완전한 QoS(Quality of Service)를 제공하기 위해서는, 수신기가 풀 스트림(11)을 처리하기 전에 시간 지연(
Figure pct00007
)동안 기다려야 한다. 불행하게도, 이는 채널들을 변경시 지연을 일으킨다. 하지만, 본 발명의 원리들에 따르면 수신기는 데이터 "A"로 시작하는 풀 스트림(11)을 재생하기 시작하고 즉시 콘텐츠를 사용자에게 보여주기 시작한다. 그러므로, 사용자는 프로그램들(또는 채널들)을 전환할 때 어떠한 채널 변경 지연도 겪지 않는데, 이는 이 데이터에 어떠한 에러 보호도 존재하지 않더라도 이 데이터가 이용 가능하자 마자 렌더링될 수 있기 때문이다. 하지만, 시간 지연(
Figure pct00008
) 후, 즉 시각 t= tl에서 수신기는 풀 스트림(11)의 베이스 데이터뿐만 아니라 FEC 스트림(12)으로부터의 대응하는 FEC 데이터도 가진다. 그러므로, 라벨(16)로 표시된 풀 스트림(11)에 관한 블록 "C"에서 시작하는 데이터의 경우, 낮은 지연을 유지하면서 리던던시의 모든 혜택이 존재하게 된다.
전술한 예에서, 시간 다이버시티는 시간 지연(
Figure pct00009
)으로 표시된다. 본 발명의 원리들에 따르면, 채널이 변경된 후 수신기가 이러한 동일한 시간 구간 동안 다양한 시간 FEC의 혜택 없이 데이터를 처리한다. 시간 지연(
Figure pct00010
)은 적절한 균형을 제공하기 위해 조정될 수 있다. 모든 스태거캐스트 스트림이 동일한 시간 지연을 가진다고 가정되지만, 본 발명의 개념은 그것에 제한되지 않고, 시간 지연들이 상이한 스태거캐스트 스트림들 사이에서 변할 수 있다. 예컨대, 하나의 스태거캐스트 스트림이 제 1 시간 지연(
Figure pct00011
)을 가질 수 있는데 반해, 제 2 스태거캐스트 스트림은 상이한 제 2 시간 지연(
Figure pct00012
)을 가질 수 있다. 그러한 경우들에서, 수신기가 수신된 스태거캐스트 신호에 관한 적절한 시간 지연을 표시하는 연관된 프로그램과, 시스템 정보를 수신한다고 가정된다. 실제로, 동일한 채널에 대한 지연(
Figure pct00013
)은 그 자체가 고정되지 않고 변할 수 있다. 지연이 변하는 경우, 그 값은
Figure pct00014
과 같이 범위가 정해질 수 있다. 가변 지연은 가변 비트 속도(VBR: variable bit rate) 콘텐츠가 일정한 비트 속도(CBR: constant bit rate) 채널을 통해 운반되거나 CBR 콘텐츠가 VBR 채널을 통해 운반되는 경우 요구될 수 있다. 이 경우 수신기에서의 FEC 스트림과 기본 스트림을 재-정렬 또는 재-동기화하기 위해 수신기에 의해 RTP(Real-Time Protocol) 특정 필드에서 발견된 시퀀스 번호가 사용될 수 있다.
그러므로, 그리고 본 발명의 원리들에 따르면, 수신기는 에러 정정 스트림과 이 에러 정정 스트림에 관해 스태거링되는 적어도 하나의 인코딩된 스트림을 포함하는 채널을 수신하고, 콘텐츠를 제공하기 위해 수신된 인코딩된 스트림을 디코딩하며, 수신된 인코딩된 스트림에서 에러들을 검출시 수신된 에러 정정 스트림을 사용하여 수신된 인코딩된 스트림을 정정하고, 상이한 채널이 선택될 때에는 상이한 채널의 수신된 인코딩된 스트림에서의 시간 지연 에러들과 같은 초기 시간 기간 동안, 상이한 채널의 수신된 에러 정정 스트림에 의해 정정 가능하지 않더라도, 콘텐츠를 제공하기 위해 상이한 채널의 수신된 인코딩된 스트림을 디코딩하며, 상이한 채널의 인코딩된 스트림은 상이한 채널의 에러 정정 스트림에 관해 시간 지연만큼 지연된다.
이제 도 2를 참조하면, 본 발명의 원리들에 따른 예시적인 송신기(100)가 도시되어 있다. 본 발명의 개념과 관련된 송신기(100)의 부분들만이 도시되어 있다. 송신기(100)는 프로세서-기반의 시스템이고, 하나 이상의 프로세서와 도 2에서 점선으로 된 박스의 형태로 도시된 프로세서(140)와 메모리(145)로 표현된 연관된 메모리를 포함한다. 이 상황에서, 컴퓨터 프로그램들, 즉 소프트웨어가 프로세서(140)에 의한 실행을 위해 메모리(145)에 저장되고, 예컨대 FEC 인코더(105)를 구현한다. 프로세서(140)는 하나 이상의 저장된 프로그램 제어 프로세서를 나타내고, 이들 프로세서들은 송신기 기능에만 전용되는 것이 아니고, 예컨대 프로세서(140)는 송신기(100)의 다른 기능도 제어할 수 있다. 메모리(145)는 예컨대 RAM(random-access memory), ROM(read-only memory) 등과 같은 임의의 저장 디바이스를 나타내고, 송신기 내부 및/또는 외부에 있을 수 있으며, 필요에 따라 휘발성 및/또는 비휘발성이다.
도 2에 도시된 요소들은 FEC 인코더(105), 지연 버퍼(110), 다중화기(mux)(115), 변조기(120), 업컨버터(125), 및 안테나(130)를 포함한다. 패킷 형태로 인코딩된 콘텐츠(예컨대, MPEG-2 인코딩된 비디오 및 오디오)를 운반하는 풀 스트림(101)이 FEC 인코더(105)와 지연 버퍼(110)에 적용된다. 지연 버퍼(110)는 풀 스트림(11)을 제공하기 위해, 시간 지연(
Figure pct00015
)만큼 풀 스트림(101)을 지연시킨다. FEC 인코더(105)는 예시적으로 모든 심벌을 반복하는 단순 속도(simple rate)가 1/2인 FEC 반복 코드이다. 일반적인 형태로, FEC 인코더는 k개의 심벌을 수신하고, N개의 심벌의 블록을 제공하며, 여기서 심벌들 중 N-k개가 여분의 심벌이다. FEC 코드는 N개의 심벌 중 임의의 k가 수신된다면, 본래의 k개의 심벌을 재구성하는 것이 가능하다는 성질을 가진다. FEC 인코더(105)는 풀 스트림(101)을 수신하고, FEC 스트림(12)을 제공한다.
풀 스트림(11)과 FEC 스트림(12) 모두 다중화기(115)에 적용되고, 이 다중화기(115)는 2개의 논리 채널{풀 스트림(11)과 FEC 스트림(12)}을 다중화하여, 변조기(120)에 적용하기 위해 다중화된 스트림(116)을 제공한다. 다중화된 스트림(116)의 일 예가 도 3에 도시되어 있다. 도 2를 다시 참조하면, 변조기(120)는 다중화된 스트림(116)을 변조하고, 그 결과 신호는 안테나(130)를 통한 모바일 DTV 신호의 송신을 위해 업-컨버터(125)를 통해 무선 주파수(RF) TV 채널로 상향 변환된다.
이제 도 4를 참조하면, 본 발명의 원리들에 따른 송신기(100)에서 사용하기 위한 예시적인 흐름 차트가 도시되어 있다. 단계(150)에서, 송신기(100)는 방송 송신을 위해 풀 스트림을 수신한다. 단계(155)에서는, 송신기(100)가 풀 스트림으로부터 FEC 스트림을 형성한다. 단계(160)에서는, 송신기(100)가 시간 지연(
Figure pct00016
)만큼 풀 스트림을 지연시킨다. 마지막으로, 단계(165)에서는 송신기(100)가 송신을 위해 스태거캐스트 스트림을 형성하고, 이 경우 스태거캐스트 스트림은 FEC 스트림과 지연된 풀 스트림을 포함한다.
일반적으로, 풀 스트림(11)을 위해 상당한 지연을 지닌 타임 인터리버(time interleaver)를 사용하지 않는 것이 바람직하다는 점이 주목되어야 한다. 하지만, 훨씬 더 나은 페이딩 성능이 요구되면, FEC 스트림(12)에 대해 타임 인터리빙이 사용될 수 있다. 이는 수신기에 의해 경험하게 된 전반적인 채널 지연에 추가되는 것은 아니다. 또한, 위의 예가 단순 속도가 1/2인 FEC 반복 코드에 관해 예시되었지만, 훨씬 더 정교한 코드가 사용될 수 있다. 예컨대, 심지어 완전히 잃어버린 베이스 데이터그램(base datagram)을 재생성하는 능력을 제공하기 위해 긴 코드가 사용될 수 있다. 이러한 간단한 예는 도 1에 도시된 위 그림으로부터 2개의 블록에 대해 동작하는 3/4 FEC 코드이다. 예컨대, 심지어 풀 스트림(11)으로부터의 블록(C,D)이 손실되더라도, 이 FEC 코드를 사용하여 FEC 블록들(c+d)이 이들 잃어버린 블록을 재생성하기 위해 사용될 수 있다. 이를 달성하기 위해, t1-t0 시간 간격(spacing)이 1개의 블록만큼 증가되어야 한다. 다시 앞에서처럼, 이는 시스템이 에러 보호 없이 동작하는 채널 변경 후의 시간의 양을 증가시키지만, 사용자가 겪은 임의의 채널 변경 지연을 증가시키지는 않는다.
이제 도 5를 참조하면, 본 발명의 원리들에 따른 디바이스(200)의 예시적인 실시예가 도시되어 있다. 디바이스(200)는 핸드-헬드(hand-held), 이동 또는 고정된 임의의 프로세서-기반의 플랫폼을 나타낸다. 예컨대, PC, 서버, 셋톱 박스, PDA(personal digital assistant), 셀룰러 전화기, 이동 디지털 텔레비전(DTV), DTV 등이다. 이 점에서, 디바이스(200)는 연관된 메모리(미도시)를 구비한 하나 이상의 프로세서를 포함한다. 디바이스(200)는 수신기(205)와 디스플레이(290)를 포함한다. 수신기(205)는 처리하기 위한 방송 신호(204)를 {예컨대 안테나(미도시)를 통해} 수신하여, 그 방송 신호(204)로부터 예컨대 비디오 콘텐츠를 디스플레이(290)에 적용하여 보이기 위한 비디오 신호(206)를 복원한다.
이제 수신기(205)를 참조하면, 본 발명의 원리에 따른 수신기(205)의 예시적인 부분이 도 6에 도시되어 있다. 본 발명의 개념과 관련된 부분들만이 도시되어 있다. 수신기(205)는 프로세서-기반의 시스템이고, 도 6에서 점선으로 된 박스의 형태로 도시된 프로세서(390)와 메모리(395)로 나타낸, 하나 이상의 프로세서와 연관된 메모리를 포함한다. 이 상황에서, 컴퓨터 프로그램, 즉 소프트웨어가 프로세서(390)에 의한 실행을 위해 메모리(395)에 저장되고, 예컨대 FEC 디코더(320)를 구현한다. 프로세서(390)는 하나 이상의 저장된 프로그램 제어 프로세서들을 나타내고, 이들은 수신기 기능에만 전용되는 것이 아니고, 예컨대 프로세서(390)는 수신기(205)의 다른 기능도 제어할 수 있다. 메모리(395)는 RAM, ROM 등과 같은 임의의 저장 디바이스를 나타내고, 수신기(205)의 내부 및/또는 외부에 있을 수 있으며, 필요에 따라 휘발성 및/또는 비휘발성이다.
수신기(205)는 복조기(305), 역다중화기(demux)(310), 지연 버퍼(315), 및 FEC 디코더(320)를 포함한다. 본 발명의 개념과 관련된 부분들만이 도시되어 있다. 위에서 언급된 바와 같이, 수신기(205)는 처리를 위해 방송 신호(204)를 {예컨대 안테나(미도시)를 통해} 수신한다. 방송 신호(204)는 수신된 신호(304)를 제공하기 위해 프론트-엔드 처리(미도시)에 의해 하향 변환된다. 수신된 신호(304)는 복조기(305)에 의해 복조되고, 이 복조기(305)는 복조된 신호(306)(심벌들의 스트림)를 역다중화기(310)에 제공한다. 역다중화기(310)는 송신기(100)의 다중화기(115)의 역 기능을 수행하고, 풀 스트림을 FEC 스트림으로부터 분리시킨다. 특히, 역다중화기(310)는 풀 스트림(11)의 수신된 버전에 대응하는 풀 스트림(311)과, FEC 스트림(12)의 수신된 버전에 대응하는 FEC 스트림(312)을 제공한다. 이 FEC 스트림(312)은 지연 버퍼(315)에 의해 시간상 지연되어 지연된 FEC 스트림(316)을 제공한다. 지연 버퍼(315)는 FEC 스트림으로 풀 스트림을 시간상 재정렬하기 위해 대응하는 시간 지연(
Figure pct00017
)을 제공한다. FEC 디코더(320)는 출력 신호(321)를 제공하기 위해 지연된 FEC 스트림(31)과 풀 스트림(311) 모두를 수신한다. 출력 신호(321)는 생략부호(ellipses)(325)로 나타낸 것처럼, 수신기(205)의 다른 회로(미도시)에 의해 처리되어, 처리된 것으로부터 예컨대 비디오 신호(206)를 복원한다.
다시 도 1로 잠깐 돌아가서, 수신기 시동(startup)시, 또는 채널을 막 선택한 후, 수신기(205)에서의 지연 버퍼(315)가
Figure pct00018
와 같은 시간 기간 동안 플러싱되는데(flushed), 즉 텅 비게 된다. 이와 같이, 채널 변경 후 이러한 초기 기간에, FEC 디코더(320)는, 블록 "A"와 블록 "B"와 같은 관심 있는 데이터에 관한 임의의 FEC 데이터를 가지지 않아, 단지 직통의 보호되지 않은 풀 스트림(311)을 출력 신호(321)로서 그것의 출력에 전달한다. 그 결과, 채널 페이드(fade)가 이러한 시간 기간(
Figure pct00019
) 동안 채널 변경 직후 일어난다면, 그 후 디코딩되고 렌더링된 비디오가 이 기간 동안 아티팩트(artifact)들을 보여줄 수 있다. 최악의 경우의 시나리오에서는, FEC 채널이 시각(tl)에서 이용 가능할 때까지, 풀 스트림이 원활하게 디코딩하기에 충분히 강력하지 못하다. 이 경우, 사용자는 스위칭 채널들에서의 지연을 감지하게 된다. 하지만, 이는 드문 경우이고 대부분의 경우 사용자는 본 발명의 원리들에 따라 어떠한 채널 지연도 겪지 않게 된다.
시간 지연(
Figure pct00020
) 후, FEC 디코더(320)는 출력 신호(321)를 제공시 FEC 스트림(316)에서 대응하는 에러 정정 데이터를 사용함으로써, 풀 스트림(311)에서 임의의 검출된 에러들을 정정하려고 시도할 수 있다.
이제 도 7을 참조하면, 본 발명의 원리들에 따른 수신기(205)에서 사용하기 위한 예시적인 흐름 차트가 도시되어 있다. 수신을 위한 채널의 파워 업(power up) 또는 선택시, 수신기(205)는 단계(405)에서 FEC를 디스에이블(disable)하고, 단계(410)에서 임의의 수신된 풀 스트림을 디코딩하기 시작한다. 단계(415)에서는, 풀 스트림을 디코딩하면서, 수신기(205)가 스태거캐스팅 시간 지연(
Figure pct00021
)이 경과한{예컨대, 타이머로부터의 인터럽트(interrupt)를 통해} 시기를 검사한다. 일단 스태거캐스팅 시간 지연(
Figure pct00022
)이 경과하면, 수신기(205)는 단계(420)에서 FEC를 인에이블하고, 그렇지 않으면, 수신기(205)가 FEC 보호를 구비한 풀 스트림을 계속해서 디코딩한다.
본 발명의 원리들에 따르면, 다수의 흥미로운 변화가 존재한다. 예컨대, 더 적은 수의 비트가 FEC 인코딩에 전용될 수 있고, FEC는 어떠한 추가 대역폭 또는 지연 요구 사항도 없는 우수한 성능을 달성하기 위해, 더 긴 블록들을 정정할 능력을 가지는 더 강력한 코드와 결합될 수 있다. 이러한 경우의 일 예는 콘볼루션(convolutional) 코드, 터보 코드, LDPC 코드과 같은 다수의 블록에 걸쳐 분포하는 에러들을 제어하는 능력을 지닌 블록 코드이다. 이러한 경우의 또 다른 예는 추가 지연을 겪지 않고 긴 인터리빙 지연으로 에러 정정 스트림을 인터리빙하는 경우이다. 이는 도 8에 예시되어 있다. 도 8에서는, FEC 스트림의 블록들의 쌍들이 인터리빙된다. 이는 블록 "d" 위에 위치하는 블록 "c"에 의해 도 8에 나타나 있다. 이러한 인터리빙의 결과로서, 이제 FEC 스트림은 "블록"의 지속 기간보다 긴 페이드(신호의 손실)를 견딜 수 있다. 이러한 공정의 논리적인 확장은 데이터를 매트릭스로 조직하고 행 데이터와 열 데이터 모두의 FEC 패리티(parity)를 생성하는 에러 정정 스트림에 관한 PRO-MPEG 스타일 코드를 사용하는 것이다. 또한 정상적으로 겪게 되는 지연은 채널들을 변경하기 위한 문제가 되지 않는데, 이는 에러 정정 스트림이 그 신호 전에 방송되기 때문이다.
게다가, SVC(scalable video coding)가 풀 스트림을 인코딩하기 위해 사용될 수 있다. SVC에서는 통상적으로 SVC 기초 층과 적어도 하나의 SVC 강화 층이 존재한다. SVC 기초 층은 표준 정의와 같은 비디오 해상도의 기본 레벨을 제공하는데 반해, 임의의 SVC 강화 층들은 비디오 해상도를, 예컨대 높은 선명도를 증가시킨다. 본 발명의 상황에서는, SVC 강화된 층이 임의의 스태거캐스팅 보호 없이 방송될 수 있고, FEC 데이터와 같은 에러 정정 데이터의 스태거캐스팅은 SVC 기초 층에만 제공될 수 있다. 이는 비트 속도에 있어서의 불필요한 증가 없이 매우 높은 신뢰도로 이용 가능하게 되는 대체(fallback) 비디오 신호를 제공한다.
이는 도 9의 송신기(600)에서 본 발명의 원리들에 따라 추가로 예시되어 있다. 본 발명의 개념과 관련된 송신기(600)의 부분만이 도시되어 있다. 송신기(600)는 프로세서-기반의 시스템이고, 도 9에서 점선으로 된 박스의 형태로 도시된 프로세서(640)와 메모리(645)로 나타낸 하나 이상의 프로세서와 연관된 메모리를 포함한다. 이 상황에서, 컴퓨터 프로그램, 즉 소프트웨어가 프로세서(640)에 의한 실행을 위해 메모리(645)에 저장되고, 예컨대 FEC 인코더(615)를 구현한다. 프로세서(640)는 하나 이상의 저장된 프로그램 제어 프로세서를 나타내고, 이들은 수신기 기능에만 전용되는 것이 아니고, 예컨대 프로세서(640)는 송신기(600)의 다른 기능도 제어할 수 있다. 메모리(645)는 RAM, ROM 등과 같은 임의의 저장 디바이스를 나타내고, 송신기의 내부 및/또는 외부에 있을 수 있으며, 필요에 따라 휘발성 및/또는 비휘발성이다.
도 9에 도시된 요소들은, SVC 인코더(606), FEC 인코더(615), 지연 버퍼(610), 다중화기(mux)(620), 변조기(120), 업 컨버터(125), 및 안테나(130)를 포함한다. 인코딩된 비디오 전에 콘텐츠의 풀 스트림(601)이 SVC 인코더(605)에 적용된다. SVC 인코더(605)는 기초 층 스트림(603)과 적어도 하나의 강화 층 스트림(604)을 제공하였다. 관찰되듯이, 오직 기초 층 스트림(603)만이 FEC 인코더(615)에 적용된다. 기초 층 스트림(603)과 강화 층 스트림(604)이 시간 지연(
Figure pct00023
)만큼 SVC-인코딩된 신호의 모든 성분(즉, 기초 층과 강화 층)을 지연시키는 지연 버퍼(610)에 적용된다. 지연된 SVC 신호들은 점선으로 된 원(11){사실상 풀 스트림(11)을 나타내는}으로 나타낸 것처럼 다중화기(620)에 적용된다. FEC 인코더(615)는 예시적으로 모든 심벌을 반복하는 단순 속도가 1/2인 FEC 반복 코드이지만, 본 발명의 개념이 이에 국한되는 것은 아니다. 다중화기(620)는 모든 논리적인 채널{풀 스트림(11)과 FEC 스트림(12)}을 다중화하여, 변조기(120)에 적용하기 위한 다중화된 스트림(621)을 제공한다. 변조기(120)는 다중화된 스트림(621)을 변조하고, 그 결과 신호는 안테나(130)를 통해 모바일 DTV 신호의 송신을 위해 업-컨버터(125)를 통해 무선 주파수(RF) TV 채널로 상향 변환된다. 도 4에 도시된 방법은 간단한 방식으로 수정될 수 있어, 단계(155)가 SVC 인코딩된 신호의 기초 층에서만 FEC 스트림을 생성한다.
이제 수신기(205)를 참조하면, SVC에서 사용하기 위한 본 발명의 원리들에 따른 수신기(205)의 예시적인 부분이 도 10에 도시되어 있다. 본 발명의 개념과 관련된 부분만이 도시되어 있다. 수신기(205)는 프로세서-기반의 시스템이고, 도 10에서 점선으로 된 박스의 형태로 도시된 프로세서(790)와 메모리(795)로 나타낸 하나 이상의 프로세서와 연관된 메모리를 포함한다. 이 상황에서, 컴퓨터 프로그램, 즉 소프트웨어가 프로세서(790)에 의한 실행을 위해 메모리(795)에 저장되고, 예컨대 FEC 디코더(720)를 구현한다. 프로세서(790)는 하나 이상의 저장된 프로그램 제어 프로세서를 나타내고, 이들은 수신기 기능에만 전용되는 것이 아니고, 예컨대 프로세서(790)는 수신기(205)의 다른 기능도 제어할 수 있다. 메모리(795)는 RAM, ROM 등과 같은 임의의 저장 디바이스를 나타내고, 수신기(205)의 내부 및/또는 외부에 있을 수 있으며, 필요에 따라 휘발성 및/또는 비휘발성이다.
수신기(205)는 복조기(305), 역다중화기(demux)(710), 지연 버퍼(315), 및 FEC 디코더(720)를 포함한다. 본 발명의 개념에 관련된 부분만이 도시되어 있다. 위에서 언급한 것처럼, 수신기(205)는 처리를 위한 방송 신호(204)를 {예컨대, 안테나(미도시)를 통해} 수신한다. 방송 신호(204)는 수신된 신호(304)를 제공하기 위해, 프론트-엔드 처리(미도시)에 의해 하향 변환된다. 수신된 신호(304)는 복조된 신호(306)(심벌들의 스트림)를 역다중화기(710)에 제공하는 복조기(305)에 의해 복조된다. 역다중화기(710)는 송신기(600)의 다중화기(620)의 역 기능을 수행하고, FEC 스트림으로부터 풀 스트림을 분리시킨다. 특히, 역다중화기(710)는 수신된 기초 층 스트림(711)과, 풀 스트림(11)의 수신된 버전에 대응하는 강화 층 스트림(712)에 의해 나타난 바와 같이 풀 스트림을 제공하고, 또한 FEC 스트림(12)의 수신된 버전에 대응하는 FEC 스트림(312)을 제공한다. FEC 스트림(312)은 지연 버퍼(315)에 의해 시간상 지연되어 지연된 FEC 스트림(316)을 제공한다. 지연 버퍼(315)는 풀 스트림을 FEC 스트림으로 시간상 재정렬하기 위해, 대응하는 시간 지연(
Figure pct00024
)을 제공한다. FEC 디코더(720)는 출력 신호(721)를 제공하기 위해 지연된 FEC 스트림(31)과 기초 층 스트림(711)을 모두 수신한다. 이제 출력 신호(721)과 강화 층 스트림(712)에 의해 나타난 기초 층은 생략부호(725)로 나타낸 것처럼, 수신기(205)의 다른 회로(미도시)에 의해 처리되어, 처리된 것으로부터 예컨대 비디오 신호(206)를 복원한다.
수신기 시동시, 또는 채널을 막 선택한 후, 수신기(205)에서의 지연 버퍼(315)가
Figure pct00025
와 같은 시간 기간 동안 플러싱되는데, 즉 텅 비게 된다. 이와 같이, 채널 변경 후 이러한 초기 기간에, FEC 디코더(720)는, 기초 층 스트림을 보호하기 위한 임의의 FEC 데이터를 가지지 않아, 단지 직통의 보호되지 않는 기초 층 스트림(711)을 출력 신호(721)로서 그것의 출력에 전달한다. 시간 지연(
Figure pct00026
) 후, FEC 디코더(720)는 출력 신호(321)를 제공시 FEC 스트림(316)에서 대응하는 에러 정정 데이터를 사용하여, 기초 층 스트림(711)에서 임의의 검출된 에러들을 정정하려고 시도할 수 있다. 도 7에 도시된 방법은 SVC 인코딩된 신호를 수신하기 위한 도 10의 수신기(205)에서 사용하기 위해 동등하게 적용 가능하다.
본 발명의 개념은 인코딩된 스트림으로서 오디오의 전송에 동등하게 적용된다는 점이 또한 주목되어야 한다. 이와 같이, 본 발명의 원리들에 따라 위에서 설명된 장치 및 방법들은, 또한 빠른 채널 변경을 구현하기 위해 크기 조정 가능하지 않은 경우와 크기 조정 가능한 경우 모두 압축된 오디오에 적용된다. 예컨대, 오디오의 관점에서, 이제 도 10의 디바이스(205)는 크기 조정 가능한 코딩된 오디오 신호를 수신하고, 신호(711)는 이제 수신된 크기 조정 가능한 코딩된 오디오 신호의 기초 층 스트림이며, 신호(712)는 수신된 크기 조정 가능한 코딩된 오디오 신호의 강화 층이다. 크기 조정 가능한 오디오 코덱의 일 예에는 MPEG4-AAC 크기 조정 가능한 코덱이 포함된다.
전술한 바와 같이, 그리고 본 발명의 원리들에 따르면, 스태거캐스팅이 임의의 채널 변경 지연을 겪지 않고 페이드(fade)들로부터 무선 송신 스트림에 대한 보호를 제공하기 위해 사용된다. 비록 본 발명의 개념이, 예컨대 도 1의 블록들인 "A","B", 및 "C"와 같은 블록들의 상황에서 설명되었지만, 본 발명은 그것에 제한되지 않고, 실제로는 데이터를 블록들로 분할하는 어떠한 요구 사항도 존재하지 않는다는 점이 주목되어야 한다. 예컨대, 여분의 FEC 스트림과 콘볼루션 코드는 블록들을 요구하지 않는다. 또한, 스태거캐스트 스트림(
Figure pct00027
)의 시간 오프셋은 선택 가능한 파라미터이다. 일반적으로, 이러한 오프셋은 정규 스트림과 스태거캐스트 스트림 사이의 채널의 신호 품질을 상관 해제시키기에 충분히 커야 한다. 다시 말해, "a"가 수신될 수 없는 확률은 "A"가 수신될 수 없는 확률에 가깝게 상관되어서는 안 된다. 이것이 시간 다이버시티의 개념이다. 비록 실제로는 수 초 정도의 오프셋이 충분할지라도, 일반적으로
Figure pct00028
의 값이 커질수록, 더 큰 상관 해제(decorrelation)가 얻어진다. 이 상황에서, 에러 정정 스트림과 풀 스트림 사이에서 아주 큰 시간 오프셋 값들을 선택시 일부 결점이 존재한다. 첫 번째로, 채널 변경 후 보호되지 않은 비디오의 더 긴 기간이 존재한다(보호되지 않는다는 의미는 송신 에러들을 정정하기 위해 이용 가능한 FEC 데이터가 존재하지 않는다는 것이다). 일반적으로, 이러한 보호되지 않는 비디오의 시간 길이는 스태거캐스트 오프셋(
Figure pct00029
)과 같다. 그리고, 두 번째로 더 큰 메모리 요구 사항으로, 예컨대 더 큰 지연 버퍼와 아마도 수신기에 대한 처리 요구 사항이 존재한다.
위의 내용에 비추어, 상술한 것은 단지 본 발명의 원리들을 예시하고, 따라서 본 명세서에 명백히 설명되지 않았지만, 당업자라면 본 발명의 원리들을 구현하고 본 발명의 취지와 범주 내에 있는 다수의 대안적인 장치들을 안출할 수 있음을 알게 된다. 예컨대, 비록 분리된 기능 요소들이 상황에서 예시되었지만, 이들 기능 요소는 하나 이상의 집적 회로(IC)에서 구현될 수 있다. 유사하게, 비록 분리된 요소로서 도시되었지만, 임의의 또는 모든 요소는, 예컨대 도 7 등에서 도시된 하나 이상의 단계에 대응하는 연관된 소프트웨어를 실행하는 디지털 신호 프로세서와 같은 저장된 프로그램 제어된 프로세서에서 구현될 수 있다. 더 나아가, 비록 도면 중 일부가 요소들이 함께 묶여질 수 있음을 암시할 수 있지만, 본 발명의 개념은 그것에 제한되지 않는데, 예컨대 도 5의 디바이스(200)의 요소들은 그것들의 임의의 조합으로 상이한 유닛들에 분배될 수 있다. 예컨대, 도 5의 수신기(205)는 디바이스, 또는 그 디바이스와 물리적으로 분리되는 셋톱 박스와 같은 박스, 또는 디스플레이(290)를 통합하는 박스 등의 부분일 수 있다. 또한, 비록 지상파 방송(예컨대, ATSC-DTV)의 상황에서 설명되지만, 본 발명의 원리들은 위성, Wi-Fi, 셀룰러 등과 같은 다른 타입의 통신 시스템에 적용 가능하다는 점이 주목되어야 한다. 실제로, 비록 본 발명의 개념이 이동 수신기의 상황에서 예시되었지만, 본 발명의 개념은 정지 수신기에도 적용 가능하다. 그러므로, 예시적인 실시예들에 다수의 수정이 이루어질 수 있고, 첨부된 청구항에 의해 한정된 바와 같은 본 발명의 취지와 범주로부터 벗어나지 않으면서 다른 장치가 안출될 수 있음이 이해되어야 한다.
1: 스태거캐스트 방송 스트림 11: 풀 매체 스트림
12: FEC 스트림(12) 100: 송신기
105: FEC 인코더 110: 지연 버퍼
115: 다중화기(mux) 120: 변조기
125: 업컨버터 130: 안테나
140: 프로세서 145: 메모리

Claims (20)

  1. 방법으로서,
    적어도 하나의 인코딩된 스트림과 에러 정정 스트림을 포함하는 채널을 수신하는 단계로서, 상기 인코딩된 스트림은 상기 에러 정정 스트림에 관해 스태거링되는, 채널을 수신하는 단계,
    콘텐츠를 제공하기 위해 수신된 인코딩된 스트림을 디코딩하는 단계로서, 수신된 인코딩된 스트림에서 에러들을 검출할 때 수신된 에러 정정 스트림을 사용하여 수신된 인코딩된 스트림을 정정하는 단계를 포함하는, 디코딩하는 단계, 및
    상이한 채널이 선택될 때, 상이한 채널의 수신된 인코딩된 스트림에서의 시간 지연 에러와 동일한 초기 시간 기간 동안, 상기 상이한 채널의 수신된 에러 정정 스트림에 의해 정정 가능하지 않더라도, 콘텐츠를 제공하기 위해 상이한 채널의 수신된 인코딩된 스트림을 디코딩하는 단계를
    포함하고,
    상기 상이한 채널의 인코딩된 스트림은 상이한 채널의 에러 정정 스트림에 관해 시간 지연만큼 지연되는, 방법.
  2. 제 1항에 있어서,
    상기 시간 지연은 가변적인, 방법.
  3. 제 1항에 있어서,
    상기 에러 정정 스트림은 순방향 에러 정정 코드인, 방법.
  4. 제 1항에 있어서,
    상기 인코딩된 신호는 기본 층과 적어도 하나의 강화 층을 가지는 크기 조정 가능한 비디오 코드 인코딩된 신호이고, 상기 에러 정정 스트림은 인코딩된 신호의 기본 층만을 보호하는, 방법.
  5. 제 1항에 있어서,
    상기 인코딩된 신호는 기본 층과 적어도 하나의 강화 층을 가지는 크기 조정 가능한 오디오 코드 인코딩된 신호이고, 상기 에러 정정 스트림은 인코딩된 신호의 기본 층만을 보호하는, 방법.
  6. 방법으로서,
    콘텐츠를 운반하기 위해 인코딩된 스트림을 수신하는 단계,
    에러들로부터 인코딩된 스트림을 보호하기 위해, 인코딩된 스트림으로부터 에러 정정 스트림을 생성하는 단계,
    인코딩된 스트림을 수신하는 단계를 시간 지연만큼 지연시키는 단계,
    수신기로의 송신을 위해 스태거캐스트(StaggerCast) 스트림을 형성하는 단계로서, 상기 스태거캐스트 스트림은, 에러 정정 스트림으로부터의 데이터가 채널들을 변경할 때 사용하기 위해 이용 가능하지 않더라도, 지연된 인코딩된 스트림을 디코딩함으로써 빠른 채널 변경을 수행하기 위해, 상기 수신기에서 사용하기 위한 지연된 인코딩된 스트림과 에러 정정 스트림을 포함하는, 스태거캐스트 스트림을 형성하는 단계를
    포함하는, 방법.
  7. 제 6항에 있어서,
    상기 에러 정정 스트림은 순방향 에러 정정 코드인, 방법.
  8. 제 6항에 있어서,
    상기 시간 지연은 가변적인, 방법.
  9. 제 6항에 있어서,
    인코딩된 스트림은 기본 층과 적어도 하나의 강화 층을 가지는 크기 조정 가능한 비디오 코드 인코딩된 신호이고, 상기 생성하는 단계는 상기 에러 정정 스트림이 인코딩된 신호의 기본 층만을 보호하도록 에러 정정 스트림을 생성하는, 방법.
  10. 제 6항에 있어서,
    인코딩된 스트림은 기본 층과 적어도 하나의 강화 층을 가지는 크기 조정 가능한 오디오 코드 인코딩된 신호이고, 상기 생성하는 단계는 상기 에러 정정 스트림이 인코딩된 신호의 기본 층만을 보호하도록 에러 정정 스트림을 생성하는, 방법.
  11. 장치로서,
    스태거캐스팅 시간 지연을 가지는 스태거캐스트 신호를 나타내는 복조된 신호를 제공하기 위한 복조기,
    복조된 신호로부터, 에러 정정 스트림과, 스태거캐스팅 시간 지연만큼 상기 에러 정정 스트림에 관해 지연되는 인코딩된 스트림을 형성하기 위한 역다중화기, 및
    에러 정정 스트림으로부터 획득된 데이터를 사용하여 인코딩된 스트림에서 에러들을 정정하기 위한 에러 정정 디코더로서, 채널 변경시, 스태거캐스팅 시간 지연과 동일한 시간 기간 동안 에러들에 관해 정정하지 않는, 에러 정정 디코더를
    포함하는, 장치.
  12. 제 11항에 있어서,
    상기 에러 정정 디코더는 순방향 에러 정정 디코더인, 장치.
  13. 제 11항에 있어서,
    지연된 에러 정정 스트림을 에러 정정 디코더에 제공하기 위해, 에러 정정 스트림을 스태거캐스팅 시간 지연과 동일한 시간 지연만큼, 지연시키기 위한 지연 버퍼를 더 포함하는, 장치.
  14. 제 11항에 있어서,
    인코딩된 스트림은, 기본 층과 적어도 하나의 강화 층을 가지는 크기 조정 가능한 비디오 코드 인코딩된 신호를 나타내고, 상기 에러 정정 디코더는 인코딩된 스트림의 기본 층만을 보호하는, 장치.
  15. 제 11항에 있어서,
    인코딩된 스트림은, 기본 층과 적어도 하나의 강화 층을 가지는 크기 조정 가능한 오디오 코드 인코딩된 신호를 나타내고, 상기 에러 정정 디코더는 인코딩된 스트림의 기본 층만을 보호하는, 장치.
  16. 장치로서,
    콘텐츠를 운반하는 인코딩된 스트림을 지연하기 위한 지연 버퍼,
    인코딩된 스트림을 에러들로부터 보호하기 위해 인코딩된 스트림으로부터 에러 정정 스트림을 생성하기 위한 에러 정정 인코더,
    수신기로의 송신을 위해 스태거캐스트 스트림을 형성하기 위해 지연된 인코딩된 스트림과 에러 정정 스트림을 다중화하기 위한 다중화기를
    포함하고,
    상기 스태거캐스트 스트림은, 에러 정정 스트림으로부터의 데이터가 채널들을 변경할 때 사용하기 위해 이용 가능하지 않더라도, 지연된 인코딩된 스트림을 디코딩함으로써 빠른 채널 변경을 수행하기 위해, 상기 수신기에서 사용하기 위한 지연된 인코딩된 스트림과 에러 정정 스트림을 포함하는, 장치.
  17. 제 16항에 있어서,
    상기 에러 정정 스트림은 순방향 에러 정정 코드인, 장치.
  18. 제 16항에 있어서,
    상기 지연 버퍼는 가변 시간 지연을 구현하는, 장치.
  19. 제 16항에 있어서,
    상기 인코딩된 스트림은 기본 층과 적어도 하나의 강화 층을 가지는 크기 조정 가능한 비디오 코드 인코딩된 신호이고, 상기 에러 정정 인코더는 상기 에러 정정 스트림이 인코딩된 신호의 기본 층만을 보호하도록 에러 정정 스트림을 생성하는, 장치.
  20. 제 16항에 있어서,
    상기 인코딩된 스트림은 기본 층과 적어도 하나의 강화 층을 가지는 크기 조정 가능한 오디오 코드 인코딩된 신호이고, 상기 에러 정정 인코더는 상기 에러 정정 스트림이 인코딩된 신호의 기본 층만을 보호하도록 에러 정정 스트림을 생성하는, 장치.
KR1020107003981A 2007-08-28 2008-08-26 채널 변경 지연이 없는 스태거캐스팅 KR20100057013A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US96643107P 2007-08-28 2007-08-28
US60/966,431 2007-08-28

Publications (1)

Publication Number Publication Date
KR20100057013A true KR20100057013A (ko) 2010-05-28

Family

ID=39952220

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107003981A KR20100057013A (ko) 2007-08-28 2008-08-26 채널 변경 지연이 없는 스태거캐스팅

Country Status (7)

Country Link
US (1) US20100150249A1 (ko)
EP (1) EP2186338A1 (ko)
JP (1) JP2010538534A (ko)
KR (1) KR20100057013A (ko)
CN (1) CN101796840A (ko)
BR (1) BRPI0815735A2 (ko)
WO (1) WO2009032106A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120004662A (ko) * 2010-07-07 2012-01-13 에스케이텔레콤 주식회사 오류 정정의 병렬 처리를 위한 방송 신호 부호화 및 복호화 방법, 이를 위한 방송 신호 송수신 장치 및 이를 위한 시스템

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009126253A1 (en) * 2008-04-11 2009-10-15 Thomson Licensing Staggercasting with temporal scalability
US20100161716A1 (en) * 2008-12-22 2010-06-24 General Instrument Corporation Method and apparatus for streaming multiple scalable coded video content to client devices at different encoding rates
JP5344228B2 (ja) * 2009-03-26 2013-11-20 ソニー株式会社 受信装置及び方法、プログラム、並びに受信システム
WO2011001008A1 (en) * 2009-07-03 2011-01-06 Nokia Corporation A method, apparatuses and service for media transmission
WO2011030477A1 (ja) * 2009-09-11 2011-03-17 パナソニック株式会社 コンテンツ送信装置、コンテンツ受信装置、コンテンツ送信プログラム、コンテンツ受信プログラム、コンテンツ送信方法、及びコンテンツ受信方法
US20110113301A1 (en) * 2009-11-06 2011-05-12 Limberg Allen Leroy Diversity broadcasting of gray-labeled CCC data using 8-VSB AM
US9131254B2 (en) * 2012-07-19 2015-09-08 Alcatel Lucent Cross layer coding for satellite mobile TV broadcast method and apparatus
US20150089073A1 (en) 2013-09-25 2015-03-26 Ericsson Television Inc System and method for effectuating fast channel change in an adpative streaming environment
US9444856B2 (en) 2013-09-25 2016-09-13 Ericsson Ab System and method for managing adjacent channels in an adaptive streaming environment
US9591316B2 (en) * 2014-03-27 2017-03-07 Intel IP Corporation Scalable video encoding rate adaptation based on perceived quality
EP3185455A1 (en) * 2015-12-21 2017-06-28 Thomson Licensing Method and apparatus for detecting packet loss in staggercasting
CN108429921B (zh) * 2017-02-14 2020-12-18 北京金山云网络技术有限公司 一种视频编解码方法及装置

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020129374A1 (en) * 1991-11-25 2002-09-12 Michael J. Freeman Compressed digital-data seamless video switching system
US5446759A (en) * 1992-03-12 1995-08-29 Ntp Incorporated Information transmission system and method of operation
GB9400101D0 (en) * 1994-01-05 1994-03-02 Thomson Consumer Electronics Consumer interface for a satellite television system
US5477263A (en) * 1994-05-26 1995-12-19 Bell Atlantic Network Services, Inc. Method and apparatus for video on demand with fast forward, reverse and channel pause
US5651010A (en) * 1995-03-16 1997-07-22 Bell Atlantic Network Services, Inc. Simultaneous overlapping broadcasting of digital programs
US5822324A (en) * 1995-03-16 1998-10-13 Bell Atlantic Network Services, Inc. Simulcasting digital video programs for broadcast and interactive services
US5666365A (en) * 1995-03-16 1997-09-09 Bell Atlantic Network Services, Inc. Simulcast transmission of digital programs to shared antenna receiving systems
US5592471A (en) * 1995-04-21 1997-01-07 Cd Radio Inc. Mobile radio receivers using time diversity to avoid service outages in multichannel broadcast transmission systems
DE69635095T2 (de) * 1995-05-23 2006-05-18 Koninklijke Philips Electronics N.V. Redundantes Datenübertragungssystem mit mindestens zwei Kanälen
JPH09182067A (ja) * 1995-10-27 1997-07-11 Toshiba Corp 画像符号化/復号化装置
US5570372A (en) * 1995-11-08 1996-10-29 Siemens Rolm Communications Inc. Multimedia communications with system-dependent adaptive delays
US6480541B1 (en) * 1996-11-27 2002-11-12 Realnetworks, Inc. Method and apparatus for providing scalable pre-compressed digital video with reduced quantization based artifacts
US6038257A (en) * 1997-03-12 2000-03-14 Telefonaktiebolaget L M Ericsson Motion and still video picture transmission and display
US6055277A (en) * 1997-05-29 2000-04-25 Trw Docket No. Communication system for broadcasting to mobile users
US6178317B1 (en) * 1997-10-09 2001-01-23 Ibiquity Digital Corporation System and method for mitigating intermittent interruptions in an audio radio broadcast system
US5978029A (en) * 1997-10-10 1999-11-02 International Business Machines Corporation Real-time encoding of video sequence employing two encoders and statistical analysis
JP3974712B2 (ja) * 1998-08-31 2007-09-12 富士通株式会社 ディジタル放送用送信・受信再生方法及びディジタル放送用送信・受信再生システム並びにディジタル放送用送信装置及びディジタル放送用受信再生装置
US6370666B1 (en) * 1998-12-02 2002-04-09 Agere Systems Guardian Corp. Tuning scheme for error-corrected broadcast programs
US6144440A (en) * 1999-03-17 2000-11-07 Evergreen Innovations Color and motion based depth effects
US6366888B1 (en) * 1999-03-29 2002-04-02 Lucent Technologies Inc. Technique for multi-rate coding of a signal containing information
US6711657B1 (en) * 1999-10-21 2004-03-23 Oracle Corp. Methods for managing memory in a run-time environment including registration of a deallocation routine at explicit, lazy initialization
US6771657B1 (en) * 1999-12-09 2004-08-03 General Instrument Corporation Non real-time delivery of MPEG-2 programs via an MPEG-2 transport stream
US6701528B1 (en) * 2000-01-26 2004-03-02 Hughes Electronics Corporation Virtual video on demand using multiple encrypted video segments
US6847395B2 (en) * 2000-04-17 2005-01-25 Triveni Digital Inc. Digital television signal test equipment
JP2001326875A (ja) * 2000-05-16 2001-11-22 Sony Corp 画像処理装置および画像処理方法、並びに記録媒体
US7003794B2 (en) * 2000-06-27 2006-02-21 Bamboo Mediacasting, Inc. Multicasting transmission of multimedia information
JP3731465B2 (ja) * 2000-10-13 2006-01-05 株式会社ケンウッド ディジタル放送受信機及びディジタル放送受信方法
US7058127B2 (en) * 2000-12-27 2006-06-06 International Business Machines Corporation Method and system for video transcoding
US7103669B2 (en) * 2001-02-16 2006-09-05 Hewlett-Packard Development Company, L.P. Video communication method and system employing multiple state encoding and path diversity
EP1261204A2 (en) * 2001-03-29 2002-11-27 Matsushita Electric Industrial Co., Ltd. Method and apparatus for data reproduction
US7206352B2 (en) * 2001-04-02 2007-04-17 Koninklijke Philips Electronics N.V. ATSC digital television system
US20020191116A1 (en) * 2001-04-24 2002-12-19 Damien Kessler System and data format for providing seamless stream switching in a digital video recorder
US20080030623A1 (en) * 2001-07-19 2008-02-07 Kumar Ramaswamy Robust reception of digital broadcast transmission
US20050024543A1 (en) * 2001-07-19 2005-02-03 Kumar Ramaswamy Robust reception of digital broadcast transmission
JP4141952B2 (ja) * 2001-07-19 2008-08-27 トムソン ライセンシング 信号の受信を改善する方法、システム、および受信機
US7810124B2 (en) * 2003-01-28 2010-10-05 Thomson Licensing Robust mode staggercasting fast channel change
US20060082474A1 (en) * 2003-01-28 2006-04-20 Cooper Jeffrey A Robust mode staggercasting with multiple delays for multi-resolution signals
US8027381B2 (en) * 2003-01-28 2011-09-27 Thomson Licensing Robust mode staggercasting user controlled switching modes
BRPI0406991A (pt) * 2003-01-28 2006-01-10 Thomson Licensing Difusão alternada de modo robusto
JP2005277701A (ja) * 2004-03-24 2005-10-06 Hitachi Ltd 動画データの伝送方法、伝送システム、配信装置及び受信装置
US8619860B2 (en) * 2005-05-03 2013-12-31 Qualcomm Incorporated System and method for scalable encoding and decoding of multimedia data using multiple layers
EP1809041A1 (en) * 2006-01-11 2007-07-18 Mitsubishi Electric Information Technology Centre Europe B.V. Error concealement for scalable video coding
EP1977604B1 (en) * 2006-01-11 2014-03-19 Nokia Corporation Method for a backward -compatible encapsulation of a scalable coded video signal into a sequence of aggregate data units
BRPI0621900A2 (pt) * 2006-07-25 2011-12-20 Thomson Licensing recuperação a partir de perda de pacote em rajadas em redes sem fio baseadas em protocolo internet usando transmissão escalonada e correção antecipada de erro de pacote cruzado
ITTO20060668A1 (it) * 2006-09-19 2008-03-20 Rai Radiotelevisione Italiana Spa Metodo per riprodurre una sequenza audio e/o video, dispositivo di riproduzione ed apparecchio riproduttore che lo utilizzano
EP2100461A2 (en) * 2006-12-20 2009-09-16 Thomson Research Funding Corporation Video data loss recovery using low bit rate stream in an iptv system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120004662A (ko) * 2010-07-07 2012-01-13 에스케이텔레콤 주식회사 오류 정정의 병렬 처리를 위한 방송 신호 부호화 및 복호화 방법, 이를 위한 방송 신호 송수신 장치 및 이를 위한 시스템

Also Published As

Publication number Publication date
JP2010538534A (ja) 2010-12-09
EP2186338A1 (en) 2010-05-19
CN101796840A (zh) 2010-08-04
WO2009032106A1 (en) 2009-03-12
US20100150249A1 (en) 2010-06-17
BRPI0815735A2 (pt) 2019-09-24

Similar Documents

Publication Publication Date Title
KR20100057013A (ko) 채널 변경 지연이 없는 스태거캐스팅
EP2183898B1 (en) Mobile television broadcast system
US7525993B2 (en) Robust transmission system and method for mobile television applications
US7206352B2 (en) ATSC digital television system
KR101405975B1 (ko) 디지털 방송 시스템 및 데이터 처리 방법
US20100232520A1 (en) Scalable video coding method for fast channel change and increased error relilience
US20100138877A1 (en) Apparatus and method for use in a mobile/handheld communications system
US20110029684A1 (en) Staggercasting with temporal scalability
US20220109456A1 (en) Wireless Transport Framework with Uncoded Transport Tunneling
JP2008546238A (ja) Dvb−h送信システムにおいてプライオリティ表示されたデータグラムに不等のエラー保護を与えるシステム及び方法
JP2008543142A (ja) デジタル放送における階層的な送受信のための方法および装置
US20110110418A1 (en) Scalable video coding method for fast channel change to increase coding efficiency
CA2701634A1 (en) High definition television transmission with mobile capability
EP1872504B1 (en) Method and apparatus for improving reception of fountain coded signals
US20110154164A1 (en) Transmitter and receiver for terrestrial digital multimedia broadcasting
Kang et al. Improved error control for real-time video broadcasting over CDMA2000 networks
Kondrad et al. Cross-layer optimized transmission of H. 264/SVC streams over DVB-T2 broadcast system
Vadakital et al. Method for unequal error protection in DVB-H for mobile television
US20100037278A1 (en) Apparatus and method for transmitting and receiving broadcasting information
Gómez-Barquero et al. Scalable video coding for mobile broadcasting DVB systems
Hellge et al. Intra-burst layer aware FEC for scalable video coding delivery in DVB-H
Mattoussi et al. Application of AL-FEC to HbbTV DVB-T2 systems for the provision of VoD services in portable and fixed TV reception
Kondrad et al. Cross‐Layer Optimization of DVB‐T2 System for Mobile Services
Bouazizi et al. Efficient FEC protection of scalable media streams in DVB-H
CN101938659A (zh) 移动多媒体广播系统中业务扩展方法与装置

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid