[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6356959A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPS6356959A
JPS6356959A JP20225086A JP20225086A JPS6356959A JP S6356959 A JPS6356959 A JP S6356959A JP 20225086 A JP20225086 A JP 20225086A JP 20225086 A JP20225086 A JP 20225086A JP S6356959 A JPS6356959 A JP S6356959A
Authority
JP
Japan
Prior art keywords
gate
gate pattern
ohmic metal
pattern
ohmic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20225086A
Other languages
Japanese (ja)
Inventor
Shuji Asai
浅井 周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20225086A priority Critical patent/JPS6356959A/en
Publication of JPS6356959A publication Critical patent/JPS6356959A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0272Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers for lift-off processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide a field-effect transistor having improved property of saturat ing drain current and improved transconductance even if a gate length is de creased, by providing a highconcentration conducting layer such that it is located at a shallow level and has a decreased concentration while providing an ohmic electrode close to a gate electrode. CONSTITUTION:A channel layer 5 and a provisional gate pattern 6 are provided on a semiconductor substrate 4 formed of semi-insulating GaAs. Si<+> ions are implanted with the pattern 6 used as a mask to provide high-concentration conducting layers 7a and 7b. Side walls 8 of a silicon nitride film are formed on the side faces of the provisional gate pattern 6. An ohmic metal Au.Ge.Ni 9 is vapor deposited and a photoresist film 10 is applied thereon. The ohmic metal 9 on the provisional gate pattern 6 is removed so as to provide separate ohmic metal portions 9a and 9b. After the residual photoresist film 10 is re moved, the substrate is heat treated within hydrogen so that the ohmic metal Au.Ge.Ni in 9a and 9b is diffused into the high concentration conducting layer 7 of the GaAs substrate to produce an ohmic electrode. Subsequently, a nitride film is formed as an inversion film 11 on the whole surface by means of the sputtering process and a gate aperture 14 is provided.

Description

【発明の詳細な説明】 〔′産業上の利用分野〕 本発明は電界効果トランジスタの製造方法に関し、特に
ゲート部に接近して浅い高濃度導電層およびオーム性電
極を有する電界効果トランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION ['Industrial Field of Application] The present invention relates to a method for manufacturing a field effect transistor, and particularly to a method for manufacturing a field effect transistor having a shallow highly doped conductive layer and an ohmic electrode close to a gate portion. Regarding.

〔従来の技術〕[Conventional technology]

GaAsを代表とする化合物半導体はSiに比べて大き
な電子移動度を有することに特長があり、超高速集積回
路に応用する研究開発が活発に行なわれている。ここで
は、GaAsのショットキーバリアゲート型電界効果ト
ランジスタ(以下MESFETという)を例に説明する
Compound semiconductors, represented by GaAs, are characterized by higher electron mobility than Si, and research and development are actively being conducted to apply them to ultra-high-speed integrated circuits. Here, a GaAs Schottky barrier gate field effect transistor (hereinafter referred to as MESFET) will be explained as an example.

このMESFETの製造方法として、特開昭60−15
978号公報に提案されているものがある。第3図(a
)〜(h)はこの製造方法を説明するための主要工程に
おける断面図である。
As a manufacturing method of this MESFET,
There is one proposed in the No. 978 publication. Figure 3 (a
) to (h) are cross-sectional views of main steps for explaining this manufacturing method.

まず第3図(a)のように、半絶縁性GaAsからなる
半導体基板4にsi+を加速電圧30KeV。
First, as shown in FIG. 3(a), Si+ is applied to a semiconductor substrate 4 made of semi-insulating GaAs at an accelerating voltage of 30 KeV.

ドース景2 X 1012c m−2で・イオン注入し
チャネル層5を形成する。次に第3図<b>のように半
導体基板4上にシリコン酸化膜を0.8μm気相成長さ
せ、ホトレジスト膜をマスクとして平行平板型ドライエ
ツチングにより酸化膜をエツチングし、ゲート長1.0
μmの仮ゲートパターン6を形成する。
A channel layer 5 is formed by ion implantation at a dose of 2×10 12 cm −2 . Next, as shown in FIG. 3<b>, a silicon oxide film of 0.8 μm is vapor-phase grown on the semiconductor substrate 4, and the oxide film is etched by parallel plate dry etching using the photoresist film as a mask to form a gate with a gate length of 1.0 μm.
A temporary gate pattern 6 of μm is formed.

次に第3図(c)のように仮ゲートパターン6をマスク
としてSi”を加速電圧100KeV、  ドースBk
3 X 10 ”c m−2でイオン注入して高濃度導
電層7a、7bを形成する。次に第3図(d)のように
反転膜11として厚さ0.3μmのシリコン窒化膜で全
面を覆い、水素中で800’C20分間の熱処理により
チャネル層5および高濃度導電層7a、7bの結晶性を
回復させる。
Next, as shown in FIG. 3(c), using the temporary gate pattern 6 as a mask, Si" was accelerated at a voltage of 100 KeV and at a dose of Bk.
High concentration conductive layers 7a and 7b are formed by ion implantation at 3 x 10" cm-2. Next, as shown in FIG. The crystallinity of the channel layer 5 and the highly doped conductive layers 7a and 7b is restored by heat treatment at 800'C for 20 minutes in hydrogen.

次に第3図(C)のように、ホトレジスト膜12を厚さ
1.0ノ1m塗布するとホトレジスト膜12の表面は平
滑になり、仮ゲートパターン6上のホトレジスト膜12
は薄くなる。次に第3図(f)のように平行平板型ドラ
イエツチングによりCF4ガスを用いて全面をエツチン
グし、酸イヒ膜の仮ゲートパターン6を露出させる。
Next, as shown in FIG. 3(C), when the photoresist film 12 is applied to a thickness of 1.0 to 1 m, the surface of the photoresist film 12 becomes smooth, and the photoresist film 12 on the temporary gate pattern 6
becomes thinner. Next, as shown in FIG. 3(f), the entire surface is etched by parallel plate dry etching using CF4 gas to expose the temporary gate pattern 6 of the acid-etched film.

次に第3図(g)のように残ったホトレジスト膜12を
はくり液で除去し、沸酸溶液により仮ゲートパターンの
酸化膜6を除去してゲーh開口14を形成する。次に第
3図(h)のように、デー1−開口14にアルミニウム
のゲート電極1、および高濃度導電層7a、7b上にオ
ーム性金属Au−Ge−Niのソース電極2.ドレイン
電極3を形成してM E S F E Tを完成させる
Next, as shown in FIG. 3(g), the remaining photoresist film 12 is removed using a stripping solution, and the oxide film 6 of the temporary gate pattern is removed using a hydrofluoric acid solution to form a gate opening 14. Next, as shown in FIG. 3(h), a gate electrode 1 made of aluminum is placed in the opening 14, and a source electrode 2 made of ohmic metal Au-Ge-Ni is placed on the high concentration conductive layers 7a and 7b. A drain electrode 3 is formed to complete the MESFET.

この製造方法の特徴は、高温の熱処理後にゲート電極1
を形成できるため、ゲート電極の選定に自由度が大きい
ことである。
The feature of this manufacturing method is that after high-temperature heat treatment, the gate electrode 1
Since it is possible to form a gate electrode, there is a large degree of freedom in selecting the gate electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

FETの相互コンダクタンス(gm)を大きくするには
、ゲート長を短かくしてソースとグー1〜電極間の抵抗
(ソース抵抗)を小さくする・g・要がある。しがし、
イオン注入により形成する高濃度導電層は、」二連した
従来例のような通常のアニール条件では、8 X 10
 ”ClTl−’以上に活性化することは難しい。そし
て、ソース抵抗を下げようとして高濃度導電層を深く厚
くすると、ゲート下への注入不純物の横方向拡散や基板
リーク電流が大きくなるため、ドレイン電流の飽和性が
悪くなり相互コンダクタンスも低下する。
In order to increase the mutual conductance (gm) of the FET, it is necessary to shorten the gate length and reduce the resistance (source resistance) between the source and the electrode. Shigashi,
The highly concentrated conductive layer formed by ion implantation has a size of 8 x 10 under normal annealing conditions such as in the conventional double series.
It is difficult to activate the layer to a level higher than ``ClTl-''.If the highly doped conductive layer is made deeper and thicker in an attempt to lower the source resistance, the lateral diffusion of the implanted impurities under the gate and the substrate leakage current will increase, resulting in Current saturation deteriorates and mutual conductance also decreases.

本発明の目的は、ゲート長を短がくしてもドレイン電流
の飽和性や相互コンダクタンスが良好な電界効果トラン
ジスタを提供することにある。
An object of the present invention is to provide a field effect transistor that has good drain current saturation and mutual conductance even when the gate length is shortened.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電界効果トランジスタの製造方法は、半導体基
板上にチャネル層を形成する工程と、前記チャネル層上
にゲート形状を決めるための仮ゲー1〜パターンを形成
する工程と、前記仮ゲートパターンをマスクとしてイオ
ン注入法により不純物を注入し前記半導体基板表面に高
濃度導電層を形成する工程と、前記仮ゲートパターンの
側面に誘電体膜からなる側壁を形成する工程と、全面に
オーム性金属を被着し前記仮ゲーI・パターン−に部の
前記オーム性金属を除去する工程と、前記半導体基板の
表面を被覆膜で覆い前記仮ゲー)・パター〉上部の被覆
膜を除去し前記仮ゲートパターンのみを選択的に除去し
てグー1〜開[コとする工程と、前記ゲート開口にゲー
ト電極を形成する工程と含有するものである。
The method for manufacturing a field effect transistor of the present invention includes a step of forming a channel layer on a semiconductor substrate, a step of forming a temporary gate pattern to determine a gate shape on the channel layer, and a step of forming a temporary gate pattern on the channel layer. A step of injecting impurities using an ion implantation method as a mask to form a highly concentrated conductive layer on the surface of the semiconductor substrate, a step of forming sidewalls made of a dielectric film on the sides of the temporary gate pattern, and a step of forming an ohmic metal on the entire surface. a step of removing the ohmic metal on the part of the temporary game I/pattern, covering the surface of the semiconductor substrate with a coating film and removing the coating film on the temporary game/pattern; The method includes a step of selectively removing only the temporary gate pattern to form a gate pattern, and a step of forming a gate electrode in the gate opening.

〔作用) 本発明の製造方法は、高濃度導電層を浅く12度を下げ
て設けることにより、イオン注入層の横方向拡散を少な
くし、更にオーム性電極をゲート電極に接近させて設け
ることによりソース抵抗を低減させるものである。
[Function] The manufacturing method of the present invention reduces lateral diffusion of the ion-implanted layer by providing the highly concentrated conductive layer at a shallow angle of 12 degrees, and by providing the ohmic electrode close to the gate electrode. This reduces source resistance.

〔実施例〕〔Example〕

次に本発明の電界効果トランジスタの製造方法を図面を
用いて説明する。
Next, a method for manufacturing a field effect transistor according to the present invention will be explained with reference to the drawings.

第1図(a)〜(h)は本発明の第1の実施例を説明す
るための主要製造工程における半導体チップの断面図で
ある。
FIGS. 1A to 1H are cross-sectional views of a semiconductor chip in main manufacturing steps for explaining a first embodiment of the present invention.

まず、第1図(a)のように半絶縁性Ga。^Sがらな
る半導体基板4上にSi+を加速電圧30Ke■、ドー
ス量2 X 10 ’ 2c m −2でイオン注入し
チャネル層5を形成する。続いて全面にシリコン酸化膜
を形成したのち、ホトレジスト膜パターンをマスクとし
て平行平板型ドライエツチングによりシリコン酸化膜を
加工し、高さ0.8μm、ゲート長0.5μmの仮ゲー
トパターン6を形成する。次に仮ゲートパターン6をマ
スクにSi+を加速電圧30KeV、ドース量7X10
12cm−2でイオン注入し高濃度導電層7a、7bを
設ける。
First, as shown in FIG. 1(a), semi-insulating Ga is used. A channel layer 5 is formed by ion-implanting Si+ into a semiconductor substrate 4 made of S at an acceleration voltage of 30 Ke and a dose of 2.times.10' 2 cm.sup.-2. Subsequently, after forming a silicon oxide film on the entire surface, the silicon oxide film is processed by parallel plate dry etching using the photoresist film pattern as a mask to form a temporary gate pattern 6 with a height of 0.8 μm and a gate length of 0.5 μm. . Next, using the temporary gate pattern 6 as a mask, Si + was accelerated at a voltage of 30 KeV and at a dose of 7×10.
High concentration conductive layers 7a and 7b are provided by ion implantation at a depth of 12 cm.sup.-2.

次に第1図(b)のように厚さ0.1μmのスパッタシ
リコン窒化膜で全面を覆い、水素中800℃20分間の
熱処理をおこない、チャネル層5および高濃度導電層7
a、7bの結晶性を回復し、さらに厚さ0.2μmのス
パッタ法によるシリコン窒化膜を追加して覆い、CF4
ガスを用いた平行平板型ドライエツチングをおこない、
仮ゲートパターン6の側面に厚さ0.3μmのシリコン
窒化膜からなる側壁8を残す。
Next, as shown in FIG. 1(b), the entire surface is covered with a sputtered silicon nitride film with a thickness of 0.1 μm, and heat treatment is performed at 800° C. for 20 minutes in hydrogen to form the channel layer 5 and the highly concentrated conductive layer 7.
The crystallinity of a and 7b was restored, and a silicon nitride film with a thickness of 0.2 μm was added by sputtering to cover the CF4
Perform parallel plate dry etching using gas,
A side wall 8 made of a silicon nitride film with a thickness of 0.3 μm is left on the side surface of the temporary gate pattern 6.

次に第1図(c)のように有機洗浄によりGaAs表面
を浄化した後、オーム性金属人u−Ge−Ni9を厚さ
0.2μm蒸着し、その上にホトレジスト膜10を厚さ
1.0μm塗布する。この時、仮ゲートパターン6上の
ホトレジスト膜10は薄くなる。
Next, as shown in FIG. 1(c), after cleaning the GaAs surface by organic cleaning, ohmic metal U-Ge-Ni9 is deposited to a thickness of 0.2 μm, and a photoresist film 10 is deposited on it to a thickness of 1.5 μm. Apply 0μm. At this time, the photoresist film 10 on the temporary gate pattern 6 becomes thinner.

次に第1図(d)のように、Arガスを用いたイオンミ
リング法により全面をエツチングして仮ゲートパターン
6上のオーム性金属9を除去し、オーム性金属9aと9
bとを分離する。ここでイオンミリングは半導体基板4
を回転さぜながら^「入射角30°でおこなう。
Next, as shown in FIG. 1(d), the entire surface is etched by ion milling using Ar gas to remove the ohmic metal 9 on the temporary gate pattern 6, and the ohmic metal 9a and 9
Separate b. Here, ion milling is performed on the semiconductor substrate 4.
While rotating ^ ``Do this at an angle of incidence of 30°.

次に第1図(e)のように、残ったホトレジスト膜10
を除去した後、水素中430℃1分間の熱処理をおこな
い、オーム性金属Au−Ge、Ni9 a 。
Next, as shown in FIG. 1(e), the remaining photoresist film 10
After removing the ohmic metals Au-Ge and Ni9a, heat treatment was performed at 430°C for 1 minute in hydrogen.

9bをGaAs基板の高濃度導電層7へ数十nm拡散さ
せてオーム性電極とする。シリコン窒化膜からなる側壁
8の側面に付着したオーム性金属9a。
9b is diffused several tens of nanometers into the highly doped conductive layer 7 of the GaAs substrate to form an ohmic electrode. Ohmic metal 9a attached to the side surface of sidewall 8 made of silicon nitride film.

9bは熱処理した時に軟化し表面張力で吸い寄せられて
なくなる。
When 9b is heat treated, it softens and is attracted by surface tension and disappears.

次に第1図(f>のように、反転膜11としてスパッタ
法による窒化膜を厚さ0.3μm全面に設ける。次に第
1図(g>のように、従来技術と同様にしてゲート開口
14を設ける。
Next, as shown in FIG. 1 (f>), a nitride film of 0.3 μm thick is formed by sputtering as the inversion film 11 over the entire surface.Next, as shown in FIG. An opening 14 is provided.

続いて第1図<h)のようにゲート開口にアルミニウム
のゲート電極1を設ける。そして、オーム性金属9a、
9b上の窒化膜11を除去し、ソース電極2及びドレイ
ン電極3を形成してMESFETを完成させる。
Subsequently, as shown in FIG. 1<h), an aluminum gate electrode 1 is provided in the gate opening. and ohmic metal 9a,
The nitride film 11 on 9b is removed, and a source electrode 2 and a drain electrode 3 are formed to complete the MESFET.

この第1の実施例により得られたFETの特性としては
、ゲートしきい電圧VT=−0,3V(標準偏差30m
V)において、ゲーI〜電圧十0.6における相互コン
ダクタンスgm=480m S / m m、ソース抵
抗Rs=0.4Ω−mm、ゲート逆耐圧BVG−7Vで
あった。また、トレイン電流の飽和性を示すドレイン帰
還率γ=”Vt1つVo=0.02であった。
The characteristics of the FET obtained by this first example are as follows: gate threshold voltage VT=-0.3V (standard deviation 30m
In V), the mutual conductance gm = 480mS/mm, the source resistance Rs = 0.4Ω-mm, and the gate reverse breakdown voltage BVG-7V at a voltage of 0.6. Further, the drain feedback rate γ, which indicates the saturation property of the train current, was “Vt1” and Vo=0.02.

従来の製造方法を用いて、イオン注入高濃度導電層を深
く形成し、ゲート長が0.5μmの場合は、VT =−
0,4V (標準偏差120mV>においては、gm=
240ms/mm、Rs −0、7Ω −mrr3  
BVG  =−4V、7=0.12であった。
If a conventional manufacturing method is used to form a deep ion-implanted high-concentration conductive layer and the gate length is 0.5 μm, VT = -
At 0.4V (standard deviation 120mV>, gm=
240ms/mm, Rs -0, 7Ω -mrr3
BVG = -4V, 7 = 0.12.

このように、第1の実施例で製造されたFETでは、ゲ
ートしきい電圧の標準偏差、ソース抵抗、ドレイン帰還
率が小さくなり、相互コンダクタンス、ゲート逆耐圧が
向上していることが分かる。
Thus, it can be seen that in the FET manufactured in the first example, the standard deviation of the gate threshold voltage, the source resistance, and the drain feedback factor are reduced, and the mutual conductance and gate reverse breakdown voltage are improved.

上述した説明は、主にMESFETによっていたがこれ
に限られるものではない。次に二次元電子ガス型電界効
果トランジスタに適用した第2の実施例について説明す
る 第2図(a)〜(c)は第2の実施例を説明するための
主要製造工程の断面図である。
The above description mainly refers to MESFETs, but is not limited thereto. Next, a second embodiment applied to a two-dimensional electron gas field effect transistor will be described. FIGS. 2(a) to 2(c) are cross-sectional views of main manufacturing steps for explaining the second embodiment. .

まず、第2図(a)のように半絶縁性GaAsからなる
半導体基板4上に分子線結晶成長法によりアンドープG
aAs層(チャネル層)21を厚さ1.0μm成長し、
続いて1.5X 1018cm−’のSiがドープされ
たGaAff Asからなる電子供給層22を厚さ40
nm成長させる。
First, as shown in FIG. 2(a), undoped G is formed on a semiconductor substrate 4 made of semi-insulating GaAs by molecular beam crystal growth.
An aAs layer (channel layer) 21 is grown to a thickness of 1.0 μm,
Subsequently, an electron supply layer 22 made of GaAffAs doped with 1.5×1018 cm of Si is formed to a thickness of 40 cm.
grow by nm.

次に第2図(b)のように、第1の実施例と同様にして
高さ0.8μm、ゲート長0.5μmの仮ゲートパター
ン6を形成した後、仮ゲートパターン6をマスクとして
St+を加速電圧50KeV、 ドース量3X10”c
m−2イオン注入して高濃度導電層7a、7bを設け、
As1I3ガスで850℃10秒の熱処理をおこさない
高濃度導電層7a、7bの結晶性を回復する。そして、
厚さ0.3μmのスパッタ法によるシリコン窒化膜で全
面を覆い、CF4ガスを用いた平行平板型ドライエツチ
ングをおこない厚さ0.3μmのシリコン窒化膜の側壁
8を設ける。この後、CCl4ガスを用いた平行平板型
ドライエツチングにより高濃度導電層7a、7bを20
nm堀込む。
Next, as shown in FIG. 2(b), a temporary gate pattern 6 having a height of 0.8 μm and a gate length of 0.5 μm is formed in the same manner as in the first embodiment, and then using the temporary gate pattern 6 as a mask, St+ Accelerating voltage 50KeV, dose amount 3X10"c
High concentration conductive layers 7a and 7b are provided by m-2 ion implantation,
The crystallinity of the highly concentrated conductive layers 7a and 7b is restored without heat treatment at 850° C. for 10 seconds using As1I3 gas. and,
The entire surface is covered with a silicon nitride film with a thickness of 0.3 μm formed by sputtering, and a side wall 8 of a silicon nitride film with a thickness of 0.3 μm is provided by performing parallel plate dry etching using CF4 gas. Thereafter, high concentration conductive layers 7a and 7b are etched by parallel plate dry etching using CCl4 gas.
Dig into nm.

次に第2図(c)のように有機洗浄により半導体表面を
浄化した後、第1の実施例と同様にしてオーム性金属9
a、9bを設け、450℃1分間の熱処理をしてオーム
性金属9a、9bを高濃度導電層7a、7bへ拡散させ
、ソース電極及びドレイン電極とすることができる。こ
の後、第1の実施例と同様にしてアルミニウムのゲート
電極1を設け、電界効果トランジスタを完成させること
ができる。
Next, as shown in FIG. 2(c), after cleaning the semiconductor surface by organic cleaning, the ohmic metal 9
A and 9b are provided, and heat treatment is performed at 450° C. for 1 minute to diffuse the ohmic metals 9a and 9b into the high concentration conductive layers 7a and 7b, which can be used as source electrodes and drain electrodes. Thereafter, an aluminum gate electrode 1 is provided in the same manner as in the first embodiment, thereby completing the field effect transistor.

GaAlAsからなる電子供給層22によりアンドープ
GaAs層21の内側にキャリアが発生しチャネルが形
成されるため、二次元電子ガス型電界効果トランジスタ
ではアンドープGaAs層21がチャネル層となる。
Since carriers are generated inside the undoped GaAs layer 21 by the electron supply layer 22 made of GaAlAs and a channel is formed, the undoped GaAs layer 21 becomes a channel layer in the two-dimensional electron gas field effect transistor.

この第2の実施例により得られたFETの特性は、ゲー
トしきい電圧■□=−0,3Vにおいて、最大相互コン
ダクタンスgm=380ms/mm、ソース抵抗Rs=
 O15Ω−mmと良好な値が得られた。
The characteristics of the FET obtained in this second embodiment are as follows: gate threshold voltage ■□=-0.3V, maximum mutual conductance gm=380ms/mm, source resistance Rs=
A good value of O15Ω-mm was obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の製造方法によれば、高濃
度導電層を浅くし、不純物濃度を下げることにより、横
方向拡散や基板リークが少なくなり、ドレイン電流の飽
和性やゲートしきい電圧のばらつきが改善される。そし
て、オーム性電極をゲート電極に接近させて設けること
により、ソース抵抗を下げて相互コンダクタンスを増大
させることができる。
As explained above, according to the manufacturing method of the present invention, by making the highly doped conductive layer shallow and lowering the impurity concentration, lateral diffusion and substrate leakage are reduced, and drain current saturation and gate threshold voltage are reduced. The dispersion is improved. By providing the ohmic electrode close to the gate electrode, the source resistance can be lowered and the mutual conductance can be increased.

また、本発明では、ゲート電極を後で形成するため、ゲ
ート電極にも抵抗率の低い材料を厚く用いてゲート抵抗
を下げることができる効果もある。
Furthermore, in the present invention, since the gate electrode is formed later, a material with low resistivity is also used thickly for the gate electrode, which has the effect of lowering the gate resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(h)は本発明の第1の実施例を説明す
るための主要工程における半導体チップの断面図、第2
図(a)〜(C)は本発明の第2の実施例を説明するた
めの主要工程における半導体チップの断面図、第3図(
a)〜(h)は従来の電界効果トランジスタの製造方法
を説明するための断面図である。 1・・・ゲート電極、2・・・ソース電極、3・・・ト
レイン電極、4・・・半導体基板、5・・・チャネル層
、6・・・仮ゲートパターン、7a、7b・・・高濃度
導電層、8・・・側壁、9.9a、9b・・・オーム性
金属、11・・・反転膜、10.12・・・レジスト膜
、13・・・反転パターン、14・・・ゲート開口。 熟1 フ ろイ反ゲ゛−トへ“夕九 (C) (d) 牛!■ (C) け) (h) 牛 2 図 9α  オー4小主金kqb 早3 図 (b) 7α躬耕尊17b (、、C) 、1/L転vL (d)
1(a) to 1(h) are cross-sectional views of a semiconductor chip in main steps for explaining the first embodiment of the present invention, and FIG.
Figures (a) to (C) are cross-sectional views of a semiconductor chip in main steps for explaining the second embodiment of the present invention, and Figure 3 (
1A to 1H are cross-sectional views for explaining a conventional method of manufacturing a field effect transistor. DESCRIPTION OF SYMBOLS 1... Gate electrode, 2... Source electrode, 3... Train electrode, 4... Semiconductor substrate, 5... Channel layer, 6... Temporary gate pattern, 7a, 7b... Height Concentrated conductive layer, 8... Side wall, 9.9a, 9b... Ohmic metal, 11... Inversion film, 10.12... Resist film, 13... Inversion pattern, 14... Gate Opening. Mature 1 Floy anti-gate "Evening 9 (C) (d) Ushi! ■ (C) ke) (h) Ushi 2 Figure 9α O4 Small master kqb Early 3 Figure (b) 7α Manko Venerable 17b (,,C), 1/L conversion vL (d)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上にチャネル層を形成する工程と、前記チャ
ネル層上にゲート形状を決めるための仮ゲートパターン
を形成する工程と、前記仮ゲートパターンをマスクとし
てイオン注入法により不純物を注入し前記半導体基板表
面に高濃度導電層を形成する工程と、前記仮ゲートパタ
ーンの側面に誘電体膜からなる側壁を形成する工程と、
全面にオーム性金属を被着し前記仮ゲートパターン上部
の前記オーム性金属を除去する工程と、前記半導体基板
の表面を被覆膜で覆い前記仮ゲートパターン上部の被覆
膜を除去し前記仮ゲートパターンのみを選択的に除去し
てゲート開口とする工程と、前記ゲート開口にゲート電
極を形成する工程とを有することを特徴とする電界効果
トランジスタの製造方法。
A step of forming a channel layer on a semiconductor substrate, a step of forming a temporary gate pattern for determining a gate shape on the channel layer, and a step of implanting impurities by ion implantation using the temporary gate pattern as a mask, and then implanting an impurity into the semiconductor substrate. a step of forming a highly concentrated conductive layer on the surface; a step of forming a sidewall made of a dielectric film on the side surface of the temporary gate pattern;
A step of depositing an ohmic metal on the entire surface and removing the ohmic metal above the temporary gate pattern, and a step of covering the surface of the semiconductor substrate with a coating film and removing the coating film above the temporary gate pattern. A method for manufacturing a field effect transistor, comprising the steps of: selectively removing only a gate pattern to form a gate opening; and forming a gate electrode in the gate opening.
JP20225086A 1986-08-27 1986-08-27 Manufacture of field-effect transistor Pending JPS6356959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20225086A JPS6356959A (en) 1986-08-27 1986-08-27 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20225086A JPS6356959A (en) 1986-08-27 1986-08-27 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPS6356959A true JPS6356959A (en) 1988-03-11

Family

ID=16454433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20225086A Pending JPS6356959A (en) 1986-08-27 1986-08-27 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPS6356959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264382A (en) * 1990-03-20 1993-11-23 Fujitsu Limited Method of producing semiconductor device using dummy gate structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264382A (en) * 1990-03-20 1993-11-23 Fujitsu Limited Method of producing semiconductor device using dummy gate structure

Similar Documents

Publication Publication Date Title
JPS6336147B2 (en)
US4351099A (en) Method of making FET utilizing shadow masking and diffusion from a doped oxide
JPS5832466A (en) Manufacture of mosfet
JPH07118484B2 (en) Method for manufacturing Schottky gate field effect transistor
JP3058040B2 (en) Semiconductor device
JPS6356959A (en) Manufacture of field-effect transistor
JPH0212927A (en) Manufacture of mesfet
JPS62204578A (en) Manufacture of field-effect transistor
RU2761051C1 (en) Method for manufacturing inter-instrument insulation of high-power gallium nitride transistors
JPS62204579A (en) Manufacture of field-effect transistor
JPS6223175A (en) Manufacture of semiconductor device
JPS6347982A (en) Semiconductor device
JPS6348868A (en) Manufacture of schottky gate type field effect transistor
JPS62188379A (en) Manufacture of field effect transistor
JPS58145161A (en) Manufacture of semiconductor device
JPS6037176A (en) Manufacture of field effect transistor
JPS60136264A (en) Manufacture of semiconductor device
JPH03296225A (en) Manufacture of field-effect transistor
JPH0373542A (en) Manufacture of ga-as field effect transistor
JPH04346442A (en) Manufacture of field-effect transistor
JPH02113539A (en) Manufacture of semiconductor device
JPH02295131A (en) Manufacture of mos transistor
JPS63296380A (en) Manufacture of semiconductor device
JPS6149469A (en) Manufacture of semiconductor device
JPS60779A (en) Manufacture of semiconductor device