KR100539963B1 - Method for forming a insulating film in a semiconductor - Google Patents
Method for forming a insulating film in a semiconductor Download PDFInfo
- Publication number
- KR100539963B1 KR100539963B1 KR10-2000-0083192A KR20000083192A KR100539963B1 KR 100539963 B1 KR100539963 B1 KR 100539963B1 KR 20000083192 A KR20000083192 A KR 20000083192A KR 100539963 B1 KR100539963 B1 KR 100539963B1
- Authority
- KR
- South Korea
- Prior art keywords
- oxygen
- forming
- source
- semiconductor device
- dielectric film
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02197—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Formation Of Insulating Films (AREA)
Abstract
본 발명은 반도체 소자의 유전체막 형성 방법에 관한 것으로, 단원자 증착법에 의해 STO막을 형성할 때 산소 플라즈마 또는 산소와 수소의 혼합 플라즈마를 산소 소오스로 사용함으로써 박막내에 수증기의 응축 특성에 의한 반응 부산물 또는 박막내에 잔존하는 수분을 완전히 제거할 수 있어 박막의 전기적 특성을 향상시킬 수 있는 반도체 소자의 유전체막 형성 방법이 제시된다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a dielectric film of a semiconductor device, wherein by forming an STO film by a monoatomic deposition method, an oxygen by-product or a reaction by-product due to condensation of water vapor in a thin film is used by using oxygen plasma or a mixed plasma of oxygen and hydrogen as an oxygen source. A method of forming a dielectric film of a semiconductor device capable of completely removing moisture remaining in a thin film to improve electrical characteristics of the thin film.
Description
본 발명은 반도체 소자의 유전체막 형성 방법에 관한 것으로, 특히 단원자 증착법에 의해 STO막을 형성할 때 산소 플라즈마 또는 산소와 수소의 혼합 플라즈마를 산소 소오스로 사용함으로써 박막내에 수증기의 응축 특성에 의한 반응 부산물 또는 박막내에 잔존하는 수분을 완전히 제거할 수 있어 박막의 전기적 특성을 향상시킬 수 있는 반도체 소자의 유전체막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a dielectric film of a semiconductor device. In particular, when forming an STO film by a monoatomic deposition method, a reaction by-product due to condensation characteristics of water vapor in a thin film by using an oxygen plasma or a mixed plasma of oxygen and hydrogen as an oxygen source. Another aspect of the present invention relates to a method of forming a dielectric film of a semiconductor device capable of completely removing moisture remaining in a thin film to improve electrical characteristics of the thin film.
반도체 소자의 고집적화에 따라 캐패시터용 유전체막의 유효 두께를 낮추는 것이 충분한 정전 용량을 확보하기 위한 하부 전극의 높이와 후속 공정의 단순화에서 가장 중요한 관건이다. 이러한 차세대 반도체 소자의 캐패시터용 유전체막의 재료로 Ta205막, Ti02막, BST막, STO막, BTO막 등의 고유전체막을 이용하기 위한 연구가 활발히 진행되고 있다.As the semiconductor device is highly integrated, lowering the effective thickness of the capacitor dielectric film is the most important factor in simplifying the height of the lower electrode and subsequent processing to secure sufficient capacitance. As a material for the capacitor dielectric film of the next-generation semiconductor device, studies are being actively conducted to use high-k dielectric films such as Ta 2 O 5 film, Ti0 2 film, BST film, STO film, and BTO film.
상기의 물질중에서 STO(SrTiO3)막은 단원자 증착법(atomic layer deposition)을 이용하여 형성한다. 이러한 단원자 증착법에 의해 STO막을 형성하기 위한 방법으로 기판을 일정 온도로 유지하면서 Sr 원료 물질의 공급 및 퍼지 (purge), 산소 원료 물질인 수증기의 공급 및 퍼지, 그리고 Ti 원료 물질의 공급 및 퍼지, 수증기 공급 및 퍼지의 일련의 과정을 반복하여 STO막을 증착한다.Among the above materials, an STO (SrTiO 3 ) film is formed using atomic layer deposition. As a method for forming an STO film by the monoatomic deposition method, the supply and purge of Sr raw material, the supply and purge of water vapor, an oxygen raw material, and the supply and purge of Ti raw material, while maintaining the substrate at a constant temperature, A series of processes of steam supply and purge are repeated to deposit the STO film.
상기와 같은 일련의 과정을 반복하여 STO막을 증착할 경우 산소 원료 물질로 사용하는 수증기의 응축 특성으로 인하여 퍼지 공정에서 완전히 제거되지 않는다. 따라서, 후속으로 공급되는 Sr 원료 물질이나 Ti 원료 물질과 수증기가 반응하여 원하지 않는 부산물을 형성하고, 또한 박막내에 수분이 잔존함으로써 박막의 전기적 특성을 열화시킨다.When the STO film is repeatedly deposited as described above, the STO film is not completely removed in the purge process due to the condensation characteristics of water vapor used as an oxygen source material. Therefore, water vapor reacts with the subsequently supplied Sr raw material or Ti raw material to form unwanted by-products, and also the moisture remaining in the thin film deteriorates the electrical properties of the thin film.
본 발명의 목적은 STO막을 증착할 때 수증기에 의한 부산물의 형성 및 전기적 특성의 열화를 방지할 수 있는 반도체 소자의 유전체막 형성 방법을 제공하는데 있다.An object of the present invention is to provide a method for forming a dielectric film of a semiconductor device capable of preventing the formation of by-products by water vapor and the deterioration of electrical properties when depositing an STO film.
본 발명의 다른 목적은 STO막을 증착하기 위한 산소의 원료 물질인 수증기를 대체하여 수증기에 의한 특성 열화를 방지할 수 있는 반도체 소자의 유전체막 형성 방법을 제공하는데 있다. Another object of the present invention is to provide a method for forming a dielectric film of a semiconductor device capable of preventing the deterioration of characteristics due to water vapor by replacing water vapor, which is a raw material of oxygen for depositing an STO film.
본 발명에서는 STO막을 단원자 증착법을 이용하여 형성할 때 산소의 원료 물질로 수증기 대신에 산소 플라즈마 또는 산소와 수소의 혼합 플라즈마를 사용함으로써 수증기의 응축 특성에 기인되는 장비 및 박막의 오염 방지와 박막의 특성 열화를 방지하고자 한다. In the present invention, when the STO film is formed by the monoatomic vapor deposition method, by using oxygen plasma or mixed plasma of oxygen and hydrogen as a raw material of oxygen, it is possible to prevent contamination of equipment and thin film due to the condensation characteristics of water vapor and thin film. To prevent deterioration of characteristics.
본 발명에 따른 반도체 소자의 유전체막 형성 방법은 반도체 소자를 제조하기 위한 소정의 구조가 형성된 반도체 기판을 반응기내로 로딩시킨 후 상기 반도체 기판을 소정 온도로 유지시키는 제 1 단계와, 상기 반응기내에 Sr 소오스를 유입시켜 상기 반도체 기판 표면에 Sr이 흡착되도록 한 후 상기 미반응 Sr 소오스 및 반응 부산물을 제거하는 제 2 단계와, 상기 반응기내에 산소 플라즈마를 흘려주어 상기 반도체 기판 표면에 산소가 흡착되도록 한 후 상기 미반응 산소 및 반응 부산물을 제거하는 제 3 단계와, 상기 반응기내에 Ti 소오스를 유입시켜 상기 반도체 기판 표면에 Ti가 흡착되도록 한 후 상기 미반응 Ti 소오스 및 반응 부산물을 제거하는 제 4 단계와, 상기 반응기내에 산소 플라즈마를 흘려주어 상기 Ti와 반응시킨 후 상기 미반응 산소 및 반응 부산물을 제거하는 제 5 단계를 포함하여 이루어진 것을 특징으로 한다.The method for forming a dielectric film of a semiconductor device according to the present invention includes a first step of loading a semiconductor substrate having a predetermined structure for manufacturing a semiconductor device into a reactor and maintaining the semiconductor substrate at a predetermined temperature; A second step of removing the unreacted Sr source and reaction by-products after the source is introduced to allow Sr to be adsorbed on the surface of the semiconductor substrate, and flowing oxygen plasma into the reactor to adsorb oxygen to the surface of the semiconductor substrate. A third step of removing the unreacted oxygen and the reaction byproduct, a fourth step of introducing Ti source into the reactor to adsorb Ti on the surface of the semiconductor substrate, and then removing the unreacted Ti source and the reaction byproduct; Flowing an oxygen plasma into the reactor to react with the Ti, and then reacting with the unreacted oxygen. And a fifth step of removing by-products.
이하, 본 발명을 단계별로 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail step by step.
첫째, 단원자 증착법을 이용하여 STO막을 형성하기 위해서는 배출 펌프를 갖춘 반응기내에 반도체 소자를 제조하기 위한 소정의 구조가 형성된 반도체 기판을 로딩시킨다. 로딩된 반도체 기판을 200∼400℃로 유지하면서 Sr 소오스를 0.1∼3초 동안 반응기내에 유입시켜 반도체 기판의 표면에 Sr 원료 물질이 흡착되도록 한다. 이때, Sr 소오스로는 [화학식 1]과 같은 β-디케토나이트(diketonate) 계열의 Sr 원료 물질인 Sr(DPM)2을 THF 용매에 용해시켜 사용하는 경우 뿐만 아니라 [화학식 2]와 같은 Sr 원료 물질에 임의의 부가물(adduct) 또는 [화학식 3]과 같은 임의의 치환기를 붙여서 Sr 원료 물질로 사용하여도 된다. 또한, [화학식 4]와 같은 시클로펜타(cyclopenta) 계열의 Sr 원료 물질을 사용하여도 된다. 이어서 N2 가스를 0.1∼3초 정도 반응기내에 유입시키거나 진공 퍼지하여 미반응 Sr 소오스 및 반응 부산물을 배출 펌프를 통해 배출한다.First, in order to form an STO film using monoatomic deposition, a semiconductor substrate having a predetermined structure for manufacturing a semiconductor device is loaded into a reactor equipped with a discharge pump. The Sr source is introduced into the reactor for 0.1 to 3 seconds while maintaining the loaded semiconductor substrate at 200 to 400 ° C. to allow the Sr raw material to be adsorbed onto the surface of the semiconductor substrate. In this case, as the Sr source, as well as the case in which Sr (DPM) 2, which is a β-diketonate-based Sr raw material such as [Formula 1], is dissolved and used in a THF solvent, an Sr raw material such as [Formula 2] You may use it as an Sr raw material by attaching arbitrary adducts or arbitrary substituents, such as [Formula 3], to a substance. In addition, a cyclopenta-based Sr raw material such as [Formula 4] may be used. Subsequently, N 2 gas is introduced into the reactor for about 0.1 to 3 seconds or vacuum purged to discharge the unreacted Sr source and reaction by-products through the discharge pump.
둘째, 산소 소오스로서 산소 플라즈마 또는 산소와 수소의 혼합 플라즈마를 0.1∼3초 정도 반응기내에 흘려주어 반도체 기판의 표면에 산소가 흡착되도록 한다. 그리고, 질소 가스를 0.1∼3초 정도 반응기내에 유입시키거나 진공 퍼지하여 미반응 산소 소오스 및 반응 부산물을 배출 펌프를 통해 배출한다. 산소 플라즈마를 산소 소오스로 이용할 경우 활성화 산소(O*)가 Sr의 원료 물질을 산화시켜 SrO의 표면에 잔류하게 된다. 그러나, 이 경우 표면의 산소 원자는 불안정한 댕글링 본드(dangling bond) 상태를 유지하거나 Sr 원료 물질의 CH3 등의 하이드로카본 (hydrocarbon)과 결합하게 되어 박막내에 탄소 오염물(carbon contamination)이 형성될 가능성이 있다. 반면 수소와 산소의 혼합 플라즈마를 산소 소오스로 사용하는 경우 OH, H의 활성화 가스가 형성되며, Sr 원료 물질의 리간드(ligand)를 대체하여 Sr-OH 본딩을 형성하여 안정된 상태를 유지한다. 활성화된 수소(H)는 리간드와 결합하여 배출되거나, 리간드가 분해되어 보다 작은 하이드로카본을 형성하는 경우에도 활성화된 H 또는 OH와 결합하여 배출됨으로써 박막내의 탄소 오염물이 줄어든다. 수소와 산소의 혼합 가스는 다량의 산소에 미량의 수소를 혼합하여 H2O의 발생을 억제하여야 한다. 또한, 산소 플라즈마를 흘려준 후 퍼지 과정없이 산소 가스를 단속하고 수소 가스를 유입시킬 수도 있다. 이것은 SrO의 표면에 댕글링 본드를 활성화 수소로 종단시키는 효과와 증착 과정중에 박막내의 탄소 오염물을 제거하는데 목적이 있다.Second, an oxygen plasma or a mixed plasma of oxygen and hydrogen is flowed into the reactor for about 0.1 to 3 seconds as an oxygen source so that oxygen is adsorbed onto the surface of the semiconductor substrate. Then, nitrogen gas is introduced into the reactor for about 0.1 to 3 seconds or vacuum purged to discharge the unreacted oxygen source and reaction by-products through the discharge pump. When oxygen plasma is used as an oxygen source, activated oxygen (O *) oxidizes the raw material of Sr and remains on the surface of SrO. In this case, however, oxygen atoms on the surface may remain in an unstable dangling bond state or combine with hydrocarbons such as CH 3 of the Sr raw material to form carbon contamination in the thin film. There is this. On the other hand, when a mixed plasma of hydrogen and oxygen is used as an oxygen source, OH and H activation gases are formed, and Sr-OH bonding is formed to replace the ligand of Sr raw material to maintain a stable state. Activated hydrogen (H) is released in combination with the ligand, or even when the ligand is decomposed to form smaller hydrocarbons, it is released in combination with the activated H or OH to reduce the carbon contaminants in the thin film. The mixed gas of hydrogen and oxygen should suppress the generation of H 2 O by mixing a small amount of hydrogen with a large amount of oxygen. In addition, after the oxygen plasma flows, the oxygen gas may be interrupted and the hydrogen gas may be introduced without purging. This aims to terminate the dangling bond with activated hydrogen on the surface of SrO and to remove carbon contaminants in the thin film during the deposition process.
세째, Ti 원료 물질인 Ti(o-ipr)4 또는 Ti(Eto)4를 0.1∼3초동안 반응기내로 유입시켜 반도체 기판의 표면에 Ti 원료 물질이 흡착되도록 한다. 그리고, 질소 가스를 0.1∼3초 정도 반응기내에 유입시키거나 진공 퍼지하여 미반응 Ti 소오스 및 반응 부산물을 배출 펌프를 통해 배출한다.Third, Ti (o-ipr) 4 or Ti (Eto) 4, which is a Ti raw material, is introduced into the reactor for 0.1 to 3 seconds so that the Ti raw material is adsorbed onto the surface of the semiconductor substrate. Then, nitrogen gas is introduced into the reactor for about 0.1 to 3 seconds or vacuum purged to discharge the unreacted Ti source and reaction by-products through the discharge pump.
네째, 산소 소오스인 산소 플라즈마 또는 산소와 수소의 혼합 플라즈마를 0.1∼3초 동안 흘려주어 반도체 기판의 표면에 흡착되어 있는 Ti 원료 물질과 반응시킨다. 그리고, 질소 가스를 0.1∼3초 정도 반응기에 유입시키거나 진공 퍼지하여 미반응 산소 소오스 및 반응 부산물을 배출 펌프를 통해 배출한다. 여기서, 산소 플라즈마를 흘려준 후 퍼지 과정없이 산소 가스를 단속하고 수소 가스를 유입시킬 수도 있다. 또한, 산소 플라즈마 또는 산소와 수소의 혼합 플라즈마 대신에 NH3와 산소 가스를 플라즈마화하지 않고 유입시킬 수도 있다. 이때, NH3 가스는 Ti 원료 물질과 반응하여 TiO를 형성할 수 있도록 한다.Fourth, oxygen plasma, which is an oxygen source, or a mixed plasma of oxygen and hydrogen is flowed for 0.1 to 3 seconds to react with the Ti raw material adsorbed on the surface of the semiconductor substrate. Then, nitrogen gas is introduced into the reactor for about 0.1 to 3 seconds or vacuum purged to discharge the unreacted oxygen source and reaction by-products through the discharge pump. Here, the oxygen plasma may be flowed and then the oxygen gas may be interrupted without the purge process and hydrogen gas may be introduced. In addition, instead of the oxygen plasma or the mixed plasma of oxygen and hydrogen, NH 3 and oxygen gas may be introduced without plasmaation. In this case, the NH 3 gas may react with the Ti raw material to form TiO.
상기와 같은 일련의 과정을 원하는 두께로 STO막을 형성할 때까지 반복한다.The above series of steps is repeated until the STO film is formed to a desired thickness.
한편, Sr 원료 물질 대신에 Ba 원료 물질을 공급하고, 상기의 과정을 반복하면 BTO(BaTiO3)막을 형성할 수 있다. 또한, Ba 원료 물질과 Sr 원료 물질을 동시에 공급하고, 상기의 과정을 반복하면 (Ba, Sr)TiO3막을 형성할 수 있다.Meanwhile, if a Ba raw material is supplied instead of an Sr raw material, and the above process is repeated, a BTO (BaTiO 3 ) film may be formed. In addition, when the Ba raw material and the Sr raw material are simultaneously supplied, and the above process is repeated, a (Ba, Sr) TiO 3 film may be formed.
상술한 바와 같이 본 발명에 의하면 단원자 증착법에 의해 STO막을 형성할 때 산소 플라즈마 또는 산소와 수소의 혼합 플라즈마를 산소 소오스로 사용함으로써 박막내에 수증기의 응축 특성에 의한 반응 부산물 또는 박막내에 잔존하는 수분을 완전히 제거할 수 있어 박막의 전기적 특성을 향상시킬 수 있다.As described above, according to the present invention, when the STO film is formed by the monoatomic deposition method, oxygen plasma or a mixed plasma of oxygen and hydrogen is used as the oxygen source to reduce the reaction by-products caused by the condensation characteristics of water vapor in the thin film or the moisture remaining in the thin film. It can be removed completely to improve the electrical properties of the thin film.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0083192A KR100539963B1 (en) | 2000-12-27 | 2000-12-27 | Method for forming a insulating film in a semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0083192A KR100539963B1 (en) | 2000-12-27 | 2000-12-27 | Method for forming a insulating film in a semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020053533A KR20020053533A (en) | 2002-07-05 |
KR100539963B1 true KR100539963B1 (en) | 2005-12-28 |
Family
ID=27686905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0083192A KR100539963B1 (en) | 2000-12-27 | 2000-12-27 | Method for forming a insulating film in a semiconductor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100539963B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100498603B1 (en) * | 2000-12-28 | 2005-07-01 | 주식회사 하이닉스반도체 | Formation method of SrTiO3 thin film |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08335561A (en) * | 1995-06-06 | 1996-12-17 | Fujitsu Ltd | Thin film component and its manufacture |
WO1998008255A1 (en) * | 1996-08-20 | 1998-02-26 | Hitachi, Ltd. | Method for manufacturing oxide dielectric device, and memory and semiconductor device usign the device |
KR19980031926A (en) * | 1996-10-31 | 1998-07-25 | 김광호 | Ferroelectric Capacitor Manufacturing Method |
KR19990053233A (en) * | 1997-12-23 | 1999-07-15 | 정선종 | Reduction of Surface Species of Silicon Oxide Airgel Membrane by Oxygen Plasma Treatment |
KR19990057906A (en) * | 1997-12-30 | 1999-07-15 | 김영환 | Capacitor Formation Method of Semiconductor Device |
KR20000039578A (en) * | 1998-12-15 | 2000-07-05 | 윤종용 | Method for manufacturing dielectric film and cell capacitor manufactured by using the method |
KR100275738B1 (en) * | 1998-08-07 | 2000-12-15 | 윤종용 | Method for producing thin film using atomatic layer deposition |
-
2000
- 2000-12-27 KR KR10-2000-0083192A patent/KR100539963B1/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08335561A (en) * | 1995-06-06 | 1996-12-17 | Fujitsu Ltd | Thin film component and its manufacture |
WO1998008255A1 (en) * | 1996-08-20 | 1998-02-26 | Hitachi, Ltd. | Method for manufacturing oxide dielectric device, and memory and semiconductor device usign the device |
KR19980031926A (en) * | 1996-10-31 | 1998-07-25 | 김광호 | Ferroelectric Capacitor Manufacturing Method |
KR19990053233A (en) * | 1997-12-23 | 1999-07-15 | 정선종 | Reduction of Surface Species of Silicon Oxide Airgel Membrane by Oxygen Plasma Treatment |
KR19990057906A (en) * | 1997-12-30 | 1999-07-15 | 김영환 | Capacitor Formation Method of Semiconductor Device |
KR100275738B1 (en) * | 1998-08-07 | 2000-12-15 | 윤종용 | Method for producing thin film using atomatic layer deposition |
KR20000039578A (en) * | 1998-12-15 | 2000-07-05 | 윤종용 | Method for manufacturing dielectric film and cell capacitor manufactured by using the method |
Also Published As
Publication number | Publication date |
---|---|
KR20020053533A (en) | 2002-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100406534B1 (en) | Method for fabricating ruthenium thin film | |
KR100472730B1 (en) | Method for fabricating metal electrode with Atomic Layer Deposition in semiconductor device | |
EP2644741B1 (en) | Methods of preparing titanium containing thin films by atomic layer deposition using monocyclopentadienyl titanium-based precursors | |
US20100227476A1 (en) | Atomic layer deposition processes | |
US6849300B2 (en) | Method for forming high dielectric layers using atomic layer deposition | |
KR20100122960A (en) | Deposition of ternary oxide films containing ruthenium and alkali earth metals | |
JP5528762B2 (en) | ALD raw material and silicon-containing thin film forming method using the same | |
KR100444304B1 (en) | A method for forming a capacitor of a semiconductor device | |
US20140322924A1 (en) | Silicon containing compounds for ald deposition of metal silicate films | |
KR102724144B1 (en) | Raw materials for forming thin films and methods for producing thin films | |
JP6760822B2 (en) | Compounds, raw materials for thin film formation, raw materials for thin film formation for atomic layer deposition, and methods for producing thin films | |
KR100539963B1 (en) | Method for forming a insulating film in a semiconductor | |
KR101741506B1 (en) | Method of forming metal thin film | |
JP4711733B2 (en) | Method for producing silicon oxide thin film | |
US11807652B2 (en) | Tungsten compound, raw material for thin film formation and method for producing thin film | |
KR102592360B1 (en) | Method of forming thin film using material of chemical purge | |
KR100414871B1 (en) | Method for forming group ⅸ metal layer using atomic layer deposition | |
KR100498603B1 (en) | Formation method of SrTiO3 thin film | |
KR102562274B1 (en) | Organometallic precursor compounds | |
WO2022107769A1 (en) | Method for manufacturing thin film | |
EP3647460B1 (en) | Thin film production method and novel compound | |
KR100766007B1 (en) | METHOD FOR FORMING HfO2 FILM USING Hf Metal Organic Compound | |
KR20210087808A (en) | Method of depositing material layer using protective material | |
EP1961755A1 (en) | Strontium silylamides, adducts thereof with Lewis bases, preparation thereof and deposition of strontium thin films | |
KR20220158601A (en) | Metal precursor compound for forming semiconductor film and metal-containing film prepared by using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20101125 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |