[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20080066075A - 연료전지시스템 - Google Patents

연료전지시스템 Download PDF

Info

Publication number
KR20080066075A
KR20080066075A KR1020087013460A KR20087013460A KR20080066075A KR 20080066075 A KR20080066075 A KR 20080066075A KR 1020087013460 A KR1020087013460 A KR 1020087013460A KR 20087013460 A KR20087013460 A KR 20087013460A KR 20080066075 A KR20080066075 A KR 20080066075A
Authority
KR
South Korea
Prior art keywords
fuel cell
voltage
operating point
power
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020087013460A
Other languages
English (en)
Other versions
KR100987736B1 (ko
Inventor
고타 마나베
기미히데 호리오
Original Assignee
도요다 지도샤 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요다 지도샤 가부시끼가이샤 filed Critical 도요다 지도샤 가부시끼가이샤
Publication of KR20080066075A publication Critical patent/KR20080066075A/ko
Application granted granted Critical
Publication of KR100987736B1 publication Critical patent/KR100987736B1/ko
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0053Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04888Voltage of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

고전압으로 구동되는 보조기계가 피독된 전극 촉매가 회복되어 연료전지가 워밍업 모드에 있는 경우에도 안정하게 운전될 수 있는 연료전지시스템이 개시되어 있다. 전극 촉매가 피독된 것으로 제어장치가 검출하면, 상기 제어장치는 피독된 전극 촉매의 활성을 회복시키기 위해 적절한 목표 운전동작점을 도출한다. 그러면, 통상 운전동작점에서 저효율 운전동작점으로의 시프트가 실현되어, 일정한 출력 전력을 유지하게 된다.

Description

연료전지시스템{FUEL BATTERY SYSTEM}
본 발명은 연료전지시스템에 관한 것이다.
일반적으로, 연료전지는 타 전원에 비해 기동성이 좋지 않다. 이러한 연료전지의 발전 효율은 온도의 저하 및 전극 촉매의 피독(poisoning)에 기인하여 감소하고, 미리 결정된 전압/전류가 공급될 수 없는 경우에는 장치(모터 등)를 기동시킬 수 없게 된다.
이러한 사정을 감안하여, 전극들로 공급될 애노드연료(예컨대, 연료가스) 및 캐소드연료(예컨대, 산화가스) 중 하나 이상이 결핍상태로 되고, 상기 전극들의 일부의 과전압이 증가되어 연료전지의 온도를 상승시킴으로써, 피독된 전극 촉매가 회복되고, 연료전지가 워밍업되는 방법이 제안된다(예컨대, 후술하는 특허문헌 1 참조).
[특허문헌 1] 일본특허공보 제2003-504807호
하지만, 상기 방법에 의해 피독된 전극 촉매가 회복되고, 연료전지가 워밍업되는 경우에는, 이러한 운전에 따라 연료전지의 전압이 저하되어, 고전압으로 구동될 보조기기(펌프 등의 모터)가 안정하게 운전될 수 없게 되는 문제점이 있다.
상술된 사정을 감안하여 본 발명이 개발되었으며, 본 발명의 목적은 피독된 전극 촉매가 회복되어 연료전지가 워밍업되는 경우에도, 고전압으로 구동될 보조기기를 안정하게 운전시킬 수 있는 연료전지시스템을 제공하는 것이다.
상술된 문제점을 해결하기 위하여, 본 발명에 따른 연료전지시스템은, 연료전지; 상기 연료전지의 전력으로 인해 동작하는 부하; 상기 연료전지와 상기 부하 사이에 제공되어, 상기 연료전지의 출력을 전압으로 변환시켜 상기 전압을 상기 부하에 공급하게 되는 제1전압변환장치; 미리 결정된 조건들이 충족되는 경우에 통상 운전동작점보다 전력 손실이 큰 저효율 운전동작점에서 상기 연료전지를 운전하기 위한 운전제어수단; 및 상기 연료전지의 운전동작점과 상기 부하의 구동전압을 토대로, 상기 제1전압변환장치의 전압변환동작을 제어하기 위한 전압변환제어수단을 포함하여 이루어지는 것을 특징으로 한다.
이러한 구성에 따르면, 피독된 전극 촉매를 회복시키고 연료전지를 워밍업하기 위하여 상기 연료전지가 저효율 운전동작점에서 운전되는 경우에도, 전압변환장치의 전압변환동작이 연료전지의 운전동작점 및 부하의 구동 전압을 토대로 제어된다. 그러므로, 상기 부하는 연료전지의 운전동작점에 관계없이 상시 안정하게 운전될 수 있다.
여기서, 상기 구성에서는, 제1전압변환장치가 연료전지의 단자 전압을 높이기 위한 승압컨버터이고, 전압변환제어수단은 승압컨버터가 운전동작점에 대응하는 상기 연료전지의 단자 전압을 적어도 상기 부하의 구동 전압까지 상승시키도록 하는 구성이 바람직하다.
더욱이, 연료전지의 워밍업 운전이 필요하거나 또는 상기 연료전지의 촉매 활성을 회복시키는 운전이 필요한 경우, 상기 연료전지는 저효율 운전동작점에서 운전되는 구성이 바람직하다.
나아가, 상기 연료전지가 통상 운전동작점에서 운전되는 동안, 상기 연료전지의 출력 전류를 상기 부하로 공급하도록 상기 승압컨버터를 바이패싱시키는 바이패스수단을 더 포함하여 이루어지는 구성이 바람직하다. 여기서, 바이패스수단은 애노드가 상기 승압컨버터의 입력측에 연결되고 캐소드는 상기 승압컨버터의 출력측에 연결되는 다이오드일 수도 있다.
더욱이, 상기 구성에서는, 충방전가능한 축전장치; 및 상기 축전장치와 상기 부하간에 전압을 변환하는 제2전압변환장치를 더 포함하여 이루어지는 구성이 바람직하다. 여기서, 상기 제2전압변환장치는 상기 축전장치의 방전 전압을 승압시키는 승압컨버터 또는 상기 방전 전압을 승압 또는 강압시키는 컨버터인 것이 바람직하다.
상술된 바와 같이, 본 발명에 따르면, 피독된 전극 촉매가 회복되어 연료전지가 워밍업되는 경우에도, 고전압으로 구동될 보조기기가 안정하게 운전될 수 있게 된다.
도 1은 제1실시예에 따른 연료전지시스템의 주요부의 구성을 도시한 도면;
도 2a는 본 실시예에 따른 출력 전력과 전력 손실간의 관계를 도시한 도면;
도 2b는 본 실시예에 따른 출력 전력과 전력 손실간의 관계를 도시한 도면;
도 3은 본 실시예에 따른 출력 전력의 변화를 도시한 도면;
도 4는 본 실시예에 따른 운전동작점의 시프트 처리를 도시한 흐름도;
도 5a는 본 실시예에 따른 출력 전력의 변화를 도시한 도면;
도 5b는 본 실시예에 따른 출력 전력의 변화를 도시한 도면;
도 6은 제2실시예에 따른 연료전지시스템의 주요부의 구성을 도시한 도면;
도 7은 제3실시예에 따른 연료전지시스템의 주요부의 구성을 도시한 도면;
도 8은 제4실시예에 따른 연료전지시스템의 주요부의 구성을 도시한 도면;
도 9는 제5실시예에 따른 연료전지시스템의 주요부의 구성을 도시한 도면;
도 10은 본 실시예에 따른 시스템의 시동 시 FC 출력 전압의 변화를 도시한 도면;
도 11은 본 실시예에 따른 시스템의 시동 시 FC 출력 전압의 변화를 도시한 도면; 및
도 12는 본 실시예에 따른 시스템의 시동 시 에어컴프레서의 회전수를 도시한 도면이다.
이하, 본 발명에 따른 실시예들을 도면들을 참조하여 설명하기로 한다.
A. 제1실시예
도 1은 제1실시예에 따른 연료전지시스템(100)의 주요부의 구성을 도시한 도면이다. 상기 연료전지시스템(100)은 연료전지(40)가 전원으로 탑재된 차량시스템이고, 승압컨버터(50)가 상기 연료전지(40)의 출력단과 부하 사이에 연결되는 것을 특징으로 한다. 본 실시예에 있어서, 연료전지시스템은 연료전지하이브리드자동차(FCHV)에 탑재될 것으로 가정하지만, 상기 시스템은 전기자동차와 하이브리드자동차와 같은 차량 뿐만 아니라 각종 이동체(예컨대, 선박, 비행기, 로봇 등)와 정치형(stationary) 전원에도 적용가능하다.
산화가스공급원(20)은 예컨대 에어컴프레서, 상기 에어컴프레서를 구동시키는 모터, 인버터 등으로 구성되며, 상기 모터의 회전수 등이 상기 연료전지(40)로 공급될 산화가스의 양을 조정하도록 조정된다.
연료가스공급원(30)은 예컨대 수소탱크, 각종 밸브 등으로 구성되며, 상기 연료전지(40)로 공급될 연료가스의 양을 제어하도록 밸브개방도, ON/OFF 시간 등이 조정된다.
상기 연료전지(40)는 공급될 반응가스(연료가스 및 산화가스)로부터의 발전을 위한 수단으로서, 고체고분자형, 인산형 또는 용융탄산염형과 같은 여하한의 종류의 연료전지가 사용될 수 있다. 상기 연료전지(40)는 MEA 등을 포함하는 복수의 단셀(unitary cells)이 직렬로 적층된 스택 구조를 가진다. 이러한 연료전지(40)의 단자 전압(이하, FC 전압이라고 함) 및 출력 전류(이하, FC 전류라고 함)는 전압센서(110) 및 전류센서(120)에 의해 각각 검출된다. 수소가스와 같은 연료가스는 연료가스공급원(30)으로부터 연료전지(40)의 연료극(애노드)으로 공급되는 반면, 공기와 같은 산화가스는 산화가스공급원(20)으로부터 산소극(캐소드)로 공급된다. 이러한 연료전지(40)의 FC 전압은 연결릴레이(R1, R2)를 통해 승압컨버터(50)로 공급된다. 상기 연결릴레이(R1, R2)는 제어장치(40)로부터 공급될 스위치 신호를 토대 로 턴 ON/OFF 하도록 제어된다.
상기 승압컨버터(제1전압변환장치)(50)는 연료전지(40)로부터 공급되는 FC 전압을 제어장치(10)의 제어 하에 시스템요구전압(부하의 구동 전압)까지 승압시켜, 상기 전압을 인버터(60, 80)로 공급하게 된다. 하기 설명에서는, 승압 전 승압컨버터(50) 안으로 입력되는 전압을 입력 전압(Vin)이라고 하고, 승압컨버터(50)로부터 출력되는 승압된 전압을 출력 전압(Vout)이라고 한다는 점에 유의한다.
이러한 승압컨버터(50)는 리액터(L1), 정류를 위한 다이오드(D1) 및 IGBT 등을 포함하는 스위칭소자(SW1)를 포함한다. 리액터(L1)의 일 단부는 연결릴레이(R1)에 연결되고, 그 타 단부는 스위칭소자(SW1)의 콜렉터에 연결된다. 상기 스위칭소자(SW1)는 인버터(60, 80)의 파워라인과 접지라인 사이에 연결된다. 구체적으로, 상기 스위칭소자(SW1)의 콜렉터는 파워라인에 연결되고, 그 이미터는 접지라인에 연결된다. 이러한 구성에서는, 먼저 스위치(SW1)가 턴 ON 되면, 전류가 연료전지(40) → 인덕터(L1) → 스위치(SW1)로 흐른다. 이 때, 리액터(L1)는 직류로 여기되어(exited), 자기 에너지를 축적하게 된다.
후속해서, 스위치(SW1)가 턴 OFF 되면, 인덕터(L1)에 축적된 자기 에너지로 인한 유도 전압이 연료전지(40)의 FC 전압(입력 전압 Vin) 상에 중첩되어, 상기 인덕터(L1)로부터의 입력 전압(Vin)보다 높은 동작 전압(출력 전압 Vout)을 출력하게 되고, 상기 출력 전류는 다이오드(D1)를 통해 출력된다. 상기 제어장치(10)는 상기 스위치(SW1)의 ON/OFF 듀티(후술함)를 적절하게 변경시켜 원하는 출력 전압(Vout)을 얻게 된다.
각각의 인버터(60, 80)는 예컨대 펄스폭변조시스템의 PWM 인버터이고, 상기 승압컨버터(50)로부터 공급되는 직류 전력을 상기 제어장치(80)로부터 주어지는 제어지령을 토대로 3상 교류 전력으로 변환시켜, 상기 전력을 모터(70, 90)로 공급하게 된다.
보다 상세하게, 인버터(60)는 캐패시터(C1)를 통해 승압컨버터(50)로부터 공급되는 직류 전력을 3상 교류 전력으로 변환시켜, 상기 전력을 트랙션모터(traction motor; 70)로 공급하게 된다. 상기 트랙션모터(70)는 차륜(75L, 75R)을 구동시키는 모터(즉, 이동체의 동력원)이고, 이러한 모터의 회전수는 인버터(60)에 의해 제어된다. 상기 캐패시터(C1)는 승압컨버터(50)로부터 공급되는 직류 전압을 평활화하여, 상기 전압을 인버터(60)로 공급하게 된다는 점에 유의한다.
다른 한편으로, 상기 인버터(80)는 승압컨버터(50)로부터 공급되는 직류 전압을 3상 교류 전력으로 변환시켜 상기 전력을 보조기기(90)로 공급하게 된다. 상기 보조기기(90)는 차량보조기기, FC 보조기기 등으로 구성된다. 상기 차량보조기기는 차량 등의 운전 시에 사용하기 위한 각종 전력기기(조명기기, 공조기기, 유압펌프 등)이고, FC보조기기는 연료전지(40)의 운전 시에 사용하기 위한 각종 전력기기(연료가스와 산화가스를 공급하기 위한 펌프 등)라는 점에 유의한다.
상기 제어장치(운전제어수단, 전압변환제어수단)(10)는 CPU, ROM, RAM 등으로 구성되고, 시스템의 각 부들은 전압센서(110)와 전류센서(120), 상기 연료전지(40)의 온도를 검출하는 온도센서, 액셀러레이터페달의 개방 정도를 검출하는 액셀러레이터페달센서 등으로부터 입력되는 센서 신호들을 토대로 중앙에서 제어된 다.
더욱이, 상기 제어장치(10)는 하기 방법에 의하여 연료전지(40)의 전극 촉매가 피독되었는 지의 여부를 검출하고, 상기 피독된 전극 촉매의 특성을 회복시키기 위하여 상기 연료전지(40)의 운전동작점을 전환시키는 처리를 수행한다(후술함).
메모리(160)는 예컨대 연료전지(40)의 초기상태(예컨대, 제조된 전지의 선적 시)의 전지 특성을 나타내는 초기전지특성데이터가 저장된 재기록가능한 비휘발성 메모리이다. 상기 초기전지특성데이터는 초기 상태에서 연료전지(40)의 전압 및 전류밀도간의 관계를 도시한 2차원 맵으로, 전류밀도가 증가함에 따라 전압이 저하된다.
공지된 바와 같이, 연료전지(40)의 전극 촉매가 피독되면, 전지특성이 저하된다. 동일한 전압에 의하면, 피독 이후의 전류밀도는 피독 전의 전류밀도(초기전지특성데이터로 표시된 전류밀도)에 비해 감소한다. 본 실시예에서는, 전압센서(110)와 전류센서(120)에 의하여 검출되는 FC 전압과 FC 전류가 상술된 특성을 이용하여 초기전지특성데이터와 비교되어, 전극 촉매가 피독되었는 지의 여부를 검출하게 된다. 보다 구체적으로, 전압센서(110)와 전류센서(120)가 FC 전압과 FC 전류를 검출하는 경우, 제어장치(검출수단)(10)는 검출 결과를 초기전지특성데이터의 동일한 전압에서 전류밀도와 비교한다. 이러한 비교 결과로서, 하기 공식 (1), (2)가 성립되면, 전극 촉매가 피독된 것으로 판정된다. 다른 한편으로, 하기 공식 (1), (2)가 성립되지 않으면, 전극 촉매가 피독되지 않은 것으로 판정된다.
Vfc = Vs ... (1), 및
Ifc < Is + α ... (2)
여기서, Vfc ; FC 전압,
Vs ; 초기전지특성데이터의 전압,
Ifc ; FC 전류,
Is ; 초기전지특성데이터의 전류밀도, 및
α ; 소정값.
상기 설명에서는, 전극 촉매가 피독되었는 지의 여부를 초기전지특성데이터를 이용하여 검출하였지만, 전극 촉매가 피독되었는 지의 여부는 당연히 다른 방법에 의해 검출될 수도 있다는 점에 유의한다. 예를 들어, 전극 촉매가 일산화탄소에 의해 피독되면, 공지된 CO 농도센서가 제공되어, CO 농도와 측정된 전압값간의 관계가 사전에 미리 검사 및 매핑되며, 검출된 CO농도 등을 토대로 전극 촉매가 피독되었는 지의 여부를 검출하게 될 수도 있다. 이하, 연료전지(40)의 운전동작점을 도면을 참조하여 설명하기로 한다.
도 2a 및 도 2b는 연료전지가 상이한 운전동작점에서 운전될 때 전력 손실과 출력 전력간의 관계를 도시한 도면이다. 가로축은 FC 전류를 가리키고, 세로축은 FC 전압을 가리킨다. 더욱이, 도 2a 및 도 2b에 도시된 개방회로전압(OCV)은 여하한의 전류가 연료전지를 통해 순환되지 않는 상태의 전압이다.
도 2a 및 도 2b에 도시된 전류 및 전압 특성(이하, IV 특성이라고 함)을 획득할 수 있는 연료전지(40)는 통상적으로 전력 손실이 출력 전력에 대해 적은 운전동작점(Ifc1, Vfc1)에서 운전된다(도 2a 참조). 하지만, 연료전지(40)의 전극 촉매 가 피독되면, 연료전지(40)의 내부 온도가 전극 촉매의 활성을 회복시키기 위해 상승되어야 한다. 그러므로, 본 실시예에서는, 연료전지의 운전이 필요한 출력 전력을 확보하면서 전력 손실이 큰 운전동작점(Ifc2, Vfc2)으로 시프트되어, 피독된 전극 촉매의 활성을 회복시키게 된다(도 2b 참조). 여기서, 도 2a 및 도 2b에 도시된 운전동작점에서의 출력 전력(Pfc), 전력 손실(Ploss), 출력 전압(Pfc)들간의 관계 및 전력 손실(Ploss)들간의 관계는 다음과 같다.
<운전동작점(Ifc, Vfc1)에 관하여>
Ifc1*Vfc1 = Pfc1 ... (3)
Ifc1*OCV-Pfc1 = Ploss1 ... (4)
<운전동작점(Ifc2, Vfc2)에 관하여>
Ifc2*Vfc2 = Pfc2 ... (5)
Ifc2*OCV-Pfc2 = Ploss2 ... (6)
<출력 전력들간의 관계와 전력 손실들간의 관계>
Pfc1 = Pfc2 ... (7)
Ploss1 < Ploss2 ... (8)
도 3은 운전동작점이 시프트되면서 연료전지가 운전될 때의 출력 전력의 변화를 도시한 도면이다. 가로축은 FC 전류를 가리키고, 세로축은 FC 전압 및 출력 전력을 가리킨다. 도 3에는, 편의상 연료전지의 IV 특성이 직선(이하, IV선)으로 도시되어 있다는 점에 유의한다. IV선 상의 운전동작점(Ifc1, Vfc1), (Ifc2, Vfc2)은 도 2에 도시된 운전동작점(Ifc1, Vfc1), (Ifc2, Vfc2)에 대응한다.
도 3에 도시된 바와 같이, 연료전지(40)의 출력 전력 Pfc에 관해서는, FC 전압 Vfc가 감소함에 따라, 출력 전력 Pfc는 최대 출력 전력 Pfcmax가 얻어지는 최대 출력 운전동작점(Ifcmax, Vfcmax)의 좌측에 도시된 IV선 상의 운전동작점에서 증가한다. 다른 한편으로, 최대 출력 운전동작점의 우측에 도시된 IV선 상의 운전동작점에서는, FC 전압 Vfc가 감소함에 따라 출력 전력 Pfc가 감소한다.
상술된 바와 같이, FC 전압 Vfc가 감소함에 따라, 전력 손실 Ploss가 증가한다. 그러므로, 연료전지(40)가 동일한 전력을 출력하도록 운전되는 경우에도, 연료전지가 최대 출력 운전동작점의 좌측에 도시된 IV선 상의 운전동작점(예컨대, 운전동작점(Ifc2, Vfc2))에서 운전되는 경우에 비해, 연료전지가 최대 출력 운전동작점의 우측에 도시된 IV선 상의 운전동작점(예컨대, 운전동작점(Ifc1, Vfc1))에서 운전되는 경우에 전력 손실 Ploss가 크다. 그러므로, 하기 설명에서는, 출력 전력 Pfc가 FC 전압 Vfc의 감소에 따라 증가하는 IV선 상의 운전동작점이 통상 운전동작점으로 정의되고, 출력 전력 Pfc가 FC 전압 Vfc의 감소에 따라 감소하는 IV선 상의 운전동작점이 저효율 운전동작점으로 정의된다. 통상 운전동작점과 저효율 운전동작점은 다음과 같다는 점에 유의한다.
<통상 운전동작점(Ifc, Vfc)에 관하여>
Ifc ≤ Ifcmax ... (9)
Vfcmax ≤ Vfc ... (10)
<저효율 운전동작점(Ifc, Vfc)에 관하여>
Ifcmax < Ifc ... (11)
Vfc < Vfcmax ... (12)
다음으로, 제어장치(80)에 의해 실행될 운전동작점의 시프트 처리를 도 4 및 도 5를 참조하여 설명하기로 한다.
도 4는 운전동작점의 시프트 처리를 도시한 흐름도이고, 도 5는 운전동작점이 시프트될 때의 출력 전력의 변화를 도시한 도면이다. 하기 설명에서는, 피독된 전극 촉매의 활성을 회복시키기 위하여, 연료전지(40)의 운전동작점이 통상 운전동작점(Ifc1, Vfc1)에서 저효율 운전동작점(Ifc2, Vfc2)으로 시프트된다고 가정된다는 점에 유의한다(도 5a 및 도 5b 참조). 하기 설명에서는, 승압컨버터(50)로부터 출력되는 전력을 소비하는 기기들, 예컨대 상기 승압컨버터(50)에 연결된 인버터(60, 80), 트랙션모터(70), 보조기기(90) 등을 일반적으로 부하라고 할 것이다.
상기 제어장치(10)는 우선 촉매 활성을 회복시키기 위한 동작이 필요한 지의 여부를 판정한다(단계 S1). 구체적으로는, 전극 촉매가 피독되었는 지의 여부를 검출하도록 전압센서(110)와 전류센서(120)에 의해 검출된 FC 전압과 FC 전류가 초기전지특성데이터와 비교된다. 전극 촉매가 피독되지 않았으면, 촉매 활성을 회복시키기 위한 동작이 필요하지 않다고 판정한다. 다른 한편으로, 전극 촉매가 피독되면, 촉매 활성을 회복시키기 위한 동작이 필요한 것으로 판정한다.
전극 촉매가 피독되지 않으면, 제어장치(운전제어수단)(10)는 부하의 구동 전력(시스템요구전력)을 토대로 통상 운전동작점에서의 운전을 계속한다. 보다 구체적으로, 상기 제어장치(전압변환제어수단)(10)는 시스템요구전력을 파악한 다음, 메모리(160) 등에 저장된 전력-운전동작점대응맵(도시안됨)에 대하여 상기 시스템 요구전력에 대응하는 통상 운전동작점(Ifc1, Vfc1)을 결정하여, 상기 결정된 통상 운전동작점에서 운전을 행하게 된다. 여기서는, 통상 운전동작점에서의 운전 시, 승압컨버터(50)의 운전이 정지되어(스위칭소자(SW1); "OFF"), 상기 승압컨버터(50)의 입력 전압(Vin) 및 출력 전압(Vout)이 같게 된다. 예를 들어, 시스템요구전압(Vreq)이 350 V 이면, 제어장치(10)는 상기 시스템요구전압에 대응하는 통상 운전동작점의 Vfc1을 350 V 로 설정한다. 통상 운전동작점에서의 운전 시, 승압컨버터(50)의 운전이 정지되어, Vfc1 = Vin = Vout = 350 V 가 된다.
다른 한편으로, 전극 촉매가 피독되면, 제어장치(10)는 현재 시점에서의 운전동작점(여기서는, 통상 운전동작점(Ifc1, Vfc1))을 확인한 다음(단계 S2), 피독된 전극 촉매의 활성을 회복시키기 위하여 상기 연료전지(40)의 적절한 운전동작점(목표 운전동작점)을 도출한다(단계 S3). 일례를 설명하기로 한다. 예를 들어, 연료전지가 통상 운전동작점(Ifc1, Vfc1)에서 운전되어 출력 전력 Pfc1을 얻게 되면, 상기 출력 전력과 동일한 출력 전력 Pfc2(=Pfc1)를 획득할 수 있는 저효율 운전동작점(Ifc2, Vfc2)이 목표 운전동작점으로 도출된다.
피독된 전극 촉매에서는, 연료전지(40)의 셀전압이 0.6 V 이하로 제어되어, 촉매 활성을 회복시키기 위해 촉매환원반응이 일어나게 된다. 그러므로, 이러한 조건들을 충족시키는 운전동작점이 목표 운전동작점으로 도출될 수도 있다(아래 상세히 설명함).
그 후, 상기 제어장치(운전제어수단)(10)는 목표 운전동작점을 향한 운전동작점의 시프트를 개시한다(단계 S4). 여기서는, 통상 운전동작점(Ifc1, Vfc1)에서 저효율 운전동작점(Ifc2, Vfc2)으로 운전동작점을 시프트하도록 FC 전압만이 제어되는 경우에는, 도 5a에 도시된 바와 같이, 연료전지(40)의 출력 전력이 IV선(l1)의 운전동작점의 시프트에 응답하여 크게 변동한다(전력라인 pl1 참조).
보다 구체적으로는, 운전동작점을 시프트하도록 승압컨버터(50)를 이용하여 FC 전압만이 제어되는 경우에는, 시프트 처리에서, 통상적인 사용 환경 하에 수행되지 못할 수도 있는 고출력 운전(최대출력운전동작점에서의 운전 등)을 수행할 필요성이 발생하게 된다.
이러한 문제점을 해결하기 위하여, 본 실시예에서는, 도 5b에 도시된 바와 같이, 출력 전력이 일정하게 유지되도록 통상 운전동작점(Ifc1, Vfc1)에서 저효율 운전동작점(Ifc2, Vfc2)으로의 운전동작점의 시프트를 실현하기 위하여 FC 전류가 FC 전압과 함께 제어된다(파워라인 pl2 참조). 구체적으로, FC 전압은 승압컨버터(제1전압변환장치, 전압변환장치)(50)를 이용하여 Vfc1 에서 Vfc2 로 낮아지고, 상기 제어장치(조정수단, 변경수단)(10)는 산화가스공급원(20)으로부터 공급될 산화가스량을 조정하여(여기서는, 산화가스량을 감소시킴), FC 전류를 제어하게 된다.
이하, FC 전압의 제어를 상세히 설명하기로 한다. 예를 들어, 시스템요구전압(Vreq)이 350 V 이면, 제어장치(10)는 저효율 운전동작점의 Vfc2 를 30 V 로 설정한다. 그 후, 상기 제어장치(전압변환제어수단)(10)는 Vreq = Vout = 350 V 를 만족하면서, Vfc2 = Vin = 30 V 를 만족시키기 위하여 승압컨버터(50)의 동작(듀티)을 제어한다. 상기 승압컨버터(50)의 듀티는 다음과 같이 나타낼 수 있다는 점에 유의한다.
Duty = (Vout - Vin) / Vout ... (13)
상기 운전동작점이 상술된 바와 같이 시프트되면, 제어장치(10)는 운전동작점이 시프트된 이후에 목표설정시간이 경과하였는 지의 여부를 타이머(도시안됨) 등을 참조하여 판정한다(단계 S5). 여기서, 목표설정시간은 전극 촉매의 활성을 회복시키기 위해 적절한 시간(예컨대, 10 초)이고, 상기 운전은 저효율 운전동작점에서 시동되었기 때문에 시간이 경과되었으며, 사전에 미리 실험 등에 의해 획득할 수 있다. 목표설정시간이 경과되지 않은 것으로 판정 시(단계 S5; NO), 제어장치(10)는 반복해서 단계 S5를 실행한다. 다른 한편으로, 목표일정시간이 경과된 것으로 판정 시(단계 S5; YES), 제어장치(10)는 시프트된 운전동작점을 시프트 전의 운전동작점으로 복귀시켜(단계 S6), 처리를 종료시키게 된다.
상술된 바와 같이, 본 실시예의 연료전지시스템에 따르면, 피독된 전극 촉매가 회복되는 경우에도, 고전압으로 구동되는 고전압의 보조기기가 안정하게 운전될 수 있게 된다.
상술된 바와 같이, 피독된 전극 촉매에 관해서는, 연료전지(40)의 셀전압이 촉매 활성을 회복하기 위하여 0.6 V 이하로 제어되어, 운전동작점이 다음과 같이 도출될 수도 있다는 점에 유의한다.
예를 들어, 연료전지(40)가 300개의 셀이 적층되어 요구 출력 전력이 1 kW인 스택 구조를 가지는 경우, 셀전압이 0.5 V(<0.6 V)로 설정된다면, 목표운전동작점은 다음과 같다.
<목표운전동작점(Ifc, Vfc)에 관하여>
Vfc = 300*0.5 = 150 V ... (14)
Ifc = 1000/150 = 6.7 A ... (15)
여기서는, 획득한 목표운전동작점이 시프트 전의 IV선 상에 존재하지 않는 경우에도, FC 전류가 FC 전압과 함께 제어되어 IV 특성을 변화시킴으로써, 획득한 목표운전동작점이 IV선 상에 위치될 수 있게 된다.
B. 변형예
(1) 상기 실시예에 있어서, 산화가스공급원(20)으로부터 공급될 산화가스량은 FC 전류를 제어하도록 조정된다. 하지만, 연료가스공급원(30)으로부터 공급될 연료가스량은 FC 전류를 제어하도록 조정될 수도 있다.
(2) 상기 실시예에 있어서, 전극 촉매가 피독된 것으로 검출되는 경우, 연료전지(40)의 운전동작점은 통상 운전동작점에서 저효율 운전동작점으로 시프트되지만, 상기 운전동작점은 하기 시기에서 시프트될 수도 있다.
예를 들어, 연료전지는 시스템의 기동 시 저효율 운전동작점에서 한 번 운전될 수도 있고, 그 후에 상기 운전동작점이 통상 운전동작점으로 시프트되어, 촉매 활성이 일정하게 상승되는 상태로 시스템 운전을 수행하게 된다. 요구 출력 전력이 소정값 이하(예컨대, 공회전 출력 등)이면, 운전동작점이 통상 운전동작점에서 저효율 운전동작점으로 시프트될 수도 있다. 나아가, 시스템이 정지한 후, 다음 기동을 위한 준비 운전 시 저하된 촉매 활성을 회복시키기 위하여 저효율 운전동작점에서 운전이 수행될 수도 있다.
(3) 상기 실시예에 있어서, 피독된 전극 촉매의 활성을 회복시키기 위하여 연료전지(40)의 운전동작점이 통상 운전동작점에서 저효율 운전동작점으로 시프트되는 것으로 구성되지만, 본 발명은 워밍업 운전을 요구하는 여하한의 경우, 예컨대 워밍업 운전이 저온에서의 기동 시에 수행되는 경우, 워밍업 운전이 시스템 운전을 정지하기 전에 신속하게 수행되는 경우 등에도 적용가능하다.
일례를 설명하기로 한다. 운전 스위치 등으로부터 시스템의 기동 지령을 수신할 때, 제어장치(10)는 온도센서(도시안됨)를 이용하여 연료전지(40)의 내부 온도를 검출한다. 상기 제어장치(운전제어수단)(10)는 연료전지(40)의 내부 온도가 미리 설정된 임계 온도보다 낮은 경우에 워밍업 운전이 필요한 것으로 판정하고, 도 4에 도시된 운전동작점의 시프트 처리가 실행된다. 후속 동작은 본 실시예의 것과 유사하므로, 그 설명은 생략하기로 한다. 온도센서 대신에, 외부공기 온도를 검출하기 위한 온도센서, 냉각기구(도시안됨)를 통해 유동하는 냉매의 온도를 검출하기 위한 온도센서 등이 사용될 수도 있다는 점에 유의한다.
B. 제2실시예
도 6은 제2실시예에 따른 연료전지시스템(100a)의 주요부의 구성을 도시한 도면이다. 도 1에 도시된 연료전지시스템(100)에 대응하는 구성요소들은 동일한 참조 부호들로 표시되고, 그 상세한 설명은 생략하기로 한다는 점에 유의한다.
도 6에 도시된 바와 같이, 상기 연료전지시스템(100a)에는 리액터(L1)의 직류 저항으로 인한 정상 손실(steady loss)을 상쇄시키는 다이오드(바이패스수단)(D2)가 제공된다. 다이오드(D2)에서는, 애노드가 리액터(L1)의 전단(승압컨버터의 입력측)에 연결되는 반면, 캐소드는 다이오드(D1)의 후단(승압컨버터의 출력측) 에 연결된다.
따라서, 다이오드(D2)는 다음과 같은 이유로 제공된다. 즉, 승압컨버터(50)의 운전이 통상 운전동작점에서의 운전 시에 정지되면(스위칭소자(SW1):"OFF"), FC 전류는 리액터(L1) → 다이오드(D1)를 통과하고, 상기 리액터(L1)의 직류 저항으로 인한 정상 손실이 문제를 일으킨다(도 1 참조). 이러한 리액터(L1)의 직류 저항으로 인한 정상 손실의 문제점을 해결하기 위하여, 다이오드(D2)가 제공된다(도 6 참조). 그 결과, 통상 운전동작점에서의 운전 시, FC 전류는 승압컨버터(50)를 바이패스하여, 다이오드(D2) → 부하로 흐르게 된다. 다른 한편으로, 저효율 운전동작점에서의 운전 시, FC 전류는 리액터(L1) → 다이오드(D1) → 부하를 통과하고, 상기 리액터(L1)의 직류 저항으로 인한 정상 손실이 상쇄될 수 있게 된다.
상술된 제1실시예 및 제2실시예에서는, 연료전지(40)를 포함하는 전원시스템만을 설명하였다. 하지만, 후술하는 제3실시예 및 제4실시예에서는, 연료전지(40) 및 배터리(80)를 포함하는 하이브리드전원시스템을 설명하기로 한다.
C. 제3실시예
도 7은 제3실시예에 따른 연료전지시스템(100b)의 주요부의 구성을 도시한 도면이다. 도 6에 도시된 연료전지시스템(100a)에 대응하는 구성요소들은 동일한 참조 부호들로 표시되고, 그 상세한 설명은 생략한다는 점에 유의한다.
도 7에 도시된 바와 같이, 연료전지시스템(100a) 상에는, 연료전지(40)와 승압컨버터(50)를 포함하는 전원시스템 및 배터리(130)와 승압컨버터(140)를 포함하는 전원시스템이 탑재된다.
상기 배터리(축전장치)(130)는 충방전가능한 2차전지이고, 예컨대 니켈수소전지 등으로 구성된다. 물론, 배터리(130) 대신에, 2차전지를 제외한 충방전가능한 축전기(예컨대, 캐패시터)가 제공될 수도 있다. 상기 배터리(130)는 승압컨버터(140)를 통해 부하에 연결된다. 하지만, 배터리(130)의 방전 전압(Vba)은 시스템요구전압(Vreq)보다 낮은 것으로 가정된다. 예를 들어, 시스템요구전압이 300에서 350 V 까지 변동하는 경우, 상기 배터리(130)는 방전 전압(Vba)이 300 V 이하(예컨대, 200 내지 299 V)인 배터리로 제한된다.
상기 승압컨버터(제2전압변환장치)(140)는 배터리(130)로부터 공급되는 방전 전압(Vba)을 제어장치(10)의 제어 하에 시스템요구전압(도 7에 도시된 A와 B 사이의 전압)까지 승압시켜, 상기 전압을 인버터(60, 80)로 공급하게 된다. 예를 들어, 시스템요구전압(Vreq)이 350 V 로 설정되고, 배터리(130)의 방전 전압(Vba)이 250 V 로 설정되면, 제어장치(10)는 승압컨버터(140)의 듀티를 제어하여, 상기 방전 전압(Vba)(= 250 V)이 시스템요구전압(= 350 V)까지 상승하게 된다.
이러한 승압컨버터(50)는 리액터(L2), 및 IGBT 등을 포함하는 스위칭소자(SW2, SW3)를 포함한다. 상기 리액터(L1)의 일 단부는 배터리(130)의 파워라인에 연결되고, 그 타 단부는 스위칭소자(SW2)의 이미터와 스위칭소자(SW3)의 콜렉터 사이에 연결된다.
상기 스위칭소자(SW2, SW3)는 인버터측에서 파워라인과 접지라인 사이에 직렬로 연결된다. 상기 스위칭소자(SW2)의 콜렉터는 파워라인에 연결되고, 상기 스위칭소자(SW3)의 이미터는 접지라인에 연결된다.
캐패시터(C2)는 배터리(130)로부터 공급되는 직류 전압을 평활화하여 상기 전압을 승압컨버터(140)로 공급하게 되는 반면, 캐패시터(C3)는 승압컨버터(140)로부터 공급되는 직류 전압을 평활화하여 상기 전압을 인버터(60, 80)로 공급하게 된다. 상기 승압컨버터(140)의 승압 동작은 실질적으로 제1실시예와 유사하므로, 그 설명은 생략하기로 한다는 점에 유의한다.
이러한 구성에 따르면, 고전압으로 구동되는 보조기기들이 안정하게 동작될 수 있게 된다. 또한, 상기 부하는 연료전지와 배터리를 이용하여 효율적으로 구동될 수 있다.
상술된 제3실시예에서는, 배터리(130)의 방전 전압(Vba)이 상시 시스템요구전압과 중첩하지 않는 경우, 구체적으로는 상기 배터리(130)의 방전 전압(Vba)이 상시 시스템요구전압(Vreq)보다 낮은 경우가 설명되었지만, 하기 제4실시예에서는, 배터리(130)의 방전 전압(Vba)이 시스템요구전압(Vreq)과 중첩하는 경우를 설명하기로 한다.
D. 제4실시예
도 8은 제3실시예에 따른 연료전지시스템(100c)의 주요부의 구성을 도시한 도면이다. 도 7에 도시된 연료전지시스템(100b)에 대응하는 구성요소들은 동일한 참조 부호들로 표시되며, 그 상세한 설명은 생략하기로 한다는 점에 유의한다.
도 8에 도시된 바와 같이, 상기 연료전지시스템(100c)에는 승압컨버터(140)(도 7 참조) 대신에 컨버터(제2전압변환장치)(150)가 제공된다.
상기 컨버터(150)는 제어장치(10)의 제어 하에 배터리(130)로부터 공급되는 방전 전압(Vba)을 시스템요구전압(도 8에 도시된 A와 B 사이의 전압)으로 상승 또는 저하시켜, 상기 전압을 인버터(60, 80)로 공급하게 된다. 예를 들어, 시스템요구전압(Vreq)이 350 V 로 설정되고, 배터리(130)의 방전 전압(Vba)이 300 V 로 설정되면, 상기 제어장치(10)가 컨버터(150)의 듀티를 제어하여, 상기 방전 전압(Vba)(= 300 V)이 시스템요구전압(= 350 V)까지 상승하게 된다. 다른 한편으로, 시스템요구전압(Vreq)이 250 V 로 설정되고, 배터리(130)의 방전 전압(Vba)이 300 V 로 설정되면, 상기 제어장치(10)가 컨버터(150)의 듀티를 제어하여, 상기 방전 전압(Vba)(= 300 V)이 시스템요구전압(= 250 V)으로 낮아지게 된다. 상기 컨버터(150)의 듀티는 다음과 같이 표현될 수 있다.
Duty = Vout / (Vin + Vout) ... (16)
이러한 컨버터(150)는 리액터(L3), 및 IGBT 등을 포함하는 4개의 스위칭소자(SW4 내지 SW7)를 포함하는 풀브릿지컨버터이다. 리액터(L3)의 일 단부는 스위칭소자(SW4)의 이미터와 스위칭소자(SW5)의 콜렉터 사이에 연결되고, 그 타 단부는 스위칭소자(SW6)의 이미터와 스위칭소자(SW7)의 콜렉터 사이에 연결된다.
상기 스위칭소자(SW4, SW5)는 배터리측에서 파워라인과 접지라인 사이에 직렬로 연결된다. 스위칭소자(SW4)의 콜렉터는 파워라인에 연결되고, 스위칭소자(SW5)의 이미터는 접지라인에 연결된다. 상기 스위칭소자(SW6, SW7)는 인버터측에서 파워라인과 접지라인 사이에 직렬로 연결된다. 스위칭소자(SW6)의 콜렉터는 파워라인에 연결되고, 스위칭소자(SW7)의 이미터는 접지라인에 연결된다.
이러한 구성에 따르면, 배터리의 방전 전압이 시스템요구전압과 중첩되는 경 우에도, 부하가 효율적으로 구동될 수 있다.
<변형예>
상술된 제3실시예 및 제4실시예에서는, 리액터(L1)의 직류 저항으로 인한 정상 손실을 상쇄하기 위한 다이오드(D2)가 제공되지만, 상기 리액터(L1)의 정상 손실은 고려될 필요가 없는 경우에는, 다이오드(D2)가 제공되지 않을 수도 있다.
더욱이, 상술된 실시예들에서는, IGBT가 스위칭소자로서 예시되어 있지만, 본 발명은 예컨대 MOSFET, 바이폴라 트랜지스터 등과 같이 스위칭될 수 있는 여하한의 소자에도 적용가능하다.
F. 제5실시예
도 9는 제4실시예에 따른 연료전지시스템(100d)의 주요부의 구성을 도시한 도면이다. 도 8에 도시된 연료전지시스템(100c)에 대응하는 구성요소들은 동일한 참조 부호들로 표시되며, 그 상세한 설명은 생략한다는 점에 유의한다.
산화가스공급원(20)은 에어컴프레서(700) 등으로 구성된다. 상기 에어컴프레서(700)는 제어장치(10)의 제어 하에 연료전지(40)로 공급될 산화가스량을 조정한다.
도 10 내지 도 12는 각각 시스템의 시동 시 FC 출력 전압, FC 출력 전력 및 에어컴프레서의 회전수의 변화를 도시한 도면들이다.
시스템 시동 이전에, 연료전지시스템(100d)의 제어장치(억제수단)(10)는 미리 결정된 시간 동안 연료전지(40)로 산화가스를 공급하도록 회전수(Rfc)를 제어한 다음, 상기 공급을 정지시킨다(도 12에 도시된 c1 참조).
이러한 산화가스의 공급에 따르면, FC 출력 전압(Vmfc)은 개방회로전압(OCV)(도 10에 도시된 a1 참조) 부근까지 상승하지만, 상기 시스템의 시동 시, 상기 OCV 부근까지 상승된 FC 출력 전압(Vmfc)은 저효율 운전동작 영역의 전압으로 낮아져야 한다. 이를 위한 제어를 설명하기로 한다. 상기 제어장치(제1결정수단)(10)는 우선 시스템요구전력(보조기기 등의 구동 에너지) Pre 및 배터리충전전력 Pba(도 11에 도시된 b1 참조)를 더하여, FC 출력지시전력 Pfc를 결정하게 된다(수학식 (17) 참조).
Pfc = Pre + Pba ... (17)
후속해서, 상기 제어장치(제2결정수단)(10)는 획득한 FC 출력지시전력 Pfc를 FC 출력 전압(실제 측정된 값) Vmfc로 나누어, FC 출력지시전류 Ifc를 얻게 된다(수학식 (18) 참조).
Ifc = Pfc/Vmfc ... (18)
나아가, 상기 제어장치(제3결정수단)(10)는 획득한 FC 출력지시전류 Ifc와 FC 출력전류(실제 측정된 값) Imfc간의 편차를 얻어, FC 출력전압 Vmfc의 변화량(= 앞서 측정된 출력 전압과 현재 측정된 출력 전압간의 차이)에 대하여 상기 획득한 편차를 피드백함으로써, FC 출력지시전압 Vfc가 산출될 수 있게 된다.
FC 출력전압이 저효율 운전 동작 영역의 전압으로 낮아진 것을 제어장치(10)가 확인하는 경우, 상기 제어장치는 에어컴프레서(700)에 의한 산화가스의 공급을 재시작하여, 저효율 운전동작점에서의 운전을 개시하게 된다.
상술된 바와 같이, 본 실시예에 따르면, FC 출력전압이 OCV 부근에서 저효율 운전 동작 영역의 전압까지 저하될 때, 산화가스의 공급이 정지되어, FC 출력지시전류 Ifc와 FC 출력전류(실제 측정된 값) Imfc간의 편차를 얻게 된 다음, FC 출력전압 Vmfc의 변화량에 대하여 상기 획득한 편차를 피드백시킴으로써, 저효율 운전동작점에서의 운전이 신속하게 개시될 수 있게 된다.
상기 실시예에서는, FC 출력전압이 OCV 부근에서 저효율 운전 동작 영역의 전압까지 낮아지는 경우가 기술되어 있지만, 본 발명은 FC 출력전압이 목표 전압으로 낮아지는 어떠한 경우에도 적용가능하다.

Claims (10)

  1. 연료전지시스템에 있어서,
    연료전지;
    상기 연료전지의 전력으로 인해 동작하는 부하;
    상기 연료전지와 상기 부하 사이에 제공되어, 상기 연료전지의 출력을 전압으로 변환시켜 상기 전압을 상기 부하에 공급하게 되는 제1전압변환장치;
    미리 결정된 조건들이 충족되는 경우에 통상 운전동작점보다 전력 손실이 큰 저효율 운전동작점에서 상기 연료전지를 운전하기 위한 운전제어수단; 및
    상기 연료전지의 운전동작점과 상기 부하의 구동전압을 토대로, 상기 제1전압변환장치의 전압변환동작을 제어하기 위한 전압변환제어수단을 포함하여 이루어지는 것을 특징으로 하는 연료전지시스템.
  2. 제1항에 있어서,
    상기 제1전압변환장치는 상기 연료전지의 단자 전압을 높이기 위한 승압컨버터이고,
    상기 전압변환제어수단은 상기 승압컨버터가 상기 운전동작점에 대응하는 상기 연료전지의 단자 전압을, 적어도 상기 부하의 구동 전압까지 상승시키도록 하는 것을 특징으로 하는 연료전지시스템.
  3. 제1항 또는 제2항에 있어서,
    상기 연료전지의 워밍업 운전이 필요하거나 또는 상기 연료전지의 촉매 활성을 회복시키는 운전이 필요한 경우, 상기 연료전지는 저효율 운전동작점에서 운전되는 것을 특징으로 하는 연료전지시스템.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 연료전지가 통상 운전동작점에서 운전되는 동안, 상기 연료전지의 출력 전류를 상기 부하로 공급하도록 상기 승압컨버터를 바이패싱시키는 바이패스수단을 더 포함하여 이루어지는 것을 특징으로 하는 연료전지시스템.
  5. 제4항에 있어서,
    상기 바이패스수단은, 애노드가 상기 승압컨버터의 입력측에 연결되고 캐소드는 상기 승압컨버터의 출력측에 연결되는 다이오드인 것을 특징으로 하는 연료전지시스템.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    충방전가능한 축전장치; 및
    상기 축전장치와 상기 부하간에 전압을 변환하는 제2전압변환장치를 더 포함하여 이루어지는 것을 특징으로 하는 연료전지시스템.
  7. 제6항에 있어서,
    상기 제2전압변환장치는 상기 축전장치의 방전 전압을 승압시키는 승압컨버터 또는 상기 방전 전압을 승압 또는 강압시키는 컨버터인 것을 특징으로 하는 연료전지시스템.
  8. 연료전지시스템에 있어서,
    연료가스와 산화가스를 이용하여 발전을 행하는 연료전지;
    상기 연료전지에 연결된 부하;
    상기 연료전지와 상기 부하 사이에 개재된 충방전가능한 축전장치;
    상기 연료전지와 상기 축전장치의 운전동작점들을 결정하도록 상기 연료전지의 단자 전압을 제어하는 전압변환장치;
    미리 결정된 조건들이 충족되는 경우에 통상 운전동작점보다 전력 손실이 큰 저효율 운전동작점에서 상기 연료전지를 운전하기 위한 운전제어수단; 및
    상기 전압변환장치가 상기 연료전지의 단자 전압을 조정하도록 하고, 상기 연료전지로 공급될 산화가스량을 제어하여 상기 연료전지의 출력 전류를 조정하도록 함으로써, 상기 연료전지의 운전동작점을 변경시키는 변경수단을 포함하여 이루어지는 것을 특징으로 하는 연료전지시스템.
  9. 연료전지시스템에 있어서,
    연료가스와 산화가스를 이용하여 발전을 행하는 연료전지;
    미리 결정된 조건들이 충족되는 경우에 상기 산화가스의 공급을 억제시키는 억제수단;
    상기 산화가스의 공급이 억제될 때의 상기 연료전지의 목표 전력을 결정하기 위한 제1결정수단;
    상기 목표 전력 및 상기 연료전지의 실제 측정된 전압을 토대로 목표 전류를 결정하기 위한 제2결정수단; 및
    상기 연료전지의 실제 측정된 전압의 변화량에, 상기 목표 전류와 상기 연료전지의 실제 측정된 전류간의 편차를 피드백하여, 상기 목표 전압값을 결정하기 위한 제3결정수단을 포함하여 이루어지는 것을 특징으로 하는 연료전지시스템.
  10. 제9항에 있어서,
    상기 제어수단은 상기 연료전지의 출력 전압이 개방회로전압 부근에서 저효율 운전동작점에서의 전압으로 낮아지는 경우에 산화가스의 공급을 정지시키고,
    상기 제1결정수단은 상기 산화가스의 공급이 정지될 때의 상기 연료전지의 목표 전력을 결정하는 것을 특징으로 하는 연료전지시스템.
KR1020087013460A 2005-12-07 2006-12-05 연료전지시스템 Expired - Fee Related KR100987736B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005353666 2005-12-07
JPJP-P-2005-00353666 2005-12-07
JPJP-P-2006-00306314 2006-11-13
JP2006306314A JP5071879B2 (ja) 2005-12-07 2006-11-13 燃料電池システム

Publications (2)

Publication Number Publication Date
KR20080066075A true KR20080066075A (ko) 2008-07-15
KR100987736B1 KR100987736B1 (ko) 2010-10-13

Family

ID=38122937

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087013460A Expired - Fee Related KR100987736B1 (ko) 2005-12-07 2006-12-05 연료전지시스템

Country Status (7)

Country Link
US (2) US8574777B2 (ko)
JP (1) JP5071879B2 (ko)
KR (1) KR100987736B1 (ko)
CN (1) CN101326662B (ko)
CA (2) CA2704362C (ko)
DE (2) DE112006004262B4 (ko)
WO (1) WO2007066795A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170006398A (ko) * 2015-07-08 2017-01-18 현대자동차주식회사 촉매 활성화 시동 장치 및 이를 이용한 촉매 활성화 시동 방법
US10014539B2 (en) 2015-06-25 2018-07-03 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US10714770B2 (en) 2015-06-24 2020-07-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905642B2 (ja) * 2005-12-05 2012-03-28 トヨタ自動車株式会社 燃料電池システム及び移動体
JP4821662B2 (ja) 2007-03-12 2011-11-24 トヨタ自動車株式会社 燃料電池システム
JP4936126B2 (ja) * 2007-04-16 2012-05-23 トヨタ自動車株式会社 燃料電池システム
JP4329043B2 (ja) 2007-08-28 2009-09-09 トヨタ自動車株式会社 燃料電池システム
JP2009093916A (ja) * 2007-10-09 2009-04-30 Toyota Motor Corp 燃料電池システム
KR101229337B1 (ko) 2007-12-28 2013-02-05 도요타 지도샤(주) 연료전지시스템
JP4535157B2 (ja) 2008-03-28 2010-09-01 トヨタ自動車株式会社 燃料電池システム
JP4444343B2 (ja) 2008-04-25 2010-03-31 本田技研工業株式会社 燃料電池車両
JP4888519B2 (ja) * 2009-05-25 2012-02-29 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
JP5077295B2 (ja) 2009-06-16 2012-11-21 トヨタ自動車株式会社 車両搭載用燃料電池システム
JP5531742B2 (ja) 2010-04-09 2014-06-25 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
JP5817472B2 (ja) * 2011-11-28 2015-11-18 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
TWI489686B (zh) * 2012-10-19 2015-06-21 郭振坤 不斷電燃料電池發電系統
US9337503B2 (en) * 2013-03-11 2016-05-10 GM Global Technology Operations LLC Fuel cell power control by offset estimation
JP5835376B2 (ja) * 2014-03-06 2015-12-24 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
DE102017215474A1 (de) * 2017-09-04 2019-03-07 Audi Ag Verfahren zum Betreiben eines Brennstoffzellensystems sowie entsprechend eingerichtetes Brennstoffzellensystem und Fahrzeug
DE102018205985A1 (de) * 2018-04-19 2019-10-24 Audi Ag Elektrisches Energiesystem mit Brennstoffzellen
JP7169854B2 (ja) * 2018-11-12 2022-11-11 株式会社豊田自動織機 産業車両
WO2020121499A1 (ja) 2018-12-13 2020-06-18 本田技研工業株式会社 制御装置、電力供給装置、作業機械、制御方法及びプログラム
US20210175807A1 (en) * 2019-12-05 2021-06-10 Jiangsu Horizon New Energy Technologies Co. Ltd. Partial dc/dc boost system and method
JP7302502B2 (ja) * 2020-02-25 2023-07-04 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
DE102020116891A1 (de) 2020-06-26 2021-12-30 Audi Aktiengesellschaft Leistungsmoduliert und überstöchiometrisch betriebenes Brennstoffzellensystem
JP7388391B2 (ja) * 2021-04-23 2023-11-29 トヨタ自動車株式会社 燃料電池システム及び飛行体

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308432A (ja) * 1991-04-05 1992-10-30 Nippon Telegr & Teleph Corp <Ntt> 直流電力供給システム
JP3329961B2 (ja) * 1994-11-30 2002-09-30 富士通株式会社 回路実装ユニット
JP4031555B2 (ja) * 1997-05-23 2008-01-09 トヨタ自動車株式会社 ガス供給装置
JPH10336890A (ja) * 1997-06-02 1998-12-18 Matsushita Electric Ind Co Ltd 電力供給システム
US6329089B1 (en) 1997-12-23 2001-12-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell
JPH11283648A (ja) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 燃料電池装置
JP2000036308A (ja) * 1998-07-16 2000-02-02 Toyota Motor Corp 燃料電池システム
US6127057A (en) * 1998-08-12 2000-10-03 International Fuel Cells, Llc Self-inerting fuel cell system
JP4802349B2 (ja) 1998-12-24 2011-10-26 アイシン精機株式会社 燃料電池自動車システム
JP3515460B2 (ja) 1999-12-24 2004-04-05 本田技研工業株式会社 交流モータの制御装置
JP3888074B2 (ja) * 2001-03-21 2007-02-28 スズキ株式会社 発電装置
JP2003132960A (ja) * 2001-10-24 2003-05-09 Matsushita Electric Ind Co Ltd 電力供給システムに用いる蓄電池の充電状態検出方法および蓄電池の劣化判定方法
JP2003235162A (ja) 2002-02-04 2003-08-22 Nippon Telegr & Teleph Corp <Ntt> 給電システムおよびその制御法
CA2480670C (en) 2002-03-29 2011-05-03 Estco Battery Management Inc. Fuel cell health management system
US20030224227A1 (en) 2002-05-30 2003-12-04 Ballard Power Systems Inc. Conditioning and maintenance methods for fuel cells
JP4182708B2 (ja) * 2002-08-29 2008-11-19 トヨタ自動車株式会社 電源装置と電源装置の運転方法
JP3909286B2 (ja) * 2002-12-27 2007-04-25 株式会社東芝 直接型メタノール燃料電池発電装置の運転方法および直接型メタノール燃料電池発電装置
JP2004248432A (ja) * 2003-02-14 2004-09-02 Toyota Motor Corp 駆動装置およびこれを備える自動車
US7781117B2 (en) * 2003-04-03 2010-08-24 Gm Global Technology Operations, Inc. Fuel cell stack preheating
JP4136770B2 (ja) * 2003-04-22 2008-08-20 トヨタ自動車株式会社 燃料電池システム
JP4432400B2 (ja) * 2003-07-25 2010-03-17 日産自動車株式会社 燃料電池システムの制御装置
WO2005011038A2 (en) 2003-07-25 2005-02-03 Nissan Motor Co., Ltd. Device and method for controlling fuel cell and fuel cell system
US20050069740A1 (en) 2003-09-29 2005-03-31 Kurt Ulmer Fuel cell modulation and temperature control
JP4595297B2 (ja) 2003-08-22 2010-12-08 日産自動車株式会社 燃料電池システム
US20050048335A1 (en) * 2003-08-26 2005-03-03 Fields Robert E. Apparatus and method for regulating hybrid fuel cell power system output
JP4534122B2 (ja) 2003-12-26 2010-09-01 トヨタ自動車株式会社 ハイブリッドシステム
JP4506980B2 (ja) 2004-02-03 2010-07-21 トヨタ自動車株式会社 ハイブリッド燃料電池システム及びその電圧変換制御方法
JP4523297B2 (ja) * 2004-02-10 2010-08-11 株式会社豊田中央研究所 燃料電池システム及びその発電方法
JP4523298B2 (ja) * 2004-02-10 2010-08-11 株式会社豊田中央研究所 燃料電池システム及びその発電方法
DE102005002506A1 (de) * 2005-01-19 2006-07-27 Robert Bosch Gmbh Energieversorgungssystem
JP4905847B2 (ja) 2005-11-30 2012-03-28 トヨタ自動車株式会社 燃料電池システム
JP4163222B2 (ja) * 2006-05-26 2008-10-08 本田技研工業株式会社 燃料電池車両の電源システム
JP4538427B2 (ja) 2006-06-01 2010-09-08 株式会社竹内製作所 作業用車両
US7973499B2 (en) 2006-06-01 2011-07-05 Takeuchi Mfg. Co., Ltd. Working vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714770B2 (en) 2015-06-24 2020-07-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US10014539B2 (en) 2015-06-25 2018-07-03 Toyota Jidosha Kabushiki Kaisha Fuel cell system
KR20170006398A (ko) * 2015-07-08 2017-01-18 현대자동차주식회사 촉매 활성화 시동 장치 및 이를 이용한 촉매 활성화 시동 방법
US9774049B2 (en) 2015-07-08 2017-09-26 Hyundai Motor Company Device and method for controlling starting fuel cell vehicle

Also Published As

Publication number Publication date
DE112006003337B8 (de) 2014-01-02
CA2630405C (en) 2011-10-25
US20090148735A1 (en) 2009-06-11
US8574777B2 (en) 2013-11-05
JP2007184243A (ja) 2007-07-19
CA2704362A1 (en) 2007-06-14
CN101326662B (zh) 2011-05-11
US8343675B2 (en) 2013-01-01
KR100987736B1 (ko) 2010-10-13
CA2704362C (en) 2011-08-09
DE112006003337B4 (de) 2013-08-22
DE112006004262A5 (de) 2013-07-25
WO2007066795A1 (ja) 2007-06-14
DE112006003337T5 (de) 2008-09-18
US20110207011A1 (en) 2011-08-25
CA2630405A1 (en) 2007-06-14
DE112006004262B4 (de) 2021-11-18
CN101326662A (zh) 2008-12-17
JP5071879B2 (ja) 2012-11-14

Similar Documents

Publication Publication Date Title
KR100987736B1 (ko) 연료전지시스템
KR100987738B1 (ko) 연료전지시스템 및 이동체
CN101322272B (zh) 燃料电池系统
US8603687B2 (en) Fuel cell system
US8594874B2 (en) Fuel cell system
JP6090468B2 (ja) 燃料電池システム
WO2010112998A1 (en) Fuel cell system, control method for the fuel cell system, and vehicle equipped with the fuel cell system
CN101803089B (zh) 燃料电池系统
JP2004193063A (ja) 燃料電池システム
JP6520745B2 (ja) 燃料電池システム
WO2013150619A1 (ja) 燃料電池システム
JP2010244980A (ja) 燃料電池システムおよび燃料電池システムを搭載した電動車両
JP2009129679A (ja) 燃料電池システム
JP2009104977A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A201 Request for examination
PA0105 International application

Patent event date: 20080604

Patent event code: PA01051R01D

Comment text: International Patent Application

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20080604

Comment text: Request for Examination of Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20100531

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20100831

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20101007

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20101008

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20130924

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20130924

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20141001

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20150917

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20150917

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20160921

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20160921

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20170920

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20170920

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20180920

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20180920

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20200928

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20210917

Start annual number: 12

End annual number: 12

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20230718